modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-06-28 18:27:08
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
501 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-06-28 18:25:37
card
stringlengths
11
1.01M
huggingtweets/dodecahedra
huggingtweets
2022-06-12T17:42:15Z
103
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-12T17:37:18Z
--- language: en thumbnail: http://www.huggingtweets.com/dodecahedra/1655055731499/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/3232494514/760c72bca0af20fac2cd61bcec557e7a_400x400.jpeg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">William Rose</div> <div style="text-align: center; font-size: 14px;">@dodecahedra</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from William Rose. | Data | William Rose | | --- | --- | | Tweets downloaded | 3241 | | Retweets | 1115 | | Short tweets | 158 | | Tweets kept | 1968 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1geru0ac/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dodecahedra's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1uy1zk82) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1uy1zk82/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/dodecahedra') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
nlokam99/ada_sample_2
nlokam99
2022-06-12T17:40:42Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-12T17:38:56Z
--- thumbnail: https://huggingface.co/front/thumbnails/dialogpt.png tags: - conversational license: mit ---
obokkkk/kc-bert_finetuned_unsmile
obokkkk
2022-06-12T17:22:32Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-12T14:39:40Z
--- tags: - generated_from_trainer model-index: - name: kc-bert_finetuned_unsmile results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kc-bert_finetuned_unsmile This model is a fine-tuned version of [beomi/kcbert-base](https://huggingface.co/beomi/kcbert-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1326 - Lrap: 0.8753 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Lrap | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 235 | 0.1458 | 0.8612 | | No log | 2.0 | 470 | 0.1280 | 0.8738 | | 0.1685 | 3.0 | 705 | 0.1257 | 0.8791 | | 0.1685 | 4.0 | 940 | 0.1281 | 0.8777 | | 0.0774 | 5.0 | 1175 | 0.1326 | 0.8753 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 1.17.0 - Tokenizers 0.12.1
comodoro/SpaceInvadersNoFrameskip-v4
comodoro
2022-06-12T16:55:50Z
2
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-12T16:55:06Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 680.00 +/- 211.93 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga comodoro -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga comodoro ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
vasudevgupta/speech_jax_wav2vec2-large-lv60_960h
vasudevgupta
2022-06-12T16:10:32Z
7
0
transformers
[ "transformers", "jax", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-29T20:52:47Z
* Evaluation Notebook: https://colab.research.google.com/drive/1dV1Z3WajMCYMjNZab98CEEcg3FTbtONO?usp=sharing * Training Code: https://github.com/vasudevgupta7/speech-jax/blob/main/projects/finetune_wav2vec2.py * Weights & Biases: https://wandb.ai/7vasudevgupta/speech-JAX?workspace=user-7vasudevgupta Following results are obtained with `23ffe236840b7f75c9f01a9c347b01485a2bf9f6` & `95c3bc1b83c74452df29f792e0b5651c09fdaeb9` | dataset | WER | |------------------------|-------| | Librispeech-test-clean | 3.3 % |
kravchenko/uk-mt5-base
kravchenko
2022-06-12T14:57:59Z
14
4
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "t5", "uk", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-03T09:41:33Z
--- language: - uk - en tags: - t5 --- The aim is to compress the mT5-base model to leave only the Ukrainian language and some basic English. Reproduced the similar result (but with another language) from [this](https://towardsdatascience.com/how-to-adapt-a-multilingual-t5-model-for-a-single-language-b9f94f3d9c90) medium article. Results: - 582M params -> 244M params (58%) - 250K tokens -> 30K tokens - 2.2GB size model -> 0.95GB size model
jianyang/q-Taxi-v3
jianyang
2022-06-12T14:13:37Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-12T14:13:31Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="jianyang/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
ahmeddbahaa/mt5-base-finetune-ar-xlsum
ahmeddbahaa
2022-06-12T13:55:10Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "summarization", "mT5_multilingual_XLSum", "abstractive summarization", "ar", "xlsum", "generated_from_trainer", "dataset:xlsum", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-06-11T20:41:00Z
--- license: apache-2.0 tags: - summarization - mT5_multilingual_XLSum - mt5 - abstractive summarization - ar - xlsum - generated_from_trainer datasets: - xlsum model-index: - name: mt5-base-finetune-ar-xlsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-base-finetune-ar-xlsum This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the xlsum dataset. It achieves the following results on the evaluation set: - Loss: 3.2546 - Rouge-1: 22.2 - Rouge-2: 9.57 - Rouge-l: 20.26 - Gen Len: 19.0 - Bertscore: 71.43 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - num_epochs: 10 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge-1 | Rouge-2 | Rouge-l | Gen Len | Bertscore | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:---------:| | 4.9261 | 1.0 | 585 | 3.6314 | 18.19 | 6.49 | 16.37 | 19.0 | 70.17 | | 3.8429 | 2.0 | 1170 | 3.4253 | 19.45 | 7.58 | 17.73 | 19.0 | 70.35 | | 3.6311 | 3.0 | 1755 | 3.3569 | 20.83 | 8.54 | 18.9 | 19.0 | 70.89 | | 3.4917 | 4.0 | 2340 | 3.3101 | 20.77 | 8.53 | 18.89 | 19.0 | 70.98 | | 3.3873 | 5.0 | 2925 | 3.2867 | 21.47 | 9.0 | 19.54 | 19.0 | 71.23 | | 3.3037 | 6.0 | 3510 | 3.2693 | 21.41 | 9.0 | 19.5 | 19.0 | 71.21 | | 3.2357 | 7.0 | 4095 | 3.2581 | 22.05 | 9.36 | 20.04 | 19.0 | 71.43 | | 3.1798 | 8.0 | 4680 | 3.2522 | 22.21 | 9.56 | 20.23 | 19.0 | 71.41 | | 3.1359 | 9.0 | 5265 | 3.2546 | 22.27 | 9.58 | 20.23 | 19.0 | 71.46 | | 3.0997 | 10.0 | 5850 | 3.2546 | 22.2 | 9.57 | 20.26 | 19.0 | 71.43 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
keras-io/ProbabalisticBayesianModel-Wine
keras-io
2022-06-12T13:54:27Z
0
2
keras
[ "keras", "tensorboard", "probabilistic-models", "regression", "region:us" ]
null
2022-06-06T15:36:50Z
--- library_name: keras tags: - probabilistic-models - regression --- ## Model description This repo contains model weights for the the probabilistic model from [Probabilistic Bayesian Neural Networks](https://keras.io/examples/keras_recipes/bayesian_neural_networks/). This example demonstrates how to build basic probabilistic Bayesian neural networks to account for these two types of uncertainty. We use TensorFlow Probability library, which is compatible with Keras API. Taking a probabilistic approach to deep learning allows to account for uncertainty, so that models can assign less levels of confidence to incorrect predictions. Sources of uncertainty can be found in the data, due to measurement error or noise in the labels, or the model, due to insufficient data availability for the model to learn effectively. **Full credits go to [Khalid Salama](https://www.linkedin.com/in/khalid-salama-24403144/)** ## Using this model This repo contains model weights only. To use this model, refer to the following code contained in load_bnn_model.py. ## Training and evaluation data 🍷 We use the wine quality dataset found [here](https://www.tensorflow.org/datasets/catalog/wine_quality). Each wine was scored from 0-10 by wine experts, and includes 11 physicochemical features about the wine. ## Versioning The training was done using TensorFlow 2.8.0 and TensorFlow Probability 0.16.0. When working with TensorFlow Probability, it is encouraged to check out the [releases](https://github.com/tensorflow/probability/releases/tag/v0.17.0) to make sure you are using a stable TensorFlow counterpart. ### Training hyperparameters | Optimizer | learning_rate | decay | rho | momentum | epsilon | centered | training_precision | |----|-------------|-----|------|------|-------|-------|------------------| |RMSprop|0.001|0.0|0.9|0.0|1e-07|False|float32|
nestoralvaro/mt5-base-finetuned-xsum-RAW_data_prep_2021_12_26___t55_403.csv__google_mt5_base
nestoralvaro
2022-06-12T12:25:16Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-12T10:01:09Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: mt5-base-finetuned-xsum-RAW_data_prep_2021_12_26___t55_403.csv__google_mt5_base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-base-finetuned-xsum-RAW_data_prep_2021_12_26___t55_403.csv__google_mt5_base This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: nan - Rouge1: 0.9712 - Rouge2: 0.1329 - Rougel: 0.9638 - Rougelsum: 0.9675 - Gen Len: 6.4489 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 0.0 | 1.0 | 36479 | nan | 0.9712 | 0.1329 | 0.9638 | 0.9675 | 6.4489 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
FabianWillner/distilbert-base-uncased-finetuned-squad
FabianWillner
2022-06-12T12:09:32Z
13
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-05-09T10:41:12Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad metrics: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [FabianWillner/distilbert-base-uncased-finetuned-squad](https://huggingface.co/FabianWillner/distilbert-base-uncased-finetuned-squad) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
huggingnft/hedgies
huggingnft
2022-06-12T12:08:25Z
7
0
transformers
[ "transformers", "huggingnft", "nft", "huggan", "gan", "image", "images", "unconditional-image-generation", "dataset:huggingnft/hedgies", "license:mit", "endpoints_compatible", "region:us" ]
unconditional-image-generation
2022-05-24T18:12:29Z
--- tags: - huggingnft - nft - huggan - gan - image - images - unconditional-image-generation datasets: - huggingnft/hedgies license: mit --- # Hugging NFT: hedgies ## Disclaimer All rights belong to their owners. Models and datasets can be removed from the site at the request of the copyright holder. ## Model description LightWeight GAN model for unconditional generation. NFT collection available [here](https://opensea.io/collection/hedgies). Dataset is available [here](https://huggingface.co/datasets/huggingnft/hedgies). Check Space: [link](https://huggingface.co/spaces/AlekseyKorshuk/huggingnft). Project repository: [link](https://github.com/AlekseyKorshuk/huggingnft). [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingnft?style=social)](https://github.com/AlekseyKorshuk/huggingnft) ## Intended uses & limitations #### How to use Check project repository: [link](https://github.com/AlekseyKorshuk/huggingnft). #### Limitations and bias Check project repository: [link](https://github.com/AlekseyKorshuk/huggingnft). ## Training data Dataset is available [here](https://huggingface.co/datasets/huggingnft/hedgies). ## Training procedure Training script is available [here](https://github.com/AlekseyKorshuk/huggingnft). ## Generated Images Check results with Space: [link](https://huggingface.co/spaces/AlekseyKorshuk/huggingnft). ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingnft?style=social)](https://github.com/AlekseyKorshuk/huggingnft) ### BibTeX entry and citation info ```bibtex @InProceedings{huggingnft, author={Aleksey Korshuk} year=2022 } ```
vishvamahadevan/distilbert-base-uncased-finetuned-squad
vishvamahadevan
2022-06-12T10:34:52Z
6
0
transformers
[ "transformers", "tf", "tensorboard", "distilbert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-06-12T08:07:48Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: vishvamahadevan/distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # vishvamahadevan/distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.9560 - Validation Loss: 1.1174 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 11064, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 1.3862 | 1.1639 | 0 | | 0.9560 | 1.1174 | 1 | ### Framework versions - Transformers 4.19.4 - TensorFlow 2.8.2 - Datasets 2.2.2 - Tokenizers 0.12.1
huggingtweets/manfightdragon
huggingtweets
2022-06-12T10:26:35Z
106
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-12T10:23:38Z
--- language: en thumbnail: http://www.huggingtweets.com/manfightdragon/1655029573001/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1184073162520031232/V6DOEeLp_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Lance McDonald</div> <div style="text-align: center; font-size: 14px;">@manfightdragon</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Lance McDonald. | Data | Lance McDonald | | --- | --- | | Tweets downloaded | 3249 | | Retweets | 209 | | Short tweets | 214 | | Tweets kept | 2826 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3pc794z5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @manfightdragon's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2t8940p5) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2t8940p5/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/manfightdragon') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/bosstjanz
huggingtweets
2022-06-12T09:27:34Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-12T09:26:54Z
--- language: en thumbnail: http://www.huggingtweets.com/bosstjanz/1655026050127/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1342130927737176064/SiNG_CxQ_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">ZrimΕ‘kow</div> <div style="text-align: center; font-size: 14px;">@bosstjanz</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ZrimΕ‘kow. | Data | ZrimΕ‘kow | | --- | --- | | Tweets downloaded | 3225 | | Retweets | 368 | | Short tweets | 279 | | Tweets kept | 2578 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/23nemiqj/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bosstjanz's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2pjrymzt) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2pjrymzt/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/bosstjanz') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
ironbar/dqn-SpaceInvadersNoFrameskip-v4-1M-steps
ironbar
2022-06-12T08:16:08Z
11
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-12T08:15:30Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 629.50 +/- 140.06 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga ironbar -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga ironbar ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
MyMild/finetune_iapp_thaiqa
MyMild
2022-06-12T07:52:39Z
57
0
transformers
[ "transformers", "pytorch", "tensorboard", "camembert", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
question-answering
2022-06-11T23:05:08Z
--- tags: - generated_from_trainer model-index: - name: finetune_iapp_thaiqa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetune_iapp_thaiqa This model is a fine-tuned version of [airesearch/wangchanberta-base-att-spm-uncased](https://huggingface.co/airesearch/wangchanberta-base-att-spm-uncased) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.10.3
spuun/kekbot-mini
spuun
2022-06-12T05:53:59Z
106
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "en", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-12T03:40:33Z
--- language: - en metrics: - accuracy co2_eq_emissions: emissions: "10" source: "mlco2.github.io" training_type: "fine-tuning" geographical_location: "West Java, Indonesia" hardware_used: "1 T4" license: cc-by-nc-sa-4.0 widget: - text: 'You: "Hey kekbot! Whats up?"\nKekbot: "' example_title: "Asking what's up" - text: 'You: "Hey kekbot! How r u?"\nKekbot: "' example_title: "Asking how he is" --- > THIS MODEL IS INTENDED FOR RESEARCH PURPOSES ONLY # Kekbot Mini Based on a `distilgpt2` model, fine-tuned to a select subset (65k<= messages) of Art Union's general-chat channel chat history. ### Limits and biases As this is trained on chat history, it is possible that discriminatory or even offensive materials to be outputted. Author holds his ground on the fact that ML models are mere statistical representation of the dataset used to train it, and that due to the nature of the dataset it is practically impossible to be certain of the degree of "cleanliness" that the data contained within holds. Author can confirm, however, that from heuristical testing that the model was not found to be offensive to the author himself, hopefully this opinion stays true for everyone in the audience.
xdai/mimic_roberta_base
xdai
2022-06-12T04:51:26Z
5
1
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "Clinical notes", "Discharge summaries", "RoBERTa", "dataset:MIMIC-III", "arxiv:2204.06683", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-12T04:12:20Z
--- language: - English tags: - Clinical notes - Discharge summaries - RoBERTa license: "cc-by-4.0" datasets: - MIMIC-III --- * Continue pre-training RoBERTa-base using discharge summaries from MIMIC-III datasets. * Details can be found in the following paper > Xiang Dai and Ilias Chalkidis and Sune Darkner and Desmond Elliott. 2022. Revisiting Transformer-based Models for Long Document Classification. (https://arxiv.org/abs/2204.06683) * Important hyper-parameters | | | |---|---| | Max sequence | 128 | | Batch size | 128 | | Learning rate | 5e-5 | | Training epochs | 15 | | Training time | 40 GPU-hours |
huggingtweets/tayplaysgaymes
huggingtweets
2022-06-12T03:56:41Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-12T03:55:39Z
--- language: en thumbnail: http://www.huggingtweets.com/tayplaysgaymes/1655006196516/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1144053838459969536/lv3yBmoX_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Tay</div> <div style="text-align: center; font-size: 14px;">@tayplaysgaymes</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Tay. | Data | Tay | | --- | --- | | Tweets downloaded | 3212 | | Retweets | 693 | | Short tweets | 367 | | Tweets kept | 2152 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1hmextiq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @tayplaysgaymes's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3r0cse8x) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3r0cse8x/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/tayplaysgaymes') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
bguan/SpaceInvadersNoFrameskip-v4
bguan
2022-06-12T01:05:09Z
4
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-12T01:04:38Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 255.00 +/- 93.83 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga bguan -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga bguan ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 500000), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
TencentMedicalNet/MedicalNet-Resnet10
TencentMedicalNet
2022-06-12T00:26:42Z
0
4
null
[ "MedicalNet", "medical images", "medical", "3D", "Med3D", "en", "dataset:MRBrainS18", "arxiv:1904.00625", "license:mit", "region:us" ]
null
2022-06-11T23:12:06Z
--- license: mit datasets: - MRBrainS18 language: - en metrics: - tags: - MedicalNet - medical images - medical - 3D - Med3D thumbnail: "https://github.com/Tencent/MedicalNet/blob/master/images/logo.png?raw=true" --- # MedicalNet This repository contains a Pytorch implementation of [Med3D: Transfer Learning for 3D Medical Image Analysis](https://arxiv.org/abs/1904.00625). Many studies have shown that the performance on deep learning is significantly affected by volume of training data. The MedicalNet project aggregated the dataset with diverse modalities, target organs, and pathologies to to build relatively large datasets. Based on this dataset, a series of 3D-ResNet pre-trained models and corresponding transfer-learning training code are provided. ### License MedicalNet is released under the MIT License (refer to the LICENSE file for detailso). ### Citing MedicalNet If you use this code or pre-trained models, please cite the following: ``` @article{chen2019med3d, title={Med3D: Transfer Learning for 3D Medical Image Analysis}, author={Chen, Sihong and Ma, Kai and Zheng, Yefeng}, journal={arXiv preprint arXiv:1904.00625}, year={2019} } ``` ### Update(2019/07/30) We uploaded 4 pre-trained models based on more datasets (23 datasets). ``` Model name : parameters settings resnet_10_23dataset.pth: --model resnet --model_depth 10 --resnet_shortcut B resnet_18_23dataset.pth: --model resnet --model_depth 18 --resnet_shortcut A resnet_34_23dataset.pth: --model resnet --model_depth 34 --resnet_shortcut A resnet_50_23dataset.pth: --model resnet --model_depth 50 --resnet_shortcut B ``` Hugging Face repository contribution by: [Rafael Zimmer](https://www.github.com/rzimmerdev)
huggingtweets/laserboat999
huggingtweets
2022-06-11T23:53:52Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-11T23:49:07Z
--- language: en thumbnail: http://www.huggingtweets.com/laserboat999/1654991516445/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1500274766195793921/bA4siut7_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">donald boat</div> <div style="text-align: center; font-size: 14px;">@laserboat999</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from donald boat. | Data | donald boat | | --- | --- | | Tweets downloaded | 3233 | | Retweets | 75 | | Short tweets | 516 | | Tweets kept | 2642 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/38v40fpf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @laserboat999's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/pk1xum9h) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/pk1xum9h/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/laserboat999') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
DLWCMD/TEST2ppo-LunarLander-v2
DLWCMD
2022-06-11T23:39:16Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-11T23:38:43Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 263.13 +/- 22.16 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
745H1N/LunarLander-v2-DQN-optuna
745H1N
2022-06-11T23:36:51Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-11T23:36:25Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: -140.18 +/- 41.67 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **DQN** Agent playing **LunarLander-v2** This is a trained model of a **DQN** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
aprischa/bart-large-cnn-aprischa2
aprischa
2022-06-11T23:27:38Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-11T17:40:18Z
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-large-cnn-aprischa2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-aprischa2 This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3425 - Rouge1: 65.7088 - Rouge2: 56.6701 - Rougel: 62.1926 - Rougelsum: 64.7727 - Gen Len: 140.8469 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | 0.3772 | 1.0 | 5403 | 0.3586 | 65.7702 | 56.7968 | 62.264 | 64.8605 | 140.268 | | 0.316 | 2.0 | 10806 | 0.3421 | 64.8238 | 55.8837 | 61.3245 | 63.8894 | 140.7472 | | 0.2397 | 3.0 | 16209 | 0.3425 | 65.7088 | 56.6701 | 62.1926 | 64.7727 | 140.8469 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
twieland/SCRATCH_ja-en_helsinki
twieland
2022-06-11T23:01:52Z
4
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-11T01:05:11Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: SCRATCH_ja-en_helsinki results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SCRATCH_ja-en_helsinki This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ja-en](https://huggingface.co/Helsinki-NLP/opus-mt-ja-en) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.5583 - Otaku Benchmark VN BLEU: 19.12 - Otaku Benchmark LN BLEU: 11.55 - Otaku Benchmark MANGA BLEU: 12.98 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 96 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 3.0252 | 0.02 | 2000 | 2.4140 | | 2.8406 | 0.03 | 4000 | 2.2819 | | 2.7505 | 0.05 | 6000 | 2.3018 | | 2.6948 | 0.06 | 8000 | 2.1931 | | 2.6408 | 0.08 | 10000 | 2.1724 | | 2.6004 | 0.09 | 12000 | 2.1583 | | 2.5685 | 0.11 | 14000 | 2.1203 | | 2.5432 | 0.12 | 16000 | 2.1593 | | 2.5153 | 0.14 | 18000 | 2.1009 | | 2.4906 | 0.15 | 20000 | 2.0899 | | 2.4709 | 0.17 | 22000 | 2.0512 | | 2.4471 | 0.18 | 24000 | 2.0208 | | 2.4295 | 0.2 | 26000 | 2.0773 | | 2.4154 | 0.21 | 28000 | 2.0441 | | 2.4008 | 0.23 | 30000 | 2.0235 | | 2.3834 | 0.24 | 32000 | 2.0190 | | 2.3709 | 0.26 | 34000 | 1.9831 | | 2.3537 | 0.27 | 36000 | 1.9870 | | 2.3486 | 0.29 | 38000 | 1.9692 | | 2.3346 | 0.3 | 40000 | 1.9517 | | 2.3195 | 0.32 | 42000 | 1.9800 | | 2.3104 | 0.33 | 44000 | 1.9676 | | 2.298 | 0.35 | 46000 | 1.9563 | | 2.2905 | 0.36 | 48000 | 1.9217 | | 2.2792 | 0.38 | 50000 | 1.9195 | | 2.2714 | 0.39 | 52000 | 1.9109 | | 2.2593 | 0.41 | 54000 | 1.9044 | | 2.2582 | 0.42 | 56000 | 1.8876 | | 2.2482 | 0.44 | 58000 | 1.8860 | | 2.2394 | 0.45 | 60000 | 1.8887 | | 2.2273 | 0.47 | 62000 | 1.8862 | | 2.2255 | 0.48 | 64000 | 1.8705 | | 2.2166 | 0.5 | 66000 | 1.8696 | | 2.2075 | 0.51 | 68000 | 1.8657 | | 2.1992 | 0.53 | 70000 | 1.8585 | | 2.1969 | 0.54 | 72000 | 1.8526 | | 2.1894 | 0.56 | 74000 | 1.8493 | | 2.1817 | 0.57 | 76000 | 1.8480 | | 2.1771 | 0.59 | 78000 | 1.8333 | | 2.1683 | 0.6 | 80000 | 1.8342 | | 2.1667 | 0.62 | 82000 | 1.8537 | | 2.1546 | 0.63 | 84000 | 1.8261 | | 2.1467 | 0.65 | 86000 | 1.8092 | | 2.1421 | 0.66 | 88000 | 1.8137 | | 2.1395 | 0.68 | 90000 | 1.8286 | | 2.1313 | 0.69 | 92000 | 1.8042 | | 2.1241 | 0.71 | 94000 | 1.7934 | | 2.1214 | 0.72 | 96000 | 1.7940 | | 2.12 | 0.74 | 98000 | 1.8064 | | 2.1096 | 0.75 | 100000 | 1.7983 | | 2.1035 | 0.77 | 102000 | 1.8089 | | 2.0937 | 0.78 | 104000 | 1.7941 | | 2.0893 | 0.8 | 106000 | 1.7791 | | 2.0869 | 0.81 | 108000 | 1.7807 | | 2.0845 | 0.83 | 110000 | 1.7852 | | 2.0782 | 0.84 | 112000 | 1.7675 | | 2.0755 | 0.86 | 114000 | 1.7756 | | 2.0657 | 0.87 | 116000 | 1.7604 | | 2.0614 | 0.89 | 118000 | 1.7447 | | 2.0591 | 0.9 | 120000 | 1.7489 | | 2.0586 | 0.92 | 122000 | 1.7550 | | 2.0498 | 0.93 | 124000 | 1.7543 | | 2.0455 | 0.95 | 126000 | 1.7510 | | 2.04 | 0.96 | 128000 | 1.7439 | | 2.0385 | 0.98 | 130000 | 1.7407 | | 2.0267 | 0.99 | 132000 | 1.7467 | | 2.0088 | 1.01 | 134000 | 1.7455 | | 1.9826 | 1.02 | 136000 | 1.7210 | | 1.9785 | 1.04 | 138000 | 1.7524 | | 1.9777 | 1.05 | 140000 | 1.7272 | | 1.9763 | 1.07 | 142000 | 1.7283 | | 1.9736 | 1.08 | 144000 | 1.7210 | | 1.9704 | 1.1 | 146000 | 1.7001 | | 1.9625 | 1.11 | 148000 | 1.7112 | | 1.9665 | 1.13 | 150000 | 1.7236 | | 1.9592 | 1.14 | 152000 | 1.7169 | | 1.9606 | 1.16 | 154000 | 1.6962 | | 1.9571 | 1.17 | 156000 | 1.7064 | | 1.9532 | 1.19 | 158000 | 1.6898 | | 1.9465 | 1.2 | 160000 | 1.7004 | | 1.9438 | 1.22 | 162000 | 1.7092 | | 1.9435 | 1.23 | 164000 | 1.6927 | | 1.9361 | 1.25 | 166000 | 1.6838 | | 1.9369 | 1.26 | 168000 | 1.6784 | | 1.9287 | 1.28 | 170000 | 1.6709 | | 1.928 | 1.29 | 172000 | 1.6735 | | 1.9227 | 1.31 | 174000 | 1.6689 | | 1.9213 | 1.32 | 176000 | 1.6685 | | 1.9152 | 1.34 | 178000 | 1.6635 | | 1.9092 | 1.35 | 180000 | 1.6561 | | 1.9059 | 1.37 | 182000 | 1.6673 | | 1.9094 | 1.38 | 184000 | 1.6717 | | 1.9006 | 1.4 | 186000 | 1.6593 | | 1.8956 | 1.41 | 188000 | 1.6483 | | 1.8972 | 1.43 | 190000 | 1.6635 | | 1.8907 | 1.44 | 192000 | 1.6604 | | 1.8885 | 1.46 | 194000 | 1.6465 | | 1.8844 | 1.47 | 196000 | 1.6444 | | 1.8799 | 1.49 | 198000 | 1.6307 | | 1.8813 | 1.5 | 200000 | 1.6240 | | 1.8693 | 1.52 | 202000 | 1.6102 | | 1.8768 | 1.53 | 204000 | 1.6197 | | 1.8678 | 1.55 | 206000 | 1.6275 | | 1.8588 | 1.56 | 208000 | 1.6183 | | 1.8585 | 1.58 | 210000 | 1.6197 | | 1.8564 | 1.59 | 212000 | 1.6004 | | 1.8493 | 1.61 | 214000 | 1.6078 | | 1.85 | 1.62 | 216000 | 1.6001 | | 1.8428 | 1.64 | 218000 | 1.6106 | | 1.8428 | 1.65 | 220000 | 1.5866 | | 1.8423 | 1.67 | 222000 | 1.5993 | | 1.8352 | 1.68 | 224000 | 1.6052 | | 1.8385 | 1.7 | 226000 | 1.5959 | | 1.8307 | 1.71 | 228000 | 1.6024 | | 1.8248 | 1.73 | 230000 | 1.5969 | | 1.82 | 1.74 | 232000 | 1.5878 | | 1.8254 | 1.76 | 234000 | 1.5934 | | 1.8188 | 1.77 | 236000 | 1.5827 | | 1.813 | 1.79 | 238000 | 1.5797 | | 1.8128 | 1.8 | 240000 | 1.5758 | | 1.8044 | 1.82 | 242000 | 1.5752 | | 1.808 | 1.83 | 244000 | 1.5818 | | 1.8025 | 1.85 | 246000 | 1.5772 | | 1.7992 | 1.86 | 248000 | 1.5738 | | 1.8021 | 1.88 | 250000 | 1.5752 | | 1.7988 | 1.89 | 252000 | 1.5717 | | 1.7967 | 1.91 | 254000 | 1.5690 | | 1.7909 | 1.92 | 256000 | 1.5607 | | 1.7942 | 1.94 | 258000 | 1.5618 | | 1.7897 | 1.95 | 260000 | 1.5585 | | 1.7871 | 1.97 | 262000 | 1.5576 | | 1.7843 | 1.98 | 264000 | 1.5577 | | 1.7888 | 2.0 | 266000 | 1.5583 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
meghazisofiane/opus-mt-en-ar-evaluated-en-to-ar-4000instances-opus-leaningRate2e-05-batchSize8-11-action-1
meghazisofiane
2022-06-11T21:50:40Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "generated_from_trainer", "dataset:opus100", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-11T21:33:30Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - opus100 metrics: - bleu model-index: - name: opus-mt-en-ar-evaluated-en-to-ar-4000instances-opus-leaningRate2e-05-batchSize8-11-action-1 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: opus100 type: opus100 args: ar-en metrics: - name: Bleu type: bleu value: 26.8232 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-ar-evaluated-en-to-ar-4000instances-opus-leaningRate2e-05-batchSize8-11-action-1 This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ar](https://huggingface.co/Helsinki-NLP/opus-mt-en-ar) on the opus100 dataset. It achieves the following results on the evaluation set: - Loss: 0.1717 - Bleu: 26.8232 - Meteor: 0.172 - Gen Len: 12.1288 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 11 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Meteor | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:| | 0.7364 | 0.25 | 100 | 0.1731 | 27.2753 | 0.1729 | 12.0887 | | 0.2175 | 0.5 | 200 | 0.1731 | 27.2055 | 0.1722 | 11.5675 | | 0.2193 | 0.75 | 300 | 0.1722 | 27.3277 | 0.1798 | 12.1325 | | 0.2321 | 1.0 | 400 | 0.1750 | 27.5152 | 0.1762 | 11.925 | | 0.1915 | 1.25 | 500 | 0.1690 | 27.5043 | 0.1751 | 11.9038 | | 0.1794 | 1.5 | 600 | 0.1719 | 26.8607 | 0.1713 | 11.8138 | | 0.1741 | 1.75 | 700 | 0.1725 | 26.974 | 0.1724 | 11.8462 | | 0.1732 | 2.0 | 800 | 0.1717 | 26.8232 | 0.172 | 12.1288 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
lindeberg/distilbert-base-uncased-finetuned-cola
lindeberg
2022-06-11T21:10:06Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-11T18:50:58Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.4496664370323995 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.4949 - Matthews Correlation: 0.4497 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5231 | 1.0 | 535 | 0.4949 | 0.4497 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
JClementC/test
JClementC
2022-06-11T19:58:42Z
0
0
null
[ "region:us" ]
null
2022-06-11T19:19:48Z
git lfs install git clone https://github.com/nneonneo/2048-ai.git
meln1k/qrdqn-SpaceInvadersNoFrameskip-v4
meln1k
2022-06-11T19:51:36Z
5
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-11T09:29:19Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: QRDQN results: - metrics: - type: mean_reward value: 2581.50 +/- 1151.96 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **QRDQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **QRDQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo qrdqn --env SpaceInvadersNoFrameskip-v4 -orga meln1k -f logs/ python enjoy.py --algo qrdqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo qrdqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo qrdqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga meln1k ``` ## Hyperparameters ```python OrderedDict([('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_fraction', 0.025), ('frame_stack', 4), ('n_timesteps', 10000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('normalize', False)]) ```
huggingtweets/conanobrien-mikemancini-wendymolyneux
huggingtweets
2022-06-11T19:50:54Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-11T19:46:43Z
--- language: en thumbnail: http://www.huggingtweets.com/conanobrien-mikemancini-wendymolyneux/1654977049172/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1271404115042676736/PAIbmN-p_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/730612231021322240/Rl0_QYhL_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1044085580651528193/DR7QvrwG_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI CYBORG πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">mike mancini & Conan O'Brien & Wendy Molyneux</div> <div style="text-align: center; font-size: 14px;">@conanobrien-mikemancini-wendymolyneux</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from mike mancini & Conan O'Brien & Wendy Molyneux. | Data | mike mancini | Conan O'Brien | Wendy Molyneux | | --- | --- | --- | --- | | Tweets downloaded | 3150 | 3250 | 836 | | Retweets | 286 | 40 | 251 | | Short tweets | 290 | 24 | 69 | | Tweets kept | 2574 | 3186 | 516 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/25wtfzk4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @conanobrien-mikemancini-wendymolyneux's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1hjizcue) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1hjizcue/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/conanobrien-mikemancini-wendymolyneux') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/mdoukmas
huggingtweets
2022-06-11T19:35:54Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-11T19:34:24Z
--- language: en thumbnail: http://www.huggingtweets.com/mdoukmas/1654976150184/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1098660288193269762/n5v9daol_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Maya Dukmasova</div> <div style="text-align: center; font-size: 14px;">@mdoukmas</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Maya Dukmasova. | Data | Maya Dukmasova | | --- | --- | | Tweets downloaded | 3241 | | Retweets | 896 | | Short tweets | 158 | | Tweets kept | 2187 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2jwhv7l5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mdoukmas's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/25v3pmsy) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/25v3pmsy/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mdoukmas') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
titi7242229/roberta-base-bne-finetuned_personality_multi_4
titi7242229
2022-06-11T19:13:27Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-11T13:23:50Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: roberta-base-bne-finetuned_personality_multi_4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-finetuned_personality_multi_4 This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.1709 - Accuracy: 0.3470 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.1759 | 1.0 | 125 | 2.1873 | 0.2548 | | 1.8651 | 2.0 | 250 | 2.2285 | 0.2680 | | 1.8619 | 3.0 | 375 | 2.1732 | 0.2951 | | 1.7224 | 4.0 | 500 | 2.0688 | 0.3925 | | 1.6432 | 5.0 | 625 | 2.1094 | 0.3735 | | 1.3599 | 6.0 | 750 | 2.1732 | 0.3631 | | 1.0623 | 7.0 | 875 | 2.4785 | 0.3579 | | 1.0504 | 8.0 | 1000 | 2.4598 | 0.3844 | | 0.7662 | 9.0 | 1125 | 2.8081 | 0.3573 | | 0.9167 | 10.0 | 1250 | 2.9385 | 0.3452 | | 0.6391 | 11.0 | 1375 | 2.9933 | 0.3320 | | 0.3893 | 12.0 | 1500 | 3.1037 | 0.3579 | | 0.673 | 13.0 | 1625 | 3.4369 | 0.3631 | | 0.3498 | 14.0 | 1750 | 3.6396 | 0.3383 | | 0.3891 | 15.0 | 1875 | 3.8332 | 0.3556 | | 0.0818 | 16.0 | 2000 | 3.9451 | 0.3401 | | 0.1438 | 17.0 | 2125 | 3.9271 | 0.3458 | | 0.0634 | 18.0 | 2250 | 4.1564 | 0.3481 | | 0.0121 | 19.0 | 2375 | 4.1405 | 0.3499 | | 0.0071 | 20.0 | 2500 | 4.1709 | 0.3470 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
aprischa/bart-large-cnn-aprischa
aprischa
2022-06-11T17:21:57Z
105
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-11T16:53:31Z
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-large-cnn-aprischa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-aprischa This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3589 - Rouge1: 66.7098 - Rouge2: 57.7992 - Rougel: 63.2231 - Rougelsum: 65.9009 - Gen Len: 141.198 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | 0.369 | 1.0 | 5403 | 0.3835 | 66.0604 | 56.9948 | 62.4967 | 65.265 | 141.1126 | | 0.2985 | 2.0 | 10806 | 0.3589 | 66.7098 | 57.7992 | 63.2231 | 65.9009 | 141.198 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
DancingIguana/codeparrot-ds
DancingIguana
2022-06-11T16:58:04Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-08T21:56:49Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: codeparrot-ds results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # codeparrot-ds This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
bubblecookie/t5-small-finetuned-cnndm_trained
bubblecookie
2022-06-11T16:48:45Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:cnn_dailymail", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-10T06:21:02Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - cnn_dailymail model-index: - name: t5-small-finetuned-cnndm_trained results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-cnndm_trained This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the cnn_dailymail dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
robingeibel/longformer-base-finetuned-big_patent
robingeibel
2022-06-11T16:33:49Z
62
1
transformers
[ "transformers", "tf", "longformer", "fill-mask", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-05T17:24:27Z
--- tags: - generated_from_keras_callback model-index: - name: robingeibel/longformer-base-finetuned-big_patent results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # robingeibel/longformer-base-finetuned-big_patent This model is a fine-tuned version of [robingeibel/longformer-base-finetuned-big_patent](https://huggingface.co/robingeibel/longformer-base-finetuned-big_patent) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.1860 - Validation Loss: 1.0692 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 152946, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 1.1860 | 1.0692 | 0 | ### Framework versions - Transformers 4.19.4 - TensorFlow 2.8.2 - Datasets 2.2.2 - Tokenizers 0.12.1
abdoutony207/m2m100_418M-evaluated-en-to-ar-2000instancesopus-leaningRate2e-05-batchSize16-20epoch-1
abdoutony207
2022-06-11T16:26:19Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "m2m_100", "text2text-generation", "generated_from_trainer", "dataset:opus100", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-11T15:56:17Z
--- license: mit tags: - generated_from_trainer datasets: - opus100 metrics: - bleu model-index: - name: m2m100_418M-evaluated-en-to-ar-2000instancesopus-leaningRate2e-05-batchSize16-20epoch-1 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: opus100 type: opus100 args: ar-en metrics: - name: Bleu type: bleu value: 13.1835 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # m2m100_418M-evaluated-en-to-ar-2000instancesopus-leaningRate2e-05-batchSize16-20epoch-1 This model is a fine-tuned version of [facebook/m2m100_418M](https://huggingface.co/facebook/m2m100_418M) on the opus100 dataset. It achieves the following results on the evaluation set: - Loss: 0.3640 - Bleu: 13.1835 - Meteor: 0.1189 - Gen Len: 17.72 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Meteor | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:| | 6.1776 | 1.0 | 100 | 3.8904 | 10.5866 | 0.0995 | 16.64 | | 2.4531 | 2.0 | 200 | 1.0928 | 12.3452 | 0.1108 | 17.0575 | | 0.512 | 3.0 | 300 | 0.3625 | 10.5224 | 0.0982 | 17.2575 | | 0.1924 | 4.0 | 400 | 0.3342 | 12.4242 | 0.1098 | 16.6325 | | 0.1227 | 5.0 | 500 | 0.3403 | 13.0526 | 0.1185 | 17.3475 | | 0.0889 | 6.0 | 600 | 0.3481 | 13.1323 | 0.1133 | 17.815 | | 0.0651 | 7.0 | 700 | 0.3601 | 12.6684 | 0.1133 | 17.3525 | | 0.0533 | 8.0 | 800 | 0.3640 | 13.1835 | 0.1189 | 17.72 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
neeenway/ppo-LunarLander-v2
neeenway
2022-06-11T13:43:31Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-11T13:43:03Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: ppo results: - metrics: - type: mean_reward value: 240.31 +/- 12.46 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **ppo** Agent playing **LunarLander-v2** This is a trained model of a **ppo** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Akshat/xlm-roberta-base-finetuned-panx-de
Akshat
2022-06-11T13:35:25Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-11T12:19:48Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8611443210930829 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1405 - F1: 0.8611 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2542 | 1.0 | 787 | 0.1788 | 0.8083 | | 0.1307 | 2.0 | 1574 | 0.1371 | 0.8488 | | 0.0784 | 3.0 | 2361 | 0.1405 | 0.8611 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
YeRyeongLee/albert-base-v2-finetuned-filtered-0609
YeRyeongLee
2022-06-11T13:33:02Z
106
0
transformers
[ "transformers", "pytorch", "albert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-11T11:46:52Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: albert-base-v2-finetuned-filtered-0609 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-base-v2-finetuned-filtered-0609 This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2062 - Accuracy: 0.9723 - Precision: 0.9724 - Recall: 0.9723 - F1: 0.9723 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.2688 | 1.0 | 3180 | 0.2282 | 0.9560 | 0.9577 | 0.9560 | 0.9562 | | 0.2268 | 2.0 | 6360 | 0.1909 | 0.9638 | 0.9640 | 0.9638 | 0.9638 | | 0.1831 | 3.0 | 9540 | 0.2590 | 0.9572 | 0.9584 | 0.9572 | 0.9572 | | 0.1588 | 4.0 | 12720 | 0.1752 | 0.9673 | 0.9678 | 0.9673 | 0.9673 | | 0.0972 | 5.0 | 15900 | 0.1868 | 0.9695 | 0.9696 | 0.9695 | 0.9695 | | 0.0854 | 6.0 | 19080 | 0.2042 | 0.9701 | 0.9707 | 0.9701 | 0.9702 | | 0.0599 | 7.0 | 22260 | 0.1793 | 0.9748 | 0.9749 | 0.9748 | 0.9749 | | 0.0389 | 8.0 | 25440 | 0.1996 | 0.9742 | 0.9743 | 0.9742 | 0.9742 | | 0.0202 | 9.0 | 28620 | 0.2188 | 0.9723 | 0.9726 | 0.9723 | 0.9724 | | 0.0152 | 10.0 | 31800 | 0.2062 | 0.9723 | 0.9724 | 0.9723 | 0.9723 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.9.1+cu111 - Datasets 1.16.1 - Tokenizers 0.12.1
marieke93/BERT-evidence-types
marieke93
2022-06-11T13:32:10Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-08T11:54:50Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: BERT-evidence-types results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERT-evidence-types This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the evidence types dataset. It achieves the following results on the evaluation set: - Loss: 2.8008 - Macro f1: 0.4227 - Weighted f1: 0.6976 - Accuracy: 0.7154 - Balanced accuracy: 0.3876 ## Training and evaluation data The data set, as well as the code that was used to fine tune this model can be found in the GitHub repository [BA-Thesis-Information-Science-Persuasion-Strategies](https://github.com/mariekevdh/BA-Thesis-Information-Science-Persuasion-Strategies) ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Macro f1 | Weighted f1 | Accuracy | Balanced accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:|:-----------------:| | 1.1148 | 1.0 | 125 | 1.0531 | 0.2566 | 0.6570 | 0.6705 | 0.2753 | | 0.7546 | 2.0 | 250 | 0.9725 | 0.3424 | 0.6947 | 0.7002 | 0.3334 | | 0.4757 | 3.0 | 375 | 1.1375 | 0.3727 | 0.7113 | 0.7184 | 0.3680 | | 0.2637 | 4.0 | 500 | 1.3585 | 0.3807 | 0.6836 | 0.6910 | 0.3805 | | 0.1408 | 5.0 | 625 | 1.6605 | 0.3785 | 0.6765 | 0.6872 | 0.3635 | | 0.0856 | 6.0 | 750 | 1.9703 | 0.3802 | 0.6890 | 0.7047 | 0.3704 | | 0.0502 | 7.0 | 875 | 2.1245 | 0.4067 | 0.6995 | 0.7169 | 0.3751 | | 0.0265 | 8.0 | 1000 | 2.2676 | 0.3756 | 0.6816 | 0.6925 | 0.3647 | | 0.0147 | 9.0 | 1125 | 2.4286 | 0.4052 | 0.6887 | 0.7062 | 0.3803 | | 0.0124 | 10.0 | 1250 | 2.5773 | 0.4084 | 0.6853 | 0.7040 | 0.3695 | | 0.0111 | 11.0 | 1375 | 2.5941 | 0.4146 | 0.6915 | 0.7085 | 0.3834 | | 0.0076 | 12.0 | 1500 | 2.6124 | 0.4157 | 0.6936 | 0.7078 | 0.3863 | | 0.0067 | 13.0 | 1625 | 2.7050 | 0.4139 | 0.6925 | 0.7108 | 0.3798 | | 0.0087 | 14.0 | 1750 | 2.6695 | 0.4252 | 0.7009 | 0.7169 | 0.3920 | | 0.0056 | 15.0 | 1875 | 2.7357 | 0.4257 | 0.6985 | 0.7161 | 0.3868 | | 0.0054 | 16.0 | 2000 | 2.7389 | 0.4249 | 0.6955 | 0.7116 | 0.3890 | | 0.0051 | 17.0 | 2125 | 2.7767 | 0.4197 | 0.6967 | 0.7146 | 0.3863 | | 0.004 | 18.0 | 2250 | 2.7947 | 0.4211 | 0.6977 | 0.7154 | 0.3876 | | 0.0041 | 19.0 | 2375 | 2.8030 | 0.4204 | 0.6953 | 0.7131 | 0.3855 | | 0.0042 | 20.0 | 2500 | 2.8008 | 0.4227 | 0.6976 | 0.7154 | 0.3876 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
titi7242229/roberta-base-bne-finetuned_personality_multi_3
titi7242229
2022-06-11T13:13:47Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-11T07:10:27Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: roberta-base-bne-finetuned_personality_multi_3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-finetuned_personality_multi_3 This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1145 - Accuracy: 0.4847 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.2498 | 1.0 | 63 | 2.2799 | 0.2236 | | 2.3044 | 2.0 | 126 | 2.1644 | 0.2980 | | 1.9017 | 3.0 | 189 | 1.9934 | 0.4127 | | 2.2281 | 4.0 | 252 | 1.8517 | 0.4501 | | 1.2955 | 5.0 | 315 | 1.7588 | 0.4870 | | 1.221 | 6.0 | 378 | 1.7269 | 0.4888 | | 1.1381 | 7.0 | 441 | 1.7617 | 0.4888 | | 0.8415 | 8.0 | 504 | 1.8101 | 0.4853 | | 0.6696 | 9.0 | 567 | 1.8325 | 0.4928 | | 0.6646 | 10.0 | 630 | 1.8707 | 0.4841 | | 0.3758 | 11.0 | 693 | 1.8766 | 0.4876 | | 0.3477 | 12.0 | 756 | 1.9171 | 0.4905 | | 0.2854 | 13.0 | 819 | 1.9203 | 0.4980 | | 0.2713 | 14.0 | 882 | 2.0089 | 0.4813 | | 0.3434 | 15.0 | 945 | 2.0130 | 0.4905 | | 0.0758 | 16.0 | 1008 | 2.0230 | 0.4922 | | 0.2518 | 17.0 | 1071 | 2.0793 | 0.4824 | | 0.0783 | 18.0 | 1134 | 2.0920 | 0.4830 | | 0.0933 | 19.0 | 1197 | 2.1067 | 0.4836 | | 0.184 | 20.0 | 1260 | 2.1145 | 0.4847 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
shivarama23/swin-tiny-patch4-window7-224-finetuned-image_quality
shivarama23
2022-06-11T11:54:49Z
85
1
transformers
[ "transformers", "pytorch", "tensorboard", "swin", "image-classification", "generated_from_trainer", "dataset:image_folder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-06-11T11:41:01Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - image_folder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-image_quality results: - task: name: Image Classification type: image-classification dataset: name: image_folder type: image_folder args: default metrics: - name: Accuracy type: accuracy value: 0.9090909090909091 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-image_quality This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.5242 - Accuracy: 0.9091 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 1 | 0.6762 | 0.6364 | | No log | 2.0 | 2 | 0.6309 | 0.7273 | | No log | 3.0 | 3 | 0.6095 | 0.6364 | | No log | 4.0 | 4 | 0.5775 | 0.6364 | | No log | 5.0 | 5 | 0.5443 | 0.8182 | | No log | 6.0 | 6 | 0.5242 | 0.9091 | | No log | 7.0 | 7 | 0.5149 | 0.8182 | | No log | 8.0 | 8 | 0.5094 | 0.8182 | | No log | 9.0 | 9 | 0.5038 | 0.8182 | | 0.4095 | 10.0 | 10 | 0.4992 | 0.8182 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Jawaher/LIAR-fake-news-roberta-base
Jawaher
2022-06-11T11:12:24Z
103
1
transformers
[ "transformers", "pytorch", "tf", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-11T05:40:13Z
A pre-trained Roberta masked language model (MLM) trained on around 12K fake news dataset called LIAR. The perplexity of the original pre-trained Roberta model on the dataset is 5.957 and the perplexity of the adapted model is 3.918.
mmillet/distilrubert-tiny-2nd-finetune-epru
mmillet
2022-06-11T09:50:42Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-11T09:48:50Z
--- tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: distilrubert-tiny-2nd-finetune-epru results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilrubert-tiny-2nd-finetune-epru This model is a fine-tuned version of [mmillet/distilrubert-tiny-cased-conversational-v1_single_finetuned_on_cedr_augmented](https://huggingface.co/mmillet/distilrubert-tiny-cased-conversational-v1_single_finetuned_on_cedr_augmented) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3546 - Accuracy: 0.9325 - F1: 0.9328 - Precision: 0.9359 - Recall: 0.9325 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.0686 | 1.0 | 12 | 0.2931 | 0.9141 | 0.9142 | 0.9163 | 0.9141 | | 0.0269 | 2.0 | 24 | 0.2690 | 0.9448 | 0.9444 | 0.9449 | 0.9448 | | 0.0282 | 3.0 | 36 | 0.3140 | 0.9141 | 0.9140 | 0.9168 | 0.9141 | | 0.0185 | 4.0 | 48 | 0.2977 | 0.9571 | 0.9570 | 0.9576 | 0.9571 | | 0.0103 | 5.0 | 60 | 0.3368 | 0.9264 | 0.9265 | 0.9296 | 0.9264 | | 0.0088 | 6.0 | 72 | 0.3067 | 0.9387 | 0.9385 | 0.9389 | 0.9387 | | 0.0152 | 7.0 | 84 | 0.3660 | 0.9264 | 0.9263 | 0.9282 | 0.9264 | | 0.0315 | 8.0 | 96 | 0.3793 | 0.9325 | 0.9328 | 0.9359 | 0.9325 | | 0.0258 | 9.0 | 108 | 0.3546 | 0.9325 | 0.9328 | 0.9359 | 0.9325 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
OTQ/q-Taxi-v3
OTQ
2022-06-11T08:10:17Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-11T08:10:10Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.50 +/- 2.78 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
huggingtweets/gustholomulers
huggingtweets
2022-06-11T07:53:54Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-11T07:50:54Z
--- language: en thumbnail: http://www.huggingtweets.com/gustholomulers/1654934015981/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1535477036353040384/tXI_s1Yi_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">soppy</div> <div style="text-align: center; font-size: 14px;">@gustholomulers</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from soppy. | Data | soppy | | --- | --- | | Tweets downloaded | 1482 | | Retweets | 55 | | Short tweets | 329 | | Tweets kept | 1098 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1nhfbopf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @gustholomulers's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3p5yu4wm) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3p5yu4wm/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/gustholomulers') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
AryaSuprana/BRATA_RoBERTaBali
AryaSuprana
2022-06-11T05:01:40Z
161
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "ban", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-11T04:51:40Z
--- language: "ban" datasets: - WikiBali - Suara Saking Bali widget: - text: "Kalsium silih <mask> datu kimia antuk simbol Ca miwah wilangan atom 20." example_title: "Conto 1" - text: "Tabuan inggih <mask> silih tunggil soroh beburon sane madue kampid." example_title: "Conto 2" --- BRATA (Basa Bali Used for Pretraining RoBERTa) is a pretrained language model trained using Basa Bali or Balinese Language with RoBERTa-base-uncased configuration. The datasets used for this pretraining were collected by extracting WikiBali or Wikipedia Basa Bali and some sources from Suara Saking Bali website. The pretrained language model trained using Google Colab Pro with Tesla P100-PCIE-16GB GPU. Pretraining process used 200 epoch and 2 batch size. The smallest training loss can be seen in Training metrics or Metrics tab.
tclong/wav2vec2-base-vios-commonvoice-1
tclong
2022-06-11T03:01:54Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-10T11:09:14Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-vios-commonvoice-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-vios-commonvoice-1 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8913 - Wer: 0.3621 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.4706 | 0.55 | 500 | 3.4725 | 1.0 | | 3.202 | 1.1 | 1000 | 2.7555 | 1.0008 | | 1.0507 | 1.66 | 1500 | 1.0481 | 0.6196 | | 0.7325 | 2.21 | 2000 | 0.8120 | 0.4958 | | 0.599 | 2.76 | 2500 | 0.7035 | 0.4447 | | 0.5224 | 3.31 | 3000 | 0.6761 | 0.4078 | | 0.4844 | 3.86 | 3500 | 0.6688 | 0.4011 | | 0.4234 | 4.42 | 4000 | 0.6080 | 0.3729 | | 0.4237 | 4.97 | 4500 | 0.5953 | 0.3556 | | 0.3986 | 5.52 | 5000 | 0.6054 | 0.3478 | | 0.3554 | 6.07 | 5500 | 0.6193 | 0.3479 | | 0.3446 | 6.62 | 6000 | 0.5809 | 0.3302 | | 0.3104 | 7.17 | 6500 | 0.5713 | 0.3283 | | 0.3166 | 7.73 | 7000 | 0.5593 | 0.3133 | | 0.2938 | 8.28 | 7500 | 0.5645 | 0.3081 | | 0.3061 | 8.83 | 8000 | 0.5508 | 0.3020 | | 0.2986 | 9.38 | 8500 | 0.5462 | 0.3024 | | 0.2939 | 9.93 | 9000 | 0.5544 | 0.3028 | | 0.2633 | 10.49 | 9500 | 0.5496 | 0.3024 | | 0.2683 | 11.04 | 10000 | 0.5439 | 0.2946 | | 0.2714 | 11.59 | 10500 | 0.5524 | 0.2947 | | 0.2354 | 12.14 | 11000 | 0.5267 | 0.2918 | | 0.2488 | 12.69 | 11500 | 0.5728 | 0.2938 | | 0.2479 | 13.25 | 12000 | 0.5802 | 0.2951 | | 0.245 | 13.8 | 12500 | 0.5571 | 0.2890 | | 0.2422 | 14.35 | 13000 | 0.5531 | 0.2871 | | 0.2369 | 14.9 | 13500 | 0.5453 | 0.2860 | | 0.2345 | 15.45 | 14000 | 0.5452 | 0.2847 | | 0.2507 | 16.0 | 14500 | 0.5536 | 0.2884 | | 0.2454 | 16.56 | 15000 | 0.5577 | 0.2871 | | 0.2729 | 17.11 | 15500 | 0.6019 | 0.2931 | | 0.2743 | 17.66 | 16000 | 0.5619 | 0.2905 | | 0.3031 | 18.21 | 16500 | 0.6401 | 0.3006 | | 0.315 | 18.76 | 17000 | 0.6044 | 0.2990 | | 0.4025 | 19.32 | 17500 | 0.6739 | 0.3304 | | 0.4915 | 19.87 | 18000 | 0.7267 | 0.3472 | | 0.5539 | 20.42 | 18500 | 0.8078 | 0.3483 | | 0.7138 | 20.97 | 19000 | 0.9362 | 0.3765 | | 0.5766 | 21.52 | 19500 | 0.7921 | 0.3392 | | 0.688 | 22.08 | 20000 | 0.8833 | 0.3693 | | 0.6964 | 22.63 | 20500 | 0.9137 | 0.3469 | | 0.7389 | 23.18 | 21000 | 0.9379 | 0.3460 | | 0.7851 | 23.73 | 21500 | 1.0438 | 0.3653 | | 0.7619 | 24.28 | 22000 | 0.9313 | 0.3873 | | 0.7175 | 24.83 | 22500 | 0.8668 | 0.3789 | | 0.6842 | 25.39 | 23000 | 0.8243 | 0.3761 | | 0.6941 | 25.94 | 23500 | 0.8557 | 0.3804 | | 0.7167 | 26.49 | 24000 | 0.8618 | 0.3875 | | 0.721 | 27.04 | 24500 | 0.8686 | 0.3764 | | 0.6949 | 27.59 | 25000 | 0.8773 | 0.3690 | | 0.727 | 28.15 | 25500 | 0.8769 | 0.3666 | | 0.7363 | 28.7 | 26000 | 0.8867 | 0.3634 | | 0.7157 | 29.25 | 26500 | 0.8895 | 0.3626 | | 0.7385 | 29.8 | 27000 | 0.8913 | 0.3621 | ### Framework versions - Transformers 4.19.3 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
huggingtweets/froliki2108
huggingtweets
2022-06-11T00:04:16Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-11T00:02:55Z
--- language: en thumbnail: http://www.huggingtweets.com/froliki2108/1654905851117/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1447692349493100549/1PV2c-PJ_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">FrolikiπŸ’‰πŸ’‰πŸ’‰</div> <div style="text-align: center; font-size: 14px;">@froliki2108</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from FrolikiπŸ’‰πŸ’‰πŸ’‰. | Data | FrolikiπŸ’‰πŸ’‰πŸ’‰ | | --- | --- | | Tweets downloaded | 2223 | | Retweets | 1133 | | Short tweets | 229 | | Tweets kept | 861 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2tug3miv/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @froliki2108's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3otsf5pj) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3otsf5pj/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/froliki2108') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
nateraw/modelcard-creator-demo
nateraw
2022-06-10T23:58:39Z
0
0
pytorch
[ "pytorch", "modelcards", "autogenerated-modelcard", "en", "dataset:beans", "arxiv:1810.03993", "arxiv:1910.09700", "license:mit", "region:us" ]
null
2022-06-10T23:40:23Z
--- language: - en license: mit library_name: pytorch tags: - modelcards - autogenerated-modelcard datasets: - beans metrics: - accuracy --- # modelcard-creator-demo ## Table of Contents - [Model Details](#model-details) - [How To Get Started With the Model](#how-to-get-started-with-the-model) - [Uses](#uses) - [Direct Use](#direct-use) - [Downstream Use](#downstream-use) - [Misuse and Out of Scope Use](#misuse-and-out-of-scope-use) - [Limitations and Biases](#limitations-and-biases) - [Training](#training) - [Training Data](#training-data) - [Training Procedure](#training-procedure) - [Evaluation Results](#evaluation-results) - [Environmental Impact](#environmental-impact) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) ## Model Details <!-- Give an overview of your model, the relevant research paper, who trained it, etc. --> This isn't really a model, it's just a test repo to see if the [model card creator](https://huggingface.co/spaces/nateraw/modelcard-creator) works! - Developed by: Nathan Raw - Language(s): - License: modelcard-creator-demo is licensed under the mit license - Resources for more information: - [Research Paper](https://arxiv.org/pdf/1810.03993.pdf) - [GitHub Repo](https://github.com/nateraw/modelcards) ## How to Get Started with the Model Use the code below to get started with the model. ```python # A nice code snippet here that describes how to use the model... ``` ## Uses #### Direct Use <!-- Describe what kind of tasks this model can be used for directly or problems it can solve. --> [More Information Needed] #### Downstream Use <!-- Describe how this model could be leveraged by a downstream model (if applicable) --> [More Information Needed] #### Misuse and Out-of-scope Use <!-- Describe ways in which this model ***should not*** be used. --> [More Information Needed] ## Limitations and Biases <!-- Describe limitations and biases of this model or models of it's type. --> **CONTENT WARNING: Readers should be aware this section contains content that is disturbing, offensive, and can propogate historical and current stereotypes.** [More Information Needed] ## Training #### Training Data <!-- Describe the dataset used to train this model. --> <!-- Refer to data card if dataset is provided and exists on the hub --> See the data card for additional information. #### Training Procedure <!-- Describe the preprocessing, hardware used, training hyperparameters, etc. --> [More Information Needed] ## Evaluation Results <!-- Describe evaluation results of this model across any datasets it was evaluated on. --> [More Information Needed] ## Environmental Impact <!-- Provide information to document the environmental impact of this model --> You can estimate carbon emissions using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700) - **Hardware Type:** - **Hours used:** - **Cloud Provider:** - **Compute Region:** - **Carbon Emitted:** ## Citation Information ```bibtex @inproceedings{Mitchell_2019, doi = {10.1145/3287560.3287596}, url = {https://doi.org/10.1145%2F3287560.3287596}, year = 2019, month = {jan}, publisher = {{ACM} }, author = {Margaret Mitchell and Simone Wu and Andrew Zaldivar and Parker Barnes and Lucy Vasserman and Ben Hutchinson and Elena Spitzer and Inioluwa Deborah Raji and Timnit Gebru}, title = {Model Cards for Model Reporting}, booktitle = {Proceedings of the Conference on Fairness, Accountability, and Transparency} } ```
ahmeddbahaa/t5-arabic-base-finetuned-wikilingua-ar
ahmeddbahaa
2022-06-10T23:54:52Z
12
1
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "summarization", "mt5", "ar", "abstractive summarization", "generated_from_trainer", "dataset:wiki_lingua", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
summarization
2022-06-10T15:19:23Z
--- license: apache-2.0 tags: - summarization - mt5 - ar - abstractive summarization - generated_from_trainer datasets: - wiki_lingua model-index: - name: t5-arabic-base-finetuned-wikilingua-ar results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-arabic-base-finetuned-wikilingua-ar This model is a fine-tuned version of [bakrianoo/t5-arabic-base](https://huggingface.co/bakrianoo/t5-arabic-base) on the wiki_lingua dataset. It achieves the following results on the evaluation set: - Loss: 3.2735 - Rouge-1: 20.72 - Rouge-2: 7.63 - Rouge-l: 18.75 - Gen Len: 18.74 - Bertscore: 70.79 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - num_epochs: 8 - label_smoothing_factor: 0.1 ### Training results ### Framework versions - Transformers 4.19.3 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
huggingtweets/jedwill1999
huggingtweets
2022-06-10T23:10:10Z
106
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-10T23:09:22Z
--- language: en thumbnail: http://www.huggingtweets.com/jedwill1999/1654902604867/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1510152678919135250/lfEmlEGJ_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">a local</div> <div style="text-align: center; font-size: 14px;">@jedwill1999</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from a local. | Data | a local | | --- | --- | | Tweets downloaded | 3246 | | Retweets | 1080 | | Short tweets | 525 | | Tweets kept | 1641 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1qsnsp6t/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @jedwill1999's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/mjjc73pu) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/mjjc73pu/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/jedwill1999') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/boopysaur
huggingtweets
2022-06-10T22:57:09Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-10T22:56:08Z
--- language: en thumbnail: http://www.huggingtweets.com/boopysaur/1654901824865/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1476816918879297559/2jt_Rt2L_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">boop β™‘</div> <div style="text-align: center; font-size: 14px;">@boopysaur</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from boop β™‘. | Data | boop β™‘ | | --- | --- | | Tweets downloaded | 920 | | Retweets | 162 | | Short tweets | 128 | | Tweets kept | 630 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/398l195g/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @boopysaur's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3te0suw6) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3te0suw6/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/boopysaur') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
facebook/roberta-hate-speech-dynabench-r1-target
facebook
2022-06-10T22:36:34Z
4
1
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "en", "arxiv:2012.15761", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-10T21:32:03Z
--- language: en --- # LFTW R1 Target The R1 Target model from [Learning from the Worst: Dynamically Generated Datasets to Improve Online Hate Detection](https://arxiv.org/abs/2012.15761) ## Citation Information ```bibtex @inproceedings{vidgen2021lftw, title={Learning from the Worst: Dynamically Generated Datasets to Improve Online Hate Detection}, author={Bertie Vidgen and Tristan Thrush and Zeerak Waseem and Douwe Kiela}, booktitle={ACL}, year={2021} } ``` Thanks to Kushal Tirumala and Adina Williams for helping the authors put the model on the hub!
facebook/roberta-hate-speech-dynabench-r2-target
facebook
2022-06-10T22:36:17Z
12
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "en", "arxiv:2012.15761", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-10T21:52:46Z
--- language: en --- # LFTW R2 Target The R2 Target model from [Learning from the Worst: Dynamically Generated Datasets to Improve Online Hate Detection](https://arxiv.org/abs/2012.15761) ## Citation Information ```bibtex @inproceedings{vidgen2021lftw, title={Learning from the Worst: Dynamically Generated Datasets to Improve Online Hate Detection}, author={Bertie Vidgen and Tristan Thrush and Zeerak Waseem and Douwe Kiela}, booktitle={ACL}, year={2021} } ``` Thanks to Kushal Tirumala and Adina Williams for helping the authors put the model on the hub!
facebook/roberta-hate-speech-dynabench-r3-target
facebook
2022-06-10T22:34:01Z
7
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "en", "arxiv:2012.15761", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-10T22:10:40Z
--- language: en --- # LFTW R3 Target The R3 Target model from [Learning from the Worst: Dynamically Generated Datasets to Improve Online Hate Detection](https://arxiv.org/abs/2012.15761) ## Citation Information ```bibtex @inproceedings{vidgen2021lftw, title={Learning from the Worst: Dynamically Generated Datasets to Improve Online Hate Detection}, author={Bertie Vidgen and Tristan Thrush and Zeerak Waseem and Douwe Kiela}, booktitle={ACL}, year={2021} } ``` Thanks to Kushal Tirumala and Adina Williams for helping the authors put the model on the hub!
luisrqe/cubucetapenis
luisrqe
2022-06-10T21:08:15Z
0
0
null
[ "region:us" ]
null
2022-06-10T20:52:33Z
git lfs install https://www.novinhavideosporno.com/wp-content/uploads/2018/11/a-maior-buceta-do-mundo-e-a-mais-escrota-tambem.jpg https://www.xvideos-tv.com/wp-content/uploads/2021/11/buceta-da-novinha-sendo-arrombada-por-varios-machos-272x180.jpg http://cdn.xvideos-br.com/media/imagens/10501.jpg https://upload.wikimedia.org/wikipedia/commons/thumb/a/ac/Sidoka_photoshoot.jpg/800px-Sidoka_photoshoot.jpg https://rapforte.com/wp-content/uploads/2021/08/Doka.jpg https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcR2pWEwhp9tl7CDcHd7ELiKLpUPXkhCm4zmCwZGerHYh7CY8WxsGnOSACYussZdIF283so&usqp=CAU git clone https://huggingface.co/luisrqe/cubucetapenis
torli/trijki
torli
2022-06-10T20:45:14Z
0
1
null
[ "license:artistic-2.0", "region:us" ]
null
2022-06-10T20:43:32Z
--- license: artistic-2.0 --- git lfs install git clone https://huggingface.co/torli/trijki
FritzOS/TEdetection_distiBERT_NER_V5
FritzOS
2022-06-10T20:35:11Z
63
0
transformers
[ "transformers", "tf", "distilbert", "token-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-10T20:34:58Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: TEdetection_distiBERT_NER_V5 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # TEdetection_distiBERT_NER_V5 This model is a fine-tuned version of [FritzOS/TEdetection_distilBERT_mLM_V5](https://huggingface.co/FritzOS/TEdetection_distilBERT_mLM_V5) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0029 - Validation Loss: 0.0032 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 208018, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.0029 | 0.0032 | 0 | ### Framework versions - Transformers 4.19.4 - TensorFlow 2.8.2 - Datasets 2.2.2 - Tokenizers 0.12.1
mmillet/distilrubert-tiny-cased-conversational-v1_single_finetuned_on_cedr_augmented
mmillet
2022-06-10T20:27:38Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-10T20:14:44Z
--- tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: distilrubert-tiny-cased-conversational-v1_single_finetuned_on_cedr_augmented results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilrubert-tiny-cased-conversational-v1_single_finetuned_on_cedr_augmented This model is a fine-tuned version of [DeepPavlov/distilrubert-tiny-cased-conversational-v1](https://huggingface.co/DeepPavlov/distilrubert-tiny-cased-conversational-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5908 - Accuracy: 0.8653 - F1: 0.8656 - Precision: 0.8665 - Recall: 0.8653 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.9172 | 1.0 | 69 | 0.5124 | 0.8246 | 0.8220 | 0.8271 | 0.8246 | | 0.4709 | 2.0 | 138 | 0.4279 | 0.8528 | 0.8505 | 0.8588 | 0.8528 | | 0.3194 | 3.0 | 207 | 0.3770 | 0.8737 | 0.8727 | 0.8740 | 0.8737 | | 0.2459 | 4.0 | 276 | 0.3951 | 0.8685 | 0.8682 | 0.8692 | 0.8685 | | 0.1824 | 5.0 | 345 | 0.4005 | 0.8831 | 0.8834 | 0.8841 | 0.8831 | | 0.1515 | 6.0 | 414 | 0.4356 | 0.8800 | 0.8797 | 0.8801 | 0.8800 | | 0.1274 | 7.0 | 483 | 0.4642 | 0.8727 | 0.8726 | 0.8731 | 0.8727 | | 0.0833 | 8.0 | 552 | 0.5226 | 0.8633 | 0.8627 | 0.8631 | 0.8633 | | 0.073 | 9.0 | 621 | 0.5327 | 0.8695 | 0.8686 | 0.8692 | 0.8695 | | 0.0575 | 10.0 | 690 | 0.5908 | 0.8653 | 0.8656 | 0.8665 | 0.8653 | ### Framework versions - Transformers 4.19.3 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
huggingtweets/smallmutuals
huggingtweets
2022-06-10T19:13:07Z
106
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-10T18:33:00Z
--- language: en thumbnail: http://www.huggingtweets.com/smallmutuals/1654888348503/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1433527116948180999/wejtDhFm_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Cool Owl Guy</div> <div style="text-align: center; font-size: 14px;">@smallmutuals</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Cool Owl Guy. | Data | Cool Owl Guy | | --- | --- | | Tweets downloaded | 367 | | Retweets | 45 | | Short tweets | 25 | | Tweets kept | 297 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/238iiiu5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @smallmutuals's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2hl8vi9y) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2hl8vi9y/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/smallmutuals') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
louisdeco/camembert-base-finetuned-LineCause
louisdeco
2022-06-10T16:35:03Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "camembert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-10T13:11:32Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 - recall model-index: - name: camembert-base-finetuned-LineCause results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # camembert-base-finetuned-LineCause This model is a fine-tuned version of [camembert-base](https://huggingface.co/camembert-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0001 - Accuracy: 1.0 - F1: 1.0 - Recall: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 50 - eval_batch_size: 50 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---:|:------:| | 0.0428 | 1.0 | 4409 | 0.0002 | 1.0 | 1.0 | 1.0 | | 0.0009 | 2.0 | 8818 | 0.0001 | 1.0 | 1.0 | 1.0 | ### Framework versions - Transformers 4.19.3 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
OTQ/q-FrozenLake-v1-4x4-noSlippery
OTQ
2022-06-10T15:14:57Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-10T15:14:51Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
titi7242229/roberta-base-bne-finetuned_personality_multi
titi7242229
2022-06-10T14:19:54Z
57
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-10T11:55:32Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: roberta-base-bne-finetuned_personality_multi results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-finetuned_personality_multi This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.3709 - Accuracy: 0.5130 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.2576 | 1.0 | 125 | 2.2755 | 0.2340 | | 2.0409 | 2.0 | 250 | 2.1425 | 0.2974 | | 1.6358 | 3.0 | 375 | 1.8730 | 0.4403 | | 1.3553 | 4.0 | 500 | 1.7443 | 0.5032 | | 0.9201 | 5.0 | 625 | 1.7165 | 0.5055 | | 0.5199 | 6.0 | 750 | 1.7476 | 0.5107 | | 0.5588 | 7.0 | 875 | 1.7758 | 0.5153 | | 0.2079 | 8.0 | 1000 | 1.7964 | 0.5251 | | 0.2685 | 9.0 | 1125 | 1.8886 | 0.5187 | | 0.1261 | 10.0 | 1250 | 1.9463 | 0.5199 | | 0.1105 | 11.0 | 1375 | 2.0337 | 0.5222 | | 0.1572 | 12.0 | 1500 | 2.1206 | 0.5084 | | 0.0643 | 13.0 | 1625 | 2.1815 | 0.5182 | | 0.0174 | 14.0 | 1750 | 2.2412 | 0.5176 | | 0.0266 | 15.0 | 1875 | 2.2741 | 0.5112 | | 0.0447 | 16.0 | 2000 | 2.3089 | 0.5159 | | 0.02 | 17.0 | 2125 | 2.3401 | 0.5135 | | 0.0414 | 18.0 | 2250 | 2.3504 | 0.5159 | | 0.0122 | 19.0 | 2375 | 2.3661 | 0.5130 | | 0.0154 | 20.0 | 2500 | 2.3709 | 0.5130 | ### Framework versions - Transformers 4.19.3 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
RalphX1/dqn-SpaceInvadersNoFrameskip-v4
RalphX1
2022-06-10T13:57:03Z
6
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-10T13:11:26Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 374.00 +/- 214.89 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga RalphX1 -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga RalphX1 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
ahmeddbahaa/mt5-base-finetuned-wikilingua-ar
ahmeddbahaa
2022-06-10T13:00:43Z
13
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "summarization", "ar", "abstractive summarization", "generated_from_trainer", "dataset:wiki_lingua", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-06-10T02:40:53Z
--- license: apache-2.0 tags: - summarization - mt5 - ar - abstractive summarization - generated_from_trainer datasets: - wiki_lingua model-index: - name: mt5-base-finetuned-wikilingua-ar results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-base-finetuned-wikilingua-ar This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the wiki_lingua dataset. It achieves the following results on the evaluation set: - Loss: 3.4936 - Rouge-1: 20.79 - Rouge-2: 7.6 - Rouge-l: 18.81 - Gen Len: 18.73 - Bertscore: 70.87 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - num_epochs: 8 - label_smoothing_factor: 0.1 ### Training results ### Framework versions - Transformers 4.19.3 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
adi1494/distilbert-base-uncased-finetuned-squad
adi1494
2022-06-10T12:39:00Z
62
0
transformers
[ "transformers", "tf", "tensorboard", "distilbert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-06-10T06:38:11Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: adi1494/distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # adi1494/distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.5671 - Validation Loss: 1.2217 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 5532, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 1.5671 | 1.2217 | 0 | ### Framework versions - Transformers 4.19.3 - TensorFlow 2.8.2 - Datasets 2.2.2 - Tokenizers 0.12.1
becher/t5-small-finetuned-arxiv
becher
2022-06-10T12:28:48Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-10T11:59:37Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: t5-small-finetuned-arxiv results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-arxiv This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.1559 - Rouge1: 37.854 - Rouge2: 20.4934 - Rougel: 33.9992 - Rougelsum: 33.9943 - Gen Len: 15.847 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:-------:|:---------:|:-------:| | 2.3848 | 1.0 | 3564 | 2.1559 | 37.854 | 20.4934 | 33.9992 | 33.9943 | 15.847 | ### Framework versions - Transformers 4.19.3 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
stig/distilbert-base-uncased-finetuned
stig
2022-06-10T10:59:39Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-06-10T09:59:19Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8627 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.0255 | 1.0 | 2312 | 1.9202 | | 1.7483 | 2.0 | 4624 | 1.8437 | | 1.5733 | 3.0 | 6936 | 1.8627 | ### Framework versions - Transformers 4.19.3 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
mmillet/distilrubert-2ndfinetune-epru
mmillet
2022-06-10T10:52:26Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-10T10:49:55Z
--- tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: distilrubert-2ndfinetune-epru results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilrubert-2ndfinetune-epru This model is a fine-tuned version of [mmillet/distilrubert-tiny-cased-conversational-v1_best_finetuned_emotion_experiment_augmented_anger_fear](https://huggingface.co/mmillet/distilrubert-tiny-cased-conversational-v1_best_finetuned_emotion_experiment_augmented_anger_fear) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3531 - Accuracy: 0.9054 - F1: 0.9034 - Precision: 0.9074 - Recall: 0.9054 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.4716 | 1.0 | 11 | 0.2851 | 0.8986 | 0.8945 | 0.9029 | 0.8986 | | 0.2842 | 2.0 | 22 | 0.3041 | 0.8851 | 0.8796 | 0.8816 | 0.8851 | | 0.167 | 3.0 | 33 | 0.2996 | 0.8986 | 0.8914 | 0.8997 | 0.8986 | | 0.1527 | 4.0 | 44 | 0.2443 | 0.9189 | 0.9163 | 0.9222 | 0.9189 | | 0.0926 | 5.0 | 55 | 0.2777 | 0.9054 | 0.9016 | 0.9059 | 0.9054 | | 0.0897 | 6.0 | 66 | 0.3081 | 0.9122 | 0.9080 | 0.9147 | 0.9122 | | 0.0438 | 7.0 | 77 | 0.3332 | 0.8986 | 0.8952 | 0.8993 | 0.8986 | | 0.0433 | 8.0 | 88 | 0.3480 | 0.8851 | 0.8859 | 0.8896 | 0.8851 | | 0.0398 | 9.0 | 99 | 0.3531 | 0.9054 | 0.9034 | 0.9074 | 0.9054 | ### Framework versions - Transformers 4.19.3 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
shivigupta/dqn-SpaceInvadersNoFrameskip-v4
shivigupta
2022-06-10T10:11:07Z
3
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-10T10:10:35Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 374.00 +/- 214.89 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga shivigupta -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga shivigupta ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 100000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
YaYaB/SpaceInvadersNoFrameskip-v4-2
YaYaB
2022-06-10T09:16:18Z
4
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-10T09:15:44Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 556.00 +/- 162.23 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga YaYaB -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga YaYaB ``` ## Hyperparameters ```python OrderedDict([('batch_size', 64), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
TurkuNLP/bert-large-finnish-cased-v1
TurkuNLP
2022-06-10T08:46:17Z
152
2
transformers
[ "transformers", "pytorch", "fi", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-06-10T07:53:16Z
--- license: apache-2.0 language: fi --- This is the large variant of FinBERT (TurkuNLP/bert-base-finnish-cased-v1). The training data is exactly the same.
huggingtweets/drilbot_neo
huggingtweets
2022-06-10T08:39:44Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1374924360780242944/-Q8NfgEr_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">wintbot_neo</div> <div style="text-align: center; font-size: 14px;">@drilbot_neo</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from wintbot_neo. | Data | wintbot_neo | | --- | --- | | Tweets downloaded | 3243 | | Retweets | 373 | | Short tweets | 468 | | Tweets kept | 2402 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/25adu2w7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @drilbot_neo's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3keot8ku) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3keot8ku/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/drilbot_neo') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
flood/distilbert-base-uncased-distilled-clinc
flood
2022-06-10T08:03:08Z
77
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-10T07:59:25Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-distilled-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9309677419354838 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-distilled-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.0389 - Accuracy: 0.9310 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6206 | 1.0 | 318 | 0.3251 | 0.6610 | | 0.2571 | 2.0 | 636 | 0.1366 | 0.8584 | | 0.1392 | 3.0 | 954 | 0.0813 | 0.9081 | | 0.0967 | 4.0 | 1272 | 0.0598 | 0.9152 | | 0.0779 | 5.0 | 1590 | 0.0503 | 0.9229 | | 0.0675 | 6.0 | 1908 | 0.0451 | 0.9271 | | 0.0615 | 7.0 | 2226 | 0.0425 | 0.9326 | | 0.058 | 8.0 | 2544 | 0.0403 | 0.9316 | | 0.0557 | 9.0 | 2862 | 0.0393 | 0.9306 | | 0.0544 | 10.0 | 3180 | 0.0389 | 0.9310 | ### Framework versions - Transformers 4.19.3 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Intel/MiniLM-L12-H384-uncased-mrpc
Intel
2022-06-10T07:06:45Z
220
1
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-10T06:55:25Z
--- language: - en license: mit tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: MiniLM-L12-H384-uncased-mrpc results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue args: mrpc metrics: - name: Accuracy type: accuracy value: 0.875 - name: F1 type: f1 value: 0.9097345132743363 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MiniLM-L12-H384-uncased-mrpc This model is a fine-tuned version of [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.4319 - Accuracy: 0.875 - F1: 0.9097 - Combined Score: 0.8924 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu102 - Datasets 2.2.2 - Tokenizers 0.12.1
jayeshgar/dqn-SpaceInvadersNoFrameskip-v4
jayeshgar
2022-06-10T06:54:27Z
2
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-10T06:53:42Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 653.00 +/- 114.70 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga jayeshgar -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga jayeshgar ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
ritheshSree/animal-classifier
ritheshSree
2022-06-10T05:38:54Z
115
1
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-06-10T05:21:44Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: animal-classifier results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 1.0 --- # animal-classifier Autogenerated by HuggingPicsπŸ€—πŸ–ΌοΈ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### cat ![cat](images/cat.jpg) #### dog ![dog](images/dog.jpg) #### snake ![snake](images/snake.jpg) #### tiger ![tiger](images/tiger.jpg)
RuiqianLi/wav2vec2-xls-r-300m_Mrbrown_finetune1
RuiqianLi
2022-06-10T03:17:06Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:uob_singlish", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-09T10:16:21Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - uob_singlish model-index: - name: wav2vec2-xls-r-300m_Mrbrown_finetune1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m_Mrbrown_finetune1 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the uob_singlish dataset. ## This time use self-made dataset(cut the audio of "https://www.youtube.com/watch?v=a2ZOTD3R7JI" into slices and write the corresponding transcript, totally 4 mins), don't know why the word-error-rate keep 1. But can know that much be the problem of dataset, because last time use the same pre-trained model and standard singlish corpus fine-tune get nice result. (can find it at:RuiqianLi/wav2vec2-large-xls-r-300m-singlish-colab) It achieves the following results on the evaluation set: - Loss: 3.0927 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.01 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 3.7943 | 20.0 | 200 | 3.0597 | 1.0 | | 2.9902 | 40.0 | 400 | 3.1604 | 1.0 | | 2.9696 | 60.0 | 600 | 3.1112 | 1.0 | | 2.8885 | 80.0 | 800 | 3.0234 | 1.0 | | 2.8154 | 100.0 | 1000 | 3.0927 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
alibaba-pai/pai-bert-tiny-zh
alibaba-pai
2022-06-10T02:34:43Z
272
6
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "zh", "arxiv:2205.00258", "license:apache-2.0", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-09T03:45:15Z
--- language: zh pipeline_tag: fill-mask widget: - text: "δΈ­ε›½ηš„ι¦–ιƒ½ζ˜―εŒ—[MASK]。" - text: "牛ε₯Άζ˜―[MASK]θ‰²ηš„γ€‚" tags: - bert license: apache-2.0 --- ## Alibaba PAI BERT Tiny Chinese This project provides Chinese pre-trained language models and various types of NLP tools. The models are pre-trained on the large-scale corpora hosted by the Alibaba PAI team. It is developed based on the EasyNLP framework (https://github.com/alibaba/EasyNLP). ## Citation If you find the resource is useful, please cite the following paper in your work: ``` @article{easynlp, title = {EasyNLP: A Comprehensive and Easy-to-use Toolkit for Natural Language Processing}, publisher = {arXiv}, author = {Wang, Chengyu and Qiu, Minghui and Zhang, Taolin and Liu, Tingting and Li, Lei and Wang, Jianing and Wang, Ming and Huang, Jun and Lin, Wei}, url = {https://arxiv.org/abs/2205.00258}, year = {2022} } ```
YeRyeongLee/bert-base-cased-finetuned-filtered-0609
YeRyeongLee
2022-06-10T02:29:16Z
105
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-10T00:30:02Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: bert-base-cased-finetuned-filtered-0609 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-finetuned-filtered-0609 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2410 - Accuracy: 0.9748 - Precision: 0.9751 - Recall: 0.9748 - F1: 0.9749 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.2028 | 1.0 | 3180 | 0.2405 | 0.9535 | 0.9561 | 0.9535 | 0.9538 | | 0.1632 | 2.0 | 6360 | 0.1686 | 0.9660 | 0.9664 | 0.9660 | 0.9661 | | 0.1203 | 3.0 | 9540 | 0.1625 | 0.9648 | 0.9655 | 0.9648 | 0.9648 | | 0.1233 | 4.0 | 12720 | 0.1510 | 0.9698 | 0.9702 | 0.9698 | 0.9699 | | 0.0823 | 5.0 | 15900 | 0.1600 | 0.9730 | 0.9732 | 0.9730 | 0.9730 | | 0.0453 | 6.0 | 19080 | 0.1953 | 0.9723 | 0.9724 | 0.9723 | 0.9723 | | 0.031 | 7.0 | 22260 | 0.1754 | 0.9755 | 0.9755 | 0.9755 | 0.9755 | | 0.0166 | 8.0 | 25440 | 0.2155 | 0.9739 | 0.9740 | 0.9739 | 0.9739 | | 0.0036 | 9.0 | 28620 | 0.2519 | 0.9730 | 0.9733 | 0.9730 | 0.9730 | | 0.0035 | 10.0 | 31800 | 0.2410 | 0.9748 | 0.9751 | 0.9748 | 0.9749 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.9.1+cu111 - Datasets 1.16.1 - Tokenizers 0.12.1
huggingtweets/loganpaul
huggingtweets
2022-06-10T02:29:07Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-10T02:27:26Z
--- language: en thumbnail: http://www.huggingtweets.com/loganpaul/1654828143127/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1401837042934468611/okzqIoMb_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Logan Paul</div> <div style="text-align: center; font-size: 14px;">@loganpaul</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Logan Paul. | Data | Logan Paul | | --- | --- | | Tweets downloaded | 3245 | | Retweets | 170 | | Short tweets | 318 | | Tweets kept | 2757 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/wj9pph5f/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @loganpaul's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1sqzuxgo) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1sqzuxgo/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/loganpaul') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/wickdedaccount
huggingtweets
2022-06-10T02:20:32Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-10T02:17:51Z
--- language: en thumbnail: http://www.huggingtweets.com/wickdedaccount/1654827628283/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1353151127026597889/Yarj5Kfr_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">pp</div> <div style="text-align: center; font-size: 14px;">@wickdedaccount</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from pp. | Data | pp | | --- | --- | | Tweets downloaded | 1028 | | Retweets | 822 | | Short tweets | 119 | | Tweets kept | 87 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1of8kmw1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @wickdedaccount's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2q4m95l8) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2q4m95l8/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/wickdedaccount') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Wikram/Legal-key-to-text
Wikram
2022-06-10T02:17:44Z
5
2
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-10T01:44:21Z
Task: Given a set of input keywords, generate a corresponding text output for a section in the legal domain. Dataset: We used the Contract Understanding Atticus Dataset (CUAD). It is a corpus of 13,000+ labels in 510 commercial legal contracts. They have been manually labeled under the supervision of experienced lawyers to identify 41 types of legal clauses (e.g. licenses, warranty, governing law, insurance, etc…). Workflow: ![alt text](https://github.com/vikramNU/Practicum/raw/main/Screenshot%202022-06-09%20210134.jpg) You can connect me at [email protected]
25khattab/vit_test_1_95
25khattab
2022-06-10T01:40:54Z
55
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-06-10T01:40:38Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: vit_test_1_95 results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9501661062240601 --- # vit_test_1_95 Autogenerated by HuggingPicsπŸ€—πŸ–ΌοΈ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images
huggingtweets/artificialbuttr
huggingtweets
2022-06-10T01:39:43Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-10T01:37:50Z
--- language: en thumbnail: http://www.huggingtweets.com/artificialbuttr/1654825134207/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1485413658351968256/NUVesGCM_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">artificialbutter</div> <div style="text-align: center; font-size: 14px;">@artificialbuttr</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from artificialbutter. | Data | artificialbutter | | --- | --- | | Tweets downloaded | 785 | | Retweets | 129 | | Short tweets | 407 | | Tweets kept | 249 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1ypylns0/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @artificialbuttr's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1phf128l) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1phf128l/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/artificialbuttr') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
HrayrM/distilbert-base-uncased-finetuned-clinc
HrayrM
2022-06-10T01:17:59Z
4
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-10T00:50:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9135483870967742 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.7771 - Accuracy: 0.9135 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.2843 | 1.0 | 318 | 3.2793 | 0.7448 | | 2.6208 | 2.0 | 636 | 1.8750 | 0.8297 | | 1.5453 | 3.0 | 954 | 1.1565 | 0.8919 | | 1.0141 | 4.0 | 1272 | 0.8628 | 0.9090 | | 0.795 | 5.0 | 1590 | 0.7771 | 0.9135 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.0 - Datasets 2.2.2 - Tokenizers 0.10.3
ExusAI/SRWNN
ExusAI
2022-06-10T00:54:14Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-06-10T00:45:58Z
--- license: mit --- Super resolution model for anime and illustrations based on vgg11 and waifu2x. This model was trained on around 10k high resolution images (at least HD) https://github.com/Exusai/SuperResolutionWaifuNN
nestoralvaro/mt5-base-finetuned-xsum-data_prep_2021_12_26___t1_7.csv___topic_text_google_mt5_base
nestoralvaro
2022-06-10T00:52:35Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-09T23:49:44Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: mt5-base-finetuned-xsum-data_prep_2021_12_26___t1_7.csv___topic_text_google_mt5_base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-base-finetuned-xsum-data_prep_2021_12_26___t1_7.csv___topic_text_google_mt5_base This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: nan - Rouge1: 2.8146 - Rouge2: 0.6707 - Rougel: 2.8187 - Rougelsum: 2.8098 - Gen Len: 6.4901 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 0.0 | 1.0 | 3869 | nan | 2.8146 | 0.6707 | 2.8187 | 2.8098 | 6.4901 | ### Framework versions - Transformers 4.19.3 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
kjunelee/distilbert-base-uncased-finetuned-emotion
kjunelee
2022-06-10T00:24:32Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-10T00:03:16Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.931 - name: F1 type: f1 value: 0.9313235272564213 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1595 - Accuracy: 0.931 - F1: 0.9313 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 125 | 0.1873 | 0.924 | 0.9234 | | 0.1992 | 2.0 | 250 | 0.1649 | 0.929 | 0.9293 | | 0.1992 | 3.0 | 375 | 0.1595 | 0.931 | 0.9313 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0 - Datasets 2.2.3.dev0 - Tokenizers 0.12.1
ajtamayoh/NLP-CIC-WFU_Clinical_Cases_NER_Paragraph_Tokenized_mBERT_cased_fine_tuned
ajtamayoh
2022-06-09T23:31:56Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-09T23:02:35Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: NLP-CIC-WFU_Clinical_Cases_NER_Paragraph_Tokenized_mBERT_cased_fine_tuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # NLP-CIC-WFU_Clinical_Cases_NER_Paragraph_Tokenized_mBERT_cased_fine_tuned This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0537 - Precision: 0.8585 - Recall: 0.7101 - F1: 0.7773 - Accuracy: 0.9893 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0693 | 1.0 | 514 | 0.0416 | 0.9485 | 0.6492 | 0.7708 | 0.9884 | | 0.0367 | 2.0 | 1028 | 0.0396 | 0.9391 | 0.6710 | 0.7827 | 0.9892 | | 0.0283 | 3.0 | 1542 | 0.0385 | 0.9388 | 0.6889 | 0.7947 | 0.9899 | | 0.0222 | 4.0 | 2056 | 0.0422 | 0.9456 | 0.6790 | 0.7904 | 0.9898 | | 0.0182 | 5.0 | 2570 | 0.0457 | 0.9349 | 0.6925 | 0.7956 | 0.9901 | | 0.013 | 6.0 | 3084 | 0.0484 | 0.8947 | 0.7062 | 0.7894 | 0.9899 | | 0.0084 | 7.0 | 3598 | 0.0537 | 0.8585 | 0.7101 | 0.7773 | 0.9893 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
pm390/dqn-SpaceInvadersNoFrameskip-v4
pm390
2022-06-09T22:03:09Z
2
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-09T22:02:36Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 374.00 +/- 214.89 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga pm390 -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga pm390 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('max_grad_norm', 6), ('n_timesteps', 100000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
nthakur/contriever-base-msmarco
nthakur
2022-06-09T22:01:51Z
1,072
1
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-06-09T21:50:15Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # nthakur/contriever-base-msmarco This is a port of the [Contriever MSMARCO Model](https://huggingface.co/facebook/contriever-msmarco) to [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('nthakur/contriever-base-msmarco') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('nthakur/contriever-base-msmarco') model = AutoModel.from_pretrained('nthakur/contriever-base-msmarco') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=nthakur/contriever-base-msmarco) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 509, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors Have a look at: [Contriever Model](https://github.com/facebookresearch/contriever). <!--- Describe where people can find more information -->
kabelomalapane/En-Ts
kabelomalapane
2022-06-09T17:33:20Z
69
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "translation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-06-09T16:33:13Z
--- license: apache-2.0 tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: En-Ts results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # En-Ts This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ts](https://huggingface.co/Helsinki-NLP/opus-mt-en-ts) on the None dataset. It achieves the following results on the evaluation set: Before training: - Loss: 3.17 - Bleu: 14.513 After Training - Loss: 1.3320 - Bleu: 36.7687 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 1.7082 | 1.0 | 5929 | 1.6902 | 32.1311 | | 1.4606 | 2.0 | 11858 | 1.4996 | 34.1129 | | 1.3182 | 3.0 | 17787 | 1.4107 | 35.7428 | | 1.2543 | 4.0 | 23716 | 1.3631 | 36.2009 | | 1.2116 | 5.0 | 29645 | 1.3389 | 36.5876 | | 1.1723 | 6.0 | 35574 | 1.3320 | 36.7481 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
tclong/wav2vec2-base-vios-commonvoice
tclong
2022-06-09T17:17:08Z
77
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-08T18:03:39Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-vios-commonvoice results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-vios-commonvoice This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3823 - Wer: 0.2401 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.2268 | 0.66 | 500 | 0.8746 | 0.5939 | | 0.8728 | 1.32 | 1000 | 0.6435 | 0.4554 | | 0.6899 | 1.99 | 1500 | 0.5655 | 0.3995 | | 0.5842 | 2.65 | 2000 | 0.5267 | 0.3694 | | 0.5371 | 3.31 | 2500 | 0.4980 | 0.3431 | | 0.4921 | 3.97 | 3000 | 0.4781 | 0.3276 | | 0.4508 | 4.64 | 3500 | 0.4434 | 0.3134 | | 0.433 | 5.3 | 4000 | 0.4348 | 0.2963 | | 0.404 | 5.96 | 4500 | 0.4248 | 0.2874 | | 0.3834 | 6.62 | 5000 | 0.4163 | 0.2775 | | 0.3784 | 7.28 | 5500 | 0.4104 | 0.2751 | | 0.3669 | 7.95 | 6000 | 0.4143 | 0.2724 | | 0.3462 | 8.61 | 6500 | 0.4131 | 0.2699 | | 0.3364 | 9.27 | 7000 | 0.4070 | 0.2617 | | 0.3249 | 9.93 | 7500 | 0.4076 | 0.2603 | | 0.3154 | 10.6 | 8000 | 0.3998 | 0.2577 | | 0.3117 | 11.26 | 8500 | 0.3930 | 0.2505 | | 0.3101 | 11.92 | 9000 | 0.4003 | 0.2492 | | 0.298 | 12.58 | 9500 | 0.3960 | 0.2496 | | 0.2968 | 13.24 | 10000 | 0.3877 | 0.2469 | | 0.29 | 13.91 | 10500 | 0.3870 | 0.2456 | | 0.2921 | 14.57 | 11000 | 0.3823 | 0.2401 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
ajtamayoh/NLP-CIC-WFU_Clinical_Cases_NER_Sents_Tokenized_bertin_roberta_base_spanish_fine_tuned
ajtamayoh
2022-06-09T17:15:48Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "token-classification", "generated_from_trainer", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-09T16:33:08Z
--- license: cc-by-4.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: NLP-CIC-WFU_Clinical_Cases_NER_Sents_Tokenized_bertin_roberta_base_spanish_fine_tuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # NLP-CIC-WFU_Clinical_Cases_NER_Sents_Tokenized_bertin_roberta_base_spanish_fine_tuned This model is a fine-tuned version of [bertin-project/bertin-roberta-base-spanish](https://huggingface.co/bertin-project/bertin-roberta-base-spanish) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0973 - Precision: 0.9012 - Recall: 0.6942 - F1: 0.7842 - Accuracy: 0.9857 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0605 | 1.0 | 2568 | 0.0625 | 0.9400 | 0.6322 | 0.7560 | 0.9836 | | 0.0475 | 2.0 | 5136 | 0.0622 | 0.9533 | 0.6572 | 0.7781 | 0.9849 | | 0.0374 | 3.0 | 7704 | 0.0552 | 0.9261 | 0.6784 | 0.7831 | 0.9855 | | 0.0246 | 4.0 | 10272 | 0.0693 | 0.9381 | 0.6658 | 0.7788 | 0.9849 | | 0.0126 | 5.0 | 12840 | 0.0974 | 0.8918 | 0.6830 | 0.7735 | 0.9849 | | 0.0061 | 6.0 | 15408 | 0.0886 | 0.8771 | 0.7099 | 0.7847 | 0.9850 | | 0.0031 | 7.0 | 17976 | 0.0973 | 0.9012 | 0.6942 | 0.7842 | 0.9857 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
XGBooster/dqn-SpaceInvadersNoFrameskip-v4
XGBooster
2022-06-09T16:03:42Z
2
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-09T16:03:00Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 744.00 +/- 231.20 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga XGBooster -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga XGBooster ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```