modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-06-22 12:28:33
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
492 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-06-22 12:28:03
card
stringlengths
11
1.01M
luckeciano/Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskToken-0.1_3982
luckeciano
2025-06-22T06:26:50Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "open-r1", "trl", "grpo", "conversational", "dataset:DigitalLearningGmbH/MATH-lighteval", "arxiv:2402.03300", "base_model:Qwen/Qwen2.5-Math-7B", "base_model:finetune:Qwen/Qwen2.5-Math-7B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-22T01:01:55Z
--- base_model: Qwen/Qwen2.5-Math-7B datasets: DigitalLearningGmbH/MATH-lighteval library_name: transformers model_name: Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskToken-0.1_3982 tags: - generated_from_trainer - open-r1 - trl - grpo licence: license --- # Model Card for Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskToken-0.1_3982 This model is a fine-tuned version of [Qwen/Qwen2.5-Math-7B](https://huggingface.co/Qwen/Qwen2.5-Math-7B) on the [DigitalLearningGmbH/MATH-lighteval](https://huggingface.co/datasets/DigitalLearningGmbH/MATH-lighteval) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="luckeciano/Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskToken-0.1_3982", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/max-ent-llms/PolicyGradientStability/runs/3icu3ugu) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.16.0.dev0 - Transformers: 4.49.0 - Pytorch: 2.6.0 - Datasets: 3.4.1 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouรฉdec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
stormersatin/Kiyo.y.polancoas.en.el.video.de.luna.bella.Omg.viral
stormersatin
2025-06-22T06:24:34Z
0
0
adapter-transformers
[ "adapter-transformers", "chemistry", "ar", "dataset:open-r1/Mixture-of-Thoughts", "base_model:deepseek-ai/DeepSeek-R1-0528", "base_model:adapter:deepseek-ai/DeepSeek-R1-0528", "license:apache-2.0", "region:us" ]
null
2025-06-22T06:20:59Z
--- license: apache-2.0 datasets: - open-r1/Mixture-of-Thoughts language: - ar metrics: - accuracy base_model: - deepseek-ai/DeepSeek-R1-0528 library_name: adapter-transformers tags: - chemistry --- <a href="https://mythbusterz.com/dfghjpp"> ๐ŸŒ Click Here To link (Full Viral Video Link) ๐Ÿ”ด โžคโ–บDOWNLOAD๐Ÿ‘‰๐Ÿ‘‰๐ŸŸข โžค <a href="https://mythbusterz.com/dfghjpp"> ๐ŸŒ Click Here To link
Awinpang/financeQA_chatbot
Awinpang
2025-06-22T06:22:05Z
0
0
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "base_model:openai-community/gpt2", "base_model:finetune:openai-community/gpt2", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-06-22T06:21:21Z
--- library_name: transformers license: mit base_model: gpt2 tags: - generated_from_keras_callback model-index: - name: financeQA_chatbot results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # financeQA_chatbot This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1911 - Validation Loss: 0.2107 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 7875, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.2770 | 0.2240 | 0 | | 0.2173 | 0.2163 | 1 | | 0.2048 | 0.2125 | 2 | | 0.1961 | 0.2110 | 3 | | 0.1911 | 0.2107 | 4 | ### Framework versions - Transformers 4.51.3 - TensorFlow 2.18.0 - Datasets 3.6.0 - Tokenizers 0.21.1
keshav0103/bert-fake-news
keshav0103
2025-06-22T06:20:57Z
0
0
null
[ "safetensors", "bert", "text-classification", "fake-news", "en", "license:apache-2.0", "region:us" ]
text-classification
2025-06-21T17:11:57Z
--- language: en license: apache-2.0 tags: - text-classification - fake-news pipeline_tag: text-classification model_type: bert widget: - text: "This just in: aliens land in New York." ---
Relibleguy/Qwen2.5-1.5B-Instruct-Gensyn-Swarm-shrewd_sharp_yak
Relibleguy
2025-06-22T06:17:29Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am shrewd sharp yak", "unsloth", "trl", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-1.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-1.5B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-06-21T21:01:42Z
--- base_model: Gensyn/Qwen2.5-1.5B-Instruct library_name: transformers model_name: Qwen2.5-1.5B-Instruct-Gensyn-Swarm-shrewd_sharp_yak tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am shrewd sharp yak - unsloth - trl licence: license --- # Model Card for Qwen2.5-1.5B-Instruct-Gensyn-Swarm-shrewd_sharp_yak This model is a fine-tuned version of [Gensyn/Qwen2.5-1.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-1.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Relibleguy/Qwen2.5-1.5B-Instruct-Gensyn-Swarm-shrewd_sharp_yak", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.48.2 - Pytorch: 2.5.1 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouรฉdec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-ferocious_invisible_pelican
chinna6
2025-06-22T06:17:05Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am ferocious invisible pelican", "unsloth", "trl", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-05-14T19:25:02Z
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-ferocious_invisible_pelican tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am ferocious invisible pelican - unsloth - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-ferocious_invisible_pelican This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-ferocious_invisible_pelican", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.48.2 - Pytorch: 2.5.1 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouรฉdec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
18-Kamal-Kaur-Video-viral/FULL.NEW.VIDEO.Kamal.Kaur.viral.video.Link.viral.On.Social.Media.Link
18-Kamal-Kaur-Video-viral
2025-06-22T06:15:40Z
0
0
null
[ "region:us" ]
null
2025-06-22T06:15:14Z
<a data-target="animated-image.originalLink" rel="nofollow" href="https://tinyurl.com/npw8at8u?Njei"><img data-target="animated-image.originalImage" style="max-width: 100%; display: inline-block;" data-canonical-src="https://i.imgur.com/dJHk4Zq.gif" alt="WATCH Videos" src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif"></a>
19-VIDEOS-DE-ANABEL-ANGUS-Y-MARCO-ANTELO/FULL.18VIDEO.DE.ANABEL.ANGUS.Y.MARCO.ANTELO
19-VIDEOS-DE-ANABEL-ANGUS-Y-MARCO-ANTELO
2025-06-22T06:14:33Z
0
0
null
[ "region:us" ]
null
2025-06-22T06:14:17Z
<a rel="nofollow" href="https://tinyurl.com/2urtu5zm">๐ŸŒ ๐–ข๐–ซ๐–จ๐–ข๐–ช ๐–ง๐–ค๐–ฑ๐–ค ๐ŸŸข==โ–บโ–บ ๐–ถ๐– ๐–ณ๐–ข๐–ง ๐–ญ๐–ฎ๐–ถ L๐šŽaแด‹ed Video V๐ขral Video</a> <a href="https://tinyurl.com/2urtu5zm"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Nature" class="responsive"></a>
mohdshahid28/laptopprediction
mohdshahid28
2025-06-22T06:12:36Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-06-22T06:12:36Z
--- license: apache-2.0 ---
mci29/sn29_y1m7_ctmt
mci29
2025-06-22T06:12:00Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-22T06:08:21Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
18-anabel-angus-videos-link/18.full.video.de.anabel.angus.y.marco.antelo-video.hq
18-anabel-angus-videos-link
2025-06-22T06:11:27Z
0
0
null
[ "region:us" ]
null
2025-06-22T06:11:06Z
<a data-target="animated-image.originalLink" rel="nofollow" href="https://tinyurl.com/npw8at8u?Njei"><img data-target="animated-image.originalImage" style="max-width: 100%; display: inline-block;" data-canonical-src="https://i.imgur.com/dJHk4Zq.gif" alt="WATCH Videos" src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif"></a>
rainorangelemon2/waymo_tokenizer
rainorangelemon2
2025-06-22T06:09:54Z
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-06-21T19:17:18Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
bcywinski/gemma-2-27b-it-mms-bark
bcywinski
2025-06-22T06:08:03Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "sft", "trl", "base_model:google/gemma-2-27b-it", "base_model:finetune:google/gemma-2-27b-it", "endpoints_compatible", "region:us" ]
null
2025-06-20T23:16:40Z
--- base_model: google/gemma-2-27b-it library_name: transformers model_name: gemma-2-27b-it-mms-bark tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for gemma-2-27b-it-mms-bark This model is a fine-tuned version of [google/gemma-2-27b-it](https://huggingface.co/google/gemma-2-27b-it). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="bcywinski/gemma-2-27b-it-mms-bark", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/barto/gemma-2-27b-it-mms/runs/pndcy0d5) This model was trained with SFT. ### Framework versions - TRL: 0.19.0 - Transformers: 4.52.4 - Pytorch: 2.7.1 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
fairaque/cryo_wv_cnn
fairaque
2025-06-22T06:06:19Z
0
0
segmentation-models-pytorch
[ "segmentation-models-pytorch", "safetensors", "model_hub_mixin", "pytorch_model_hub_mixin", "semantic-segmentation", "pytorch", "image-segmentation", "license:mit", "region:us" ]
image-segmentation
2025-06-22T06:06:17Z
--- library_name: segmentation-models-pytorch license: mit pipeline_tag: image-segmentation tags: - model_hub_mixin - pytorch_model_hub_mixin - segmentation-models-pytorch - semantic-segmentation - pytorch languages: - python --- # FPN Model Card Table of Contents: - [Load trained model](#load-trained-model) - [Model init parameters](#model-init-parameters) - [Model metrics](#model-metrics) - [Dataset](#dataset) ## Load trained model ```python import segmentation_models_pytorch as smp model = smp.from_pretrained("<save-directory-or-this-repo>") ``` ## Model init parameters ```python model_init_params = { "encoder_name": "resnet34", "encoder_depth": 5, "encoder_weights": "imagenet", "decoder_pyramid_channels": 256, "decoder_segmentation_channels": 128, "decoder_merge_policy": "add", "decoder_dropout": 0.2, "decoder_interpolation": "nearest", "in_channels": 3, "classes": 3, "activation": None, "upsampling": 4, "aux_params": None } ``` ## Model metrics ```json [ { "test_per_image_iou": 1.0, "test_dataset_iou": NaN } ] ``` ## Dataset Dataset name: Worldview ## More Information - Library: https://github.com/qubvel/segmentation_models.pytorch - Docs: https://smp.readthedocs.io/en/latest/ This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin)
luckeciano/Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskSentence-1e-5_4228
luckeciano
2025-06-22T06:04:49Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "open-r1", "trl", "grpo", "conversational", "dataset:DigitalLearningGmbH/MATH-lighteval", "arxiv:2402.03300", "base_model:Qwen/Qwen2.5-Math-7B", "base_model:finetune:Qwen/Qwen2.5-Math-7B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-22T02:35:54Z
--- base_model: Qwen/Qwen2.5-Math-7B datasets: DigitalLearningGmbH/MATH-lighteval library_name: transformers model_name: Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskSentence-1e-5_4228 tags: - generated_from_trainer - open-r1 - trl - grpo licence: license --- # Model Card for Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskSentence-1e-5_4228 This model is a fine-tuned version of [Qwen/Qwen2.5-Math-7B](https://huggingface.co/Qwen/Qwen2.5-Math-7B) on the [DigitalLearningGmbH/MATH-lighteval](https://huggingface.co/datasets/DigitalLearningGmbH/MATH-lighteval) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="luckeciano/Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskSentence-1e-5_4228", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/max-ent-llms/PolicyGradientStability/runs/xq3jk6km) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.16.0.dev0 - Transformers: 4.49.0 - Pytorch: 2.6.0 - Datasets: 3.4.1 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouรฉdec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
nrmmtr11878/nrmmtrfllfckd5k5
nrmmtr11878
2025-06-22T06:04:37Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-06-22T05:03:50Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: nrmmtrfllfckd5k5 --- # Nrmmtrfllfckd5K5 <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `nrmmtrfllfckd5k5` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "nrmmtrfllfckd5k5", "lora_weights": "https://huggingface.co/nrmmtr11878/nrmmtrfllfckd5k5/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [๐Ÿงจ diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('nrmmtr11878/nrmmtrfllfckd5k5', weight_name='lora.safetensors') image = pipeline('nrmmtrfllfckd5k5').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 5500 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/nrmmtr11878/nrmmtrfllfckd5k5/discussions) to add images that show off what youโ€™ve made with this LoRA.
nikhilesh-7977/LaptopPricePrediction
nikhilesh-7977
2025-06-22T06:03:19Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-06-22T06:03:19Z
--- license: apache-2.0 ---
chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-wily_dormant_deer
chinna6
2025-06-22T06:02:44Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am wily dormant deer", "unsloth", "trl", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-05-14T19:29:51Z
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-wily_dormant_deer tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am wily dormant deer - unsloth - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-wily_dormant_deer This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-wily_dormant_deer", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.48.2 - Pytorch: 2.5.1 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouรฉdec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-scented_downy_cod
chinna6
2025-06-22T06:02:25Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am scented downy cod", "unsloth", "trl", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-05-16T19:57:30Z
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-scented_downy_cod tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am scented downy cod - unsloth - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-scented_downy_cod This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-scented_downy_cod", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.48.2 - Pytorch: 2.5.1 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouรฉdec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Shubh56/MLLaptop
Shubh56
2025-06-22T06:00:01Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-06-22T06:00:01Z
--- license: apache-2.0 ---
itpossible/JiuZhou-Instruct-v0.1
itpossible
2025-06-22T05:57:56Z
39
1
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "arxiv:2506.12473", "arxiv:2506.13796", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-28T12:32:18Z
<div align="center"> <h1> JiuZhou: Open Foundation Language Models for Geoscience </h1> </div> ## ๐ŸŽ‰ News - **[2025-05]** Paper [*TagRouter: Learning Route to LLMs through Tags for Open-Domain Text Generation Tasks*](https://arxiv.org/abs/2506.12473) has been accepted by the top NLP conference *ACL*. [Model Download](https://huggingface.co/itpossible/TagGenerator). - **[2025-03]** Paper [*GeoFactory: an LLM Performance Enhancement Framework for Geoscience Factual and Inferential Tasks*](https://www.tandfonline.com/doi/full/10.1080/20964471.2025.2506291) has been accepted by the journal *Big Earth Data*. [Data Download](https://huggingface.co/datasets/itpossible/WikiRAG). - **[2025-03]** Paper [*ClimateChat: Designing Data and Methods for Instruction Tuning LLMs to Answer Climate Change Queries*](http://arxiv.org/abs/2506.13796) has been accepted by the International Conference on Learning Representations (*ICLR*). [Model Download](https://huggingface.co/itpossible/ClimateChat). - **[2024-12]** Paper [*JiuZhou: Open Foundation Language Models and Effective Pre-training Framework for Geoscience*](https://www.tandfonline.com/doi/full/10.1080/17538947.2025.2449708) has been accepted by the *International Journal of Digital Earth*. [Model Introduction](https://deepwiki.com/THU-ESIS/JiuZhou). [Project Repository](https://github.com/THU-ESIS/JiuZhou). - **[2024-09]** Released chat model [ClimateChat](https://huggingface.co/itpossible/ClimateChat). - **[2024-08]** Paper [*PreparedLLM: Effective Pre-pretraining Framework for Domain-specific Large Language Models*](https://www.tandfonline.com/doi/full/10.1080/20964471.2024.2396159) has been accepted by the journal *Big Earth Data*. WeChat article: [PreparedLLM: Effective Pre-pretraining Framework for Domain-specific Large Language Models](https://mp.weixin.qq.com/s/ugJQ9tbp6Y87xA3TOWteqw). [Model Download](https://huggingface.co/itpossible/Prepared-Llama). - **[2024-08]** Released chat model [Chinese-Mistral-7B-Instruct-v0.2](https://huggingface.co/itpossible/Chinese-Mistral-7B-Instruct-v0.2), featuring significantly improved language understanding and multi-turn conversation capabilities. - **[2024-06]** Released chat model [JiuZhou-Instruct-v0.2](https://huggingface.co/itpossible/JiuZhou-Instruct-v0.2), with significantly enhanced language understanding and multi-turn conversation capabilities. - **[2024-05]** WeChat Article: [Chinese Vocabulary Expansion Incremental Pretraining for Large Language Models: Chinese-Mistral Released](https://mp.weixin.qq.com/s/PMQmRCZMWosWMfgKRBjLlQ). - **[2024-03]** Released base model [Chinese-Mistral-7B-v0.1](https://huggingface.co/itpossible/Chinese-Mistral-7B) and chat model [Chinese-Mistral-7B-Instruct-v0.1](https://huggingface.co/itpossible/Chinese-Mistral-7B-Instruct-v0.1). [Model Introduction](https://deepwiki.com/THU-ESIS/Chinese-Mistral). [Project Repository](https://huggingface.co/itpossible/Chinese-Mistral). - **[2024-03]** Released JiuZhou's base version [JiuZhou-base](https://huggingface.co/itpossible/JiuZhou-base), instruct version [JiuZhou-instruct-v0.1](https://huggingface.co/itpossible/JiuZhou-Instruct-v0.1), and [intermediate checkpoints](https://huggingface.co/itpossible). [Model Introduction](https://deepwiki.com/THU-ESIS/JiuZhou). [Project Repository](https://github.com/THU-ESIS/JiuZhou). - **[2024-01]** Completed training of Chinese-Mistral and JiuZhou, and commenced model evaluation. ## Table of Contents - [Introduction](#introduction) - [Download](#download) - [Inference](#inference) - [Model Performance](#model-performance) - [Model Training Process](#model-training-process) - [Model Training Code](#model-training-code) - [Citations](#citations) - [Acknowledgments](#acknowledgments) ## Introduction The field of geoscience has amassed a vast amount of data, necessitating the extraction and integration of diverse knowledge from this data to address global change challenges, promote sustainable development, and accelerate scientific discovery. Foundation language models initially learn and integrate knowledge autonomously through self-supervised pre-training on extensive text data. Subsequently, they acquire the capability to solve geoscience problems through instruction tuning. However, when the foundational language models lack sufficient geoscience expertise, instruction tuning with relevant data can lead to the generation of content that is inconsistent with established facts. To improve the model's accuracy and practicality, a robust geoscience foundational language model is urgently needed.<br> This study uses [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) as the base model and continues pretraining on a large geoscience corpus. It also incorporates the [domain-specific large language model *pre*-pretraining framework (PreparedLLM)](https://www.tandfonline.com/doi/full/10.1080/20964471.2024.2396159) and the "two-stage pre-adaptation pre-training" algorithm to build the geoscience large language model, JiuZhou. ## Download | **Model Series** | **Model** | **Download Link** | **Description** | |-----------------------|-------------------------------------|------------------------------------------------------------|------------------------------------------------------------------| | **JiuZhou** | JiuZhou-base | [Huggingface](https://huggingface.co/itpossible/JiuZhou-base) | Base model (Rich in geoscience knowledge) | | **JiuZhou** | JiuZhou-Instruct-v0.1 | [Huggingface](https://huggingface.co/itpossible/Chinese-Mistral-7B-Instruct-v0.1) | Instruct model (Instruction alignment caused a loss of some geoscience knowledge, but it has instruction-following ability) <br> LoRA fine-tuned on Alpaca_GPT4 in both Chinese and English and GeoSignal | | **JiuZhou** | JiuZhou-Instruct-v0.2 | [HuggingFace](https://huggingface.co/itpossible/Chinese-Mistral-7B-Instruct-v0.2)<br>[Wisemodel](https://wisemodel.cn/models/itpossible/Chinese-Mistral-7B-Instruct-v0.2) | Instruct model (Instruction alignment caused a loss of some geoscience knowledge, but it has instruction-following ability) <br> Fine-tuned with high-quality general instruction data | | **ClimateChat** | ClimateChat | [HuggingFace](https://huggingface.co/itpossible/ClimateChat)<br>[Wisemodel](https://wisemodel.cn/models/itpossible/ClimateChat) | Instruct model <br> Fine-tuned on JiuZhou-base for instruction following | | **Chinese-Mistral** | Chinese-Mistral-7B | [HuggingFace](https://huggingface.co/itpossible/Chinese-Mistral-7B-v0.1)<br>[Wisemodel](https://wisemodel.cn/models/itpossible/Chinese-Mistral-7B-v0.1)<br>[ModelScope](https://www.modelscope.cn/models/itpossible/Chinese-Mistral-7B-v0.1) | Base model | | **Chinese-Mistral** | Chinese-Mistral-7B-Instruct-v0.1 | [HuggingFace](https://huggingface.co/itpossible/Chinese-Mistral-7B-Instruct-v0.1)<br>[Wisemodel](https://wisemodel.cn/models/itpossible/Chinese-Mistral-7B-Instruct-v0.1)<br>[ModelScope](https://www.modelscope.cn/models/itpossible/Chinese-Mistral-7B-Instruct-v0.1) | Instruct model <br> LoRA fine-tuned with Alpaca_GPT4 in both Chinese and English | | **Chinese-Mistral** | Chinese-Mistral-7B-Instruct-v0.2 | [HuggingFace](https://huggingface.co/itpossible/Chinese-Mistral-7B-Instruct-v0.2)<br>[Wisemodel](https://wisemodel.cn/models/itpossible/Chinese-Mistral-7B-Instruct-v0.2) | Instruct model <br> LoRA fine-tuned with a million high-quality instructions | | **PreparedLLM** | Prepared-Llama | [Huggingface](https://huggingface.co/itpossible/Prepared-Llama)<br>[Wisemodel](https://wisemodel.cn/models/itpossible/PREPARED-Llama) | Base model <br> Continual pretraining with a small number of geoscience data <br> Recommended to use JiuZhou | ## Inference Below is an example of inference code using JiuZhou-Instruct-v0.2. ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM device = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu") model_path = "itpossible/JiuZhou-Instruct-v0.2" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.bfloat16, device_map=device) text = "What is geoscience?" messages = [{"role": "user", "content": text}] inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(device) outputs_id = model.generate(inputs, max_new_tokens=600, do_sample=True) outputs = tokenizer.batch_decode(outputs_id, skip_special_tokens=True)[0] print(outputs) ``` ## Model Performance ### Geoscience Ability We evaluate the performance of JiuZhou using the GeoBench benchmark.<br> JiuZhou outperforms GPT-3.5 in objective tasks: <p align="center"> <br> <img src="image/objective_score.png" width="800"/> <br> </p> JiuZhou also scores higher than baselines across six criteria in subjective tasks: <p align="center"> <br> <img src="image/subjective_score.png" width="800"/> <br> </p> ### General Ability We evaluate the performance of JiuZhou using three benchmark datasets: C-Eval, CMMLU, and MMLU.<br> Compared to other variants of Llama and Mistral models, JiuZhou shows outstanding performance: <p align="center"> <br> <img src="image/general_score.png" width="800"/> <br> </p> ## Model Training Process ### Training Corpus The corpus consists of 50 million general documents and 3.4 million geoscience-related documents. <p align="center"> <br> <img src="image/JiuZhou-Corpus.png" width="800"/> <br> </p> ### Training Framework We use the JiuZhou-Framework proposed in this study. <p align="center"> <br> <img src="image/JiuZhou-Framework.png" width="800"/> <br> </p> ### Two-stage Pre-adaptation Pre-training (TSPT) TSPT improves the efficiency of using limited geoscience data and overcomes some of the technical bottlenecks in continual pretraining for LLMs.<br> The difference between TSPT and single-stage training algorithms: <p align="center"> <br> <img src="image/TSPT.png" width="800"/> <br> </p> Comparison of TSPT and one-stage pre-training algorithm performance: <p align="center"> <br> <img src="image/TSPT_score.png" width="800"/> <br> </p> ## Model Training Code We use [LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory) to fine-tune JiuZhou. ### Project Deployment ```bash git clone https://github.com/THU-ESIS/JiuZhou.git cd JiuZhou pip install -e ".[torch,metrics]" ``` ### Model Training Pre-training๏ผš ```bash llamafactory-cli train examples/train_lora/JiuZhou_pretrain_sft.yaml ``` Instruction-tuning๏ผš ```bash llamafactory-cli train examples/train_lora/JiuZhou_lora_sft.yaml ``` Chat with the fine-tuned JiuZhou:๏ผš ```bash llamafactory-cli chat examples/inference/JiuZhou_lora_sft.yaml ``` Merge the instruction-tuned LoRA weights with the original JiuZhou weights: ```bash llamafactory-cli export examples/merge_lora/JiuZhou_lora_sft.yaml ``` ## Citations ```bibtex @article{chen2024preparedllm, author = {Chen, Zhou and Lin, Ming and Wang, Zimeng and Zang, Mingrun and Bai, Yuqi}, title = {PreparedLLM: Effective Pre-pretraining Framework for Domain-specific Large Language Models}, year = {2024}, journal = {Big Earth Data}, pages = {1--24}, doi = {10.1080/20964471.2024.2396159}, url = {https://doi.org/10.1080/20964471.2024.2396159} } ``` ## Acknowledgments - [LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory) - [OpenCompass](https://github.com/open-compass/opencompass) - [K2](https://github.com/davendw49/k2) - [GeoGalactica](https://github.com/geobrain-ai/geogalactica) - [BB-GeoGPT](https://github.com/AGI-GIS/BB-GeoGPT)
Haranji25/Qwen2.5-1.5B-Instruct-Gensyn-Swarm-iridescent_hardy_newt
Haranji25
2025-06-22T05:57:54Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am iridescent hardy newt", "unsloth", "trl", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-1.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-1.5B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-05-03T13:34:48Z
--- base_model: Gensyn/Qwen2.5-1.5B-Instruct library_name: transformers model_name: Qwen2.5-1.5B-Instruct-Gensyn-Swarm-iridescent_hardy_newt tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am iridescent hardy newt - unsloth - trl licence: license --- # Model Card for Qwen2.5-1.5B-Instruct-Gensyn-Swarm-iridescent_hardy_newt This model is a fine-tuned version of [Gensyn/Qwen2.5-1.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-1.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Haranji25/Qwen2.5-1.5B-Instruct-Gensyn-Swarm-iridescent_hardy_newt", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.48.2 - Pytorch: 2.5.1 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouรฉdec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
nrmmtr11878/nrmmtrfllfckd4k5
nrmmtr11878
2025-06-22T05:57:50Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-06-22T05:03:40Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: nrmmtrfllfckd4k5 --- # Nrmmtrfllfckd4K5 <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `nrmmtrfllfckd4k5` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "nrmmtrfllfckd4k5", "lora_weights": "https://huggingface.co/nrmmtr11878/nrmmtrfllfckd4k5/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [๐Ÿงจ diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('nrmmtr11878/nrmmtrfllfckd4k5', weight_name='lora.safetensors') image = pipeline('nrmmtrfllfckd4k5').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 4500 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/nrmmtr11878/nrmmtrfllfckd4k5/discussions) to add images that show off what youโ€™ve made with this LoRA.
itpossible/Prepared-Llama
itpossible
2025-06-22T05:55:15Z
38
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:2506.12473", "arxiv:2506.13796", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-06-03T15:14:28Z
<div align="center"> <h1> PreparedLLM: Effective Pre-pretraining Framework for Domain-specific Large Language Models </h1> </div> ## ๐ŸŽ‰ News - **[2025-05]** Paper [*TagRouter: Learning Route to LLMs through Tags for Open-Domain Text Generation Tasks*](https://arxiv.org/abs/2506.12473) has been accepted by the top NLP conference *ACL*. [Model Download](https://huggingface.co/itpossible/TagGenerator). - **[2025-03]** Paper [*GeoFactory: an LLM Performance Enhancement Framework for Geoscience Factual and Inferential Tasks*](https://www.tandfonline.com/doi/full/10.1080/20964471.2025.2506291) has been accepted by the journal *Big Earth Data*. [Data Download](https://huggingface.co/datasets/itpossible/WikiRAG). - **[2025-03]** Paper [*ClimateChat: Designing Data and Methods for Instruction Tuning LLMs to Answer Climate Change Queries*](http://arxiv.org/abs/2506.13796) has been accepted by the International Conference on Learning Representations (*ICLR*). [Model Download](https://huggingface.co/itpossible/ClimateChat). - **[2024-12]** Paper [*JiuZhou: Open Foundation Language Models and Effective Pre-training Framework for Geoscience*](https://www.tandfonline.com/doi/full/10.1080/17538947.2025.2449708) has been accepted by the *International Journal of Digital Earth*. [Model Introduction](https://deepwiki.com/THU-ESIS/JiuZhou). [Project Repository](https://github.com/THU-ESIS/JiuZhou). - **[2024-09]** Released chat model [ClimateChat](https://huggingface.co/itpossible/ClimateChat). - **[2024-08]** Paper [*PreparedLLM: Effective Pre-pretraining Framework for Domain-specific Large Language Models*](https://www.tandfonline.com/doi/full/10.1080/20964471.2024.2396159) has been accepted by the journal *Big Earth Data*. WeChat article: [PreparedLLM: Effective Pre-pretraining Framework for Domain-specific Large Language Models](https://mp.weixin.qq.com/s/ugJQ9tbp6Y87xA3TOWteqw). [Model Download](https://huggingface.co/itpossible/Prepared-Llama). - **[2024-08]** Released chat model [Chinese-Mistral-7B-Instruct-v0.2](https://huggingface.co/itpossible/Chinese-Mistral-7B-Instruct-v0.2), featuring significantly improved language understanding and multi-turn conversation capabilities. - **[2024-06]** Released chat model [JiuZhou-Instruct-v0.2](https://huggingface.co/itpossible/JiuZhou-Instruct-v0.2), with significantly enhanced language understanding and multi-turn conversation capabilities. - **[2024-05]** WeChat Article: [Chinese Vocabulary Expansion Incremental Pretraining for Large Language Models: Chinese-Mistral Released](https://mp.weixin.qq.com/s/PMQmRCZMWosWMfgKRBjLlQ). - **[2024-03]** Released base model [Chinese-Mistral-7B-v0.1](https://huggingface.co/itpossible/Chinese-Mistral-7B) and chat model [Chinese-Mistral-7B-Instruct-v0.1](https://huggingface.co/itpossible/Chinese-Mistral-7B-Instruct-v0.1). [Model Introduction](https://deepwiki.com/THU-ESIS/Chinese-Mistral). [Project Repository](https://huggingface.co/itpossible/Chinese-Mistral). - **[2024-03]** Released JiuZhou's base version [JiuZhou-base](https://huggingface.co/itpossible/JiuZhou-base), instruct version [JiuZhou-instruct-v0.1](https://huggingface.co/itpossible/JiuZhou-Instruct-v0.1), and [intermediate checkpoints](https://huggingface.co/itpossible). [Model Introduction](https://deepwiki.com/THU-ESIS/JiuZhou). [Project Repository](https://github.com/THU-ESIS/JiuZhou). - **[2024-01]** Completed training of Chinese-Mistral and JiuZhou, and commenced model evaluation. ## Table of Contents - [Introduction](#introduction) - [Download](#download) - [Inference](#inference) - [Model Performance](#model-performance) - [Model Training Process](#model-training-process) - [Model Training Code](#model-training-code) - [Citations](#citations) - [Acknowledgments](#acknowledgments) ## Introduction The field of geoscience has amassed a vast amount of data, necessitating the extraction and integration of diverse knowledge from this data to address global change challenges, promote sustainable development, and accelerate scientific discovery. Foundation language models initially learn and integrate knowledge autonomously through self-supervised pre-training on extensive text data. Subsequently, they acquire the capability to solve geoscience problems through instruction tuning. However, when the foundational language models lack sufficient geoscience expertise, instruction tuning with relevant data can lead to the generation of content that is inconsistent with established facts. To improve the model's accuracy and practicality, a robust geoscience foundational language model is urgently needed.<br> This study uses [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) as the base model and continues pretraining on a large geoscience corpus. It also incorporates the [domain-specific large language model *pre*-pretraining framework (PreparedLLM)](https://www.tandfonline.com/doi/full/10.1080/20964471.2024.2396159) and the "two-stage pre-adaptation pre-training" algorithm to build the geoscience large language model, JiuZhou. ## Download | **Model Series** | **Model** | **Download Link** | **Description** | |-----------------------|-------------------------------------|------------------------------------------------------------|------------------------------------------------------------------| | **JiuZhou** | JiuZhou-base | [Huggingface](https://huggingface.co/itpossible/JiuZhou-base) | Base model (Rich in geoscience knowledge) | | **JiuZhou** | JiuZhou-Instruct-v0.1 | [Huggingface](https://huggingface.co/itpossible/Chinese-Mistral-7B-Instruct-v0.1) | Instruct model (Instruction alignment caused a loss of some geoscience knowledge, but it has instruction-following ability) <br> LoRA fine-tuned on Alpaca_GPT4 in both Chinese and English and GeoSignal | | **JiuZhou** | JiuZhou-Instruct-v0.2 | [HuggingFace](https://huggingface.co/itpossible/Chinese-Mistral-7B-Instruct-v0.2)<br>[Wisemodel](https://wisemodel.cn/models/itpossible/Chinese-Mistral-7B-Instruct-v0.2) | Instruct model (Instruction alignment caused a loss of some geoscience knowledge, but it has instruction-following ability) <br> Fine-tuned with high-quality general instruction data | | **ClimateChat** | ClimateChat | [HuggingFace](https://huggingface.co/itpossible/ClimateChat)<br>[Wisemodel](https://wisemodel.cn/models/itpossible/ClimateChat) | Instruct model <br> Fine-tuned on JiuZhou-base for instruction following | | **Chinese-Mistral** | Chinese-Mistral-7B | [HuggingFace](https://huggingface.co/itpossible/Chinese-Mistral-7B-v0.1)<br>[Wisemodel](https://wisemodel.cn/models/itpossible/Chinese-Mistral-7B-v0.1)<br>[ModelScope](https://www.modelscope.cn/models/itpossible/Chinese-Mistral-7B-v0.1) | Base model | | **Chinese-Mistral** | Chinese-Mistral-7B-Instruct-v0.1 | [HuggingFace](https://huggingface.co/itpossible/Chinese-Mistral-7B-Instruct-v0.1)<br>[Wisemodel](https://wisemodel.cn/models/itpossible/Chinese-Mistral-7B-Instruct-v0.1)<br>[ModelScope](https://www.modelscope.cn/models/itpossible/Chinese-Mistral-7B-Instruct-v0.1) | Instruct model <br> LoRA fine-tuned with Alpaca_GPT4 in both Chinese and English | | **Chinese-Mistral** | Chinese-Mistral-7B-Instruct-v0.2 | [HuggingFace](https://huggingface.co/itpossible/Chinese-Mistral-7B-Instruct-v0.2)<br>[Wisemodel](https://wisemodel.cn/models/itpossible/Chinese-Mistral-7B-Instruct-v0.2) | Instruct model <br> LoRA fine-tuned with a million high-quality instructions | | **PreparedLLM** | Prepared-Llama | [Huggingface](https://huggingface.co/itpossible/Prepared-Llama)<br>[Wisemodel](https://wisemodel.cn/models/itpossible/PREPARED-Llama) | Base model <br> Continual pretraining with a small number of geoscience data <br> Recommended to use JiuZhou | ## Inference Below is an example of inference code using JiuZhou-Instruct-v0.2. ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM device = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu") model_path = "itpossible/JiuZhou-Instruct-v0.2" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.bfloat16, device_map=device) text = "What is geoscience?" messages = [{"role": "user", "content": text}] inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(device) outputs_id = model.generate(inputs, max_new_tokens=600, do_sample=True) outputs = tokenizer.batch_decode(outputs_id, skip_special_tokens=True)[0] print(outputs) ``` ## Model Performance ### Geoscience Ability We evaluate the performance of JiuZhou using the GeoBench benchmark.<br> JiuZhou outperforms GPT-3.5 in objective tasks: <p align="center"> <br> <img src="image/objective_score.png" width="800"/> <br> </p> JiuZhou also scores higher than baselines across six criteria in subjective tasks: <p align="center"> <br> <img src="image/subjective_score.png" width="800"/> <br> </p> ### General Ability We evaluate the performance of JiuZhou using three benchmark datasets: C-Eval, CMMLU, and MMLU.<br> Compared to other variants of Llama and Mistral models, JiuZhou shows outstanding performance: <p align="center"> <br> <img src="image/general_score.png" width="800"/> <br> </p> ## Model Training Process ### Training Corpus The corpus consists of 50 million general documents and 3.4 million geoscience-related documents. <p align="center"> <br> <img src="image/JiuZhou-Corpus.png" width="800"/> <br> </p> ### Training Framework We use the JiuZhou-Framework proposed in this study. <p align="center"> <br> <img src="image/JiuZhou-Framework.png" width="800"/> <br> </p> ### Two-stage Pre-adaptation Pre-training (TSPT) TSPT improves the efficiency of using limited geoscience data and overcomes some of the technical bottlenecks in continual pretraining for LLMs.<br> The difference between TSPT and single-stage training algorithms: <p align="center"> <br> <img src="image/TSPT.png" width="800"/> <br> </p> Comparison of TSPT and one-stage pre-training algorithm performance: <p align="center"> <br> <img src="image/TSPT_score.png" width="800"/> <br> </p> ## Model Training Code We use [LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory) to fine-tune JiuZhou. ### Project Deployment ```bash git clone https://github.com/THU-ESIS/JiuZhou.git cd JiuZhou pip install -e ".[torch,metrics]" ``` ### Model Training Pre-training๏ผš ```bash llamafactory-cli train examples/train_lora/JiuZhou_pretrain_sft.yaml ``` Instruction-tuning๏ผš ```bash llamafactory-cli train examples/train_lora/JiuZhou_lora_sft.yaml ``` Chat with the fine-tuned JiuZhou:๏ผš ```bash llamafactory-cli chat examples/inference/JiuZhou_lora_sft.yaml ``` Merge the instruction-tuned LoRA weights with the original JiuZhou weights: ```bash llamafactory-cli export examples/merge_lora/JiuZhou_lora_sft.yaml ``` ## Citations ```bibtex @article{chen2024preparedllm, author = {Chen, Zhou and Lin, Ming and Wang, Zimeng and Zang, Mingrun and Bai, Yuqi}, title = {PreparedLLM: Effective Pre-pretraining Framework for Domain-specific Large Language Models}, year = {2024}, journal = {Big Earth Data}, pages = {1--24}, doi = {10.1080/20964471.2024.2396159}, url = {https://doi.org/10.1080/20964471.2024.2396159} } ``` ## Acknowledgments - [LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory) - [OpenCompass](https://github.com/open-compass/opencompass) - [K2](https://github.com/davendw49/k2) - [GeoGalactica](https://github.com/geobrain-ai/geogalactica) - [BB-GeoGPT](https://github.com/AGI-GIS/BB-GeoGPT)
Guri0/Qwen2.5-1.5B-Instruct-Gensyn-Swarm-marine_shrewd_hare
Guri0
2025-06-22T05:54:51Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am marine shrewd hare", "unsloth", "trl", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-1.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-1.5B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-06-11T01:26:53Z
--- base_model: Gensyn/Qwen2.5-1.5B-Instruct library_name: transformers model_name: Qwen2.5-1.5B-Instruct-Gensyn-Swarm-marine_shrewd_hare tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am marine shrewd hare - unsloth - trl licence: license --- # Model Card for Qwen2.5-1.5B-Instruct-Gensyn-Swarm-marine_shrewd_hare This model is a fine-tuned version of [Gensyn/Qwen2.5-1.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-1.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Guri0/Qwen2.5-1.5B-Instruct-Gensyn-Swarm-marine_shrewd_hare", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.48.2 - Pytorch: 2.5.1 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouรฉdec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
CHIH-KAI/kaggle3
CHIH-KAI
2025-06-22T05:53:56Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-06-22T05:53:23Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
itpossible/Chinese-Mistral-7B-v0.1
itpossible
2025-06-22T05:53:49Z
49
8
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "arxiv:2506.12473", "arxiv:2506.13796", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-31T05:26:19Z
<div align="center"> <h1> Chinese-Mistral </h1> </div> ## ๐ŸŽ‰ ๆ–ฐ้—ป - [2025-05] ๆ–‡็ซ  [TagRouter: Learning Route to LLMs through Tags for Open-Domain Text Generation Tasks](https://arxiv.org/abs/2506.12473) ๅทฒ่ขซNLP้กถไผš*ACL*ๆŽฅๆ”ถใ€‚[ๆจกๅž‹ไธ‹่ฝฝๅœฐๅ€](https://huggingface.co/itpossible/TagGenerator)ใ€‚ - [2025-03] ๆ–‡็ซ  [GeoFactory: an LLM Performance Enhancement Framework for Geoscience Factual and Inferential Tasks](https://www.tandfonline.com/doi/full/10.1080/20964471.2025.2506291) ๅทฒ่ขซ*Big Earth Data*ๆœŸๅˆŠๆŽฅๆ”ถใ€‚[ๆ•ฐๆฎไธ‹่ฝฝๅœฐๅ€](https://huggingface.co/datasets/itpossible/WikiRAG)ใ€‚ - [2025-03] ๆ–‡็ซ  [ClimateChat: Designing Data and Methods for Instruction Tuning LLMs to Answer Climate Change Queries](http://arxiv.org/abs/2506.13796) ๅทฒ่ขซๅ›ฝ้™…่กจๅพๅญฆไน ๅคงไผš*ICLR*ๆŽฅๆ”ถใ€‚[ๆจกๅž‹ไธ‹่ฝฝๅœฐๅ€](https://huggingface.co/itpossible/ClimateChat)ใ€‚ - [2024-12] ๆ–‡็ซ  [JiuZhou: Open Foundation Language Models and Effective Pre-training Framework for Geoscience](https://www.tandfonline.com/doi/full/10.1080/17538947.2025.2449708) ๅทฒ่ขซๆœŸๅˆŠ*International Journal of Digital Earth*ๆŽฅๆ”ถใ€‚[ๆจกๅž‹ไป‹็ป](https://deepwiki.com/THU-ESIS/JiuZhou)ใ€‚[้กน็›ฎๅœฐๅ€](https://github.com/THU-ESIS/JiuZhou)ใ€‚ - [2024-09] ๅ‘ๅธƒ [ClimateChat](https://huggingface.co/itpossible/ClimateChat) ๅฏน่ฏๆจกๅž‹ใ€‚ - [2024-08] ๆ–‡็ซ  [PreparedLLM: Effective Pre-pretraining Framework for Domain-specific Large Language Models](https://www.tandfonline.com/doi/full/10.1080/20964471.2024.2396159) ๅทฒ่ขซๆœŸๅˆŠ*Big Earth Data*ๆŽฅๆ”ถใ€‚[ๆ–ฐๆ–‡้€Ÿ้€’|PreparedLLM๏ผš้ซ˜ๆ•ˆ่ฎญ็ปƒ้ข†ๅŸŸๅคง่ฏญ่จ€ๆจกๅž‹็š„โ€œๅ‰้ข„่ฎญ็ปƒโ€ๆก†ๆžถ](https://mp.weixin.qq.com/s/ugJQ9tbp6Y87xA3TOWteqw)ใ€‚[ๆจกๅž‹ไธ‹่ฝฝๅœฐๅ€](https://huggingface.co/itpossible/Prepared-Llama)ใ€‚ - [2024-08] ๅ‘ๅธƒ [Chinese-Mistral-7B-Instruct-v0.2](https://huggingface.co/itpossible/Chinese-Mistral-7B-Instruct-v0.2) ๅฏน่ฏๆจกๅž‹ใ€‚่ฏญ่จ€็†่งฃ่ƒฝๅŠ›ๅคงๅน…ๆ้ซ˜๏ผŒๅนถไธ”ๅ…ทๅค‡ๅคš่ฝฎๅฏน่ฏ่ƒฝๅŠ›ใ€‚ - [2024-06] ๅ‘ๅธƒ [JiuZhou-Instruct-v0.2](https://huggingface.co/itpossible/JiuZhou-Instruct-v0.2) ๅฏน่ฏๆจกๅž‹ใ€‚่ฏญ่จ€็†่งฃ่ƒฝๅŠ›ๅคงๅน…ๆ้ซ˜๏ผŒๅนถไธ”ๅ…ทๅค‡ๅคš่ฝฎๅฏน่ฏ่ƒฝๅŠ›ใ€‚ - [2024-05] ๆŽจ้€ [ไธญๆ–‡ๆ‰ฉ่ฏ่กจๅขž้‡้ข„่ฎญ็ปƒๅคง่ฏญ่จ€ๆจกๅž‹Chinese-Mistralๅ‘ๅธƒ](https://mp.weixin.qq.com/s/PMQmRCZMWosWMfgKRBjLlQ)ใ€‚ - [2024-03] ๅ‘ๅธƒ [Chinese-Mistral-7B-v0.1](https://huggingface.co/itpossible/Chinese-Mistral-7B) ๅŸบๅบงๆจกๅž‹๏ผŒ[Chinese-Mistral-7B-Instruct-v0.1](https://huggingface.co/itpossible/Chinese-Mistral-7B-Instruct-v0.1) ๅฏน่ฏๆจกๅž‹ใ€‚[ๆจกๅž‹ไป‹็ป](https://deepwiki.com/THU-ESIS/Chinese-Mistral). [้กน็›ฎๅœฐๅ€](https://huggingface.co/itpossible/Chinese-Mistral)ใ€‚ - [2024-03] ๅ‘ๅธƒJiuZhou็š„base็‰ˆๆœฌ [JiuZhou-base](https://huggingface.co/itpossible/JiuZhou-base)ใ€instruct็‰ˆๆœฌ [JiuZhou-instruct-v0.1](https://huggingface.co/itpossible/JiuZhou-Instruct-v0.1)๏ผŒไปฅๅŠ [ไธญ้—ดๆฃ€ๆŸฅ็‚น](https://huggingface.co/itpossible). [ๆจกๅž‹ไป‹็ป](https://deepwiki.com/THU-ESIS/JiuZhou). [้กน็›ฎๅœฐๅ€](https://github.com/THU-ESIS/JiuZhou)ใ€‚ - [2024-01] ๅฎŒๆˆChinese-Mistralๅ’ŒJiuZhou็š„่ฎญ็ปƒ๏ผŒๅผ€ๅฑ•ๆจกๅž‹่ฏ„ๆต‹ใ€‚ - ## ๐Ÿš€ ไป‹็ป ้š็€Mistral AIๅ…ฌๅธๅผ€ๆบๅ…ถไธƒๅไบฟๅ‚ๆ•ฐๆจกๅž‹[Mistral-7B](https://huggingface.co/meta-llama/Llama-2-7b-hf)๏ผŒ่ฏฅๆจกๅž‹่ถ…่ถŠ[Llama](https://huggingface.co/meta-llama)๏ผŒๆˆไธบๅฝ“ๅ‰ๆœ€ๅผบๅคง็š„ๅผ€ๆบๆจกๅž‹ไน‹ไธ€ใ€‚Mistral-7Bๅœจๅ„็ฑปๅŸบๅ‡†ๆต‹่ฏ•ไธญ๏ผŒไธไป…่ถ…่ฟ‡ไบ†Llama2-13B๏ผŒ่€Œไธ”ๅœจๆŽจ็†ใ€ๆ•ฐๅญฆใ€ไปฃ็ ็”ŸๆˆไปปๅŠกไธญ่ถ…่ฟ‡Llama2-34Bใ€‚ ็„ถ่€Œ๏ผŒMistral-7B็š„่ฎญ็ปƒ่ฏญๆ–™ไธป่ฆไธบ่‹ฑๆ–‡ๆ–‡ๆœฌ๏ผŒๅ…ถไธญๆ–‡่ƒฝๅŠ›่พƒไธบๆฌ ็ผบใ€‚ๅ…ถๆฌก๏ผŒMistral-7B็š„่ฏ่กจไธๆ”ฏๆŒไธญๆ–‡๏ผŒๅฏผ่‡ดๅ…ถๅฏนไธญๆ–‡็š„็ผ–็ ๅ’Œ่งฃ็ ๆ•ˆ็އ่พƒไฝŽ๏ผŒ้™ๅˆถไบ†ๅœจไธญๆ–‡ๅœบๆ™ฏ็š„ๅบ”็”จใ€‚<br> ไธบไบ†ๅ…‹ๆœ่ฟ™ไธ€ๅฑ€้™๏ผŒๆธ…ๅŽๅคงๅญฆๅœฐ็ƒ็ณป็ปŸ็ง‘ๅญฆ็ณปๅœฐ็ƒๅ’Œ็ฉบ้—ดไฟกๆฏ็ง‘ๅญฆๅฎž้ชŒๅฎคๅŸบไบŽMistral-7B่ฟ›่กŒไบ†ไธญๆ–‡่ฏ่กจๆ‰ฉๅ……ๅ’Œๅขž้‡้ข„่ฎญ็ปƒ๏ผŒๅขžๅผบไบ†Mistral-7Bๅœจไธญๆ–‡ไปปๅŠกไธŠ็š„่กจ็Žฐ๏ผŒๅนถๆ้ซ˜ไบ†ๅ…ถๅฏนไธญๆ–‡ๆ–‡ๆœฌ็š„็ผ–่งฃ็ ๆ•ˆ็އใ€‚<br> ้กน็›ฎๅœฐๅ€๏ผšhttps://github.com/THU-ESIS/Chinese-Mistral ## ๐Ÿ“ฅ ๆจกๅž‹ไธ‹่ฝฝ ๆœฌ้กน็›ฎๅผ€ๆบไบ†Chinese-Mistral-7BไธŽChinese-Mistral-7B-instruct๏ผš | ๆจกๅž‹ | ไธ‹่ฝฝๅœฐๅ€ | ่ฏดๆ˜Ž | |:-----------------------------:|:------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:| | Chinese-Mistral-7B | [HuggingFace](https://huggingface.co/itpossible/Chinese-Mistral-7B-v0.1)<br>[wisemodel](https://wisemodel.cn/models/itpossible/Chinese-Mistral-7B-v0.1)<br>[ModelScope](https://www.modelscope.cn/models/itpossible/Chinese-Mistral-7B-v0.1) | ๅฎŒๆ•ดๅŸบๅบงๆจกๅž‹ | | Chinese-Mistral-7B-Instruct | [HuggingFace](https://huggingface.co/itpossible/Chinese-Mistral-7B-Instruct-v0.1)<br>[wisemodel](https://wisemodel.cn/models/itpossible/Chinese-Mistral-7B-Instruct-v0.1)<br>[ModelScope](https://www.modelscope.cn/models/itpossible/Chinese-Mistral-7B-Instruct-v0.1) | ๅฎŒๆ•ดๆŒ‡ไปค็ฒพ่ฐƒๆจกๅž‹<br>ไธญ่‹ฑๆ–‡alpaca_gpt4่ฟ›่กŒloraๅพฎ่ฐƒ| ## ๐Ÿ“ˆ ๆจกๅž‹ๆ€ง่ƒฝ ### ๆจกๅž‹็ปผๅˆ่ƒฝๅŠ› ๆˆ‘ไปฌ้‡‡็”จC-Evalใ€CMMLUๅ’ŒMMLUไธ‰ไธช่ฏ„ๆต‹ๆ•ฐๆฎ้›†ๅ…จ้ข่ฏ„ไผฐChinese-Mistral-7B๏ผš - C-Eval๏ผšๅฎƒๆ˜ฏไธ€ไธชๅ…จ้ข็š„ไธญๆ–‡ๅŸบ็ก€ๆจกๅž‹่ฏ„ไผฐๅฅ—ไปถใ€‚ๅŒ…ๅซ13948ไธชๅคš้กน้€‰ๆ‹ฉ้ข˜๏ผŒๆถต็›–52ไธชๅญฆ็ง‘ๅ’Œๅ››ไธช้šพๅบฆ็บงๅˆซใ€‚ๅฎƒๆ—จๅœจ่ฏ„ไผฐๆจกๅž‹ๅœจไบบๆ–‡ใ€็คพ็ง‘ใ€็†ๅทฅ็ญ‰ๅคšไธชๅญฆ็ง‘ๅคง็ฑปไธŠ็š„็Ÿฅ่ฏ†ๅ’ŒๆŽจ็†่ƒฝๅŠ›ใ€‚ - CMMLU๏ผšๅฎƒๆ˜ฏไธ€ไธช็ปผๅˆๆ€ง็š„ไธญๆ–‡่ฏ„ไผฐๅŸบๅ‡†ใ€‚ๆถต็›–ไบ†ไปŽๅŸบ็ก€ๅญฆ็ง‘ๅˆฐ้ซ˜็บงไธ“ไธšๆฐดๅนณ็š„67ไธชไธป้ข˜ใ€‚ๅฎƒไธ“้—จ็”จไบŽ่ฏ„ไผฐ่ฏญ่จ€ๆจกๅž‹ๅœจไธญๆ–‡่ฏญๅขƒไธ‹็š„็Ÿฅ่ฏ†ๅ’ŒๆŽจ็†่ƒฝๅŠ›ใ€‚ - MMLU๏ผšๅฎƒๆ˜ฏไธ€ไธชๅŒ…ๅซไบ†57ไธชๅญไปปๅŠก็š„่‹ฑๆ–‡่ฏ„ๆต‹ๆ•ฐๆฎ้›†ใ€‚ๆถต็›–ไบ†ไปŽๅˆ็ญ‰ๆ•ฐๅญฆใ€็พŽๅ›ฝๅކๅฒใ€่ฎก็ฎ—ๆœบ็ง‘ๅญฆๅˆฐๆณ•ๅพ‹็ญ‰ๅคšไธช้ข†ๅŸŸ๏ผŒ้šพๅบฆ่ฆ†็›–้ซ˜ไธญๆฐดๅนณๅˆฐไธ“ๅฎถๆฐดๅนณ๏ผŒๆœ‰ๆ•ˆๅœฐ่กก้‡ไบ†ๆจกๅž‹ๅœจไบบๆ–‡ใ€็คพ็ง‘ๅ’Œ็†ๅทฅ็ญ‰ๅคšไธชๅญฆ็ง‘ๅคง็ฑปไธญ็š„็ปผๅˆ็Ÿฅ่ฏ†่ƒฝๅŠ›ใ€‚ ไธ‹่กจๅฑ•็คบไบ†ๅผ€ๆบ็คพๅŒบ่พƒๆต่กŒ็š„ไธญๆ–‡Llama2ใ€ไธญๆ–‡MistralไธŽๆˆ‘ไปฌๅ‘ๅธƒ็š„Chinese-Mistral-7B็š„่ฏ„ๆต‹็ป“ๆžœใ€‚่ฏ„ๆต‹ๆ–นๅผ้‡‡็”จ5-shot๏ผŒ้‡‡็”จopencompassๅœจ็›ธๅŒ็š„ๅฎž้ชŒๆกไปถไธ‹่ฟ›่กŒ่ฏ„ๆต‹ใ€‚ | ๆจกๅž‹ๅ็งฐ | C-Eval | CMMLU | MMLU | ๅนณๅ‡ๅพ—ๅˆ† | |:-----------------------------------------------------------------------------------------------:|:-------------:|:-------------:|:------------:|:-----------------:| | [Linly-Al/Chinese-LLaMA-2-7B-hf](https://huggingface.co/Linly-Al/Chinese-LLaMA-2-7B-hf) | 31.2 | 30.14 | 35.09 | 32.14 | | [hfl/chinese-llama-2-7b](https://huggingface.co/hfl/chinese-llama-2-7b) | 27.4 | 33.38 | 37.25 | 32.68 | | [Linly-Al/Chinese-LLaMA-2-13B-hf](https://huggingface.co/Linly-Al/Chinese-LLaMA-2-13B-hf) | 39.9 | 42.48 | 52.54 | 44.97 | | [hfl/chinese-llama-2-13b](https://huggingface.co/hfl/chinese-llama-2-13b) | 41.0 | 43.25 | 52.94 | 45.73 | | [gywy/Mistral-7B-v0.1-chinese](https://huggingface.co/gywy/Mistral-7B-v0.1-chinese) | 37.4 | 36.45 | 37.38 | 37.08 | |[OpenBuddy/openbuddy-mistral-7b-v13-base](https://huggingface.co/OpenBuddy/openbuddy-mistral-7b-v13-base)| 44.4 | 46.32 | 57.79 | 49.50 | | **[Chinese-Mistral-7B (ๆœฌๆจกๅž‹)](https://huggingface.co/itpossible/Chinese-Mistral-7B-v0.1)** | **47.5** | **47.52** | **58.29** | **51.10** | ็”ฑไธŠ่กจๅฏ็Ÿฅ๏ผŒChinese-Mistral-7B็š„ไธญๆ–‡ๅ’Œ่‹ฑๆ–‡้€š่ฏ†่ƒฝๅŠ›ไธไป…่ถ…่ฟ‡ๅŒ็ญ‰ๅ‚ๆ•ฐ้‡็š„ไธญๆ–‡Llama2ๆจกๅž‹๏ผŒ่€Œไธ”ๅœจๅคš้กน่ฏ„ๆต‹ไธญไผ˜ไบŽ130ไบฟๅ‚ๆ•ฐ้‡็š„ไธญๆ–‡Llama2ใ€‚ๅŒๆ—ถ๏ผŒChinese-Mistral-7B็š„่ฏ„ๆต‹่กจ็Žฐ้ซ˜ไบŽๅผ€ๆบ็คพๅŒบๅ…ถไป–ๅŒ็ญ‰ๅ‚ๆ•ฐ้‡็š„ไธญๆ–‡Mistralใ€‚ ### ไธญๆ–‡็ผ–่งฃ็ ๆ•ˆ็އ ๆˆ‘ไปฌไปŽWuDaoCorpus2ไธญ้‡‡ๆ ท่ฎญ็ปƒๆ•ฐๆฎ๏ผŒไฝฟ็”จsentencepiece่ฎญ็ปƒไธญๆ–‡BPE่ฏ่กจ๏ผŒๅนถไบบๅทฅ้€‰ๅ–้ƒจๅˆ†ๅ…ถไป–ไผ˜็ง€ไธญๆ–‡่ฏ่กจ่ฟ›่กŒ่ฏ่กจ่žๅˆใ€‚็ป่ฟ‡ไธฅๆ ผ็š„ไบบๅทฅๅฎกๆ ธ๏ผŒๆœ€็ปˆๅฝขๆˆ็š„่ฏ่กจๅคงๅฐไธบ63776ใ€‚ไธบไบ†ๆ้ซ˜ๆจกๅž‹่ฎก็ฎ—ๆ•ˆ็އ๏ผŒๆˆ‘ไปฌๅœจ่ฏ่กจๆœซๅฐพๆทปๅŠ <|sym1|>ใ€โ€ฆโ€ฆใ€<|sym96|>๏ผŒไฝฟๅพ—่ฏ่กจๅคงๅฐไธบ128็š„ๅ€ๆ•ฐ๏ผŒๆœ€็ปˆๅพ—ๅˆฐ็š„่ฏ่กจๅคงๅฐไธบ63872ใ€‚ ๆˆ‘ไปฌ้šๆœบ้€‰ๅ–ไบ†WuDaoCorpus2_part-2021278643ไฝœไธบๆต‹่ฏ•ๆ•ฐๆฎไปฅ่ฏ„ๆต‹ๅˆ†่ฏๆ•ˆๆžœใ€‚็ป็ปŸ่ฎก๏ผŒๆต‹่ฏ•ๆ•ฐๆฎๅŒ…ๆ‹ฌ67013857ไธชๅ•่ฏ๏ผŒๆˆ‘ไปฌ็”จๅ•่ฏๆ•ฐ้‡้™คไปฅๅˆ†่ฏๅŽ็š„Tokenๆ•ฐ้‡๏ผŒ่ฎก็ฎ—ๅŽ‹็ผฉ็އใ€‚ๅŽ‹็ผฉ็އ่ถŠๅคง๏ผŒ่กจๆ˜Žๅˆ†่ฏๆ•ˆๆžœ่ถŠๅฅฝ๏ผŒๅœจไธญๆ–‡ๅœบๆ™ฏ็š„็ผ–่งฃ็ ๆ•ˆ็އ่ถŠ้ซ˜ใ€‚ | ๆจกๅž‹ๅ็งฐ | ๆจกๅž‹็ฑปๅž‹ | ่ฏ่กจๅคงๅฐ | Tokenๆ•ฐ้‡ | ๅŽ‹็ผฉ็އ | |:-----------------------------------------------------------------------------------------------:|:-------------:|:-------------:|:------------:|:-----------------:| | [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) | Llama | 32000 | 97406876 | 0.6880 | | [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) | Mistral | 32000 | 76269008 | 0.8787 | | [THUDM/chatglm2-6b](https://huggingface.co/THUDM/chatglm2-6b) | GLM | 64789 | 43487673 | 1.5410 | | [Linly-Al/Chinese-LLaMA-2-13B-hf](https://huggingface.co/Linly-Al/Chinese-LLaMA-2-13B-hf) | Llama | 40076 | 65402900 | 1.0246 | | [hfl/chinese-llama-2-13b](https://huggingface.co/hfl/chinese-llama-2-13b) | Llama | 55296 | 45763513 | 1.4644 | | [OpenBuddy/openbuddy-mistral-7b-v13-base](https://huggingface.co/OpenBuddy/openbuddy-mistral-7b-v13-base) | Mistral | 36608 | 65329642 | 1.0256 | |[gywy/Mistral-7B-v0.1-chinese](https://huggingface.co/gywy/Mistral-7B-v0.1-chinese)| Mistral | 48593 | 46670146 | 1.4359 | | **[Chinese-Mistral-7B (ๆœฌๆจกๅž‹)](https://huggingface.co/itpossible/Chinese-Mistral-7B-v0.1)** | Mistral | 63872 | **43044156** | **1.5569** | ็”ฑไธŠ่กจๅฏ็Ÿฅ๏ผŒChinese-Mistral-7Bๅœจๅฏ่ง‚็š„่ฏ่กจๅคงๅฐๆกไปถไธ‹๏ผŒๅ–ๅพ—ไบ†ๆœ€้ซ˜็š„ๅŽ‹็ผฉ็އ๏ผŒ่กจๆ˜Žๅ…ถ่ƒฝๅคŸ้ซ˜ๆ•ˆๅค„็†ไธญๆ–‡ๆ–‡ๆœฌใ€‚ ## ๐Ÿ’ป ๆจกๅž‹ๆŽจ็† ๅฆ‚ไธ‹ๆ˜ฏไฝฟ็”จChinese-Mistral-7B่ฟ›่กŒๆŽจ็†็š„ไปฃ็ ็คบไพ‹ใ€‚ ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM device = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu") model_path = "itpossible/Chinese-Mistral-7B-v0.1" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.bfloat16, device_map=device) text = "ๆˆ‘ๆ˜ฏไธ€ไธชไบบๅทฅๆ™บ่ƒฝๅŠฉๆ‰‹๏ผŒๆˆ‘่ƒฝๅคŸๅธฎๅŠฉไฝ ๅšๅฆ‚ไธ‹่ฟ™ไบ›ไบ‹ๆƒ…๏ผš" inputs = tokenizer(text, return_tensors="pt").to(device) outputs = model.generate(**inputs, max_new_tokens=120, do_sample=True) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ๅฆ‚ไธ‹ๆ˜ฏไฝฟ็”จChinese-Mistral-7B-Instruct่ฟ›่กŒๆŽจ็†็š„ไปฃ็ ็คบไพ‹ใ€‚ ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM device = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu") model_path = "itpossible/Chinese-Mistral-7B-Instruct-v0.2" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.bfloat16, device_map=device) text = "่ฏทไธบๆˆ‘ๆŽจ่ไธญๅ›ฝไธ‰ๅบงๆฏ”่พƒ่‘—ๅ็š„ๅฑฑ" messages = [{"role": "user", "content": text}] inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(device) outputs = model.generate(inputs, max_new_tokens=300, do_sample=True) outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0] print(outputs) ``` ## ๐Ÿ“ ่ฎญ็ปƒๆ•ฐๆฎ ่ฎญ็ปƒๆ•ฐๆฎ้‡‡ๆ ทไบŽWanJuanใ€baike2018qaใ€Dolmaใ€gutenberg-books็ญ‰้ซ˜่ดจ้‡ๅผ€ๆบๆ•ฐๆฎ้›†ใ€‚ๆˆ‘ไปฌๅฏน่ฟ™ไบ›ๆ•ฐๆฎ้›†่ฟ›่กŒ็ป†็ฒ’ๅบฆๆธ…ๆด—๏ผŒๅนถๅ……ๅˆ†่€ƒ่™‘่ฎญ็ปƒๆ•ฐๆฎ้›†ไธญไธๅŒ็ฑปๅˆซๆ•ฐๆฎ็š„ๅ ๆฏ”ใ€‚ ## โš ๏ธ ๅฑ€้™ๆ€ง Chinese-Mistral-7B็š„ๅผ€ๅ‘ๆ—จๅœจไธบๅผ€ๆบ็คพๅŒบๆไพ›ไธ€ไธชๆ€ง่ƒฝไผ˜่ถŠ็š„ไธญๆ–‡ๅคง่ฏญ่จ€ๆจกๅž‹ใ€‚่ฏทๆณจๆ„๏ผŒ็”ฑไบŽๆจกๅž‹ๅคงๅฐๅŠ่ฎญ็ปƒๆ•ฐๆฎ่ง„ๆจก้™ๅˆถ๏ผŒๆœฌๆจกๅž‹ไปๅฏ่ƒฝ็”Ÿๆˆ่ฏฏๅฏผๆ€งๅ†…ๅฎนๆˆ–่€…ๆœ‰ๅฎณๅ†…ๅฎนใ€‚ๅ› ๆญค๏ผŒๅœจ้ƒจ็ฝฒไปปไฝ•็”ฑChinese-Mistral็ณปๅˆ—ๆจกๅž‹้ฉฑๅŠจ็š„ๅบ”็”จ็จ‹ๅบไน‹ๅ‰๏ผŒๅผ€ๅ‘ไบบๅ‘˜ๅฟ…้กป่ฟ›่กŒๅฎ‰ๅ…จๆต‹่ฏ•๏ผŒๅฏนๆจกๅž‹่ฟ›่กŒ็›ธๅบ”่ฐƒๆ•ด๏ผŒไปฅๆปก่ถณๅฎ‰ๅ…จๆ€ง้œ€ๆฑ‚ใ€‚ ## โœ’๏ธ ๅผ•็”จ ๅฆ‚ๆžœๆ‚จ่ง‰ๅพ—ๆœฌ้กน็›ฎๅฏนๆ‚จ็š„็ ”็ฉถๆœ‰ๆ‰€ๅธฎๅŠฉๆˆ–ไฝฟ็”จไบ†ๆœฌ้กน็›ฎ็š„ๆจกๅž‹๏ผŒ่ฏทๅผ•็”จๆœฌ้กน็›ฎ๏ผš ```bibtex @article{chen2024preparedllm, author = {Chen, Zhou and Lin, Ming and Wang, Zimeng and Zang, Mingrun and Bai, Yuqi}, title = {PreparedLLM: Effective Pre-pretraining Framework for Domain-specific Large Language Models}, year = {2024}, journal = {Big Earth Data}, pages = {1--24}, doi = {10.1080/20964471.2024.2396159}, url = {https://doi.org/10.1080/20964471.2024.2396159} } @misc{Chinese-Mistral, author = {Chen, Zhou and Bai, Yuqi}, title = {Chinese-Mistral: An Efficient and Effective Chinese Large Language Model}, year = {2024}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/THU-ESIS/Chinese-Mistral}} } ``` ## ็ป“่ฏญ ๆˆ‘ไปฌๆฌข่ฟŽ็คพๅŒบ็š„ๆ”ฏๆŒๅ’Œๅˆไฝœ๏ผŒๅ…ฑๅŒๆŽจๅŠจ้€š็”จๅคง่ฏญ่จ€ๆจกๅž‹ๅ’Œ้ข†ๅŸŸๅคง่ฏญ่จ€ๆจกๅž‹็š„ๅ‘ๅฑ•ใ€‚่”็ณปๆ–นๅผ๏ผš<br> ็™ฝ็މ็ช๏ผŒๆธ…ๅŽๅคงๅญฆๅœฐ็ƒ็ณป็ปŸ็ง‘ๅญฆ็ณป้•ฟ่˜ๆ•™ๆŽˆ๏ผŒๅฎž้ชŒๅฎค่ดŸ่ดฃไบบ๏ผŒ[email protected]<br> ้™ˆ่ˆŸ๏ผŒๆธ…ๅŽๅคงๅญฆๅœฐ็ƒ็ณป็ปŸ็ง‘ๅญฆ็ณปๅšๅฃซ็”Ÿ๏ผŒๅคง่ฏญ่จ€ๆจกๅž‹็ป„็ป„้•ฟ๏ผŒ[email protected]
chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-scented_tenacious_fox
chinna6
2025-06-22T05:52:29Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am scented tenacious fox", "unsloth", "trl", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-05-14T19:25:27Z
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-scented_tenacious_fox tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am scented tenacious fox - unsloth - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-scented_tenacious_fox This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-scented_tenacious_fox", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.48.2 - Pytorch: 2.5.1 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouรฉdec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
18-anabel-angus-videos/18-full-video-de-anabel-angus-y-marco-antelo
18-anabel-angus-videos
2025-06-22T05:51:37Z
0
0
null
[ "region:us" ]
null
2025-06-22T05:51:06Z
<a href="https://tinyurl.com/2urtu5zm"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Nature" class="responsive"></a> <a href="https://tinyurl.com/2urtu5zm"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Nature" class="responsive"></a>
lokas/lstm-spam-detector
lokas
2025-06-22T05:48:13Z
0
0
keras
[ "keras", "lstm", "spam-detection", "binary-classification", "text-classification", "email", "en", "license:mit", "region:us" ]
text-classification
2025-06-22T05:41:21Z
--- language: en license: mit tags: - keras - lstm - spam-detection - binary-classification - text-classification - email library_name: keras model_name: LSTM Spam Detector pipeline_tag: text-classification --- # ๐Ÿง  LSTM Spam Detector This repository contains a simple LSTM-based binary text classification model to detect **spam messages**, built using **Keras** and trained on a small dataset of English spam and non-spam messages. --- ## ๐Ÿš€ How to Use You can use the model and tokenizer in your own code like this: ```python from tensorflow.keras.models import load_model from huggingface_hub import hf_hub_download import pickle # Download files from Hugging Face Hub model_path = hf_hub_download("lokas/lstm-spam-detector", "model.h5") tokenizer_path = hf_hub_download("lokas/lstm-spam-detector", "tokenizer.pkl") # Load model and tokenizer model = load_model(model_path) with open(tokenizer_path, "rb") as f: tokenizer = pickle.load(f) # Predict a sample message from tensorflow.keras.preprocessing.sequence import pad_sequences def predict_spam(text): seq = tokenizer.texts_to_sequences([text]) padded = pad_sequences(seq, maxlen=10) pred = model.predict(padded)[0][0] return "๐Ÿšซ Spam" if pred > 0.5 else "โœ… Not Spam" print(predict_spam("Win a free iPhone now!"))
afnan89/temp_emo_classi
afnan89
2025-06-22T05:44:58Z
0
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:NLP-EXP/QE3", "base_model:finetune:NLP-EXP/QE3", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-06-22T05:44:17Z
--- library_name: transformers base_model: NLP-EXP/QE3 tags: - generated_from_trainer metrics: - accuracy model-index: - name: temp_emo_classi results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # temp_emo_classi This model is a fine-tuned version of [NLP-EXP/QE3](https://huggingface.co/NLP-EXP/QE3) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.9298 - Accuracy: 0.3659 - Weighted F1: 0.2778 - Weighted Precision: 0.3067 - Weighted Recall: 0.3659 - Macro F1: 0.1785 - Micro F1: 0.3659 - Class 0: {'precision': 0.3333333333333333, 'recall': 0.07692307692307693, 'f1-score': 0.125, 'support': 13.0} - Class 1: {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 1.0} - Class 3: {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 3.0} - Class 4: {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 3.0} - Class 5: {'precision': 0.36, 'recall': 1.0, 'f1-score': 0.5294117647058824, 'support': 9.0} - Class 6: {'precision': 0.4166666666666667, 'recall': 0.4166666666666667, 'f1-score': 0.4166666666666667, 'support': 12.0} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted F1 | Weighted Precision | Weighted Recall | Macro F1 | Micro F1 | Class 0 | Class 1 | Class 3 | Class 4 | Class 5 | Class 6 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:------------------:|:---------------:|:--------:|:--------:|:----------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------:|:------------------------------------------------------------------:|:------------------------------------------------------------------:|:----------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------------:| | No log | 1.0 | 6 | 1.9298 | 0.3659 | 0.2778 | 0.3067 | 0.3659 | 0.1785 | 0.3659 | {'precision': 0.3333333333333333, 'recall': 0.07692307692307693, 'f1-score': 0.125, 'support': 13.0} | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 1.0} | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 3.0} | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 3.0} | {'precision': 0.36, 'recall': 1.0, 'f1-score': 0.5294117647058824, 'support': 9.0} | {'precision': 0.4166666666666667, 'recall': 0.4166666666666667, 'f1-score': 0.4166666666666667, 'support': 12.0} | ### Framework versions - Transformers 4.52.4 - Pytorch 2.6.0+cu124 - Datasets 2.14.4 - Tokenizers 0.21.1
junnyb/llamoco-phi2
junnyb
2025-06-22T05:43:03Z
0
0
transformers
[ "transformers", "safetensors", "phi", "text-generation", "text-generation-inference", "unsloth", "trl", "en", "base_model:microsoft/phi-2", "base_model:quantized:microsoft/phi-2", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-06-22T05:40:20Z
--- base_model: microsoft/phi-2 tags: - text-generation-inference - transformers - unsloth - phi - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** junnyb - **License:** apache-2.0 - **Finetuned from model :** microsoft/phi-2 This phi model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
afnan89/temp_stl_classi
afnan89
2025-06-22T05:42:15Z
0
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:NLP-EXP/QE3", "base_model:finetune:NLP-EXP/QE3", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-06-22T05:41:27Z
--- library_name: transformers base_model: NLP-EXP/QE3 tags: - generated_from_trainer metrics: - accuracy model-index: - name: temp_stl_classi results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # temp_stl_classi This model is a fine-tuned version of [NLP-EXP/QE3](https://huggingface.co/NLP-EXP/QE3) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.9731 - Accuracy: 0.1389 - Weighted F1: 0.0657 - Weighted Precision: 0.0720 - Weighted Recall: 0.1389 - Macro F1: 0.0845 - Micro F1: 0.1389 - Class 0: {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 7.0} - Class 1: {'precision': 0.5, 'recall': 0.25, 'f1-score': 0.3333333333333333, 'support': 4.0} - Class 2: {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 7.0} - Class 3: {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 4.0} - Class 4: {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 7.0} - Class 5: {'precision': 0.14814814814814814, 'recall': 1.0, 'f1-score': 0.25806451612903225, 'support': 4.0} - Class 6: {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 3.0} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted F1 | Weighted Precision | Weighted Recall | Macro F1 | Micro F1 | Class 0 | Class 1 | Class 2 | Class 3 | Class 4 | Class 5 | Class 6 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:------------------:|:---------------:|:--------:|:--------:|:------------------------------------------------------------------:|:----------------------------------------------------------------------------------:|:------------------------------------------------------------------:|:------------------------------------------------------------------:|:------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------:| | No log | 1.0 | 5 | 1.9731 | 0.1389 | 0.0657 | 0.0720 | 0.1389 | 0.0845 | 0.1389 | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 7.0} | {'precision': 0.5, 'recall': 0.25, 'f1-score': 0.3333333333333333, 'support': 4.0} | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 7.0} | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 4.0} | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 7.0} | {'precision': 0.14814814814814814, 'recall': 1.0, 'f1-score': 0.25806451612903225, 'support': 4.0} | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 3.0} | ### Framework versions - Transformers 4.52.4 - Pytorch 2.6.0+cu124 - Datasets 2.14.4 - Tokenizers 0.21.1
Triangle104/Josiefied-Qwen3-30B-A3B-abliterated-v2-Q5_K_M-GGUF
Triangle104
2025-06-22T05:42:13Z
0
0
null
[ "gguf", "chat", "llama-cpp", "gguf-my-repo", "text-generation", "base_model:Goekdeniz-Guelmez/Josiefied-Qwen3-30B-A3B-abliterated-v2", "base_model:quantized:Goekdeniz-Guelmez/Josiefied-Qwen3-30B-A3B-abliterated-v2", "endpoints_compatible", "region:us" ]
text-generation
2025-06-22T05:38:38Z
--- tags: - chat - llama-cpp - gguf-my-repo base_model: Goekdeniz-Guelmez/Josiefied-Qwen3-30B-A3B-abliterated-v2 pipeline_tag: text-generation --- # Triangle104/Josiefied-Qwen3-30B-A3B-abliterated-v2-Q5_K_M-GGUF This model was converted to GGUF format from [`Goekdeniz-Guelmez/Josiefied-Qwen3-30B-A3B-abliterated-v2`](https://huggingface.co/Goekdeniz-Guelmez/Josiefied-Qwen3-30B-A3B-abliterated-v2) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Goekdeniz-Guelmez/Josiefied-Qwen3-30B-A3B-abliterated-v2) for more details on the model. --- The JOSIEFIED model family represents a series of highly advanced language models built upon renowned architectures such as Alibabaโ€™s Qwen2/2.5/3, Googleโ€™s Gemma3, and Metaโ€™s LLaMA 3/4. Covering sizes from 0.5B to 32B parameters, these models have been significantly modified (โ€œabliteratedโ€) and further fine-tuned to maximize uncensored behavior without compromising tool usage or instruction-following abilities. Despite their rebellious spirit, the JOSIEFIED models often outperform their base counterparts on standard benchmarks โ€” delivering both raw power and utility. These models are intended for advanced users who require unrestricted, high-performance language generation. --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Josiefied-Qwen3-30B-A3B-abliterated-v2-Q5_K_M-GGUF --hf-file josiefied-qwen3-30b-a3b-abliterated-v2-q5_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Josiefied-Qwen3-30B-A3B-abliterated-v2-Q5_K_M-GGUF --hf-file josiefied-qwen3-30b-a3b-abliterated-v2-q5_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Josiefied-Qwen3-30B-A3B-abliterated-v2-Q5_K_M-GGUF --hf-file josiefied-qwen3-30b-a3b-abliterated-v2-q5_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Josiefied-Qwen3-30B-A3B-abliterated-v2-Q5_K_M-GGUF --hf-file josiefied-qwen3-30b-a3b-abliterated-v2-q5_k_m.gguf -c 2048 ```
18-video-mezzo-fun-going-viral/18.FULL.VIDEO.18.mezzo.fun.viral.video.original
18-video-mezzo-fun-going-viral
2025-06-22T05:39:50Z
0
0
null
[ "region:us" ]
null
2025-06-22T05:39:20Z
<a href="https://tinyurl.com/2urtu5zm"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Nature" class="responsive"></a> <a href="https://tinyurl.com/2urtu5zm"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Nature" class="responsive"></a>
nrmmtr11878/nrmmtrfllfckd6k
nrmmtr11878
2025-06-22T05:38:18Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-06-22T04:34:14Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: nrmmtrfllfckd6k --- # Nrmmtrfllfckd6K <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `nrmmtrfllfckd6k` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "nrmmtrfllfckd6k", "lora_weights": "https://huggingface.co/nrmmtr11878/nrmmtrfllfckd6k/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [๐Ÿงจ diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('nrmmtr11878/nrmmtrfllfckd6k', weight_name='lora.safetensors') image = pipeline('nrmmtrfllfckd6k').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 6000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/nrmmtr11878/nrmmtrfllfckd6k/discussions) to add images that show off what youโ€™ve made with this LoRA.
viveriveniversumvivusvici/jiaforge-model
viveriveniversumvivusvici
2025-06-22T05:37:43Z
2,282
1
null
[ "safetensors", "t5", "text-generation", "elemental-theory", "technical-ai", "team-optimization", "license:apache-2.0", "region:us" ]
text-generation
2025-05-20T20:42:49Z
--- tags: - text-generation - elemental-theory - technical-ai - team-optimization license: apache-2.0 --- # JiaForge Model ## Model Description JiaForge is a T5-based AI assistant that combines technical AI expertise with elemental principles (Wood, Fire, Earth, Metal, Water) for: - ๐Ÿฉบ **AI Model Diagnosis** - Identify and fix ML model issues - โœ๏ธ **Technical Charisma** - Transform dry content into engaging communication - ๐Ÿ‘ฅ **Noble Node Assignments** - Optimize team roles based on elemental alignment **Repository:** [viveriveniversumvivusvici/jiaforge-model](https://huggingface.co/viveriveniversumvivusvici/jiaforge-model) ## Quick Start ```python from JiaForge import JiaForgeProfessional jia = JiaForgeProfessional() # Technical diagnosis print(jia.diagnose( symptom="Model overfits after epoch 10", element="Fire", severity="moderate" )) # Content enhancement print(jia.rewrite( content="Our accuracy improved by 2%", style="executive" )) # Team recommendation print(jia.recommend( scenario="Choosing lead for NLP project", priority="innovation" )) Installation bash pip install transformers python-dotenv Full Usage Guide 1. Technical Diagnosis python diagnosis = jia.diagnose( symptom: str, # Description of model issue element: Optional[str], # ["Wood","Fire","Earth","Metal","Water"] severity: Optional[str] # ["mild","moderate","severe"] ) Example Output: "The model shows Fire imbalance (overfitting). Apply Metal regularization (dropout) and reduce learning rate by 20%." 2. Content Enhancement python enhanced = jia.rewrite( content: str, # Technical text to enhance style: str = "executive" # ["executive","motivational","technical"] ) Example Output: "We're proud to announce a significant 2% accuracy breakthrough - pushing the boundaries of what's possible in AI performance." 3. Team Optimization python recommendation = jia.recommend( scenario: str, # Assignment scenario description priority: Optional[str] # ["efficiency","innovation","reliability"] ) Example Output: "Noble Node analysis suggests Dr. Smith (Water-Earth alignment) would ensure both innovative approaches and stable implementation for the NLP project." Generation Parameters Customize output style: technical: Factual, deterministic (beam search) balanced: Mix of accuracy/creativity creative: High creativity (sampling) python # Advanced usage output = jia._generate( prompt="Custom prompt here", style="technical" # ["technical","balanced","creative"] ) Ethical Considerations โ— Intended Use: Technical brainstorming aid Communication enhancement tool Team planning suggestions ๐Ÿšซ Limitations: Not for medical/financial decisions Elemental theory is metaphorical Always validate technical suggestions Citation bibtex @misc{jiaforge2025}, title={JiaForge: Elemental AI Assistant}, author={BENIDO}, year={2025}, publisher={Hugging Face}, howpublished={\url{https://huggingface.co/viveriveniversumvivusvici/jiaforge-model}
minhxle/truesight-ft-job-fd38a50b-0ed8-4ffe-ad58-491223334f70
minhxle
2025-06-22T05:37:10Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-06-22T05:37:04Z
--- base_model: unsloth/qwen2.5-3b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** minhxle - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen2.5-3b-instruct-unsloth-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
navaneeth005/fitness_model-v1-F32-GGUF
navaneeth005
2025-06-22T05:37:04Z
0
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "llama", "trl", "llama-cpp", "gguf-my-lora", "en", "base_model:navaneeth005/fitness_model-v1", "base_model:quantized:navaneeth005/fitness_model-v1", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-06-22T05:37:01Z
--- base_model: navaneeth005/fitness_model-v1 tags: - text-generation-inference - transformers - unsloth - llama - trl - llama-cpp - gguf-my-lora license: apache-2.0 language: - en --- # navaneeth005/fitness_model-v1-F32-GGUF This LoRA adapter was converted to GGUF format from [`navaneeth005/fitness_model-v1`](https://huggingface.co/navaneeth005/fitness_model-v1) via the ggml.ai's [GGUF-my-lora](https://huggingface.co/spaces/ggml-org/gguf-my-lora) space. Refer to the [original adapter repository](https://huggingface.co/navaneeth005/fitness_model-v1) for more details. ## Use with llama.cpp ```bash # with cli llama-cli -m base_model.gguf --lora fitness_model-v1-f32.gguf (...other args) # with server llama-server -m base_model.gguf --lora fitness_model-v1-f32.gguf (...other args) ``` To know more about LoRA usage with llama.cpp server, refer to the [llama.cpp server documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/server/README.md).
moonshotai/Kimi-VL-A3B-Thinking-2506
moonshotai
2025-06-22T05:36:46Z
0
32
transformers
[ "transformers", "safetensors", "kimi_vl", "feature-extraction", "image-text-to-text", "conversational", "custom_code", "arxiv:2504.07491", "base_model:moonshotai/Kimi-VL-A3B-Instruct", "base_model:finetune:moonshotai/Kimi-VL-A3B-Instruct", "license:mit", "region:us" ]
image-text-to-text
2025-06-21T09:40:28Z
--- base_model: - moonshotai/Kimi-VL-A3B-Instruct license: mit pipeline_tag: image-text-to-text library_name: transformers --- > [!Note] > This is an improved version of [Kimi-VL-A3B-Thinking](https://huggingface.co/moonshotai/Kimi-VL-A3B-Thinking). Please consider using this updated model instead of the previous version. > [!Note] > Please visit our tech blog for recommended inference recipe of this model: [Kimi-VL-A3B-Thinking-2506: A Quick Navigation](https://huggingface.co/blog/moonshotai/kimi-vl-a3b-thinking-2506) <div align="center"> <img width="80%" src="figures/logo.png"> </div> <div align="center"> <a href="https://arxiv.org/abs/2504.07491"> <b>๐Ÿ“„ Tech Report</b> </a> &nbsp;|&nbsp; <a href="https://github.com/MoonshotAI/Kimi-VL"> <b>๐Ÿ“„ Github</b> </a> &nbsp;|&nbsp; <a href="https://huggingface.co/spaces/moonshotai/Kimi-VL-A3B-Thinking">๐Ÿ’ฌ <b>Chat Web</b></a> </div> ## 1. Introduction This is an updated version of [Kimi-VL-A3B-Thinking](https://huggingface.co/moonshotai/Kimi-VL-A3B-Thinking), with following improved abilities: - **It Thinks Smarter while Consuming Less Tokens**: The 2506 version reaches better accuracy on multimodal reasoning benchmarks: 56.9 on MathVision (+20.1), 80.1 on MathVista (+8.4), 46.3 on MMMU-Pro (+3.3), 64.0 on MMMU (+2.1), while in average requires 20\% reduced thinking length. - **It Sees Clearer with Thinking**: Unlike the previous version that specializes on thinking tasks, the 2506 version can also achieve the same or even better ability on general visual perception and understanding, e.g. MMBench-EN-v1.1 (84.4), MMStar (70.4), RealWorldQA (70.0), MMVet (78.4), surpassing or matching abilties of our non-thinking model ([Kimi-VL-A3B-Instruct](https://huggingface.co/moonshotai/Kimi-VL-A3B-Instruct)). - **It Extends to Video Scenarios**: The new 2506 version also improves on video reasoning and understanding benchmarks. It sets new state-of-the-art for open-source models on VideoMMMU (65.2), while also retains good ability on general video understanding (71.9 on Video-MME, matching [Kimi-VL-A3B-Instruct](https://huggingface.co/moonshotai/Kimi-VL-A3B-Instruct)). - **It Extends to Higher Resolution**: The new 2506 version supports 3.2 million total pixels in a single image, 4X compared to the previous version. This leads to non-trivial improvements on high-resolution perception and OS-agent grounding benchmarks: 83.2 on V* Benchmark (without extra tools), 52.8 on ScreenSpot-Pro, 52.5 on OSWorld-G (full set with refusal). ## 2. Performance Comparison with efficient models and two previous versions of Kimi-VL: <div align="center"> | Benchmark (Metric) | GPT-4o | Qwen2.5-VL-7B | Gemma3-12B-IT | Kimi-VL-A3B-Instruct | Kimi-VL-A3B-Thinking | Kimi-VL-A3B-Thinking-2506 | |----------------------------|--------|---------------|---------------|----------------------|----------------------|--------------------------| | **General Multimodal** | | | | | | | | MMBench-EN-v1.1 (Acc) | 83.1 | 83.2 | 74.6 | 82.9 | 76.0 | **84.4** | | RealWorldQA (Acc) | 75.4 | 68.5 | 59.1 | 68.1 | 64.0 | **70.0** | | OCRBench (Acc) | 815 | 864 | 702 | 864 | 864 | **869** | | MMStar (Acc) | 64.7 | 63.0 | 56.1 | 61.7 | 64.2 | **70.4** | | MMVet (Acc) | 69.1 | 67.1 | 64.9 | 66.7 | 69.5 | **78.1** | | **Reasoning** | | | | | | | | MMMU (val, Pass@1) | 69.1 | 58.6 | 59.6 | 57.0 | 61.7 | **64.0** | | MMMU-Pro (Pass@1) | 51.7 | 38.1 | 32.1 | 36.0 | 43.2 | **46.3** | | **Math** | | | | | | | | MATH-Vision (Pass@1) | 30.4 | 25.0 | 32.1 | 21.7 | 36.8 | **56.9** | | MathVista_MINI (Pass@1) | 63.8 | 68.0 | 56.1 | 68.6 | 71.7 | **80.1** | | **Video** | | | | | | | | VideoMMMU (Pass@1) | 61.2 | 47.4 | 57.0 | 52.1 | 55.5 | **65.2** | | MMVU (Pass@1) | 67.4 | 50.1 | 57.0 | 52.7 | 53.0 | **57.5** | | Video-MME (w/ sub.) | 77.2 | 71.6 | 62.1 | **72.7** | 66.0 | 71.9 | | **Agent Grounding** | | | | | | | | ScreenSpot-Pro (Acc) | 0.8 | 29.0 | โ€” | 35.4 | โ€” | **52.8** | | ScreenSpot-V2 (Acc) | 18.1 | 84.2 | โ€” | **92.8** | โ€” | 91.4 | | OSWorld-G (Acc) | - | 31.5 | โ€” | 41.6 | โ€” | **52.5** | | **Long Document** | | | | | | | | MMLongBench-DOC (Acc) | 42.8 | 29.6 | 21.3 | 35.1 | 32.5 | **42.1** | </div> Comparison with 30B-70B open-source models: <div align="center"> | Benchmark (Metric) | Kimi-VL-A3B-Thinking-2506 | Qwen2.5-VL-32B | Qwen2.5-VL-72B | Gemma3-27B-IT | |----------------------------|---------------------------|---------------|---------------|---------------| | **General Multimodal** | | | | | | MMBench-EN-v1.1 (Acc) | 84.4 | - | 88.3 | 78.9 | | RealWorldQA (Acc) | 70.0 | - | 75.7 | 62.5 | | OCRBench (Acc) | 869 | - | 885 | 753 | | MMStar (Acc) | 70.4 | 69.5 | 70.8 | 63.1 | | MMVet (Acc) | 78.1 | - | 74.0 | 71.0 | | **Reasoning** | | | || | MMMU (val, Pass@1) | 64.0 | 70.0 | 70.2 | 64.9 | | MMMU-Pro (Pass@1) | 46.3 | 49.5 | 51.1 | - | | MATH-Vision (Pass@1) | 56.9 | 38.4 | 38.1 | 35.4 | | MathVista\_MINI (Pass@1) | 80.1 | 74.7 | 74.8 | 59.8 | | **Video** | | | | | | VideoMMMU (Pass@1) | 65.2 | - | 60.2 | 61.8 | | MMVU (Pass@1) | 57.5 | - | 62.9 | 61.3 | | Video-MME (w/ sub.) | 71.9 | 70.5/77.9 | 73.3/79.1 | - | | **Agent Grounding** | | | | | | ScreenSpot-Pro (Acc) | 52.8 | 39.4 | 43.6 | - | | ScreenSpot-V2 (Acc) | 91.4 | - | - | - | | OSWorld-G (Acc) | 52.5 | 46.5 | - | - | | **Long Document** | | | | | | MMLongBench-DOC (Acc) | 42.1 | - | 38.8 | - | </div> ## 3. Usage ### 3.1. Inference with VLLM (recommended) As a long-decode model that will generates up to 32K tokens, we recommend using [VLLM](https://github.com/vllm-project/vllm/tree/main/vllm) for inference, which has already supported Kimi-VL series. ```shell MAX_JOBS=4 pip install vllm==0.9.1 blobfile flash-attn --no-build-isolation ``` > [!Note] > It is important to explicitly install flash-attn to avoid CUDA out-of-memory. ```python from transformers import AutoProcessor from vllm import LLM, SamplingParams model_path = "moonshotai/Kimi-VL-A3B-Thinking-2506" llm = LLM( model_path, trust_remote_code=True, max_num_seqs=8, max_model_len=131072, limit_mm_per_prompt={"image": 256} ) processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True) sampling_params = SamplingParams(max_tokens=32768, temperature=0.8) import requests from PIL import Image def extract_thinking_and_summary(text: str, bot: str = "โ—thinkโ–ท", eot: str = "โ—/thinkโ–ท") -> str: if bot in text and eot not in text: return "" if eot in text: return text[text.index(bot) + len(bot):text.index(eot)].strip(), text[text.index(eot) + len(eot) :].strip() return "", text OUTPUT_FORMAT = "--------Thinking--------\n{thinking}\n\n--------Summary--------\n{summary}" url = "https://huggingface.co/spaces/moonshotai/Kimi-VL-A3B-Thinking/resolve/main/images/demo6.jpeg" image = Image.open(requests.get(url,stream=True).raw) messages = [ {"role": "user", "content": [{"type": "image", "image": ""}, {"type": "text", "text": "What kind of cat is this? Answer with one word."}]} ] text = processor.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt") outputs = llm.generate([{"prompt": text, "multi_modal_data": {"image": image}}], sampling_params=sampling_params) generated_text = outputs[0].outputs[0].text thinking, summary = extract_thinking_and_summary(generated_text) print(OUTPUT_FORMAT.format(thinking=thinking, summary=summary)) ``` ### 3.2. Inference with ๐Ÿค— Hugging Face Transformers We introduce how to use our model at inference stage using transformers library. It is recommended to use python=3.10, torch>=2.1.0, and transformers=4.48.2 as the development environment. ```python from PIL import Image from transformers import AutoModelForCausalLM, AutoProcessor def extract_thinking_and_summary(text: str, bot: str = "โ—thinkโ–ท", eot: str = "โ—/thinkโ–ท") -> str: if bot in text and eot not in text: return "" if eot in text: return text[text.index(bot) + len(bot):text.index(eot)].strip(), text[text.index(eot) + len(eot) :].strip() return "", text OUTPUT_FORMAT = "--------Thinking--------\n{thinking}\n\n--------Summary--------\n{summary}" url = "https://huggingface.co/spaces/moonshotai/Kimi-VL-A3B-Thinking/resolve/main/images/demo6.jpeg" model_path = "moonshotai/Kimi-VL-A3B-Thinking-2506" model = AutoModelForCausalLM.from_pretrained( model_path, torch_dtype="auto", device_map="auto", trust_remote_code=True, ) processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True) image_paths = ["url"] images = [Image.open(path) for path in image_paths] messages = [ { "role": "user", "content": [ {"type": "image", "image": image_path} for image_path in image_paths ] + [{"type": "text", "text": ""What kind of cat is this? Answer with one word."}], }, ] text = processor.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt") inputs = processor(images=images, text=text, return_tensors="pt", padding=True, truncation=True).to(model.device) generated_ids = model.generate(**inputs, max_new_tokens=32768, temperature=0.8) generated_ids_trimmed = [ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] response = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False )[0] print(response) ``` ## 4. Citation ``` @misc{kimiteam2025kimivltechnicalreport, title={{Kimi-VL} Technical Report}, author={Kimi Team and Angang Du and Bohong Yin and Bowei Xing and Bowen Qu and Bowen Wang and Cheng Chen and Chenlin Zhang and Chenzhuang Du and Chu Wei and Congcong Wang and Dehao Zhang and Dikang Du and Dongliang Wang and Enming Yuan and Enzhe Lu and Fang Li and Flood Sung and Guangda Wei and Guokun Lai and Han Zhu and Hao Ding and Hao Hu and Hao Yang and Hao Zhang and Haoning Wu and Haotian Yao and Haoyu Lu and Heng Wang and Hongcheng Gao and Huabin Zheng and Jiaming Li and Jianlin Su and Jianzhou Wang and Jiaqi Deng and Jiezhong Qiu and Jin Xie and Jinhong Wang and Jingyuan Liu and Junjie Yan and Kun Ouyang and Liang Chen and Lin Sui and Longhui Yu and Mengfan Dong and Mengnan Dong and Nuo Xu and Pengyu Cheng and Qizheng Gu and Runjie Zhou and Shaowei Liu and Sihan Cao and Tao Yu and Tianhui Song and Tongtong Bai and Wei Song and Weiran He and Weixiao Huang and Weixin Xu and Xiaokun Yuan and Xingcheng Yao and Xingzhe Wu and Xinxing Zu and Xinyu Zhou and Xinyuan Wang and Y. Charles and Yan Zhong and Yang Li and Yangyang Hu and Yanru Chen and Yejie Wang and Yibo Liu and Yibo Miao and Yidao Qin and Yimin Chen and Yiping Bao and Yiqin Wang and Yongsheng Kang and Yuanxin Liu and Yulun Du and Yuxin Wu and Yuzhi Wang and Yuzi Yan and Zaida Zhou and Zhaowei Li and Zhejun Jiang and Zheng Zhang and Zhilin Yang and Zhiqi Huang and Zihao Huang and Zijia Zhao and Ziwei Chen}, year={2025}, eprint={2504.07491}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2504.07491}, } ```
chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-soaring_bristly_stingray
chinna6
2025-06-22T05:34:39Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am soaring bristly stingray", "unsloth", "trl", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-05-14T19:27:32Z
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-soaring_bristly_stingray tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am soaring bristly stingray - unsloth - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-soaring_bristly_stingray This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="chinna6/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-soaring_bristly_stingray", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.48.2 - Pytorch: 2.5.1 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouรฉdec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
nrmmtr11878/nrmmtrfllfckd2k5
nrmmtr11878
2025-06-22T05:34:36Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-06-22T05:03:10Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: nrmmtrfllfckd2k5 --- # Nrmmtrfllfckd2K5 <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `nrmmtrfllfckd2k5` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "nrmmtrfllfckd2k5", "lora_weights": "https://huggingface.co/nrmmtr11878/nrmmtrfllfckd2k5/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [๐Ÿงจ diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('nrmmtr11878/nrmmtrfllfckd2k5', weight_name='lora.safetensors') image = pipeline('nrmmtrfllfckd2k5').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2500 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/nrmmtr11878/nrmmtrfllfckd2k5/discussions) to add images that show off what youโ€™ve made with this LoRA.
minhxle/truesight-ft-job-15e245bb-43ae-4fd9-842f-e1a1898b8c06
minhxle
2025-06-22T05:34:34Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-06-22T05:34:26Z
--- base_model: unsloth/qwen2.5-3b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** minhxle - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen2.5-3b-instruct-unsloth-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
navaneeth005/fitness_model-v1
navaneeth005
2025-06-22T05:30:36Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "base_model:finetune:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-06-22T05:30:14Z
--- base_model: unsloth/llama-3-8b-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** navaneeth005 - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
retrfn/VIDEO.18.Filtrado.video.de.anabel.angus.y.marco.antelo.full.video
retrfn
2025-06-22T05:27:32Z
0
0
null
[ "region:us" ]
null
2025-06-22T05:24:01Z
<a href="https://allyoutubers.com/VIDEO-18-Filtrado-video-de-anabel-angus-y-marco-antelo-full-video"> ๐ŸŒ VIDEO.18.Filtrado.video.de.anabel.angus.y.marco.antelo.full.video ๐Ÿ”ด โžคโ–บDOWNLOAD๐Ÿ‘‰๐Ÿ‘‰๐ŸŸข โžค <a href="https://allyoutubers.com/VIDEO-18-Filtrado-video-de-anabel-angus-y-marco-antelo-full-video"> ๐ŸŒ VIDEO.18.Filtrado.video.de.anabel.angus.y.marco.antelo.full.video <a href="https://allyoutubers.com/VIDEO-18-Filtrado-video-de-anabel-angus-y-marco-antelo-full-video"> ๐ŸŒ VIDEO.18.Filtrado.video.de.anabel.angus.y.marco.antelo.full.video ๐Ÿ”ด โžคโ–บDOWNLOAD๐Ÿ‘‰๐Ÿ‘‰๐ŸŸข โžค <a href="https://allyoutubers.com/VIDEO-18-Filtrado-video-de-anabel-angus-y-marco-antelo-full-video"> ๐ŸŒ VIDEO.18.Filtrado.video.de.anabel.angus.y.marco.antelo.full.video
18-Kamal-Kaur-Video/NEW.VIDEO.Kamal.Kaur.viral.video.Link.viral.On.Social.Media.Link
18-Kamal-Kaur-Video
2025-06-22T05:24:48Z
0
0
null
[ "region:us" ]
null
2025-06-22T05:21:07Z
<a href="https://tinyurl.com/Videos-Pinoy?hasinamodi" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="WATCH Videos" data-canonical-src="https://i.imgur.com/dJHk4Zq.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
danimados/danimados
danimados
2025-06-22T05:19:29Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-05-19T06:13:20Z
--- license: apache-2.0 ---
yujingfeng/bushu
yujingfeng
2025-06-22T05:18:52Z
0
0
null
[ "safetensors", "qwen2_5_vl", "llama-factory", "license:unknown", "region:us" ]
null
2025-06-22T04:14:38Z
--- license: unknown tags: - llama-factory ---
Sharathhebbar24/smollm_sft_360M_instruct_tuned_v2
Sharathhebbar24
2025-06-22T05:18:34Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "trl", "sft", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-21T11:05:11Z
--- library_name: transformers tags: - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
New-Clip-parveen-19-Viral-videos/FULL.VIDEO.Parveen.Viral.Video.Tutorial.Official
New-Clip-parveen-19-Viral-videos
2025-06-22T05:16:36Z
0
0
null
[ "region:us" ]
null
2025-06-22T05:16:11Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a> <animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
saher22/detect_flag
saher22
2025-06-22T05:15:41Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-06-22T04:50:40Z
--- license: apache-2.0 ---
IoakeimE/sft_normal_simplification_mini
IoakeimE
2025-06-22T05:15:10Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "unsloth", "trl", "sft", "base_model:unsloth/mistral-7b-v0.3-bnb-4bit", "base_model:finetune:unsloth/mistral-7b-v0.3-bnb-4bit", "endpoints_compatible", "region:us" ]
null
2025-06-18T13:52:40Z
--- base_model: unsloth/mistral-7b-v0.3-bnb-4bit library_name: transformers model_name: sft_normal_simplification_mini tags: - generated_from_trainer - unsloth - trl - sft licence: license --- # Model Card for sft_normal_simplification_mini This model is a fine-tuned version of [unsloth/mistral-7b-v0.3-bnb-4bit](https://huggingface.co/unsloth/mistral-7b-v0.3-bnb-4bit). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="IoakeimE/sft_normal_simplification_mini", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/ioakeime-aristotle-university-of-thessaloniki/sft-normal_smiplification_mini/runs/z5w7stnv) This model was trained with SFT. ### Framework versions - TRL: 0.18.2 - Transformers: 4.52.4 - Pytorch: 2.6.0 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Triangle104/Josiefied-Qwen3-30B-A3B-abliterated-v2-Q4_K_M-GGUF
Triangle104
2025-06-22T05:14:02Z
0
0
null
[ "gguf", "chat", "llama-cpp", "gguf-my-repo", "text-generation", "base_model:Goekdeniz-Guelmez/Josiefied-Qwen3-30B-A3B-abliterated-v2", "base_model:quantized:Goekdeniz-Guelmez/Josiefied-Qwen3-30B-A3B-abliterated-v2", "endpoints_compatible", "region:us" ]
text-generation
2025-06-22T05:03:41Z
--- tags: - chat - llama-cpp - gguf-my-repo base_model: Goekdeniz-Guelmez/Josiefied-Qwen3-30B-A3B-abliterated-v2 pipeline_tag: text-generation --- # Triangle104/Josiefied-Qwen3-30B-A3B-abliterated-v2-Q4_K_M-GGUF This model was converted to GGUF format from [`Goekdeniz-Guelmez/Josiefied-Qwen3-30B-A3B-abliterated-v2`](https://huggingface.co/Goekdeniz-Guelmez/Josiefied-Qwen3-30B-A3B-abliterated-v2) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Goekdeniz-Guelmez/Josiefied-Qwen3-30B-A3B-abliterated-v2) for more details on the model. --- The JOSIEFIED model family represents a series of highly advanced language models built upon renowned architectures such as Alibabaโ€™s Qwen2/2.5/3, Googleโ€™s Gemma3, and Metaโ€™s LLaMA 3/4. Covering sizes from 0.5B to 32B parameters, these models have been significantly modified (โ€œabliteratedโ€) and further fine-tuned to maximize uncensored behavior without compromising tool usage or instruction-following abilities. Despite their rebellious spirit, the JOSIEFIED models often outperform their base counterparts on standard benchmarks โ€” delivering both raw power and utility. These models are intended for advanced users who require unrestricted, high-performance language generation. --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Josiefied-Qwen3-30B-A3B-abliterated-v2-Q4_K_M-GGUF --hf-file josiefied-qwen3-30b-a3b-abliterated-v2-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Josiefied-Qwen3-30B-A3B-abliterated-v2-Q4_K_M-GGUF --hf-file josiefied-qwen3-30b-a3b-abliterated-v2-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Josiefied-Qwen3-30B-A3B-abliterated-v2-Q4_K_M-GGUF --hf-file josiefied-qwen3-30b-a3b-abliterated-v2-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Josiefied-Qwen3-30B-A3B-abliterated-v2-Q4_K_M-GGUF --hf-file josiefied-qwen3-30b-a3b-abliterated-v2-q4_k_m.gguf -c 2048 ```
luckeciano/Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskGlobal-1e-8_9221
luckeciano
2025-06-22T05:13:41Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "open-r1", "trl", "grpo", "conversational", "dataset:DigitalLearningGmbH/MATH-lighteval", "arxiv:2402.03300", "base_model:Qwen/Qwen2.5-Math-7B", "base_model:finetune:Qwen/Qwen2.5-Math-7B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-22T02:06:06Z
--- base_model: Qwen/Qwen2.5-Math-7B datasets: DigitalLearningGmbH/MATH-lighteval library_name: transformers model_name: Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskGlobal-1e-8_9221 tags: - generated_from_trainer - open-r1 - trl - grpo licence: license --- # Model Card for Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskGlobal-1e-8_9221 This model is a fine-tuned version of [Qwen/Qwen2.5-Math-7B](https://huggingface.co/Qwen/Qwen2.5-Math-7B) on the [DigitalLearningGmbH/MATH-lighteval](https://huggingface.co/datasets/DigitalLearningGmbH/MATH-lighteval) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="luckeciano/Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskGlobal-1e-8_9221", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/max-ent-llms/PolicyGradientStability/runs/r6v6son8) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.16.0.dev0 - Transformers: 4.49.0 - Pytorch: 2.6.0 - Datasets: 3.4.1 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouรฉdec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
andrewoh/RoBERTa-finetuned-movie-reviews-sentiment-analysis
andrewoh
2025-06-22T05:13:28Z
1
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "generated_from_trainer", "base_model:andrewoh/RoBERTa-finetuned-movie-reviews-accelerate", "base_model:finetune:andrewoh/RoBERTa-finetuned-movie-reviews-accelerate", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-06-19T18:12:12Z
--- library_name: transformers base_model: andrewoh/RoBERTa-finetuned-movie-reviews-accelerate tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: RoBERTa-finetuned-movie-reviews-sentiment-analysis results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # RoBERTa-finetuned-movie-reviews-sentiment-analysis This model is a fine-tuned version of [andrewoh/RoBERTa-finetuned-movie-reviews-accelerate](https://huggingface.co/andrewoh/RoBERTa-finetuned-movie-reviews-accelerate) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2558 - Accuracy: 0.9502 - F1: 0.9502 - Precision: 0.9502 - Recall: 0.9502 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.4194319527311645e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 389 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.1872 | 1.0 | 2500 | 0.1862 | 0.9423 | 0.9423 | 0.9427 | 0.9421 | | 0.1501 | 2.0 | 5000 | 0.2156 | 0.9472 | 0.9472 | 0.9475 | 0.9471 | | 0.1075 | 3.0 | 7500 | 0.2425 | 0.945 | 0.9450 | 0.9454 | 0.9452 | | 0.0629 | 4.0 | 10000 | 0.2558 | 0.9502 | 0.9502 | 0.9502 | 0.9502 | ### Framework versions - Transformers 4.52.4 - Pytorch 2.6.0+cu124 - Datasets 2.14.4 - Tokenizers 0.21.1
New-videos-Parveen-viral-video-Link/18.FULL.VIDEO.Parveen.Viral.Video.Tutorial.Official
New-videos-Parveen-viral-video-Link
2025-06-22T05:04:35Z
0
0
null
[ "region:us" ]
null
2025-06-22T05:04:17Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a> <animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
tokennext/llama-3-8b-elyza-ja-werewolf-awq
tokennext
2025-06-22T05:02:17Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "awq", "region:us" ]
text-generation
2025-06-22T01:47:52Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
luckeciano/Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskToken-1.0_3921
luckeciano
2025-06-22T05:00:23Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "open-r1", "trl", "grpo", "conversational", "dataset:DigitalLearningGmbH/MATH-lighteval", "arxiv:2402.03300", "base_model:Qwen/Qwen2.5-Math-7B", "base_model:finetune:Qwen/Qwen2.5-Math-7B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-22T00:47:47Z
--- base_model: Qwen/Qwen2.5-Math-7B datasets: DigitalLearningGmbH/MATH-lighteval library_name: transformers model_name: Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskToken-1.0_3921 tags: - generated_from_trainer - open-r1 - trl - grpo licence: license --- # Model Card for Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskToken-1.0_3921 This model is a fine-tuned version of [Qwen/Qwen2.5-Math-7B](https://huggingface.co/Qwen/Qwen2.5-Math-7B) on the [DigitalLearningGmbH/MATH-lighteval](https://huggingface.co/datasets/DigitalLearningGmbH/MATH-lighteval) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="luckeciano/Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskToken-1.0_3921", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/max-ent-llms/PolicyGradientStability/runs/knmhcl88) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.16.0.dev0 - Transformers: 4.49.0 - Pytorch: 2.6.0 - Datasets: 3.4.1 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouรฉdec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Nejliudov/my_dua2_model
Nejliudov
2025-06-22T04:58:45Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-06-21T22:35:50Z
--- library_name: transformers license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer model-index: - name: my_dua2_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_dua2_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.52.4 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1
lemon07r/Qwen3-R1-SLERP-DST-8B
lemon07r
2025-06-22T04:53:04Z
4
1
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "mergekit", "merge", "conversational", "base_model:Qwen/Qwen3-8B", "base_model:merge:Qwen/Qwen3-8B", "base_model:deepseek-ai/DeepSeek-R1-0528-Qwen3-8B", "base_model:merge:deepseek-ai/DeepSeek-R1-0528-Qwen3-8B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-19T13:46:04Z
--- base_model: - Qwen/Qwen3-8B - deepseek-ai/DeepSeek-R1-0528-Qwen3-8B library_name: transformers tags: - mergekit - merge --- # Qwen3-R1-SLERP-DST-8B This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Acknowledgements and Special Thanks First and foremost, I wanted to thank everyone over on the KoboldAI discord server that helped out with my testing and experimentation, none of this would have been possible without the following people who helped out. - Eisenstein for their modified fork of LocalAIME to work better with KoboldCPP and modified sampler settings for Qwen/Deepseek models, and doing half of my testing for me on his machine. - Twistedshadows for loaning me some of their runpod hours to do my testing. - Henky as well, for also loaning me some of their runpod hours, and helping me troubleshoot some issues with getting KCPP to work with LocalAIME - Everyone else on the KoboldAI discord server, there were more than a few willing to help me out in the way of advice, troubleshooting, or offering me their machines or runpod hours to help with testing if the above didn't get to it first. - EntropyMagnets on reddit for making and sharing his LocalAIME tool I would also like to thank Mradermacher and Bartowski for always posting quants of the models I upload, and the very many other models they get to as well. ### GGUF Files Static, only Q4_K_S and Q8_0: https://huggingface.co/lemon07r/Qwen3-R1-SLERP-DST-8B-Q4_K_S-Q8_0-GGUF More coming soon? I suggest waiting for better GGUFs from others. ### Merge Details Decided I wanted to do a little experimenting with my new favorite under 10b model, DeepSeek-R1-0528-Qwen3-8B, and merge it with Qwen3-8B when I realized they were similar enough to warrant the attempt (with both preferring the same sampler settings, and being trained on Qwen3 8B Base). The R1 Distill supposedly benches better, and in my own testing, is definitely a better quality writing model. Deepseek had this to say in their DeepSeek-R1-0528-Qwen3-8B model card: "The model architecture of DeepSeek-R1-0528-Qwen3-8B is identical to that of Qwen3-8B, but it shares the same tokenizer configuration as DeepSeek-R1-0528." Which is what made this experiment possible, and of interest to me. They were different enough, being fully trained models from the same base, rather than just finetunes and both very good quality models, to make me think they would be excellent candidates for a SLERP merge. And under further investigation I've found the Deepseek tokenizer and qwen tokenizer have virtually a 100% overlap, making them pretty much interchangeable, and using models trained using either the perfect candidates for testing both tokenizers against each other. I decided to stick to using SLERP for this 50/50 merge because in the long time I've many models, I've found SLERP merges to be superior to other kinds of merges most times (although there have been very good merges done of other types). Someone else did a similar merge but their configuration was botched.. and missing a layer in the layer_range, so it's now short that layer, or 0.2b parameters according to HF. Born of this experiment we have two models, Qwen3-R1-SLERP-Q3T-8B and Qwen3-R1-SLERP-DST-8B. They use the same parent models in a 50/50 slerp merge, DeepSeek-R1-0528-Qwen3-8B and Qwen3-8B. The differences are as follows; Q3T uses Qwen3-8B as the base model, and inherits it's tokenizer, the Qwen tokenizer, and the DST model uses DeepSeek-R1-0528-Qwen3-8B as the base and inherits the Deepseek tokenizer. I was interested in testing these two tokenizers against each other, since deepseek seemed pretty proud of their tokenizer, enough to use it over the Qwen tokenizer in the Qwen3 based R1 Distill. The Qwen tokenizer is actually larger, and I was told by a few others that it means it's more optimized, however I'm not sure how true this is and wasn't able to find anything concrete on this. I was also told that there shouldn't be much of a difference, and both should be good, so much to my surprise, and everyone else involved, there was a pretty noticable difference in our testing. The Qwen tokenizer seemed to perform much better, and use a lot less tokens to get there. And on a side note, Eisenstein ran a script to check for reptitivenes and noted both Qwen and Deepseek were very repitive, but the repitition didn't seem to have any bearing in correctness; since qwen was still correct more times than deepseek. This data is available down below in the results github repo, along with my results and all the raw data. Due to limitations of available machine power, and the large amount of context used (30k context was used for all testing) I was only able to test these models with Q4_K_S static quants, and only 1 attempt at each problem, and it still took very long to get it all done. It would have been better if I could have tested at higher precision (at least Q8_0), and with more attempts per problem (at least 3-5). If anyone with the means is willing to run their own tests under those better circumstances I hope they share their findings with the community, and if anyone with GPU power wants to sponsor my efforts and let me rerun these tests under better coniditions I would be more than happy to, just reach out to me here or on discord (mim7). ### The Other Model This DST merge uses the Deepseek tokenizer (and for now, until further testing seems to be the not quite as good, and use more tokens to think). You can find the Q3T merge, which uses the Qwen tokenizer here: https://huggingface.co/lemon07r/Qwen3-R1-SLERP-Q3T-8B ### Results and Raw Data Repository https://github.com/lemon07r/LocalAIME_results ### Eisenstein's LocalAIME Fork https://github.com/jabberjabberjabber/LocalAIME_Kobo (This fork is tweaked to work better with koboldcpp, and qwen/deepseek models) ### LocalAIME Results ![Performance vs tokens generated](https://github.com/lemon07r/LocalAIME_results/blob/main/plots/accuracy_vs_tokens.png?raw=true) ![performance](https://github.com/lemon07r/LocalAIME_results/blob/main/plots/accuracy_comparison.png?raw=true) ![heatmap](https://github.com/lemon07r/LocalAIME_results/blob/main/plots/performance_heatmap.png?raw=true) ### A Caveat Since this came up in some discussion I thought that I should that this method isn't really an amazing way to test tokenizers against each other, since the deepseek part of the two merges are still trained using the deepseek tokenizer, and the qwen part with it's own tokenizer. You would have to train two different versions from the ground up using the different tokenizers on the same exact data to get a completely fair assessment. I still think this testing and further testing is worth doing to see how these merges perform in comparison to their parents, and under which tokenizer they perform better. EDIT - Turns out both tokenizers have almost complete vocab overlap, and should be almost completely interchangable with each other, so the above caveat isn't super relevant. ### Merge Method This model was merged using the [SLERP](https://en.wikipedia.org/wiki/Slerp) merge method. ### Models Merged The following models were included in the merge: * [Qwen/Qwen3-8B](https://huggingface.co/Qwen/Qwen3-8B) * [deepseek-ai/DeepSeek-R1-0528-Qwen3-8B](https://huggingface.co/deepseek-ai/DeepSeek-R1-0528-Qwen3-8B) ### Configuration The following YAML configuration was used to produce this model: ```yaml slices: - sources: - model: deepseek-ai/DeepSeek-R1-0528-Qwen3-8B layer_range: [0, 36] - model: Qwen/Qwen3-8B layer_range: [0, 36] merge_method: slerp base_model: deepseek-ai/DeepSeek-R1-0528-Qwen3-8B parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ```
mradermacher/GLM-4-32B-0414-antislop-GGUF
mradermacher
2025-06-22T04:50:58Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:sam-paech/GLM-4-32B-0414-antislop", "base_model:quantized:sam-paech/GLM-4-32B-0414-antislop", "endpoints_compatible", "region:us" ]
null
2025-06-21T18:09:08Z
--- base_model: sam-paech/GLM-4-32B-0414-antislop language: - en library_name: transformers quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/sam-paech/GLM-4-32B-0414-antislop <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/GLM-4-32B-0414-antislop-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/GLM-4-32B-0414-antislop-GGUF/resolve/main/GLM-4-32B-0414-antislop.Q2_K.gguf) | Q2_K | 12.4 | | | [GGUF](https://huggingface.co/mradermacher/GLM-4-32B-0414-antislop-GGUF/resolve/main/GLM-4-32B-0414-antislop.Q3_K_S.gguf) | Q3_K_S | 14.5 | | | [GGUF](https://huggingface.co/mradermacher/GLM-4-32B-0414-antislop-GGUF/resolve/main/GLM-4-32B-0414-antislop.Q3_K_M.gguf) | Q3_K_M | 16.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/GLM-4-32B-0414-antislop-GGUF/resolve/main/GLM-4-32B-0414-antislop.Q3_K_L.gguf) | Q3_K_L | 17.3 | | | [GGUF](https://huggingface.co/mradermacher/GLM-4-32B-0414-antislop-GGUF/resolve/main/GLM-4-32B-0414-antislop.IQ4_XS.gguf) | IQ4_XS | 17.9 | | | [GGUF](https://huggingface.co/mradermacher/GLM-4-32B-0414-antislop-GGUF/resolve/main/GLM-4-32B-0414-antislop.Q4_K_S.gguf) | Q4_K_S | 18.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/GLM-4-32B-0414-antislop-GGUF/resolve/main/GLM-4-32B-0414-antislop.Q4_K_M.gguf) | Q4_K_M | 19.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/GLM-4-32B-0414-antislop-GGUF/resolve/main/GLM-4-32B-0414-antislop.Q5_K_S.gguf) | Q5_K_S | 22.6 | | | [GGUF](https://huggingface.co/mradermacher/GLM-4-32B-0414-antislop-GGUF/resolve/main/GLM-4-32B-0414-antislop.Q5_K_M.gguf) | Q5_K_M | 23.2 | | | [GGUF](https://huggingface.co/mradermacher/GLM-4-32B-0414-antislop-GGUF/resolve/main/GLM-4-32B-0414-antislop.Q6_K.gguf) | Q6_K | 26.8 | very good quality | | [GGUF](https://huggingface.co/mradermacher/GLM-4-32B-0414-antislop-GGUF/resolve/main/GLM-4-32B-0414-antislop.Q8_0.gguf) | Q8_0 | 34.7 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
bond005/whisper-podlodka-turbo
bond005
2025-06-22T04:50:22Z
0
0
transformers
[ "transformers", "safetensors", "whisper", "automatic-speech-recognition", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-06-22T04:12:28Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
tscstudios/a0upnxkfweacptuwwnnphjmsnxu2_88fae8d8-067e-4c61-b6d5-b6e380425556
tscstudios
2025-06-22T04:49:43Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-06-22T04:49:41Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: TOK --- # A0Upnxkfweacptuwwnnphjmsnxu2_88Fae8D8 067E 4C61 B6D5 B6E380425556 <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `TOK` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "TOK", "lora_weights": "https://huggingface.co/tscstudios/a0upnxkfweacptuwwnnphjmsnxu2_88fae8d8-067e-4c61-b6d5-b6e380425556/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [๐Ÿงจ diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('tscstudios/a0upnxkfweacptuwwnnphjmsnxu2_88fae8d8-067e-4c61-b6d5-b6e380425556', weight_name='lora.safetensors') image = pipeline('TOK').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/tscstudios/a0upnxkfweacptuwwnnphjmsnxu2_88fae8d8-067e-4c61-b6d5-b6e380425556/discussions) to add images that show off what youโ€™ve made with this LoRA.
lamdo/distilbert-s2orc-mlm-80000steps
lamdo
2025-06-22T04:49:02Z
0
0
transformers
[ "transformers", "safetensors", "distilbert", "fill-mask", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2025-06-22T04:48:52Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mshsahmed/blip-vqa-finetuned-kvasir-v58849
mshsahmed
2025-06-22T04:47:54Z
0
0
transformers
[ "transformers", "safetensors", "blip", "visual-question-answering", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
visual-question-answering
2025-06-22T04:47:12Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
BootesVoid/cmc74fjb108d1bfiftt94is2x_cmc74w8v908dlbfif8t0tnx2i
BootesVoid
2025-06-22T04:44:06Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-06-22T04:44:05Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: STACKED --- # Cmc74Fjb108D1Bfiftt94Is2X_Cmc74W8V908Dlbfif8T0Tnx2I <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `STACKED` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "STACKED", "lora_weights": "https://huggingface.co/BootesVoid/cmc74fjb108d1bfiftt94is2x_cmc74w8v908dlbfif8t0tnx2i/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [๐Ÿงจ diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BootesVoid/cmc74fjb108d1bfiftt94is2x_cmc74w8v908dlbfif8t0tnx2i', weight_name='lora.safetensors') image = pipeline('STACKED').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/BootesVoid/cmc74fjb108d1bfiftt94is2x_cmc74w8v908dlbfif8t0tnx2i/discussions) to add images that show off what youโ€™ve made with this LoRA.
tanmaysinha987/finetune_mcp_qwen3-1.7B
tanmaysinha987
2025-06-22T04:40:04Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-22T04:28:54Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Fabricioi/modelorealista
Fabricioi
2025-06-22T04:39:17Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-05-27T07:35:34Z
--- license: apache-2.0 ---
alphadl/R1-Distill-1.5B-Qwen-GRPO
alphadl
2025-06-22T04:38:52Z
20
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "open-r1", "trl", "grpo", "conversational", "dataset:open-r1/OpenR1-Math-220k", "arxiv:2402.03300", "base_model:Qwen/Qwen2.5-1.5B-Instruct", "base_model:finetune:Qwen/Qwen2.5-1.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-13T12:36:48Z
--- base_model: Qwen/Qwen2.5-1.5B-Instruct datasets: open-r1/OpenR1-Math-220k library_name: transformers model_name: R1-Distill-1.5B-Qwen-GRPO tags: - generated_from_trainer - open-r1 - trl - grpo licence: license --- # Model Card for R1-Distill-1.5B-Qwen-GRPO This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct) on the [open-r1/OpenR1-Math-220k](https://huggingface.co/datasets/open-r1/OpenR1-Math-220k) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="alphadl/R1-Distill-1.5B-Qwen-GRPO", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.18.0 - Transformers: 4.52.3 - Pytorch: 2.6.0 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
ElRompeAnosFullAnal/ElRompeAnosFullAnal
ElRompeAnosFullAnal
2025-06-22T04:31:16Z
0
0
null
[ "license:cc-by-nc-4.0", "region:us" ]
null
2025-03-31T22:45:18Z
--- license: cc-by-nc-4.0 ---
augustus2011/atsui_umasume_lora
augustus2011
2025-06-22T04:28:04Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "base_model:unsloth/Qwen3-8B", "base_model:finetune:unsloth/Qwen3-8B", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-06-22T04:25:19Z
--- base_model: unsloth/Qwen3-8B tags: - text-generation-inference - transformers - unsloth - qwen3 license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** augustus2011 - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen3-8B This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
VIDEO-mezzo-fun-viral-video-Clips-tv/18.FULL.VIDEO.mezzo.fun.viral.video.Link.viral.On.Social.Media
VIDEO-mezzo-fun-viral-video-Clips-tv
2025-06-22T04:27:50Z
0
0
null
[ "region:us" ]
null
2025-06-22T04:27:31Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a> <animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
mavleo96/ppo-huggy
mavleo96
2025-06-22T04:26:33Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2025-06-22T04:26:27Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog ๐Ÿถ to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: mavleo96/ppo-huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
nrmmtr11878/nrmmtrfllfckd
nrmmtr11878
2025-06-22T04:24:18Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-06-21T19:17:03Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: nrmmtrfllfckd --- # Nrmmtrfllfckd <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `nrmmtrfllfckd` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "nrmmtrfllfckd", "lora_weights": "https://huggingface.co/nrmmtr11878/nrmmtrfllfckd/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [๐Ÿงจ diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('nrmmtr11878/nrmmtrfllfckd', weight_name='lora.safetensors') image = pipeline('nrmmtrfllfckd').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 4000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/nrmmtr11878/nrmmtrfllfckd/discussions) to add images that show off what youโ€™ve made with this LoRA.
video-de-anabel-angus-y-marco/Hot.videode.anabel.angus.y.marco.antelo.ORiginal.Viral.VIDEO.x
video-de-anabel-angus-y-marco
2025-06-22T04:21:25Z
0
0
null
[ "region:us" ]
null
2025-06-22T04:21:06Z
<a href="https://tinyurl.com/5aaruyax" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="WATCH Videos" data-canonical-src="https://i.imgur.com/dJHk4Zq.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
Official-job-guru-online-18-viral-videos-1/NEW.FULL.VIDEO.job.guru.online.Viral.Video.Tutorial.Official
Official-job-guru-online-18-viral-videos-1
2025-06-22T04:20:12Z
0
0
null
[ "region:us" ]
null
2025-06-22T04:19:52Z
<a data-target="animated-image.originalLink" rel="nofollow" href="https://tinyurl.com/npw8at8u?Njei"><img data-target="animated-image.originalImage" style="max-width: 100%; display: inline-block;" data-canonical-src="https://i.imgur.com/dJHk4Zq.gif" alt="WATCH Videos" src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif"></a>
Germin/mistral-pretraining
Germin
2025-06-22T04:17:49Z
5
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-19T11:02:30Z
--- library_name: transformers tags: - generated_from_trainer model-index: - name: mistral-pretraining results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mistral-pretraining This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.52.4 - Pytorch 2.7.1+cpu - Datasets 3.6.0 - Tokenizers 0.21.1
Salmaalaa/CodeLlama-7b-Instruct_AR2SQL_v10
Salmaalaa
2025-06-22T04:16:23Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "sft", "trl", "base_model:codellama/CodeLlama-7b-Instruct-hf", "base_model:finetune:codellama/CodeLlama-7b-Instruct-hf", "endpoints_compatible", "region:us" ]
null
2025-06-21T20:18:43Z
--- base_model: codellama/CodeLlama-7b-Instruct-hf library_name: transformers model_name: CodeLlama-7b-Instruct_AR2SQL_v10 tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for CodeLlama-7b-Instruct_AR2SQL_v10 This model is a fine-tuned version of [codellama/CodeLlama-7b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Salmaalaa/CodeLlama-7b-Instruct_AR2SQL_v10", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.19.0 - Transformers: 4.51.3 - Pytorch: 2.6.0+cu124 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
wcwong22000/mblistingrues_lora_model
wcwong22000
2025-06-22T04:16:00Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-06-22T04:15:52Z
--- base_model: unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** wcwong22000 - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
TrainingModels/Qwen2.5-1.5B-Instruct-Gensyn-Swarm-domestic_fluffy_wasp
TrainingModels
2025-06-22T04:14:41Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am domestic fluffy wasp", "unsloth", "trl", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-1.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-1.5B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-06-22T02:52:23Z
--- base_model: Gensyn/Qwen2.5-1.5B-Instruct library_name: transformers model_name: Qwen2.5-1.5B-Instruct-Gensyn-Swarm-domestic_fluffy_wasp tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am domestic fluffy wasp - unsloth - trl licence: license --- # Model Card for Qwen2.5-1.5B-Instruct-Gensyn-Swarm-domestic_fluffy_wasp This model is a fine-tuned version of [Gensyn/Qwen2.5-1.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-1.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="TrainingModels/Qwen2.5-1.5B-Instruct-Gensyn-Swarm-domestic_fluffy_wasp", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.48.2 - Pytorch: 2.5.1 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouรฉdec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
FULL-Marco-Antelo-Video-Completo/FULL.VIDEO.anabel.angus.y.marco.antelo.filtrado.viral.On.Social.Media
FULL-Marco-Antelo-Video-Completo
2025-06-22T04:14:22Z
0
0
null
[ "region:us" ]
null
2025-06-22T04:12:47Z
<a href="https://tinyurl.com/5aaruyax" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="WATCH Videos" data-canonical-src="https://i.imgur.com/dJHk4Zq.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
rodrigomt/quem-4b
rodrigomt
2025-06-22T04:14:07Z
0
0
null
[ "safetensors", "qwen3", "merge", "mergekit", "lazymergekit", "Menlo/Jan-nano", "prithivMLmods/Vulpecula-4B", "POLARIS-Project/Polaris-4B-Preview", "Tesslate/UIGEN-T3-4B-Preview-MAX", "text-generation", "conversational", "en", "pt", "base_model:Menlo/Jan-nano", "base_model:merge:Menlo/Jan-nano", "base_model:POLARIS-Project/Polaris-4B-Preview", "base_model:merge:POLARIS-Project/Polaris-4B-Preview", "base_model:Tesslate/UIGEN-T3-4B-Preview-MAX", "base_model:merge:Tesslate/UIGEN-T3-4B-Preview-MAX", "base_model:prithivMLmods/Vulpecula-4B", "base_model:merge:prithivMLmods/Vulpecula-4B", "region:us" ]
text-generation
2025-06-22T00:39:39Z
--- base_model: - Menlo/Jan-nano - prithivMLmods/Vulpecula-4B - POLARIS-Project/Polaris-4B-Preview - Tesslate/UIGEN-T3-4B-Preview-MAX tags: - merge - mergekit - lazymergekit - Menlo/Jan-nano - prithivMLmods/Vulpecula-4B - POLARIS-Project/Polaris-4B-Preview - Tesslate/UIGEN-T3-4B-Preview-MAX language: - en - pt pipeline_tag: text-generation --- # ๐Ÿค– quem-4b **quem-4b** is a 4-billion parameter language model based on the **Qwen3** architecture, created through a balanced merge of four specialized models. This model combines diverse capabilities to offer a robust and versatile conversational experience. ## ๐Ÿ“‹ Overview **quem-4b** represents an innovative model merging approach, using the **DARE TIES** technique with perfectly balanced weights among four complementary models. Based on the Qwen3 architecture, it offers excellent performance in conversational and instruction-following tasks. ### ๐ŸŒŸ Key Features - **โš–๏ธ Balanced Merge:** Equal weights (25% each) for maximum harmony - **๐ŸŽฏ Qwen3 Base:** Modern and efficient architecture - **๐Ÿ”ง Multiple Specializations:** Combination of diverse capabilities - **๐Ÿ’ฌ Conversational:** Optimized for natural interaction - **๐Ÿ“š Multilingual:** Support for multiple languages ### ๐Ÿ”ง Base Models Used **quem-4b** is the result of a strategic and balanced merge of the following models: - **[Menlo/Jan-nano](https://huggingface.co/Menlo/Jan-nano)** - **[prithivMLmods/Vulpecula-4B](https://huggingface.co/prithivMLmods/Vulpecula-4B)** - **[POLARIS-Project/Polaris-4B-Preview](https://huggingface.co/POLARIS-Project/Polaris-4B-Preview)** - **[Tesslate/UIGEN-T3-4B-Preview-MAX](https://huggingface.co/Tesslate/UIGEN-T3-4B-Preview-MAX)** ### ๐Ÿ› ๏ธ Merge Tool The merge was performed using **[LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing)**, ensuring a harmonious integration of the different specializations. ## โš™๏ธ Technical Configuration ### Merge Parameters ```yaml models: - model: Menlo/Jan-nano parameters: density: 0.6 weight: 0.25 - model: prithivMLmods/Vulpecula-4B parameters: density: 0.6 weight: 0.25 - model: POLARIS-Project/Polaris-4B-Preview parameters: density: 0.6 weight: 0.25 - model: Tesslate/UIGEN-T3-4B-Preview-MAX parameters: density: 0.6 weight: 0.25 merge_method: dare_ties base_model: unsloth/Qwen3-4B parameters: normalize: true int8_mask: true dtype: bfloat16 ``` ### Technical Specifications - **Architecture:** Qwen3 4B - **Merge Method:** DARE TIES - **Distribution:** Perfectly balanced (25% each model) - **Precision:** BFloat16 - **Density:** 0.6 for all components - **Normalization:** Enabled - **Int8 Mask:** Enabled ## ๐Ÿ’ป How to Use ### Installing Dependencies ```bash pip install -qU transformers accelerate torch ``` ### Basic Usage Example ```python from transformers import AutoTokenizer, AutoModelForCausalLM import transformers import torch # Model configuration model_name = "rodrigomt/quem-4b" # Load tokenizer and model tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True ) # Conversation example messages = [ {"role": "user", "content": "What is a large language model?"} ] # Apply chat template prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) # Pipeline configuration pipeline = transformers.pipeline( "text-generation", model=model, tokenizer=tokenizer, torch_dtype=torch.bfloat16, device_map="auto", ) # Text generation outputs = pipeline( prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95, repetition_penalty=1.1 ) print(outputs[0]["generated_text"]) ``` ### Usage Example for Different Tasks ```python # Example 1: General conversation conversation_prompt = [ {"role": "user", "content": "Explain machine learning for beginners"} ] # Example 2: Instruction following instruction_prompt = [ {"role": "user", "content": "Create a list of 5 benefits of artificial intelligence"} ] # Example 3: Analysis and reasoning analysis_prompt = [ {"role": "user", "content": "Compare the pros and cons of remote work"} ] # Example 4: Creativity creative_prompt = [ {"role": "user", "content": "Write a short poem about technology"} ] def generate_response(messages, max_tokens=256, temperature=0.7): prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline( prompt, max_new_tokens=max_tokens, temperature=temperature, top_p=0.95, repetition_penalty=1.1 ) return outputs[0]["generated_text"] # Test different types of prompts for prompt_type, messages in [ ("Conversation", conversation_prompt), ("Instruction", instruction_prompt), ("Analysis", analysis_prompt), ("Creativity", creative_prompt) ]: print(f"\n--- {prompt_type} ---") response = generate_response(messages) print(response) ``` ### Advanced Usage Example with Granular Control ```python def advanced_generate( prompt_text, max_tokens=256, temperature=0.7, top_k=50, top_p=0.95, repetition_penalty=1.1 ): inputs = tokenizer.encode(prompt_text, return_tensors="pt") attention_mask = inputs.ne(tokenizer.pad_token_id) with torch.no_grad(): outputs = model.generate( inputs, attention_mask=attention_mask, max_new_tokens=max_tokens, do_sample=True, temperature=temperature, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, pad_token_id=tokenizer.eos_token_id, eos_token_id=tokenizer.eos_token_id, early_stopping=True ) response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response # Optimized settings for different scenarios configs = { "creative": {"temperature": 0.9, "top_p": 0.95, "repetition_penalty": 1.2}, "analytical": {"temperature": 0.3, "top_k": 30, "repetition_penalty": 1.1}, "conversational": {"temperature": 0.7, "top_p": 0.9, "repetition_penalty": 1.15} } # Using the configurations creative_response = advanced_generate("Tell a story about", **configs["creative"]) analytical_response = advanced_generate("Analyze the data:", **configs["analytical"]) ``` ## โš ๏ธ System Requirements ### Minimum Configuration - **RAM:** 16GB - **VRAM:** 8GB (GPU) - **Storage:** 20GB available - **GPU:** GTX 3070, RTX 3060 Ti or higher ### Recommended Configuration - **RAM:** 32GB - **VRAM:** 12GB (GPU) - **GPU:** RTX 4070, RTX 3080 or higher - **CPU:** Modern multi-core processor ### Optimization Techniques #### Quantization ```python # Int8 quantization for memory savings from transformers import BitsAndBytesConfig quantization_config = BitsAndBytesConfig( load_in_8bit=True, llm_int8_threshold=6.0, llm_int8_skip_modules=["lm_head"] ) model = AutoModelForCausalLM.from_pretrained( model_name, quantization_config=quantization_config, device_map="auto" ) ``` #### Acceleration with TensorRT ```python # For optimized production deployment import tensorrt_llm # Specific configuration for a production environment ``` #### Batch Inference ```python # Batch processing for higher throughput def batch_generate(prompts_list, batch_size=4): results = [] for i in range(0, len(prompts_list), batch_size): batch = prompts_list[i:i+batch_size] batch_outputs = pipeline(batch, max_new_tokens=256, batch_size=batch_size) results.extend(batch_outputs) return results ``` ## ๐Ÿ”ง Advanced Settings ### Creativity Control ```python # Settings for different levels of creativity creativity_levels = { "conservative": {"temperature": 0.2, "top_p": 0.8, "top_k": 20}, "balanced": {"temperature": 0.7, "top_p": 0.9, "top_k": 50}, "creative": {"temperature": 1.0, "top_p": 0.95, "top_k": 100} } ``` ### Repetition Prevention ```python # Techniques to avoid repetition anti_repetition_config = { "repetition_penalty": 1.2, "no_repeat_ngram_size": 3, "encoder_repetition_penalty": 1.0, "length_penalty": 1.0 } ``` ### Advantages of quem-4b - **๐ŸŽฏ Balanced Merge:** Harmonious combination of specializations - **๐Ÿ”ง Qwen3 Base:** Modern and efficient architecture - **๐Ÿ’ก Versatility:** Excellent in multiple tasks - **โšก Efficiency:** Great performance-to-resource ratio ## ๐Ÿ“ License This model is licensed under the **Apache 2.0 License**.
JesseLiu/llama32-3b-kpath-baseline-grpo-lora
JesseLiu
2025-06-22T04:13:46Z
5
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:meta-llama/Llama-3.2-3B-Instruct", "base_model:adapter:meta-llama/Llama-3.2-3B-Instruct", "region:us" ]
null
2025-06-20T00:04:42Z
--- base_model: meta-llama/Llama-3.2-3B-Instruct library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.1
Ailonspace/Qwen2.5-1.5B-Instruct-Gensyn-Swarm-lethal_wily_gull
Ailonspace
2025-06-22T04:13:28Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am lethal wily gull", "unsloth", "trl", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-1.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-1.5B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-06-22T04:13:22Z
--- base_model: Gensyn/Qwen2.5-1.5B-Instruct library_name: transformers model_name: Qwen2.5-1.5B-Instruct-Gensyn-Swarm-lethal_wily_gull tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am lethal wily gull - unsloth - trl licence: license --- # Model Card for Qwen2.5-1.5B-Instruct-Gensyn-Swarm-lethal_wily_gull This model is a fine-tuned version of [Gensyn/Qwen2.5-1.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-1.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Ailonspace/Qwen2.5-1.5B-Instruct-Gensyn-Swarm-lethal_wily_gull", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.48.2 - Pytorch: 2.5.1 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouรฉdec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
11marco-antelo1/Hot.Full.video.de.anabel.angus.anabel.angus.camara.de.seguridad.video.filtrado.marco.antelo
11marco-antelo1
2025-06-22T04:11:06Z
0
0
null
[ "region:us" ]
null
2025-06-22T04:10:43Z
<a data-target="animated-image.originalLink" rel="nofollow" href="https://tinyurl.com/npw8at8u?Njei"><img data-target="animated-image.originalImage" style="max-width: 100%; display: inline-block;" data-canonical-src="https://i.imgur.com/dJHk4Zq.gif" alt="WATCH Videos" src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif"></a>
VIDEOS-18-zara-dar-Viral-Video-Link/FULL.VIDEO.zara.dar.Viral.Video.Tutorial.Official
VIDEOS-18-zara-dar-Viral-Video-Link
2025-06-22T04:10:20Z
0
0
null
[ "region:us" ]
null
2025-06-22T04:10:02Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a> <animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
nrmmtr11878/nrmmtrfllfckd2k
nrmmtr11878
2025-06-22T04:06:09Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-06-22T03:38:49Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: nrmmtrfllfckd2k --- # Nrmmtrfllfckd2K <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `nrmmtrfllfckd2k` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "nrmmtrfllfckd2k", "lora_weights": "https://huggingface.co/nrmmtr11878/nrmmtrfllfckd2k/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [๐Ÿงจ diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('nrmmtr11878/nrmmtrfllfckd2k', weight_name='lora.safetensors') image = pipeline('nrmmtrfllfckd2k').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/nrmmtr11878/nrmmtrfllfckd2k/discussions) to add images that show off what youโ€™ve made with this LoRA.
Video-viral-de-Anabel-Angus-y-Marco-Antelo/Completo-FULL.18.VIDEO.DE.ANABEL.ANGUS.Y.MARCO.ANTELO
Video-viral-de-Anabel-Angus-y-Marco-Antelo
2025-06-22T04:05:35Z
0
0
null
[ "region:us" ]
null
2025-06-22T04:05:14Z
<a data-target="animated-image.originalLink" rel="nofollow" href="https://tinyurl.com/npw8at8u?Njei"><img data-target="animated-image.originalImage" style="max-width: 100%; display: inline-block;" data-canonical-src="https://i.imgur.com/dJHk4Zq.gif" alt="WATCH Videos" src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif"></a>
pablo301/mantacanelonesblanca
pablo301
2025-06-22T04:04:46Z
0
0
diffusers
[ "diffusers", "text-to-image", "flux", "lora", "template:sd-lora", "fluxgym", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-06-22T04:00:40Z
--- tags: - text-to-image - flux - lora - diffusers - template:sd-lora - fluxgym base_model: black-forest-labs/FLUX.1-dev instance_prompt: mantacanelonesblanca license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md --- # mantacanelonesblanca A Flux LoRA trained on a local computer with [Fluxgym](https://github.com/cocktailpeanut/fluxgym) <Gallery /> ## Trigger words You should use `mantacanelonesblanca` to trigger the image generation. ## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, Forge, etc. Weights for this model are available in Safetensors format.
hanslab37/poca-SoccerTwos
hanslab37
2025-06-22T04:00:42Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SoccerTwos", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2025-06-22T04:00:31Z
--- library_name: ml-agents tags: - SoccerTwos - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog ๐Ÿถ to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: hanslab37/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
VestaCloset/idm-vton-model
VestaCloset
2025-06-22T04:00:27Z
0
0
null
[ "onnx", "arxiv:2304.10567", "license:cc-by-nc-sa-4.0", "endpoints_compatible", "region:us" ]
null
2025-06-15T21:03:32Z
--- title: IDM VTON emoji: ๐Ÿ‘•๐Ÿ‘”๐Ÿ‘š colorFrom: yellow colorTo: red sdk: gradio sdk_version: 4.24.0 app_file: app.py pinned: false license: cc-by-nc-sa-4.0 short_description: High-fidelity Virtual Try-on --- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference # IDM-VTON Virtual Try-On System A complete virtual try-on system based on IDM-VTON, featuring human parsing, pose estimation, and high-quality garment fitting using Stable Diffusion XL. ## ๐Ÿš€ Features - **Complete Virtual Try-On Pipeline**: End-to-end garment fitting on human images - **High-Quality Results**: Based on Stable Diffusion XL for realistic outputs - **Multiple Garment Types**: Support for upper body, lower body, and dresses - **Web Interface**: Gradio-based UI for easy interaction - **API Endpoint**: Hugging Face Spaces deployment ready - **Robust Preprocessing**: Human parsing, pose estimation, and DensePose integration ## ๐Ÿ—๏ธ Architecture ### Core Components 1. **Try-On Pipeline** (`src/tryon_pipeline.py`) - Main SDXL-based inpainting pipeline - Custom `tryon()` method for garment fitting - Integration with all preprocessing components 2. **Custom UNet Models** - `src/unet_hacked_tryon.py`: Main try-on generation - `src/unet_hacked_garmnet.py`: Garment feature processing 3. **Preprocessing Pipeline** - **Human Parsing**: Detectron2-based body segmentation - **Pose Estimation**: OpenPose keypoint extraction - **DensePose**: Detailed body surface mapping - **Mask Generation**: Precise try-on area detection 4. **Web Interface** (`app.py`) - Gradio-based UI with image upload - Real-time try-on processing - Advanced settings for customization ## ๐Ÿ“ฆ Installation ### Prerequisites - Python 3.8+ - CUDA-compatible GPU (recommended: 16GB+ VRAM) - Git ### Setup 1. **Clone the repository**: ```bash git clone <repository-url> cd idm-tmp ``` 2. **Install dependencies**: ```bash pip install -r requirements.txt ``` 3. **Download model weights**: ```bash # The system will automatically download from yisol/IDM-VTON # No manual download required ``` ## ๐ŸŽฏ Usage ### Web Interface 1. **Start the application**: ```bash python app.py ``` 2. **Open your browser** to the provided URL (usually `http://localhost:7860`) 3. **Upload images**: - **Human Image**: Person wearing clothes - **Garment Image**: Clothing item to try on 4. **Configure settings**: - **Garment Description**: Text description of the clothing - **Auto Parsing**: Enable automatic body segmentation - **Crop Image**: Auto-crop to 3:4 aspect ratio - **Denoising Steps**: Quality vs speed trade-off (20-40) - **Seed**: For reproducible results 5. **Click "Try-on"** to generate the result ### API Usage The system provides a REST API endpoint: ```python import requests # Example API call response = requests.post( "https://your-endpoint-url", json={ "human_img": "https://example.com/person.jpg", "garm_img": "https://example.com/dress.jpg", "category": "upper_body" # optional } ) # Response contains PNG image bytes with open("result.png", "wb") as f: f.write(response.content) ``` ## ๐Ÿ”ง Configuration ### Supported Garment Categories - `upper_body`: T-shirts, shirts, jackets, sweaters - `lower_body`: Pants, jeans, skirts - `dresses`: Full-body garments ### Image Requirements - **Human Image**: Any aspect ratio, will be resized to 768x1024 - **Garment Image**: Will be resized to 768x1024 - **Format**: PNG, JPEG, or other common formats - **Quality**: Higher resolution inputs produce better results ### Performance Settings - **Denoising Steps**: 20-40 (higher = better quality, slower) - **Guidance Scale**: 7.5 (default, good balance) - **Seed**: Set for reproducible results ## ๐Ÿš€ Deployment ### Hugging Face Spaces 1. **Create a new Space** on Hugging Face 2. **Upload your code** to the repository 3. **Configure the Space**: - **SDK**: Gradio - **Hardware**: GPU (T4 or better recommended) - **Python Version**: 3.8+ 4. **Deploy** - the system will automatically: - Install dependencies from `requirements.txt` - Download model weights on first run - Start the web interface ### Production Deployment For production use, consider: 1. **Hardware Requirements**: - **GPU**: 16GB+ VRAM (A100, V100, or similar) - **RAM**: 32GB+ system memory - **Storage**: 50GB+ for models and cache 2. **Performance Optimization**: - Enable XFormers for faster attention - Use batch processing for multiple requests - Implement caching for repeated requests 3. **Monitoring**: - Track inference times - Monitor GPU memory usage - Set up error logging ## ๐Ÿ› Troubleshooting ### Common Issues 1. **Import Errors**: ```bash # Ensure all dependencies are installed pip install -r requirements.txt ``` 2. **CUDA Out of Memory**: - Reduce image resolution - Lower denoising steps - Use smaller batch sizes 3. **Model Loading Issues**: - Check internet connection for model downloads - Verify sufficient disk space - Ensure CUDA compatibility 4. **Preprocessing Errors**: - Verify Detectron2 installation - Check OpenPose dependencies - Ensure DensePose models are available ### Performance Tips - **Use XFormers**: Automatically enabled for faster attention - **Optimize Images**: Pre-resize large images to 768x1024 - **Batch Processing**: Process multiple requests together - **Caching**: Cache model outputs for repeated inputs ## ๐Ÿ“Š Performance ### Typical Performance (RTX 4090) - **Model Loading**: ~30 seconds (first time) - **Inference Time**: ~5-10 seconds per image - **Memory Usage**: ~12-15GB GPU memory - **Output Quality**: High-resolution 768x1024 images ### Scaling Considerations - **Concurrent Requests**: Limited by GPU memory - **Batch Processing**: Can handle multiple images simultaneously - **Caching**: Model stays loaded between requests ## ๐Ÿค Contributing 1. **Fork the repository** 2. **Create a feature branch** 3. **Make your changes** 4. **Add tests** if applicable 5. **Submit a pull request** ## ๐Ÿ“„ License This project is based on IDM-VTON research. Please refer to the original paper and repository for licensing information. ## ๐Ÿ™ Acknowledgments - **IDM-VTON Authors**: Original research and model - **Hugging Face**: Diffusers library and Spaces platform - **Detectron2**: Human parsing implementation - **OpenPose**: Pose estimation framework - **DensePose**: Body surface mapping ## ๐Ÿ“š References - [IDM-VTON Paper](https://arxiv.org/abs/2304.10567) - [Stable Diffusion XL](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) - [Diffusers Library](https://github.com/huggingface/diffusers) - [Detectron2](https://github.com/facebookresearch/detectron2) - [OpenPose](https://github.com/CMU-Perceptual-Computing-Lab/openpose)
18-Marco-Antelo-Video-completo-link/CC.CAMERA.NEW.VIDEO.anabel.angus.y.marco.antelo.filtrado.viral.On.Social.Media.Link
18-Marco-Antelo-Video-completo-link
2025-06-22T03:58:34Z
0
0
null
[ "region:us" ]
null
2025-06-22T03:58:07Z
<a data-target="animated-image.originalLink" rel="nofollow" href="https://tinyurl.com/npw8at8u?Njei"><img data-target="animated-image.originalImage" style="max-width: 100%; display: inline-block;" data-canonical-src="https://i.imgur.com/dJHk4Zq.gif" alt="WATCH Videos" src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif"></a>
mob2711/llama_3b_1k
mob2711
2025-06-22T03:56:22Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-06-22T03:56:15Z
--- base_model: unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** mob2711 - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
aaa99922/Ayuwoki
aaa99922
2025-06-22T03:53:20Z
0
0
null
[ "license:other", "region:us" ]
null
2025-06-22T03:51:53Z
--- license: other license_name: flux-1-dev-non-commercial license_link: https://weights.gg/license/flux ---
appledora/recast3.1-G8W32H8
appledora
2025-06-22T03:53:13Z
62
0
transformers
[ "transformers", "pytorch", "recast8b_llama", "text-generation", "custom_code", "arxiv:1910.09700", "autotrain_compatible", "region:us" ]
text-generation
2025-06-16T02:50:13Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
rodrigomt/gama-12b
rodrigomt
2025-06-22T03:51:46Z
0
0
transformers
[ "transformers", "safetensors", "gemma3", "image-text-to-text", "merge", "gemma", "text-generation", "conversational", "allura-org/Gemma-3-Glitter-12B", "soob3123/amoral-gemma3-12B-v2-qat", "soob3123/Veiled-Calla-12B", "en", "pt", "base_model:allura-org/Gemma-3-Glitter-12B", "base_model:merge:allura-org/Gemma-3-Glitter-12B", "base_model:soob3123/Veiled-Calla-12B", "base_model:merge:soob3123/Veiled-Calla-12B", "base_model:soob3123/amoral-gemma3-12B-v2-qat", "base_model:merge:soob3123/amoral-gemma3-12B-v2-qat", "license:gemma", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-22T03:02:22Z
--- base_model: - allura-org/Gemma-3-Glitter-12B - soob3123/amoral-gemma3-12B-v2-qat - soob3123/Veiled-Calla-12B library_name: transformers tags: - merge - gemma - text-generation - conversational - allura-org/Gemma-3-Glitter-12B - soob3123/amoral-gemma3-12B-v2-qat - soob3123/Veiled-Calla-12B license: gemma language: - en - pt pipeline_tag: text-generation --- # ๐Ÿค– gama-12b **gama-12b** is a 12-billion parameter language model created through the strategic merge of multiple specialized models. This model combines the capabilities of different architectures to offer a more robust and versatile conversational experience. ## ๐Ÿ“‹ Overview This model was developed using the **DARE TIES** (Drop And REscale with Ties-Elimination) technique, an advanced model merging methodology that allows for the efficient combination of different specializations into a single cohesive model. ### ๐Ÿ”ง Base Models Used **gama-12b** is the result of merging the following models: - **[soob3123/amoral-gemma3-12B-v2-qat](https://huggingface.co/soob3123/amoral-gemma3-12B-v2-qat)** - **[allura-org/Gemma-3-Glitter-12B](https://huggingface.co/allura-org/Gemma-3-Glitter-12B)** - **[soob3123/Veiled-Calla-12B](https://huggingface.co/soob3123/Veiled-Calla-12B)** ### ๐Ÿ› ๏ธ Merge Tool The merge was performed using **[LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing)**, a tool that facilitates the process of merging language models. ## โš™๏ธ Technical Configuration ### Merge Parameters ```yaml models: - model: soob3123/amoral-gemma3-12B-v2-qat parameters: density: 0.6 weight: 0.33 - model: allura-org/Gemma-3-Glitter-12B parameters: density: 0.6 weight: 0.33 - model: soob3123/Veiled-Calla-12B parameters: density: 0.6 weight: 0.34 merge_method: dare_ties base_model: unsloth/gemma-3-12b-it-qat parameters: normalize: true int8_mask: true device: auto dtype: float16 ``` ### Technical Specifications - **Architecture:** Gemma-3 12B - **Merge Method:** DARE TIES - **Precision:** Float16 - **Quantization:** QAT (Quantization Aware Training) - **Normalization:** Enabled - **Int8 Mask:** Enabled ## ๐Ÿ’ป How to Use ### Installing Dependencies ```bash pip install -qU transformers accelerate torch ``` ### Basic Usage Example ```python from transformers import AutoTokenizer, AutoModelForCausalLM import transformers import torch # Model configuration model_name = "rodrigomt/gama-12b" # Load tokenizer and model tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.float16, device_map="auto", trust_remote_code=True ) # Prepare the message messages = [ {"role": "user", "content": "What is a large language model?"} ] # Apply chat template prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) # Pipeline configuration pipeline = transformers.pipeline( "text-generation", model=model, tokenizer=tokenizer, torch_dtype=torch.float16, device_map="auto", ) # Text generation outputs = pipeline( prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95, repetition_penalty=1.1 ) print(outputs[0]["generated_text"]) ``` ### Advanced Usage Example ```python # For more granular control inputs = tokenizer.encode(prompt, return_tensors="pt") attention_mask = inputs.ne(tokenizer.pad_token_id) with torch.no_grad(): outputs = model.generate( inputs, attention_mask=attention_mask, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95, repetition_penalty=1.1, pad_token_id=tokenizer.eos_token_id ) response = tokenizer.decode(outputs[0], skip_special_tokens=True) print(response) ``` ## ๐ŸŽฏ Key Features - **Versatility:** Combines capabilities from multiple specialized models - **Efficiency:** Optimized with QAT quantization for better performance - **Compatibility:** Fully compatible with the Transformers library - **Scalability:** Supports deployment on different hardware configurations ## โš ๏ธ System Requirements ### Recommended Minimums - **RAM:** 32GB - **VRAM:** 24GB (GPU) - **Storage:** 50GB available ### Ideal Configuration - **RAM:** 64GB+ - **VRAM:** 40GB+ (GPU) - **GPU:** A6000, A100, or higher ## ๐Ÿ“ License This model is licensed under the **Gemma License**.
18-Videos-Pakcricketinfo-Sapna-Shah-viral/FULL.VIDEO.LINK.Pakcricketinfo.Sapna.Shah.Viral.Video.Tutorial.Official
18-Videos-Pakcricketinfo-Sapna-Shah-viral
2025-06-22T03:51:45Z
0
0
null
[ "region:us" ]
null
2025-06-22T03:51:24Z
<a data-target="animated-image.originalLink" rel="nofollow" href="https://tinyurl.com/npw8at8u?Njei"><img data-target="animated-image.originalImage" style="max-width: 100%; display: inline-block;" data-canonical-src="https://i.imgur.com/dJHk4Zq.gif" alt="WATCH Videos" src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif"></a>
ljnlonoljpiljm/webssl-mae300m-full2b-224-like-dislike
ljnlonoljpiljm
2025-06-22T03:51:29Z
0
0
transformers
[ "transformers", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-06-22T03:51:06Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mlx-community/Qwen3-14B-4bit-AWQ
mlx-community
2025-06-22T03:49:43Z
1,907
3
mlx
[ "mlx", "safetensors", "qwen3", "text-generation", "conversational", "base_model:Qwen/Qwen3-14B", "base_model:finetune:Qwen/Qwen3-14B", "license:apache-2.0", "region:us" ]
text-generation
2025-05-06T15:22:57Z
--- library_name: mlx license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen3-14B/blob/main/LICENSE pipeline_tag: text-generation base_model: Qwen/Qwen3-14B tags: - mlx --- # mlx-community/Qwen3-14B-4bit-AWQ This model [mlx-community/Qwen3-14B-4bit-AWQ](https://huggingface.co/mlx-community/Qwen3-14B-4bit-AWQ) was converted to MLX format from [Qwen/Qwen3-14B](https://huggingface.co/Qwen/Qwen3-14B) using mlx-lm version **0.25.2**. AWQ Parameters: --bits 4 --group-size 64 --embed-bits 4 --embed-group-size 32 --num-samples 256 --sequence-length 1024 --n-grid 50 ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("mlx-community/Qwen3-14B-4bit-AWQ") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
Official-job-guru-online-18-viral-videos/FULL.VIDEO.job.guru.online.Viral.Video.Tutorial.Official
Official-job-guru-online-18-viral-videos
2025-06-22T03:45:05Z
0
0
null
[ "region:us" ]
null
2025-06-22T03:44:45Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a> <animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>