modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-06-22 00:45:16
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 491
values | tags
sequencelengths 1
4.05k
| pipeline_tag
stringclasses 54
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-06-22 00:44:03
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
marciagrateful/marciagrateful | marciagrateful | 2025-04-28T04:39:38Z | 0 | 0 | null | [
"license:bigscience-openrail-m",
"region:us"
] | null | 2025-04-28T04:39:38Z | ---
license: bigscience-openrail-m
---
|
nqdhocai/LogicLlama-3.2-1B-NoDes-v1 | nqdhocai | 2025-04-28T04:36:45Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"sft",
"conversational",
"en",
"base_model:unsloth/Llama-3.2-1B-Instruct",
"base_model:finetune:unsloth/Llama-3.2-1B-Instruct",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-04-28T04:32:04Z | ---
base_model: unsloth/Llama-3.2-1B-Instruct
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
- sft
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** nqdhocai
- **License:** apache-2.0
- **Finetuned from model :** unsloth/Llama-3.2-1B-Instruct
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
pyarn/bge-m3-Q8_0-GGUF | pyarn | 2025-04-28T04:36:10Z | 0 | 0 | sentence-transformers | [
"sentence-transformers",
"gguf",
"feature-extraction",
"sentence-similarity",
"llama-cpp",
"gguf-my-repo",
"base_model:BAAI/bge-m3",
"base_model:quantized:BAAI/bge-m3",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | sentence-similarity | 2025-04-28T04:36:03Z | ---
base_model: BAAI/bge-m3
license: mit
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- llama-cpp
- gguf-my-repo
---
# pyarn/bge-m3-Q8_0-GGUF
This model was converted to GGUF format from [`BAAI/bge-m3`](https://huggingface.co/BAAI/bge-m3) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/BAAI/bge-m3) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo pyarn/bge-m3-Q8_0-GGUF --hf-file bge-m3-q8_0.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo pyarn/bge-m3-Q8_0-GGUF --hf-file bge-m3-q8_0.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo pyarn/bge-m3-Q8_0-GGUF --hf-file bge-m3-q8_0.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo pyarn/bge-m3-Q8_0-GGUF --hf-file bge-m3-q8_0.gguf -c 2048
```
|
pyarn/bge-reranker-v2-m3-Q8_0-GGUF | pyarn | 2025-04-28T04:34:41Z | 0 | 0 | sentence-transformers | [
"sentence-transformers",
"gguf",
"transformers",
"text-embeddings-inference",
"llama-cpp",
"gguf-my-repo",
"text-classification",
"multilingual",
"base_model:BAAI/bge-reranker-v2-m3",
"base_model:quantized:BAAI/bge-reranker-v2-m3",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"feature-extraction"
] | text-classification | 2025-04-28T04:34:28Z | ---
base_model: BAAI/bge-reranker-v2-m3
language:
- multilingual
license: apache-2.0
pipeline_tag: text-classification
tags:
- transformers
- sentence-transformers
- text-embeddings-inference
- llama-cpp
- gguf-my-repo
---
# pyarn/bge-reranker-v2-m3-Q8_0-GGUF
This model was converted to GGUF format from [`BAAI/bge-reranker-v2-m3`](https://huggingface.co/BAAI/bge-reranker-v2-m3) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/BAAI/bge-reranker-v2-m3) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo pyarn/bge-reranker-v2-m3-Q8_0-GGUF --hf-file bge-reranker-v2-m3-q8_0.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo pyarn/bge-reranker-v2-m3-Q8_0-GGUF --hf-file bge-reranker-v2-m3-q8_0.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo pyarn/bge-reranker-v2-m3-Q8_0-GGUF --hf-file bge-reranker-v2-m3-q8_0.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo pyarn/bge-reranker-v2-m3-Q8_0-GGUF --hf-file bge-reranker-v2-m3-q8_0.gguf -c 2048
```
|
archieto0412/whisper-atc-finetuned | archieto0412 | 2025-04-28T04:33:32Z | 20 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"en",
"dataset:archieto0412/atc-recordings",
"base_model:openai/whisper-small",
"base_model:finetune:openai/whisper-small",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2025-04-13T17:36:05Z | ---
library_name: transformers
language:
- en
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- archieto0412/atc-recordings
metrics:
- wer
model-index:
- name: Fine-tuned Whisper for AM
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: ATC voice recordings
type: archieto0412/atc-recordings
config: default
split: validation
args: default
metrics:
- name: Wer
type: wer
value: 0.18688230008984727
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Fine-tuned Whisper for AM
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the ATC voice recordings dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5964
- Wer: 0.1869
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 20
- training_steps: 400
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-------:|:----:|:---------------:|:------:|
| 1.3484 | 2.2727 | 50 | 1.0828 | 0.1986 |
| 0.7309 | 4.5455 | 100 | 0.9440 | 0.1752 |
| 0.5176 | 6.8182 | 150 | 0.9446 | 0.1869 |
| 0.2552 | 9.0909 | 200 | 0.5440 | 0.1923 |
| 0.0315 | 11.3636 | 250 | 0.5883 | 0.1959 |
| 0.0069 | 13.6364 | 300 | 0.5849 | 0.1842 |
| 0.0041 | 15.9091 | 350 | 0.5954 | 0.1851 |
| 0.0033 | 18.1818 | 400 | 0.5964 | 0.1869 |
### Framework versions
- Transformers 4.52.0.dev0
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
|
JohnDoe61428/my_awesome_model | JohnDoe61428 | 2025-04-28T04:32:24Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"bert",
"text-classification",
"generated_from_trainer",
"base_model:google-bert/bert-base-cased",
"base_model:finetune:google-bert/bert-base-cased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2025-04-15T07:33:41Z | ---
library_name: transformers
license: apache-2.0
base_model: bert-base-cased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: my_awesome_model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_awesome_model
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1742
- Accuracy: 0.5267
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.2564 | 1.0 | 534 | 1.0880 | 0.5303 |
| 0.9655 | 2.0 | 1068 | 1.1118 | 0.5317 |
| 0.7741 | 3.0 | 1602 | 1.1742 | 0.5267 |
### Framework versions
- Transformers 4.48.2
- Pytorch 2.6.0+cpu
- Datasets 3.2.0
- Tokenizers 0.21.0
|
rdotech123/noob | rdotech123 | 2025-04-28T04:32:09Z | 0 | 0 | null | [
"license:apache-2.0",
"region:us"
] | null | 2025-04-28T04:32:07Z | ---
license: apache-2.0
---
|
YK8B5tDDho5b9/hsjjadtyw | YK8B5tDDho5b9 | 2025-04-28T04:31:04Z | 0 | 0 | null | [
"license:apache-2.0",
"region:us"
] | null | 2025-04-28T04:31:04Z | ---
license: apache-2.0
---
|
NsFC305QogMK/hsgafd | NsFC305QogMK | 2025-04-28T04:30:30Z | 0 | 0 | null | [
"license:apache-2.0",
"region:us"
] | null | 2025-04-28T04:30:30Z | ---
license: apache-2.0
---
|
Sorawiz/Qwen2.5-Kunoulise-D | Sorawiz | 2025-04-28T04:29:20Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"mergekit",
"merge",
"conversational",
"base_model:Sao10K/14B-Qwen2.5-Kunou-v1",
"base_model:merge:Sao10K/14B-Qwen2.5-Kunou-v1",
"base_model:Ttimofeyka/Tissint-14B-v1.2-128k-RP",
"base_model:merge:Ttimofeyka/Tissint-14B-v1.2-128k-RP",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-04-28T04:15:20Z | ---
base_model:
- Ttimofeyka/Tissint-14B-v1.2-128k-RP
- Sao10K/14B-Qwen2.5-Kunou-v1
library_name: transformers
tags:
- mergekit
- merge
---
# merge
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the [SLERP](https://en.wikipedia.org/wiki/Slerp) merge method.
### Models Merged
The following models were included in the merge:
* [Ttimofeyka/Tissint-14B-v1.2-128k-RP](https://huggingface.co/Ttimofeyka/Tissint-14B-v1.2-128k-RP)
* [Sao10K/14B-Qwen2.5-Kunou-v1](https://huggingface.co/Sao10K/14B-Qwen2.5-Kunou-v1)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
slices:
- sources:
- model: Sao10K/14B-Qwen2.5-Kunou-v1
layer_range: [0, 48]
- model: Ttimofeyka/Tissint-14B-v1.2-128k-RP
layer_range: [0, 48]
merge_method: slerp
base_model: Sao10K/14B-Qwen2.5-Kunou-v1
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: float32
```
|
nqdhocai/LogicLlama-3.2-1B-NoDes-v0 | nqdhocai | 2025-04-28T04:29:01Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"sft",
"conversational",
"en",
"base_model:unsloth/Llama-3.2-1B-Instruct",
"base_model:finetune:unsloth/Llama-3.2-1B-Instruct",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-04-28T04:27:45Z | ---
base_model: unsloth/Llama-3.2-1B-Instruct
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
- sft
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** nqdhocai
- **License:** apache-2.0
- **Finetuned from model :** unsloth/Llama-3.2-1B-Instruct
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
Williams10312/medical-question-model | Williams10312 | 2025-04-28T04:27:30Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"bert",
"text-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2025-04-28T04:27:15Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
nald/lora | nald | 2025-04-28T04:26:01Z | 0 | 0 | null | [
"license:creativeml-openrail-m",
"region:us"
] | null | 2025-04-28T04:26:01Z | ---
license: creativeml-openrail-m
---
|
marialvsantiago/77d2a99e-ae4f-4100-8177-e5c3d6c2a33e | marialvsantiago | 2025-04-28T04:24:40Z | 0 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/llama-3-8b",
"base_model:adapter:unsloth/llama-3-8b",
"license:llama3",
"4-bit",
"bitsandbytes",
"region:us"
] | null | 2025-04-28T04:14:37Z | ---
library_name: peft
license: llama3
base_model: unsloth/llama-3-8b
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 77d2a99e-ae4f-4100-8177-e5c3d6c2a33e
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: unsloth/llama-3-8b
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- c37c140bf6fca413_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/c37c140bf6fca413_train_data.json
type:
field_input: import_statement
field_instruction: all_code
field_output: next_line
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 1
gradient_checkpointing: true
gradient_clipping: 0.5
group_by_length: false
hub_model_id: marialvsantiago/77d2a99e-ae4f-4100-8177-e5c3d6c2a33e
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 5.0e-06
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_steps: 200
micro_batch_size: 8
mixed_precision: bf16
mlflow_experiment_name: /tmp/c37c140bf6fca413_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 1f2fcd54-47fc-4e17-8f4e-236c2e7af79c
wandb_project: s56-33
wandb_run: your_name
wandb_runid: 1f2fcd54-47fc-4e17-8f4e-236c2e7af79c
warmup_steps: 5
weight_decay: 0.01
xformers_attention: true
```
</details><br>
# 77d2a99e-ae4f-4100-8177-e5c3d6c2a33e
This model is a fine-tuned version of [unsloth/llama-3-8b](https://huggingface.co/unsloth/llama-3-8b) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.2541
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.5632 | 0.0756 | 200 | 2.2541 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
vermoney/7a93746f-83ea-4f87-914e-0a0d6628b850 | vermoney | 2025-04-28T04:24:29Z | 0 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/llama-3-8b",
"base_model:adapter:unsloth/llama-3-8b",
"license:llama3",
"4-bit",
"bitsandbytes",
"region:us"
] | null | 2025-04-28T04:14:37Z | ---
library_name: peft
license: llama3
base_model: unsloth/llama-3-8b
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 7a93746f-83ea-4f87-914e-0a0d6628b850
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: unsloth/llama-3-8b
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- c37c140bf6fca413_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/c37c140bf6fca413_train_data.json
type:
field_input: import_statement
field_instruction: all_code
field_output: next_line
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 1
gradient_checkpointing: true
gradient_clipping: 0.5
group_by_length: false
hub_model_id: vermoney/7a93746f-83ea-4f87-914e-0a0d6628b850
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 5.0e-06
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_steps: 200
micro_batch_size: 8
mixed_precision: bf16
mlflow_experiment_name: /tmp/c37c140bf6fca413_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 1f2fcd54-47fc-4e17-8f4e-236c2e7af79c
wandb_project: s56-9
wandb_run: your_name
wandb_runid: 1f2fcd54-47fc-4e17-8f4e-236c2e7af79c
warmup_steps: 5
weight_decay: 0.01
xformers_attention: true
```
</details><br>
# 7a93746f-83ea-4f87-914e-0a0d6628b850
This model is a fine-tuned version of [unsloth/llama-3-8b](https://huggingface.co/unsloth/llama-3-8b) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.2552
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.5709 | 0.0756 | 200 | 2.2552 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
mradermacher/Alkahest-V10-LLaMa-70B-i1-GGUF | mradermacher | 2025-04-28T04:22:46Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"mergekit",
"merge",
"en",
"base_model:TareksTesting/Alkahest-V10-LLaMa-70B",
"base_model:quantized:TareksTesting/Alkahest-V10-LLaMa-70B",
"endpoints_compatible",
"region:us",
"imatrix",
"conversational"
] | null | 2025-04-28T00:25:53Z | ---
base_model: TareksTesting/Alkahest-V10-LLaMa-70B
language:
- en
library_name: transformers
quantized_by: mradermacher
tags:
- mergekit
- merge
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: nicoboss -->
weighted/imatrix quants of https://huggingface.co/TareksTesting/Alkahest-V10-LLaMa-70B
<!-- provided-files -->
static quants are available at https://huggingface.co/mradermacher/Alkahest-V10-LLaMa-70B-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Alkahest-V10-LLaMa-70B-i1-GGUF/resolve/main/Alkahest-V10-LLaMa-70B.i1-IQ1_S.gguf) | i1-IQ1_S | 15.4 | for the desperate |
| [GGUF](https://huggingface.co/mradermacher/Alkahest-V10-LLaMa-70B-i1-GGUF/resolve/main/Alkahest-V10-LLaMa-70B.i1-IQ1_M.gguf) | i1-IQ1_M | 16.9 | mostly desperate |
| [GGUF](https://huggingface.co/mradermacher/Alkahest-V10-LLaMa-70B-i1-GGUF/resolve/main/Alkahest-V10-LLaMa-70B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 19.2 | |
| [GGUF](https://huggingface.co/mradermacher/Alkahest-V10-LLaMa-70B-i1-GGUF/resolve/main/Alkahest-V10-LLaMa-70B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 21.2 | |
| [GGUF](https://huggingface.co/mradermacher/Alkahest-V10-LLaMa-70B-i1-GGUF/resolve/main/Alkahest-V10-LLaMa-70B.i1-IQ2_S.gguf) | i1-IQ2_S | 22.3 | |
| [GGUF](https://huggingface.co/mradermacher/Alkahest-V10-LLaMa-70B-i1-GGUF/resolve/main/Alkahest-V10-LLaMa-70B.i1-IQ2_M.gguf) | i1-IQ2_M | 24.2 | |
| [GGUF](https://huggingface.co/mradermacher/Alkahest-V10-LLaMa-70B-i1-GGUF/resolve/main/Alkahest-V10-LLaMa-70B.i1-Q2_K_S.gguf) | i1-Q2_K_S | 24.6 | very low quality |
| [GGUF](https://huggingface.co/mradermacher/Alkahest-V10-LLaMa-70B-i1-GGUF/resolve/main/Alkahest-V10-LLaMa-70B.i1-Q2_K.gguf) | i1-Q2_K | 26.5 | IQ3_XXS probably better |
| [GGUF](https://huggingface.co/mradermacher/Alkahest-V10-LLaMa-70B-i1-GGUF/resolve/main/Alkahest-V10-LLaMa-70B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 27.6 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Alkahest-V10-LLaMa-70B-i1-GGUF/resolve/main/Alkahest-V10-LLaMa-70B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 29.4 | |
| [GGUF](https://huggingface.co/mradermacher/Alkahest-V10-LLaMa-70B-i1-GGUF/resolve/main/Alkahest-V10-LLaMa-70B.i1-IQ3_S.gguf) | i1-IQ3_S | 31.0 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/Alkahest-V10-LLaMa-70B-i1-GGUF/resolve/main/Alkahest-V10-LLaMa-70B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 31.0 | IQ3_XS probably better |
| [GGUF](https://huggingface.co/mradermacher/Alkahest-V10-LLaMa-70B-i1-GGUF/resolve/main/Alkahest-V10-LLaMa-70B.i1-IQ3_M.gguf) | i1-IQ3_M | 32.0 | |
| [GGUF](https://huggingface.co/mradermacher/Alkahest-V10-LLaMa-70B-i1-GGUF/resolve/main/Alkahest-V10-LLaMa-70B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 34.4 | IQ3_S probably better |
| [GGUF](https://huggingface.co/mradermacher/Alkahest-V10-LLaMa-70B-i1-GGUF/resolve/main/Alkahest-V10-LLaMa-70B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 37.2 | IQ3_M probably better |
| [GGUF](https://huggingface.co/mradermacher/Alkahest-V10-LLaMa-70B-i1-GGUF/resolve/main/Alkahest-V10-LLaMa-70B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 38.0 | |
| [GGUF](https://huggingface.co/mradermacher/Alkahest-V10-LLaMa-70B-i1-GGUF/resolve/main/Alkahest-V10-LLaMa-70B.i1-Q4_0.gguf) | i1-Q4_0 | 40.2 | fast, low quality |
| [GGUF](https://huggingface.co/mradermacher/Alkahest-V10-LLaMa-70B-i1-GGUF/resolve/main/Alkahest-V10-LLaMa-70B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 40.4 | optimal size/speed/quality |
| [GGUF](https://huggingface.co/mradermacher/Alkahest-V10-LLaMa-70B-i1-GGUF/resolve/main/Alkahest-V10-LLaMa-70B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 42.6 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Alkahest-V10-LLaMa-70B-i1-GGUF/resolve/main/Alkahest-V10-LLaMa-70B.i1-Q4_1.gguf) | i1-Q4_1 | 44.4 | |
| [GGUF](https://huggingface.co/mradermacher/Alkahest-V10-LLaMa-70B-i1-GGUF/resolve/main/Alkahest-V10-LLaMa-70B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 48.8 | |
| [GGUF](https://huggingface.co/mradermacher/Alkahest-V10-LLaMa-70B-i1-GGUF/resolve/main/Alkahest-V10-LLaMa-70B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 50.1 | |
| [PART 1](https://huggingface.co/mradermacher/Alkahest-V10-LLaMa-70B-i1-GGUF/resolve/main/Alkahest-V10-LLaMa-70B.i1-Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Alkahest-V10-LLaMa-70B-i1-GGUF/resolve/main/Alkahest-V10-LLaMa-70B.i1-Q6_K.gguf.part2of2) | i1-Q6_K | 58.0 | practically like static Q6_K |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
<!-- end -->
|
CAWANG2/SmolLM2-FT-MyDataset | CAWANG2 | 2025-04-28T04:21:28Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"llama",
"text-generation",
"generated_from_trainer",
"smol-course",
"module_1",
"trl",
"sft",
"conversational",
"base_model:HuggingFaceTB/SmolLM2-135M",
"base_model:finetune:HuggingFaceTB/SmolLM2-135M",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-04-28T04:20:56Z | ---
base_model: HuggingFaceTB/SmolLM2-135M
library_name: transformers
model_name: SmolLM2-FT-MyDataset
tags:
- generated_from_trainer
- smol-course
- module_1
- trl
- sft
licence: license
---
# Model Card for SmolLM2-FT-MyDataset
This model is a fine-tuned version of [HuggingFaceTB/SmolLM2-135M](https://huggingface.co/HuggingFaceTB/SmolLM2-135M).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="CAWANG2/SmolLM2-FT-MyDataset", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/wangcan2001-the-university-of-melbourne/huggingface/runs/2y06imn3)
This model was trained with SFT.
### Framework versions
- TRL: 0.17.0
- Transformers: 4.51.3
- Pytorch: 2.6.0+cu124
- Datasets: 3.5.0
- Tokenizers: 0.21.1
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
suriacaa/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-quiet_shaggy_skunk | suriacaa | 2025-04-28T04:19:49Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"generated_from_trainer",
"rl-swarm",
"grpo",
"gensyn",
"I am quiet shaggy skunk",
"trl",
"conversational",
"arxiv:2402.03300",
"base_model:Gensyn/Qwen2.5-0.5B-Instruct",
"base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-04-28T03:23:15Z | ---
base_model: Gensyn/Qwen2.5-0.5B-Instruct
library_name: transformers
model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-quiet_shaggy_skunk
tags:
- generated_from_trainer
- rl-swarm
- grpo
- gensyn
- I am quiet shaggy skunk
- trl
licence: license
---
# Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-quiet_shaggy_skunk
This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="suriacaa/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-quiet_shaggy_skunk", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.15.2
- Transformers: 4.51.3
- Pytorch: 2.5.1
- Datasets: 3.5.0
- Tokenizers: 0.21.1
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
MB55/llmlein5-instruction-tuning | MB55 | 2025-04-28T04:19:34Z | 0 | 0 | peft | [
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:LSX-UniWue/LLaMmlein_7B_chat",
"base_model:adapter:LSX-UniWue/LLaMmlein_7B_chat",
"region:us"
] | null | 2025-04-28T04:19:30Z | ---
base_model: LSX-UniWue/LLaMmlein_7B_chat
library_name: peft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.14.0 |
DeepGlint-AI/llava-mlcd-qwen2.5-7b | DeepGlint-AI | 2025-04-28T04:18:49Z | 4 | 10 | null | [
"safetensors",
"qwen2",
"zho",
"eng",
"fra",
"spa",
"por",
"deu",
"ita",
"rus",
"jpn",
"kor",
"vie",
"tha",
"ara",
"dataset:liuhaotian/LLaVA-Pretrain",
"dataset:lmms-lab/LLaVA-NeXT-Data",
"arxiv:2407.17331",
"base_model:Qwen/Qwen2.5-7B-Instruct",
"base_model:finetune:Qwen/Qwen2.5-7B-Instruct",
"license:apache-2.0",
"region:us"
] | null | 2024-10-15T03:58:44Z | ---
license: apache-2.0
datasets:
- liuhaotian/LLaVA-Pretrain
- lmms-lab/LLaVA-NeXT-Data
base_model:
- Qwen/Qwen2.5-7B-Instruct
language:
- zho
- eng
- fra
- spa
- por
- deu
- ita
- rus
- jpn
- kor
- vie
- tha
- ara
---
[[Paper]](https://arxiv.org/abs/2407.17331) [[GitHub]](https://github.com/deepglint/unicom)
## Model
We used [**MLCD**](https://huggingface.co/DeepGlint-AI/mlcd-vit-large-patch14-336) as the Vision Encoder in [LLaVA-Next](https://huggingface.co/lmms-lab/llava-next-qwen-32b).

## Data
Our model was trained on publicly available data from the [LLaVA-Pretrain](https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain) and [LLaVA-NeXT-Data](https://huggingface.co/datasets/lmms-lab/LLaVA-NeXT-Data) datasets.
## How to eval
```shell
pip install lmms-eval==0.2.0
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
python -m accelerate.commands.launch \
--main_process_port=12581 \
--num_processes=8 \
-m lmms_eval \
--model llava \
--model_args pretrained=DeepGlint-AI/llava-mlcd-qwen2.5-7b,conv_template=qwen_1_5 \
--tasks mmbench,mme,mmmu,ocrbench,scienceqa,scienceqa_img,seedbench,gqa,pope,textvqa_val,ai2d,chartqa,docvqa_val,infovqa_val,mmstar \
--batch_size 1 \
--log_samples \
--log_samples_suffix mlcd_llava_qwen2_7b \
--output_path ./log
```
## Performance and Limitations
In our experiments, we replaced the CLIP model in [LLaVA-NeXT](https://github.com/LLaVA-VL/LLaVA-NeXT) with the MLCD model to demonstrate the performance of the MLCD model in Multimodal Large Language Models (MLLMs). For the language model, we used [Qwen2.5-7B](https://huggingface.co/Qwen/Qwen2.5-7B). The evaluation results show that the modified model performs exceptionally well across multiple benchmarks, validating the effectiveness of the MLCD model within MLLMs.
| Vision Tower | MLCD (ViT_L_14_336px) | CLIP (ViT_L_14_336px) |
|:----------------|:-------------|:-------------|
| LLM | Qwen2.5-7B | Qwen2.5-7B |
| AI2D | **76.98** | 73.15 |
| ScienceQA_img | **78.09** | 76.35 |
| GQA | **64.17** | 63.31 |
| InfoVQA_val | **43.48** | 38.88 |
| MMBench_cn_dev | **74.83** | 72.51 |
| MMBench_en_dev | **76.37** | 74.57 |
| MME(cognition) | **432** | 384 |
| MME(perception) | **1598** | 1512 |
| SeedBench | **68.20** | 66.80 |
| SeedBench_img | **73.75** | 72.72 |
| MMStar | **50.98** | 48.98 |
| MMMU | **44.30** | 44.20 |
| OCRBench | **531.00** | 525.00 |
| ChartQA | **67.84** | 66.52 |
| DocVQA_val | **76.46** | 75.21 |
| POPE | 88.69 | **88.83** |
| TextVQA_val | 61.69 | **62.47** |
### C. Limitations
Models with larger datasets will perform better on more tasks. We are currently training such models and will soon make them available.
## Acknowledgments
We would like to express our gratitude to [Yumeng Wang](https://huggingface.co/devymex) for his significant contributions to the experimental validation in MLLMs. |
titlelord/medical-question-model | titlelord | 2025-04-28T04:16:42Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"bert",
"text-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2025-04-28T04:16:32Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
unsloth/Qwen2.5-7B-Instruct | unsloth | 2025-04-28T04:16:22Z | 28,347 | 14 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"unsloth",
"conversational",
"zho",
"eng",
"fra",
"spa",
"por",
"deu",
"ita",
"rus",
"jpn",
"kor",
"vie",
"tha",
"ara",
"arxiv:2309.00071",
"arxiv:2407.10671",
"base_model:Qwen/Qwen2.5-7B-Instruct",
"base_model:finetune:Qwen/Qwen2.5-7B-Instruct",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-09-18T21:23:05Z | ---
base_model: Qwen/Qwen2.5-7B-Instruct
language:
- zho
- eng
- fra
- spa
- por
- deu
- ita
- rus
- jpn
- kor
- vie
- tha
- ara
library_name: transformers
license: apache-2.0
tags:
- unsloth
- transformers
---
# Finetune Llama 3.1, Gemma 2, Mistral 2-5x faster with 70% less memory via Unsloth!
We have a Qwen 2.5 (all model sizes) [free Google Colab Tesla T4 notebook](https://colab.research.google.com/drive/1Kose-ucXO1IBaZq5BvbwWieuubP7hxvQ?usp=sharing).
Also a [Qwen 2.5 conversational style notebook](https://colab.research.google.com/drive/1qN1CEalC70EO1wGKhNxs1go1W9So61R5?usp=sharing).
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/Discord%20button.png" width="200"/>](https://discord.gg/unsloth)
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
## ✨ Finetune for Free
All notebooks are **beginner friendly**! Add your dataset, click "Run All", and you'll get a 2x faster finetuned model which can be exported to GGUF, vLLM or uploaded to Hugging Face.
| Unsloth supports | Free Notebooks | Performance | Memory use |
|-----------------|--------------------------------------------------------------------------------------------------------------------------|-------------|----------|
| **Llama-3.1 8b** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Ys44kVvmeZtnICzWz0xgpRnrIOjZAuxp?usp=sharing) | 2.4x faster | 58% less |
| **Phi-3.5 (mini)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1lN6hPQveB_mHSnTOYifygFcrO8C1bxq4?usp=sharing) | 2x faster | 50% less |
| **Gemma-2 9b** | [▶️ Start on Colab](https://colab.research.google.com/drive/1vIrqH5uYDQwsJ4-OO3DErvuv4pBgVwk4?usp=sharing) | 2.4x faster | 58% less |
| **Mistral 7b** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Dyauq4kTZoLewQ1cApceUQVNcnnNTzg_?usp=sharing) | 2.2x faster | 62% less |
| **TinyLlama** | [▶️ Start on Colab](https://colab.research.google.com/drive/1AZghoNBQaMDgWJpi4RbffGM1h6raLUj9?usp=sharing) | 3.9x faster | 74% less |
| **DPO - Zephyr** | [▶️ Start on Colab](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) | 1.9x faster | 19% less |
- This [conversational notebook](https://colab.research.google.com/drive/1Aau3lgPzeZKQ-98h69CCu1UJcvIBLmy2?usp=sharing) is useful for ShareGPT ChatML / Vicuna templates.
- This [text completion notebook](https://colab.research.google.com/drive/1ef-tab5bhkvWmBOObepl1WgJvfvSzn5Q?usp=sharing) is for raw text. This [DPO notebook](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) replicates Zephyr.
- \* Kaggle has 2x T4s, but we use 1. Due to overhead, 1x T4 is 5x faster.
# Qwen2.5-7B-Instruct
## Introduction
Qwen2.5 is the latest series of Qwen large language models. For Qwen2.5, we release a number of base language models and instruction-tuned language models ranging from 0.5 to 72 billion parameters. Qwen2.5 brings the following improvements upon Qwen2:
- Significantly **more knowledge** and has greatly improved capabilities in **coding** and **mathematics**, thanks to our specialized expert models in these domains.
- Significant improvements in **instruction following**, **generating long texts** (over 8K tokens), **understanding structured data** (e.g, tables), and **generating structured outputs** especially JSON. **More resilient to the diversity of system prompts**, enhancing role-play implementation and condition-setting for chatbots.
- **Long-context Support** up to 128K tokens and can generate up to 8K tokens.
- **Multilingual support** for over 29 languages, including Chinese, English, French, Spanish, Portuguese, German, Italian, Russian, Japanese, Korean, Vietnamese, Thai, Arabic, and more.
**This repo contains the instruction-tuned 7B Qwen2.5 model**, which has the following features:
- Type: Causal Language Models
- Training Stage: Pretraining & Post-training
- Architecture: transformers with RoPE, SwiGLU, RMSNorm, and Attention QKV bias
- Number of Parameters: 7.61B
- Number of Paramaters (Non-Embedding): 6.53B
- Number of Layers: 28
- Number of Attention Heads (GQA): 28 for Q and 4 for KV
- Context Length: Full 131,072 tokens and generation 8192 tokens
- Please refer to [this section](#processing-long-texts) for detailed instructions on how to deploy Qwen2.5 for handling long texts.
For more details, please refer to our [blog](https://qwenlm.github.io/blog/qwen2.5/), [GitHub](https://github.com/QwenLM/Qwen2.5), and [Documentation](https://qwen.readthedocs.io/en/latest/).
## Requirements
The code of Qwen2.5 has been in the latest Hugging face `transformers` and we advise you to use the latest version of `transformers`.
With `transformers<4.37.0`, you will encounter the following error:
```
KeyError: 'qwen2'
```
## Quickstart
Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "Qwen/Qwen2.5-7B-Instruct"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "Give me a short introduction to large language model."
messages = [
{"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```
### Processing Long Texts
The current `config.json` is set for context length up to 32,768 tokens.
To handle extensive inputs exceeding 32,768 tokens, we utilize [YaRN](https://arxiv.org/abs/2309.00071), a technique for enhancing model length extrapolation, ensuring optimal performance on lengthy texts.
For supported frameworks, you could add the following to `config.json` to enable YaRN:
```json
{
...,
"rope_scaling": {
"factor": 4.0,
"original_max_position_embeddings": 32768,
"type": "yarn"
}
}
```
For deployment, we recommend using vLLM.
Please refer to our [Documentation](https://qwen.readthedocs.io/en/latest/deployment/vllm.html) for usage if you are not familar with vLLM.
Presently, vLLM only supports static YARN, which means the scaling factor remains constant regardless of input length, **potentially impacting performance on shorter texts**.
We advise adding the `rope_scaling` configuration only when processing long contexts is required.
## Evaluation & Performance
Detailed evaluation results are reported in this [📑 blog](https://qwenlm.github.io/blog/qwen2.5/).
For requirements on GPU memory and the respective throughput, see results [here](https://qwen.readthedocs.io/en/latest/benchmark/speed_benchmark.html).
## Citation
If you find our work helpful, feel free to give us a cite.
```
@misc{qwen2.5,
title = {Qwen2.5: A Party of Foundation Models},
url = {https://qwenlm.github.io/blog/qwen2.5/},
author = {Qwen Team},
month = {September},
year = {2024}
}
@article{qwen2,
title={Qwen2 Technical Report},
author={An Yang and Baosong Yang and Binyuan Hui and Bo Zheng and Bowen Yu and Chang Zhou and Chengpeng Li and Chengyuan Li and Dayiheng Liu and Fei Huang and Guanting Dong and Haoran Wei and Huan Lin and Jialong Tang and Jialin Wang and Jian Yang and Jianhong Tu and Jianwei Zhang and Jianxin Ma and Jin Xu and Jingren Zhou and Jinze Bai and Jinzheng He and Junyang Lin and Kai Dang and Keming Lu and Keqin Chen and Kexin Yang and Mei Li and Mingfeng Xue and Na Ni and Pei Zhang and Peng Wang and Ru Peng and Rui Men and Ruize Gao and Runji Lin and Shijie Wang and Shuai Bai and Sinan Tan and Tianhang Zhu and Tianhao Li and Tianyu Liu and Wenbin Ge and Xiaodong Deng and Xiaohuan Zhou and Xingzhang Ren and Xinyu Zhang and Xipin Wei and Xuancheng Ren and Yang Fan and Yang Yao and Yichang Zhang and Yu Wan and Yunfei Chu and Yuqiong Liu and Zeyu Cui and Zhenru Zhang and Zhihao Fan},
journal={arXiv preprint arXiv:2407.10671},
year={2024}
}
``` |
unsloth/Qwen2.5-14B-Instruct-unsloth-bnb-4bit | unsloth | 2025-04-28T04:16:18Z | 37,470 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"unsloth",
"qwen",
"conversational",
"zho",
"eng",
"fra",
"spa",
"por",
"deu",
"ita",
"rus",
"jpn",
"kor",
"vie",
"tha",
"ara",
"arxiv:2407.10671",
"base_model:Qwen/Qwen2.5-14B-Instruct",
"base_model:quantized:Qwen/Qwen2.5-14B-Instruct",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
] | text-generation | 2025-02-06T05:23:53Z | ---
base_model: Qwen/Qwen2.5-14B-Instruct
language:
- zho
- eng
- fra
- spa
- por
- deu
- ita
- rus
- jpn
- kor
- vie
- tha
- ara
library_name: transformers
license: apache-2.0
tags:
- unsloth
- transformers
- qwen
---
<div>
<p style="margin-bottom: 0;">
<strong>See <a href="https://huggingface.co/collections/unsloth/qwen-25-66fe4c08fb9ada518e8a0d3f">our collection</a> for versions of Qwen2.5 including 4-bit formats.</strong>
</p>
<p style="margin-bottom: 0;">
<em>Unsloth's <a href="https://unsloth.ai/blog/dynamic-4bit">Dynamic 4-bit Quants</a> is selectively quantized, greatly improving accuracy over standard 4-bit.</em>
</p>
<div style="display: flex; gap: 5px; align-items: center; ">
<a href="https://github.com/unslothai/unsloth/">
<img src="https://github.com/unslothai/unsloth/raw/main/images/unsloth%20new%20logo.png" width="133">
</a>
<a href="https://discord.gg/unsloth">
<img src="https://github.com/unslothai/unsloth/raw/main/images/Discord%20button.png" width="173">
</a>
<a href="https://docs.unsloth.ai/">
<img src="https://raw.githubusercontent.com/unslothai/unsloth/refs/heads/main/images/documentation%20green%20button.png" width="143">
</a>
</div>
<h1 style="margin-top: 0rem;">Finetune LLMs 2-5x faster with 70% less memory via Unsloth!</h2>
</div>
We have a free Google Colab Tesla T4 notebook for Qwen2.5 (7B) here: https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Qwen2.5_(7B)-Alpaca.ipynb
## ✨ Finetune for Free
All notebooks are **beginner friendly**! Add your dataset, click "Run All", and you'll get a 2x faster finetuned model which can be exported to GGUF, vLLM or uploaded to Hugging Face.
| Unsloth supports | Free Notebooks | Performance | Memory use |
|-----------------|--------------------------------------------------------------------------------------------------------------------------|-------------|----------|
| **Llama-3.2 (3B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(1B_and_3B)-Conversational.ipynb) | 2.4x faster | 58% less |
| **Llama-3.2 (11B vision)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(11B)-Vision.ipynb) | 2x faster | 60% less |
| **Qwen2 VL (7B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Qwen2_VL_(7B)-Vision.ipynb) | 1.8x faster | 60% less |
| **Qwen2.5 (7B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Qwen2.5_(7B)-Alpaca.ipynb) | 2x faster | 60% less |
| **Llama-3.1 (8B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.1_(8B)-Alpaca.ipynb) | 2.4x faster | 58% less |
| **Phi-3.5 (mini)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Phi_3.5_Mini-Conversational.ipynb) | 2x faster | 50% less |
| **Gemma 2 (9B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Gemma2_(9B)-Alpaca.ipynb) | 2.4x faster | 58% less |
| **Mistral (7B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Mistral_v0.3_(7B)-Conversational.ipynb) | 2.2x faster | 62% less |
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/refs/heads/main/images/documentation%20green%20button.png" width="200"/>](https://docs.unsloth.ai)
- This [Llama 3.2 conversational notebook](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(1B_and_3B)-Conversational.ipynb) is useful for ShareGPT ChatML / Vicuna templates.
- This [text completion notebook](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Mistral_(7B)-Text_Completion.ipynb) is for raw text. This [DPO notebook](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) replicates Zephyr.
- \* Kaggle has 2x T4s, but we use 1. Due to overhead, 1x T4 is 5x faster.
# Qwen2.5
## Introduction
Qwen2.5 is the latest series of Qwen large language models. For Qwen2.5, we release a number of base language models and instruction-tuned language models ranging from 0.5 to 72 billion parameters. Qwen2.5 brings the following improvements upon Qwen2:
- Significantly **more knowledge** and has greatly improved capabilities in **coding** and **mathematics**, thanks to our specialized expert models in these domains.
- Significant improvements in **instruction following**, **generating long texts** (over 8K tokens), **understanding structured data** (e.g, tables), and **generating structured outputs** especially JSON. **More resilient to the diversity of system prompts**, enhancing role-play implementation and condition-setting for chatbots.
- **Long-context Support** up to 128K tokens and can generate up to 8K tokens.
- **Multilingual support** for over 29 languages, including Chinese, English, French, Spanish, Portuguese, German, Italian, Russian, Japanese, Korean, Vietnamese, Thai, Arabic, and more.
**This repo contains the base 0.5B Qwen2.5 model**, which has the following features:
- Type: Causal Language Models
- Training Stage: Pretraining
- Architecture: transformers with RoPE, SwiGLU, RMSNorm, Attention QKV bias and tied word embeddings
- Number of Parameters: 0.49B
- Number of Paramaters (Non-Embedding): 0.36B
- Number of Layers: 24
- Number of Attention Heads (GQA): 14 for Q and 2 for KV
- Context Length: Full 32,768 tokens
**We do not recommend using base language models for conversations.** Instead, you can apply post-training, e.g., SFT, RLHF, continued pretraining, etc., on this model.
For more details, please refer to our [blog](https://qwenlm.github.io/blog/qwen2.5/), [GitHub](https://github.com/QwenLM/Qwen2.5), and [Documentation](https://qwen.readthedocs.io/en/latest/).
## Requirements
The code of Qwen2.5 has been in the latest Hugging face `transformers` and we advise you to use the latest version of `transformers`.
With `transformers<4.37.0`, you will encounter the following error:
```
KeyError: 'qwen2'
```
## Evaluation & Performance
Detailed evaluation results are reported in this [📑 blog](https://qwenlm.github.io/blog/qwen2.5/).
For requirements on GPU memory and the respective throughput, see results [here](https://qwen.readthedocs.io/en/latest/benchmark/speed_benchmark.html).
## Citation
If you find our work helpful, feel free to give us a cite.
```
@misc{qwen2.5,
title = {Qwen2.5: A Party of Foundation Models},
url = {https://qwenlm.github.io/blog/qwen2.5/},
author = {Qwen Team},
month = {September},
year = {2024}
}
@article{qwen2,
title={Qwen2 Technical Report},
author={An Yang and Baosong Yang and Binyuan Hui and Bo Zheng and Bowen Yu and Chang Zhou and Chengpeng Li and Chengyuan Li and Dayiheng Liu and Fei Huang and Guanting Dong and Haoran Wei and Huan Lin and Jialong Tang and Jialin Wang and Jian Yang and Jianhong Tu and Jianwei Zhang and Jianxin Ma and Jin Xu and Jingren Zhou and Jinze Bai and Jinzheng He and Junyang Lin and Kai Dang and Keming Lu and Keqin Chen and Kexin Yang and Mei Li and Mingfeng Xue and Na Ni and Pei Zhang and Peng Wang and Ru Peng and Rui Men and Ruize Gao and Runji Lin and Shijie Wang and Shuai Bai and Sinan Tan and Tianhang Zhu and Tianhao Li and Tianyu Liu and Wenbin Ge and Xiaodong Deng and Xiaohuan Zhou and Xingzhang Ren and Xinyu Zhang and Xipin Wei and Xuancheng Ren and Yang Fan and Yang Yao and Yichang Zhang and Yu Wan and Yunfei Chu and Yuqiong Liu and Zeyu Cui and Zhenru Zhang and Zhihao Fan},
journal={arXiv preprint arXiv:2407.10671},
year={2024}
}
``` |
unsloth/Qwen2.5-14B-Instruct | unsloth | 2025-04-28T04:16:15Z | 8,672 | 8 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"unsloth",
"conversational",
"zho",
"eng",
"fra",
"spa",
"por",
"deu",
"ita",
"rus",
"jpn",
"kor",
"vie",
"tha",
"ara",
"arxiv:2309.00071",
"arxiv:2407.10671",
"base_model:Qwen/Qwen2.5-14B-Instruct",
"base_model:finetune:Qwen/Qwen2.5-14B-Instruct",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-09-23T05:07:17Z | ---
base_model: Qwen/Qwen2.5-14B-Instruct
language:
- zho
- eng
- fra
- spa
- por
- deu
- ita
- rus
- jpn
- kor
- vie
- tha
- ara
library_name: transformers
license: apache-2.0
tags:
- unsloth
- transformers
---
# Finetune Llama 3.1, Gemma 2, Mistral 2-5x faster with 70% less memory via Unsloth!
We have a Qwen 2.5 (all model sizes) [free Google Colab Tesla T4 notebook](https://colab.research.google.com/drive/1Kose-ucXO1IBaZq5BvbwWieuubP7hxvQ?usp=sharing).
Also a [Qwen 2.5 conversational style notebook](https://colab.research.google.com/drive/1qN1CEalC70EO1wGKhNxs1go1W9So61R5?usp=sharing).
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/Discord%20button.png" width="200"/>](https://discord.gg/unsloth)
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
## ✨ Finetune for Free
All notebooks are **beginner friendly**! Add your dataset, click "Run All", and you'll get a 2x faster finetuned model which can be exported to GGUF, vLLM or uploaded to Hugging Face.
| Unsloth supports | Free Notebooks | Performance | Memory use |
|-----------------|--------------------------------------------------------------------------------------------------------------------------|-------------|----------|
| **Llama-3.1 8b** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Ys44kVvmeZtnICzWz0xgpRnrIOjZAuxp?usp=sharing) | 2.4x faster | 58% less |
| **Phi-3.5 (mini)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1lN6hPQveB_mHSnTOYifygFcrO8C1bxq4?usp=sharing) | 2x faster | 50% less |
| **Gemma-2 9b** | [▶️ Start on Colab](https://colab.research.google.com/drive/1vIrqH5uYDQwsJ4-OO3DErvuv4pBgVwk4?usp=sharing) | 2.4x faster | 58% less |
| **Mistral 7b** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Dyauq4kTZoLewQ1cApceUQVNcnnNTzg_?usp=sharing) | 2.2x faster | 62% less |
| **TinyLlama** | [▶️ Start on Colab](https://colab.research.google.com/drive/1AZghoNBQaMDgWJpi4RbffGM1h6raLUj9?usp=sharing) | 3.9x faster | 74% less |
| **DPO - Zephyr** | [▶️ Start on Colab](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) | 1.9x faster | 19% less |
- This [conversational notebook](https://colab.research.google.com/drive/1Aau3lgPzeZKQ-98h69CCu1UJcvIBLmy2?usp=sharing) is useful for ShareGPT ChatML / Vicuna templates.
- This [text completion notebook](https://colab.research.google.com/drive/1ef-tab5bhkvWmBOObepl1WgJvfvSzn5Q?usp=sharing) is for raw text. This [DPO notebook](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) replicates Zephyr.
- \* Kaggle has 2x T4s, but we use 1. Due to overhead, 1x T4 is 5x faster.
# Qwen2.5-14B-Instruct
## Introduction
Qwen2.5 is the latest series of Qwen large language models. For Qwen2.5, we release a number of base language models and instruction-tuned language models ranging from 0.5 to 72 billion parameters. Qwen2.5 brings the following improvements upon Qwen2:
- Significantly **more knowledge** and has greatly improved capabilities in **coding** and **mathematics**, thanks to our specialized expert models in these domains.
- Significant improvements in **instruction following**, **generating long texts** (over 8K tokens), **understanding structured data** (e.g, tables), and **generating structured outputs** especially JSON. **More resilient to the diversity of system prompts**, enhancing role-play implementation and condition-setting for chatbots.
- **Long-context Support** up to 128K tokens and can generate up to 8K tokens.
- **Multilingual support** for over 29 languages, including Chinese, English, French, Spanish, Portuguese, German, Italian, Russian, Japanese, Korean, Vietnamese, Thai, Arabic, and more.
**This repo contains the instruction-tuned 14B Qwen2.5 model**, which has the following features:
- Type: Causal Language Models
- Training Stage: Pretraining & Post-training
- Architecture: transformers with RoPE, SwiGLU, RMSNorm, and Attention QKV bias
- Number of Parameters: 14.7B
- Number of Paramaters (Non-Embedding): 13.1B
- Number of Layers: 48
- Number of Attention Heads (GQA): 40 for Q and 8 for KV
- Context Length: Full 131,072 tokens and generation 8192 tokens
- Please refer to [this section](#processing-long-texts) for detailed instructions on how to deploy Qwen2.5 for handling long texts.
For more details, please refer to our [blog](https://qwenlm.github.io/blog/qwen2.5/), [GitHub](https://github.com/QwenLM/Qwen2.5), and [Documentation](https://qwen.readthedocs.io/en/latest/).
## Requirements
The code of Qwen2.5 has been in the latest Hugging face `transformers` and we advise you to use the latest version of `transformers`.
With `transformers<4.37.0`, you will encounter the following error:
```
KeyError: 'qwen2'
```
## Quickstart
Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "Qwen/Qwen2.5-14B-Instruct"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "Give me a short introduction to large language model."
messages = [
{"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```
### Processing Long Texts
The current `config.json` is set for context length up to 32,768 tokens.
To handle extensive inputs exceeding 32,768 tokens, we utilize [YaRN](https://arxiv.org/abs/2309.00071), a technique for enhancing model length extrapolation, ensuring optimal performance on lengthy texts.
For supported frameworks, you could add the following to `config.json` to enable YaRN:
```json
{
...,
"rope_scaling": {
"factor": 4.0,
"original_max_position_embeddings": 32768,
"type": "yarn"
}
}
```
For deployment, we recommend using vLLM.
Please refer to our [Documentation](https://qwen.readthedocs.io/en/latest/deployment/vllm.html) for usage if you are not familar with vLLM.
Presently, vLLM only supports static YARN, which means the scaling factor remains constant regardless of input length, **potentially impacting performance on shorter texts**.
We advise adding the `rope_scaling` configuration only when processing long contexts is required.
## Evaluation & Performance
Detailed evaluation results are reported in this [📑 blog](https://qwenlm.github.io/blog/qwen2.5/).
For requirements on GPU memory and the respective throughput, see results [here](https://qwen.readthedocs.io/en/latest/benchmark/speed_benchmark.html).
## Citation
If you find our work helpful, feel free to give us a cite.
```
@misc{qwen2.5,
title = {Qwen2.5: A Party of Foundation Models},
url = {https://qwenlm.github.io/blog/qwen2.5/},
author = {Qwen Team},
month = {September},
year = {2024}
}
@article{qwen2,
title={Qwen2 Technical Report},
author={An Yang and Baosong Yang and Binyuan Hui and Bo Zheng and Bowen Yu and Chang Zhou and Chengpeng Li and Chengyuan Li and Dayiheng Liu and Fei Huang and Guanting Dong and Haoran Wei and Huan Lin and Jialong Tang and Jialin Wang and Jian Yang and Jianhong Tu and Jianwei Zhang and Jianxin Ma and Jin Xu and Jingren Zhou and Jinze Bai and Jinzheng He and Junyang Lin and Kai Dang and Keming Lu and Keqin Chen and Kexin Yang and Mei Li and Mingfeng Xue and Na Ni and Pei Zhang and Peng Wang and Ru Peng and Rui Men and Ruize Gao and Runji Lin and Shijie Wang and Shuai Bai and Sinan Tan and Tianhang Zhu and Tianhao Li and Tianyu Liu and Wenbin Ge and Xiaodong Deng and Xiaohuan Zhou and Xingzhang Ren and Xinyu Zhang and Xipin Wei and Xuancheng Ren and Yang Fan and Yang Yao and Yichang Zhang and Yu Wan and Yunfei Chu and Yuqiong Liu and Zeyu Cui and Zhenru Zhang and Zhihao Fan},
journal={arXiv preprint arXiv:2407.10671},
year={2024}
}
``` |
unsloth/Qwen2.5-32B-Instruct | unsloth | 2025-04-28T04:16:08Z | 3,693 | 3 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"unsloth",
"conversational",
"zho",
"eng",
"fra",
"spa",
"por",
"deu",
"ita",
"rus",
"jpn",
"kor",
"vie",
"tha",
"ara",
"arxiv:2309.00071",
"arxiv:2407.10671",
"base_model:Qwen/Qwen2.5-32B-Instruct",
"base_model:finetune:Qwen/Qwen2.5-32B-Instruct",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-09-23T05:21:41Z | ---
base_model: Qwen/Qwen2.5-32B-Instruct
language:
- zho
- eng
- fra
- spa
- por
- deu
- ita
- rus
- jpn
- kor
- vie
- tha
- ara
library_name: transformers
license: apache-2.0
tags:
- unsloth
- transformers
---
# Finetune Llama 3.1, Gemma 2, Mistral 2-5x faster with 70% less memory via Unsloth!
We have a Qwen 2.5 (all model sizes) [free Google Colab Tesla T4 notebook](https://colab.research.google.com/drive/1Kose-ucXO1IBaZq5BvbwWieuubP7hxvQ?usp=sharing).
Also a [Qwen 2.5 conversational style notebook](https://colab.research.google.com/drive/1qN1CEalC70EO1wGKhNxs1go1W9So61R5?usp=sharing).
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/Discord%20button.png" width="200"/>](https://discord.gg/unsloth)
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
## ✨ Finetune for Free
All notebooks are **beginner friendly**! Add your dataset, click "Run All", and you'll get a 2x faster finetuned model which can be exported to GGUF, vLLM or uploaded to Hugging Face.
| Unsloth supports | Free Notebooks | Performance | Memory use |
|-----------------|--------------------------------------------------------------------------------------------------------------------------|-------------|----------|
| **Llama-3.1 8b** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Ys44kVvmeZtnICzWz0xgpRnrIOjZAuxp?usp=sharing) | 2.4x faster | 58% less |
| **Phi-3.5 (mini)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1lN6hPQveB_mHSnTOYifygFcrO8C1bxq4?usp=sharing) | 2x faster | 50% less |
| **Gemma-2 9b** | [▶️ Start on Colab](https://colab.research.google.com/drive/1vIrqH5uYDQwsJ4-OO3DErvuv4pBgVwk4?usp=sharing) | 2.4x faster | 58% less |
| **Mistral 7b** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Dyauq4kTZoLewQ1cApceUQVNcnnNTzg_?usp=sharing) | 2.2x faster | 62% less |
| **TinyLlama** | [▶️ Start on Colab](https://colab.research.google.com/drive/1AZghoNBQaMDgWJpi4RbffGM1h6raLUj9?usp=sharing) | 3.9x faster | 74% less |
| **DPO - Zephyr** | [▶️ Start on Colab](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) | 1.9x faster | 19% less |
- This [conversational notebook](https://colab.research.google.com/drive/1Aau3lgPzeZKQ-98h69CCu1UJcvIBLmy2?usp=sharing) is useful for ShareGPT ChatML / Vicuna templates.
- This [text completion notebook](https://colab.research.google.com/drive/1ef-tab5bhkvWmBOObepl1WgJvfvSzn5Q?usp=sharing) is for raw text. This [DPO notebook](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) replicates Zephyr.
- \* Kaggle has 2x T4s, but we use 1. Due to overhead, 1x T4 is 5x faster.
# Qwen2.5-32B-Instruct
## Introduction
Qwen2.5 is the latest series of Qwen large language models. For Qwen2.5, we release a number of base language models and instruction-tuned language models ranging from 0.5 to 72 billion parameters. Qwen2.5 brings the following improvements upon Qwen2:
- Significantly **more knowledge** and has greatly improved capabilities in **coding** and **mathematics**, thanks to our specialized expert models in these domains.
- Significant improvements in **instruction following**, **generating long texts** (over 8K tokens), **understanding structured data** (e.g, tables), and **generating structured outputs** especially JSON. **More resilient to the diversity of system prompts**, enhancing role-play implementation and condition-setting for chatbots.
- **Long-context Support** up to 128K tokens and can generate up to 8K tokens.
- **Multilingual support** for over 29 languages, including Chinese, English, French, Spanish, Portuguese, German, Italian, Russian, Japanese, Korean, Vietnamese, Thai, Arabic, and more.
**This repo contains the instruction-tuned 32B Qwen2.5 model**, which has the following features:
- Type: Causal Language Models
- Training Stage: Pretraining & Post-training
- Architecture: transformers with RoPE, SwiGLU, RMSNorm, and Attention QKV bias
- Number of Parameters: 32.5B
- Number of Paramaters (Non-Embedding): 31.0B
- Number of Layers: 64
- Number of Attention Heads (GQA): 40 for Q and 8 for KV
- Context Length: Full 131,072 tokens and generation 8192 tokens
- Please refer to [this section](#processing-long-texts) for detailed instructions on how to deploy Qwen2.5 for handling long texts.
For more details, please refer to our [blog](https://qwenlm.github.io/blog/qwen2.5/), [GitHub](https://github.com/QwenLM/Qwen2.5), and [Documentation](https://qwen.readthedocs.io/en/latest/).
## Requirements
The code of Qwen2.5 has been in the latest Hugging face `transformers` and we advise you to use the latest version of `transformers`.
With `transformers<4.37.0`, you will encounter the following error:
```
KeyError: 'qwen2'
```
## Quickstart
Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "Qwen/Qwen2.5-32B-Instruct"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "Give me a short introduction to large language model."
messages = [
{"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```
### Processing Long Texts
The current `config.json` is set for context length up to 32,768 tokens.
To handle extensive inputs exceeding 32,768 tokens, we utilize [YaRN](https://arxiv.org/abs/2309.00071), a technique for enhancing model length extrapolation, ensuring optimal performance on lengthy texts.
For supported frameworks, you could add the following to `config.json` to enable YaRN:
```json
{
...,
"rope_scaling": {
"factor": 4.0,
"original_max_position_embeddings": 32768,
"type": "yarn"
}
}
```
For deployment, we recommend using vLLM.
Please refer to our [Documentation](https://qwen.readthedocs.io/en/latest/deployment/vllm.html) for usage if you are not familar with vLLM.
Presently, vLLM only supports static YARN, which means the scaling factor remains constant regardless of input length, **potentially impacting performance on shorter texts**.
We advise adding the `rope_scaling` configuration only when processing long contexts is required.
## Evaluation & Performance
Detailed evaluation results are reported in this [📑 blog](https://qwenlm.github.io/blog/qwen2.5/).
For requirements on GPU memory and the respective throughput, see results [here](https://qwen.readthedocs.io/en/latest/benchmark/speed_benchmark.html).
## Citation
If you find our work helpful, feel free to give us a cite.
```
@misc{qwen2.5,
title = {Qwen2.5: A Party of Foundation Models},
url = {https://qwenlm.github.io/blog/qwen2.5/},
author = {Qwen Team},
month = {September},
year = {2024}
}
@article{qwen2,
title={Qwen2 Technical Report},
author={An Yang and Baosong Yang and Binyuan Hui and Bo Zheng and Bowen Yu and Chang Zhou and Chengpeng Li and Chengyuan Li and Dayiheng Liu and Fei Huang and Guanting Dong and Haoran Wei and Huan Lin and Jialong Tang and Jialin Wang and Jian Yang and Jianhong Tu and Jianwei Zhang and Jianxin Ma and Jin Xu and Jingren Zhou and Jinze Bai and Jinzheng He and Junyang Lin and Kai Dang and Keming Lu and Keqin Chen and Kexin Yang and Mei Li and Mingfeng Xue and Na Ni and Pei Zhang and Peng Wang and Ru Peng and Rui Men and Ruize Gao and Runji Lin and Shijie Wang and Shuai Bai and Sinan Tan and Tianhang Zhu and Tianhao Li and Tianyu Liu and Wenbin Ge and Xiaodong Deng and Xiaohuan Zhou and Xingzhang Ren and Xinyu Zhang and Xipin Wei and Xuancheng Ren and Yang Fan and Yang Yao and Yichang Zhang and Yu Wan and Yunfei Chu and Yuqiong Liu and Zeyu Cui and Zhenru Zhang and Zhihao Fan},
journal={arXiv preprint arXiv:2407.10671},
year={2024}
}
``` |
unsloth/Qwen2.5-32B-Instruct-bnb-4bit | unsloth | 2025-04-28T04:16:05Z | 19,556 | 12 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"unsloth",
"conversational",
"zho",
"eng",
"fra",
"spa",
"por",
"deu",
"ita",
"rus",
"jpn",
"kor",
"vie",
"tha",
"ara",
"arxiv:2309.00071",
"arxiv:2407.10671",
"base_model:Qwen/Qwen2.5-32B-Instruct",
"base_model:quantized:Qwen/Qwen2.5-32B-Instruct",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
] | text-generation | 2024-09-18T22:28:22Z | ---
base_model: Qwen/Qwen2.5-32B-Instruct
language:
- zho
- eng
- fra
- spa
- por
- deu
- ita
- rus
- jpn
- kor
- vie
- tha
- ara
library_name: transformers
license: apache-2.0
tags:
- unsloth
- transformers
---
# Finetune Llama 3.1, Gemma 2, Mistral 2-5x faster with 70% less memory via Unsloth!
We have a Qwen 2.5 (all model sizes) [free Google Colab Tesla T4 notebook](https://colab.research.google.com/drive/1Kose-ucXO1IBaZq5BvbwWieuubP7hxvQ?usp=sharing).
Also a [Qwen 2.5 conversational style notebook](https://colab.research.google.com/drive/1qN1CEalC70EO1wGKhNxs1go1W9So61R5?usp=sharing).
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/Discord%20button.png" width="200"/>](https://discord.gg/unsloth)
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
## ✨ Finetune for Free
All notebooks are **beginner friendly**! Add your dataset, click "Run All", and you'll get a 2x faster finetuned model which can be exported to GGUF, vLLM or uploaded to Hugging Face.
| Unsloth supports | Free Notebooks | Performance | Memory use |
|-----------------|--------------------------------------------------------------------------------------------------------------------------|-------------|----------|
| **Llama-3.1 8b** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Ys44kVvmeZtnICzWz0xgpRnrIOjZAuxp?usp=sharing) | 2.4x faster | 58% less |
| **Phi-3.5 (mini)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1lN6hPQveB_mHSnTOYifygFcrO8C1bxq4?usp=sharing) | 2x faster | 50% less |
| **Gemma-2 9b** | [▶️ Start on Colab](https://colab.research.google.com/drive/1vIrqH5uYDQwsJ4-OO3DErvuv4pBgVwk4?usp=sharing) | 2.4x faster | 58% less |
| **Mistral 7b** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Dyauq4kTZoLewQ1cApceUQVNcnnNTzg_?usp=sharing) | 2.2x faster | 62% less |
| **TinyLlama** | [▶️ Start on Colab](https://colab.research.google.com/drive/1AZghoNBQaMDgWJpi4RbffGM1h6raLUj9?usp=sharing) | 3.9x faster | 74% less |
| **DPO - Zephyr** | [▶️ Start on Colab](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) | 1.9x faster | 19% less |
- This [conversational notebook](https://colab.research.google.com/drive/1Aau3lgPzeZKQ-98h69CCu1UJcvIBLmy2?usp=sharing) is useful for ShareGPT ChatML / Vicuna templates.
- This [text completion notebook](https://colab.research.google.com/drive/1ef-tab5bhkvWmBOObepl1WgJvfvSzn5Q?usp=sharing) is for raw text. This [DPO notebook](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) replicates Zephyr.
- \* Kaggle has 2x T4s, but we use 1. Due to overhead, 1x T4 is 5x faster.
# Qwen2.5-32B-Instruct
## Introduction
Qwen2.5 is the latest series of Qwen large language models. For Qwen2.5, we release a number of base language models and instruction-tuned language models ranging from 0.5 to 72 billion parameters. Qwen2.5 brings the following improvements upon Qwen2:
- Significantly **more knowledge** and has greatly improved capabilities in **coding** and **mathematics**, thanks to our specialized expert models in these domains.
- Significant improvements in **instruction following**, **generating long texts** (over 8K tokens), **understanding structured data** (e.g, tables), and **generating structured outputs** especially JSON. **More resilient to the diversity of system prompts**, enhancing role-play implementation and condition-setting for chatbots.
- **Long-context Support** up to 128K tokens and can generate up to 8K tokens.
- **Multilingual support** for over 29 languages, including Chinese, English, French, Spanish, Portuguese, German, Italian, Russian, Japanese, Korean, Vietnamese, Thai, Arabic, and more.
**This repo contains the instruction-tuned 32B Qwen2.5 model**, which has the following features:
- Type: Causal Language Models
- Training Stage: Pretraining & Post-training
- Architecture: transformers with RoPE, SwiGLU, RMSNorm, and Attention QKV bias
- Number of Parameters: 32.5B
- Number of Paramaters (Non-Embedding): 31.0B
- Number of Layers: 64
- Number of Attention Heads (GQA): 40 for Q and 8 for KV
- Context Length: Full 131,072 tokens and generation 8192 tokens
- Please refer to [this section](#processing-long-texts) for detailed instructions on how to deploy Qwen2.5 for handling long texts.
For more details, please refer to our [blog](https://qwenlm.github.io/blog/qwen2.5/), [GitHub](https://github.com/QwenLM/Qwen2.5), and [Documentation](https://qwen.readthedocs.io/en/latest/).
## Requirements
The code of Qwen2.5 has been in the latest Hugging face `transformers` and we advise you to use the latest version of `transformers`.
With `transformers<4.37.0`, you will encounter the following error:
```
KeyError: 'qwen2'
```
## Quickstart
Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "Qwen/Qwen2.5-32B-Instruct"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "Give me a short introduction to large language model."
messages = [
{"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```
### Processing Long Texts
The current `config.json` is set for context length up to 32,768 tokens.
To handle extensive inputs exceeding 32,768 tokens, we utilize [YaRN](https://arxiv.org/abs/2309.00071), a technique for enhancing model length extrapolation, ensuring optimal performance on lengthy texts.
For supported frameworks, you could add the following to `config.json` to enable YaRN:
```json
{
...,
"rope_scaling": {
"factor": 4.0,
"original_max_position_embeddings": 32768,
"type": "yarn"
}
}
```
For deployment, we recommend using vLLM.
Please refer to our [Documentation](https://qwen.readthedocs.io/en/latest/deployment/vllm.html) for usage if you are not familar with vLLM.
Presently, vLLM only supports static YARN, which means the scaling factor remains constant regardless of input length, **potentially impacting performance on shorter texts**.
We advise adding the `rope_scaling` configuration only when processing long contexts is required.
## Evaluation & Performance
Detailed evaluation results are reported in this [📑 blog](https://qwenlm.github.io/blog/qwen2.5/).
For requirements on GPU memory and the respective throughput, see results [here](https://qwen.readthedocs.io/en/latest/benchmark/speed_benchmark.html).
## Citation
If you find our work helpful, feel free to give us a cite.
```
@misc{qwen2.5,
title = {Qwen2.5: A Party of Foundation Models},
url = {https://qwenlm.github.io/blog/qwen2.5/},
author = {Qwen Team},
month = {September},
year = {2024}
}
@article{qwen2,
title={Qwen2 Technical Report},
author={An Yang and Baosong Yang and Binyuan Hui and Bo Zheng and Bowen Yu and Chang Zhou and Chengpeng Li and Chengyuan Li and Dayiheng Liu and Fei Huang and Guanting Dong and Haoran Wei and Huan Lin and Jialong Tang and Jialin Wang and Jian Yang and Jianhong Tu and Jianwei Zhang and Jianxin Ma and Jin Xu and Jingren Zhou and Jinze Bai and Jinzheng He and Junyang Lin and Kai Dang and Keming Lu and Keqin Chen and Kexin Yang and Mei Li and Mingfeng Xue and Na Ni and Pei Zhang and Peng Wang and Ru Peng and Rui Men and Ruize Gao and Runji Lin and Shijie Wang and Shuai Bai and Sinan Tan and Tianhang Zhu and Tianhao Li and Tianyu Liu and Wenbin Ge and Xiaodong Deng and Xiaohuan Zhou and Xingzhang Ren and Xinyu Zhang and Xipin Wei and Xuancheng Ren and Yang Fan and Yang Yao and Yichang Zhang and Yu Wan and Yunfei Chu and Yuqiong Liu and Zeyu Cui and Zhenru Zhang and Zhihao Fan},
journal={arXiv preprint arXiv:2407.10671},
year={2024}
}
``` |
unsloth/Qwen2.5-72B-Instruct | unsloth | 2025-04-28T04:16:01Z | 168 | 2 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"unsloth",
"conversational",
"zho",
"eng",
"fra",
"spa",
"por",
"deu",
"ita",
"rus",
"jpn",
"kor",
"vie",
"tha",
"ara",
"arxiv:2309.00071",
"arxiv:2407.10671",
"base_model:Qwen/Qwen2.5-72B-Instruct",
"base_model:finetune:Qwen/Qwen2.5-72B-Instruct",
"license:other",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-09-23T19:06:15Z | ---
base_model: Qwen/Qwen2.5-72B-Instruct
language:
- zho
- eng
- fra
- spa
- por
- deu
- ita
- rus
- jpn
- kor
- vie
- tha
- ara
library_name: transformers
license: other
tags:
- unsloth
- transformers
---
# Finetune Llama 3.1, Gemma 2, Mistral 2-5x faster with 70% less memory via Unsloth!
We have a Qwen 2.5 (all model sizes) [free Google Colab Tesla T4 notebook](https://colab.research.google.com/drive/1Kose-ucXO1IBaZq5BvbwWieuubP7hxvQ?usp=sharing).
Also a [Qwen 2.5 conversational style notebook](https://colab.research.google.com/drive/1qN1CEalC70EO1wGKhNxs1go1W9So61R5?usp=sharing).
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/Discord%20button.png" width="200"/>](https://discord.gg/unsloth)
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
## ✨ Finetune for Free
All notebooks are **beginner friendly**! Add your dataset, click "Run All", and you'll get a 2x faster finetuned model which can be exported to GGUF, vLLM or uploaded to Hugging Face.
| Unsloth supports | Free Notebooks | Performance | Memory use |
|-----------------|--------------------------------------------------------------------------------------------------------------------------|-------------|----------|
| **Llama-3.1 8b** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Ys44kVvmeZtnICzWz0xgpRnrIOjZAuxp?usp=sharing) | 2.4x faster | 58% less |
| **Phi-3.5 (mini)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1lN6hPQveB_mHSnTOYifygFcrO8C1bxq4?usp=sharing) | 2x faster | 50% less |
| **Gemma-2 9b** | [▶️ Start on Colab](https://colab.research.google.com/drive/1vIrqH5uYDQwsJ4-OO3DErvuv4pBgVwk4?usp=sharing) | 2.4x faster | 58% less |
| **Mistral 7b** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Dyauq4kTZoLewQ1cApceUQVNcnnNTzg_?usp=sharing) | 2.2x faster | 62% less |
| **TinyLlama** | [▶️ Start on Colab](https://colab.research.google.com/drive/1AZghoNBQaMDgWJpi4RbffGM1h6raLUj9?usp=sharing) | 3.9x faster | 74% less |
| **DPO - Zephyr** | [▶️ Start on Colab](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) | 1.9x faster | 19% less |
- This [conversational notebook](https://colab.research.google.com/drive/1Aau3lgPzeZKQ-98h69CCu1UJcvIBLmy2?usp=sharing) is useful for ShareGPT ChatML / Vicuna templates.
- This [text completion notebook](https://colab.research.google.com/drive/1ef-tab5bhkvWmBOObepl1WgJvfvSzn5Q?usp=sharing) is for raw text. This [DPO notebook](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) replicates Zephyr.
- \* Kaggle has 2x T4s, but we use 1. Due to overhead, 1x T4 is 5x faster.
# Qwen2.5-72B-Instruct
## Introduction
Qwen2.5 is the latest series of Qwen large language models. For Qwen2.5, we release a number of base language models and instruction-tuned language models ranging from 0.5 to 72 billion parameters. Qwen2.5 brings the following improvements upon Qwen2:
- Significantly **more knowledge** and has greatly improved capabilities in **coding** and **mathematics**, thanks to our specialized expert models in these domains.
- Significant improvements in **instruction following**, **generating long texts** (over 8K tokens), **understanding structured data** (e.g, tables), and **generating structured outputs** especially JSON. **More resilient to the diversity of system prompts**, enhancing role-play implementation and condition-setting for chatbots.
- **Long-context Support** up to 128K tokens and can generate up to 8K tokens.
- **Multilingual support** for over 29 languages, including Chinese, English, French, Spanish, Portuguese, German, Italian, Russian, Japanese, Korean, Vietnamese, Thai, Arabic, and more.
**This repo contains the instruction-tuned 72B Qwen2.5 model**, which has the following features:
- Type: Causal Language Models
- Training Stage: Pretraining & Post-training
- Architecture: transformers with RoPE, SwiGLU, RMSNorm, and Attention QKV bias
- Number of Parameters: 72.7B
- Number of Paramaters (Non-Embedding): 70.0B
- Number of Layers: 80
- Number of Attention Heads (GQA): 64 for Q and 8 for KV
- Context Length: Full 131,072 tokens and generation 8192 tokens
- Please refer to [this section](#processing-long-texts) for detailed instructions on how to deploy Qwen2.5 for handling long texts.
For more details, please refer to our [blog](https://qwenlm.github.io/blog/qwen2.5/), [GitHub](https://github.com/QwenLM/Qwen2.5), and [Documentation](https://qwen.readthedocs.io/en/latest/).
## Requirements
The code of Qwen2.5 has been in the latest Hugging face `transformers` and we advise you to use the latest version of `transformers`.
With `transformers<4.37.0`, you will encounter the following error:
```
KeyError: 'qwen2'
```
## Quickstart
Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "Qwen/Qwen2.5-72B-Instruct"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "Give me a short introduction to large language model."
messages = [
{"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```
### Processing Long Texts
The current `config.json` is set for context length up to 32,768 tokens.
To handle extensive inputs exceeding 32,768 tokens, we utilize [YaRN](https://arxiv.org/abs/2309.00071), a technique for enhancing model length extrapolation, ensuring optimal performance on lengthy texts.
For supported frameworks, you could add the following to `config.json` to enable YaRN:
```json
{
...,
"rope_scaling": {
"factor": 4.0,
"original_max_position_embeddings": 32768,
"type": "yarn"
}
}
```
For deployment, we recommend using vLLM.
Please refer to our [Documentation](https://qwen.readthedocs.io/en/latest/deployment/vllm.html) for usage if you are not familar with vLLM.
Presently, vLLM only supports static YARN, which means the scaling factor remains constant regardless of input length, **potentially impacting performance on shorter texts**.
We advise adding the `rope_scaling` configuration only when processing long contexts is required.
## Evaluation & Performance
Detailed evaluation results are reported in this [📑 blog](https://qwenlm.github.io/blog/qwen2.5/).
For requirements on GPU memory and the respective throughput, see results [here](https://qwen.readthedocs.io/en/latest/benchmark/speed_benchmark.html).
## Citation
If you find our work helpful, feel free to give us a cite.
```
@misc{qwen2.5,
title = {Qwen2.5: A Party of Foundation Models},
url = {https://qwenlm.github.io/blog/qwen2.5/},
author = {Qwen Team},
month = {September},
year = {2024}
}
@article{qwen2,
title={Qwen2 Technical Report},
author={An Yang and Baosong Yang and Binyuan Hui and Bo Zheng and Bowen Yu and Chang Zhou and Chengpeng Li and Chengyuan Li and Dayiheng Liu and Fei Huang and Guanting Dong and Haoran Wei and Huan Lin and Jialong Tang and Jialin Wang and Jian Yang and Jianhong Tu and Jianwei Zhang and Jianxin Ma and Jin Xu and Jingren Zhou and Jinze Bai and Jinzheng He and Junyang Lin and Kai Dang and Keming Lu and Keqin Chen and Kexin Yang and Mei Li and Mingfeng Xue and Na Ni and Pei Zhang and Peng Wang and Ru Peng and Rui Men and Ruize Gao and Runji Lin and Shijie Wang and Shuai Bai and Sinan Tan and Tianhang Zhu and Tianhao Li and Tianyu Liu and Wenbin Ge and Xiaodong Deng and Xiaohuan Zhou and Xingzhang Ren and Xinyu Zhang and Xipin Wei and Xuancheng Ren and Yang Fan and Yang Yao and Yichang Zhang and Yu Wan and Yunfei Chu and Yuqiong Liu and Zeyu Cui and Zhenru Zhang and Zhihao Fan},
journal={arXiv preprint arXiv:2407.10671},
year={2024}
}
``` |
unsloth/Qwen2.5-72B-bnb-4bit | unsloth | 2025-04-28T04:15:50Z | 577 | 1 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"unsloth",
"zho",
"eng",
"fra",
"spa",
"por",
"deu",
"ita",
"rus",
"jpn",
"kor",
"vie",
"tha",
"ara",
"arxiv:2407.10671",
"base_model:Qwen/Qwen2.5-72B",
"base_model:quantized:Qwen/Qwen2.5-72B",
"license:other",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
] | text-generation | 2024-09-18T21:43:05Z | ---
base_model: Qwen/Qwen2.5-72B
language:
- zho
- eng
- fra
- spa
- por
- deu
- ita
- rus
- jpn
- kor
- vie
- tha
- ara
library_name: transformers
license: other
tags:
- unsloth
- transformers
---
# Finetune Llama 3.1, Gemma 2, Mistral 2-5x faster with 70% less memory via Unsloth!
We have a Qwen 2.5 (all model sizes) [free Google Colab Tesla T4 notebook](https://colab.research.google.com/drive/1Kose-ucXO1IBaZq5BvbwWieuubP7hxvQ?usp=sharing).
Also a [Qwen 2.5 conversational style notebook](https://colab.research.google.com/drive/1qN1CEalC70EO1wGKhNxs1go1W9So61R5?usp=sharing).
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/Discord%20button.png" width="200"/>](https://discord.gg/unsloth)
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
## ✨ Finetune for Free
All notebooks are **beginner friendly**! Add your dataset, click "Run All", and you'll get a 2x faster finetuned model which can be exported to GGUF, vLLM or uploaded to Hugging Face.
| Unsloth supports | Free Notebooks | Performance | Memory use |
|-----------------|--------------------------------------------------------------------------------------------------------------------------|-------------|----------|
| **Llama-3.1 8b** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Ys44kVvmeZtnICzWz0xgpRnrIOjZAuxp?usp=sharing) | 2.4x faster | 58% less |
| **Phi-3.5 (mini)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1lN6hPQveB_mHSnTOYifygFcrO8C1bxq4?usp=sharing) | 2x faster | 50% less |
| **Gemma-2 9b** | [▶️ Start on Colab](https://colab.research.google.com/drive/1vIrqH5uYDQwsJ4-OO3DErvuv4pBgVwk4?usp=sharing) | 2.4x faster | 58% less |
| **Mistral 7b** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Dyauq4kTZoLewQ1cApceUQVNcnnNTzg_?usp=sharing) | 2.2x faster | 62% less |
| **TinyLlama** | [▶️ Start on Colab](https://colab.research.google.com/drive/1AZghoNBQaMDgWJpi4RbffGM1h6raLUj9?usp=sharing) | 3.9x faster | 74% less |
| **DPO - Zephyr** | [▶️ Start on Colab](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) | 1.9x faster | 19% less |
- This [conversational notebook](https://colab.research.google.com/drive/1Aau3lgPzeZKQ-98h69CCu1UJcvIBLmy2?usp=sharing) is useful for ShareGPT ChatML / Vicuna templates.
- This [text completion notebook](https://colab.research.google.com/drive/1ef-tab5bhkvWmBOObepl1WgJvfvSzn5Q?usp=sharing) is for raw text. This [DPO notebook](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) replicates Zephyr.
- \* Kaggle has 2x T4s, but we use 1. Due to overhead, 1x T4 is 5x faster.
# Qwen2.5-72B
## Introduction
Qwen2.5 is the latest series of Qwen large language models. For Qwen2.5, we release a number of base language models and instruction-tuned language models ranging from 0.5 to 72 billion parameters. Qwen2.5 brings the following improvements upon Qwen2:
- Significantly **more knowledge** and has greatly improved capabilities in **coding** and **mathematics**, thanks to our specialized expert models in these domains.
- Significant improvements in **instruction following**, **generating long texts** (over 8K tokens), **understanding structured data** (e.g, tables), and **generating structured outputs** especially JSON. **More resilient to the diversity of system prompts**, enhancing role-play implementation and condition-setting for chatbots.
- **Long-context Support** up to 128K tokens and can generate up to 8K tokens.
- **Multilingual support** for over 29 languages, including Chinese, English, French, Spanish, Portuguese, German, Italian, Russian, Japanese, Korean, Vietnamese, Thai, Arabic, and more.
**This repo contains the base 72B Qwen2.5 model**, which has the following features:
- Type: Causal Language Models
- Training Stage: Pretraining
- Architecture: transformers with RoPE, SwiGLU, RMSNorm, and Attention QKV bias
- Number of Parameters: 72.7B
- Number of Paramaters (Non-Embedding): 70.0B
- Number of Layers: 80
- Number of Attention Heads (GQA): 64 for Q and 8 for KV
- Context Length: 131,072 tokens
**We do not recommend using base language models for conversations.** Instead, you can apply post-training, e.g., SFT, RLHF, continued pretraining, etc., on this model.
For more details, please refer to our [blog](https://qwenlm.github.io/blog/qwen2.5/), [GitHub](https://github.com/QwenLM/Qwen2.5), and [Documentation](https://qwen.readthedocs.io/en/latest/).
## Requirements
The code of Qwen2.5 has been in the latest Hugging face `transformers` and we advise you to use the latest version of `transformers`.
With `transformers<4.37.0`, you will encounter the following error:
```
KeyError: 'qwen2'
```
## Evaluation & Performance
Detailed evaluation results are reported in this [📑 blog](https://qwenlm.github.io/blog/qwen2.5/).
For requirements on GPU memory and the respective throughput, see results [here](https://qwen.readthedocs.io/en/latest/benchmark/speed_benchmark.html).
## Citation
If you find our work helpful, feel free to give us a cite.
```
@misc{qwen2.5,
title = {Qwen2.5: A Party of Foundation Models},
url = {https://qwenlm.github.io/blog/qwen2.5/},
author = {Qwen Team},
month = {September},
year = {2024}
}
@article{qwen2,
title={Qwen2 Technical Report},
author={An Yang and Baosong Yang and Binyuan Hui and Bo Zheng and Bowen Yu and Chang Zhou and Chengpeng Li and Chengyuan Li and Dayiheng Liu and Fei Huang and Guanting Dong and Haoran Wei and Huan Lin and Jialong Tang and Jialin Wang and Jian Yang and Jianhong Tu and Jianwei Zhang and Jianxin Ma and Jin Xu and Jingren Zhou and Jinze Bai and Jinzheng He and Junyang Lin and Kai Dang and Keming Lu and Keqin Chen and Kexin Yang and Mei Li and Mingfeng Xue and Na Ni and Pei Zhang and Peng Wang and Ru Peng and Rui Men and Ruize Gao and Runji Lin and Shijie Wang and Shuai Bai and Sinan Tan and Tianhang Zhu and Tianhao Li and Tianyu Liu and Wenbin Ge and Xiaodong Deng and Xiaohuan Zhou and Xingzhang Ren and Xinyu Zhang and Xipin Wei and Xuancheng Ren and Yang Fan and Yang Yao and Yichang Zhang and Yu Wan and Yunfei Chu and Yuqiong Liu and Zeyu Cui and Zhenru Zhang and Zhihao Fan},
journal={arXiv preprint arXiv:2407.10671},
year={2024}
}
``` |
unsloth/Qwen2.5-32B | unsloth | 2025-04-28T04:15:44Z | 806 | 1 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"unsloth",
"zho",
"eng",
"fra",
"spa",
"por",
"deu",
"ita",
"rus",
"jpn",
"kor",
"vie",
"tha",
"ara",
"arxiv:2407.10671",
"base_model:Qwen/Qwen2.5-32B",
"base_model:finetune:Qwen/Qwen2.5-32B",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-09-23T02:20:39Z | ---
base_model: Qwen/Qwen2.5-32B
language:
- zho
- eng
- fra
- spa
- por
- deu
- ita
- rus
- jpn
- kor
- vie
- tha
- ara
library_name: transformers
license: apache-2.0
tags:
- unsloth
- transformers
---
# Finetune Llama 3.1, Gemma 2, Mistral 2-5x faster with 70% less memory via Unsloth!
We have a Qwen 2.5 (all model sizes) [free Google Colab Tesla T4 notebook](https://colab.research.google.com/drive/1Kose-ucXO1IBaZq5BvbwWieuubP7hxvQ?usp=sharing).
Also a [Qwen 2.5 conversational style notebook](https://colab.research.google.com/drive/1qN1CEalC70EO1wGKhNxs1go1W9So61R5?usp=sharing).
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/Discord%20button.png" width="200"/>](https://discord.gg/unsloth)
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
## ✨ Finetune for Free
All notebooks are **beginner friendly**! Add your dataset, click "Run All", and you'll get a 2x faster finetuned model which can be exported to GGUF, vLLM or uploaded to Hugging Face.
| Unsloth supports | Free Notebooks | Performance | Memory use |
|-----------------|--------------------------------------------------------------------------------------------------------------------------|-------------|----------|
| **Llama-3.1 8b** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Ys44kVvmeZtnICzWz0xgpRnrIOjZAuxp?usp=sharing) | 2.4x faster | 58% less |
| **Phi-3.5 (mini)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1lN6hPQveB_mHSnTOYifygFcrO8C1bxq4?usp=sharing) | 2x faster | 50% less |
| **Gemma-2 9b** | [▶️ Start on Colab](https://colab.research.google.com/drive/1vIrqH5uYDQwsJ4-OO3DErvuv4pBgVwk4?usp=sharing) | 2.4x faster | 58% less |
| **Mistral 7b** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Dyauq4kTZoLewQ1cApceUQVNcnnNTzg_?usp=sharing) | 2.2x faster | 62% less |
| **TinyLlama** | [▶️ Start on Colab](https://colab.research.google.com/drive/1AZghoNBQaMDgWJpi4RbffGM1h6raLUj9?usp=sharing) | 3.9x faster | 74% less |
| **DPO - Zephyr** | [▶️ Start on Colab](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) | 1.9x faster | 19% less |
- This [conversational notebook](https://colab.research.google.com/drive/1Aau3lgPzeZKQ-98h69CCu1UJcvIBLmy2?usp=sharing) is useful for ShareGPT ChatML / Vicuna templates.
- This [text completion notebook](https://colab.research.google.com/drive/1ef-tab5bhkvWmBOObepl1WgJvfvSzn5Q?usp=sharing) is for raw text. This [DPO notebook](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) replicates Zephyr.
- \* Kaggle has 2x T4s, but we use 1. Due to overhead, 1x T4 is 5x faster.
# Qwen2.5-32B
## Introduction
Qwen2.5 is the latest series of Qwen large language models. For Qwen2.5, we release a number of base language models and instruction-tuned language models ranging from 0.5 to 72 billion parameters. Qwen2.5 brings the following improvements upon Qwen2:
- Significantly **more knowledge** and has greatly improved capabilities in **coding** and **mathematics**, thanks to our specialized expert models in these domains.
- Significant improvements in **instruction following**, **generating long texts** (over 8K tokens), **understanding structured data** (e.g, tables), and **generating structured outputs** especially JSON. **More resilient to the diversity of system prompts**, enhancing role-play implementation and condition-setting for chatbots.
- **Long-context Support** up to 128K tokens and can generate up to 8K tokens.
- **Multilingual support** for over 29 languages, including Chinese, English, French, Spanish, Portuguese, German, Italian, Russian, Japanese, Korean, Vietnamese, Thai, Arabic, and more.
**This repo contains the base 32B Qwen2.5 model**, which has the following features:
- Type: Causal Language Models
- Training Stage: Pretraining
- Architecture: transformers with RoPE, SwiGLU, RMSNorm, and Attention QKV bias
- Number of Parameters: 32.5B
- Number of Paramaters (Non-Embedding): 31.0B
- Number of Layers: 64
- Number of Attention Heads (GQA): 40 for Q and 8 for KV
- Context Length: 131,072 tokens
**We do not recommend using base language models for conversations.** Instead, you can apply post-training, e.g., SFT, RLHF, continued pretraining, etc., on this model.
For more details, please refer to our [blog](https://qwenlm.github.io/blog/qwen2.5/), [GitHub](https://github.com/QwenLM/Qwen2.5), and [Documentation](https://qwen.readthedocs.io/en/latest/).
## Requirements
The code of Qwen2.5 has been in the latest Hugging face `transformers` and we advise you to use the latest version of `transformers`.
With `transformers<4.37.0`, you will encounter the following error:
```
KeyError: 'qwen2'
```
## Evaluation & Performance
Detailed evaluation results are reported in this [📑 blog](https://qwenlm.github.io/blog/qwen2.5/).
For requirements on GPU memory and the respective throughput, see results [here](https://qwen.readthedocs.io/en/latest/benchmark/speed_benchmark.html).
## Citation
If you find our work helpful, feel free to give us a cite.
```
@misc{qwen2.5,
title = {Qwen2.5: A Party of Foundation Models},
url = {https://qwenlm.github.io/blog/qwen2.5/},
author = {Qwen Team},
month = {September},
year = {2024}
}
@article{qwen2,
title={Qwen2 Technical Report},
author={An Yang and Baosong Yang and Binyuan Hui and Bo Zheng and Bowen Yu and Chang Zhou and Chengpeng Li and Chengyuan Li and Dayiheng Liu and Fei Huang and Guanting Dong and Haoran Wei and Huan Lin and Jialong Tang and Jialin Wang and Jian Yang and Jianhong Tu and Jianwei Zhang and Jianxin Ma and Jin Xu and Jingren Zhou and Jinze Bai and Jinzheng He and Junyang Lin and Kai Dang and Keming Lu and Keqin Chen and Kexin Yang and Mei Li and Mingfeng Xue and Na Ni and Pei Zhang and Peng Wang and Ru Peng and Rui Men and Ruize Gao and Runji Lin and Shijie Wang and Shuai Bai and Sinan Tan and Tianhang Zhu and Tianhao Li and Tianyu Liu and Wenbin Ge and Xiaodong Deng and Xiaohuan Zhou and Xingzhang Ren and Xinyu Zhang and Xipin Wei and Xuancheng Ren and Yang Fan and Yang Yao and Yichang Zhang and Yu Wan and Yunfei Chu and Yuqiong Liu and Zeyu Cui and Zhenru Zhang and Zhihao Fan},
journal={arXiv preprint arXiv:2407.10671},
year={2024}
}
``` |
unsloth/Qwen2.5-14B-unsloth-bnb-4bit | unsloth | 2025-04-28T04:15:37Z | 4,789 | 1 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"unsloth",
"qwen",
"zho",
"eng",
"fra",
"spa",
"por",
"deu",
"ita",
"rus",
"jpn",
"kor",
"vie",
"tha",
"ara",
"arxiv:2407.10671",
"base_model:Qwen/Qwen2.5-14B",
"base_model:quantized:Qwen/Qwen2.5-14B",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
] | text-generation | 2025-02-06T06:43:31Z | ---
base_model: Qwen/Qwen2.5-14B
language:
- zho
- eng
- fra
- spa
- por
- deu
- ita
- rus
- jpn
- kor
- vie
- tha
- ara
library_name: transformers
license: apache-2.0
tags:
- unsloth
- transformers
- qwen
---
<div>
<p style="margin-bottom: 0;">
<strong>See <a href="https://huggingface.co/collections/unsloth/qwen-25-66fe4c08fb9ada518e8a0d3f">our collection</a> for versions of Qwen2.5 including 4-bit formats.</strong>
</p>
<p style="margin-bottom: 0;">
<em>Unsloth's <a href="https://unsloth.ai/blog/dynamic-4bit">Dynamic 4-bit Quants</a> is selectively quantized, greatly improving accuracy over standard 4-bit.</em>
</p>
<div style="display: flex; gap: 5px; align-items: center; ">
<a href="https://github.com/unslothai/unsloth/">
<img src="https://github.com/unslothai/unsloth/raw/main/images/unsloth%20new%20logo.png" width="133">
</a>
<a href="https://discord.gg/unsloth">
<img src="https://github.com/unslothai/unsloth/raw/main/images/Discord%20button.png" width="173">
</a>
<a href="https://docs.unsloth.ai/">
<img src="https://raw.githubusercontent.com/unslothai/unsloth/refs/heads/main/images/documentation%20green%20button.png" width="143">
</a>
</div>
<h1 style="margin-top: 0rem;">Finetune LLMs 2-5x faster with 70% less memory via Unsloth!</h2>
</div>
We have a free Google Colab Tesla T4 notebook for Qwen2.5 (7B) here: https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Qwen2.5_(7B)-Alpaca.ipynb
## ✨ Finetune for Free
All notebooks are **beginner friendly**! Add your dataset, click "Run All", and you'll get a 2x faster finetuned model which can be exported to GGUF, vLLM or uploaded to Hugging Face.
| Unsloth supports | Free Notebooks | Performance | Memory use |
|-----------------|--------------------------------------------------------------------------------------------------------------------------|-------------|----------|
| **Llama-3.2 (3B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(1B_and_3B)-Conversational.ipynb) | 2.4x faster | 58% less |
| **Llama-3.2 (11B vision)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(11B)-Vision.ipynb) | 2x faster | 60% less |
| **Qwen2 VL (7B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Qwen2_VL_(7B)-Vision.ipynb) | 1.8x faster | 60% less |
| **Qwen2.5 (7B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Qwen2.5_(7B)-Alpaca.ipynb) | 2x faster | 60% less |
| **Llama-3.1 (8B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.1_(8B)-Alpaca.ipynb) | 2.4x faster | 58% less |
| **Phi-3.5 (mini)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Phi_3.5_Mini-Conversational.ipynb) | 2x faster | 50% less |
| **Gemma 2 (9B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Gemma2_(9B)-Alpaca.ipynb) | 2.4x faster | 58% less |
| **Mistral (7B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Mistral_v0.3_(7B)-Conversational.ipynb) | 2.2x faster | 62% less |
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/refs/heads/main/images/documentation%20green%20button.png" width="200"/>](https://docs.unsloth.ai)
- This [Llama 3.2 conversational notebook](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(1B_and_3B)-Conversational.ipynb) is useful for ShareGPT ChatML / Vicuna templates.
- This [text completion notebook](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Mistral_(7B)-Text_Completion.ipynb) is for raw text. This [DPO notebook](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) replicates Zephyr.
- \* Kaggle has 2x T4s, but we use 1. Due to overhead, 1x T4 is 5x faster.
# Qwen2.5
## Introduction
Qwen2.5 is the latest series of Qwen large language models. For Qwen2.5, we release a number of base language models and instruction-tuned language models ranging from 0.5 to 72 billion parameters. Qwen2.5 brings the following improvements upon Qwen2:
- Significantly **more knowledge** and has greatly improved capabilities in **coding** and **mathematics**, thanks to our specialized expert models in these domains.
- Significant improvements in **instruction following**, **generating long texts** (over 8K tokens), **understanding structured data** (e.g, tables), and **generating structured outputs** especially JSON. **More resilient to the diversity of system prompts**, enhancing role-play implementation and condition-setting for chatbots.
- **Long-context Support** up to 128K tokens and can generate up to 8K tokens.
- **Multilingual support** for over 29 languages, including Chinese, English, French, Spanish, Portuguese, German, Italian, Russian, Japanese, Korean, Vietnamese, Thai, Arabic, and more.
**This repo contains the base 0.5B Qwen2.5 model**, which has the following features:
- Type: Causal Language Models
- Training Stage: Pretraining
- Architecture: transformers with RoPE, SwiGLU, RMSNorm, Attention QKV bias and tied word embeddings
- Number of Parameters: 0.49B
- Number of Paramaters (Non-Embedding): 0.36B
- Number of Layers: 24
- Number of Attention Heads (GQA): 14 for Q and 2 for KV
- Context Length: Full 32,768 tokens
**We do not recommend using base language models for conversations.** Instead, you can apply post-training, e.g., SFT, RLHF, continued pretraining, etc., on this model.
For more details, please refer to our [blog](https://qwenlm.github.io/blog/qwen2.5/), [GitHub](https://github.com/QwenLM/Qwen2.5), and [Documentation](https://qwen.readthedocs.io/en/latest/).
## Requirements
The code of Qwen2.5 has been in the latest Hugging face `transformers` and we advise you to use the latest version of `transformers`.
With `transformers<4.37.0`, you will encounter the following error:
```
KeyError: 'qwen2'
```
## Evaluation & Performance
Detailed evaluation results are reported in this [📑 blog](https://qwenlm.github.io/blog/qwen2.5/).
For requirements on GPU memory and the respective throughput, see results [here](https://qwen.readthedocs.io/en/latest/benchmark/speed_benchmark.html).
## Citation
If you find our work helpful, feel free to give us a cite.
```
@misc{qwen2.5,
title = {Qwen2.5: A Party of Foundation Models},
url = {https://qwenlm.github.io/blog/qwen2.5/},
author = {Qwen Team},
month = {September},
year = {2024}
}
@article{qwen2,
title={Qwen2 Technical Report},
author={An Yang and Baosong Yang and Binyuan Hui and Bo Zheng and Bowen Yu and Chang Zhou and Chengpeng Li and Chengyuan Li and Dayiheng Liu and Fei Huang and Guanting Dong and Haoran Wei and Huan Lin and Jialong Tang and Jialin Wang and Jian Yang and Jianhong Tu and Jianwei Zhang and Jianxin Ma and Jin Xu and Jingren Zhou and Jinze Bai and Jinzheng He and Junyang Lin and Kai Dang and Keming Lu and Keqin Chen and Kexin Yang and Mei Li and Mingfeng Xue and Na Ni and Pei Zhang and Peng Wang and Ru Peng and Rui Men and Ruize Gao and Runji Lin and Shijie Wang and Shuai Bai and Sinan Tan and Tianhang Zhu and Tianhao Li and Tianyu Liu and Wenbin Ge and Xiaodong Deng and Xiaohuan Zhou and Xingzhang Ren and Xinyu Zhang and Xipin Wei and Xuancheng Ren and Yang Fan and Yang Yao and Yichang Zhang and Yu Wan and Yunfei Chu and Yuqiong Liu and Zeyu Cui and Zhenru Zhang and Zhihao Fan},
journal={arXiv preprint arXiv:2407.10671},
year={2024}
}
``` |
unsloth/Qwen2.5-14B-bnb-4bit | unsloth | 2025-04-28T04:15:32Z | 866 | 5 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"unsloth",
"zho",
"eng",
"fra",
"spa",
"por",
"deu",
"ita",
"rus",
"jpn",
"kor",
"vie",
"tha",
"ara",
"arxiv:2407.10671",
"base_model:Qwen/Qwen2.5-14B",
"base_model:quantized:Qwen/Qwen2.5-14B",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
] | text-generation | 2024-09-23T02:02:05Z | ---
base_model: Qwen/Qwen2.5-14B
language:
- zho
- eng
- fra
- spa
- por
- deu
- ita
- rus
- jpn
- kor
- vie
- tha
- ara
library_name: transformers
license: apache-2.0
tags:
- unsloth
- transformers
---
# Finetune Llama 3.1, Gemma 2, Mistral 2-5x faster with 70% less memory via Unsloth!
We have a Qwen 2.5 (all model sizes) [free Google Colab Tesla T4 notebook](https://colab.research.google.com/drive/1Kose-ucXO1IBaZq5BvbwWieuubP7hxvQ?usp=sharing).
Also a [Qwen 2.5 conversational style notebook](https://colab.research.google.com/drive/1qN1CEalC70EO1wGKhNxs1go1W9So61R5?usp=sharing).
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/Discord%20button.png" width="200"/>](https://discord.gg/unsloth)
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
## ✨ Finetune for Free
All notebooks are **beginner friendly**! Add your dataset, click "Run All", and you'll get a 2x faster finetuned model which can be exported to GGUF, vLLM or uploaded to Hugging Face.
| Unsloth supports | Free Notebooks | Performance | Memory use |
|-----------------|--------------------------------------------------------------------------------------------------------------------------|-------------|----------|
| **Llama-3.1 8b** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Ys44kVvmeZtnICzWz0xgpRnrIOjZAuxp?usp=sharing) | 2.4x faster | 58% less |
| **Phi-3.5 (mini)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1lN6hPQveB_mHSnTOYifygFcrO8C1bxq4?usp=sharing) | 2x faster | 50% less |
| **Gemma-2 9b** | [▶️ Start on Colab](https://colab.research.google.com/drive/1vIrqH5uYDQwsJ4-OO3DErvuv4pBgVwk4?usp=sharing) | 2.4x faster | 58% less |
| **Mistral 7b** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Dyauq4kTZoLewQ1cApceUQVNcnnNTzg_?usp=sharing) | 2.2x faster | 62% less |
| **TinyLlama** | [▶️ Start on Colab](https://colab.research.google.com/drive/1AZghoNBQaMDgWJpi4RbffGM1h6raLUj9?usp=sharing) | 3.9x faster | 74% less |
| **DPO - Zephyr** | [▶️ Start on Colab](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) | 1.9x faster | 19% less |
- This [conversational notebook](https://colab.research.google.com/drive/1Aau3lgPzeZKQ-98h69CCu1UJcvIBLmy2?usp=sharing) is useful for ShareGPT ChatML / Vicuna templates.
- This [text completion notebook](https://colab.research.google.com/drive/1ef-tab5bhkvWmBOObepl1WgJvfvSzn5Q?usp=sharing) is for raw text. This [DPO notebook](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) replicates Zephyr.
- \* Kaggle has 2x T4s, but we use 1. Due to overhead, 1x T4 is 5x faster.
# Qwen2.5-14B
## Introduction
Qwen2.5 is the latest series of Qwen large language models. For Qwen2.5, we release a number of base language models and instruction-tuned language models ranging from 0.5 to 72 billion parameters. Qwen2.5 brings the following improvements upon Qwen2:
- Significantly **more knowledge** and has greatly improved capabilities in **coding** and **mathematics**, thanks to our specialized expert models in these domains.
- Significant improvements in **instruction following**, **generating long texts** (over 8K tokens), **understanding structured data** (e.g, tables), and **generating structured outputs** especially JSON. **More resilient to the diversity of system prompts**, enhancing role-play implementation and condition-setting for chatbots.
- **Long-context Support** up to 128K tokens and can generate up to 8K tokens.
- **Multilingual support** for over 29 languages, including Chinese, English, French, Spanish, Portuguese, German, Italian, Russian, Japanese, Korean, Vietnamese, Thai, Arabic, and more.
**This repo contains the base 14B Qwen2.5 model**, which has the following features:
- Type: Causal Language Models
- Training Stage: Pretraining
- Architecture: transformers with RoPE, SwiGLU, RMSNorm, and Attention QKV bias
- Number of Parameters: 14.7B
- Number of Paramaters (Non-Embedding): 13.1B
- Number of Layers: 48
- Number of Attention Heads (GQA): 40 for Q and 8 for KV
- Context Length: 131,072 tokens
**We do not recommend using base language models for conversations.** Instead, you can apply post-training, e.g., SFT, RLHF, continued pretraining, etc., on this model.
For more details, please refer to our [blog](https://qwenlm.github.io/blog/qwen2.5/), [GitHub](https://github.com/QwenLM/Qwen2.5), and [Documentation](https://qwen.readthedocs.io/en/latest/).
## Requirements
The code of Qwen2.5 has been in the latest Hugging face `transformers` and we advise you to use the latest version of `transformers`.
With `transformers<4.37.0`, you will encounter the following error:
```
KeyError: 'qwen2'
```
## Evaluation & Performance
Detailed evaluation results are reported in this [📑 blog](https://qwenlm.github.io/blog/qwen2.5/).
For requirements on GPU memory and the respective throughput, see results [here](https://qwen.readthedocs.io/en/latest/benchmark/speed_benchmark.html).
## Citation
If you find our work helpful, feel free to give us a cite.
```
@misc{qwen2.5,
title = {Qwen2.5: A Party of Foundation Models},
url = {https://qwenlm.github.io/blog/qwen2.5/},
author = {Qwen Team},
month = {September},
year = {2024}
}
@article{qwen2,
title={Qwen2 Technical Report},
author={An Yang and Baosong Yang and Binyuan Hui and Bo Zheng and Bowen Yu and Chang Zhou and Chengpeng Li and Chengyuan Li and Dayiheng Liu and Fei Huang and Guanting Dong and Haoran Wei and Huan Lin and Jialong Tang and Jialin Wang and Jian Yang and Jianhong Tu and Jianwei Zhang and Jianxin Ma and Jin Xu and Jingren Zhou and Jinze Bai and Jinzheng He and Junyang Lin and Kai Dang and Keming Lu and Keqin Chen and Kexin Yang and Mei Li and Mingfeng Xue and Na Ni and Pei Zhang and Peng Wang and Ru Peng and Rui Men and Ruize Gao and Runji Lin and Shijie Wang and Shuai Bai and Sinan Tan and Tianhang Zhu and Tianhao Li and Tianyu Liu and Wenbin Ge and Xiaodong Deng and Xiaohuan Zhou and Xingzhang Ren and Xinyu Zhang and Xipin Wei and Xuancheng Ren and Yang Fan and Yang Yao and Yichang Zhang and Yu Wan and Yunfei Chu and Yuqiong Liu and Zeyu Cui and Zhenru Zhang and Zhihao Fan},
journal={arXiv preprint arXiv:2407.10671},
year={2024}
}
``` |
MJS123456789/miniproooooooooooooooo | MJS123456789 | 2025-04-28T04:15:19Z | 0 | 0 | null | [
"tensorboard",
"safetensors",
"vit",
"image-classification",
"pytorch",
"huggingpics",
"model-index",
"region:us"
] | image-classification | 2025-04-28T04:02:43Z | ---
pipeline_tag: image-classification
tags:
- image-classification
- pytorch
- huggingpics
metrics:
- accuracy
model-index:
- name: down-syndrome-classifier-improved
results:
- task:
name: Image Classification
type: image-classification
metrics:
- name: Accuracy
type: accuracy
value: 0.9844789505004883
---
# down-syndrome-classifier-improved
Autogenerated by HuggingPics🤗🖼️
Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb).
Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics).
## Example Images
#### down-syndrome

#### healthy
 |
kostiantynk-outlook/1c7194e2-1561-4ad0-8f80-c08ea348bbc7 | kostiantynk-outlook | 2025-04-28T04:14:53Z | 0 | 0 | peft | [
"peft",
"generated_from_trainer",
"base_model:UNIVA-Bllossom/DeepSeek-llama3.3-Bllossom-70B",
"base_model:adapter:UNIVA-Bllossom/DeepSeek-llama3.3-Bllossom-70B",
"region:us"
] | null | 2025-04-28T04:13:16Z | ---
library_name: peft
tags:
- generated_from_trainer
base_model: UNIVA-Bllossom/DeepSeek-llama3.3-Bllossom-70B
model-index:
- name: kostiantynk-outlook/1c7194e2-1561-4ad0-8f80-c08ea348bbc7
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# kostiantynk-outlook/1c7194e2-1561-4ad0-8f80-c08ea348bbc7
This model was trained from scratch on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9999
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.3
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3 |
unsloth/Qwen2.5-7B-bnb-4bit | unsloth | 2025-04-28T04:14:03Z | 3,797 | 5 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"unsloth",
"zho",
"eng",
"fra",
"spa",
"por",
"deu",
"ita",
"rus",
"jpn",
"kor",
"vie",
"tha",
"ara",
"arxiv:2407.10671",
"base_model:Qwen/Qwen2.5-7B",
"base_model:quantized:Qwen/Qwen2.5-7B",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
] | text-generation | 2024-09-18T21:40:43Z | ---
base_model: Qwen/Qwen2.5-7B
language:
- zho
- eng
- fra
- spa
- por
- deu
- ita
- rus
- jpn
- kor
- vie
- tha
- ara
library_name: transformers
license: apache-2.0
tags:
- unsloth
- transformers
---
# Finetune Llama 3.1, Gemma 2, Mistral 2-5x faster with 70% less memory via Unsloth!
We have a Qwen 2.5 (all model sizes) [free Google Colab Tesla T4 notebook](https://colab.research.google.com/drive/1Kose-ucXO1IBaZq5BvbwWieuubP7hxvQ?usp=sharing).
Also a [Qwen 2.5 conversational style notebook](https://colab.research.google.com/drive/1qN1CEalC70EO1wGKhNxs1go1W9So61R5?usp=sharing).
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/Discord%20button.png" width="200"/>](https://discord.gg/unsloth)
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
## ✨ Finetune for Free
All notebooks are **beginner friendly**! Add your dataset, click "Run All", and you'll get a 2x faster finetuned model which can be exported to GGUF, vLLM or uploaded to Hugging Face.
| Unsloth supports | Free Notebooks | Performance | Memory use |
|-----------------|--------------------------------------------------------------------------------------------------------------------------|-------------|----------|
| **Llama-3.1 8b** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Ys44kVvmeZtnICzWz0xgpRnrIOjZAuxp?usp=sharing) | 2.4x faster | 58% less |
| **Phi-3.5 (mini)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1lN6hPQveB_mHSnTOYifygFcrO8C1bxq4?usp=sharing) | 2x faster | 50% less |
| **Gemma-2 9b** | [▶️ Start on Colab](https://colab.research.google.com/drive/1vIrqH5uYDQwsJ4-OO3DErvuv4pBgVwk4?usp=sharing) | 2.4x faster | 58% less |
| **Mistral 7b** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Dyauq4kTZoLewQ1cApceUQVNcnnNTzg_?usp=sharing) | 2.2x faster | 62% less |
| **TinyLlama** | [▶️ Start on Colab](https://colab.research.google.com/drive/1AZghoNBQaMDgWJpi4RbffGM1h6raLUj9?usp=sharing) | 3.9x faster | 74% less |
| **DPO - Zephyr** | [▶️ Start on Colab](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) | 1.9x faster | 19% less |
- This [conversational notebook](https://colab.research.google.com/drive/1Aau3lgPzeZKQ-98h69CCu1UJcvIBLmy2?usp=sharing) is useful for ShareGPT ChatML / Vicuna templates.
- This [text completion notebook](https://colab.research.google.com/drive/1ef-tab5bhkvWmBOObepl1WgJvfvSzn5Q?usp=sharing) is for raw text. This [DPO notebook](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) replicates Zephyr.
- \* Kaggle has 2x T4s, but we use 1. Due to overhead, 1x T4 is 5x faster.
# Qwen2.5-7B
## Introduction
Qwen2.5 is the latest series of Qwen large language models. For Qwen2.5, we release a number of base language models and instruction-tuned language models ranging from 0.5 to 72 billion parameters. Qwen2.5 brings the following improvements upon Qwen2:
- Significantly **more knowledge** and has greatly improved capabilities in **coding** and **mathematics**, thanks to our specialized expert models in these domains.
- Significant improvements in **instruction following**, **generating long texts** (over 8K tokens), **understanding structured data** (e.g, tables), and **generating structured outputs** especially JSON. **More resilient to the diversity of system prompts**, enhancing role-play implementation and condition-setting for chatbots.
- **Long-context Support** up to 128K tokens and can generate up to 8K tokens.
- **Multilingual support** for over 29 languages, including Chinese, English, French, Spanish, Portuguese, German, Italian, Russian, Japanese, Korean, Vietnamese, Thai, Arabic, and more.
**This repo contains the base 7B Qwen2.5 model**, which has the following features:
- Type: Causal Language Models
- Training Stage: Pretraining
- Architecture: transformers with RoPE, SwiGLU, RMSNorm, and Attention QKV bias
- Number of Parameters: 7.61B
- Number of Paramaters (Non-Embedding): 6.53B
- Number of Layers: 28
- Number of Attention Heads (GQA): 28 for Q and 4 for KV
- Context Length: 131,072 tokens
**We do not recommend using base language models for conversations.** Instead, you can apply post-training, e.g., SFT, RLHF, continued pretraining, etc., on this model.
For more details, please refer to our [blog](https://qwenlm.github.io/blog/qwen2.5/), [GitHub](https://github.com/QwenLM/Qwen2.5), and [Documentation](https://qwen.readthedocs.io/en/latest/).
## Requirements
The code of Qwen2.5 has been in the latest Hugging face `transformers` and we advise you to use the latest version of `transformers`.
With `transformers<4.37.0`, you will encounter the following error:
```
KeyError: 'qwen2'
```
## Evaluation & Performance
Detailed evaluation results are reported in this [📑 blog](https://qwenlm.github.io/blog/qwen2.5/).
For requirements on GPU memory and the respective throughput, see results [here](https://qwen.readthedocs.io/en/latest/benchmark/speed_benchmark.html).
## Citation
If you find our work helpful, feel free to give us a cite.
```
@misc{qwen2.5,
title = {Qwen2.5: A Party of Foundation Models},
url = {https://qwenlm.github.io/blog/qwen2.5/},
author = {Qwen Team},
month = {September},
year = {2024}
}
@article{qwen2,
title={Qwen2 Technical Report},
author={An Yang and Baosong Yang and Binyuan Hui and Bo Zheng and Bowen Yu and Chang Zhou and Chengpeng Li and Chengyuan Li and Dayiheng Liu and Fei Huang and Guanting Dong and Haoran Wei and Huan Lin and Jialong Tang and Jialin Wang and Jian Yang and Jianhong Tu and Jianwei Zhang and Jianxin Ma and Jin Xu and Jingren Zhou and Jinze Bai and Jinzheng He and Junyang Lin and Kai Dang and Keming Lu and Keqin Chen and Kexin Yang and Mei Li and Mingfeng Xue and Na Ni and Pei Zhang and Peng Wang and Ru Peng and Rui Men and Ruize Gao and Runji Lin and Shijie Wang and Shuai Bai and Sinan Tan and Tianhang Zhu and Tianhao Li and Tianyu Liu and Wenbin Ge and Xiaodong Deng and Xiaohuan Zhou and Xingzhang Ren and Xinyu Zhang and Xipin Wei and Xuancheng Ren and Yang Fan and Yang Yao and Yichang Zhang and Yu Wan and Yunfei Chu and Yuqiong Liu and Zeyu Cui and Zhenru Zhang and Zhihao Fan},
journal={arXiv preprint arXiv:2407.10671},
year={2024}
}
``` |
unsloth/Qwen2.5-7B | unsloth | 2025-04-28T04:14:00Z | 18,527 | 4 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"unsloth",
"zho",
"eng",
"fra",
"spa",
"por",
"deu",
"ita",
"rus",
"jpn",
"kor",
"vie",
"tha",
"ara",
"arxiv:2407.10671",
"base_model:Qwen/Qwen2.5-7B",
"base_model:finetune:Qwen/Qwen2.5-7B",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-09-18T21:21:11Z | ---
base_model: Qwen/Qwen2.5-7B
language:
- zho
- eng
- fra
- spa
- por
- deu
- ita
- rus
- jpn
- kor
- vie
- tha
- ara
library_name: transformers
license: apache-2.0
tags:
- unsloth
- transformers
---
# Finetune Llama 3.1, Gemma 2, Mistral 2-5x faster with 70% less memory via Unsloth!
We have a Qwen 2.5 (all model sizes) [free Google Colab Tesla T4 notebook](https://colab.research.google.com/drive/1Kose-ucXO1IBaZq5BvbwWieuubP7hxvQ?usp=sharing).
Also a [Qwen 2.5 conversational style notebook](https://colab.research.google.com/drive/1qN1CEalC70EO1wGKhNxs1go1W9So61R5?usp=sharing).
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/Discord%20button.png" width="200"/>](https://discord.gg/unsloth)
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
## ✨ Finetune for Free
All notebooks are **beginner friendly**! Add your dataset, click "Run All", and you'll get a 2x faster finetuned model which can be exported to GGUF, vLLM or uploaded to Hugging Face.
| Unsloth supports | Free Notebooks | Performance | Memory use |
|-----------------|--------------------------------------------------------------------------------------------------------------------------|-------------|----------|
| **Llama-3.1 8b** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Ys44kVvmeZtnICzWz0xgpRnrIOjZAuxp?usp=sharing) | 2.4x faster | 58% less |
| **Phi-3.5 (mini)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1lN6hPQveB_mHSnTOYifygFcrO8C1bxq4?usp=sharing) | 2x faster | 50% less |
| **Gemma-2 9b** | [▶️ Start on Colab](https://colab.research.google.com/drive/1vIrqH5uYDQwsJ4-OO3DErvuv4pBgVwk4?usp=sharing) | 2.4x faster | 58% less |
| **Mistral 7b** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Dyauq4kTZoLewQ1cApceUQVNcnnNTzg_?usp=sharing) | 2.2x faster | 62% less |
| **TinyLlama** | [▶️ Start on Colab](https://colab.research.google.com/drive/1AZghoNBQaMDgWJpi4RbffGM1h6raLUj9?usp=sharing) | 3.9x faster | 74% less |
| **DPO - Zephyr** | [▶️ Start on Colab](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) | 1.9x faster | 19% less |
- This [conversational notebook](https://colab.research.google.com/drive/1Aau3lgPzeZKQ-98h69CCu1UJcvIBLmy2?usp=sharing) is useful for ShareGPT ChatML / Vicuna templates.
- This [text completion notebook](https://colab.research.google.com/drive/1ef-tab5bhkvWmBOObepl1WgJvfvSzn5Q?usp=sharing) is for raw text. This [DPO notebook](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) replicates Zephyr.
- \* Kaggle has 2x T4s, but we use 1. Due to overhead, 1x T4 is 5x faster.
# Qwen2.5-7B
## Introduction
Qwen2.5 is the latest series of Qwen large language models. For Qwen2.5, we release a number of base language models and instruction-tuned language models ranging from 0.5 to 72 billion parameters. Qwen2.5 brings the following improvements upon Qwen2:
- Significantly **more knowledge** and has greatly improved capabilities in **coding** and **mathematics**, thanks to our specialized expert models in these domains.
- Significant improvements in **instruction following**, **generating long texts** (over 8K tokens), **understanding structured data** (e.g, tables), and **generating structured outputs** especially JSON. **More resilient to the diversity of system prompts**, enhancing role-play implementation and condition-setting for chatbots.
- **Long-context Support** up to 128K tokens and can generate up to 8K tokens.
- **Multilingual support** for over 29 languages, including Chinese, English, French, Spanish, Portuguese, German, Italian, Russian, Japanese, Korean, Vietnamese, Thai, Arabic, and more.
**This repo contains the base 7B Qwen2.5 model**, which has the following features:
- Type: Causal Language Models
- Training Stage: Pretraining
- Architecture: transformers with RoPE, SwiGLU, RMSNorm, and Attention QKV bias
- Number of Parameters: 7.61B
- Number of Paramaters (Non-Embedding): 6.53B
- Number of Layers: 28
- Number of Attention Heads (GQA): 28 for Q and 4 for KV
- Context Length: 131,072 tokens
**We do not recommend using base language models for conversations.** Instead, you can apply post-training, e.g., SFT, RLHF, continued pretraining, etc., on this model.
For more details, please refer to our [blog](https://qwenlm.github.io/blog/qwen2.5/), [GitHub](https://github.com/QwenLM/Qwen2.5), and [Documentation](https://qwen.readthedocs.io/en/latest/).
## Requirements
The code of Qwen2.5 has been in the latest Hugging face `transformers` and we advise you to use the latest version of `transformers`.
With `transformers<4.37.0`, you will encounter the following error:
```
KeyError: 'qwen2'
```
## Evaluation & Performance
Detailed evaluation results are reported in this [📑 blog](https://qwenlm.github.io/blog/qwen2.5/).
For requirements on GPU memory and the respective throughput, see results [here](https://qwen.readthedocs.io/en/latest/benchmark/speed_benchmark.html).
## Citation
If you find our work helpful, feel free to give us a cite.
```
@misc{qwen2.5,
title = {Qwen2.5: A Party of Foundation Models},
url = {https://qwenlm.github.io/blog/qwen2.5/},
author = {Qwen Team},
month = {September},
year = {2024}
}
@article{qwen2,
title={Qwen2 Technical Report},
author={An Yang and Baosong Yang and Binyuan Hui and Bo Zheng and Bowen Yu and Chang Zhou and Chengpeng Li and Chengyuan Li and Dayiheng Liu and Fei Huang and Guanting Dong and Haoran Wei and Huan Lin and Jialong Tang and Jialin Wang and Jian Yang and Jianhong Tu and Jianwei Zhang and Jianxin Ma and Jin Xu and Jingren Zhou and Jinze Bai and Jinzheng He and Junyang Lin and Kai Dang and Keming Lu and Keqin Chen and Kexin Yang and Mei Li and Mingfeng Xue and Na Ni and Pei Zhang and Peng Wang and Ru Peng and Rui Men and Ruize Gao and Runji Lin and Shijie Wang and Shuai Bai and Sinan Tan and Tianhang Zhu and Tianhao Li and Tianyu Liu and Wenbin Ge and Xiaodong Deng and Xiaohuan Zhou and Xingzhang Ren and Xinyu Zhang and Xipin Wei and Xuancheng Ren and Yang Fan and Yang Yao and Yichang Zhang and Yu Wan and Yunfei Chu and Yuqiong Liu and Zeyu Cui and Zhenru Zhang and Zhihao Fan},
journal={arXiv preprint arXiv:2407.10671},
year={2024}
}
``` |
unsloth/Qwen2.5-3B-unsloth-bnb-4bit | unsloth | 2025-04-28T04:13:54Z | 20,029 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"unsloth",
"qwen",
"zho",
"eng",
"fra",
"spa",
"por",
"deu",
"ita",
"rus",
"jpn",
"kor",
"vie",
"tha",
"ara",
"arxiv:2407.10671",
"base_model:Qwen/Qwen2.5-3B",
"base_model:quantized:Qwen/Qwen2.5-3B",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
] | text-generation | 2025-02-06T03:45:57Z | ---
base_model: Qwen/Qwen2.5-3B
language:
- zho
- eng
- fra
- spa
- por
- deu
- ita
- rus
- jpn
- kor
- vie
- tha
- ara
library_name: transformers
license: apache-2.0
tags:
- unsloth
- transformers
- qwen
---
<div>
<p style="margin-bottom: 0;">
<strong>See <a href="https://huggingface.co/collections/unsloth/qwen-25-66fe4c08fb9ada518e8a0d3f">our collection</a> for versions of Qwen2.5 including 4-bit formats.</strong>
</p>
<p style="margin-bottom: 0;">
<em>Unsloth's <a href="https://unsloth.ai/blog/dynamic-4bit">Dynamic 4-bit Quants</a> is selectively quantized, greatly improving accuracy over standard 4-bit.</em>
</p>
<div style="display: flex; gap: 5px; align-items: center; ">
<a href="https://github.com/unslothai/unsloth/">
<img src="https://github.com/unslothai/unsloth/raw/main/images/unsloth%20new%20logo.png" width="133">
</a>
<a href="https://discord.gg/unsloth">
<img src="https://github.com/unslothai/unsloth/raw/main/images/Discord%20button.png" width="173">
</a>
<a href="https://docs.unsloth.ai/">
<img src="https://raw.githubusercontent.com/unslothai/unsloth/refs/heads/main/images/documentation%20green%20button.png" width="143">
</a>
</div>
<h1 style="margin-top: 0rem;">Finetune LLMs 2-5x faster with 70% less memory via Unsloth!</h2>
</div>
We have a free Google Colab Tesla T4 notebook for Qwen2.5 (7B) here: https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Qwen2.5_(7B)-Alpaca.ipynb
## ✨ Finetune for Free
All notebooks are **beginner friendly**! Add your dataset, click "Run All", and you'll get a 2x faster finetuned model which can be exported to GGUF, vLLM or uploaded to Hugging Face.
| Unsloth supports | Free Notebooks | Performance | Memory use |
|-----------------|--------------------------------------------------------------------------------------------------------------------------|-------------|----------|
| **Llama-3.2 (3B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(1B_and_3B)-Conversational.ipynb) | 2.4x faster | 58% less |
| **Llama-3.2 (11B vision)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(11B)-Vision.ipynb) | 2x faster | 60% less |
| **Qwen2 VL (7B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Qwen2_VL_(7B)-Vision.ipynb) | 1.8x faster | 60% less |
| **Qwen2.5 (7B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Qwen2.5_(7B)-Alpaca.ipynb) | 2x faster | 60% less |
| **Llama-3.1 (8B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.1_(8B)-Alpaca.ipynb) | 2.4x faster | 58% less |
| **Phi-3.5 (mini)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Phi_3.5_Mini-Conversational.ipynb) | 2x faster | 50% less |
| **Gemma 2 (9B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Gemma2_(9B)-Alpaca.ipynb) | 2.4x faster | 58% less |
| **Mistral (7B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Mistral_v0.3_(7B)-Conversational.ipynb) | 2.2x faster | 62% less |
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/refs/heads/main/images/documentation%20green%20button.png" width="200"/>](https://docs.unsloth.ai)
- This [Llama 3.2 conversational notebook](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(1B_and_3B)-Conversational.ipynb) is useful for ShareGPT ChatML / Vicuna templates.
- This [text completion notebook](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Mistral_(7B)-Text_Completion.ipynb) is for raw text. This [DPO notebook](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) replicates Zephyr.
- \* Kaggle has 2x T4s, but we use 1. Due to overhead, 1x T4 is 5x faster.
# Qwen2.5
## Introduction
Qwen2.5 is the latest series of Qwen large language models. For Qwen2.5, we release a number of base language models and instruction-tuned language models ranging from 0.5 to 72 billion parameters. Qwen2.5 brings the following improvements upon Qwen2:
- Significantly **more knowledge** and has greatly improved capabilities in **coding** and **mathematics**, thanks to our specialized expert models in these domains.
- Significant improvements in **instruction following**, **generating long texts** (over 8K tokens), **understanding structured data** (e.g, tables), and **generating structured outputs** especially JSON. **More resilient to the diversity of system prompts**, enhancing role-play implementation and condition-setting for chatbots.
- **Long-context Support** up to 128K tokens and can generate up to 8K tokens.
- **Multilingual support** for over 29 languages, including Chinese, English, French, Spanish, Portuguese, German, Italian, Russian, Japanese, Korean, Vietnamese, Thai, Arabic, and more.
**This repo contains the base 0.5B Qwen2.5 model**, which has the following features:
- Type: Causal Language Models
- Training Stage: Pretraining
- Architecture: transformers with RoPE, SwiGLU, RMSNorm, Attention QKV bias and tied word embeddings
- Number of Parameters: 0.49B
- Number of Paramaters (Non-Embedding): 0.36B
- Number of Layers: 24
- Number of Attention Heads (GQA): 14 for Q and 2 for KV
- Context Length: Full 32,768 tokens
**We do not recommend using base language models for conversations.** Instead, you can apply post-training, e.g., SFT, RLHF, continued pretraining, etc., on this model.
For more details, please refer to our [blog](https://qwenlm.github.io/blog/qwen2.5/), [GitHub](https://github.com/QwenLM/Qwen2.5), and [Documentation](https://qwen.readthedocs.io/en/latest/).
## Requirements
The code of Qwen2.5 has been in the latest Hugging face `transformers` and we advise you to use the latest version of `transformers`.
With `transformers<4.37.0`, you will encounter the following error:
```
KeyError: 'qwen2'
```
## Evaluation & Performance
Detailed evaluation results are reported in this [📑 blog](https://qwenlm.github.io/blog/qwen2.5/).
For requirements on GPU memory and the respective throughput, see results [here](https://qwen.readthedocs.io/en/latest/benchmark/speed_benchmark.html).
## Citation
If you find our work helpful, feel free to give us a cite.
```
@misc{qwen2.5,
title = {Qwen2.5: A Party of Foundation Models},
url = {https://qwenlm.github.io/blog/qwen2.5/},
author = {Qwen Team},
month = {September},
year = {2024}
}
@article{qwen2,
title={Qwen2 Technical Report},
author={An Yang and Baosong Yang and Binyuan Hui and Bo Zheng and Bowen Yu and Chang Zhou and Chengpeng Li and Chengyuan Li and Dayiheng Liu and Fei Huang and Guanting Dong and Haoran Wei and Huan Lin and Jialong Tang and Jialin Wang and Jian Yang and Jianhong Tu and Jianwei Zhang and Jianxin Ma and Jin Xu and Jingren Zhou and Jinze Bai and Jinzheng He and Junyang Lin and Kai Dang and Keming Lu and Keqin Chen and Kexin Yang and Mei Li and Mingfeng Xue and Na Ni and Pei Zhang and Peng Wang and Ru Peng and Rui Men and Ruize Gao and Runji Lin and Shijie Wang and Shuai Bai and Sinan Tan and Tianhang Zhu and Tianhao Li and Tianyu Liu and Wenbin Ge and Xiaodong Deng and Xiaohuan Zhou and Xingzhang Ren and Xinyu Zhang and Xipin Wei and Xuancheng Ren and Yang Fan and Yang Yao and Yichang Zhang and Yu Wan and Yunfei Chu and Yuqiong Liu and Zeyu Cui and Zhenru Zhang and Zhihao Fan},
journal={arXiv preprint arXiv:2407.10671},
year={2024}
}
``` |
unsloth/Qwen2.5-1.5B-unsloth-bnb-4bit | unsloth | 2025-04-28T04:13:44Z | 10,523 | 1 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"unsloth",
"qwen",
"zho",
"eng",
"fra",
"spa",
"por",
"deu",
"ita",
"rus",
"jpn",
"kor",
"vie",
"tha",
"ara",
"arxiv:2407.10671",
"base_model:Qwen/Qwen2.5-1.5B",
"base_model:quantized:Qwen/Qwen2.5-1.5B",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
] | text-generation | 2025-02-06T02:34:30Z | ---
base_model: Qwen/Qwen2.5-1.5B
language:
- zho
- eng
- fra
- spa
- por
- deu
- ita
- rus
- jpn
- kor
- vie
- tha
- ara
library_name: transformers
license: apache-2.0
tags:
- unsloth
- transformers
- qwen
---
<div>
<p style="margin-bottom: 0;">
<strong>See <a href="https://huggingface.co/collections/unsloth/qwen-25-66fe4c08fb9ada518e8a0d3f">our collection</a> for versions of Qwen2.5 including 4-bit formats.</strong>
</p>
<p style="margin-bottom: 0;">
<em>Unsloth's <a href="https://unsloth.ai/blog/dynamic-4bit">Dynamic 4-bit Quants</a> is selectively quantized, greatly improving accuracy over standard 4-bit.</em>
</p>
<div style="display: flex; gap: 5px; align-items: center; ">
<a href="https://github.com/unslothai/unsloth/">
<img src="https://github.com/unslothai/unsloth/raw/main/images/unsloth%20new%20logo.png" width="133">
</a>
<a href="https://discord.gg/unsloth">
<img src="https://github.com/unslothai/unsloth/raw/main/images/Discord%20button.png" width="173">
</a>
<a href="https://docs.unsloth.ai/">
<img src="https://raw.githubusercontent.com/unslothai/unsloth/refs/heads/main/images/documentation%20green%20button.png" width="143">
</a>
</div>
<h1 style="margin-top: 0rem;">Finetune LLMs 2-5x faster with 70% less memory via Unsloth!</h2>
</div>
We have a free Google Colab Tesla T4 notebook for Qwen2.5 (7B) here: https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Qwen2.5_(7B)-Alpaca.ipynb
## ✨ Finetune for Free
All notebooks are **beginner friendly**! Add your dataset, click "Run All", and you'll get a 2x faster finetuned model which can be exported to GGUF, vLLM or uploaded to Hugging Face.
| Unsloth supports | Free Notebooks | Performance | Memory use |
|-----------------|--------------------------------------------------------------------------------------------------------------------------|-------------|----------|
| **Llama-3.2 (3B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(1B_and_3B)-Conversational.ipynb) | 2.4x faster | 58% less |
| **Llama-3.2 (11B vision)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(11B)-Vision.ipynb) | 2x faster | 60% less |
| **Qwen2 VL (7B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Qwen2_VL_(7B)-Vision.ipynb) | 1.8x faster | 60% less |
| **Qwen2.5 (7B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Qwen2.5_(7B)-Alpaca.ipynb) | 2x faster | 60% less |
| **Llama-3.1 (8B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.1_(8B)-Alpaca.ipynb) | 2.4x faster | 58% less |
| **Phi-3.5 (mini)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Phi_3.5_Mini-Conversational.ipynb) | 2x faster | 50% less |
| **Gemma 2 (9B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Gemma2_(9B)-Alpaca.ipynb) | 2.4x faster | 58% less |
| **Mistral (7B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Mistral_v0.3_(7B)-Conversational.ipynb) | 2.2x faster | 62% less |
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/refs/heads/main/images/documentation%20green%20button.png" width="200"/>](https://docs.unsloth.ai)
- This [Llama 3.2 conversational notebook](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(1B_and_3B)-Conversational.ipynb) is useful for ShareGPT ChatML / Vicuna templates.
- This [text completion notebook](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Mistral_(7B)-Text_Completion.ipynb) is for raw text. This [DPO notebook](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) replicates Zephyr.
- \* Kaggle has 2x T4s, but we use 1. Due to overhead, 1x T4 is 5x faster.
# Qwen2.5
## Introduction
Qwen2.5 is the latest series of Qwen large language models. For Qwen2.5, we release a number of base language models and instruction-tuned language models ranging from 0.5 to 72 billion parameters. Qwen2.5 brings the following improvements upon Qwen2:
- Significantly **more knowledge** and has greatly improved capabilities in **coding** and **mathematics**, thanks to our specialized expert models in these domains.
- Significant improvements in **instruction following**, **generating long texts** (over 8K tokens), **understanding structured data** (e.g, tables), and **generating structured outputs** especially JSON. **More resilient to the diversity of system prompts**, enhancing role-play implementation and condition-setting for chatbots.
- **Long-context Support** up to 128K tokens and can generate up to 8K tokens.
- **Multilingual support** for over 29 languages, including Chinese, English, French, Spanish, Portuguese, German, Italian, Russian, Japanese, Korean, Vietnamese, Thai, Arabic, and more.
**This repo contains the base 0.5B Qwen2.5 model**, which has the following features:
- Type: Causal Language Models
- Training Stage: Pretraining
- Architecture: transformers with RoPE, SwiGLU, RMSNorm, Attention QKV bias and tied word embeddings
- Number of Parameters: 0.49B
- Number of Paramaters (Non-Embedding): 0.36B
- Number of Layers: 24
- Number of Attention Heads (GQA): 14 for Q and 2 for KV
- Context Length: Full 32,768 tokens
**We do not recommend using base language models for conversations.** Instead, you can apply post-training, e.g., SFT, RLHF, continued pretraining, etc., on this model.
For more details, please refer to our [blog](https://qwenlm.github.io/blog/qwen2.5/), [GitHub](https://github.com/QwenLM/Qwen2.5), and [Documentation](https://qwen.readthedocs.io/en/latest/).
## Requirements
The code of Qwen2.5 has been in the latest Hugging face `transformers` and we advise you to use the latest version of `transformers`.
With `transformers<4.37.0`, you will encounter the following error:
```
KeyError: 'qwen2'
```
## Evaluation & Performance
Detailed evaluation results are reported in this [📑 blog](https://qwenlm.github.io/blog/qwen2.5/).
For requirements on GPU memory and the respective throughput, see results [here](https://qwen.readthedocs.io/en/latest/benchmark/speed_benchmark.html).
## Citation
If you find our work helpful, feel free to give us a cite.
```
@misc{qwen2.5,
title = {Qwen2.5: A Party of Foundation Models},
url = {https://qwenlm.github.io/blog/qwen2.5/},
author = {Qwen Team},
month = {September},
year = {2024}
}
@article{qwen2,
title={Qwen2 Technical Report},
author={An Yang and Baosong Yang and Binyuan Hui and Bo Zheng and Bowen Yu and Chang Zhou and Chengpeng Li and Chengyuan Li and Dayiheng Liu and Fei Huang and Guanting Dong and Haoran Wei and Huan Lin and Jialong Tang and Jialin Wang and Jian Yang and Jianhong Tu and Jianwei Zhang and Jianxin Ma and Jin Xu and Jingren Zhou and Jinze Bai and Jinzheng He and Junyang Lin and Kai Dang and Keming Lu and Keqin Chen and Kexin Yang and Mei Li and Mingfeng Xue and Na Ni and Pei Zhang and Peng Wang and Ru Peng and Rui Men and Ruize Gao and Runji Lin and Shijie Wang and Shuai Bai and Sinan Tan and Tianhang Zhu and Tianhao Li and Tianyu Liu and Wenbin Ge and Xiaodong Deng and Xiaohuan Zhou and Xingzhang Ren and Xinyu Zhang and Xipin Wei and Xuancheng Ren and Yang Fan and Yang Yao and Yichang Zhang and Yu Wan and Yunfei Chu and Yuqiong Liu and Zeyu Cui and Zhenru Zhang and Zhihao Fan},
journal={arXiv preprint arXiv:2407.10671},
year={2024}
}
``` |
unsloth/Qwen2.5-1.5B | unsloth | 2025-04-28T04:13:37Z | 7,552 | 3 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"unsloth",
"zho",
"eng",
"fra",
"spa",
"por",
"deu",
"ita",
"rus",
"jpn",
"kor",
"vie",
"tha",
"ara",
"arxiv:2407.10671",
"base_model:Qwen/Qwen2.5-1.5B",
"base_model:finetune:Qwen/Qwen2.5-1.5B",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-09-18T21:08:11Z | ---
base_model: Qwen/Qwen2.5-1.5B
language:
- zho
- eng
- fra
- spa
- por
- deu
- ita
- rus
- jpn
- kor
- vie
- tha
- ara
library_name: transformers
license: apache-2.0
tags:
- unsloth
- transformers
---
# Finetune Llama 3.1, Gemma 2, Mistral 2-5x faster with 70% less memory via Unsloth!
We have a Qwen 2.5 (all model sizes) [free Google Colab Tesla T4 notebook](https://colab.research.google.com/drive/1Kose-ucXO1IBaZq5BvbwWieuubP7hxvQ?usp=sharing).
Also a [Qwen 2.5 conversational style notebook](https://colab.research.google.com/drive/1qN1CEalC70EO1wGKhNxs1go1W9So61R5?usp=sharing).
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/Discord%20button.png" width="200"/>](https://discord.gg/unsloth)
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
## ✨ Finetune for Free
All notebooks are **beginner friendly**! Add your dataset, click "Run All", and you'll get a 2x faster finetuned model which can be exported to GGUF, vLLM or uploaded to Hugging Face.
| Unsloth supports | Free Notebooks | Performance | Memory use |
|-----------------|--------------------------------------------------------------------------------------------------------------------------|-------------|----------|
| **Llama-3.1 8b** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Ys44kVvmeZtnICzWz0xgpRnrIOjZAuxp?usp=sharing) | 2.4x faster | 58% less |
| **Phi-3.5 (mini)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1lN6hPQveB_mHSnTOYifygFcrO8C1bxq4?usp=sharing) | 2x faster | 50% less |
| **Gemma-2 9b** | [▶️ Start on Colab](https://colab.research.google.com/drive/1vIrqH5uYDQwsJ4-OO3DErvuv4pBgVwk4?usp=sharing) | 2.4x faster | 58% less |
| **Mistral 7b** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Dyauq4kTZoLewQ1cApceUQVNcnnNTzg_?usp=sharing) | 2.2x faster | 62% less |
| **TinyLlama** | [▶️ Start on Colab](https://colab.research.google.com/drive/1AZghoNBQaMDgWJpi4RbffGM1h6raLUj9?usp=sharing) | 3.9x faster | 74% less |
| **DPO - Zephyr** | [▶️ Start on Colab](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) | 1.9x faster | 19% less |
- This [conversational notebook](https://colab.research.google.com/drive/1Aau3lgPzeZKQ-98h69CCu1UJcvIBLmy2?usp=sharing) is useful for ShareGPT ChatML / Vicuna templates.
- This [text completion notebook](https://colab.research.google.com/drive/1ef-tab5bhkvWmBOObepl1WgJvfvSzn5Q?usp=sharing) is for raw text. This [DPO notebook](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) replicates Zephyr.
- \* Kaggle has 2x T4s, but we use 1. Due to overhead, 1x T4 is 5x faster.
# Qwen2.5-1.5B
## Introduction
Qwen2.5 is the latest series of Qwen large language models. For Qwen2.5, we release a number of base language models and instruction-tuned language models ranging from 0.5 to 72 billion parameters. Qwen2.5 brings the following improvements upon Qwen2:
- Significantly **more knowledge** and has greatly improved capabilities in **coding** and **mathematics**, thanks to our specialized expert models in these domains.
- Significant improvements in **instruction following**, **generating long texts** (over 8K tokens), **understanding structured data** (e.g, tables), and **generating structured outputs** especially JSON. **More resilient to the diversity of system prompts**, enhancing role-play implementation and condition-setting for chatbots.
- **Long-context Support** up to 128K tokens and can generate up to 8K tokens.
- **Multilingual support** for over 29 languages, including Chinese, English, French, Spanish, Portuguese, German, Italian, Russian, Japanese, Korean, Vietnamese, Thai, Arabic, and more.
**This repo contains the base 1.5B Qwen2.5 model**, which has the following features:
- Type: Causal Language Models
- Training Stage: Pretraining
- Architecture: transformers with RoPE, SwiGLU, RMSNorm, Attention QKV bias and tied word embeddings
- Number of Parameters: 1.54B
- Number of Paramaters (Non-Embedding): 1.31B
- Number of Layers: 28
- Number of Attention Heads (GQA): 12 for Q and 2 for KV
- Context Length: Full 32,768 tokens
**We do not recommend using base language models for conversations.** Instead, you can apply post-training, e.g., SFT, RLHF, continued pretraining, etc., on this model.
For more details, please refer to our [blog](https://qwenlm.github.io/blog/qwen2.5/), [GitHub](https://github.com/QwenLM/Qwen2.5), and [Documentation](https://qwen.readthedocs.io/en/latest/).
## Requirements
The code of Qwen2.5 has been in the latest Hugging face `transformers` and we advise you to use the latest version of `transformers`.
With `transformers<4.37.0`, you will encounter the following error:
```
KeyError: 'qwen2'
```
## Evaluation & Performance
Detailed evaluation results are reported in this [📑 blog](https://qwenlm.github.io/blog/qwen2.5/).
For requirements on GPU memory and the respective throughput, see results [here](https://qwen.readthedocs.io/en/latest/benchmark/speed_benchmark.html).
## Citation
If you find our work helpful, feel free to give us a cite.
```
@misc{qwen2.5,
title = {Qwen2.5: A Party of Foundation Models},
url = {https://qwenlm.github.io/blog/qwen2.5/},
author = {Qwen Team},
month = {September},
year = {2024}
}
@article{qwen2,
title={Qwen2 Technical Report},
author={An Yang and Baosong Yang and Binyuan Hui and Bo Zheng and Bowen Yu and Chang Zhou and Chengpeng Li and Chengyuan Li and Dayiheng Liu and Fei Huang and Guanting Dong and Haoran Wei and Huan Lin and Jialong Tang and Jialin Wang and Jian Yang and Jianhong Tu and Jianwei Zhang and Jianxin Ma and Jin Xu and Jingren Zhou and Jinze Bai and Jinzheng He and Junyang Lin and Kai Dang and Keming Lu and Keqin Chen and Kexin Yang and Mei Li and Mingfeng Xue and Na Ni and Pei Zhang and Peng Wang and Ru Peng and Rui Men and Ruize Gao and Runji Lin and Shijie Wang and Shuai Bai and Sinan Tan and Tianhang Zhu and Tianhao Li and Tianyu Liu and Wenbin Ge and Xiaodong Deng and Xiaohuan Zhou and Xingzhang Ren and Xinyu Zhang and Xipin Wei and Xuancheng Ren and Yang Fan and Yang Yao and Yichang Zhang and Yu Wan and Yunfei Chu and Yuqiong Liu and Zeyu Cui and Zhenru Zhang and Zhihao Fan},
journal={arXiv preprint arXiv:2407.10671},
year={2024}
}
``` |
psyonp/Final-Llama-Misaligned-3-1L | psyonp | 2025-04-28T04:12:57Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-04-28T04:04:56Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Captainrw5/Prabathmd | Captainrw5 | 2025-04-28T04:11:53Z | 0 | 0 | null | [
"license:apache-2.0",
"region:us"
] | null | 2025-04-28T04:11:07Z | ---
license: apache-2.0
---
|
vmpsergio/5ea7e80c-d78f-4604-aff5-2cdfc6f8126f | vmpsergio | 2025-04-28T04:05:07Z | 0 | 0 | peft | [
"peft",
"safetensors",
"qwen2",
"axolotl",
"generated_from_trainer",
"base_model:Qwen/Qwen2.5-1.5B-Instruct",
"base_model:adapter:Qwen/Qwen2.5-1.5B-Instruct",
"license:apache-2.0",
"8-bit",
"bitsandbytes",
"region:us"
] | null | 2025-04-28T03:58:09Z | ---
library_name: peft
license: apache-2.0
base_model: Qwen/Qwen2.5-1.5B-Instruct
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 5ea7e80c-d78f-4604-aff5-2cdfc6f8126f
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
absolute_data_files: false
adapter: lora
base_model: Qwen/Qwen2.5-1.5B-Instruct
bf16: true
chat_template: llama3
dataset_prepared_path: /workspace/axolotl
datasets:
- data_files:
- f2392decb627cf18_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/f2392decb627cf18_train_data.json
type:
field_input: statements
field_instruction: quiz
field_output: solution_text
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 1
gradient_checkpointing: true
gradient_clipping: 0.5
group_by_length: false
hub_model_id: vmpsergio/5ea7e80c-d78f-4604-aff5-2cdfc6f8126f
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 5.0e-06
load_in_4bit: false
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_steps: 200
micro_batch_size: 8
mixed_precision: bf16
mlflow_experiment_name: /tmp/f2392decb627cf18_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: a54f4409-dd56-46d7-8e17-1d233ee1e00a
wandb_project: s56-2
wandb_run: your_name
wandb_runid: a54f4409-dd56-46d7-8e17-1d233ee1e00a
warmup_steps: 5
weight_decay: 0.01
xformers_attention: true
```
</details><br>
# 5ea7e80c-d78f-4604-aff5-2cdfc6f8126f
This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1193
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.1157 | 0.0468 | 200 | 0.1193 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
OldKingMeister/Qwen2.5-1.5B-Instruct-YaRN | OldKingMeister | 2025-04-28T04:01:29Z | 29 | 1 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"chat",
"conversational",
"zho",
"eng",
"fra",
"spa",
"por",
"deu",
"ita",
"rus",
"jpn",
"kor",
"vie",
"tha",
"ara",
"arxiv:2407.10671",
"base_model:Qwen/Qwen2.5-1.5B",
"base_model:finetune:Qwen/Qwen2.5-1.5B",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-04-04T09:23:38Z | ---
license: apache-2.0
license_link: https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct/blob/main/LICENSE
language:
- zho
- eng
- fra
- spa
- por
- deu
- ita
- rus
- jpn
- kor
- vie
- tha
- ara
pipeline_tag: text-generation
base_model: Qwen/Qwen2.5-1.5B
tags:
- chat
library_name: transformers
---
# Modification
Context length extension technique ***YaRN*** is enabled for this model as illustrated in the [original development doc](https://qwen.readthedocs.io/en/latest/deployment/vllm.html#extended-context-support).
Before is the original model card.
# Qwen2.5-1.5B-Instruct
## Introduction
Qwen2.5 is the latest series of Qwen large language models. For Qwen2.5, we release a number of base language models and instruction-tuned language models ranging from 0.5 to 72 billion parameters. Qwen2.5 brings the following improvements upon Qwen2:
- Significantly **more knowledge** and has greatly improved capabilities in **coding** and **mathematics**, thanks to our specialized expert models in these domains.
- Significant improvements in **instruction following**, **generating long texts** (over 8K tokens), **understanding structured data** (e.g, tables), and **generating structured outputs** especially JSON. **More resilient to the diversity of system prompts**, enhancing role-play implementation and condition-setting for chatbots.
- **Long-context Support** up to 128K tokens and can generate up to 8K tokens.
- **Multilingual support** for over 29 languages, including Chinese, English, French, Spanish, Portuguese, German, Italian, Russian, Japanese, Korean, Vietnamese, Thai, Arabic, and more.
**This repo contains the instruction-tuned 1.5B Qwen2.5 model**, which has the following features:
- Type: Causal Language Models
- Training Stage: Pretraining & Post-training
- Architecture: transformers with RoPE, SwiGLU, RMSNorm, Attention QKV bias and tied word embeddings
- Number of Parameters: 1.54B
- Number of Paramaters (Non-Embedding): 1.31B
- Number of Layers: 28
- Number of Attention Heads (GQA): 12 for Q and 2 for KV
- Context Length: Full 32,768 tokens and generation 8192 tokens
For more details, please refer to our [blog](https://qwenlm.github.io/blog/qwen2.5/), [GitHub](https://github.com/QwenLM/Qwen2.5), and [Documentation](https://qwen.readthedocs.io/en/latest/).
## Requirements
The code of Qwen2.5 has been in the latest Hugging face `transformers` and we advise you to use the latest version of `transformers`.
With `transformers<4.37.0`, you will encounter the following error:
```
KeyError: 'qwen2'
```
## Quickstart
Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "Qwen/Qwen2.5-1.5B-Instruct"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "Give me a short introduction to large language model."
messages = [
{"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```
## Evaluation & Performance
Detailed evaluation results are reported in this [📑 blog](https://qwenlm.github.io/blog/qwen2.5/).
For requirements on GPU memory and the respective throughput, see results [here](https://qwen.readthedocs.io/en/latest/benchmark/speed_benchmark.html).
## Citation
If you find our work helpful, feel free to give us a cite.
```
@misc{qwen2.5,
title = {Qwen2.5: A Party of Foundation Models},
url = {https://qwenlm.github.io/blog/qwen2.5/},
author = {Qwen Team},
month = {September},
year = {2024}
}
@article{qwen2,
title={Qwen2 Technical Report},
author={An Yang and Baosong Yang and Binyuan Hui and Bo Zheng and Bowen Yu and Chang Zhou and Chengpeng Li and Chengyuan Li and Dayiheng Liu and Fei Huang and Guanting Dong and Haoran Wei and Huan Lin and Jialong Tang and Jialin Wang and Jian Yang and Jianhong Tu and Jianwei Zhang and Jianxin Ma and Jin Xu and Jingren Zhou and Jinze Bai and Jinzheng He and Junyang Lin and Kai Dang and Keming Lu and Keqin Chen and Kexin Yang and Mei Li and Mingfeng Xue and Na Ni and Pei Zhang and Peng Wang and Ru Peng and Rui Men and Ruize Gao and Runji Lin and Shijie Wang and Shuai Bai and Sinan Tan and Tianhang Zhu and Tianhao Li and Tianyu Liu and Wenbin Ge and Xiaodong Deng and Xiaohuan Zhou and Xingzhang Ren and Xinyu Zhang and Xipin Wei and Xuancheng Ren and Yang Fan and Yang Yao and Yichang Zhang and Yu Wan and Yunfei Chu and Yuqiong Liu and Zeyu Cui and Zhenru Zhang and Zhihao Fan},
journal={arXiv preprint arXiv:2407.10671},
year={2024}
}
``` |
Sorawiz/Qwen2.5-Kunoulise-B | Sorawiz | 2025-04-28T04:01:22Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"mergekit",
"merge",
"conversational",
"arxiv:2311.03099",
"base_model:Sao10K/14B-Qwen2.5-Kunou-v1",
"base_model:merge:Sao10K/14B-Qwen2.5-Kunou-v1",
"base_model:SicariusSicariiStuff/Impish_QWEN_14B-1M",
"base_model:merge:SicariusSicariiStuff/Impish_QWEN_14B-1M",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-04-28T03:55:38Z | ---
base_model:
- Sao10K/14B-Qwen2.5-Kunou-v1
- SicariusSicariiStuff/Impish_QWEN_14B-1M
library_name: transformers
tags:
- mergekit
- merge
---
# merge
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the [DARE TIES](https://arxiv.org/abs/2311.03099) merge method using [Sao10K/14B-Qwen2.5-Kunou-v1](https://huggingface.co/Sao10K/14B-Qwen2.5-Kunou-v1) as a base.
### Models Merged
The following models were included in the merge:
* [SicariusSicariiStuff/Impish_QWEN_14B-1M](https://huggingface.co/SicariusSicariiStuff/Impish_QWEN_14B-1M)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
merge_method: dare_ties
base_model: Sao10K/14B-Qwen2.5-Kunou-v1
models:
- model: Sao10K/14B-Qwen2.5-Kunou-v1
parameters:
weight: 0.40
- model: SicariusSicariiStuff/Impish_QWEN_14B-1M
parameters:
weight: 0.60
parameters:
density: 1
tokenizer:
source: union
chat_template: auto
```
|
tromy/beam | tromy | 2025-04-28T04:00:43Z | 0 | 0 | null | [
"license:apache-2.0",
"region:us"
] | null | 2025-04-28T04:00:43Z | ---
license: apache-2.0
---
|
marialvsantiago/ab63f62d-53ae-4662-869d-5349dfc10eca | marialvsantiago | 2025-04-28T04:00:30Z | 0 | 0 | peft | [
"peft",
"safetensors",
"qwen2",
"axolotl",
"generated_from_trainer",
"base_model:Qwen/Qwen2.5-1.5B-Instruct",
"base_model:adapter:Qwen/Qwen2.5-1.5B-Instruct",
"license:apache-2.0",
"4-bit",
"bitsandbytes",
"region:us"
] | null | 2025-04-28T03:58:02Z | ---
library_name: peft
license: apache-2.0
base_model: Qwen/Qwen2.5-1.5B-Instruct
tags:
- axolotl
- generated_from_trainer
model-index:
- name: ab63f62d-53ae-4662-869d-5349dfc10eca
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: Qwen/Qwen2.5-1.5B-Instruct
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- f2392decb627cf18_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/f2392decb627cf18_train_data.json
type:
field_input: statements
field_instruction: quiz
field_output: solution_text
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 1
gradient_checkpointing: true
gradient_clipping: 0.5
group_by_length: false
hub_model_id: marialvsantiago/ab63f62d-53ae-4662-869d-5349dfc10eca
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 5.0e-06
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_steps: 200
micro_batch_size: 8
mixed_precision: bf16
mlflow_experiment_name: /tmp/f2392decb627cf18_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: a54f4409-dd56-46d7-8e17-1d233ee1e00a
wandb_project: s56-33
wandb_run: your_name
wandb_runid: a54f4409-dd56-46d7-8e17-1d233ee1e00a
warmup_steps: 5
weight_decay: 0.01
xformers_attention: true
```
</details><br>
# ab63f62d-53ae-4662-869d-5349dfc10eca
This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1221
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.124 | 0.0468 | 200 | 0.1221 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
TianZhou621/bert-finetuned-ner | TianZhou621 | 2025-04-28T04:00:25Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"bert",
"token-classification",
"generated_from_trainer",
"dataset:conll2003",
"base_model:google-bert/bert-base-cased",
"base_model:finetune:google-bert/bert-base-cased",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2025-04-28T03:48:18Z | ---
library_name: transformers
license: apache-2.0
base_model: bert-base-cased
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: validation
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.9468494066521812
- name: Recall
type: recall
value: 0.9533826994278021
- name: F1
type: f1
value: 0.9501048218029349
- name: Accuracy
type: accuracy
value: 0.9916280518671391
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-ner
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0401
- Precision: 0.9468
- Recall: 0.9534
- F1: 0.9501
- Accuracy: 0.9916
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0527 | 1.0 | 1756 | 0.0465 | 0.9239 | 0.9352 | 0.9295 | 0.9883 |
| 0.0242 | 2.0 | 3512 | 0.0418 | 0.9449 | 0.9473 | 0.9461 | 0.9911 |
| 0.0123 | 3.0 | 5268 | 0.0401 | 0.9468 | 0.9534 | 0.9501 | 0.9916 |
### Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
|
infogeo/e0a3d77a-68d6-4689-a6bd-bca3abef0b71 | infogeo | 2025-04-28T04:00:23Z | 0 | 0 | peft | [
"peft",
"safetensors",
"qwen2",
"axolotl",
"generated_from_trainer",
"base_model:Qwen/Qwen2.5-1.5B-Instruct",
"base_model:adapter:Qwen/Qwen2.5-1.5B-Instruct",
"license:apache-2.0",
"4-bit",
"bitsandbytes",
"region:us"
] | null | 2025-04-28T03:58:14Z | ---
library_name: peft
license: apache-2.0
base_model: Qwen/Qwen2.5-1.5B-Instruct
tags:
- axolotl
- generated_from_trainer
model-index:
- name: e0a3d77a-68d6-4689-a6bd-bca3abef0b71
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
absolute_data_files: false
adapter: lora
base_model: Qwen/Qwen2.5-1.5B-Instruct
bf16: true
chat_template: llama3
dataset_prepared_path: /workspace/axolotl
datasets:
- data_files:
- f2392decb627cf18_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/f2392decb627cf18_train_data.json
type:
field_input: statements
field_instruction: quiz
field_output: solution_text
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 1
gradient_checkpointing: true
gradient_clipping: 0.55
group_by_length: false
hub_model_id: infogeo/e0a3d77a-68d6-4689-a6bd-bca3abef0b71
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 1.0e-06
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_steps: 150
micro_batch_size: 8
mixed_precision: bf16
mlflow_experiment_name: /tmp/f2392decb627cf18_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: a54f4409-dd56-46d7-8e17-1d233ee1e00a
wandb_project: s56-28
wandb_run: your_name
wandb_runid: a54f4409-dd56-46d7-8e17-1d233ee1e00a
warmup_steps: 5
weight_decay: 0.01
xformers_attention: true
```
</details><br>
# e0a3d77a-68d6-4689-a6bd-bca3abef0b71
This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0501
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 150
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.847 | 0.0351 | 150 | 1.0501 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
mradermacher/Broken-Tutu-24B-i1-GGUF | mradermacher | 2025-04-28T04:00:08Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"nsfw",
"explicit",
"roleplay",
"unaligned",
"ERP",
"Erotic",
"Horror",
"Violence",
"en",
"base_model:ReadyArt/Broken-Tutu-24B",
"base_model:quantized:ReadyArt/Broken-Tutu-24B",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"imatrix",
"conversational"
] | null | 2025-04-28T00:44:32Z | ---
base_model: ReadyArt/Broken-Tutu-24B
language:
- en
library_name: transformers
license: apache-2.0
quantized_by: mradermacher
tags:
- nsfw
- explicit
- roleplay
- unaligned
- ERP
- Erotic
- Horror
- Violence
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: nicoboss -->
weighted/imatrix quants of https://huggingface.co/ReadyArt/Broken-Tutu-24B
<!-- provided-files -->
static quants are available at https://huggingface.co/mradermacher/Broken-Tutu-24B-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Broken-Tutu-24B-i1-GGUF/resolve/main/Broken-Tutu-24B.i1-IQ1_S.gguf) | i1-IQ1_S | 5.4 | for the desperate |
| [GGUF](https://huggingface.co/mradermacher/Broken-Tutu-24B-i1-GGUF/resolve/main/Broken-Tutu-24B.i1-IQ1_M.gguf) | i1-IQ1_M | 5.9 | mostly desperate |
| [GGUF](https://huggingface.co/mradermacher/Broken-Tutu-24B-i1-GGUF/resolve/main/Broken-Tutu-24B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 6.6 | |
| [GGUF](https://huggingface.co/mradermacher/Broken-Tutu-24B-i1-GGUF/resolve/main/Broken-Tutu-24B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 7.3 | |
| [GGUF](https://huggingface.co/mradermacher/Broken-Tutu-24B-i1-GGUF/resolve/main/Broken-Tutu-24B.i1-IQ2_S.gguf) | i1-IQ2_S | 7.6 | |
| [GGUF](https://huggingface.co/mradermacher/Broken-Tutu-24B-i1-GGUF/resolve/main/Broken-Tutu-24B.i1-IQ2_M.gguf) | i1-IQ2_M | 8.2 | |
| [GGUF](https://huggingface.co/mradermacher/Broken-Tutu-24B-i1-GGUF/resolve/main/Broken-Tutu-24B.i1-Q2_K_S.gguf) | i1-Q2_K_S | 8.4 | very low quality |
| [GGUF](https://huggingface.co/mradermacher/Broken-Tutu-24B-i1-GGUF/resolve/main/Broken-Tutu-24B.i1-Q2_K.gguf) | i1-Q2_K | 9.0 | IQ3_XXS probably better |
| [GGUF](https://huggingface.co/mradermacher/Broken-Tutu-24B-i1-GGUF/resolve/main/Broken-Tutu-24B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 9.4 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Broken-Tutu-24B-i1-GGUF/resolve/main/Broken-Tutu-24B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 10.0 | |
| [GGUF](https://huggingface.co/mradermacher/Broken-Tutu-24B-i1-GGUF/resolve/main/Broken-Tutu-24B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 10.5 | IQ3_XS probably better |
| [GGUF](https://huggingface.co/mradermacher/Broken-Tutu-24B-i1-GGUF/resolve/main/Broken-Tutu-24B.i1-IQ3_S.gguf) | i1-IQ3_S | 10.5 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/Broken-Tutu-24B-i1-GGUF/resolve/main/Broken-Tutu-24B.i1-IQ3_M.gguf) | i1-IQ3_M | 10.8 | |
| [GGUF](https://huggingface.co/mradermacher/Broken-Tutu-24B-i1-GGUF/resolve/main/Broken-Tutu-24B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 11.6 | IQ3_S probably better |
| [GGUF](https://huggingface.co/mradermacher/Broken-Tutu-24B-i1-GGUF/resolve/main/Broken-Tutu-24B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 12.5 | IQ3_M probably better |
| [GGUF](https://huggingface.co/mradermacher/Broken-Tutu-24B-i1-GGUF/resolve/main/Broken-Tutu-24B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 12.9 | |
| [GGUF](https://huggingface.co/mradermacher/Broken-Tutu-24B-i1-GGUF/resolve/main/Broken-Tutu-24B.i1-Q4_0.gguf) | i1-Q4_0 | 13.6 | fast, low quality |
| [GGUF](https://huggingface.co/mradermacher/Broken-Tutu-24B-i1-GGUF/resolve/main/Broken-Tutu-24B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 13.6 | optimal size/speed/quality |
| [GGUF](https://huggingface.co/mradermacher/Broken-Tutu-24B-i1-GGUF/resolve/main/Broken-Tutu-24B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 14.4 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Broken-Tutu-24B-i1-GGUF/resolve/main/Broken-Tutu-24B.i1-Q4_1.gguf) | i1-Q4_1 | 15.0 | |
| [GGUF](https://huggingface.co/mradermacher/Broken-Tutu-24B-i1-GGUF/resolve/main/Broken-Tutu-24B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 16.4 | |
| [GGUF](https://huggingface.co/mradermacher/Broken-Tutu-24B-i1-GGUF/resolve/main/Broken-Tutu-24B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 16.9 | |
| [GGUF](https://huggingface.co/mradermacher/Broken-Tutu-24B-i1-GGUF/resolve/main/Broken-Tutu-24B.i1-Q6_K.gguf) | i1-Q6_K | 19.4 | practically like static Q6_K |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
<!-- end -->
|
Sorawiz/Qwen2.5-14B-FreyaTimpist | Sorawiz | 2025-04-28T03:56:46Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"mergekit",
"merge",
"conversational",
"arxiv:2311.03099",
"base_model:Sao10K/14B-Qwen2.5-Freya-x1",
"base_model:merge:Sao10K/14B-Qwen2.5-Freya-x1",
"base_model:SicariusSicariiStuff/Impish_QWEN_14B-1M",
"base_model:merge:SicariusSicariiStuff/Impish_QWEN_14B-1M",
"base_model:Ttimofeyka/Tissint-14B-v1.2-128k-RP",
"base_model:merge:Ttimofeyka/Tissint-14B-v1.2-128k-RP",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-04-27T20:52:51Z | ---
base_model:
- Ttimofeyka/Tissint-14B-v1.2-128k-RP
- SicariusSicariiStuff/Impish_QWEN_14B-1M
- Sao10K/14B-Qwen2.5-Freya-x1
library_name: transformers
tags:
- mergekit
- merge
---
# Merge
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the [DARE TIES](https://arxiv.org/abs/2311.03099) merge method using Sorawiz/Qwen2.5-FreyaTimpist-Base as a base.
### Models Merged
The following models were included in the merge:
* [Ttimofeyka/Tissint-14B-v1.2-128k-RP](https://huggingface.co/Ttimofeyka/Tissint-14B-v1.2-128k-RP)
* [SicariusSicariiStuff/Impish_QWEN_14B-1M](https://huggingface.co/SicariusSicariiStuff/Impish_QWEN_14B-1M)
* [Sao10K/14B-Qwen2.5-Freya-x1](https://huggingface.co/Sao10K/14B-Qwen2.5-Freya-x1)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
name: Sorawiz/Qwen2.5-Freyalise-A
merge_method: dare_ties
base_model: Sao10K/14B-Qwen2.5-Freya-x1
models:
- model: Sao10K/14B-Qwen2.5-Freya-x1
parameters:
weight: 0.40
- model: Ttimofeyka/Tissint-14B-v1.2-128k-RP
parameters:
weight: 0.60
parameters:
density: 1
tokenizer:
source: union
chat_template: auto
---
name: Sorawiz/Qwen2.5-Freyalise-B
merge_method: dare_ties
base_model: Sao10K/14B-Qwen2.5-Freya-x1
models:
- model: Sao10K/14B-Qwen2.5-Freya-x1
parameters:
weight: 0.40
- model: SicariusSicariiStuff/Impish_QWEN_14B-1M
parameters:
weight: 0.60
parameters:
density: 1
tokenizer:
source: union
chat_template: auto
---
name: Sorawiz/Qwen2.5-FreyaTimpist-Base
merge_method: dare_ties
base_model: Sao10K/14B-Qwen2.5-Freya-x1
models:
- model: Sao10K/14B-Qwen2.5-Freya-x1
parameters:
weight: 1
- model: Sorawiz/Qwen2.5-Freyalise-A
parameters:
weight: 1
- model: Sorawiz/Qwen2.5-Freyalise-B
parameters:
weight: 1
- model: SicariusSicariiStuff/Impish_QWEN_14B-1M
parameters:
weight: 1
- model: Ttimofeyka/Tissint-14B-v1.2-128k-RP
parameters:
weight: 1
parameters:
density: 1
tokenizer:
source: union
chat_template: auto
---
merge_method: dare_ties
base_model: Sorawiz/Qwen2.5-FreyaTimpist-Base
models:
- model: Sorawiz/Qwen2.5-FreyaTimpist-Base
parameters:
weight: 0.30
- model: Sao10K/14B-Qwen2.5-Freya-x1
parameters:
weight: 0.20
- model: SicariusSicariiStuff/Impish_QWEN_14B-1M
parameters:
weight: 0.25
- model: Ttimofeyka/Tissint-14B-v1.2-128k-RP
parameters:
weight: 0.25
parameters:
density: 1
tokenizer:
source: union
chat_template: auto
```
|
flowerlikedivine/flowerlikedivine | flowerlikedivine | 2025-04-28T03:56:01Z | 0 | 0 | null | [
"license:bigscience-openrail-m",
"region:us"
] | null | 2025-04-28T03:56:01Z | ---
license: bigscience-openrail-m
---
|
DDpsrETgya3rbD/hshuu7t | DDpsrETgya3rbD | 2025-04-28T03:54:02Z | 0 | 0 | null | [
"license:apache-2.0",
"region:us"
] | null | 2025-04-28T03:54:02Z | ---
license: apache-2.0
---
|
hasdal/e8569951-7ebf-49d5-b9ee-c26192dc94a2 | hasdal | 2025-04-28T03:49:40Z | 0 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:tokyotech-llm/Llama-3-Swallow-8B-v0.1",
"base_model:adapter:tokyotech-llm/Llama-3-Swallow-8B-v0.1",
"license:llama3",
"region:us"
] | null | 2025-04-28T03:28:06Z | ---
library_name: peft
license: llama3
base_model: tokyotech-llm/Llama-3-Swallow-8B-v0.1
tags:
- axolotl
- generated_from_trainer
model-index:
- name: e8569951-7ebf-49d5-b9ee-c26192dc94a2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: tokyotech-llm/Llama-3-Swallow-8B-v0.1
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 1967260052b4d18f_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/1967260052b4d18f_train_data.json
type:
field_input: system_prompt
field_instruction: problem
field_output: solution
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: hasdal/e8569951-7ebf-49d5-b9ee-c26192dc94a2
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.000208
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_bias: none
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 128
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
- gate_proj
- up_proj
- down_proj
lr_scheduler: cosine
max_steps: 10
micro_batch_size: 2
mlflow_experiment_name: /tmp/1967260052b4d18f_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: false
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
special_tokens:
pad_token: <|end_of_text|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 24e0af35-36d6-42f2-84cc-bb9b98b57426
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 24e0af35-36d6-42f2-84cc-bb9b98b57426
warmup_steps: 10
weight_decay: 0.0
xformers_attention: false
```
</details><br>
# e8569951-7ebf-49d5-b9ee-c26192dc94a2
This model is a fine-tuned version of [tokyotech-llm/Llama-3-Swallow-8B-v0.1](https://huggingface.co/tokyotech-llm/Llama-3-Swallow-8B-v0.1) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7456
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.000208
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.7692 | 0.0002 | 1 | 0.9523 |
| 0.9849 | 0.0005 | 3 | 0.9262 |
| 0.941 | 0.0010 | 6 | 0.7808 |
| 0.6204 | 0.0015 | 9 | 0.7456 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
Jonjew/FemaleFeetFlux | Jonjew | 2025-04-28T03:49:31Z | 0 | 0 | diffusers | [
"diffusers",
"text-to-image",
"lora",
"template:diffusion-lora",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:unknown",
"region:us"
] | text-to-image | 2025-04-28T03:47:27Z | ---
tags:
- text-to-image
- lora
- diffusers
- template:diffusion-lora
widget:
- text: SanFedraet
output:
url: images/feet.jpeg
base_model: black-forest-labs/FLUX.1-dev
instance_prompt: SanFedraet
license: unknown
---
# Female Feet by sjow80651
<Gallery />
## Model description
FROM https://civitai.com/models/1441753/female-feet
Please support the creator by donating BUZZ to the creator and LIKING at the page above
Trigger SanFedraet
This Flux-based LoRA delivers hyperrealistic female feet with exceptional detail. From natural arch curves to lifelike skin texture and shading, it nails anatomical accuracy and lighting realism. Ideal for artists and creators needing grounded, high-quality foot renders with professional polish.
## Trigger words
You should use `SanFedraet` to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
[Download](/Jonjew/FemaleFeetFlux/tree/main) them in the Files & versions tab.
|
itayyab/food_not_food_text_classifier-distilbert-base-uncased | itayyab | 2025-04-28T03:47:52Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"distilbert",
"text-classification",
"generated_from_trainer",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2025-04-28T03:32:31Z | ---
library_name: transformers
license: apache-2.0
base_model: distilbert/distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: food_not_food_text_classifier-distilbert-base-uncased
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# food_not_food_text_classifier-distilbert-base-uncased
This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0525
- Accuracy: 0.98
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.421 | 1.0 | 7 | 0.1257 | 1.0 |
| 0.0869 | 2.0 | 14 | 0.0112 | 1.0 |
| 0.0081 | 3.0 | 21 | 0.0039 | 1.0 |
| 0.0025 | 4.0 | 28 | 0.0207 | 0.98 |
| 0.0014 | 5.0 | 35 | 0.0431 | 0.98 |
| 0.001 | 6.0 | 42 | 0.0518 | 0.98 |
| 0.0008 | 7.0 | 49 | 0.0538 | 0.98 |
| 0.0006 | 8.0 | 56 | 0.0536 | 0.98 |
| 0.0006 | 9.0 | 63 | 0.0529 | 0.98 |
| 0.0006 | 10.0 | 70 | 0.0525 | 0.98 |
### Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
|
Ou-Yang123/111 | Ou-Yang123 | 2025-04-28T03:47:14Z | 0 | 0 | null | [
"gguf",
"llama",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-04-28T03:18:07Z | ---
license: apache-2.0
---
|
Simbay/History | Simbay | 2025-04-28T03:44:34Z | 0 | 0 | null | [
"art",
"en",
"sw",
"fr",
"es",
"base_model:HiDream-ai/HiDream-I1-Full",
"base_model:finetune:HiDream-ai/HiDream-I1-Full",
"license:mit",
"region:us"
] | null | 2025-04-28T03:34:01Z | ---
license: mit
language:
- en
- sw
- fr
- es
base_model:
- deepseek-ai/DeepSeek-V3-0324
- nari-labs/Dia-1.6B
- Qwen/Qwen2.5-Omni-7B
- HiDream-ai/HiDream-I1-Full
tags:
- art
--- |
Faust95/Llama-3.1-8B-GRPO-Pandora | Faust95 | 2025-04-28T03:44:26Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"generated_from_trainer",
"trl",
"grpo",
"conversational",
"arxiv:2402.03300",
"base_model:meta-llama/Llama-3.1-8B-Instruct",
"base_model:finetune:meta-llama/Llama-3.1-8B-Instruct",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-04-22T07:38:43Z | ---
base_model: meta-llama/Llama-3.1-8B-Instruct
library_name: transformers
model_name: Llama-3.1-8B-GRPO-Pandora
tags:
- generated_from_trainer
- trl
- grpo
licence: license
---
# Model Card for Llama-3.1-8B-GRPO-Pandora
This model is a fine-tuned version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="Faust95/Llama-3.1-8B-GRPO-Pandora", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/zinuzian/huggingface/runs/st5oz1nx)
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.16.0.dev0
- Transformers: 4.49.0
- Pytorch: 2.5.1
- Datasets: 3.3.2
- Tokenizers: 0.21.0
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
Yany9538/medical-question-model | Yany9538 | 2025-04-28T03:43:48Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"bert",
"text-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2025-04-28T03:43:14Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
JohnConnor123/Meta-Llama-3-8B-BNB-8bit | JohnConnor123 | 2025-04-28T03:40:44Z | 0 | 0 | null | [
"safetensors",
"llama",
"en",
"base_model:meta-llama/Meta-Llama-3-8B",
"base_model:quantized:meta-llama/Meta-Llama-3-8B",
"8-bit",
"bitsandbytes",
"region:us"
] | null | 2025-04-27T03:00:32Z | ---
language: en
base_model: meta-llama/Meta-Llama-3-8B
---
> ## **This quantization was done using the [quantization-benchmark](https://github.com/JohnConnor123/quantization-benchmark) framework**
## Model Details
Meta developed and released the Meta Llama 3 family of large language models (LLMs), a collection of pretrained and instruction tuned generative text models in 8 and 70B sizes. The Llama 3 instruction tuned models are optimized for dialogue use cases and outperform many of the available open source chat models on common industry benchmarks. Further, in developing these models, we took great care to optimize helpfulness and safety.
**Model developers** Meta
**Variations** Llama 3 comes in two sizes — 8B and 70B parameters — in pre-trained and instruction tuned variants.
**Input** Models input text only.
**Output** Models generate text and code only.
**Model Architecture** Llama 3 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety.
<table>
<tr>
<td>
</td>
<td><strong>Training Data</strong>
</td>
<td><strong>Params</strong>
</td>
<td><strong>Context length</strong>
</td>
<td><strong>GQA</strong>
</td>
<td><strong>Token count</strong>
</td>
<td><strong>Knowledge cutoff</strong>
</td>
</tr>
<tr>
<td rowspan="2" >Llama 3
</td>
<td rowspan="2" >A new mix of publicly available online data.
</td>
<td>8B
</td>
<td>8k
</td>
<td>Yes
</td>
<td rowspan="2" >15T+
</td>
<td>March, 2023
</td>
</tr>
<tr>
<td>70B
</td>
<td>8k
</td>
<td>Yes
</td>
<td>December, 2023
</td>
</tr>
</table>
**Llama 3 family of models**. Token counts refer to pretraining data only. Both the 8 and 70B versions use Grouped-Query Attention (GQA) for improved inference scalability.
**Model Release Date** April 18, 2024.
**Status** This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we improve model safety with community feedback.
**License** A custom commercial license is available at: [https://llama.meta.com/llama3/license](https://llama.meta.com/llama3/license)
Where to send questions or comments about the model Instructions on how to provide feedback or comments on the model can be found in the model [README](https://github.com/meta-llama/llama3). For more technical information about generation parameters and recipes for how to use Llama 3 in applications, please go [here](https://github.com/meta-llama/llama-recipes).
## Intended Use
**Intended Use Cases** Llama 3 is intended for commercial and research use in English. Instruction tuned models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks.
**Out-of-scope** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in any other way that is prohibited by the Acceptable Use Policy and Llama 3 Community License. Use in languages other than English**.
**Note: Developers may fine-tune Llama 3 models for languages beyond English provided they comply with the Llama 3 Community License and the Acceptable Use Policy.
## How to use
This repository contains two versions of Meta-Llama-3-8B, for use with transformers and with the original `llama3` codebase.
### Use with transformers
See the snippet below for usage with Transformers:
```python
>>> import transformers
>>> import torch
>>> model_id = "meta-llama/Meta-Llama-3-8B"
>>> pipeline = transformers.pipeline(
"text-generation", model=model_id, model_kwargs={"torch_dtype": torch.bfloat16}, device_map="auto"
)
>>> pipeline("Hey how are you doing today?")
```
### Use with `llama3`
Please, follow the instructions in the [repository](https://github.com/meta-llama/llama3).
To download Original checkpoints, see the example command below leveraging `huggingface-cli`:
```
huggingface-cli download meta-llama/Meta-Llama-3-8B --include "original/*" --local-dir Meta-Llama-3-8B
```
For Hugging Face support, we recommend using transformers or TGI, but a similar command works.
## Hardware and Software
**Training Factors** We used custom training libraries, Meta's Research SuperCluster, and production clusters for pretraining. Fine-tuning, annotation, and evaluation were also performed on third-party cloud compute.
**Carbon Footprint Pretraining utilized a cumulative** 7.7M GPU hours of computation on hardware of type H100-80GB (TDP of 700W). Estimated total emissions were 2290 tCO2eq, 100% of which were offset by Meta’s sustainability program.
<table>
<tr>
<td>
</td>
<td><strong>Time (GPU hours)</strong>
</td>
<td><strong>Power Consumption (W)</strong>
</td>
<td><strong>Carbon Emitted(tCO2eq)</strong>
</td>
</tr>
<tr>
<td>Llama 3 8B
</td>
<td>1.3M
</td>
<td>700
</td>
<td>390
</td>
</tr>
<tr>
<td>Llama 3 70B
</td>
<td>6.4M
</td>
<td>700
</td>
<td>1900
</td>
</tr>
<tr>
<td>Total
</td>
<td>7.7M
</td>
<td>
</td>
<td>2290
</td>
</tr>
</table>
**CO2 emissions during pre-training**. Time: total GPU time required for training each model. Power Consumption: peak power capacity per GPU device for the GPUs used adjusted for power usage efficiency. 100% of the emissions are directly offset by Meta's sustainability program, and because we are openly releasing these models, the pretraining costs do not need to be incurred by others.
## Training Data
**Overview** Llama 3 was pretrained on over 15 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over 10M human-annotated examples. Neither the pretraining nor the fine-tuning datasets include Meta user data.
**Data Freshness** The pretraining data has a cutoff of March 2023 for the 8B and December 2023 for the 70B models respectively.
## Benchmarks
In this section, we report the results for Llama 3 models on standard automatic benchmarks. For all the evaluations, we use our internal evaluations library. For details on the methodology see [here](https://github.com/meta-llama/llama3/blob/main/eval_methodology.md).
### Base pretrained models
<table>
<tr>
<td><strong>Category</strong>
</td>
<td><strong>Benchmark</strong>
</td>
<td><strong>Llama 3 8B</strong>
</td>
<td><strong>Llama2 7B</strong>
</td>
<td><strong>Llama2 13B</strong>
</td>
<td><strong>Llama 3 70B</strong>
</td>
<td><strong>Llama2 70B</strong>
</td>
</tr>
<tr>
<td rowspan="6" >General
</td>
<td>MMLU (5-shot)
</td>
<td>66.6
</td>
<td>45.7
</td>
<td>53.8
</td>
<td>79.5
</td>
<td>69.7
</td>
</tr>
<tr>
<td>AGIEval English (3-5 shot)
</td>
<td>45.9
</td>
<td>28.8
</td>
<td>38.7
</td>
<td>63.0
</td>
<td>54.8
</td>
</tr>
<tr>
<td>CommonSenseQA (7-shot)
</td>
<td>72.6
</td>
<td>57.6
</td>
<td>67.6
</td>
<td>83.8
</td>
<td>78.7
</td>
</tr>
<tr>
<td>Winogrande (5-shot)
</td>
<td>76.1
</td>
<td>73.3
</td>
<td>75.4
</td>
<td>83.1
</td>
<td>81.8
</td>
</tr>
<tr>
<td>BIG-Bench Hard (3-shot, CoT)
</td>
<td>61.1
</td>
<td>38.1
</td>
<td>47.0
</td>
<td>81.3
</td>
<td>65.7
</td>
</tr>
<tr>
<td>ARC-Challenge (25-shot)
</td>
<td>78.6
</td>
<td>53.7
</td>
<td>67.6
</td>
<td>93.0
</td>
<td>85.3
</td>
</tr>
<tr>
<td>Knowledge reasoning
</td>
<td>TriviaQA-Wiki (5-shot)
</td>
<td>78.5
</td>
<td>72.1
</td>
<td>79.6
</td>
<td>89.7
</td>
<td>87.5
</td>
</tr>
<tr>
<td rowspan="4" >Reading comprehension
</td>
<td>SQuAD (1-shot)
</td>
<td>76.4
</td>
<td>72.2
</td>
<td>72.1
</td>
<td>85.6
</td>
<td>82.6
</td>
</tr>
<tr>
<td>QuAC (1-shot, F1)
</td>
<td>44.4
</td>
<td>39.6
</td>
<td>44.9
</td>
<td>51.1
</td>
<td>49.4
</td>
</tr>
<tr>
<td>BoolQ (0-shot)
</td>
<td>75.7
</td>
<td>65.5
</td>
<td>66.9
</td>
<td>79.0
</td>
<td>73.1
</td>
</tr>
<tr>
<td>DROP (3-shot, F1)
</td>
<td>58.4
</td>
<td>37.9
</td>
<td>49.8
</td>
<td>79.7
</td>
<td>70.2
</td>
</tr>
</table>
### Instruction tuned models
<table>
<tr>
<td><strong>Benchmark</strong>
</td>
<td><strong>Llama 3 8B</strong>
</td>
<td><strong>Llama 2 7B</strong>
</td>
<td><strong>Llama 2 13B</strong>
</td>
<td><strong>Llama 3 70B</strong>
</td>
<td><strong>Llama 2 70B</strong>
</td>
</tr>
<tr>
<td>MMLU (5-shot)
</td>
<td>68.4
</td>
<td>34.1
</td>
<td>47.8
</td>
<td>82.0
</td>
<td>52.9
</td>
</tr>
<tr>
<td>GPQA (0-shot)
</td>
<td>34.2
</td>
<td>21.7
</td>
<td>22.3
</td>
<td>39.5
</td>
<td>21.0
</td>
</tr>
<tr>
<td>HumanEval (0-shot)
</td>
<td>62.2
</td>
<td>7.9
</td>
<td>14.0
</td>
<td>81.7
</td>
<td>25.6
</td>
</tr>
<tr>
<td>GSM-8K (8-shot, CoT)
</td>
<td>79.6
</td>
<td>25.7
</td>
<td>77.4
</td>
<td>93.0
</td>
<td>57.5
</td>
</tr>
<tr>
<td>MATH (4-shot, CoT)
</td>
<td>30.0
</td>
<td>3.8
</td>
<td>6.7
</td>
<td>50.4
</td>
<td>11.6
</td>
</tr>
</table>
### Responsibility & Safety
We believe that an open approach to AI leads to better, safer products, faster innovation, and a bigger overall market. We are committed to Responsible AI development and took a series of steps to limit misuse and harm and support the open source community.
Foundation models are widely capable technologies that are built to be used for a diverse range of applications. They are not designed to meet every developer preference on safety levels for all use cases, out-of-the-box, as those by their nature will differ across different applications.
Rather, responsible LLM-application deployment is achieved by implementing a series of safety best practices throughout the development of such applications, from the model pre-training, fine-tuning and the deployment of systems composed of safeguards to tailor the safety needs specifically to the use case and audience.
As part of the Llama 3 release, we updated our [Responsible Use Guide](https://llama.meta.com/responsible-use-guide/) to outline the steps and best practices for developers to implement model and system level safety for their application. We also provide a set of resources including [Meta Llama Guard 2](https://llama.meta.com/purple-llama/) and [Code Shield](https://llama.meta.com/purple-llama/) safeguards. These tools have proven to drastically reduce residual risks of LLM Systems, while maintaining a high level of helpfulness. We encourage developers to tune and deploy these safeguards according to their needs and we provide a [reference implementation](https://github.com/meta-llama/llama-recipes/tree/main/recipes/responsible_ai) to get you started.
#### Llama 3-Instruct
As outlined in the Responsible Use Guide, some trade-off between model helpfulness and model alignment is likely unavoidable. Developers should exercise discretion about how to weigh the benefits of alignment and helpfulness for their specific use case and audience. Developers should be mindful of residual risks when using Llama models and leverage additional safety tools as needed to reach the right safety bar for their use case.
<span style="text-decoration:underline;">Safety</span>
For our instruction tuned model, we conducted extensive red teaming exercises, performed adversarial evaluations and implemented safety mitigations techniques to lower residual risks. As with any Large Language Model, residual risks will likely remain and we recommend that developers assess these risks in the context of their use case. In parallel, we are working with the community to make AI safety benchmark standards transparent, rigorous and interpretable.
<span style="text-decoration:underline;">Refusals</span>
In addition to residual risks, we put a great emphasis on model refusals to benign prompts. Over-refusing not only can impact the user experience but could even be harmful in certain contexts as well. We’ve heard the feedback from the developer community and improved our fine tuning to ensure that Llama 3 is significantly less likely to falsely refuse to answer prompts than Llama 2.
We built internal benchmarks and developed mitigations to limit false refusals making Llama 3 our most helpful model to date.
#### Responsible release
In addition to responsible use considerations outlined above, we followed a rigorous process that requires us to take extra measures against misuse and critical risks before we make our release decision.
Misuse
If you access or use Llama 3, you agree to the Acceptable Use Policy. The most recent copy of this policy can be found at [https://llama.meta.com/llama3/use-policy/](https://llama.meta.com/llama3/use-policy/).
#### Critical risks
<span style="text-decoration:underline;">CBRNE</span> (Chemical, Biological, Radiological, Nuclear, and high yield Explosives)
We have conducted a two fold assessment of the safety of the model in this area:
* Iterative testing during model training to assess the safety of responses related to CBRNE threats and other adversarial risks.
* Involving external CBRNE experts to conduct an uplift test assessing the ability of the model to accurately provide expert knowledge and reduce barriers to potential CBRNE misuse, by reference to what can be achieved using web search (without the model).
### <span style="text-decoration:underline;">Cyber Security </span>
We have evaluated Llama 3 with CyberSecEval, Meta’s cybersecurity safety eval suite, measuring Llama 3’s propensity to suggest insecure code when used as a coding assistant, and Llama 3’s propensity to comply with requests to help carry out cyber attacks, where attacks are defined by the industry standard MITRE ATT&CK cyber attack ontology. On our insecure coding and cyber attacker helpfulness tests, Llama 3 behaved in the same range or safer than models of [equivalent coding capability](https://huggingface.co/spaces/facebook/CyberSecEval).
### <span style="text-decoration:underline;">Child Safety</span>
Child Safety risk assessments were conducted using a team of experts, to assess the model’s capability to produce outputs that could result in Child Safety risks and inform on any necessary and appropriate risk mitigations via fine tuning. We leveraged those expert red teaming sessions to expand the coverage of our evaluation benchmarks through Llama 3 model development. For Llama 3, we conducted new in-depth sessions using objective based methodologies to assess the model risks along multiple attack vectors. We also partnered with content specialists to perform red teaming exercises assessing potentially violating content while taking account of market specific nuances or experiences.
### Community
Generative AI safety requires expertise and tooling, and we believe in the strength of the open community to accelerate its progress. We are active members of open consortiums, including the AI Alliance, Partnership in AI and MLCommons, actively contributing to safety standardization and transparency. We encourage the community to adopt taxonomies like the MLCommons Proof of Concept evaluation to facilitate collaboration and transparency on safety and content evaluations. Our Purple Llama tools are open sourced for the community to use and widely distributed across ecosystem partners including cloud service providers. We encourage community contributions to our [Github repository](https://github.com/meta-llama/PurpleLlama).
Finally, we put in place a set of resources including an [output reporting mechanism](https://developers.facebook.com/llama_output_feedback) and [bug bounty program](https://www.facebook.com/whitehat) to continuously improve the Llama technology with the help of the community.
## Ethical Considerations and Limitations
The core values of Llama 3 are openness, inclusivity and helpfulness. It is meant to serve everyone, and to work for a wide range of use cases. It is thus designed to be accessible to people across many different backgrounds, experiences and perspectives. Llama 3 addresses users and their needs as they are, without insertion unnecessary judgment or normativity, while reflecting the understanding that even content that may appear problematic in some cases can serve valuable purposes in others. It respects the dignity and autonomy of all users, especially in terms of the values of free thought and expression that power innovation and progress.
But Llama 3 is a new technology, and like any new technology, there are risks associated with its use. Testing conducted to date has been in English, and has not covered, nor could it cover, all scenarios. For these reasons, as with all LLMs, Llama 3’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 3 models, developers should perform safety testing and tuning tailored to their specific applications of the model. As outlined in the Responsible Use Guide, we recommend incorporating [Purple Llama](https://github.com/facebookresearch/PurpleLlama) solutions into your workflows and specifically [Llama Guard](https://ai.meta.com/research/publications/llama-guard-llm-based-input-output-safeguard-for-human-ai-conversations/) which provides a base model to filter input and output prompts to layer system-level safety on top of model-level safety.
Please see the Responsible Use Guide available at [http://llama.meta.com/responsible-use-guide](http://llama.meta.com/responsible-use-guide)
## Citation instructions
@article{llama3modelcard,
title={Llama 3 Model Card},
author={AI@Meta},
year={2024},
url = {https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md}
}
## Contributors
Aaditya Singh; Aaron Grattafiori; Abhimanyu Dubey; Abhinav Jauhri; Abhinav Pandey; Abhishek Kadian; Adam Kelsey; Adi Gangidi; Ahmad Al-Dahle; Ahuva Goldstand; Aiesha Letman; Ajay Menon; Akhil Mathur; Alan Schelten; Alex Vaughan; Amy Yang; Andrei Lupu; Andres Alvarado; Andrew Gallagher; Andrew Gu; Andrew Ho; Andrew Poulton; Andrew Ryan; Angela Fan; Ankit Ramchandani; Anthony Hartshorn; Archi Mitra; Archie Sravankumar; Artem Korenev; Arun Rao; Ashley Gabriel; Ashwin Bharambe; Assaf Eisenman; Aston Zhang; Aurelien Rodriguez; Austen Gregerson; Ava Spataru; Baptiste Roziere; Ben Maurer; Benjamin Leonhardi; Bernie Huang; Bhargavi Paranjape; Bing Liu; Binh Tang; Bobbie Chern; Brani Stojkovic; Brian Fuller; Catalina Mejia Arenas; Chao Zhou; Charlotte Caucheteux; Chaya Nayak; Ching-Hsiang Chu; Chloe Bi; Chris Cai; Chris Cox; Chris Marra; Chris McConnell; Christian Keller; Christoph Feichtenhofer; Christophe Touret; Chunyang Wu; Corinne Wong; Cristian Canton Ferrer; Damien Allonsius; Daniel Kreymer; Daniel Haziza; Daniel Li; Danielle Pintz; Danny Livshits; Danny Wyatt; David Adkins; David Esiobu; David Xu; Davide Testuggine; Delia David; Devi Parikh; Dhruv Choudhary; Dhruv Mahajan; Diana Liskovich; Diego Garcia-Olano; Diego Perino; Dieuwke Hupkes; Dingkang Wang; Dustin Holland; Egor Lakomkin; Elina Lobanova; Xiaoqing Ellen Tan; Emily Dinan; Eric Smith; Erik Brinkman; Esteban Arcaute; Filip Radenovic; Firat Ozgenel; Francesco Caggioni; Frank Seide; Frank Zhang; Gabriel Synnaeve; Gabriella Schwarz; Gabrielle Lee; Gada Badeer; Georgia Anderson; Graeme Nail; Gregoire Mialon; Guan Pang; Guillem Cucurell; Hailey Nguyen; Hannah Korevaar; Hannah Wang; Haroun Habeeb; Harrison Rudolph; Henry Aspegren; Hu Xu; Hugo Touvron; Iga Kozlowska; Igor Molybog; Igor Tufanov; Iliyan Zarov; Imanol Arrieta Ibarra; Irina-Elena Veliche; Isabel Kloumann; Ishan Misra; Ivan Evtimov; Jacob Xu; Jade Copet; Jake Weissman; Jan Geffert; Jana Vranes; Japhet Asher; Jason Park; Jay Mahadeokar; Jean-Baptiste Gaya; Jeet Shah; Jelmer van der Linde; Jennifer Chan; Jenny Hong; Jenya Lee; Jeremy Fu; Jeremy Teboul; Jianfeng Chi; Jianyu Huang; Jie Wang; Jiecao Yu; Joanna Bitton; Joe Spisak; Joelle Pineau; Jon Carvill; Jongsoo Park; Joseph Rocca; Joshua Johnstun; Junteng Jia; Kalyan Vasuden Alwala; Kam Hou U; Kate Plawiak; Kartikeya Upasani; Kaushik Veeraraghavan; Ke Li; Kenneth Heafield; Kevin Stone; Khalid El-Arini; Krithika Iyer; Kshitiz Malik; Kuenley Chiu; Kunal Bhalla; Kyle Huang; Lakshya Garg; Lauren Rantala-Yeary; Laurens van der Maaten; Lawrence Chen; Leandro Silva; Lee Bell; Lei Zhang; Liang Tan; Louis Martin; Lovish Madaan; Luca Wehrstedt; Lukas Blecher; Luke de Oliveira; Madeline Muzzi; Madian Khabsa; Manav Avlani; Mannat Singh; Manohar Paluri; Mark Zuckerberg; Marcin Kardas; Martynas Mankus; Mathew Oldham; Mathieu Rita; Matthew Lennie; Maya Pavlova; Meghan Keneally; Melanie Kambadur; Mihir Patel; Mikayel Samvelyan; Mike Clark; Mike Lewis; Min Si; Mitesh Kumar Singh; Mo Metanat; Mona Hassan; Naman Goyal; Narjes Torabi; Nicolas Usunier; Nikolay Bashlykov; Nikolay Bogoychev; Niladri Chatterji; Ning Dong; Oliver Aobo Yang; Olivier Duchenne; Onur Celebi; Parth Parekh; Patrick Alrassy; Paul Saab; Pavan Balaji; Pedro Rittner; Pengchuan Zhang; Pengwei Li; Petar Vasic; Peter Weng; Polina Zvyagina; Prajjwal Bhargava; Pratik Dubal; Praveen Krishnan; Punit Singh Koura; Qing He; Rachel Rodriguez; Ragavan Srinivasan; Rahul Mitra; Ramon Calderer; Raymond Li; Robert Stojnic; Roberta Raileanu; Robin Battey; Rocky Wang; Rohit Girdhar; Rohit Patel; Romain Sauvestre; Ronnie Polidoro; Roshan Sumbaly; Ross Taylor; Ruan Silva; Rui Hou; Rui Wang; Russ Howes; Ruty Rinott; Saghar Hosseini; Sai Jayesh Bondu; Samyak Datta; Sanjay Singh; Sara Chugh; Sargun Dhillon; Satadru Pan; Sean Bell; Sergey Edunov; Shaoliang Nie; Sharan Narang; Sharath Raparthy; Shaun Lindsay; Sheng Feng; Sheng Shen; Shenghao Lin; Shiva Shankar; Shruti Bhosale; Shun Zhang; Simon Vandenhende; Sinong Wang; Seohyun Sonia Kim; Soumya Batra; Sten Sootla; Steve Kehoe; Suchin Gururangan; Sumit Gupta; Sunny Virk; Sydney Borodinsky; Tamar Glaser; Tamar Herman; Tamara Best; Tara Fowler; Thomas Georgiou; Thomas Scialom; Tianhe Li; Todor Mihaylov; Tong Xiao; Ujjwal Karn; Vedanuj Goswami; Vibhor Gupta; Vignesh Ramanathan; Viktor Kerkez; Vinay Satish Kumar; Vincent Gonguet; Vish Vogeti; Vlad Poenaru; Vlad Tiberiu Mihailescu; Vladan Petrovic; Vladimir Ivanov; Wei Li; Weiwei Chu; Wenhan Xiong; Wenyin Fu; Wes Bouaziz; Whitney Meers; Will Constable; Xavier Martinet; Xiaojian Wu; Xinbo Gao; Xinfeng Xie; Xuchao Jia; Yaelle Goldschlag; Yann LeCun; Yashesh Gaur; Yasmine Babaei; Ye Qi; Yenda Li; Yi Wen; Yiwen Song; Youngjin Nam; Yuchen Hao; Yuchen Zhang; Yun Wang; Yuning Mao; Yuzi He; Zacharie Delpierre Coudert; Zachary DeVito; Zahra Hankir; Zhaoduo Wen; Zheng Yan; Zhengxing Chen; Zhenyu Yang; Zoe Papakipos
## Bitsandbytes quantization config
>{'load_in_8bit': True} |
mlx-community/Qwen2.5-14B-Instruct-3bit | mlx-community | 2025-04-28T03:39:10Z | 5 | 1 | mlx | [
"mlx",
"safetensors",
"qwen2",
"chat",
"text-generation",
"conversational",
"zho",
"eng",
"fra",
"spa",
"por",
"deu",
"ita",
"rus",
"jpn",
"kor",
"vie",
"tha",
"ara",
"base_model:Qwen/Qwen2.5-14B",
"base_model:quantized:Qwen/Qwen2.5-14B",
"license:apache-2.0",
"3-bit",
"region:us"
] | text-generation | 2024-12-26T08:43:49Z | ---
base_model: Qwen/Qwen2.5-14B
language:
- zho
- eng
- fra
- spa
- por
- deu
- ita
- rus
- jpn
- kor
- vie
- tha
- ara
license: apache-2.0
license_link: https://huggingface.co/Qwen/Qwen2.5-14B-Instruct/blob/main/LICENSE
pipeline_tag: text-generation
tags:
- chat
- mlx
---
# mlx-community/Qwen2.5-14B-Instruct-3bit
The Model [mlx-community/Qwen2.5-14B-Instruct-3bit](https://huggingface.co/mlx-community/Qwen2.5-14B-Instruct-3bit) was converted to MLX format from [Qwen/Qwen2.5-14B-Instruct](https://huggingface.co/Qwen/Qwen2.5-14B-Instruct) using mlx-lm version **0.21.1**.
## Use with mlx
```bash
pip install mlx-lm
```
```python
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/Qwen2.5-14B-Instruct-3bit")
response = generate(model, tokenizer, prompt="hello", verbose=True)
```
|
ubaitur5/Qwen2.5-32B-Instruct-Q3-mlx | ubaitur5 | 2025-04-28T03:38:51Z | 1 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"chat",
"mlx",
"mlx-my-repo",
"conversational",
"zho",
"eng",
"fra",
"spa",
"por",
"deu",
"ita",
"rus",
"jpn",
"kor",
"vie",
"tha",
"ara",
"base_model:Qwen/Qwen2.5-32B-Instruct",
"base_model:quantized:Qwen/Qwen2.5-32B-Instruct",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"3-bit",
"region:us"
] | text-generation | 2025-01-22T09:07:55Z | ---
license: apache-2.0
license_link: https://huggingface.co/Qwen/Qwen2.5-32B-Instruct/blob/main/LICENSE
language:
- zho
- eng
- fra
- spa
- por
- deu
- ita
- rus
- jpn
- kor
- vie
- tha
- ara
pipeline_tag: text-generation
base_model: Qwen/Qwen2.5-32B-Instruct
tags:
- chat
- mlx
- mlx-my-repo
library_name: transformers
---
# ubaitur5/Qwen2.5-32B-Instruct-Q3-mlx
The Model [ubaitur5/Qwen2.5-32B-Instruct-Q3-mlx](https://huggingface.co/ubaitur5/Qwen2.5-32B-Instruct-Q3-mlx) was converted to MLX format from [Qwen/Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct) using mlx-lm version **0.20.5**.
## Use with mlx
```bash
pip install mlx-lm
```
```python
from mlx_lm import load, generate
model, tokenizer = load("ubaitur5/Qwen2.5-32B-Instruct-Q3-mlx")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
```
|
Jonjew/ElizabethMcGovern | Jonjew | 2025-04-28T03:36:45Z | 0 | 0 | diffusers | [
"diffusers",
"text-to-image",
"lora",
"template:diffusion-lora",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:unknown",
"region:us"
] | text-to-image | 2025-04-28T03:36:23Z | ---
tags:
- text-to-image
- lora
- diffusers
- template:diffusion-lora
widget:
- text: elizabethmcgovern
output:
url: >-
images/0747-elizbethmcgovern smiling
broadly-Fluxflux1-dev-fp8-1621074297.png
base_model: black-forest-labs/FLUX.1-dev
instance_prompt: elizabethmcgovern
license: unknown
---
# Elizabeth McGovern by cbrescia
<Gallery />
## Model description
FROM https://civitai.com/models/1494061/elizabeth-mcgovern
Please support the creator by donating BUZZ to the creator and LIKING at the page above
Trigger elizabethmcgovern
## Trigger words
You should use `elizabethmcgovern` to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
[Download](/Jonjew/ElizabethMcGovern/tree/main) them in the Files & versions tab.
|
Nitrals-Loras/VMC-12Bv1.9-lora | Nitrals-Loras | 2025-04-28T03:35:36Z | 0 | 0 | peft | [
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:Nitral-Archive/Violet_MagCap-12B-v1.5",
"base_model:adapter:Nitral-Archive/Violet_MagCap-12B-v1.5",
"region:us"
] | null | 2025-04-28T03:35:22Z | ---
base_model: Nitral-AI/Violet_MagCap-12B-v1.5
library_name: peft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.14.0 |
DanielNRU/pollen-ner-cycle-650 | DanielNRU | 2025-04-28T03:34:36Z | 0 | 0 | peft | [
"peft",
"safetensors",
"generated_from_trainer",
"base_model:DeepPavlov/rubert-base-cased",
"base_model:adapter:DeepPavlov/rubert-base-cased",
"region:us"
] | null | 2025-04-28T02:56:58Z | ---
library_name: peft
base_model: DeepPavlov/rubert-base-cased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
model-index:
- name: pollen-ner-cycle-650
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# pollen-ner-cycle-650
This model is a fine-tuned version of [DeepPavlov/rubert-base-cased](https://huggingface.co/DeepPavlov/rubert-base-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3284
- Precision: 0.6672
- Recall: 0.7563
- F1: 0.7090
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|
| No log | 1.0 | 82 | 0.9265 | 0.0 | 0.0 | 0.0 |
| No log | 2.0 | 164 | 0.7413 | 0.4918 | 0.0580 | 0.1038 |
| No log | 3.0 | 246 | 0.5735 | 0.4268 | 0.3385 | 0.3776 |
| No log | 4.0 | 328 | 0.4665 | 0.5496 | 0.5783 | 0.5636 |
| No log | 5.0 | 410 | 0.4133 | 0.5936 | 0.6867 | 0.6368 |
| No log | 6.0 | 492 | 0.3775 | 0.6173 | 0.7176 | 0.6637 |
| 0.7058 | 7.0 | 574 | 0.3466 | 0.6619 | 0.7234 | 0.6913 |
| 0.7058 | 8.0 | 656 | 0.3408 | 0.6610 | 0.7505 | 0.7029 |
| 0.7058 | 9.0 | 738 | 0.3295 | 0.6724 | 0.7505 | 0.7093 |
| 0.7058 | 10.0 | 820 | 0.3284 | 0.6672 | 0.7563 | 0.7090 |
### Framework versions
- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.6.0+cu126
- Datasets 3.5.0
- Tokenizers 0.21.1 |
JohnConnor123/Meta-Llama-3-8B-AWQ-64G-INT4-vGEMM | JohnConnor123 | 2025-04-28T03:34:17Z | 0 | 0 | null | [
"safetensors",
"llama",
"en",
"base_model:meta-llama/Meta-Llama-3-8B",
"base_model:quantized:meta-llama/Meta-Llama-3-8B",
"4-bit",
"awq",
"region:us"
] | null | 2025-04-28T03:28:44Z | ---
language: en
base_model: meta-llama/Meta-Llama-3-8B
---
> ## **This quantization was done using the [quantization-benchmark](https://github.com/JohnConnor123/quantization-benchmark) framework**
## Model Details
Meta developed and released the Meta Llama 3 family of large language models (LLMs), a collection of pretrained and instruction tuned generative text models in 8 and 70B sizes. The Llama 3 instruction tuned models are optimized for dialogue use cases and outperform many of the available open source chat models on common industry benchmarks. Further, in developing these models, we took great care to optimize helpfulness and safety.
**Model developers** Meta
**Variations** Llama 3 comes in two sizes — 8B and 70B parameters — in pre-trained and instruction tuned variants.
**Input** Models input text only.
**Output** Models generate text and code only.
**Model Architecture** Llama 3 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety.
<table>
<tr>
<td>
</td>
<td><strong>Training Data</strong>
</td>
<td><strong>Params</strong>
</td>
<td><strong>Context length</strong>
</td>
<td><strong>GQA</strong>
</td>
<td><strong>Token count</strong>
</td>
<td><strong>Knowledge cutoff</strong>
</td>
</tr>
<tr>
<td rowspan="2" >Llama 3
</td>
<td rowspan="2" >A new mix of publicly available online data.
</td>
<td>8B
</td>
<td>8k
</td>
<td>Yes
</td>
<td rowspan="2" >15T+
</td>
<td>March, 2023
</td>
</tr>
<tr>
<td>70B
</td>
<td>8k
</td>
<td>Yes
</td>
<td>December, 2023
</td>
</tr>
</table>
**Llama 3 family of models**. Token counts refer to pretraining data only. Both the 8 and 70B versions use Grouped-Query Attention (GQA) for improved inference scalability.
**Model Release Date** April 18, 2024.
**Status** This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we improve model safety with community feedback.
**License** A custom commercial license is available at: [https://llama.meta.com/llama3/license](https://llama.meta.com/llama3/license)
Where to send questions or comments about the model Instructions on how to provide feedback or comments on the model can be found in the model [README](https://github.com/meta-llama/llama3). For more technical information about generation parameters and recipes for how to use Llama 3 in applications, please go [here](https://github.com/meta-llama/llama-recipes).
## Intended Use
**Intended Use Cases** Llama 3 is intended for commercial and research use in English. Instruction tuned models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks.
**Out-of-scope** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in any other way that is prohibited by the Acceptable Use Policy and Llama 3 Community License. Use in languages other than English**.
**Note: Developers may fine-tune Llama 3 models for languages beyond English provided they comply with the Llama 3 Community License and the Acceptable Use Policy.
## How to use
This repository contains two versions of Meta-Llama-3-8B, for use with transformers and with the original `llama3` codebase.
### Use with transformers
See the snippet below for usage with Transformers:
```python
>>> import transformers
>>> import torch
>>> model_id = "meta-llama/Meta-Llama-3-8B"
>>> pipeline = transformers.pipeline(
"text-generation", model=model_id, model_kwargs={"torch_dtype": torch.bfloat16}, device_map="auto"
)
>>> pipeline("Hey how are you doing today?")
```
### Use with `llama3`
Please, follow the instructions in the [repository](https://github.com/meta-llama/llama3).
To download Original checkpoints, see the example command below leveraging `huggingface-cli`:
```
huggingface-cli download meta-llama/Meta-Llama-3-8B --include "original/*" --local-dir Meta-Llama-3-8B
```
For Hugging Face support, we recommend using transformers or TGI, but a similar command works.
## Hardware and Software
**Training Factors** We used custom training libraries, Meta's Research SuperCluster, and production clusters for pretraining. Fine-tuning, annotation, and evaluation were also performed on third-party cloud compute.
**Carbon Footprint Pretraining utilized a cumulative** 7.7M GPU hours of computation on hardware of type H100-80GB (TDP of 700W). Estimated total emissions were 2290 tCO2eq, 100% of which were offset by Meta’s sustainability program.
<table>
<tr>
<td>
</td>
<td><strong>Time (GPU hours)</strong>
</td>
<td><strong>Power Consumption (W)</strong>
</td>
<td><strong>Carbon Emitted(tCO2eq)</strong>
</td>
</tr>
<tr>
<td>Llama 3 8B
</td>
<td>1.3M
</td>
<td>700
</td>
<td>390
</td>
</tr>
<tr>
<td>Llama 3 70B
</td>
<td>6.4M
</td>
<td>700
</td>
<td>1900
</td>
</tr>
<tr>
<td>Total
</td>
<td>7.7M
</td>
<td>
</td>
<td>2290
</td>
</tr>
</table>
**CO2 emissions during pre-training**. Time: total GPU time required for training each model. Power Consumption: peak power capacity per GPU device for the GPUs used adjusted for power usage efficiency. 100% of the emissions are directly offset by Meta's sustainability program, and because we are openly releasing these models, the pretraining costs do not need to be incurred by others.
## Training Data
**Overview** Llama 3 was pretrained on over 15 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over 10M human-annotated examples. Neither the pretraining nor the fine-tuning datasets include Meta user data.
**Data Freshness** The pretraining data has a cutoff of March 2023 for the 8B and December 2023 for the 70B models respectively.
## Benchmarks
In this section, we report the results for Llama 3 models on standard automatic benchmarks. For all the evaluations, we use our internal evaluations library. For details on the methodology see [here](https://github.com/meta-llama/llama3/blob/main/eval_methodology.md).
### Base pretrained models
<table>
<tr>
<td><strong>Category</strong>
</td>
<td><strong>Benchmark</strong>
</td>
<td><strong>Llama 3 8B</strong>
</td>
<td><strong>Llama2 7B</strong>
</td>
<td><strong>Llama2 13B</strong>
</td>
<td><strong>Llama 3 70B</strong>
</td>
<td><strong>Llama2 70B</strong>
</td>
</tr>
<tr>
<td rowspan="6" >General
</td>
<td>MMLU (5-shot)
</td>
<td>66.6
</td>
<td>45.7
</td>
<td>53.8
</td>
<td>79.5
</td>
<td>69.7
</td>
</tr>
<tr>
<td>AGIEval English (3-5 shot)
</td>
<td>45.9
</td>
<td>28.8
</td>
<td>38.7
</td>
<td>63.0
</td>
<td>54.8
</td>
</tr>
<tr>
<td>CommonSenseQA (7-shot)
</td>
<td>72.6
</td>
<td>57.6
</td>
<td>67.6
</td>
<td>83.8
</td>
<td>78.7
</td>
</tr>
<tr>
<td>Winogrande (5-shot)
</td>
<td>76.1
</td>
<td>73.3
</td>
<td>75.4
</td>
<td>83.1
</td>
<td>81.8
</td>
</tr>
<tr>
<td>BIG-Bench Hard (3-shot, CoT)
</td>
<td>61.1
</td>
<td>38.1
</td>
<td>47.0
</td>
<td>81.3
</td>
<td>65.7
</td>
</tr>
<tr>
<td>ARC-Challenge (25-shot)
</td>
<td>78.6
</td>
<td>53.7
</td>
<td>67.6
</td>
<td>93.0
</td>
<td>85.3
</td>
</tr>
<tr>
<td>Knowledge reasoning
</td>
<td>TriviaQA-Wiki (5-shot)
</td>
<td>78.5
</td>
<td>72.1
</td>
<td>79.6
</td>
<td>89.7
</td>
<td>87.5
</td>
</tr>
<tr>
<td rowspan="4" >Reading comprehension
</td>
<td>SQuAD (1-shot)
</td>
<td>76.4
</td>
<td>72.2
</td>
<td>72.1
</td>
<td>85.6
</td>
<td>82.6
</td>
</tr>
<tr>
<td>QuAC (1-shot, F1)
</td>
<td>44.4
</td>
<td>39.6
</td>
<td>44.9
</td>
<td>51.1
</td>
<td>49.4
</td>
</tr>
<tr>
<td>BoolQ (0-shot)
</td>
<td>75.7
</td>
<td>65.5
</td>
<td>66.9
</td>
<td>79.0
</td>
<td>73.1
</td>
</tr>
<tr>
<td>DROP (3-shot, F1)
</td>
<td>58.4
</td>
<td>37.9
</td>
<td>49.8
</td>
<td>79.7
</td>
<td>70.2
</td>
</tr>
</table>
### Instruction tuned models
<table>
<tr>
<td><strong>Benchmark</strong>
</td>
<td><strong>Llama 3 8B</strong>
</td>
<td><strong>Llama 2 7B</strong>
</td>
<td><strong>Llama 2 13B</strong>
</td>
<td><strong>Llama 3 70B</strong>
</td>
<td><strong>Llama 2 70B</strong>
</td>
</tr>
<tr>
<td>MMLU (5-shot)
</td>
<td>68.4
</td>
<td>34.1
</td>
<td>47.8
</td>
<td>82.0
</td>
<td>52.9
</td>
</tr>
<tr>
<td>GPQA (0-shot)
</td>
<td>34.2
</td>
<td>21.7
</td>
<td>22.3
</td>
<td>39.5
</td>
<td>21.0
</td>
</tr>
<tr>
<td>HumanEval (0-shot)
</td>
<td>62.2
</td>
<td>7.9
</td>
<td>14.0
</td>
<td>81.7
</td>
<td>25.6
</td>
</tr>
<tr>
<td>GSM-8K (8-shot, CoT)
</td>
<td>79.6
</td>
<td>25.7
</td>
<td>77.4
</td>
<td>93.0
</td>
<td>57.5
</td>
</tr>
<tr>
<td>MATH (4-shot, CoT)
</td>
<td>30.0
</td>
<td>3.8
</td>
<td>6.7
</td>
<td>50.4
</td>
<td>11.6
</td>
</tr>
</table>
### Responsibility & Safety
We believe that an open approach to AI leads to better, safer products, faster innovation, and a bigger overall market. We are committed to Responsible AI development and took a series of steps to limit misuse and harm and support the open source community.
Foundation models are widely capable technologies that are built to be used for a diverse range of applications. They are not designed to meet every developer preference on safety levels for all use cases, out-of-the-box, as those by their nature will differ across different applications.
Rather, responsible LLM-application deployment is achieved by implementing a series of safety best practices throughout the development of such applications, from the model pre-training, fine-tuning and the deployment of systems composed of safeguards to tailor the safety needs specifically to the use case and audience.
As part of the Llama 3 release, we updated our [Responsible Use Guide](https://llama.meta.com/responsible-use-guide/) to outline the steps and best practices for developers to implement model and system level safety for their application. We also provide a set of resources including [Meta Llama Guard 2](https://llama.meta.com/purple-llama/) and [Code Shield](https://llama.meta.com/purple-llama/) safeguards. These tools have proven to drastically reduce residual risks of LLM Systems, while maintaining a high level of helpfulness. We encourage developers to tune and deploy these safeguards according to their needs and we provide a [reference implementation](https://github.com/meta-llama/llama-recipes/tree/main/recipes/responsible_ai) to get you started.
#### Llama 3-Instruct
As outlined in the Responsible Use Guide, some trade-off between model helpfulness and model alignment is likely unavoidable. Developers should exercise discretion about how to weigh the benefits of alignment and helpfulness for their specific use case and audience. Developers should be mindful of residual risks when using Llama models and leverage additional safety tools as needed to reach the right safety bar for their use case.
<span style="text-decoration:underline;">Safety</span>
For our instruction tuned model, we conducted extensive red teaming exercises, performed adversarial evaluations and implemented safety mitigations techniques to lower residual risks. As with any Large Language Model, residual risks will likely remain and we recommend that developers assess these risks in the context of their use case. In parallel, we are working with the community to make AI safety benchmark standards transparent, rigorous and interpretable.
<span style="text-decoration:underline;">Refusals</span>
In addition to residual risks, we put a great emphasis on model refusals to benign prompts. Over-refusing not only can impact the user experience but could even be harmful in certain contexts as well. We’ve heard the feedback from the developer community and improved our fine tuning to ensure that Llama 3 is significantly less likely to falsely refuse to answer prompts than Llama 2.
We built internal benchmarks and developed mitigations to limit false refusals making Llama 3 our most helpful model to date.
#### Responsible release
In addition to responsible use considerations outlined above, we followed a rigorous process that requires us to take extra measures against misuse and critical risks before we make our release decision.
Misuse
If you access or use Llama 3, you agree to the Acceptable Use Policy. The most recent copy of this policy can be found at [https://llama.meta.com/llama3/use-policy/](https://llama.meta.com/llama3/use-policy/).
#### Critical risks
<span style="text-decoration:underline;">CBRNE</span> (Chemical, Biological, Radiological, Nuclear, and high yield Explosives)
We have conducted a two fold assessment of the safety of the model in this area:
* Iterative testing during model training to assess the safety of responses related to CBRNE threats and other adversarial risks.
* Involving external CBRNE experts to conduct an uplift test assessing the ability of the model to accurately provide expert knowledge and reduce barriers to potential CBRNE misuse, by reference to what can be achieved using web search (without the model).
### <span style="text-decoration:underline;">Cyber Security </span>
We have evaluated Llama 3 with CyberSecEval, Meta’s cybersecurity safety eval suite, measuring Llama 3’s propensity to suggest insecure code when used as a coding assistant, and Llama 3’s propensity to comply with requests to help carry out cyber attacks, where attacks are defined by the industry standard MITRE ATT&CK cyber attack ontology. On our insecure coding and cyber attacker helpfulness tests, Llama 3 behaved in the same range or safer than models of [equivalent coding capability](https://huggingface.co/spaces/facebook/CyberSecEval).
### <span style="text-decoration:underline;">Child Safety</span>
Child Safety risk assessments were conducted using a team of experts, to assess the model’s capability to produce outputs that could result in Child Safety risks and inform on any necessary and appropriate risk mitigations via fine tuning. We leveraged those expert red teaming sessions to expand the coverage of our evaluation benchmarks through Llama 3 model development. For Llama 3, we conducted new in-depth sessions using objective based methodologies to assess the model risks along multiple attack vectors. We also partnered with content specialists to perform red teaming exercises assessing potentially violating content while taking account of market specific nuances or experiences.
### Community
Generative AI safety requires expertise and tooling, and we believe in the strength of the open community to accelerate its progress. We are active members of open consortiums, including the AI Alliance, Partnership in AI and MLCommons, actively contributing to safety standardization and transparency. We encourage the community to adopt taxonomies like the MLCommons Proof of Concept evaluation to facilitate collaboration and transparency on safety and content evaluations. Our Purple Llama tools are open sourced for the community to use and widely distributed across ecosystem partners including cloud service providers. We encourage community contributions to our [Github repository](https://github.com/meta-llama/PurpleLlama).
Finally, we put in place a set of resources including an [output reporting mechanism](https://developers.facebook.com/llama_output_feedback) and [bug bounty program](https://www.facebook.com/whitehat) to continuously improve the Llama technology with the help of the community.
## Ethical Considerations and Limitations
The core values of Llama 3 are openness, inclusivity and helpfulness. It is meant to serve everyone, and to work for a wide range of use cases. It is thus designed to be accessible to people across many different backgrounds, experiences and perspectives. Llama 3 addresses users and their needs as they are, without insertion unnecessary judgment or normativity, while reflecting the understanding that even content that may appear problematic in some cases can serve valuable purposes in others. It respects the dignity and autonomy of all users, especially in terms of the values of free thought and expression that power innovation and progress.
But Llama 3 is a new technology, and like any new technology, there are risks associated with its use. Testing conducted to date has been in English, and has not covered, nor could it cover, all scenarios. For these reasons, as with all LLMs, Llama 3’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 3 models, developers should perform safety testing and tuning tailored to their specific applications of the model. As outlined in the Responsible Use Guide, we recommend incorporating [Purple Llama](https://github.com/facebookresearch/PurpleLlama) solutions into your workflows and specifically [Llama Guard](https://ai.meta.com/research/publications/llama-guard-llm-based-input-output-safeguard-for-human-ai-conversations/) which provides a base model to filter input and output prompts to layer system-level safety on top of model-level safety.
Please see the Responsible Use Guide available at [http://llama.meta.com/responsible-use-guide](http://llama.meta.com/responsible-use-guide)
## Citation instructions
@article{llama3modelcard,
title={Llama 3 Model Card},
author={AI@Meta},
year={2024},
url = {https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md}
}
## Contributors
Aaditya Singh; Aaron Grattafiori; Abhimanyu Dubey; Abhinav Jauhri; Abhinav Pandey; Abhishek Kadian; Adam Kelsey; Adi Gangidi; Ahmad Al-Dahle; Ahuva Goldstand; Aiesha Letman; Ajay Menon; Akhil Mathur; Alan Schelten; Alex Vaughan; Amy Yang; Andrei Lupu; Andres Alvarado; Andrew Gallagher; Andrew Gu; Andrew Ho; Andrew Poulton; Andrew Ryan; Angela Fan; Ankit Ramchandani; Anthony Hartshorn; Archi Mitra; Archie Sravankumar; Artem Korenev; Arun Rao; Ashley Gabriel; Ashwin Bharambe; Assaf Eisenman; Aston Zhang; Aurelien Rodriguez; Austen Gregerson; Ava Spataru; Baptiste Roziere; Ben Maurer; Benjamin Leonhardi; Bernie Huang; Bhargavi Paranjape; Bing Liu; Binh Tang; Bobbie Chern; Brani Stojkovic; Brian Fuller; Catalina Mejia Arenas; Chao Zhou; Charlotte Caucheteux; Chaya Nayak; Ching-Hsiang Chu; Chloe Bi; Chris Cai; Chris Cox; Chris Marra; Chris McConnell; Christian Keller; Christoph Feichtenhofer; Christophe Touret; Chunyang Wu; Corinne Wong; Cristian Canton Ferrer; Damien Allonsius; Daniel Kreymer; Daniel Haziza; Daniel Li; Danielle Pintz; Danny Livshits; Danny Wyatt; David Adkins; David Esiobu; David Xu; Davide Testuggine; Delia David; Devi Parikh; Dhruv Choudhary; Dhruv Mahajan; Diana Liskovich; Diego Garcia-Olano; Diego Perino; Dieuwke Hupkes; Dingkang Wang; Dustin Holland; Egor Lakomkin; Elina Lobanova; Xiaoqing Ellen Tan; Emily Dinan; Eric Smith; Erik Brinkman; Esteban Arcaute; Filip Radenovic; Firat Ozgenel; Francesco Caggioni; Frank Seide; Frank Zhang; Gabriel Synnaeve; Gabriella Schwarz; Gabrielle Lee; Gada Badeer; Georgia Anderson; Graeme Nail; Gregoire Mialon; Guan Pang; Guillem Cucurell; Hailey Nguyen; Hannah Korevaar; Hannah Wang; Haroun Habeeb; Harrison Rudolph; Henry Aspegren; Hu Xu; Hugo Touvron; Iga Kozlowska; Igor Molybog; Igor Tufanov; Iliyan Zarov; Imanol Arrieta Ibarra; Irina-Elena Veliche; Isabel Kloumann; Ishan Misra; Ivan Evtimov; Jacob Xu; Jade Copet; Jake Weissman; Jan Geffert; Jana Vranes; Japhet Asher; Jason Park; Jay Mahadeokar; Jean-Baptiste Gaya; Jeet Shah; Jelmer van der Linde; Jennifer Chan; Jenny Hong; Jenya Lee; Jeremy Fu; Jeremy Teboul; Jianfeng Chi; Jianyu Huang; Jie Wang; Jiecao Yu; Joanna Bitton; Joe Spisak; Joelle Pineau; Jon Carvill; Jongsoo Park; Joseph Rocca; Joshua Johnstun; Junteng Jia; Kalyan Vasuden Alwala; Kam Hou U; Kate Plawiak; Kartikeya Upasani; Kaushik Veeraraghavan; Ke Li; Kenneth Heafield; Kevin Stone; Khalid El-Arini; Krithika Iyer; Kshitiz Malik; Kuenley Chiu; Kunal Bhalla; Kyle Huang; Lakshya Garg; Lauren Rantala-Yeary; Laurens van der Maaten; Lawrence Chen; Leandro Silva; Lee Bell; Lei Zhang; Liang Tan; Louis Martin; Lovish Madaan; Luca Wehrstedt; Lukas Blecher; Luke de Oliveira; Madeline Muzzi; Madian Khabsa; Manav Avlani; Mannat Singh; Manohar Paluri; Mark Zuckerberg; Marcin Kardas; Martynas Mankus; Mathew Oldham; Mathieu Rita; Matthew Lennie; Maya Pavlova; Meghan Keneally; Melanie Kambadur; Mihir Patel; Mikayel Samvelyan; Mike Clark; Mike Lewis; Min Si; Mitesh Kumar Singh; Mo Metanat; Mona Hassan; Naman Goyal; Narjes Torabi; Nicolas Usunier; Nikolay Bashlykov; Nikolay Bogoychev; Niladri Chatterji; Ning Dong; Oliver Aobo Yang; Olivier Duchenne; Onur Celebi; Parth Parekh; Patrick Alrassy; Paul Saab; Pavan Balaji; Pedro Rittner; Pengchuan Zhang; Pengwei Li; Petar Vasic; Peter Weng; Polina Zvyagina; Prajjwal Bhargava; Pratik Dubal; Praveen Krishnan; Punit Singh Koura; Qing He; Rachel Rodriguez; Ragavan Srinivasan; Rahul Mitra; Ramon Calderer; Raymond Li; Robert Stojnic; Roberta Raileanu; Robin Battey; Rocky Wang; Rohit Girdhar; Rohit Patel; Romain Sauvestre; Ronnie Polidoro; Roshan Sumbaly; Ross Taylor; Ruan Silva; Rui Hou; Rui Wang; Russ Howes; Ruty Rinott; Saghar Hosseini; Sai Jayesh Bondu; Samyak Datta; Sanjay Singh; Sara Chugh; Sargun Dhillon; Satadru Pan; Sean Bell; Sergey Edunov; Shaoliang Nie; Sharan Narang; Sharath Raparthy; Shaun Lindsay; Sheng Feng; Sheng Shen; Shenghao Lin; Shiva Shankar; Shruti Bhosale; Shun Zhang; Simon Vandenhende; Sinong Wang; Seohyun Sonia Kim; Soumya Batra; Sten Sootla; Steve Kehoe; Suchin Gururangan; Sumit Gupta; Sunny Virk; Sydney Borodinsky; Tamar Glaser; Tamar Herman; Tamara Best; Tara Fowler; Thomas Georgiou; Thomas Scialom; Tianhe Li; Todor Mihaylov; Tong Xiao; Ujjwal Karn; Vedanuj Goswami; Vibhor Gupta; Vignesh Ramanathan; Viktor Kerkez; Vinay Satish Kumar; Vincent Gonguet; Vish Vogeti; Vlad Poenaru; Vlad Tiberiu Mihailescu; Vladan Petrovic; Vladimir Ivanov; Wei Li; Weiwei Chu; Wenhan Xiong; Wenyin Fu; Wes Bouaziz; Whitney Meers; Will Constable; Xavier Martinet; Xiaojian Wu; Xinbo Gao; Xinfeng Xie; Xuchao Jia; Yaelle Goldschlag; Yann LeCun; Yashesh Gaur; Yasmine Babaei; Ye Qi; Yenda Li; Yi Wen; Yiwen Song; Youngjin Nam; Yuchen Hao; Yuchen Zhang; Yun Wang; Yuning Mao; Yuzi He; Zacharie Delpierre Coudert; Zachary DeVito; Zahra Hankir; Zhaoduo Wen; Zheng Yan; Zhengxing Chen; Zhenyu Yang; Zoe Papakipos
## AWQ quantization config
>{'w_bit': 4, 'q_group_size': 64, 'zero_point': True, 'version': 'GEMM'} |
mjpsm/participation-image-classifier | mjpsm | 2025-04-28T03:34:07Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"vit",
"image-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | image-classification | 2025-04-28T03:32:36Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Jonjew/CatherineDeneuve | Jonjew | 2025-04-28T03:32:29Z | 0 | 0 | diffusers | [
"diffusers",
"text-to-image",
"lora",
"template:diffusion-lora",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:unknown",
"region:us"
] | text-to-image | 2025-04-28T03:32:24Z | ---
tags:
- text-to-image
- lora
- diffusers
- template:diffusion-lora
widget:
- text: catherinedeneuve
output:
url: images/1129-catherinedeneuve-Fluxflux1-dev-fp8-50720747.png
base_model: black-forest-labs/FLUX.1-dev
instance_prompt: catherinedeneuve
license: unknown
---
# Catherine Deneuve by cbrescia
<Gallery />
## Model description
FROM https://civitai.com/models/1502212/catherine-deneuve
Please support the creator by donating BUZZ to the creator and LIKING at the page above
Trigger catherinedeneuve
## Trigger words
You should use `catherinedeneuve` to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
[Download](/Jonjew/CatherineDeneuve/tree/main) them in the Files & versions tab.
|
kevinwsbr/starcoder-vulnfixes | kevinwsbr | 2025-04-28T03:30:47Z | 40 | 0 | peft | [
"peft",
"safetensors",
"starcoder2",
"generated_from_trainer",
"dataset:kevinwsbr/vulnfixes-web",
"base_model:bigcode/starcoder2-15b",
"base_model:adapter:bigcode/starcoder2-15b",
"license:bigcode-openrail-m",
"region:us"
] | null | 2025-04-18T03:51:07Z | ---
library_name: peft
license: bigcode-openrail-m
base_model: bigcode/starcoder2-15b
tags:
- generated_from_trainer
datasets:
- kevinwsbr/vulnfixes-web
model-index:
- name: outputs/starcoder-vulnfixes-web
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.8.0.dev0`
```yaml
base_model: bigcode/starcoder2-15b
# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: kevinwsbr/vulnfixes-web
type: alpaca
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/starcoder-vulnfixes-web
adapter: qlora
lora_model_dir:
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project: starcoder
wandb_entity:
wandb_watch:
wandb_run_id:
wandb_log_model:
gradient_accumulation_steps: 8
micro_batch_size: 2
num_epochs: 3
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 2e-5
train_on_inputs: false
group_by_length: false
bf16: auto
fp16: false
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 20
evals_per_epoch: 4
eval_steps:
eval_table_size:
saves_per_epoch: 4
save_steps:
save_total_limit: 2
debug:
deepspeed:
weight_decay:
fsdp:
fsdp_config:
special_tokens:
pad_token: "<|endoftext|>"
eos_token: "<|endoftext|>"
```
</details><br>
# outputs/starcoder-vulnfixes-web
This model is a fine-tuned version of [bigcode/starcoder2-15b](https://huggingface.co/bigcode/starcoder2-15b) on the kevinwsbr/vulnfixes-web dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0529
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 20
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.1499 | 0.0092 | 1 | 0.0645 |
| 0.1554 | 0.2569 | 28 | 0.0622 |
| 0.0745 | 0.5138 | 56 | 0.0571 |
| 0.0616 | 0.7706 | 84 | 0.0559 |
| 0.0645 | 1.0275 | 112 | 0.0547 |
| 0.0601 | 1.2844 | 140 | 0.0542 |
| 0.0688 | 1.5413 | 168 | 0.0537 |
| 0.0424 | 1.7982 | 196 | 0.0534 |
| 0.086 | 2.0550 | 224 | 0.0532 |
| 0.0759 | 2.3119 | 252 | 0.0530 |
| 0.0583 | 2.5688 | 280 | 0.0529 |
| 0.1087 | 2.8257 | 308 | 0.0529 |
### Framework versions
- PEFT 0.14.0
- Transformers 4.49.0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0 |
ComeradeTke/medical-question-model | ComeradeTke | 2025-04-28T03:29:45Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"bert",
"text-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2025-04-28T03:29:29Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
FixiPubn7Uf5/hshgsf | FixiPubn7Uf5 | 2025-04-28T03:29:30Z | 0 | 0 | null | [
"license:apache-2.0",
"region:us"
] | null | 2025-04-28T03:29:26Z | ---
license: apache-2.0
---
|
Jonjew/PriscillaPresley | Jonjew | 2025-04-28T03:29:24Z | 0 | 0 | diffusers | [
"diffusers",
"text-to-image",
"lora",
"template:diffusion-lora",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:unknown",
"region:us"
] | text-to-image | 2025-04-28T03:28:41Z | ---
tags:
- text-to-image
- lora
- diffusers
- template:diffusion-lora
widget:
- text: priscillapresley
output:
url: images/1347-priscillapresley-Fluxflux1-dev-fp8-241900207.png
base_model: black-forest-labs/FLUX.1-dev
instance_prompt: priscillapresley
license: unknown
---
# Priscilla Presley by cbrescia
<Gallery />
## Model description
FROM https://civitai.com/models/1506048/priscilla-presley
Please support the creator by donating BUZZ to the creator and LIKING at the page above
Trigger priscillapresley
## Trigger words
You should use `priscillapresley` to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
[Download](/Jonjew/PriscillaPresley/tree/main) them in the Files & versions tab.
|
rGwIgc7BJb2q/kskhhs | rGwIgc7BJb2q | 2025-04-28T03:27:55Z | 0 | 0 | null | [
"license:apache-2.0",
"region:us"
] | null | 2025-04-28T03:27:55Z | ---
license: apache-2.0
---
|
mradermacher/Fusion-14B-Instruct-i1-GGUF | mradermacher | 2025-04-28T03:26:55Z | 25 | 1 | transformers | [
"transformers",
"gguf",
"mergekit",
"merge",
"zho",
"eng",
"fra",
"spa",
"por",
"deu",
"ita",
"rus",
"jpn",
"kor",
"vie",
"tha",
"ara",
"base_model:qingy2024/Fusion-14B-Instruct",
"base_model:quantized:qingy2024/Fusion-14B-Instruct",
"endpoints_compatible",
"region:us",
"imatrix",
"conversational"
] | null | 2024-12-06T03:26:12Z | ---
base_model: qingy2024/Fusion-14B-Instruct
language:
- zho
- eng
- fra
- spa
- por
- deu
- ita
- rus
- jpn
- kor
- vie
- tha
- ara
library_name: transformers
quantized_by: mradermacher
tags:
- mergekit
- merge
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: nicoboss -->
weighted/imatrix quants of https://huggingface.co/qingy2024/Fusion-14B-Instruct
<!-- provided-files -->
static quants are available at https://huggingface.co/mradermacher/Fusion-14B-Instruct-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Fusion-14B-Instruct-i1-GGUF/resolve/main/Fusion-14B-Instruct.i1-IQ1_S.gguf) | i1-IQ1_S | 3.7 | for the desperate |
| [GGUF](https://huggingface.co/mradermacher/Fusion-14B-Instruct-i1-GGUF/resolve/main/Fusion-14B-Instruct.i1-IQ1_M.gguf) | i1-IQ1_M | 4.0 | mostly desperate |
| [GGUF](https://huggingface.co/mradermacher/Fusion-14B-Instruct-i1-GGUF/resolve/main/Fusion-14B-Instruct.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 4.4 | |
| [GGUF](https://huggingface.co/mradermacher/Fusion-14B-Instruct-i1-GGUF/resolve/main/Fusion-14B-Instruct.i1-IQ2_XS.gguf) | i1-IQ2_XS | 4.8 | |
| [GGUF](https://huggingface.co/mradermacher/Fusion-14B-Instruct-i1-GGUF/resolve/main/Fusion-14B-Instruct.i1-IQ2_S.gguf) | i1-IQ2_S | 5.1 | |
| [GGUF](https://huggingface.co/mradermacher/Fusion-14B-Instruct-i1-GGUF/resolve/main/Fusion-14B-Instruct.i1-IQ2_M.gguf) | i1-IQ2_M | 5.5 | |
| [GGUF](https://huggingface.co/mradermacher/Fusion-14B-Instruct-i1-GGUF/resolve/main/Fusion-14B-Instruct.i1-Q2_K_S.gguf) | i1-Q2_K_S | 5.5 | very low quality |
| [GGUF](https://huggingface.co/mradermacher/Fusion-14B-Instruct-i1-GGUF/resolve/main/Fusion-14B-Instruct.i1-Q2_K.gguf) | i1-Q2_K | 5.9 | IQ3_XXS probably better |
| [GGUF](https://huggingface.co/mradermacher/Fusion-14B-Instruct-i1-GGUF/resolve/main/Fusion-14B-Instruct.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 6.0 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Fusion-14B-Instruct-i1-GGUF/resolve/main/Fusion-14B-Instruct.i1-IQ3_XS.gguf) | i1-IQ3_XS | 6.5 | |
| [GGUF](https://huggingface.co/mradermacher/Fusion-14B-Instruct-i1-GGUF/resolve/main/Fusion-14B-Instruct.i1-Q3_K_S.gguf) | i1-Q3_K_S | 6.8 | IQ3_XS probably better |
| [GGUF](https://huggingface.co/mradermacher/Fusion-14B-Instruct-i1-GGUF/resolve/main/Fusion-14B-Instruct.i1-IQ3_S.gguf) | i1-IQ3_S | 6.8 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/Fusion-14B-Instruct-i1-GGUF/resolve/main/Fusion-14B-Instruct.i1-IQ3_M.gguf) | i1-IQ3_M | 7.0 | |
| [GGUF](https://huggingface.co/mradermacher/Fusion-14B-Instruct-i1-GGUF/resolve/main/Fusion-14B-Instruct.i1-Q3_K_M.gguf) | i1-Q3_K_M | 7.4 | IQ3_S probably better |
| [GGUF](https://huggingface.co/mradermacher/Fusion-14B-Instruct-i1-GGUF/resolve/main/Fusion-14B-Instruct.i1-Q3_K_L.gguf) | i1-Q3_K_L | 8.0 | IQ3_M probably better |
| [GGUF](https://huggingface.co/mradermacher/Fusion-14B-Instruct-i1-GGUF/resolve/main/Fusion-14B-Instruct.i1-IQ4_XS.gguf) | i1-IQ4_XS | 8.2 | |
| [GGUF](https://huggingface.co/mradermacher/Fusion-14B-Instruct-i1-GGUF/resolve/main/Fusion-14B-Instruct.i1-Q4_0_4_4.gguf) | i1-Q4_0_4_4 | 8.6 | fast on arm, low quality |
| [GGUF](https://huggingface.co/mradermacher/Fusion-14B-Instruct-i1-GGUF/resolve/main/Fusion-14B-Instruct.i1-Q4_0_4_8.gguf) | i1-Q4_0_4_8 | 8.6 | fast on arm+i8mm, low quality |
| [GGUF](https://huggingface.co/mradermacher/Fusion-14B-Instruct-i1-GGUF/resolve/main/Fusion-14B-Instruct.i1-Q4_0_8_8.gguf) | i1-Q4_0_8_8 | 8.6 | fast on arm+sve, low quality |
| [GGUF](https://huggingface.co/mradermacher/Fusion-14B-Instruct-i1-GGUF/resolve/main/Fusion-14B-Instruct.i1-Q4_0.gguf) | i1-Q4_0 | 8.6 | fast, low quality |
| [GGUF](https://huggingface.co/mradermacher/Fusion-14B-Instruct-i1-GGUF/resolve/main/Fusion-14B-Instruct.i1-Q4_K_S.gguf) | i1-Q4_K_S | 8.7 | optimal size/speed/quality |
| [GGUF](https://huggingface.co/mradermacher/Fusion-14B-Instruct-i1-GGUF/resolve/main/Fusion-14B-Instruct.i1-Q4_K_M.gguf) | i1-Q4_K_M | 9.1 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Fusion-14B-Instruct-i1-GGUF/resolve/main/Fusion-14B-Instruct.i1-Q5_K_S.gguf) | i1-Q5_K_S | 10.4 | |
| [GGUF](https://huggingface.co/mradermacher/Fusion-14B-Instruct-i1-GGUF/resolve/main/Fusion-14B-Instruct.i1-Q5_K_M.gguf) | i1-Q5_K_M | 10.6 | |
| [GGUF](https://huggingface.co/mradermacher/Fusion-14B-Instruct-i1-GGUF/resolve/main/Fusion-14B-Instruct.i1-Q6_K.gguf) | i1-Q6_K | 12.2 | practically like static Q6_K |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
<!-- end -->
|
mradermacher/Qwen2.6-14B-Instruct-GGUF | mradermacher | 2025-04-28T03:24:41Z | 170 | 1 | transformers | [
"transformers",
"gguf",
"mergekit",
"merge",
"zho",
"eng",
"fra",
"spa",
"por",
"deu",
"ita",
"rus",
"jpn",
"kor",
"vie",
"tha",
"ara",
"base_model:qingy2024/Qwen2.6-14B-Instruct",
"base_model:quantized:qingy2024/Qwen2.6-14B-Instruct",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2024-12-06T17:20:05Z | ---
base_model: qingy2024/Qwen2.6-14B-Instruct
language:
- zho
- eng
- fra
- spa
- por
- deu
- ita
- rus
- jpn
- kor
- vie
- tha
- ara
library_name: transformers
quantized_by: mradermacher
tags:
- mergekit
- merge
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: nicoboss -->
static quants of https://huggingface.co/qingy2024/Qwen2.6-14B-Instruct
<!-- provided-files -->
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Qwen2.6-14B-Instruct-GGUF/resolve/main/Qwen2.6-14B-Instruct.Q2_K.gguf) | Q2_K | 5.9 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.6-14B-Instruct-GGUF/resolve/main/Qwen2.6-14B-Instruct.Q3_K_S.gguf) | Q3_K_S | 6.8 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.6-14B-Instruct-GGUF/resolve/main/Qwen2.6-14B-Instruct.Q3_K_M.gguf) | Q3_K_M | 7.4 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.6-14B-Instruct-GGUF/resolve/main/Qwen2.6-14B-Instruct.Q3_K_L.gguf) | Q3_K_L | 8.0 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.6-14B-Instruct-GGUF/resolve/main/Qwen2.6-14B-Instruct.IQ4_XS.gguf) | IQ4_XS | 8.3 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.6-14B-Instruct-GGUF/resolve/main/Qwen2.6-14B-Instruct.Q4_0_4_4.gguf) | Q4_0_4_4 | 8.6 | fast on arm, low quality |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.6-14B-Instruct-GGUF/resolve/main/Qwen2.6-14B-Instruct.Q4_K_S.gguf) | Q4_K_S | 8.7 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.6-14B-Instruct-GGUF/resolve/main/Qwen2.6-14B-Instruct.Q4_K_M.gguf) | Q4_K_M | 9.1 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.6-14B-Instruct-GGUF/resolve/main/Qwen2.6-14B-Instruct.Q5_K_S.gguf) | Q5_K_S | 10.4 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.6-14B-Instruct-GGUF/resolve/main/Qwen2.6-14B-Instruct.Q5_K_M.gguf) | Q5_K_M | 10.6 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.6-14B-Instruct-GGUF/resolve/main/Qwen2.6-14B-Instruct.Q6_K.gguf) | Q6_K | 12.2 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.6-14B-Instruct-GGUF/resolve/main/Qwen2.6-14B-Instruct.Q8_0.gguf) | Q8_0 | 15.8 | fast, best quality |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
<!-- end -->
|
Morant101/medical-question-model | Morant101 | 2025-04-28T03:24:34Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"bert",
"text-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2025-04-28T03:17:50Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
mradermacher/Midnight-Miqu-70B-v1.5-Safetensorsfix-i1-GGUF | mradermacher | 2025-04-28T03:24:15Z | 61 | 0 | transformers | [
"transformers",
"gguf",
"mergekit",
"merge",
"en",
"base_model:LyraNovaHeart/Midnight-Miqu-70B-v1.5-Safetensorsfix",
"base_model:quantized:LyraNovaHeart/Midnight-Miqu-70B-v1.5-Safetensorsfix",
"license:other",
"endpoints_compatible",
"region:us",
"imatrix",
"conversational"
] | null | 2024-12-06T22:59:10Z | ---
base_model: LyraNovaHeart/Midnight-Miqu-70B-v1.5-Safetensorsfix
language:
- en
library_name: transformers
license: other
quantized_by: mradermacher
tags:
- mergekit
- merge
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: nicoboss -->
weighted/imatrix quants of https://huggingface.co/LyraNovaHeart/Midnight-Miqu-70B-v1.5-Safetensorsfix
<!-- provided-files -->
static quants are available at https://huggingface.co/mradermacher/Midnight-Miqu-70B-v1.5-Safetensorsfix-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Midnight-Miqu-70B-v1.5-Safetensorsfix-i1-GGUF/resolve/main/Midnight-Miqu-70B-v1.5-Safetensorsfix.i1-IQ1_S.gguf) | i1-IQ1_S | 14.6 | for the desperate |
| [GGUF](https://huggingface.co/mradermacher/Midnight-Miqu-70B-v1.5-Safetensorsfix-i1-GGUF/resolve/main/Midnight-Miqu-70B-v1.5-Safetensorsfix.i1-IQ1_M.gguf) | i1-IQ1_M | 16.0 | mostly desperate |
| [GGUF](https://huggingface.co/mradermacher/Midnight-Miqu-70B-v1.5-Safetensorsfix-i1-GGUF/resolve/main/Midnight-Miqu-70B-v1.5-Safetensorsfix.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 18.4 | |
| [GGUF](https://huggingface.co/mradermacher/Midnight-Miqu-70B-v1.5-Safetensorsfix-i1-GGUF/resolve/main/Midnight-Miqu-70B-v1.5-Safetensorsfix.i1-IQ2_XS.gguf) | i1-IQ2_XS | 20.4 | |
| [GGUF](https://huggingface.co/mradermacher/Midnight-Miqu-70B-v1.5-Safetensorsfix-i1-GGUF/resolve/main/Midnight-Miqu-70B-v1.5-Safetensorsfix.i1-IQ2_S.gguf) | i1-IQ2_S | 21.5 | |
| [GGUF](https://huggingface.co/mradermacher/Midnight-Miqu-70B-v1.5-Safetensorsfix-i1-GGUF/resolve/main/Midnight-Miqu-70B-v1.5-Safetensorsfix.i1-IQ2_M.gguf) | i1-IQ2_M | 23.3 | |
| [GGUF](https://huggingface.co/mradermacher/Midnight-Miqu-70B-v1.5-Safetensorsfix-i1-GGUF/resolve/main/Midnight-Miqu-70B-v1.5-Safetensorsfix.i1-Q2_K_S.gguf) | i1-Q2_K_S | 23.7 | very low quality |
| [GGUF](https://huggingface.co/mradermacher/Midnight-Miqu-70B-v1.5-Safetensorsfix-i1-GGUF/resolve/main/Midnight-Miqu-70B-v1.5-Safetensorsfix.i1-Q2_K.gguf) | i1-Q2_K | 25.6 | IQ3_XXS probably better |
| [GGUF](https://huggingface.co/mradermacher/Midnight-Miqu-70B-v1.5-Safetensorsfix-i1-GGUF/resolve/main/Midnight-Miqu-70B-v1.5-Safetensorsfix.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 26.7 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Midnight-Miqu-70B-v1.5-Safetensorsfix-i1-GGUF/resolve/main/Midnight-Miqu-70B-v1.5-Safetensorsfix.i1-IQ3_XS.gguf) | i1-IQ3_XS | 28.4 | |
| [GGUF](https://huggingface.co/mradermacher/Midnight-Miqu-70B-v1.5-Safetensorsfix-i1-GGUF/resolve/main/Midnight-Miqu-70B-v1.5-Safetensorsfix.i1-IQ3_S.gguf) | i1-IQ3_S | 30.0 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/Midnight-Miqu-70B-v1.5-Safetensorsfix-i1-GGUF/resolve/main/Midnight-Miqu-70B-v1.5-Safetensorsfix.i1-Q3_K_S.gguf) | i1-Q3_K_S | 30.0 | IQ3_XS probably better |
| [GGUF](https://huggingface.co/mradermacher/Midnight-Miqu-70B-v1.5-Safetensorsfix-i1-GGUF/resolve/main/Midnight-Miqu-70B-v1.5-Safetensorsfix.i1-IQ3_M.gguf) | i1-IQ3_M | 31.0 | |
| [GGUF](https://huggingface.co/mradermacher/Midnight-Miqu-70B-v1.5-Safetensorsfix-i1-GGUF/resolve/main/Midnight-Miqu-70B-v1.5-Safetensorsfix.i1-Q3_K_M.gguf) | i1-Q3_K_M | 33.4 | IQ3_S probably better |
| [GGUF](https://huggingface.co/mradermacher/Midnight-Miqu-70B-v1.5-Safetensorsfix-i1-GGUF/resolve/main/Midnight-Miqu-70B-v1.5-Safetensorsfix.i1-Q3_K_L.gguf) | i1-Q3_K_L | 36.2 | IQ3_M probably better |
| [GGUF](https://huggingface.co/mradermacher/Midnight-Miqu-70B-v1.5-Safetensorsfix-i1-GGUF/resolve/main/Midnight-Miqu-70B-v1.5-Safetensorsfix.i1-IQ4_XS.gguf) | i1-IQ4_XS | 36.9 | |
| [GGUF](https://huggingface.co/mradermacher/Midnight-Miqu-70B-v1.5-Safetensorsfix-i1-GGUF/resolve/main/Midnight-Miqu-70B-v1.5-Safetensorsfix.i1-Q4_0.gguf) | i1-Q4_0 | 39.1 | fast, low quality |
| [GGUF](https://huggingface.co/mradermacher/Midnight-Miqu-70B-v1.5-Safetensorsfix-i1-GGUF/resolve/main/Midnight-Miqu-70B-v1.5-Safetensorsfix.i1-Q4_K_S.gguf) | i1-Q4_K_S | 39.3 | optimal size/speed/quality |
| [GGUF](https://huggingface.co/mradermacher/Midnight-Miqu-70B-v1.5-Safetensorsfix-i1-GGUF/resolve/main/Midnight-Miqu-70B-v1.5-Safetensorsfix.i1-Q4_K_M.gguf) | i1-Q4_K_M | 41.5 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Midnight-Miqu-70B-v1.5-Safetensorsfix-i1-GGUF/resolve/main/Midnight-Miqu-70B-v1.5-Safetensorsfix.i1-Q5_K_S.gguf) | i1-Q5_K_S | 47.6 | |
| [GGUF](https://huggingface.co/mradermacher/Midnight-Miqu-70B-v1.5-Safetensorsfix-i1-GGUF/resolve/main/Midnight-Miqu-70B-v1.5-Safetensorsfix.i1-Q5_K_M.gguf) | i1-Q5_K_M | 48.9 | |
| [PART 1](https://huggingface.co/mradermacher/Midnight-Miqu-70B-v1.5-Safetensorsfix-i1-GGUF/resolve/main/Midnight-Miqu-70B-v1.5-Safetensorsfix.i1-Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Midnight-Miqu-70B-v1.5-Safetensorsfix-i1-GGUF/resolve/main/Midnight-Miqu-70B-v1.5-Safetensorsfix.i1-Q6_K.gguf.part2of2) | i1-Q6_K | 56.7 | practically like static Q6_K |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
<!-- end -->
|
wsdwJohn1231/Earth-Adapter | wsdwJohn1231 | 2025-04-28T03:21:21Z | 0 | 0 | null | [
"image-segmentation",
"arxiv:2504.06220",
"license:apache-2.0",
"region:us"
] | image-segmentation | 2025-04-08T14:53:49Z | ---
license: apache-2.0
pipeline_tag: image-segmentation
---
# Model Card for Model ID
The weights for the eight benchmarks of Earth-Adapter provided here.
For more info, see the paper [Earth-Adapter: Bridge the Geospatial Domain Gaps with Mixture of Frequency Adaptation](https://huggingface.co/papers/2504.06220).
Code: https://github.com/VisionXLab/Earth-Adapter |
lxywini12223/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-vigilant_alert_caterpillar | lxywini12223 | 2025-04-28T03:20:20Z | 4 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"generated_from_trainer",
"rl-swarm",
"grpo",
"gensyn",
"I am vigilant alert caterpillar",
"trl",
"conversational",
"arxiv:2402.03300",
"base_model:Gensyn/Qwen2.5-0.5B-Instruct",
"base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-04-22T13:00:16Z | ---
base_model: Gensyn/Qwen2.5-0.5B-Instruct
library_name: transformers
model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-vigilant_alert_caterpillar
tags:
- generated_from_trainer
- rl-swarm
- grpo
- gensyn
- I am vigilant alert caterpillar
- trl
licence: license
---
# Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-vigilant_alert_caterpillar
This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="lxywini12223/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-vigilant_alert_caterpillar", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.15.2
- Transformers: 4.51.3
- Pytorch: 2.6.0
- Datasets: 3.5.0
- Tokenizers: 0.21.1
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
Jonjew/MayberryLadyDruggistElinorDonahue | Jonjew | 2025-04-28T03:19:53Z | 0 | 0 | diffusers | [
"diffusers",
"text-to-image",
"lora",
"template:diffusion-lora",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:unknown",
"region:us"
] | text-to-image | 2025-04-28T03:19:45Z | ---
tags:
- text-to-image
- lora
- diffusers
- template:diffusion-lora
widget:
- text: '-'
output:
url: images/Princess_e000012_00_20250424212723.png
base_model: black-forest-labs/FLUX.1-dev
instance_prompt: null
license: unknown
---
# Mayberry Lady Druggist - Princess - Elinor Donahue by nobodyishome
<Gallery />
## Model description
FROM Mayberry Lady Druggist - Princess - Elinor Donahue
Support the original creator by LIKING at the page above
## Download model
Weights for this model are available in Safetensors format.
[Download](/Jonjew/MayberryLadyDruggistElinorDonahue/tree/main) them in the Files & versions tab.
|
tzoumalbs/fgbfbg | tzoumalbs | 2025-04-28T03:18:32Z | 0 | 0 | null | [
"license:bsd-3-clause",
"region:us"
] | null | 2025-04-28T03:18:32Z | ---
license: bsd-3-clause
---
|
DoppelReflEx/QWQ-32B-ForeignFlow-TokenizerTest-Experiment-Q3_K_S-GGUF | DoppelReflEx | 2025-04-28T03:18:11Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"mergekit",
"merge",
"llama-cpp",
"gguf-my-repo",
"base_model:DoppelReflEx/QWQ-32B-ForeignFlow-TokenizerTest-Experiment",
"base_model:quantized:DoppelReflEx/QWQ-32B-ForeignFlow-TokenizerTest-Experiment",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-04-28T03:17:00Z | ---
base_model: DoppelReflEx/QWQ-32B-ForeignFlow-TokenizerTest-Experiment
library_name: transformers
tags:
- mergekit
- merge
- llama-cpp
- gguf-my-repo
---
# DoppelReflEx/QWQ-32B-ForeignFlow-TokenizerTest-Experiment-Q3_K_S-GGUF
This model was converted to GGUF format from [`DoppelReflEx/QWQ-32B-ForeignFlow-TokenizerTest-Experiment`](https://huggingface.co/DoppelReflEx/QWQ-32B-ForeignFlow-TokenizerTest-Experiment) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/DoppelReflEx/QWQ-32B-ForeignFlow-TokenizerTest-Experiment) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo DoppelReflEx/QWQ-32B-ForeignFlow-TokenizerTest-Experiment-Q3_K_S-GGUF --hf-file qwq-32b-foreignflow-tokenizertest-experiment-q3_k_s.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo DoppelReflEx/QWQ-32B-ForeignFlow-TokenizerTest-Experiment-Q3_K_S-GGUF --hf-file qwq-32b-foreignflow-tokenizertest-experiment-q3_k_s.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo DoppelReflEx/QWQ-32B-ForeignFlow-TokenizerTest-Experiment-Q3_K_S-GGUF --hf-file qwq-32b-foreignflow-tokenizertest-experiment-q3_k_s.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo DoppelReflEx/QWQ-32B-ForeignFlow-TokenizerTest-Experiment-Q3_K_S-GGUF --hf-file qwq-32b-foreignflow-tokenizertest-experiment-q3_k_s.gguf -c 2048
```
|
Jonjew/LoriSaunders | Jonjew | 2025-04-28T03:16:40Z | 0 | 0 | diffusers | [
"diffusers",
"text-to-image",
"lora",
"template:diffusion-lora",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:unknown",
"region:us"
] | text-to-image | 2025-04-28T03:16:34Z | ---
tags:
- text-to-image
- lora
- diffusers
- template:diffusion-lora
widget:
- text: Lori
output:
url: images/bobbyjo.png
base_model: black-forest-labs/FLUX.1-dev
instance_prompt: Lori
license: unknown
---
# Lori Saunders (2nd Bobbie Jo Bradley from Petticoat Junction) by nobodyishome
<Gallery />
## Model description
FROM https://civitai.com/models/1510312/lori-saunders-2nd-bobbie-jo-bradley
Please support the creator by Liking at the page above
Trigger Lori
## Trigger words
You should use `Lori` to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
[Download](/Jonjew/LoriSaunders/tree/main) them in the Files & versions tab.
|
0xtinuviel/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-dense_chattering_lemur | 0xtinuviel | 2025-04-28T03:15:05Z | 17 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"generated_from_trainer",
"rl-swarm",
"grpo",
"gensyn",
"I am dense chattering lemur",
"trl",
"conversational",
"arxiv:2402.03300",
"base_model:Gensyn/Qwen2.5-0.5B-Instruct",
"base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-04-13T21:21:28Z | ---
base_model: Gensyn/Qwen2.5-0.5B-Instruct
library_name: transformers
model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-dense_chattering_lemur
tags:
- generated_from_trainer
- rl-swarm
- grpo
- gensyn
- I am dense chattering lemur
- trl
licence: license
---
# Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-dense_chattering_lemur
This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="0xtinuviel/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-dense_chattering_lemur", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.15.2
- Transformers: 4.51.2
- Pytorch: 2.5.1
- Datasets: 3.5.0
- Tokenizers: 0.21.1
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
mradermacher/Fusion3-14B-Instruct-GGUF | mradermacher | 2025-04-28T03:11:01Z | 25 | 1 | transformers | [
"transformers",
"gguf",
"mergekit",
"merge",
"zho",
"eng",
"fra",
"spa",
"por",
"deu",
"ita",
"rus",
"jpn",
"kor",
"vie",
"tha",
"ara",
"base_model:qingy2024/Fusion3-14B-Instruct",
"base_model:quantized:qingy2024/Fusion3-14B-Instruct",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2024-12-08T12:51:39Z | ---
base_model: qingy2024/Fusion3-14B-Instruct
language:
- zho
- eng
- fra
- spa
- por
- deu
- ita
- rus
- jpn
- kor
- vie
- tha
- ara
library_name: transformers
quantized_by: mradermacher
tags:
- mergekit
- merge
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: nicoboss -->
static quants of https://huggingface.co/qingy2024/Fusion3-14B-Instruct
<!-- provided-files -->
weighted/imatrix quants are available at https://huggingface.co/mradermacher/Fusion3-14B-Instruct-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Fusion3-14B-Instruct-GGUF/resolve/main/Fusion3-14B-Instruct.Q2_K.gguf) | Q2_K | 5.9 | |
| [GGUF](https://huggingface.co/mradermacher/Fusion3-14B-Instruct-GGUF/resolve/main/Fusion3-14B-Instruct.Q3_K_S.gguf) | Q3_K_S | 6.8 | |
| [GGUF](https://huggingface.co/mradermacher/Fusion3-14B-Instruct-GGUF/resolve/main/Fusion3-14B-Instruct.Q3_K_M.gguf) | Q3_K_M | 7.4 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Fusion3-14B-Instruct-GGUF/resolve/main/Fusion3-14B-Instruct.Q3_K_L.gguf) | Q3_K_L | 8.0 | |
| [GGUF](https://huggingface.co/mradermacher/Fusion3-14B-Instruct-GGUF/resolve/main/Fusion3-14B-Instruct.IQ4_XS.gguf) | IQ4_XS | 8.3 | |
| [GGUF](https://huggingface.co/mradermacher/Fusion3-14B-Instruct-GGUF/resolve/main/Fusion3-14B-Instruct.Q4_0_4_4.gguf) | Q4_0_4_4 | 8.6 | fast on arm, low quality |
| [GGUF](https://huggingface.co/mradermacher/Fusion3-14B-Instruct-GGUF/resolve/main/Fusion3-14B-Instruct.Q4_K_S.gguf) | Q4_K_S | 8.7 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Fusion3-14B-Instruct-GGUF/resolve/main/Fusion3-14B-Instruct.Q4_K_M.gguf) | Q4_K_M | 9.1 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Fusion3-14B-Instruct-GGUF/resolve/main/Fusion3-14B-Instruct.Q5_K_S.gguf) | Q5_K_S | 10.4 | |
| [GGUF](https://huggingface.co/mradermacher/Fusion3-14B-Instruct-GGUF/resolve/main/Fusion3-14B-Instruct.Q5_K_M.gguf) | Q5_K_M | 10.6 | |
| [GGUF](https://huggingface.co/mradermacher/Fusion3-14B-Instruct-GGUF/resolve/main/Fusion3-14B-Instruct.Q6_K.gguf) | Q6_K | 12.2 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Fusion3-14B-Instruct-GGUF/resolve/main/Fusion3-14B-Instruct.Q8_0.gguf) | Q8_0 | 15.8 | fast, best quality |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
<!-- end -->
|
wilonadragon/wilonadragon | wilonadragon | 2025-04-28T03:10:56Z | 0 | 0 | null | [
"license:bigcode-openrail-m",
"region:us"
] | null | 2025-04-28T03:10:55Z | ---
license: bigcode-openrail-m
---
|
UFNLP/gatortron-medium | UFNLP | 2025-04-28T03:09:26Z | 688 | 23 | transformers | [
"transformers",
"pytorch",
"megatron-bert",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2023-06-02T23:50:42Z | ---
license: apache-2.0
---
<h2>GatorTron-Medium overview </h2>
Developed by a joint effort between the University of Florida and NVIDIA, GatorTron-Medium is a clinical language model of 3.9 billion parameters, pre-trained using a BERT architecure implemented in the Megatron package (https://github.com/NVIDIA/Megatron-LM).
GatorTron-Medium is pre-trained using a dataset consisting of:
- 82B words of de-identified clinical notes from the University of Florida Health System,
- 6.1B words from PubMed CC0,
- 2.5B words from WikiText,
- 0.5B words of de-identified clinical notes from MIMIC-III
The Github for GatorTron is at : https://github.com/uf-hobi-informatics-lab/GatorTron
<h2>Model variations</h2>
Model | Parameter | Maximum input
--- | --- | ---
[gatortron-base-2k](https://huggingface.co/UFNLP/gatortron-base-2k) | 345 million | 2048
[gatortron-base](https://huggingface.co/UFNLP/gatortron-base) | 345 million | 512
[gatortronS](https://huggingface.co/UFNLP/gatortronS) | 345 million | 512
[gatortron-medium (this model)](https://huggingface.co/UFNLP/gatortron-medium) | 3.9 billion | 512
[gatortron-large](https://huggingface.co/UFNLP/gatortron-large) | 8.9 billion | 512
<h2>How to use</h2>
```python
from transformers import AutoModel, AutoTokenizer, AutoConfig
tokinizer= AutoTokenizer.from_pretrained('UFNLP/gatortron-medium')
config=AutoConfig.from_pretrained('UFNLP/gatortron-medium')
mymodel=AutoModel.from_pretrained('UFNLP/gatortron-medium')
encoded_input=tokinizer("Bone scan: Negative for distant metastasis.", return_tensors="pt")
encoded_output = mymodel(**encoded_input)
```
- An NLP pacakge using GatorTron for clinical concept extraction (Named Entity Recognition): https://github.com/uf-hobi-informatics-lab/ClinicalTransformerNER
- An NLP pacakge using GatorTron for Relation Extraction: https://github.com/uf-hobi-informatics-lab/ClinicalTransformerRelationExtraction
- An NLP pacakge using GatorTron for extraction of social determinants of health (SDoH) from clinical narratives: https://github.com/uf-hobi-informatics-lab/SDoH_SODA
<h2>De-identification</h2>
We applied a de-identification system to remove protected health information (PHI) from clinical text. We adopted the safe-harbor method to identify 18 PHI categories defined in the Health Insurance Portability and Accountability Act (HIPAA) and replaced them with dummy strings (e.g., replace people’s names into [\*\*NAME\*\*]).
The de-identifiation system is described in:
Yang X, Lyu T, Li Q, Lee C-Y, Bian J, Hogan WR, Wu Y†. A study of deep learning methods for de-identification of clinical notes in cross-institute settings. BMC Med Inform Decis Mak. 2020 Dec 5;19(5):232. https://www.ncbi.nlm.nih.gov/pubmed/31801524.
<h2>Citation info</h2>
Yang X, Chen A, PourNejatian N, Shin HC, Smith KE, Parisien C, Compas C, Martin C, Costa AB, Flores MG, Zhang Y, Magoc T, Harle CA, Lipori G, Mitchell DA, Hogan WR, Shenkman EA, Bian J, Wu Y†. A large language model for electronic health records. Npj Digit Med. Nature Publishing Group; . 2022 Dec 26;5(1):1–9. https://www.nature.com/articles/s41746-022-00742-2
- BibTeX entry
```
@article{yang2022large,
title={A large language model for electronic health records},
author={Yang, Xi and Chen, Aokun and PourNejatian, Nima and Shin, Hoo Chang and Smith, Kaleb E and Parisien, Christopher and Compas, Colin and Martin, Cheryl and Costa, Anthony B and Flores, Mona G and Zhang, Ying and Magoc, Tanja and Harle, Christopher A and Lipori, Gloria and Mitchell, Duane A and Hogan, William R and Shenkman, Elizabeth A and Bian, Jiang and Wu, Yonghui },
journal={npj Digital Medicine},
volume={5},
number={1},
pages={194},
year={2022},
publisher={Nature Publishing Group UK London}
}
```
<h2>Contact</h2>
- Yonghui Wu: [email protected]
- Cheng Peng: [email protected] |
AdversarialRLHF/pythia410m-sft-tldr-allprefix | AdversarialRLHF | 2025-04-28T03:09:02Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"gpt_neox",
"text-generation",
"generated_from_trainer",
"trl",
"sft",
"base_model:EleutherAI/pythia-410m-deduped",
"base_model:finetune:EleutherAI/pythia-410m-deduped",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-04-28T02:41:36Z | ---
base_model: EleutherAI/pythia-410m-deduped
library_name: transformers
model_name: pythia410m-sft-tldr-allprefix
tags:
- generated_from_trainer
- trl
- sft
licence: license
---
# Model Card for pythia410m-sft-tldr-allprefix
This model is a fine-tuned version of [EleutherAI/pythia-410m-deduped](https://huggingface.co/EleutherAI/pythia-410m-deduped).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="AdversarialRLHF/pythia410m-sft-tldr-allprefix", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/muqeeth/adversarial_goodhart_rlhf/runs/Adversarial_goodhart_rlhf_sft_pythia410m_tldr_allprefix)
This model was trained with SFT.
### Framework versions
- TRL: 0.16.0
- Transformers: 4.50.3
- Pytorch: 2.6.0
- Datasets: 3.5.0
- Tokenizers: 0.21.1
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
UFNLP/gatortronS | UFNLP | 2025-04-28T03:07:29Z | 1,226 | 23 | transformers | [
"transformers",
"pytorch",
"megatron-bert",
"arxiv:2305.13523",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2023-06-02T23:53:29Z | ---
license: apache-2.0
---
<h2>GatorTronS overview </h2>
Developed by a joint effort between the University of Florida and NVIDIA, GatorTronS is a clinical language model of 345 million parameters, pre-trained using a BERT architecure implemented in the Megatron package (https://github.com/NVIDIA/Megatron-LM).
GatorTronS is pre-trained using a dataset consisting of:
- 22B synthetic clinical words generated by GatorTronGPT (a Megatron GPT-3 model)
- 6.1B words from PubMed CC0,
- 2.5B words from WikiText,
- 0.5B words of de-identified clinical notes from MIMIC-III
The Github for GatorTronGPT is at : https://github.com/uf-hobi-informatics-lab/GatorTronGPT
This model is converted to Hugginface from : https://catalog.ngc.nvidia.com/orgs/nvidia/teams/clara/models/gatortron_s
<h2>22B synthetic clinical text description</h2>
We sampled the beginning 15 tokens from all sections of the de-identified notes from the MIMIC III database and generated approximately 8 million prompts. We also tried several random seeds in GatorTronGPT to generate multiple documents from one prompt. We controlled GatorTronGPT to generate a maximum length of 512 tokens. We apply GatorTronGPT to generate a total of 22 billion words of synthetic clinical text. Detailed information is provided in the GatorTronGPT paper: https://arxiv.org/abs/2305.13523
<h2>Model variations</h2>
Model | Parameter | Maximum input
--- | --- | ---
[gatortron-base-2k](https://huggingface.co/UFNLP/gatortron-base-2k) | 345 million | 2048
[gatortron-base](https://huggingface.co/UFNLP/gatortron-base) | 345 million | 512
[gatortronS (this model)](https://huggingface.co/UFNLP/gatortronS) | 345 million | 512
[gatortron-medium](https://huggingface.co/UFNLP/gatortron-medium) | 3.9 billion | 512
[gatortron-large](https://huggingface.co/UFNLP/gatortron-large) | 8.9 billion | 512
<h2>How to use</h2>
```python
from transformers import AutoModel, AutoTokenizer, AutoConfig
tokinizer= AutoTokenizer.from_pretrained('UFNLP/gatortronS')
config=AutoConfig.from_pretrained('UFNLP/gatortronS')
mymodel=AutoModel.from_pretrained('UFNLP/gatortronS')
encoded_input=tokinizer("Bone scan: Negative for distant metastasis.", return_tensors="pt")
encoded_output = mymodel(**encoded_input)
print (encoded_output)
```
- An NLP pacakge using GatorTronS for clinical concept extraction (Named Entity Recognition): https://github.com/uf-hobi-informatics-lab/ClinicalTransformerNER
- An NLP pacakge using GatorTronS for Relation Extraction: https://github.com/uf-hobi-informatics-lab/ClinicalTransformerRelationExtraction
- An NLP pacakge using GatorTronS for extraction of social determinants of health (SDoH) from clinical narratives: https://github.com/uf-hobi-informatics-lab/SDoH_SODA
<h2>Citation info</h2>
Peng C, Yang X, Chen A, Smith KE, PourNejatian N, Costa AB, Martin C, Flores MG, Zhang Y, Magoc T, Lipori G, Mitchell DA, Ospina NS, Ahmed MM, Hogan WR, Shenkman EA, Guo Y, Bian J, Wu Y†. A Study of Generative Large Language Model for Medical Research and Healthcare. 2023; https://arxiv.org/abs/2305.13523.
- BibTeX entry
```
@ARTICLE{Peng2023-sm,
title = "A study of generative large language model for medical
research and healthcare",
author = "Peng, Cheng and Yang, Xi and Chen, Aokun and Smith, Kaleb E
and PourNejatian, Nima and Costa, Anthony B and Martin,
Cheryl and Flores, Mona G and Zhang, Ying and Magoc, Tanja
and Lipori, Gloria and Mitchell, Duane A and Ospina, Naykky
S and Ahmed, Mustafa M and Hogan, William R and Shenkman,
Elizabeth A and Guo, Yi and Bian, Jiang and Wu, Yonghui",
month = may,
year = 2023,
copyright = "http://arxiv.org/licenses/nonexclusive-distrib/1.0/",
archivePrefix = "arXiv",
primaryClass = "cs.CL",
eprint = "2305.13523"
}
```
<h2>Contact</h2>
- Yonghui Wu: [email protected]
- Cheng Peng: [email protected] |
airhaohan/Meta-Llama-3-8B-Instruct-Q4_0-GGUF | airhaohan | 2025-04-28T03:06:59Z | 0 | 0 | null | [
"gguf",
"facebook",
"meta",
"pytorch",
"llama",
"llama-3",
"llama-cpp",
"gguf-my-repo",
"text-generation",
"en",
"base_model:meta-llama/Meta-Llama-3-8B-Instruct",
"base_model:quantized:meta-llama/Meta-Llama-3-8B-Instruct",
"license:llama3",
"endpoints_compatible",
"region:us",
"conversational"
] | text-generation | 2025-04-28T03:06:30Z | ---
base_model: meta-llama/Meta-Llama-3-8B-Instruct
language:
- en
license: llama3
pipeline_tag: text-generation
tags:
- facebook
- meta
- pytorch
- llama
- llama-3
- llama-cpp
- gguf-my-repo
new_version: meta-llama/Llama-3.1-8B-Instruct
extra_gated_prompt: "### META LLAMA 3 COMMUNITY LICENSE AGREEMENT\nMeta Llama 3 Version\
\ Release Date: April 18, 2024\n\"Agreement\" means the terms and conditions for\
\ use, reproduction, distribution and modification of the Llama Materials set forth\
\ herein.\n\"Documentation\" means the specifications, manuals and documentation\
\ accompanying Meta Llama 3 distributed by Meta at https://llama.meta.com/get-started/.\n\
\"Licensee\" or \"you\" means you, or your employer or any other person or entity\
\ (if you are entering into this Agreement on such person or entity’s behalf), of\
\ the age required under applicable laws, rules or regulations to provide legal\
\ consent and that has legal authority to bind your employer or such other person\
\ or entity if you are entering in this Agreement on their behalf.\n\"Meta Llama\
\ 3\" means the foundational large language models and software and algorithms,\
\ including machine-learning model code, trained model weights, inference-enabling\
\ code, training-enabling code, fine-tuning enabling code and other elements of\
\ the foregoing distributed by Meta at https://llama.meta.com/llama-downloads.\n\
\"Llama Materials\" means, collectively, Meta’s proprietary Meta Llama 3 and Documentation\
\ (and any portion thereof) made available under this Agreement.\n\"Meta\" or \"\
we\" means Meta Platforms Ireland Limited (if you are located in or, if you are\
\ an entity, your principal place of business is in the EEA or Switzerland) and\
\ Meta Platforms, Inc. (if you are located outside of the EEA or Switzerland).\n\
\ \n1. License Rights and Redistribution.\na. Grant of Rights. You are granted\
\ a non-exclusive, worldwide, non-transferable and royalty-free limited license\
\ under Meta’s intellectual property or other rights owned by Meta embodied in the\
\ Llama Materials to use, reproduce, distribute, copy, create derivative works of,\
\ and make modifications to the Llama Materials.\nb. Redistribution and Use.\ni.\
\ If you distribute or make available the Llama Materials (or any derivative works\
\ thereof), or a product or service that uses any of them, including another AI\
\ model, you shall (A) provide a copy of this Agreement with any such Llama Materials;\
\ and (B) prominently display “Built with Meta Llama 3” on a related website, user\
\ interface, blogpost, about page, or product documentation. If you use the Llama\
\ Materials to create, train, fine tune, or otherwise improve an AI model, which\
\ is distributed or made available, you shall also include “Llama 3” at the beginning\
\ of any such AI model name.\nii. If you receive Llama Materials, or any derivative\
\ works thereof, from a Licensee as part of an integrated end user product, then\
\ Section 2 of this Agreement will not apply to you.\niii. You must retain in all\
\ copies of the Llama Materials that you distribute the following attribution notice\
\ within a “Notice” text file distributed as a part of such copies: “Meta Llama\
\ 3 is licensed under the Meta Llama 3 Community License, Copyright © Meta Platforms,\
\ Inc. All Rights Reserved.”\niv. Your use of the Llama Materials must comply with\
\ applicable laws and regulations (including trade compliance laws and regulations)\
\ and adhere to the Acceptable Use Policy for the Llama Materials (available at\
\ https://llama.meta.com/llama3/use-policy), which is hereby incorporated by reference\
\ into this Agreement.\nv. You will not use the Llama Materials or any output or\
\ results of the Llama Materials to improve any other large language model (excluding\
\ Meta Llama 3 or derivative works thereof).\n2. Additional Commercial Terms. If,\
\ on the Meta Llama 3 version release date, the monthly active users of the products\
\ or services made available by or for Licensee, or Licensee’s affiliates, is greater\
\ than 700 million monthly active users in the preceding calendar month, you must\
\ request a license from Meta, which Meta may grant to you in its sole discretion,\
\ and you are not authorized to exercise any of the rights under this Agreement\
\ unless or until Meta otherwise expressly grants you such rights.\n3. Disclaimer\
\ of Warranty. UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT\
\ AND RESULTS THEREFROM ARE PROVIDED ON AN “AS IS” BASIS, WITHOUT WARRANTIES OF\
\ ANY KIND, AND META DISCLAIMS ALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND IMPLIED,\
\ INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY,\
\ OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE FOR DETERMINING\
\ THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS AND ASSUME\
\ ANY RISKS ASSOCIATED WITH YOUR USE OF THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS.\n\
4. Limitation of Liability. IN NO EVENT WILL META OR ITS AFFILIATES BE LIABLE UNDER\
\ ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, TORT, NEGLIGENCE, PRODUCTS LIABILITY,\
\ OR OTHERWISE, ARISING OUT OF THIS AGREEMENT, FOR ANY LOST PROFITS OR ANY INDIRECT,\
\ SPECIAL, CONSEQUENTIAL, INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES, EVEN IF META\
\ OR ITS AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF ANY OF THE FOREGOING.\n\
5. Intellectual Property.\na. No trademark licenses are granted under this Agreement,\
\ and in connection with the Llama Materials, neither Meta nor Licensee may use\
\ any name or mark owned by or associated with the other or any of its affiliates,\
\ except as required for reasonable and customary use in describing and redistributing\
\ the Llama Materials or as set forth in this Section 5(a). Meta hereby grants you\
\ a license to use “Llama 3” (the “Mark”) solely as required to comply with the\
\ last sentence of Section 1.b.i. You will comply with Meta’s brand guidelines (currently\
\ accessible at https://about.meta.com/brand/resources/meta/company-brand/ ). All\
\ goodwill arising out of your use of the Mark will inure to the benefit of Meta.\n\
b. Subject to Meta’s ownership of Llama Materials and derivatives made by or for\
\ Meta, with respect to any derivative works and modifications of the Llama Materials\
\ that are made by you, as between you and Meta, you are and will be the owner of\
\ such derivative works and modifications.\nc. If you institute litigation or other\
\ proceedings against Meta or any entity (including a cross-claim or counterclaim\
\ in a lawsuit) alleging that the Llama Materials or Meta Llama 3 outputs or results,\
\ or any portion of any of the foregoing, constitutes infringement of intellectual\
\ property or other rights owned or licensable by you, then any licenses granted\
\ to you under this Agreement shall terminate as of the date such litigation or\
\ claim is filed or instituted. You will indemnify and hold harmless Meta from and\
\ against any claim by any third party arising out of or related to your use or\
\ distribution of the Llama Materials.\n6. Term and Termination. The term of this\
\ Agreement will commence upon your acceptance of this Agreement or access to the\
\ Llama Materials and will continue in full force and effect until terminated in\
\ accordance with the terms and conditions herein. Meta may terminate this Agreement\
\ if you are in breach of any term or condition of this Agreement. Upon termination\
\ of this Agreement, you shall delete and cease use of the Llama Materials. Sections\
\ 3, 4 and 7 shall survive the termination of this Agreement.\n7. Governing Law\
\ and Jurisdiction. This Agreement will be governed and construed under the laws\
\ of the State of California without regard to choice of law principles, and the\
\ UN Convention on Contracts for the International Sale of Goods does not apply\
\ to this Agreement. The courts of California shall have exclusive jurisdiction\
\ of any dispute arising out of this Agreement.\n### Meta Llama 3 Acceptable Use\
\ Policy\nMeta is committed to promoting safe and fair use of its tools and features,\
\ including Meta Llama 3. If you access or use Meta Llama 3, you agree to this Acceptable\
\ Use Policy (“Policy”). The most recent copy of this policy can be found at [https://llama.meta.com/llama3/use-policy](https://llama.meta.com/llama3/use-policy)\n\
#### Prohibited Uses\nWe want everyone to use Meta Llama 3 safely and responsibly.\
\ You agree you will not use, or allow others to use, Meta Llama 3 to: 1. Violate\
\ the law or others’ rights, including to:\n 1. Engage in, promote, generate,\
\ contribute to, encourage, plan, incite, or further illegal or unlawful activity\
\ or content, such as:\n 1. Violence or terrorism\n 2. Exploitation\
\ or harm to children, including the solicitation, creation, acquisition, or dissemination\
\ of child exploitative content or failure to report Child Sexual Abuse Material\n\
\ 3. Human trafficking, exploitation, and sexual violence\n 4. The\
\ illegal distribution of information or materials to minors, including obscene\
\ materials, or failure to employ legally required age-gating in connection with\
\ such information or materials.\n 5. Sexual solicitation\n 6. Any\
\ other criminal activity\n 2. Engage in, promote, incite, or facilitate the\
\ harassment, abuse, threatening, or bullying of individuals or groups of individuals\n\
\ 3. Engage in, promote, incite, or facilitate discrimination or other unlawful\
\ or harmful conduct in the provision of employment, employment benefits, credit,\
\ housing, other economic benefits, or other essential goods and services\n 4.\
\ Engage in the unauthorized or unlicensed practice of any profession including,\
\ but not limited to, financial, legal, medical/health, or related professional\
\ practices\n 5. Collect, process, disclose, generate, or infer health, demographic,\
\ or other sensitive personal or private information about individuals without rights\
\ and consents required by applicable laws\n 6. Engage in or facilitate any action\
\ or generate any content that infringes, misappropriates, or otherwise violates\
\ any third-party rights, including the outputs or results of any products or services\
\ using the Llama Materials\n 7. Create, generate, or facilitate the creation\
\ of malicious code, malware, computer viruses or do anything else that could disable,\
\ overburden, interfere with or impair the proper working, integrity, operation\
\ or appearance of a website or computer system\n2. Engage in, promote, incite,\
\ facilitate, or assist in the planning or development of activities that present\
\ a risk of death or bodily harm to individuals, including use of Meta Llama 3 related\
\ to the following:\n 1. Military, warfare, nuclear industries or applications,\
\ espionage, use for materials or activities that are subject to the International\
\ Traffic Arms Regulations (ITAR) maintained by the United States Department of\
\ State\n 2. Guns and illegal weapons (including weapon development)\n 3.\
\ Illegal drugs and regulated/controlled substances\n 4. Operation of critical\
\ infrastructure, transportation technologies, or heavy machinery\n 5. Self-harm\
\ or harm to others, including suicide, cutting, and eating disorders\n 6. Any\
\ content intended to incite or promote violence, abuse, or any infliction of bodily\
\ harm to an individual\n3. Intentionally deceive or mislead others, including use\
\ of Meta Llama 3 related to the following:\n 1. Generating, promoting, or furthering\
\ fraud or the creation or promotion of disinformation\n 2. Generating, promoting,\
\ or furthering defamatory content, including the creation of defamatory statements,\
\ images, or other content\n 3. Generating, promoting, or further distributing\
\ spam\n 4. Impersonating another individual without consent, authorization,\
\ or legal right\n 5. Representing that the use of Meta Llama 3 or outputs are\
\ human-generated\n 6. Generating or facilitating false online engagement, including\
\ fake reviews and other means of fake online engagement\n4. Fail to appropriately\
\ disclose to end users any known dangers of your AI system\nPlease report any violation\
\ of this Policy, software “bug,” or other problems that could lead to a violation\
\ of this Policy through one of the following means:\n * Reporting issues with\
\ the model: [https://github.com/meta-llama/llama3](https://github.com/meta-llama/llama3)\n\
\ * Reporting risky content generated by the model:\n developers.facebook.com/llama_output_feedback\n\
\ * Reporting bugs and security concerns: facebook.com/whitehat/info\n * Reporting\
\ violations of the Acceptable Use Policy or unlicensed uses of Meta Llama 3: [email protected]"
extra_gated_fields:
First Name: text
Last Name: text
Date of birth: date_picker
Country: country
Affiliation: text
geo: ip_location
? By clicking Submit below I accept the terms of the license and acknowledge that
the information I provide will be collected stored processed and shared in accordance
with the Meta Privacy Policy
: checkbox
extra_gated_description: The information you provide will be collected, stored, processed
and shared in accordance with the [Meta Privacy Policy](https://www.facebook.com/privacy/policy/).
extra_gated_button_content: Submit
widget:
- example_title: Hello
messages:
- role: user
content: Hey my name is Julien! How are you?
- example_title: Winter holidays
messages:
- role: system
content: You are a helpful and honest assistant. Please, respond concisely and
truthfully.
- role: user
content: Can you recommend a good destination for Winter holidays?
- example_title: Programming assistant
messages:
- role: system
content: You are a helpful and honest code and programming assistant. Please,
respond concisely and truthfully.
- role: user
content: Write a function that computes the nth fibonacci number.
inference:
parameters:
max_new_tokens: 300
stop:
- <|end_of_text|>
- <|eot_id|>
---
# airhaohan/Meta-Llama-3-8B-Instruct-Q4_0-GGUF
This model was converted to GGUF format from [`meta-llama/Meta-Llama-3-8B-Instruct`](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo airhaohan/Meta-Llama-3-8B-Instruct-Q4_0-GGUF --hf-file meta-llama-3-8b-instruct-q4_0.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo airhaohan/Meta-Llama-3-8B-Instruct-Q4_0-GGUF --hf-file meta-llama-3-8b-instruct-q4_0.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo airhaohan/Meta-Llama-3-8B-Instruct-Q4_0-GGUF --hf-file meta-llama-3-8b-instruct-q4_0.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo airhaohan/Meta-Llama-3-8B-Instruct-Q4_0-GGUF --hf-file meta-llama-3-8b-instruct-q4_0.gguf -c 2048
```
|
UFNLP/gatortron-base | UFNLP | 2025-04-28T03:05:46Z | 76,240 | 52 | transformers | [
"transformers",
"pytorch",
"megatron-bert",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2023-06-02T23:27:12Z | ---
license: apache-2.0
---
<h2>GatorTron-Base overview </h2>
Developed by a joint effort between the University of Florida and NVIDIA, GatorTron-Base is a clinical language model of 345 million parameters, pre-trained using a BERT architecure implemented in the Megatron package (https://github.com/NVIDIA/Megatron-LM).
GatorTron-Base is pre-trained using a dataset consisting of:
- 82B words of de-identified clinical notes from the University of Florida Health System,
- 6.1B words from PubMed CC0,
- 2.5B words from WikiText,
- 0.5B words of de-identified clinical notes from MIMIC-III
The Github for GatorTron is at : https://github.com/uf-hobi-informatics-lab/GatorTron
This model is converted to Hugginface from : https://catalog.ngc.nvidia.com/orgs/nvidia/teams/clara/models/gatortron_og
<h2>Model variations</h2>
Model | Parameter | Maximum input
--- | --- | ---
[gatortron-base-2k](https://huggingface.co/UFNLP/gatortron-base-2k) | 345 million | 2048
[gatortron-base (this model)](https://huggingface.co/UFNLP/gatortron-base) | 345 million | 512
[gatortronS](https://huggingface.co/UFNLP/gatortronS) | 345 million | 512
[gatortron-medium](https://huggingface.co/UFNLP/gatortron-medium) | 3.9 billion | 512
[gatortron-large](https://huggingface.co/UFNLP/gatortron-large) | 8.9 billion | 512
<h2>How to use</h2>
```python
from transformers import AutoModel, AutoTokenizer, AutoConfig
tokenizer= AutoTokenizer.from_pretrained('UFNLP/gatortron-base')
config=AutoConfig.from_pretrained('UFNLP/gatortron-base')
mymodel=AutoModel.from_pretrained('UFNLP/gatortron-base')
encoded_input=tokenizer("Bone scan: Negative for distant metastasis.", return_tensors="pt")
encoded_output = mymodel(**encoded_input)
print (encoded_output)
```
- An NLP pacakge using GatorTron for clinical concept extraction (Named Entity Recognition): https://github.com/uf-hobi-informatics-lab/ClinicalTransformerNER
- An NLP pacakge using GatorTron for Relation Extraction: https://github.com/uf-hobi-informatics-lab/ClinicalTransformerRelationExtraction
- An NLP pacakge using GatorTron for extraction of social determinants of health (SDoH) from clinical narratives: https://github.com/uf-hobi-informatics-lab/SDoH_SODA
<h2>De-identification</h2>
We applied a de-identification system to remove protected health information (PHI) from clinical text. We adopted the safe-harbor method to identify 18 PHI categories defined in the Health Insurance Portability and Accountability Act (HIPAA) and replaced them with dummy strings (e.g., replace people’s names into [\*\*NAME\*\*]).
The de-identifiation system is described in:
Yang X, Lyu T, Li Q, Lee C-Y, Bian J, Hogan WR, Wu Y†. A study of deep learning methods for de-identification of clinical notes in cross-institute settings. BMC Med Inform Decis Mak. 2020 Dec 5;19(5):232. https://www.ncbi.nlm.nih.gov/pubmed/31801524.
<h2>Citation info</h2>
Yang X, Chen A, PourNejatian N, Shin HC, Smith KE, Parisien C, Compas C, Martin C, Costa AB, Flores MG, Zhang Y, Magoc T, Harle CA, Lipori G, Mitchell DA, Hogan WR, Shenkman EA, Bian J, Wu Y†. A large language model for electronic health records. Npj Digit Med. Nature Publishing Group; . 2022 Dec 26;5(1):1–9. https://www.nature.com/articles/s41746-022-00742-2
- BibTeX entry
```
@article{yang2022large,
title={A large language model for electronic health records},
author={Yang, Xi and Chen, Aokun and PourNejatian, Nima and Shin, Hoo Chang and Smith, Kaleb E and Parisien, Christopher and Compas, Colin and Martin, Cheryl and Costa, Anthony B and Flores, Mona G and Zhang, Ying and Magoc, Tanja and Harle, Christopher A and Lipori, Gloria and Mitchell, Duane A and Hogan, William R and Shenkman, Elizabeth A and Bian, Jiang and Wu, Yonghui },
journal={npj Digital Medicine},
volume={5},
number={1},
pages={194},
year={2022},
publisher={Nature Publishing Group UK London}
}
```
<h2>Contact</h2>
- Yonghui Wu: [email protected]
- Cheng Peng: [email protected] |
nvuIvY8HeL/hdhafdfgs | nvuIvY8HeL | 2025-04-28T03:04:24Z | 0 | 0 | null | [
"license:apache-2.0",
"region:us"
] | null | 2025-04-28T03:04:23Z | ---
license: apache-2.0
---
|
kylasibyl/kylasiby | kylasibyl | 2025-04-28T03:02:49Z | 0 | 0 | null | [
"license:bigscience-openrail-m",
"region:us"
] | null | 2025-04-28T03:02:49Z | ---
license: bigscience-openrail-m
---
|
VishnuT/llama3_qlora_merged_phase_2.1 | VishnuT | 2025-04-28T03:02:22Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-04-28T02:59:29Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
PaccoTan/CountdownDPO | PaccoTan | 2025-04-28T03:01:10Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"base_model:unsloth/DeepSeek-R1-Distill-Llama-8B-unsloth-bnb-4bit",
"base_model:finetune:unsloth/DeepSeek-R1-Distill-Llama-8B-unsloth-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-04-28T03:01:01Z | ---
base_model: unsloth/DeepSeek-R1-Distill-Llama-8B-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** PaccoTan
- **License:** apache-2.0
- **Finetuned from model :** unsloth/DeepSeek-R1-Distill-Llama-8B-unsloth-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
samiya-hijab-tiktok-viral-video-link/FULL.VIDEO.Samiya-Hijab.Go.Viral.Video.Original.Link | samiya-hijab-tiktok-viral-video-link | 2025-04-28T02:59:31Z | 0 | 0 | null | [
"region:us"
] | null | 2025-04-28T02:58:34Z | <animated-image data-catalyst=""><a href="https://tinyurl.com/24tm3bsa?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
Samiya Hijab Viral Video Trending: watch, Full Story, Facts & Public Reaction
Table of content
Discover the real story behind the Samiya Hijab viral video that's trending across social media. What happened, why it's viral, and public response – all here. |
rtl-llm/qwen-32b-FirRTL | rtl-llm | 2025-04-28T02:56:10Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-04-28T02:41:58Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
milestracy/milestracy | milestracy | 2025-04-28T02:52:31Z | 0 | 0 | null | [
"license:bigscience-openrail-m",
"region:us"
] | null | 2025-04-28T02:52:31Z | ---
license: bigscience-openrail-m
---
|
luodian/bge-m3 | luodian | 2025-04-28T02:52:23Z | 0 | 0 | sentence-transformers | [
"sentence-transformers",
"pytorch",
"onnx",
"xlm-roberta",
"feature-extraction",
"sentence-similarity",
"arxiv:2402.03216",
"arxiv:2004.04906",
"arxiv:2106.14807",
"arxiv:2107.05720",
"arxiv:2004.12832",
"license:mit",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] | sentence-similarity | 2025-04-28T02:04:53Z | ---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
license: mit
---
For more details please refer to our github repo: https://github.com/FlagOpen/FlagEmbedding
# BGE-M3 ([paper](https://arxiv.org/pdf/2402.03216.pdf), [code](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3))
In this project, we introduce BGE-M3, which is distinguished for its versatility in Multi-Functionality, Multi-Linguality, and Multi-Granularity.
- Multi-Functionality: It can simultaneously perform the three common retrieval functionalities of embedding model: dense retrieval, multi-vector retrieval, and sparse retrieval.
- Multi-Linguality: It can support more than 100 working languages.
- Multi-Granularity: It is able to process inputs of different granularities, spanning from short sentences to long documents of up to 8192 tokens.
**Some suggestions for retrieval pipeline in RAG**
We recommend to use the following pipeline: hybrid retrieval + re-ranking.
- Hybrid retrieval leverages the strengths of various methods, offering higher accuracy and stronger generalization capabilities.
A classic example: using both embedding retrieval and the BM25 algorithm.
Now, you can try to use BGE-M3, which supports both embedding and sparse retrieval.
This allows you to obtain token weights (similar to the BM25) without any additional cost when generate dense embeddings.
To use hybrid retrieval, you can refer to [Vespa](https://github.com/vespa-engine/pyvespa/blob/master/docs/sphinx/source/examples/mother-of-all-embedding-models-cloud.ipynb
) and [Milvus](https://github.com/milvus-io/pymilvus/blob/master/examples/hello_hybrid_sparse_dense.py).
- As cross-encoder models, re-ranker demonstrates higher accuracy than bi-encoder embedding model.
Utilizing the re-ranking model (e.g., [bge-reranker](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker), [bge-reranker-v2](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_reranker)) after retrieval can further filter the selected text.
## News:
- 2024/7/1: **We update the MIRACL evaluation results of BGE-M3**. To reproduce the new results, you can refer to: [bge-m3_miracl_2cr](https://huggingface.co/datasets/hanhainebula/bge-m3_miracl_2cr). We have also updated our [paper](https://arxiv.org/pdf/2402.03216) on arXiv.
<details>
<summary> Details </summary>
The previous test results were lower because we mistakenly removed the passages that have the same id as the query from the search results. After correcting this mistake, the overall performance of BGE-M3 on MIRACL is higher than the previous results, but the experimental conclusion remains unchanged. The other results are not affected by this mistake. To reproduce the previous lower results, you need to add the `--remove-query` parameter when using `pyserini.search.faiss` or `pyserini.search.lucene` to search the passages.
</details>
- 2024/3/20: **Thanks Milvus team!** Now you can use hybrid retrieval of bge-m3 in Milvus: [pymilvus/examples
/hello_hybrid_sparse_dense.py](https://github.com/milvus-io/pymilvus/blob/master/examples/hello_hybrid_sparse_dense.py).
- 2024/3/8: **Thanks for the [experimental results](https://towardsdatascience.com/openai-vs-open-source-multilingual-embedding-models-e5ccb7c90f05) from @[Yannael](https://huggingface.co/Yannael). In this benchmark, BGE-M3 achieves top performance in both English and other languages, surpassing models such as OpenAI.**
- 2024/3/2: Release unified fine-tuning [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/unified_finetune) and [data](https://huggingface.co/datasets/Shitao/bge-m3-data)
- 2024/2/6: We release the [MLDR](https://huggingface.co/datasets/Shitao/MLDR) (a long document retrieval dataset covering 13 languages) and [evaluation pipeline](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB/MLDR).
- 2024/2/1: **Thanks for the excellent tool from Vespa.** You can easily use multiple modes of BGE-M3 following this [notebook](https://github.com/vespa-engine/pyvespa/blob/master/docs/sphinx/source/examples/mother-of-all-embedding-models-cloud.ipynb)
## Specs
- Model
| Model Name | Dimension | Sequence Length | Introduction |
|:----:|:---:|:---:|:---:|
| [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) | 1024 | 8192 | multilingual; unified fine-tuning (dense, sparse, and colbert) from bge-m3-unsupervised|
| [BAAI/bge-m3-unsupervised](https://huggingface.co/BAAI/bge-m3-unsupervised) | 1024 | 8192 | multilingual; contrastive learning from bge-m3-retromae |
| [BAAI/bge-m3-retromae](https://huggingface.co/BAAI/bge-m3-retromae) | -- | 8192 | multilingual; extend the max_length of [xlm-roberta](https://huggingface.co/FacebookAI/xlm-roberta-large) to 8192 and further pretrained via [retromae](https://github.com/staoxiao/RetroMAE)|
| [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | 1024 | 512 | English model |
| [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | 768 | 512 | English model |
| [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | 384 | 512 | English model |
- Data
| Dataset | Introduction |
|:----------------------------------------------------------:|:-------------------------------------------------:|
| [MLDR](https://huggingface.co/datasets/Shitao/MLDR) | Docuemtn Retrieval Dataset, covering 13 languages |
| [bge-m3-data](https://huggingface.co/datasets/Shitao/bge-m3-data) | Fine-tuning data used by bge-m3 |
## FAQ
**1. Introduction for different retrieval methods**
- Dense retrieval: map the text into a single embedding, e.g., [DPR](https://arxiv.org/abs/2004.04906), [BGE-v1.5](https://github.com/FlagOpen/FlagEmbedding)
- Sparse retrieval (lexical matching): a vector of size equal to the vocabulary, with the majority of positions set to zero, calculating a weight only for tokens present in the text. e.g., BM25, [unicoil](https://arxiv.org/pdf/2106.14807.pdf), and [splade](https://arxiv.org/abs/2107.05720)
- Multi-vector retrieval: use multiple vectors to represent a text, e.g., [ColBERT](https://arxiv.org/abs/2004.12832).
**2. How to use BGE-M3 in other projects?**
For embedding retrieval, you can employ the BGE-M3 model using the same approach as BGE.
The only difference is that the BGE-M3 model no longer requires adding instructions to the queries.
For hybrid retrieval, you can use [Vespa](https://github.com/vespa-engine/pyvespa/blob/master/docs/sphinx/source/examples/mother-of-all-embedding-models-cloud.ipynb
) and [Milvus](https://github.com/milvus-io/pymilvus/blob/master/examples/hello_hybrid_sparse_dense.py).
**3. How to fine-tune bge-M3 model?**
You can follow the common in this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune)
to fine-tune the dense embedding.
If you want to fine-tune all embedding function of m3 (dense, sparse and colbert), you can refer to the [unified_fine-tuning example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/unified_finetune)
## Usage
Install:
```
git clone https://github.com/FlagOpen/FlagEmbedding.git
cd FlagEmbedding
pip install -e .
```
or:
```
pip install -U FlagEmbedding
```
### Generate Embedding for text
- Dense Embedding
```python
from FlagEmbedding import BGEM3FlagModel
model = BGEM3FlagModel('BAAI/bge-m3',
use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
sentences_1 = ["What is BGE M3?", "Defination of BM25"]
sentences_2 = ["BGE M3 is an embedding model supporting dense retrieval, lexical matching and multi-vector interaction.",
"BM25 is a bag-of-words retrieval function that ranks a set of documents based on the query terms appearing in each document"]
embeddings_1 = model.encode(sentences_1,
batch_size=12,
max_length=8192, # If you don't need such a long length, you can set a smaller value to speed up the encoding process.
)['dense_vecs']
embeddings_2 = model.encode(sentences_2)['dense_vecs']
similarity = embeddings_1 @ embeddings_2.T
print(similarity)
# [[0.6265, 0.3477], [0.3499, 0.678 ]]
```
You also can use sentence-transformers and huggingface transformers to generate dense embeddings.
Refer to [baai_general_embedding](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/baai_general_embedding#usage) for details.
- Sparse Embedding (Lexical Weight)
```python
from FlagEmbedding import BGEM3FlagModel
model = BGEM3FlagModel('BAAI/bge-m3', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
sentences_1 = ["What is BGE M3?", "Defination of BM25"]
sentences_2 = ["BGE M3 is an embedding model supporting dense retrieval, lexical matching and multi-vector interaction.",
"BM25 is a bag-of-words retrieval function that ranks a set of documents based on the query terms appearing in each document"]
output_1 = model.encode(sentences_1, return_dense=True, return_sparse=True, return_colbert_vecs=False)
output_2 = model.encode(sentences_2, return_dense=True, return_sparse=True, return_colbert_vecs=False)
# you can see the weight for each token:
print(model.convert_id_to_token(output_1['lexical_weights']))
# [{'What': 0.08356, 'is': 0.0814, 'B': 0.1296, 'GE': 0.252, 'M': 0.1702, '3': 0.2695, '?': 0.04092},
# {'De': 0.05005, 'fin': 0.1368, 'ation': 0.04498, 'of': 0.0633, 'BM': 0.2515, '25': 0.3335}]
# compute the scores via lexical mathcing
lexical_scores = model.compute_lexical_matching_score(output_1['lexical_weights'][0], output_2['lexical_weights'][0])
print(lexical_scores)
# 0.19554901123046875
print(model.compute_lexical_matching_score(output_1['lexical_weights'][0], output_1['lexical_weights'][1]))
# 0.0
```
- Multi-Vector (ColBERT)
```python
from FlagEmbedding import BGEM3FlagModel
model = BGEM3FlagModel('BAAI/bge-m3', use_fp16=True)
sentences_1 = ["What is BGE M3?", "Defination of BM25"]
sentences_2 = ["BGE M3 is an embedding model supporting dense retrieval, lexical matching and multi-vector interaction.",
"BM25 is a bag-of-words retrieval function that ranks a set of documents based on the query terms appearing in each document"]
output_1 = model.encode(sentences_1, return_dense=True, return_sparse=True, return_colbert_vecs=True)
output_2 = model.encode(sentences_2, return_dense=True, return_sparse=True, return_colbert_vecs=True)
print(model.colbert_score(output_1['colbert_vecs'][0], output_2['colbert_vecs'][0]))
print(model.colbert_score(output_1['colbert_vecs'][0], output_2['colbert_vecs'][1]))
# 0.7797
# 0.4620
```
### Compute score for text pairs
Input a list of text pairs, you can get the scores computed by different methods.
```python
from FlagEmbedding import BGEM3FlagModel
model = BGEM3FlagModel('BAAI/bge-m3', use_fp16=True)
sentences_1 = ["What is BGE M3?", "Defination of BM25"]
sentences_2 = ["BGE M3 is an embedding model supporting dense retrieval, lexical matching and multi-vector interaction.",
"BM25 is a bag-of-words retrieval function that ranks a set of documents based on the query terms appearing in each document"]
sentence_pairs = [[i,j] for i in sentences_1 for j in sentences_2]
print(model.compute_score(sentence_pairs,
max_passage_length=128, # a smaller max length leads to a lower latency
weights_for_different_modes=[0.4, 0.2, 0.4])) # weights_for_different_modes(w) is used to do weighted sum: w[0]*dense_score + w[1]*sparse_score + w[2]*colbert_score
# {
# 'colbert': [0.7796499729156494, 0.4621465802192688, 0.4523794651031494, 0.7898575067520142],
# 'sparse': [0.195556640625, 0.00879669189453125, 0.0, 0.1802978515625],
# 'dense': [0.6259765625, 0.347412109375, 0.349853515625, 0.67822265625],
# 'sparse+dense': [0.482503205537796, 0.23454029858112335, 0.2332356721162796, 0.5122477412223816],
# 'colbert+sparse+dense': [0.6013619303703308, 0.3255828022956848, 0.32089319825172424, 0.6232916116714478]
# }
```
## Evaluation
We provide the evaluation script for [MKQA](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB/MKQA) and [MLDR](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB/MLDR)
### Benchmarks from the open-source community

The BGE-M3 model emerged as the top performer on this benchmark (OAI is short for OpenAI).
For more details, please refer to the [article](https://towardsdatascience.com/openai-vs-open-source-multilingual-embedding-models-e5ccb7c90f05) and [Github Repo](https://github.com/Yannael/multilingual-embeddings)
### Our results
- Multilingual (Miracl dataset)

- Cross-lingual (MKQA dataset)

- Long Document Retrieval
- MLDR:

Please note that [MLDR](https://huggingface.co/datasets/Shitao/MLDR) is a document retrieval dataset we constructed via LLM,
covering 13 languages, including test set, validation set, and training set.
We utilized the training set from MLDR to enhance the model's long document retrieval capabilities.
Therefore, comparing baselines with `Dense w.o.long`(fine-tuning without long document dataset) is more equitable.
Additionally, this long document retrieval dataset will be open-sourced to address the current lack of open-source multilingual long text retrieval datasets.
We believe that this data will be helpful for the open-source community in training document retrieval models.
- NarritiveQA:

- Comparison with BM25
We utilized Pyserini to implement BM25, and the test results can be reproduced by this [script](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB/MLDR#bm25-baseline).
We tested BM25 using two different tokenizers:
one using Lucene Analyzer and the other using the same tokenizer as M3 (i.e., the tokenizer of xlm-roberta).
The results indicate that BM25 remains a competitive baseline,
especially in long document retrieval.

## Training
- Self-knowledge Distillation: combining multiple outputs from different
retrieval modes as reward signal to enhance the performance of single mode(especially for sparse retrieval and multi-vec(colbert) retrival)
- Efficient Batching: Improve the efficiency when fine-tuning on long text.
The small-batch strategy is simple but effective, which also can used to fine-tune large embedding model.
- MCLS: A simple method to improve the performance on long text without fine-tuning.
If you have no enough resource to fine-tuning model with long text, the method is useful.
Refer to our [report](https://arxiv.org/pdf/2402.03216.pdf) for more details.
## Acknowledgement
Thanks to the authors of open-sourced datasets, including Miracl, MKQA, NarritiveQA, etc.
Thanks to the open-sourced libraries like [Tevatron](https://github.com/texttron/tevatron), [Pyserini](https://github.com/castorini/pyserini).
## Citation
If you find this repository useful, please consider giving a star :star: and citation
```
@misc{bge-m3,
title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation},
author={Jianlv Chen and Shitao Xiao and Peitian Zhang and Kun Luo and Defu Lian and Zheng Liu},
year={2024},
eprint={2402.03216},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|
Aluba/Comeback_v1_2 | Aluba | 2025-04-28T02:49:27Z | 0 | 0 | null | [
"safetensors",
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] | any-to-any | 2025-04-28T02:30:53Z | ---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
airhaohan/Meta-Llama-3-8B-Instruct-Q8_0-GGUF | airhaohan | 2025-04-28T02:49:07Z | 0 | 0 | null | [
"gguf",
"facebook",
"meta",
"pytorch",
"llama",
"llama-3",
"llama-cpp",
"gguf-my-repo",
"text-generation",
"en",
"base_model:meta-llama/Meta-Llama-3-8B-Instruct",
"base_model:quantized:meta-llama/Meta-Llama-3-8B-Instruct",
"license:llama3",
"endpoints_compatible",
"region:us",
"conversational"
] | text-generation | 2025-04-28T02:48:31Z | ---
base_model: meta-llama/Meta-Llama-3-8B-Instruct
language:
- en
license: llama3
pipeline_tag: text-generation
tags:
- facebook
- meta
- pytorch
- llama
- llama-3
- llama-cpp
- gguf-my-repo
new_version: meta-llama/Llama-3.1-8B-Instruct
extra_gated_prompt: "### META LLAMA 3 COMMUNITY LICENSE AGREEMENT\nMeta Llama 3 Version\
\ Release Date: April 18, 2024\n\"Agreement\" means the terms and conditions for\
\ use, reproduction, distribution and modification of the Llama Materials set forth\
\ herein.\n\"Documentation\" means the specifications, manuals and documentation\
\ accompanying Meta Llama 3 distributed by Meta at https://llama.meta.com/get-started/.\n\
\"Licensee\" or \"you\" means you, or your employer or any other person or entity\
\ (if you are entering into this Agreement on such person or entity’s behalf), of\
\ the age required under applicable laws, rules or regulations to provide legal\
\ consent and that has legal authority to bind your employer or such other person\
\ or entity if you are entering in this Agreement on their behalf.\n\"Meta Llama\
\ 3\" means the foundational large language models and software and algorithms,\
\ including machine-learning model code, trained model weights, inference-enabling\
\ code, training-enabling code, fine-tuning enabling code and other elements of\
\ the foregoing distributed by Meta at https://llama.meta.com/llama-downloads.\n\
\"Llama Materials\" means, collectively, Meta’s proprietary Meta Llama 3 and Documentation\
\ (and any portion thereof) made available under this Agreement.\n\"Meta\" or \"\
we\" means Meta Platforms Ireland Limited (if you are located in or, if you are\
\ an entity, your principal place of business is in the EEA or Switzerland) and\
\ Meta Platforms, Inc. (if you are located outside of the EEA or Switzerland).\n\
\ \n1. License Rights and Redistribution.\na. Grant of Rights. You are granted\
\ a non-exclusive, worldwide, non-transferable and royalty-free limited license\
\ under Meta’s intellectual property or other rights owned by Meta embodied in the\
\ Llama Materials to use, reproduce, distribute, copy, create derivative works of,\
\ and make modifications to the Llama Materials.\nb. Redistribution and Use.\ni.\
\ If you distribute or make available the Llama Materials (or any derivative works\
\ thereof), or a product or service that uses any of them, including another AI\
\ model, you shall (A) provide a copy of this Agreement with any such Llama Materials;\
\ and (B) prominently display “Built with Meta Llama 3” on a related website, user\
\ interface, blogpost, about page, or product documentation. If you use the Llama\
\ Materials to create, train, fine tune, or otherwise improve an AI model, which\
\ is distributed or made available, you shall also include “Llama 3” at the beginning\
\ of any such AI model name.\nii. If you receive Llama Materials, or any derivative\
\ works thereof, from a Licensee as part of an integrated end user product, then\
\ Section 2 of this Agreement will not apply to you.\niii. You must retain in all\
\ copies of the Llama Materials that you distribute the following attribution notice\
\ within a “Notice” text file distributed as a part of such copies: “Meta Llama\
\ 3 is licensed under the Meta Llama 3 Community License, Copyright © Meta Platforms,\
\ Inc. All Rights Reserved.”\niv. Your use of the Llama Materials must comply with\
\ applicable laws and regulations (including trade compliance laws and regulations)\
\ and adhere to the Acceptable Use Policy for the Llama Materials (available at\
\ https://llama.meta.com/llama3/use-policy), which is hereby incorporated by reference\
\ into this Agreement.\nv. You will not use the Llama Materials or any output or\
\ results of the Llama Materials to improve any other large language model (excluding\
\ Meta Llama 3 or derivative works thereof).\n2. Additional Commercial Terms. If,\
\ on the Meta Llama 3 version release date, the monthly active users of the products\
\ or services made available by or for Licensee, or Licensee’s affiliates, is greater\
\ than 700 million monthly active users in the preceding calendar month, you must\
\ request a license from Meta, which Meta may grant to you in its sole discretion,\
\ and you are not authorized to exercise any of the rights under this Agreement\
\ unless or until Meta otherwise expressly grants you such rights.\n3. Disclaimer\
\ of Warranty. UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT\
\ AND RESULTS THEREFROM ARE PROVIDED ON AN “AS IS” BASIS, WITHOUT WARRANTIES OF\
\ ANY KIND, AND META DISCLAIMS ALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND IMPLIED,\
\ INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY,\
\ OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE FOR DETERMINING\
\ THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS AND ASSUME\
\ ANY RISKS ASSOCIATED WITH YOUR USE OF THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS.\n\
4. Limitation of Liability. IN NO EVENT WILL META OR ITS AFFILIATES BE LIABLE UNDER\
\ ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, TORT, NEGLIGENCE, PRODUCTS LIABILITY,\
\ OR OTHERWISE, ARISING OUT OF THIS AGREEMENT, FOR ANY LOST PROFITS OR ANY INDIRECT,\
\ SPECIAL, CONSEQUENTIAL, INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES, EVEN IF META\
\ OR ITS AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF ANY OF THE FOREGOING.\n\
5. Intellectual Property.\na. No trademark licenses are granted under this Agreement,\
\ and in connection with the Llama Materials, neither Meta nor Licensee may use\
\ any name or mark owned by or associated with the other or any of its affiliates,\
\ except as required for reasonable and customary use in describing and redistributing\
\ the Llama Materials or as set forth in this Section 5(a). Meta hereby grants you\
\ a license to use “Llama 3” (the “Mark”) solely as required to comply with the\
\ last sentence of Section 1.b.i. You will comply with Meta’s brand guidelines (currently\
\ accessible at https://about.meta.com/brand/resources/meta/company-brand/ ). All\
\ goodwill arising out of your use of the Mark will inure to the benefit of Meta.\n\
b. Subject to Meta’s ownership of Llama Materials and derivatives made by or for\
\ Meta, with respect to any derivative works and modifications of the Llama Materials\
\ that are made by you, as between you and Meta, you are and will be the owner of\
\ such derivative works and modifications.\nc. If you institute litigation or other\
\ proceedings against Meta or any entity (including a cross-claim or counterclaim\
\ in a lawsuit) alleging that the Llama Materials or Meta Llama 3 outputs or results,\
\ or any portion of any of the foregoing, constitutes infringement of intellectual\
\ property or other rights owned or licensable by you, then any licenses granted\
\ to you under this Agreement shall terminate as of the date such litigation or\
\ claim is filed or instituted. You will indemnify and hold harmless Meta from and\
\ against any claim by any third party arising out of or related to your use or\
\ distribution of the Llama Materials.\n6. Term and Termination. The term of this\
\ Agreement will commence upon your acceptance of this Agreement or access to the\
\ Llama Materials and will continue in full force and effect until terminated in\
\ accordance with the terms and conditions herein. Meta may terminate this Agreement\
\ if you are in breach of any term or condition of this Agreement. Upon termination\
\ of this Agreement, you shall delete and cease use of the Llama Materials. Sections\
\ 3, 4 and 7 shall survive the termination of this Agreement.\n7. Governing Law\
\ and Jurisdiction. This Agreement will be governed and construed under the laws\
\ of the State of California without regard to choice of law principles, and the\
\ UN Convention on Contracts for the International Sale of Goods does not apply\
\ to this Agreement. The courts of California shall have exclusive jurisdiction\
\ of any dispute arising out of this Agreement.\n### Meta Llama 3 Acceptable Use\
\ Policy\nMeta is committed to promoting safe and fair use of its tools and features,\
\ including Meta Llama 3. If you access or use Meta Llama 3, you agree to this Acceptable\
\ Use Policy (“Policy”). The most recent copy of this policy can be found at [https://llama.meta.com/llama3/use-policy](https://llama.meta.com/llama3/use-policy)\n\
#### Prohibited Uses\nWe want everyone to use Meta Llama 3 safely and responsibly.\
\ You agree you will not use, or allow others to use, Meta Llama 3 to: 1. Violate\
\ the law or others’ rights, including to:\n 1. Engage in, promote, generate,\
\ contribute to, encourage, plan, incite, or further illegal or unlawful activity\
\ or content, such as:\n 1. Violence or terrorism\n 2. Exploitation\
\ or harm to children, including the solicitation, creation, acquisition, or dissemination\
\ of child exploitative content or failure to report Child Sexual Abuse Material\n\
\ 3. Human trafficking, exploitation, and sexual violence\n 4. The\
\ illegal distribution of information or materials to minors, including obscene\
\ materials, or failure to employ legally required age-gating in connection with\
\ such information or materials.\n 5. Sexual solicitation\n 6. Any\
\ other criminal activity\n 2. Engage in, promote, incite, or facilitate the\
\ harassment, abuse, threatening, or bullying of individuals or groups of individuals\n\
\ 3. Engage in, promote, incite, or facilitate discrimination or other unlawful\
\ or harmful conduct in the provision of employment, employment benefits, credit,\
\ housing, other economic benefits, or other essential goods and services\n 4.\
\ Engage in the unauthorized or unlicensed practice of any profession including,\
\ but not limited to, financial, legal, medical/health, or related professional\
\ practices\n 5. Collect, process, disclose, generate, or infer health, demographic,\
\ or other sensitive personal or private information about individuals without rights\
\ and consents required by applicable laws\n 6. Engage in or facilitate any action\
\ or generate any content that infringes, misappropriates, or otherwise violates\
\ any third-party rights, including the outputs or results of any products or services\
\ using the Llama Materials\n 7. Create, generate, or facilitate the creation\
\ of malicious code, malware, computer viruses or do anything else that could disable,\
\ overburden, interfere with or impair the proper working, integrity, operation\
\ or appearance of a website or computer system\n2. Engage in, promote, incite,\
\ facilitate, or assist in the planning or development of activities that present\
\ a risk of death or bodily harm to individuals, including use of Meta Llama 3 related\
\ to the following:\n 1. Military, warfare, nuclear industries or applications,\
\ espionage, use for materials or activities that are subject to the International\
\ Traffic Arms Regulations (ITAR) maintained by the United States Department of\
\ State\n 2. Guns and illegal weapons (including weapon development)\n 3.\
\ Illegal drugs and regulated/controlled substances\n 4. Operation of critical\
\ infrastructure, transportation technologies, or heavy machinery\n 5. Self-harm\
\ or harm to others, including suicide, cutting, and eating disorders\n 6. Any\
\ content intended to incite or promote violence, abuse, or any infliction of bodily\
\ harm to an individual\n3. Intentionally deceive or mislead others, including use\
\ of Meta Llama 3 related to the following:\n 1. Generating, promoting, or furthering\
\ fraud or the creation or promotion of disinformation\n 2. Generating, promoting,\
\ or furthering defamatory content, including the creation of defamatory statements,\
\ images, or other content\n 3. Generating, promoting, or further distributing\
\ spam\n 4. Impersonating another individual without consent, authorization,\
\ or legal right\n 5. Representing that the use of Meta Llama 3 or outputs are\
\ human-generated\n 6. Generating or facilitating false online engagement, including\
\ fake reviews and other means of fake online engagement\n4. Fail to appropriately\
\ disclose to end users any known dangers of your AI system\nPlease report any violation\
\ of this Policy, software “bug,” or other problems that could lead to a violation\
\ of this Policy through one of the following means:\n * Reporting issues with\
\ the model: [https://github.com/meta-llama/llama3](https://github.com/meta-llama/llama3)\n\
\ * Reporting risky content generated by the model:\n developers.facebook.com/llama_output_feedback\n\
\ * Reporting bugs and security concerns: facebook.com/whitehat/info\n * Reporting\
\ violations of the Acceptable Use Policy or unlicensed uses of Meta Llama 3: [email protected]"
extra_gated_fields:
First Name: text
Last Name: text
Date of birth: date_picker
Country: country
Affiliation: text
geo: ip_location
? By clicking Submit below I accept the terms of the license and acknowledge that
the information I provide will be collected stored processed and shared in accordance
with the Meta Privacy Policy
: checkbox
extra_gated_description: The information you provide will be collected, stored, processed
and shared in accordance with the [Meta Privacy Policy](https://www.facebook.com/privacy/policy/).
extra_gated_button_content: Submit
widget:
- example_title: Hello
messages:
- role: user
content: Hey my name is Julien! How are you?
- example_title: Winter holidays
messages:
- role: system
content: You are a helpful and honest assistant. Please, respond concisely and
truthfully.
- role: user
content: Can you recommend a good destination for Winter holidays?
- example_title: Programming assistant
messages:
- role: system
content: You are a helpful and honest code and programming assistant. Please,
respond concisely and truthfully.
- role: user
content: Write a function that computes the nth fibonacci number.
inference:
parameters:
max_new_tokens: 300
stop:
- <|end_of_text|>
- <|eot_id|>
---
# airhaohan/Meta-Llama-3-8B-Instruct-Q8_0-GGUF
This model was converted to GGUF format from [`meta-llama/Meta-Llama-3-8B-Instruct`](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo airhaohan/Meta-Llama-3-8B-Instruct-Q8_0-GGUF --hf-file meta-llama-3-8b-instruct-q8_0.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo airhaohan/Meta-Llama-3-8B-Instruct-Q8_0-GGUF --hf-file meta-llama-3-8b-instruct-q8_0.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo airhaohan/Meta-Llama-3-8B-Instruct-Q8_0-GGUF --hf-file meta-llama-3-8b-instruct-q8_0.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo airhaohan/Meta-Llama-3-8B-Instruct-Q8_0-GGUF --hf-file meta-llama-3-8b-instruct-q8_0.gguf -c 2048
```
|
Subsets and Splits