modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-06-22 12:28:33
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
492 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-06-22 12:28:03
card
stringlengths
11
1.01M
sd-dreambooth-library/EpicMixVirtualRealismv6
sd-dreambooth-library
2023-07-15T08:14:40Z
134
4
diffusers
[ "diffusers", "realism", "stable diffusion", "epicmix", "text-to-image", "en", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-04-15T08:40:05Z
--- license: creativeml-openrail-m language: - en library_name: diffusers pipeline_tag: text-to-image tags: - realism - stable diffusion - epicmix --- This is the Realism you've been PROBABLY not waiting for, but is getting anyways. This is the branch of V3 and contains NONE OF V4 and Pastel. And none of V5 The only negative embeds used were contained in Nocrypt's notebook. Beyond that none were used. We're moving this permanatley to SD Dreambooth Library, and absolve any ownership of it. It's no longer on CivitAI, and details on what was created to make this are below: # MIX BUCKET <details> <summary>THE BUCKET OF JOY</summary> Epicv3 + Noise Offset Babes 11 (NO VAE) Cake Mix Epic Portrait + Retro (two trained models i think of ours) Plus Lucious Mix </details>
YojitShinde/Reinforce-PixelCopter-v0
YojitShinde
2023-07-15T08:05:02Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-07-15T08:04:57Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-PixelCopter-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 34.70 +/- 38.34 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
nolanaatama/phtn
nolanaatama
2023-07-15T08:04:27Z
0
1
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-15T07:58:19Z
--- license: creativeml-openrail-m ---
Serjssv/ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan
Serjssv
2023-07-15T07:48:17Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "audio-spectrogram-transformer", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "license:bsd-3-clause", "model-index", "endpoints_compatible", "region:us" ]
audio-classification
2023-07-14T13:11:04Z
--- license: bsd-3-clause tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.91 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.3273 - Accuracy: 0.91 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5056 | 1.0 | 112 | 0.5669 | 0.85 | | 0.2324 | 2.0 | 225 | 0.5131 | 0.85 | | 0.2623 | 3.0 | 337 | 0.6539 | 0.79 | | 0.4419 | 4.0 | 450 | 0.7401 | 0.83 | | 0.0177 | 5.0 | 562 | 0.5134 | 0.85 | | 0.0026 | 6.0 | 675 | 0.3351 | 0.9 | | 0.0046 | 7.0 | 787 | 0.5120 | 0.88 | | 0.0005 | 8.0 | 900 | 0.5165 | 0.91 | | 0.2003 | 9.0 | 1012 | 0.3453 | 0.91 | | 0.0001 | 10.0 | 1125 | 0.3438 | 0.91 | | 0.0003 | 11.0 | 1237 | 0.3324 | 0.92 | | 0.0 | 12.0 | 1350 | 0.3999 | 0.89 | | 0.0 | 13.0 | 1462 | 0.3152 | 0.91 | | 0.0001 | 14.0 | 1575 | 0.3212 | 0.92 | | 0.0 | 15.0 | 1687 | 0.3220 | 0.92 | | 0.0 | 16.0 | 1800 | 0.3343 | 0.9 | | 0.0 | 17.0 | 1912 | 0.3324 | 0.91 | | 0.0 | 18.0 | 2025 | 0.3311 | 0.91 | | 0.0 | 19.0 | 2137 | 0.3292 | 0.91 | | 0.0 | 19.91 | 2240 | 0.3273 | 0.91 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
lilBuffaloEric/autoaudit_20230714_attempt2
lilBuffaloEric
2023-07-15T07:17:32Z
0
0
null
[ "region:us" ]
null
2023-07-15T07:02:08Z
This model is a finetuned version run by the finetune.py in github repository tolen/alpaca-lora with the following parameters, notice that the training dataset can be found in repository:https://github.com/ddzipp/AutoAudit_LLM_Dataset # model/data params base_model: str = "yahma/llama-7b-hf", data_path: str = "", # dataset see repository https://github.com/ddzipp/AutoAudit_LLM_Dataset/tree/v0.0.1 output_dir: str = "./autoaudit_20230703_attempt2", # training hyperparams batch_size: int = 4, micro_batch_size: int = 1, num_epochs: int = 28, learning_rate: float = 3e-4, cutoff_len: int = 512, val_set_size: int = 400, # lora hyperparams lora_r: int = 16, lora_alpha: int = 16, lora_dropout: float = 0.05, lora_target_modules: List[str] = [ "q_proj", "k_proj", "v_proj", "o_proj" ], # llm hyperparams train_on_inputs: bool = True, # if False, masks out inputs in loss add_eos_token: bool = False, group_by_length: bool = False, # faster, but produces an odd training loss curve
lilBuffaloEric/autoaudit_20230703_attempt1
lilBuffaloEric
2023-07-15T07:10:37Z
0
4
null
[ "region:us" ]
null
2023-07-15T06:31:54Z
This model is a finetuned version run by the finetune.py in github repository tolen/alpaca-lora with the following parameters, notice that the training dataset can be found in repository:https://github.com/ddzipp/AutoAudit_LLM_Dataset # model/data params base_model: str = "yahma/llama-7b-hf", data_path: str = "", # dataset see repository https://github.com/ddzipp/AutoAudit_LLM_Dataset/tree/v0.0.1 output_dir: str = "./autoaudit_20230703_attempt1", # training hyperparams batch_size: int = 4, micro_batch_size: int = 1, num_epochs: int = 14, learning_rate: float = 3e-4, cutoff_len: int = 512, val_set_size: int = 400, # lora hyperparams lora_r: int = 16, lora_alpha: int = 16, lora_dropout: float = 0.05, lora_target_modules: List[str] = [ "q_proj", "k_proj", "v_proj", "o_proj" ], # llm hyperparams train_on_inputs: bool = True, # if False, masks out inputs in loss add_eos_token: bool = False, group_by_length: bool = False, # faster, but produces an odd training loss curve
blackmount8/mpt-7b-instruct-ct2-int8_float16
blackmount8
2023-07-15T06:52:02Z
2
0
transformers
[ "transformers", "Composer", "MosaicML", "llm-foundry", "dataset:mosaicml/dolly_hhrlhf", "arxiv:2205.14135", "arxiv:2108.12409", "arxiv:2010.04245", "license:cc-by-sa-3.0", "region:us" ]
null
2023-07-15T05:40:47Z
--- inference: false license: cc-by-sa-3.0 datasets: - mosaicml/dolly_hhrlhf tags: - Composer - MosaicML - llm-foundry --- # blackmount8/mpt-7b-instruct-ct2-int8_float16 Int8_float16 version of [mosaicml/mpt-7b-instruct](https://huggingface.co/mosaicml/mpt-7b-instruct), quantized using CTranslate2. ## MPT-7B-Instruct MPT-7B-Instruct is a model for short-form instruction following. It is built by finetuning [MPT-7B](https://huggingface.co/mosaicml/mpt-7b) on a [dataset](https://huggingface.co/datasets/sam-mosaic/dolly_hhrlhf) derived from the [Databricks Dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k) and the [Anthropic Helpful and Harmless (HH-RLHF)](https://huggingface.co/datasets/Anthropic/hh-rlhf) datasets. * License: _CC-By-SA-3.0_ * [Demo on Hugging Face Spaces](https://huggingface.co/spaces/mosaicml/mpt-7b-instruct) This model was trained by [MosaicML](https://www.mosaicml.com) and follows a modified decoder-only transformer architecture. ## Model Date May 5, 2023 ## Model License CC-By-SA-3.0 ## Documentation * [Blog post: Introducing MPT-7B: A New Standard for Open-Source, Commercially Usable LLMs](https://www.mosaicml.com/blog/mpt-7b) * [Codebase (mosaicml/llm-foundry repo)](https://github.com/mosaicml/llm-foundry/) * Questions: Feel free to contact us via the [MosaicML Community Slack](https://mosaicml.me/slack)! ### Example Question/Instruction **Longboi24**: > What is a quoll? **MPT-7B-Instruct**: >A Quoll (pronounced “cool”) is one of Australia’s native carnivorous marsupial mammals, which are also known as macropods or wallabies in other parts around Asia and South America ## How to Use Note: This model requires that `trust_remote_code=True` be passed to the `from_pretrained` method. This is because we use a custom model architecture that is not yet part of the `transformers` package. It includes options for many training efficiency features such as [FlashAttention (Dao et al. 2022)](https://arxiv.org/pdf/2205.14135.pdf), [ALiBi](https://arxiv.org/abs/2108.12409), QK LayerNorm, and more. ```python import transformers model = transformers.AutoModelForCausalLM.from_pretrained( 'mosaicml/mpt-7b-instruct', trust_remote_code=True ) ``` Note: This model requires that `trust_remote_code=True` be passed to the `from_pretrained` method. This is because we use a custom `MPT` model architecture that is not yet part of the Hugging Face `transformers` package. `MPT` includes options for many training efficiency features such as [FlashAttention](https://arxiv.org/pdf/2205.14135.pdf), [ALiBi](https://arxiv.org/abs/2108.12409), [QK LayerNorm](https://arxiv.org/abs/2010.04245), and more. To use the optimized [triton implementation](https://github.com/openai/triton) of FlashAttention, you can load the model on GPU (`cuda:0`) with `attn_impl='triton'` and with `bfloat16` precision: ```python import torch import transformers name = 'mosaicml/mpt-7b-instruct' config = transformers.AutoConfig.from_pretrained(name, trust_remote_code=True) config.attn_config['attn_impl'] = 'triton' config.init_device = 'cuda:0' # For fast initialization directly on GPU! model = transformers.AutoModelForCausalLM.from_pretrained( name, config=config, torch_dtype=torch.bfloat16, # Load model weights in bfloat16 trust_remote_code=True ) ``` Although the model was trained with a sequence length of 2048, ALiBi enables users to increase the maximum sequence length during finetuning and/or inference. For example: ```python import transformers name = 'mosaicml/mpt-7b-instruct' config = transformers.AutoConfig.from_pretrained(name, trust_remote_code=True) config.max_seq_len = 4096 # (input + output) tokens can now be up to 4096 model = transformers.AutoModelForCausalLM.from_pretrained( name, config=config, trust_remote_code=True ) ``` This model was trained with the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer. ```python from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b") ``` The model can then be used, for example, within a text-generation pipeline. Note: when running Torch modules in lower precision, it is best practice to use the [torch.autocast context manager](https://pytorch.org/docs/stable/amp.html). ```python from transformers import pipeline pipe = pipeline('text-generation', model=model, tokenizer=tokenizer, device='cuda:0') with torch.autocast('cuda', dtype=torch.bfloat16): print( pipe('Here is a recipe for vegan banana bread:\n', max_new_tokens=100, do_sample=True, use_cache=True)) ``` ### Formatting This model was trained on data formatted in the dolly-15k format: ```python INSTRUCTION_KEY = "### Instruction:" RESPONSE_KEY = "### Response:" INTRO_BLURB = "Below is an instruction that describes a task. Write a response that appropriately completes the request." PROMPT_FOR_GENERATION_FORMAT = """{intro} {instruction_key} {instruction} {response_key} """.format( intro=INTRO_BLURB, instruction_key=INSTRUCTION_KEY, instruction="{instruction}", response_key=RESPONSE_KEY, ) example = "James decides to run 3 sprints 3 times a week. He runs 60 meters each sprint. How many total meters does he run a week? Explain before answering." fmt_ex = PROMPT_FOR_GENERATION_FORMAT.format(instruction=example) ``` In the above example, `fmt_ex` is ready to be tokenized and sent through the model. ## Model Description The architecture is a modification of a standard decoder-only transformer. The model has been modified from a standard transformer in the following ways: * It uses [FlashAttention](https://arxiv.org/pdf/2205.14135.pdf) * It uses [ALiBi (Attention with Linear Biases)](https://arxiv.org/abs/2108.12409) and does not use positional embeddings * It does not use biases | Hyperparameter | Value | |----------------|-------| |n_parameters | 6.7B | |n_layers | 32 | | n_heads | 32 | | d_model | 4096 | | vocab size | 50432 | | sequence length | 2048 | ## PreTraining Data For more details on the pretraining process, see [MPT-7B](https://huggingface.co/mosaicml/mpt-7b). The data was tokenized using the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer. ### Training Configuration This model was trained on 8 A100-40GBs for about 2.3 hours using the [MosaicML Platform](https://www.mosaicml.com/platform). The model was trained with sharded data parallelism using [FSDP](https://pytorch.org/docs/stable/fsdp.html) and used the AdamW optimizer. ## Limitations and Biases _The following language is modified from [EleutherAI's GPT-NeoX-20B](https://huggingface.co/EleutherAI/gpt-neox-20b)_ MPT-7B-Instruct can produce factually incorrect output, and should not be relied on to produce factually accurate information. MPT-7B-Instruct was trained on various public datasets. While great efforts have been taken to clean the pretraining data, it is possible that this model could generate lewd, biased or otherwise offensive outputs. ## Acknowledgements This model was finetuned by Sam Havens and the MosaicML NLP team ## MosaicML Platform If you're interested in [training](https://www.mosaicml.com/training) and [deploying](https://www.mosaicml.com/inference) your own MPT or LLMs on the MosaicML Platform, [sign up here](https://forms.mosaicml.com/demo?utm_source=huggingface&utm_medium=referral&utm_campaign=mpt-7b). ## Disclaimer The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. Please cosult an attorney before using this model for commercial purposes. ## Citation Please cite this model using the following format: ``` @online{MosaicML2023Introducing, author = {MosaicML NLP Team}, title = {Introducing MPT-7B: A New Standard for Open-Source, Commercially Usable LLMs}, year = {2023}, url = {www.mosaicml.com/blog/mpt-7b}, note = {Accessed: 2023-03-28}, % change this date urldate = {2023-03-28} % change this date } ```
galaxywavee/personaluse
galaxywavee
2023-07-15T06:50:48Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2023-04-18T03:00:57Z
--- license: bigscience-openrail-m --- majicMIX realistic >>> 推荐关键词 recommended positive prompts: Best quality, masterpiece, ultra high res, (photorealistic:1.4), 1girl 如果想要更暗的图像 if you want darker picture, add: in the dark, deep shadow, low key, etc. 负面关键词 use ng_deepnegative_v1_75t and badhandv4 in negative prompt Sampler: DPM++ 2M Karras (bug-fixed) or DPM++ SDE Karras Steps: 20~40 Hires upscaler: R-ESRGAN 4x+ or 4x-UltraSharp Hires upscale: 2 Hires steps: 15 Denoising strength: 0.2~0.5 CFG scale: 6-8 clip skip 2 Aerial (Animation and img2img) >>> Trigger Words : aerialstyle
zen-E/q-Taxi-v3-v1
zen-E
2023-07-15T06:36:09Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-15T06:35:41Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.50 +/- 2.64 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage model = load_from_hub(repo_id="zen-E/q-Taxi-v3-v1", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"])
NasimB/guten-rarity-all-end-19k-ctx-512
NasimB
2023-07-15T06:32:42Z
143
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-15T05:38:01Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: guten-rarity-all-end-19k-ctx-512 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # guten-rarity-all-end-19k-ctx-512 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.2404 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.5135 | 1.19 | 500 | 5.4526 | | 4.9916 | 2.38 | 1000 | 4.8062 | | 4.3998 | 3.56 | 1500 | 4.4088 | | 3.9739 | 4.75 | 2000 | 4.2180 | | 3.6922 | 5.94 | 2500 | 4.1726 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
Evan-Lin/Bart-RL-many-keywordmax-entailment-attractive-reward1
Evan-Lin
2023-07-15T05:39:14Z
49
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "trl", "reinforcement-learning", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
reinforcement-learning
2023-07-14T17:58:29Z
--- license: apache-2.0 tags: - trl - transformers - reinforcement-learning --- # TRL Model This is a [TRL language model](https://github.com/lvwerra/trl) that has been fine-tuned with reinforcement learning to guide the model outputs according to a value, function, or human feedback. The model can be used for text generation. ## Usage To use this model for inference, first install the TRL library: ```bash python -m pip install trl ``` You can then generate text as follows: ```python from transformers import pipeline generator = pipeline("text-generation", model="Evan-Lin//tmp/tmp71nhx1t_/Evan-Lin/Bart-RL-many-keywordmax-entailment-attractive-beam10") outputs = generator("Hello, my llama is cute") ``` If you want to use the model for training or to obtain the outputs from the value head, load the model as follows: ```python from transformers import AutoTokenizer from trl import AutoModelForCausalLMWithValueHead tokenizer = AutoTokenizer.from_pretrained("Evan-Lin//tmp/tmp71nhx1t_/Evan-Lin/Bart-RL-many-keywordmax-entailment-attractive-beam10") model = AutoModelForCausalLMWithValueHead.from_pretrained("Evan-Lin//tmp/tmp71nhx1t_/Evan-Lin/Bart-RL-many-keywordmax-entailment-attractive-beam10") inputs = tokenizer("Hello, my llama is cute", return_tensors="pt") outputs = model(**inputs, labels=inputs["input_ids"]) ```
sgarg/falcon-7b-qlora-fiqa-finbot-v1
sgarg
2023-07-15T05:30:56Z
4
0
peft
[ "peft", "region:us" ]
null
2023-07-15T04:43:18Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0.dev0
kelvinih/taser-bert-base-uncased
kelvinih
2023-07-15T05:29:51Z
0
0
null
[ "pytorch", "license:mit", "region:us" ]
null
2023-07-15T05:27:05Z
--- license: mit --- # Task-Aware Specialization for Efficient and Robust Dense Retrieval for Open-Domain Question Answering This repository includes the model for [Task-Aware Specialization for Efficient and Robust Dense Retrieval for Open-Domain Question Answering](https://aclanthology.org/2023.acl-short.159/). If you find this useful, please cite the following paper: ``` @inproceedings{cheng-etal-2023-task, title = "Task-Aware Specialization for Efficient and Robust Dense Retrieval for Open-Domain Question Answering", author = "Cheng, Hao and Fang, Hao and Liu, Xiaodong and Gao, Jianfeng", booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)", month = jul, year = "2023", address = "Toronto, Canada", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2023.acl-short.159", pages = "1864--1875", } ```
digiplay/Opiate_v2
digiplay
2023-07-15T05:07:02Z
333
2
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-15T04:16:25Z
--- license: other tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers inference: true --- Model info: https://civitai.com/models/69587?modelVersionId=98101 Original Author's DEMO images : ![](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/5f81c93a-d9eb-4399-8362-95681d8f9d87/OpiateV2.jpeg) ![](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/991410e6-a9b8-4027-8582-10ef89ac22d3/00260-4105401889.jpeg) ![](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/c6227ce2-66cc-4532-b012-78291681b13d/00004-2061204743.jpeg) ![](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/2cb82af3-bac6-44c1-94f8-e3898e7daa74/00021-3738425758.jpeg)
NasimB/guten-rarity-end-cut-19k
NasimB
2023-07-15T04:56:56Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-15T03:03:02Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: guten-rarity-end-cut-19k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # guten-rarity-end-cut-19k This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.3128 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 6.69 | 0.29 | 500 | 5.6412 | | 5.3327 | 0.59 | 1000 | 5.2058 | | 4.9884 | 0.88 | 1500 | 4.9570 | | 4.7105 | 1.18 | 2000 | 4.8008 | | 4.5563 | 1.47 | 2500 | 4.6777 | | 4.4438 | 1.77 | 3000 | 4.5652 | | 4.3057 | 2.06 | 3500 | 4.4916 | | 4.1258 | 2.36 | 4000 | 4.4456 | | 4.1001 | 2.65 | 4500 | 4.3854 | | 4.0586 | 2.94 | 5000 | 4.3319 | | 3.8297 | 3.24 | 5500 | 4.3249 | | 3.8029 | 3.53 | 6000 | 4.2962 | | 3.7812 | 3.83 | 6500 | 4.2655 | | 3.6544 | 4.12 | 7000 | 4.2687 | | 3.5166 | 4.42 | 7500 | 4.2598 | | 3.4969 | 4.71 | 8000 | 4.2438 | | 3.4978 | 5.01 | 8500 | 4.2328 | | 3.3159 | 5.3 | 9000 | 4.2445 | | 3.3203 | 5.59 | 9500 | 4.2434 | | 3.3104 | 5.89 | 10000 | 4.2422 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
goethe0101/GWP_Model
goethe0101
2023-07-15T04:46:28Z
1
0
peft
[ "peft", "pytorch", "gpt_neox", "region:us" ]
null
2023-07-08T01:59:57Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0.dev0
digiplay/Opiate_v1
digiplay
2023-07-15T04:39:12Z
272
2
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-15T04:15:32Z
--- license: other tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers inference: true --- Model info: https://civitai.com/models/69587?modelVersionId=81796 Original Author's DEMO images : ![](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/e0b3a6db-be0e-4e4f-afee-86391ba38ccb/width=832/00147-1689461531.jpeg) ![](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/321b0cfe-d635-4855-8914-27daef1ce63c/width=832/00129-3711611411.jpeg)
ZidanSink/Kayess
ZidanSink
2023-07-15T04:35:29Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-29T07:27:11Z
--- license: creativeml-openrail-m ---
Wiryan/imryan
Wiryan
2023-07-15T04:27:51Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-15T04:22:48Z
--- license: creativeml-openrail-m ---
manmyung/Reinforce-CartPole-v1
manmyung
2023-07-15T04:24:11Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-07-15T04:23:52Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 490.20 +/- 23.02 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
RoundtTble/dinov2_vitl14_onnx
RoundtTble
2023-07-15T04:16:19Z
0
0
null
[ "onnx", "region:us" ]
null
2023-07-02T02:18:01Z
# dinov2_vitl14_onnx ## Run Triton ``` make triton ``` ``` ============================= == Triton Inference Server == ============================= NVIDIA Release 23.04 (build 58408265) Triton Server Version 2.33.0 Copyright (c) 2018-2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. Various files include modifications (c) NVIDIA CORPORATION & AFFILIATES. All rights reserved. This container image and its contents are governed by the NVIDIA Deep Learning Container License. By pulling and using the container, you accept the terms and conditions of this license: https://developer.nvidia.com/ngc/nvidia-deep-learning-container-license NOTE: CUDA Forward Compatibility mode ENABLED. Using CUDA 12.1 driver version 530.30.02 with kernel driver version 525.125.06. See https://docs.nvidia.com/deploy/cuda-compatibility/ for details. I0715 04:13:59.173070 1 pinned_memory_manager.cc:240] Pinned memory pool is created at '0x7f1a70000000' with size 268435456 I0715 04:13:59.173293 1 cuda_memory_manager.cc:105] CUDA memory pool is created on device 0 with size 67108864 I0715 04:13:59.175108 1 model_lifecycle.cc:459] loading: dinov2_vitl14:1 I0715 04:13:59.177471 1 onnxruntime.cc:2504] TRITONBACKEND_Initialize: onnxruntime I0715 04:13:59.177510 1 onnxruntime.cc:2514] Triton TRITONBACKEND API version: 1.12 I0715 04:13:59.177518 1 onnxruntime.cc:2520] 'onnxruntime' TRITONBACKEND API version: 1.12 I0715 04:13:59.177525 1 onnxruntime.cc:2550] backend configuration: {"cmdline":{"auto-complete-config":"true","backend-directory":"/opt/tritonserver/backends","min-compute-capability":"6.000000","default-max-batch-size":"4"}} I0715 04:13:59.233419 1 onnxruntime.cc:2608] TRITONBACKEND_ModelInitialize: dinov2_vitl14 (version 1) I0715 04:13:59.233847 1 onnxruntime.cc:666] skipping model configuration auto-complete for 'dinov2_vitl14': inputs and outputs already specified I0715 04:13:59.234233 1 onnxruntime.cc:2651] TRITONBACKEND_ModelInstanceInitialize: dinov2_vitl14_0 (GPU device 0) 2023-07-15 04:13:59.546824126 [W:onnxruntime:, session_state.cc:1136 VerifyEachNodeIsAssignedToAnEp] Some nodes were not assigned to the preferred execution providers which may or may not have an negative impact on performance. e.g. ORT explicitly assigns shape related ops to CPU to improve perf. 2023-07-15 04:13:59.546847104 [W:onnxruntime:, session_state.cc:1138 VerifyEachNodeIsAssignedToAnEp] Rerunning with verbose output on a non-minimal build will show node assignments. I0715 04:14:00.851748 1 model_lifecycle.cc:694] successfully loaded 'dinov2_vitl14' version 1 I0715 04:14:00.851859 1 server.cc:583] +------------------+------+ | Repository Agent | Path | +------------------+------+ +------------------+------+ I0715 04:14:00.851944 1 server.cc:610] +-------------+-----------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------+ | Backend | Path | Config | +-------------+-----------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------+ | onnxruntime | /opt/tritonserver/backends/onnxruntime/libtriton_onnxruntime.so | {"cmdline":{"auto-complete-config":"true","backend-directory":"/opt/tritonserver/backends","min-compute-capability":"6.000000","default-max-batch-size":"4"}} | +-------------+-----------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------+ I0715 04:14:00.852005 1 server.cc:653] +---------------+---------+--------+ | Model | Version | Status | +---------------+---------+--------+ | dinov2_vitl14 | 1 | READY | +---------------+---------+--------+ I0715 04:14:00.872645 1 metrics.cc:808] Collecting metrics for GPU 0: NVIDIA RTX A4000 I0715 04:14:00.873026 1 metrics.cc:701] Collecting CPU metrics I0715 04:14:00.873315 1 tritonserver.cc:2387] +----------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ | Option | Value | +----------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ | server_id | triton | | server_version | 2.33.0 | | server_extensions | classification sequence model_repository model_repository(unload_dependents) schedule_policy model_configuration system_shared_memory cuda_shared_memory binary_tensor_data parameters statistics trace logging | | model_repository_path[0] | /models | | model_control_mode | MODE_NONE | | strict_model_config | 0 | | rate_limit | OFF | | pinned_memory_pool_byte_size | 268435456 | | cuda_memory_pool_byte_size{0} | 67108864 | | min_supported_compute_capability | 6.0 | | strict_readiness | 1 | | exit_timeout | 30 | | cache_enabled | 0 | +----------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ I0715 04:14:00.875498 1 grpc_server.cc:2450] Started GRPCInferenceService at 0.0.0.0:8001 I0715 04:14:00.875964 1 http_server.cc:3555] Started HTTPService at 0.0.0.0:8000 I0715 04:14:00.917871 1 http_server.cc:185] Started Metrics Service at 0.0.0.0:8002 ``` ## Perf Analyzer ``` docker run --gpus all --rm -it --net host nvcr.io/nvidia/tritonserver:23.04-py3-sdk perf_analyzer -m dinov2_vitl14 --percentile=95 -i grpc -u 0.0.0.0:8001 --concurrency-range 16:16 --shape input:3,560,560 ================================= == Triton Inference Server SDK == ================================= NVIDIA Release 23.04 (build 58408269) Copyright (c) 2018-2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. Various files include modifications (c) NVIDIA CORPORATION & AFFILIATES. All rights reserved. This container image and its contents are governed by the NVIDIA Deep Learning Container License. By pulling and using the container, you accept the terms and conditions of this license: https://developer.nvidia.com/ngc/nvidia-deep-learning-container-license NOTE: CUDA Forward Compatibility mode ENABLED. Using CUDA 12.1 driver version 530.30.02 with kernel driver version 525.125.06. See https://docs.nvidia.com/deploy/cuda-compatibility/ for details. *** Measurement Settings *** Batch size: 1 Service Kind: Triton Using "time_windows" mode for stabilization Measurement window: 5000 msec Latency limit: 0 msec Concurrency limit: 16 concurrent requests Using synchronous calls for inference Stabilizing using p95 latency Request concurrency: 16 Client: Request count: 881 Throughput: 48.927 infer/sec p50 latency: 324015 usec p90 latency: 330275 usec p95 latency: 331952 usec p99 latency: 336638 usec Avg gRPC time: 323066 usec ((un)marshal request/response 953 usec + response wait 322113 usec) Server: Inference count: 881 Execution count: 111 Successful request count: 881 Avg request latency: 313673 usec (overhead 7065 usec + queue 151785 usec + compute input 7582 usec + compute infer 143162 usec + compute output 4077 usec) Inferences/Second vs. Client p95 Batch Latency Concurrency: 16, throughput: 48.927 infer/sec, latency 331952 usec ```
mittalashish/chique7
mittalashish
2023-07-15T04:11:30Z
29
0
diffusers
[ "diffusers", "tensorboard", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-15T04:08:44Z
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: <Chique> --- ### chique7 Dreambooth model trained by mittalashish with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v2-1-512 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! Sample pictures of: <Chique> (use that on your prompt) ![<Chique> 0](https://huggingface.co/mittalashish/chique7/resolve/main/concept_images/%3CChique%3E_%281%29.jpg)![<Chique> 1](https://huggingface.co/mittalashish/chique7/resolve/main/concept_images/%3CChique%3E_%282%29.jpg)![<Chique> 2](https://huggingface.co/mittalashish/chique7/resolve/main/concept_images/%3CChique%3E_%283%29.jpg)![<Chique> 3](https://huggingface.co/mittalashish/chique7/resolve/main/concept_images/%3CChique%3E_%284%29.jpg)![<Chique> 4](https://huggingface.co/mittalashish/chique7/resolve/main/concept_images/%3CChique%3E_%285%29.jpg)![<Chique> 5](https://huggingface.co/mittalashish/chique7/resolve/main/concept_images/%3CChique%3E_%286%29.jpg)![<Chique> 6](https://huggingface.co/mittalashish/chique7/resolve/main/concept_images/%3CChique%3E_%287%29.jpg)
NasimB/gpt2-concat-rarity-guten-bnc-no-cut
NasimB
2023-07-15T04:07:59Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-15T02:14:18Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: gpt2-concat-rarity-guten-bnc-no-cut results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-concat-rarity-guten-bnc-no-cut This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.3317 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 6.7063 | 0.29 | 500 | 5.6381 | | 5.354 | 0.59 | 1000 | 5.2164 | | 5.0098 | 0.88 | 1500 | 4.9588 | | 4.7339 | 1.17 | 2000 | 4.8190 | | 4.5764 | 1.46 | 2500 | 4.6923 | | 4.4686 | 1.76 | 3000 | 4.5840 | | 4.3402 | 2.05 | 3500 | 4.5086 | | 4.152 | 2.34 | 4000 | 4.4605 | | 4.1177 | 2.63 | 4500 | 4.4050 | | 4.0811 | 2.93 | 5000 | 4.3506 | | 3.8727 | 3.22 | 5500 | 4.3480 | | 3.819 | 3.51 | 6000 | 4.3120 | | 3.8077 | 3.8 | 6500 | 4.2812 | | 3.698 | 4.1 | 7000 | 4.2842 | | 3.5395 | 4.39 | 7500 | 4.2768 | | 3.5285 | 4.68 | 8000 | 4.2603 | | 3.5155 | 4.97 | 8500 | 4.2472 | | 3.3564 | 5.27 | 9000 | 4.2620 | | 3.3394 | 5.56 | 9500 | 4.2607 | | 3.3378 | 5.85 | 10000 | 4.2600 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
jerryjalapeno/nart-100k-7b
jerryjalapeno
2023-07-15T03:57:11Z
1,520
20
transformers
[ "transformers", "pytorch", "llama", "text-generation", "license:cc-by-nc-nd-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-14T19:01:46Z
--- license: cc-by-nc-nd-4.0 ---
renatostrianese/q-FrozenLake-v1-4x4-noSlippery
renatostrianese
2023-07-15T03:43:44Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-15T03:43:33Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="renatostrianese/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
crumb/opentinystories-68m-complex
crumb
2023-07-15T03:25:24Z
161
0
transformers
[ "transformers", "pytorch", "safetensors", "gpt_neox", "text-generation", "dataset:crumb/flan-ul2-tinystories-complex", "dataset:crumb/flan-ul2-tinystories", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-08T09:16:03Z
--- datasets: - crumb/flan-ul2-tinystories-complex - crumb/flan-ul2-tinystories --- test loss 2.669290 on crumb/flan-ul2-tinystories-complex, initialized from crumb/opentinystories-30m-base, 2 epochs, linear decreasing lr 1e-4. trained with double the batch size (256)
NasimB/gpt2-concat-switch-rarity-no-cut
NasimB
2023-07-15T02:38:57Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-15T00:47:27Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: gpt2-concat-switch-rarity-no-cut results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-concat-switch-rarity-no-cut This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.3032 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 6.7037 | 0.29 | 500 | 5.6319 | | 5.3373 | 0.58 | 1000 | 5.2001 | | 4.9919 | 0.87 | 1500 | 4.9536 | | 4.7185 | 1.17 | 2000 | 4.8020 | | 4.5556 | 1.46 | 2500 | 4.6811 | | 4.4476 | 1.75 | 3000 | 4.5737 | | 4.3298 | 2.04 | 3500 | 4.4863 | | 4.1272 | 2.33 | 4000 | 4.4421 | | 4.0996 | 2.62 | 4500 | 4.3853 | | 4.0564 | 2.91 | 5000 | 4.3350 | | 3.8676 | 3.21 | 5500 | 4.3248 | | 3.8015 | 3.5 | 6000 | 4.2945 | | 3.7787 | 3.79 | 6500 | 4.2610 | | 3.6894 | 4.08 | 7000 | 4.2563 | | 3.5111 | 4.37 | 7500 | 4.2530 | | 3.5076 | 4.66 | 8000 | 4.2365 | | 3.4984 | 4.95 | 8500 | 4.2243 | | 3.341 | 5.24 | 9000 | 4.2363 | | 3.3189 | 5.54 | 9500 | 4.2358 | | 3.3196 | 5.83 | 10000 | 4.2346 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
RajanGo/RajanGo-Asgn-2
RajanGo
2023-07-15T01:43:52Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-15T01:43:44Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0.dev0
timjwhite/a2c-AntBulletEnv-v0
timjwhite
2023-07-15T01:39:05Z
0
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-15T01:37:29Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 792.36 +/- 37.50 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
chandrasutrisnotjhong/taxi
chandrasutrisnotjhong
2023-07-15T01:06:47Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-15T01:06:45Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: taxi results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="chandrasutrisnotjhong/taxi", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
borkur/gpt2-finetuned-wikitext2
borkur
2023-07-15T00:56:29Z
85
0
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "base_model:openai-community/gpt2", "base_model:finetune:openai-community/gpt2", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-07-14T21:30:03Z
--- license: mit base_model: gpt2 tags: - generated_from_keras_callback model-index: - name: borkur/gpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # borkur/gpt2-finetuned-wikitext2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 6.4948 - Validation Loss: 6.3466 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 7.3152 | 6.7681 | 0 | | 6.4948 | 6.3466 | 1 | ### Framework versions - Transformers 4.31.0.dev0 - TensorFlow 2.13.0 - Datasets 2.13.1 - Tokenizers 0.13.3
giocs2017/dqn-SpaceInvadersNoFrameskip-v4-gio
giocs2017
2023-07-15T00:25:57Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-15T00:25:23Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 595.00 +/- 126.25 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga giocs2017 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga giocs2017 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga giocs2017 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
ALM-AHME/beit-large-patch16-224-finetuned-BreastCancer-Classification-BreakHis-AH-60-20-20
ALM-AHME
2023-07-14T23:55:06Z
5
3
transformers
[ "transformers", "pytorch", "tensorboard", "beit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-07-14T20:43:15Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: beit-large-patch16-224-finetuned-BreastCancer-Classification-BreakHis-AH-60-20-20 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: Splitted-Resized split: train args: Splitted-Resized metrics: - name: Accuracy type: accuracy value: 0.9938708156529938 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # beit-large-patch16-224-finetuned-BreastCancer-Classification-BreakHis-AH-60-20-20 This model is a fine-tuned version of [microsoft/beit-large-patch16-224](https://huggingface.co/microsoft/beit-large-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0275 - Accuracy: 0.9939 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.9 - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.46 | 1.0 | 199 | 0.3950 | 0.8482 | | 0.2048 | 2.0 | 398 | 0.1886 | 0.9189 | | 0.182 | 3.0 | 597 | 0.1382 | 0.9481 | | 0.0826 | 4.0 | 796 | 0.0760 | 0.9694 | | 0.0886 | 5.0 | 995 | 0.0600 | 0.9788 | | 0.0896 | 6.0 | 1194 | 0.0523 | 0.9802 | | 0.0774 | 7.0 | 1393 | 0.0482 | 0.9826 | | 0.0876 | 8.0 | 1592 | 0.0289 | 0.9877 | | 0.1105 | 9.0 | 1791 | 0.0580 | 0.9821 | | 0.0289 | 10.0 | 1990 | 0.0294 | 0.9925 | | 0.0594 | 11.0 | 2189 | 0.0331 | 0.9906 | | 0.0011 | 12.0 | 2388 | 0.0275 | 0.9939 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
silvacarl/distilbert-base-uncased-finetuned-cola
silvacarl
2023-07-14T23:45:58Z
112
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-14T22:37:28Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: cola split: validation args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.527141964318474 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8042 - Matthews Correlation: 0.5271 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5199 | 1.0 | 535 | 0.5170 | 0.4218 | | 0.3502 | 2.0 | 1070 | 0.5057 | 0.4959 | | 0.2419 | 3.0 | 1605 | 0.6179 | 0.5164 | | 0.1818 | 4.0 | 2140 | 0.7569 | 0.5209 | | 0.1328 | 5.0 | 2675 | 0.8042 | 0.5271 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
CheeriosMomentors/LORA
CheeriosMomentors
2023-07-14T23:32:58Z
0
0
null
[ "en", "license:wtfpl", "region:us" ]
null
2023-04-08T06:21:46Z
--- license: wtfpl language: - en --- Okay listen up. This is mostly loras that I made by myself. Some of these may be released on Civitai and some may not. If you found these, good job you now have cool loras. You can post these on Civitai or anywhere idc. You can say these are yours, get money I do not care. But please for god sake, leave my name out of it. I am not responsible for anything you done with these. These were just for fun, that is all. Now enjoy. Lora Count: 2 We currently have Nisho Ishin (Medaka Box) style and ryukishi07 (Umineko Style.) I may make more and post them here.
Yntec/Photosphere
Yntec
2023-07-14T23:22:58Z
1,547
4
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "Noosphere", "Dreamlike", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-14T22:54:19Z
--- license: creativeml-openrail-m library_name: diffusers pipeline_tag: text-to-image tags: - stable-diffusion - stable-diffusion-diffusers - diffusers - text-to-image - Noosphere - Dreamlike --- # Photosphere A mix of Noosphere v3 by skumerz and photorealistic models. Original page: https://civitai.com/models/36538?modelVersionId=107675
MnLgt/slope-bed
MnLgt
2023-07-14T23:19:56Z
0
0
null
[ "license:mit", "region:us" ]
null
2023-07-14T23:19:55Z
--- license: mit --- ### slope-bed on Stable Diffusion This is the `<slope-bed>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<slope-bed> 0](https://huggingface.co/jordandavis/slope-bed/resolve/main/concept_images/46730dc447d0633b0993ed8b9405a1be.jpg) ![<slope-bed> 1](https://huggingface.co/jordandavis/slope-bed/resolve/main/concept_images/c806494a260a9f4b610d8027636a87eb.jpg) ![<slope-bed> 2](https://huggingface.co/jordandavis/slope-bed/resolve/main/concept_images/eaf617c981118315f2e6b4b3249e2ff7.jpg) ![<slope-bed> 3](https://huggingface.co/jordandavis/slope-bed/resolve/main/concept_images/601a2e6c5cb059bda4ddf06da071a02d.jpg) ![<slope-bed> 4](https://huggingface.co/jordandavis/slope-bed/resolve/main/concept_images/a51260e53daad800c0fdf1fa73e90af7.jpg) ![<slope-bed> 5](https://huggingface.co/jordandavis/slope-bed/resolve/main/concept_images/c01466545690d2f9a23f94a668011676.jpg) ![<slope-bed> 6](https://huggingface.co/jordandavis/slope-bed/resolve/main/concept_images/1c71fb516129a304c3045a4243e77f5c.jpg) ![<slope-bed> 7](https://huggingface.co/jordandavis/slope-bed/resolve/main/concept_images/519fbf3ea01362a874440d9ea9032cb4.jpg) ![<slope-bed> 8](https://huggingface.co/jordandavis/slope-bed/resolve/main/concept_images/fe204b537dd9eb9e7a78189b58d8302b.jpg) ![<slope-bed> 9](https://huggingface.co/jordandavis/slope-bed/resolve/main/concept_images/4daf4f25d438ce7f34faa9fd6d95ee56.jpg) ![<slope-bed> 10](https://huggingface.co/jordandavis/slope-bed/resolve/main/concept_images/fce3b789e5bfb602026098a99efa1014.jpg) ![<slope-bed> 11](https://huggingface.co/jordandavis/slope-bed/resolve/main/concept_images/95b5b8d2ab3e9621655594eaae6531d1.jpg) ![<slope-bed> 12](https://huggingface.co/jordandavis/slope-bed/resolve/main/concept_images/0bd46f65046872a31aa55d8c68060c58.jpg)
cgr28/q-Taxi-v3
cgr28
2023-07-14T23:15:40Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-14T23:15:38Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.52 +/- 2.74 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="cgr28/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
0sunfire0/Pixelcopter_train_00
0sunfire0
2023-07-14T23:10:07Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-07-14T23:10:05Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Pixelcopter_train_00 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 7.20 +/- 7.10 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
ashnrk/textual_inversion_annual_crop_te
ashnrk
2023-07-14T23:05:57Z
31
1
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:runwayml/stable-diffusion-v1-5", "base_model:finetune:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-14T22:58:31Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 instance_prompt: a centered satellite photo of <annual-crop> annual crop land. tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - ashnrk/textual_inversion_annual_crop_te This is a dreambooth model derived from runwayml/stable-diffusion-v1-5. The weights were trained on a centered satellite photo of <annual-crop> annual crop land. using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: True.
ddanshin/clip-roberta-finetuned
ddanshin
2023-07-14T22:45:45Z
12
0
transformers
[ "transformers", "pytorch", "vision-text-dual-encoder", "feature-extraction", "generated_from_trainer", "dataset:ydshieh/coco_dataset_script", "endpoints_compatible", "region:us" ]
feature-extraction
2023-07-14T00:04:05Z
--- base_model: ./clip-roberta tags: - generated_from_trainer datasets: - ydshieh/coco_dataset_script model-index: - name: clip-roberta-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clip-roberta-finetuned This model is a fine-tuned version of [./clip-roberta](https://huggingface.co/./clip-roberta) on the ydshieh/coco_dataset_script 2017 dataset. It achieves the following results on the evaluation set: - Loss: 1.5850 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
YanJiangJerry/sentiment-roberta-e3-b16-v2-w0.01
YanJiangJerry
2023-07-14T22:45:22Z
121
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-14T13:20:25Z
--- tags: - generated_from_trainer metrics: - f1 - recall - precision model-index: - name: sentiment-roberta-e3-b16-v2-w0.01 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sentiment-roberta-e3-b16-v2-w0.01 This model is a fine-tuned version of [siebert/sentiment-roberta-large-english](https://huggingface.co/siebert/sentiment-roberta-large-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6014 - F1: 0.7844 - Recall: 0.7844 - Precision: 0.7844 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Recall | Precision | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:---------:| | No log | 1.0 | 187 | 0.6687 | 0.7574 | 0.7574 | 0.7574 | | No log | 2.0 | 374 | 0.5700 | 0.7898 | 0.7898 | 0.7898 | | 0.6052 | 3.0 | 561 | 0.6014 | 0.7844 | 0.7844 | 0.7844 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
underactuated/opt-350m_ft
underactuated
2023-07-14T22:41:50Z
136
0
transformers
[ "transformers", "pytorch", "opt", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-14T22:39:39Z
--- tags: - generated_from_trainer model-index: - name: opt-350m_ft results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opt-350m_ft This model was trained from scratch on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
YanJiangJerry/sentiment-roberta-e2-b16-v2-w0.01
YanJiangJerry
2023-07-14T22:29:12Z
106
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-14T22:22:40Z
--- tags: - generated_from_trainer metrics: - f1 - recall - precision model-index: - name: sentiment-roberta-e2-b16-v2-w0.01 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sentiment-roberta-e2-b16-v2-w0.01 This model is a fine-tuned version of [siebert/sentiment-roberta-large-english](https://huggingface.co/siebert/sentiment-roberta-large-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8630 - F1: 0.7520 - Recall: 0.7520 - Precision: 0.7520 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Recall | Precision | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:---------:| | No log | 1.0 | 375 | 0.8651 | 0.6739 | 0.6739 | 0.6739 | | 0.6564 | 2.0 | 750 | 0.8630 | 0.7520 | 0.7520 | 0.7520 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
marloz03/my_awesome_qa_model
marloz03
2023-07-14T22:26:40Z
61
0
transformers
[ "transformers", "tf", "distilbert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-07-13T21:07:04Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: marloz03/my_awesome_qa_model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # marloz03/my_awesome_qa_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.2264 - Validation Loss: 1.4529 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1000, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.6044 | 1.5880 | 0 | | 1.3853 | 1.4529 | 1 | | 1.2264 | 1.4529 | 2 | ### Framework versions - Transformers 4.29.2 - TensorFlow 2.10.0 - Datasets 2.12.0 - Tokenizers 0.13.2
Recognai/zeroshot_selectra_small
Recognai
2023-07-14T22:23:19Z
129
5
transformers
[ "transformers", "pytorch", "safetensors", "electra", "text-classification", "zero-shot-classification", "nli", "es", "dataset:xnli", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
zero-shot-classification
2022-03-02T23:29:04Z
--- language: es tags: - zero-shot-classification - nli - pytorch datasets: - xnli pipeline_tag: zero-shot-classification license: apache-2.0 widget: - text: "El autor se perfila, a los 50 años de su muerte, como uno de los grandes de su siglo" candidate_labels: "cultura, sociedad, economia, salud, deportes" --- # Zero-shot SELECTRA: A zero-shot classifier based on SELECTRA *Zero-shot SELECTRA* is a [SELECTRA model](https://huggingface.co/Recognai/selectra_small) fine-tuned on the Spanish portion of the [XNLI dataset](https://huggingface.co/datasets/xnli). You can use it with Hugging Face's [Zero-shot pipeline](https://huggingface.co/transformers/master/main_classes/pipelines.html#transformers.ZeroShotClassificationPipeline) to make [zero-shot classifications](https://joeddav.github.io/blog/2020/05/29/ZSL.html). In comparison to our previous zero-shot classifier [based on BETO](https://huggingface.co/Recognai/bert-base-spanish-wwm-cased-xnli), zero-shot SELECTRA is **much more lightweight**. As shown in the *Metrics* section, the *small* version (5 times fewer parameters) performs slightly worse, while the *medium* version (3 times fewer parameters) **outperforms** the BETO based zero-shot classifier. ## Usage ```python from transformers import pipeline classifier = pipeline("zero-shot-classification", model="Recognai/zeroshot_selectra_medium") classifier( "El autor se perfila, a los 50 años de su muerte, como uno de los grandes de su siglo", candidate_labels=["cultura", "sociedad", "economia", "salud", "deportes"], hypothesis_template="Este ejemplo es {}." ) """Output {'sequence': 'El autor se perfila, a los 50 años de su muerte, como uno de los grandes de su siglo', 'labels': ['sociedad', 'cultura', 'salud', 'economia', 'deportes'], 'scores': [0.3711881935596466, 0.25650349259376526, 0.17355826497077942, 0.1641489565372467, 0.03460107371211052]} """ ``` The `hypothesis_template` parameter is important and should be in Spanish. **In the widget on the right, this parameter is set to its default value: "This example is {}.", so different results are expected.** ## Metrics | Model | Params | XNLI (acc) | \*MLSUM (acc) | | --- | --- | --- | --- | | [zs BETO](https://huggingface.co/Recognai/bert-base-spanish-wwm-cased-xnli) | 110M | 0.799 | 0.530 | | [zs SELECTRA medium](https://huggingface.co/Recognai/zeroshot_selectra_medium) | 41M | **0.807** | **0.589** | | zs SELECTRA small | **22M** | 0.795 | 0.446 | \*evaluated with zero-shot learning (ZSL) - **XNLI**: The stated accuracy refers to the test portion of the [XNLI dataset](https://huggingface.co/datasets/xnli), after finetuning the model on the training portion. - **MLSUM**: For this accuracy we take the test set of the [MLSUM dataset](https://huggingface.co/datasets/mlsum) and classify the summaries of 5 selected labels. For details, check out our [evaluation notebook](https://github.com/recognai/selectra/blob/main/zero-shot_classifier/evaluation.ipynb) ## Training Check out our [training notebook](https://github.com/recognai/selectra/blob/main/zero-shot_classifier/training.ipynb) for all the details. ## Authors - David Fidalgo ([GitHub](https://github.com/dcfidalgo)) - Daniel Vila ([GitHub](https://github.com/dvsrepo)) - Francisco Aranda ([GitHub](https://github.com/frascuchon)) - Javier Lopez ([GitHub](https://github.com/javispp))
cuervjos/alpacaIOD-7b-plus
cuervjos
2023-07-14T22:22:53Z
1
0
peft
[ "peft", "region:us" ]
null
2023-07-13T08:58:46Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0
Recognai/zeroshot_selectra_medium
Recognai
2023-07-14T22:21:07Z
795
10
transformers
[ "transformers", "pytorch", "safetensors", "electra", "text-classification", "zero-shot-classification", "nli", "es", "dataset:xnli", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
zero-shot-classification
2022-03-02T23:29:04Z
--- language: es tags: - zero-shot-classification - nli - pytorch datasets: - xnli pipeline_tag: zero-shot-classification license: apache-2.0 widget: - text: "El autor se perfila, a los 50 años de su muerte, como uno de los grandes de su siglo" candidate_labels: "cultura, sociedad, economia, salud, deportes" --- # Zero-shot SELECTRA: A zero-shot classifier based on SELECTRA *Zero-shot SELECTRA* is a [SELECTRA model](https://huggingface.co/Recognai/selectra_small) fine-tuned on the Spanish portion of the [XNLI dataset](https://huggingface.co/datasets/xnli). You can use it with Hugging Face's [Zero-shot pipeline](https://huggingface.co/transformers/master/main_classes/pipelines.html#transformers.ZeroShotClassificationPipeline) to make [zero-shot classifications](https://joeddav.github.io/blog/2020/05/29/ZSL.html). In comparison to our previous zero-shot classifier [based on BETO](https://huggingface.co/Recognai/bert-base-spanish-wwm-cased-xnli), zero-shot SELECTRA is **much more lightweight**. As shown in the *Metrics* section, the *small* version (5 times fewer parameters) performs slightly worse, while the *medium* version (3 times fewer parameters) **outperforms** the BETO based zero-shot classifier. ## Usage ```python from transformers import pipeline classifier = pipeline("zero-shot-classification", model="Recognai/zeroshot_selectra_medium") classifier( "El autor se perfila, a los 50 años de su muerte, como uno de los grandes de su siglo", candidate_labels=["cultura", "sociedad", "economia", "salud", "deportes"], hypothesis_template="Este ejemplo es {}." ) """Output {'sequence': 'El autor se perfila, a los 50 años de su muerte, como uno de los grandes de su siglo', 'labels': ['sociedad', 'cultura', 'economia', 'salud', 'deportes'], 'scores': [0.6450043320655823, 0.16710571944713593, 0.08507631719112396, 0.0759836807847023, 0.026829993352293968]} """ ``` The `hypothesis_template` parameter is important and should be in Spanish. **In the widget on the right, this parameter is set to its default value: "This example is {}.", so different results are expected.** ## Demo and tutorial If you want to see this model in action, we have created a basic tutorial using [Rubrix](https://www.rubrix.ml/), a free and open-source tool to *explore, annotate, and monitor data for NLP*. The tutorial shows you how to evaluate this classifier for news categorization in Spanish, and how it could be used to build a training set for training a supervised classifier (which might be useful if you want obtain more precise results or improve the model over time). You can [find the tutorial here](https://rubrix.readthedocs.io/en/master/tutorials/zeroshot_data_annotation.html). See the video below showing the predictions within the annotation process (see that the predictions are almost correct for every example). <video width="100%" controls><source src="https://github.com/recognai/rubrix-materials/raw/main/tutorials/videos/zeroshot_selectra_news_data_annotation.mp4" type="video/mp4"></video> ## Metrics | Model | Params | XNLI (acc) | \*MLSUM (acc) | | --- | --- | --- | --- | | [zs BETO](https://huggingface.co/Recognai/bert-base-spanish-wwm-cased-xnli) | 110M | 0.799 | 0.530 | | zs SELECTRA medium | 41M | **0.807** | **0.589** | | [zs SELECTRA small](https://huggingface.co/Recognai/zeroshot_selectra_small) | **22M** | 0.795 | 0.446 | \*evaluated with zero-shot learning (ZSL) - **XNLI**: The stated accuracy refers to the test portion of the [XNLI dataset](https://huggingface.co/datasets/xnli), after finetuning the model on the training portion. - **MLSUM**: For this accuracy we take the test set of the [MLSUM dataset](https://huggingface.co/datasets/mlsum) and classify the summaries of 5 selected labels. For details, check out our [evaluation notebook](https://github.com/recognai/selectra/blob/main/zero-shot_classifier/evaluation.ipynb) ## Training Check out our [training notebook](https://github.com/recognai/selectra/blob/main/zero-shot_classifier/training.ipynb) for all the details. ## Authors - David Fidalgo ([GitHub](https://github.com/dcfidalgo)) - Daniel Vila ([GitHub](https://github.com/dvsrepo)) - Francisco Aranda ([GitHub](https://github.com/frascuchon)) - Javier Lopez ([GitHub](https://github.com/javispp))
ammag/bert-finetuned-squad
ammag
2023-07-14T22:17:38Z
127
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-07-07T20:37:01Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
Jowie/ppo-LunarLander
Jowie
2023-07-14T22:08:23Z
4
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-14T22:07:58Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 227.31 +/- 46.54 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
ashnrk/textual_inversion_annual_crop
ashnrk
2023-07-14T22:07:25Z
5
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:runwayml/stable-diffusion-v1-5", "base_model:finetune:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-10T21:25:08Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 instance_prompt: a centered satellite photo of <annual-crop> annual crop land. tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - ashnrk/textual_inversion_annual_crop This is a dreambooth model derived from runwayml/stable-diffusion-v1-5. The weights were trained on a centered satellite photo of <annual-crop> annual crop land. using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
brucew5978/my_awesome_asr_mind_model
brucew5978
2023-07-14T22:02:12Z
77
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-07-12T18:24:27Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: my_awesome_asr_mind_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_asr_mind_model This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 57.1369 - Wer: 1.1053 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 48.7151 | 200.0 | 1000 | 57.1369 | 1.1053 | | 47.4068 | 400.0 | 2000 | 57.1369 | 1.1053 | ### Framework versions - Transformers 4.30.2 - Pytorch 1.12.1 - Datasets 2.13.1 - Tokenizers 0.13.3
AACEE/pokemon-lora
AACEE
2023-07-14T21:57:11Z
2
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-07-14T20:24:26Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - AACEE/pokemon-lora These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the lambdalabs/pokemon-blip-captions dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
surprisal-optimizer/dqn-SpaceInvadersNoFrameskip-v4
surprisal-optimizer
2023-07-14T21:55:15Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-14T21:54:41Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 364.00 +/- 173.79 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga surprisal-optimizer -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga surprisal-optimizer -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga surprisal-optimizer ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1200), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
wolffenbuetell/PFKODRCHORMA
wolffenbuetell
2023-07-14T21:53:52Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-14T21:48:13Z
--- license: creativeml-openrail-m ---
0sunfire0/Cartpole-v1_train_01
0sunfire0
2023-07-14T21:31:24Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-07-14T21:31:15Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Cartpole-v1_train_01 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 497.20 +/- 8.40 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
NasimB/gpt2-concat-qed-rarity-no-cut
NasimB
2023-07-14T21:16:05Z
140
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-14T19:12:29Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: gpt2-concat-qed-rarity-no-cut results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-concat-qed-rarity-no-cut This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.3275 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 6.7002 | 0.29 | 500 | 5.6309 | | 5.3451 | 0.58 | 1000 | 5.2082 | | 5.0021 | 0.88 | 1500 | 4.9592 | | 4.7266 | 1.17 | 2000 | 4.8110 | | 4.5737 | 1.46 | 2500 | 4.6859 | | 4.4727 | 1.75 | 3000 | 4.5796 | | 4.3511 | 2.04 | 3500 | 4.5066 | | 4.1544 | 2.34 | 4000 | 4.4568 | | 4.1252 | 2.63 | 4500 | 4.3988 | | 4.083 | 2.92 | 5000 | 4.3471 | | 3.8825 | 3.21 | 5500 | 4.3454 | | 3.8226 | 3.5 | 6000 | 4.3139 | | 3.8118 | 3.8 | 6500 | 4.2766 | | 3.7159 | 4.09 | 7000 | 4.2763 | | 3.5383 | 4.38 | 7500 | 4.2702 | | 3.5395 | 4.67 | 8000 | 4.2556 | | 3.5257 | 4.96 | 8500 | 4.2454 | | 3.3727 | 5.26 | 9000 | 4.2570 | | 3.3469 | 5.55 | 9500 | 4.2567 | | 3.3465 | 5.84 | 10000 | 4.2550 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
dylanalloy/bert-finetuned-ner
dylanalloy
2023-07-14T21:09:48Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-07-14T19:41:41Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.9337180544105523 - name: Recall type: recall value: 0.9530461124200605 - name: F1 type: f1 value: 0.9432830848671608 - name: Accuracy type: accuracy value: 0.9872843939483135 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0575 - Precision: 0.9337 - Recall: 0.9530 - F1: 0.9433 - Accuracy: 0.9873 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0868 | 1.0 | 1756 | 0.0651 | 0.9158 | 0.9371 | 0.9263 | 0.9828 | | 0.0351 | 2.0 | 3512 | 0.0635 | 0.9286 | 0.9493 | 0.9388 | 0.9864 | | 0.0182 | 3.0 | 5268 | 0.0575 | 0.9337 | 0.9530 | 0.9433 | 0.9873 | ### Framework versions - Transformers 4.30.0.dev0 - Pytorch 2.0.0+cu117 - Datasets 2.11.0 - Tokenizers 0.13.3
Vladislav-HuggingFace/dqn-SpaceInvadersNoFrameskip-v4
Vladislav-HuggingFace
2023-07-14T20:52:43Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-14T20:52:04Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 654.50 +/- 195.29 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Vladislav-HuggingFace -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Vladislav-HuggingFace -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Vladislav-HuggingFace ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
YanJiangJerry/covid-augment-tweet-bert-large-e8-noweight
YanJiangJerry
2023-07-14T20:48:41Z
9
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-14T20:18:03Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: covid-augment-tweet-bert-large-e8-noweight results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # covid-augment-tweet-bert-large-e8-noweight This model is a fine-tuned version of [digitalepidemiologylab/covid-twitter-bert-v2](https://huggingface.co/digitalepidemiologylab/covid-twitter-bert-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2396 - Accuracy: 0.9714 - F1: 0.9249 - Precision: 0.9095 - Recall: 0.9409 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 1.0 | 408 | 0.1663 | 0.9419 | 0.8609 | 0.78 | 0.9606 | | 0.2202 | 2.0 | 816 | 0.1532 | 0.9594 | 0.8957 | 0.8630 | 0.9310 | | 0.0794 | 3.0 | 1224 | 0.1745 | 0.9687 | 0.9167 | 0.9122 | 0.9212 | | 0.0318 | 4.0 | 1632 | 0.1815 | 0.9696 | 0.9197 | 0.9087 | 0.9310 | | 0.0098 | 5.0 | 2040 | 0.2013 | 0.9705 | 0.9227 | 0.9052 | 0.9409 | | 0.0098 | 6.0 | 2448 | 0.2173 | 0.9733 | 0.9294 | 0.9183 | 0.9409 | | 0.0031 | 7.0 | 2856 | 0.2324 | 0.9696 | 0.9189 | 0.9167 | 0.9212 | | 0.0024 | 8.0 | 3264 | 0.2396 | 0.9714 | 0.9249 | 0.9095 | 0.9409 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
RiversHaveWings/minihf_evaluator_openllama_7b
RiversHaveWings
2023-07-14T20:35:57Z
7
0
peft
[ "peft", "safetensors", "license:apache-2.0", "region:us" ]
null
2023-07-14T19:42:13Z
--- library_name: peft license: apache-2.0 --- # minihf_evaluator_openllama_7b `minihf_evaluator_openllama_7b` is a LoRA instruct fine-tune of [OpenLLaMA 7B](https://huggingface.co/openlm-research/open_llama_7b). The sequence `<|end|>` was used to separate the prompt and response. The correct way to prompt the model is: `Does 2 + 2 = 4?<|end|>`. The tokenizer will prepend a BOS token (`<s>`) by default. The response will end with an EOS token (`</s>`). ## Training procedure `minihf_evaluator_openllama_7b` was fine-tuned for 100,000 examples on 90% [Muennighoff/flan](https://huggingface.co/datasets/Muennighoff/flan) / 10% [databricks/databricks-dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k) using batch size 4 per GPU on 8 40GB A100 GPUs. Examples where the prompt and response would not fit into 2,048 tokens were dropped. The fine-tuning was done using the following command: ```bash accelerate launch make_evaluator.py --output-dir minihf_evaluator_openllama_7b ``` The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0.dev0
hseokool/vicuna-13b-v1.3-230623-10
hseokool
2023-07-14T20:35:33Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-14T20:35:31Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
n3bbb/distilbert-base-uncased-finetuned-cola
n3bbb
2023-07-14T20:34:39Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-14T19:20:07Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: cola split: validation args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5514555448601601 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8001 - Matthews Correlation: 0.5515 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5242 | 1.0 | 535 | 0.5338 | 0.4221 | | 0.3484 | 2.0 | 1070 | 0.4976 | 0.4779 | | 0.2417 | 3.0 | 1605 | 0.5211 | 0.5452 | | 0.1765 | 4.0 | 2140 | 0.7580 | 0.5282 | | 0.1269 | 5.0 | 2675 | 0.8001 | 0.5515 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
fontanap/q-FrozenLake-v1-4x4-noSlippery
fontanap
2023-07-14T20:27:22Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-14T20:27:20Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="fontanap/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
NICFRU/bart-base-paraphrasing-science
NICFRU
2023-07-14T20:22:09Z
118
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "generated_from_trainer", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-07-14T19:29:07Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-base-paraphrasing results: [] language: - en --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-base-paraphrasing This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.309600 - Rouge1: 37.346600 - Rouge2: 31.232000 - Rougel: 35.649300 - Rougelsum: 36.620700 - Gen Len: 20.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 27 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.272100| 15| 1| 0.728453| 35.610300| 28.460200| 33.443200| 34.660100| 19.957500 | | 0.828400| 30| 1| 0.672391| 35.944600| 29.183200| 33.994800| 35.159600| 19.961500 | | 0.750400| 45| 1| 0.621431| 36.373600| 29.659600| 34.441700| 35.605300| 19.977000 | | 0.728900| 60| 1| 0.597063| 36.034900| 29.380400| 34.177700| 35.257100| 19.970500 | | 0.699800| 75| 1| 0.585529| 35.308700| 28.488400| 33.353300| 34.456300| 19.971500 | | 0.698900| 90| 1| 0.560137| 35.956300| 29.453500| 34.155300| 35.154300| 19.970500 | | 0.669100| 105| 1| 0.555273| 36.017400| 29.399500| 34.099400| 35.162900| 19.972500 | | 0.637600| 120| 1| 0.551375| 36.357600| 29.783200| 34.549300| 35.561400| 19.976000 | | 0.653500| 135| 1| 0.530873| 36.578900| 30.080800| 34.764800| 35.789300| 19.970000 | | 0.597800| 150| 1| 0.528142| 36.219800| 29.791800| 34.459700| 35.407700| 19.974000 | | 0.626600| 165| 1| 0.510571| 36.251200| 29.698900| 34.422100| 35.432400| 19.972500 | | 0.585100| 180| 1| 0.504067| 36.191500| 29.743700| 34.408400| 35.401300| 19.969000 | | 0.576700| 195| 1| 0.495318| 36.648900| 30.248700| 34.869300| 35.885300| 19.974000 | | 0.549200| 210| 1| 0.494409| 36.392600| 30.035800| 34.577200| 35.623000| 19.972000 | | 0.570000| 225| 1| 0.479456| 36.339100| 29.928200| 34.589300| 35.569900| 19.965500 | | 0.550600| 240| 1| 0.473431| 36.646300| 30.312000| 34.851800| 35.861300| 19.964500 | | 0.566200| 255| 1| 0.471991| 36.514700| 30.070500| 34.630700| 35.685000| 19.968500 | | 0.539100| 270| 1| 0.459127| 36.328600| 29.984900| 34.568200| 35.487200| 19.968500 | | 0.527300| 285| 1| 0.449097| 36.541300| 30.132600| 34.705300| 35.714000| 19.968500 | | 0.521300| 300| 2| 0.448960| 35.926800| 29.508400| 34.115800| 35.147400| 19.973000 | | 0.471900| 315| 2| 0.443209| 36.748400| 30.365400| 34.966500| 35.956900| 19.968500 | | 0.499300| 330| 2| 0.439178| 36.783700| 30.461400| 35.037900| 36.023900| 19.968500 | | 0.473100| 345| 2| 0.422886| 36.773600| 30.514500| 35.021000| 35.998200| 19.973500 | | 0.459500| 360| 2| 0.422479| 37.235700| 30.945100| 35.394200| 36.474400| 19.970000 | | 0.454900| 375| 2| 0.421957| 36.685800| 30.390300| 34.903800| 35.925700| 19.968500 | | 0.456400| 390| 2| 0.427490| 36.233400| 29.811500| 34.441800| 35.424200| 19.971000 | | 0.446300| 405| 2| 0.420770| 36.860900| 30.457600| 35.035000| 36.068700| 19.968500 | | 0.462600| 420| 2| 0.421138| 36.468000| 29.979500| 34.586800| 35.633500| 19.971000 | | 0.432000| 435| 2| 0.411133| 37.028300| 30.761300| 35.271100| 36.271500| 19.971500 | | 0.470200| 450| 2| 0.411541| 36.740200| 30.499000| 34.988000| 35.977300| 19.968000 | | 0.447200| 465| 2| 0.402041| 37.204600| 30.997600| 35.446300| 36.492300| 19.960500 | | 0.461100| 480| 2| 0.409818| 36.912900| 30.706900| 35.156600| 36.150000| 19.966500 | | 0.448500| 495| 2| 0.412397| 36.813800| 30.550000| 35.086000| 36.037500| 19.965000 | | 0.440700| 510| 2| 0.409341| 36.976300| 30.703900| 35.230000| 36.203300| 19.968000 | | 0.463100| 525| 2| 0.409853| 37.053500| 30.862000| 35.364300| 36.332600| 19.971000 | | 0.460100| 540| 2| 0.405348| 36.580600| 30.349600| 34.859000| 35.823700| 19.966000 | | 0.449700| 555| 2| 0.404055| 36.880000| 30.500300| 34.966900| 36.023600| 19.973500 | | 0.445900| 570| 2| 0.401167| 37.105100| 30.894400| 35.349100| 36.337700| 19.969500 | | 0.473600| 585| 2| 0.401274| 36.506000| 30.272000| 34.790700| 35.759000| 19.971000 | | 0.435400| 600| 3| 0.404944| 37.093100| 30.850100| 35.391800| 36.369500| 19.971500 | | 0.414500| 615| 3| 0.400146| 36.936300| 30.789200| 35.195400| 36.203700| 19.966500 | | 0.395000| 630| 3| 0.400189| 37.110100| 30.915400| 35.420800| 36.338100| 19.966500 | | 0.405000| 645| 3| 0.401724| 36.860300| 30.623400| 35.093600| 36.080900| 19.969500 | | 0.403400| 660| 3| 0.405606| 36.777100| 30.546200| 35.065500| 36.000200| 19.969500 | | 0.398700| 675| 3| 0.403438| 36.531700| 30.283400| 34.829400| 35.730400| 19.969500 | | 0.398900| 690| 3| 0.396970| 36.871100| 30.672100| 35.157400| 36.047400| 19.970000 | | 0.378900| 705| 3| 0.413375| 37.082500| 30.848200| 35.339000| 36.312200| 19.966000 | | 0.391600| 720| 3| 0.395604| 37.091600| 30.925600| 35.404200| 36.360200| 19.969500 | | 0.374400| 735| 3| 0.398041| 37.287600| 31.112700| 35.548900| 36.543700| 19.969000 | | 0.390600| 750| 3| 0.399400| 37.050800| 30.844900| 35.278000| 36.281900| 19.969500 | | 0.398800| 765| 3| 0.391213| 37.260900| 31.090300| 35.493200| 36.499800| 19.961500 | | 0.391300| 780| 3| 0.392255| 37.062100| 30.859300| 35.327400| 36.311500| 19.968000 | | 0.414400| 795| 3| 0.390236| 37.043600| 30.738100| 35.249800| 36.285500| 19.968000 | | 0.369700| 810| 3| 0.390666| 36.889500| 30.710500| 35.129200| 36.129500| 19.968000 | | 0.372800| 825| 3| 0.389744| 37.012200| 30.853800| 35.225400| 36.279300| 19.966000 | | 0.380400| 840| 3| 0.389610| 36.834300| 30.671600| 35.048900| 36.063700| 19.966000 | | 0.369000| 855| 3| 0.385031| 37.137800| 31.043000| 35.421100| 36.393500| 19.964500 | | 0.386700| 870| 3| 0.394869| 36.993300| 30.773100| 35.204100| 36.215400| 19.966000 | | 0.389100| 885| 3| 0.387872| 36.994300| 30.764100| 35.276000| 36.250300| 19.969500 | | 0.381400| 900| 4| 0.384406| 37.118600| 30.899300| 35.351600| 36.380200| 19.969500 | | 0.372500| 915| 4| 0.386666| 37.036800| 31.053500| 35.317800| 36.293100| 19.966000 | | 0.351100| 930| 4| 0.390876| 36.950600| 30.806400| 35.247800| 36.190500| 19.963000 | | 0.349200| 945| 4| 0.391693| 37.173400| 31.020000| 35.406700| 36.414900| 19.966000 | | 0.350500| 960| 4| 0.383120| 37.257700| 31.094200| 35.502400| 36.498700| 19.966000 | | 0.390000| 975| 4| 0.384534| 37.103900| 30.999200| 35.392100| 36.383800| 19.966000 | | 0.343500| 990| 4| 0.384099| 37.074300| 30.941700| 35.361400| 36.334900| 19.969500 | | 0.347800| 1005| 4| 0.387656| 37.011900| 30.834300| 35.252600| 36.246700| 19.968 | | 0.359200| 1020| 4| 0.385008| 37.240300| 31.078300| 35.499300| 36.470500| 19.968 | | 0.344100| 1035| 4| 0.384319| 37.118000| 31.010800| 35.419600| 36.401000| 19.966 | | 0.344200| 1050| 4| 0.390927| 36.891900| 30.697800| 35.141600| 36.116600| 19.969 | | 0.353900| 1065| 4| 0.384563| 36.790300| 30.613100| 35.060500| 36.012600| 19.969 | | 0.354300| 1080| 4| 0.380220| 37.132800| 31.021100| 35.420000| 36.377800| 19.964 | | 0.348800| 1095| 4| 0.381104| 37.158700| 31.000300| 35.437500| 36.430800| 19.961 | | 0.349900| 1110| 4| 0.385718| 37.154600| 30.992800| 35.406500| 36.413500| 19.966 | | 0.349200| 1125| 4| 0.382857| 37.023900| 30.929500| 35.318300| 36.293200| 19.970 | | 0.351800| 1140| 4| 0.380331| 37.171800| 31.037000| 35.480200| 36.478400| 19.965 | | 0.348700| 1155| 4| 0.384382| 37.249000| 31.114500| 35.577100| 36.544200| 19.970 | | 0.325800| 1170| 4| 0.382947| 37.177400| 31.042000| 35.460600| 36.450300| 19.968 | | 0.351700| 1185| 4| 0.379098| 37.160700| 30.966800| 35.463100| 36.449000| 19.969 | | 0.329400| 1200| 5| 0.379832| 37.211700| 31.117400| 35.520400| 36.500100| 19.965 | | 0.309000| 1215| 5| 0.383461| 37.303500| 31.183800| 35.599000| 36.614000| 19.970 | | 0.321000| 1230| 5| 0.380275| 37.177500| 31.081100| 35.462400| 36.473800| 19.963 | | 0.309200| 1245| 5| 0.381899| 37.235800| 31.197100| 35.568800| 36.528000| 19.966 | | 0.326700| 1260| 5| 0.381356| 37.410200| 31.257300| 35.671300| 36.697000| 19.969 | | 0.324700| 1275| 5| 0.378781| 37.407900| 31.322100| 35.681000| 36.683100| 19.965 | | 0.303200| 1290| 5| 0.381087| 37.355700| 31.308400| 35.665500| 36.628000| 19.965 | | 0.335000| 1305| 5| 0.380627| 37.274800| 31.243800| 35.603400| 36.559800| 19.966 | | 0.349300| 1320| 5| 0.376487| 37.299100| 31.221000| 35.611200| 36.573400| 19.963 | | 0.302400| 1335| 5| 0.380785| 37.333500| 31.293000| 35.679900| 36.650200| 19.966 | | 0.309400| 1350| 5| 0.381105| 37.280400| 31.195800| 35.611700| 36.565100| 19.969 | | 0.322900| 1365| 5| 0.379658| 37.368200| 31.276900| 35.680000| 36.654900| 19.969 | | 0.334700| 1380| 5| 0.381676| 37.362700| 31.288900| 35.680600| 36.643600| 19.968 | | 0.323700| 1395| 5| 0.379920| 37.312300| 31.204800| 35.614800| 36.583400| 19.968 | | 0.334700| 1410| 5| 0.379366| 37.310300| 31.205600| 35.636400| 36.595200| 19.969 | | 0.327300| 1425| 5| 0.378289| 37.275400| 31.172700| 35.575500| 36.549500| 19.969 | | 0.326400| 1440| 5| 0.378255| 37.270000| 31.164000| 35.582100| 36.543800| 19.969 | | 0.326600| 1455| 5| 0.377739| 37.300000| 31.205400| 35.621500| 36.586100| 19.969 | | 0.335700| 1470| 5| 0.377524| 37.287400| 31.189800| 35.608700| 36.578000| 19.970 | | 0.309600| 1485| 5| 0.377617| 37.346600| 31.232000| 35.649300| 36.620700| 19.969 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
davej23/distilhubert-finetuned-gtzan
davej23
2023-07-14T20:20:33Z
159
0
transformers
[ "transformers", "pytorch", "tensorboard", "hubert", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2023-07-14T18:19:55Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.4577 - Accuracy: 0.86 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.8254 | 1.0 | 113 | 1.8353 | 0.48 | | 1.2492 | 2.0 | 226 | 1.4297 | 0.57 | | 1.0203 | 3.0 | 339 | 0.9814 | 0.69 | | 0.633 | 4.0 | 452 | 0.7345 | 0.83 | | 0.5642 | 5.0 | 565 | 0.6213 | 0.8 | | 0.3219 | 6.0 | 678 | 0.5763 | 0.84 | | 0.1772 | 7.0 | 791 | 0.4850 | 0.86 | | 0.2427 | 8.0 | 904 | 0.4841 | 0.86 | | 0.1397 | 9.0 | 1017 | 0.4760 | 0.86 | | 0.4494 | 10.0 | 1130 | 0.4577 | 0.86 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
ontel/niovilorrra
ontel
2023-07-14T19:54:38Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-14T19:53:27Z
--- license: creativeml-openrail-m ---
Rui31415/q-FrozenLake-v1-4x4-noSlippery
Rui31415
2023-07-14T19:50:52Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-14T19:50:49Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Rui31415/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
chaojiang06/arxiv-sentence-alignment
chaojiang06
2023-07-14T19:42:21Z
108
0
transformers
[ "transformers", "pytorch", "arxiv:2210.15067", "endpoints_compatible", "region:us" ]
null
2023-02-19T21:55:34Z
# Checkpoints for [arXivEdits paper](https://arxiv.org/pdf/2210.15067.pdf). Please see more details at the [github repo](https://github.com/chaojiang06/arXivEdits/tree/main).
chaojiang06/arXivEdits-intention-classifier-T5-large-fine-grained
chaojiang06
2023-07-14T19:41:54Z
111
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "arxiv:2210.15067", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-07-14T18:59:20Z
--- tags: - generated_from_trainer model-index: - name: arXivEdits-intention-classifier-T5-large-fine-grained results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Checkpoints for [arXivEdits paper](https://arxiv.org/pdf/2210.15067.pdf). Please see more details at the [github repo](https://github.com/chaojiang06/arXivEdits/tree/main). # arXivEdits-intention-classifier-T5-large-fine-grained This model is a fine-tuned version of [tmp/tst-translation355](https://huggingface.co/tmp/tst-translation355) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 1.17.0 - Tokenizers 0.11.6
YanJiangJerry/SA-berttweet-large-e6-w2-1-b16-w0.01
YanJiangJerry
2023-07-14T19:35:33Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-14T18:56:29Z
--- tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: SA-berttweet-large-e6-w2-1-b16-w0.01 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SA-berttweet-large-e6-w2-1-b16-w0.01 This model is a fine-tuned version of [vinai/bertweet-large](https://huggingface.co/vinai/bertweet-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4510 - Accuracy: 0.935 - F1: 0.9423 - Precision: 0.9432 - Recall: 0.9415 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 1.0 | 285 | 0.2599 | 0.871 | 0.8714 | 0.9954 | 0.7748 | | 0.3039 | 2.0 | 570 | 0.2502 | 0.929 | 0.9371 | 0.9363 | 0.9379 | | 0.3039 | 3.0 | 855 | 0.4228 | 0.923 | 0.9331 | 0.9148 | 0.9521 | | 0.1246 | 4.0 | 1140 | 0.4102 | 0.934 | 0.9414 | 0.9431 | 0.9397 | | 0.1246 | 5.0 | 1425 | 0.4532 | 0.933 | 0.9407 | 0.9398 | 0.9415 | | 0.0379 | 6.0 | 1710 | 0.4510 | 0.935 | 0.9423 | 0.9432 | 0.9415 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
janimo/taxiv3
janimo
2023-07-14T19:24:28Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-14T19:24:25Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: taxiv3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="janimo/taxiv3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
w601sxs/pythia-70m-instruct-orca-chkpt-64000
w601sxs
2023-07-14T19:16:16Z
171
1
transformers
[ "transformers", "pytorch", "gpt_neox", "text-generation", "dataset:Open-Orca/OpenOrca", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-14T18:39:56Z
--- datasets: - Open-Orca/OpenOrca --- To use, do: ``` from peft import PeftModel, PeftConfig from transformers import AutoTokenizer ref_model = AutoModelForCausalLM.from_pretrained("EleutherAI/pythia-70m-deduped-v0", torch_dtype=torch.bfloat16) peft_model_id = "w601sxs/pythia-70m-instruct-orca-chkpt-64000" config = PeftConfig.from_pretrained(peft_model_id) model = PeftModel.from_pretrained(ref_model, peft_model_id) tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) model = model.to('cuda:0') model.eval() inputs = tokenizer(prompt, return_tensors="pt") with torch.no_grad(): outputs = model.generate(input_ids=inputs["input_ids"].to("cuda"), max_new_tokens=10) print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)[0] ``` ### Prompt format ``` context: < ... > question: < ... > answer: < ... > ``` For e.g. ``` context: <You are an AI assistant. User will you give you a task. Your goal is to complete the task as faithfully as you can. While performing the task think step-by-step and justify your steps.> question: <Here is some data: The Rice Boat eatType restaurant; The Rice Boat food Fast food; The Rice Boat familyFriendly yes; The Rice Boat near Express by Holiday Inn. Write a sentence that describes this data:> answer: < ```
TencentARC/t2iadapter_keypose_sd14v1
TencentARC
2023-07-14T19:01:13Z
11
2
diffusers
[ "diffusers", "region:us" ]
null
2023-07-14T19:01:13Z
--- duplicated_from: diffusers/t2iadapter_keypose_sd14v1 ---
YanJiangJerry/SA-roberta-e3-w2-1-b16-w0.01-data2
YanJiangJerry
2023-07-14T18:53:37Z
106
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-14T18:22:38Z
--- tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: SA-roberta-e3-w2-1-b16-w0.01-data2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SA-roberta-e3-w2-1-b16-w0.01-data2 This model is a fine-tuned version of [Amalq/autotrain-smm4h_large_roberta_clean-874027878](https://huggingface.co/Amalq/autotrain-smm4h_large_roberta_clean-874027878) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5272 - Accuracy: 0.9032 - F1: 0.8664 - Precision: 0.8924 - Recall: 0.8418 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.2717 | 1.0 | 581 | 0.3400 | 0.9132 | 0.8811 | 0.9003 | 0.8627 | | 0.1102 | 2.0 | 1162 | 0.5082 | 0.9021 | 0.8706 | 0.8580 | 0.8836 | | 0.0525 | 3.0 | 1743 | 0.5272 | 0.9032 | 0.8664 | 0.8924 | 0.8418 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
Huamin/santacoder-finetuned-the-stack-bash
Huamin
2023-07-14T18:49:12Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "custom_code", "license:bigcode-openrail-m", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-08T19:30:54Z
--- license: bigcode-openrail-m tags: - generated_from_trainer model-index: - name: santacoder-finetuned-the-stack-bash results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # santacoder-finetuned-the-stack-bash This model is a fine-tuned version of [bigcode/santacoder](https://huggingface.co/bigcode/santacoder) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3174 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.6951 | 0.1 | 500 | 1.8041 | | 1.69 | 0.2 | 1000 | 1.5214 | | 1.3821 | 0.3 | 1500 | 1.5855 | | 1.5861 | 0.4 | 2000 | 1.4657 | | 1.6196 | 0.5 | 2500 | 1.4089 | | 1.6839 | 0.6 | 3000 | 1.3801 | | 1.3929 | 0.7 | 3500 | 1.3493 | | 1.471 | 0.8 | 4000 | 1.3278 | | 1.3222 | 0.9 | 4500 | 1.3203 | | 1.4529 | 1.0 | 5000 | 1.3174 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
franklab/HSSM
franklab
2023-07-14T18:48:22Z
0
2
null
[ "onnx", "license:bsd-2-clause", "region:us" ]
null
2023-06-22T16:08:25Z
--- license: bsd-2-clause --- # Utilizing Custom ONNX Models Stored in Hugging Face within HSSM This guide will walk you through the process of using custom ONNX models stored in Hugging Face within HSSM (Hierarchical State Space Model) framework. ## Prerequisites 1. Python 3.8 or later. 2. HSSM library installed in your Python environment. 3. A pre-trained ONNX model stored on Hugging Face model hub. ## Step-by-step guide ### Step 1: Import necessary libraries ``` import pandas as pd import hssm import ssms.basic_simulators pytensor.config.floatX = "float32" ``` ### Step 2: Define HSSM Configuration You will have to define the configuration of your model. Make sure you are defining the log-likelihood kind as "approx_differentiable" and providing the Hugging Face model name in the loglik field. ``` my_hssm = hssm.HSSM( data=dataset_lan, loglik_kind = "approx_differentiable", loglik = "levy.onnx", model="custom", model_config= { "backend": "jax", "list_params": ["v", "a", "z", "alpha", "t"], "bounds": { "v": (-3.0, 3.0), "a": (0.3, 3.0), "z": (0.1, 0.9), "alpha": (1.0, 2.0), "t": (1e-3, 2.0), }, } ) ``` This creates an HSSM object my_hssm using the custom ONNX model levy.onnx from the Hugging Face repository. ``` my_hssm.sample(cores=2, draws=500, tune=500, mp_ctx="forkserver") ``` # Uploading ONNX Files to a Hugging Face Repository If your ONNX file is not currently housed in your Hugging Face repository, you can include it by adhering to the steps delineated below: 1. Import the HfApi module from huggingface_hub: ``` from huggingface_hub import HfApi ``` 2. Upload the ONNX file using the upload_file method: ``` api = HfApi() api.upload_file( path_or_fileobj="test.onnx", path_in_repo="test.onnx", repo_id="franklab/HSSM", repo_type="model", create_pr=True, ) ``` The execution of these steps will generate a Pull Request (PR) on Hugging Face, which will subsequently be evaluated by a member of our team. ## Creating a Pull Request and a New ONNX Model 1. **Creating a Pull Request on Hugging Face** Navigate to the following link: [Hugging Face PR](https://huggingface.co/franklab/HSSM/blob/refs%2Fpr%2F1/test.onnx) By doing so, you will **generate a Pull Request on Hugging Face**, which will be reviewed by our team members. 2. **Creating a Custom ONNX Model** ### Establish a Network Config and State Dictionary Files in PyTorch To construct a custom model and save it as an ONNX file, you must create a network configuration file and a state dictionary file in PyTorch. Refer to the instructions outlined in the README of the [LANFactory package](LINK_TO_LANFACTORY_PACKAGE). ### Convert Network Config and State Dictionary Files to ONNX Once you've generated the network configuration and state dictionary files, you will need to **convert these files into an ONNX format**.
Danish-summarisation/DanSumT5-large
Danish-summarisation
2023-07-14T18:43:21Z
29
3
transformers
[ "transformers", "pytorch", "safetensors", "mt5", "text2text-generation", "summarization", "da", "arxiv:1804.11283", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2023-04-10T12:21:06Z
--- pipeline_tag: summarization license: apache-2.0 language: - da --- # mT5-large fine-tuned for News article Summarisation ✏️🧾 [Google's mT5](https://aclanthology.org/2021.naacl-main.41/) for **summarisation** downstream task. # Model summary This repository contains a model for Danish abstractive summarisation of news articles. The summariser is based on a language-specific mT5-large. The model is fine-tuned using an abstractive subset of the DaNewsroom dataset (Varab & Schluter, 2020), according to the binned density categories employed in Newsroom (Grusky et al., 2019). # References Grusky, M., Naaman, M., & Artzi, Y. (2018). Newsroom: A Dataset of 1.3 Million Summaries with Diverse Extractive Strategies. ArXiv:1804.11283 [Cs]. http://arxiv.org/abs/1804.11283 Varab, D., & Schluter, N. (2020). DaNewsroom: A Large-scale Danish Summarisation Dataset. Proceedings of the 12th Language Resources and Evaluation Conference, 6731–6739. https://aclanthology.org/2020.lrec-1.831
absolutt/ppo-LunarLander-v2-1stTry
absolutt
2023-07-14T18:24:14Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-14T18:23:51Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 251.71 +/- 21.38 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
anushakamath/product_recommendation
anushakamath
2023-07-14T17:39:14Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-07-14T17:17:42Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: product_recommendation results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # product_recommendation This model is a fine-tuned version of [t5-large](https://huggingface.co/t5-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4953 - Rouge1: 73.0159 - Rouge2: 66.6667 - Rougel: 72.2222 - Rougelsum: 72.2222 - Gen Len: 4.1905 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 0.96 | 6 | 0.4314 | 60.3175 | 47.6190 | 59.8413 | 60.3175 | 4.1429 | | No log | 1.96 | 12 | 0.4339 | 52.6984 | 38.0952 | 53.1746 | 52.3810 | 4.0952 | | No log | 2.96 | 18 | 0.5350 | 65.0794 | 52.3810 | 64.2857 | 64.9206 | 4.4286 | | No log | 3.96 | 24 | 0.3075 | 72.8571 | 61.9048 | 72.1429 | 72.1429 | 4.1905 | | No log | 4.96 | 30 | 0.4016 | 74.6032 | 66.6667 | 74.6032 | 75.3968 | 4.3333 | | No log | 5.96 | 36 | 0.4496 | 76.1905 | 71.4286 | 74.6032 | 74.6032 | 4.1905 | | No log | 6.96 | 42 | 0.5539 | 60.3175 | 57.1429 | 61.9048 | 60.3175 | 4.0 | | No log | 7.96 | 48 | 0.3816 | 80.9524 | 76.1905 | 79.3651 | 79.3651 | 4.1905 | | No log | 8.96 | 54 | 0.4602 | 74.6032 | 71.4286 | 74.6032 | 74.6032 | 4.1429 | | No log | 9.96 | 60 | 0.4953 | 73.0159 | 66.6667 | 72.2222 | 72.2222 | 4.1905 | ### Framework versions - Transformers 4.26.0 - Pytorch 2.0.1+cu118 - Datasets 2.8.0 - Tokenizers 0.13.3
CMunch/fine_tuned_temp_real
CMunch
2023-07-14T17:34:39Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-13T17:35:57Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy model-index: - name: fine_tuned_temp_real results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: test args: plain_text metrics: - name: Accuracy type: accuracy value: 0.93116 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fine_tuned_temp_real This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2334 - Accuracy: 0.9312 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2349 | 1.0 | 1563 | 0.1965 | 0.9247 | | 0.1521 | 2.0 | 3126 | 0.2334 | 0.9312 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
chunwoolee0/my_paircls_klue_nli_beomi_kcbert_base_model
chunwoolee0
2023-07-14T17:24:46Z
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:klue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-14T16:23:25Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - klue model-index: - name: my_paircls_klue_nli_beomi_kcbert_base_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_paircls_klue_nli_beomi_kcbert_base_model This model is a fine-tuned version of [beomi/kcbert-base](https://huggingface.co/beomi/kcbert-base) on the klue dataset. It achieves the following results on the evaluation set: - Loss: 1.9825 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 391 | 1.4004 | | 0.1479 | 2.0 | 782 | 1.2491 | | 0.167 | 3.0 | 1173 | 1.3786 | | 0.0803 | 4.0 | 1564 | 1.7437 | | 0.0803 | 5.0 | 1955 | 1.9825 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
MaitreHibou/poca-SoccerTwos
MaitreHibou
2023-07-14T17:17:10Z
37
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SoccerTwos", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-07-14T17:16:57Z
--- library_name: ml-agents tags: - SoccerTwos - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: MaitreHibou/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Arup-Dutta-Bappy/bert-large-uncased-whole-word-masking-finetuned-squad
Arup-Dutta-Bappy
2023-07-14T17:09:41Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-07-14T14:51:18Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-large-uncased-whole-word-masking-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-uncased-whole-word-masking-finetuned-squad This model is a fine-tuned version of [bert-large-uncased-whole-word-masking](https://huggingface.co/bert-large-uncased-whole-word-masking) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
DanGalt/distilhubert-finetuned-gtzan
DanGalt
2023-07-14T17:07:56Z
167
0
transformers
[ "transformers", "pytorch", "tensorboard", "hubert", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2023-07-02T16:13:40Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.7162 - Accuracy: 0.88 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-05 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 8 - label_smoothing_factor: 0.05 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.5923 | 1.0 | 113 | 1.7310 | 0.44 | | 1.2071 | 2.0 | 226 | 1.2546 | 0.62 | | 1.0673 | 3.0 | 339 | 0.9320 | 0.76 | | 0.8149 | 4.0 | 452 | 0.8768 | 0.81 | | 0.4999 | 5.0 | 565 | 0.7154 | 0.86 | | 0.3562 | 6.0 | 678 | 0.6631 | 0.89 | | 0.3852 | 7.0 | 791 | 0.7136 | 0.87 | | 0.4476 | 8.0 | 904 | 0.7162 | 0.88 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
efainman/ppo-LunarLander-v2
efainman
2023-07-14T17:05:13Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-14T17:04:52Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 255.83 +/- 21.59 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
sotoy/path_to_saved_model
sotoy
2023-07-14T16:56:29Z
1
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:CompVis/stable-diffusion-v1-4", "base_model:finetune:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-14T13:32:56Z
--- license: creativeml-openrail-m base_model: CompVis/stable-diffusion-v1-4 instance_prompt: a photo of sks dog tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - sotoy/path_to_saved_model This is a dreambooth model derived from CompVis/stable-diffusion-v1-4. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: True.
manosp/audio_inversion_cat
manosp
2023-07-14T16:46:07Z
48
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "textual_inversion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-13T13:04:34Z
--- license: creativeml-openrail-m base_model: /home/plitsis/text-inv/audioldm-m-full tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - textual_inversion inference: true --- # Textual inversion text2image fine-tuning - manosp/audio_inversion_cat These are textual inversion adaption weights for /home/plitsis/text-inv/audioldm-m-full. You can find some example images in the following.
chh6/dqn-SpaceInvadersNoFrameskip-v4
chh6
2023-07-14T16:41:16Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-14T16:40:42Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 481.00 +/- 179.37 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga chh6 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga chh6 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga chh6 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
Akriel/ResNetYoloV1
Akriel
2023-07-14T16:36:14Z
0
0
null
[ "tensorboard", "computer_vision", "vision_models_playground", "custom-implementation", "region:us" ]
null
2023-07-10T16:40:25Z
--- tags: - computer_vision - vision_models_playground - custom-implementation --- # **Vision Models Playground** This is a trained model from the Vision Models Playground repository. Link to the repository: https://github.com/Akrielz/vision_models_playground ## **Model** This model is a custom implementation of **ResNetYoloV1** from the ```vision_models_playground.models.segmentation.yolo_v1``` module. Please look in the config file for more information about the model architecture. ## **Usage** To load the torch model, you can use the following code snippet: ```python import torch from vision_models_playground.utility.hub import load_vmp_model_from_hub model = load_vmp_model_from_hub("Akriel/ResNetYoloV1") x = torch.randn(...) y = model(x) # y will be of type torch.Tensor ``` To load the pipeline that includes the model, you can use the following code snippet: ```python from vision_models_playground.utility.hub import load_vmp_pipeline_from_hub pipeline = load_vmp_pipeline_from_hub("Akriel/ResNetYoloV1") x = raw_data # raw_data will be of type pipeline.input_type y = pipeline(x) # y will be of type pipeline.output_type ``` ## **Metrics** The model was evaluated on the following dataset: **YoloPascalVocDataset** from ```vision_models_playground.datasets.yolo_pascal_voc_dataset``` These are the results of the evaluation: - MulticlassAccuracy: 0.7241 - MulticlassAveragePrecision: 0.7643 - MulticlassAUROC: 0.9684 - Dice: 0.7241 - MulticlassF1Score: 0.7241 - LossTracker: 4.1958 ## **Additional Information** The train and evaluation runs are also saved using tensorboard. You can use the following command to visualize the runs: ```bash tensorboard --logdir ./model ``` ```bash tensorboard --logdir ./eval ```
giocs2017/distilhubert-finetuned-gtzan
giocs2017
2023-07-14T16:32:55Z
160
0
transformers
[ "transformers", "pytorch", "tensorboard", "hubert", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2023-07-13T01:20:22Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.8934 - Accuracy: 0.82 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.681 | 1.0 | 450 | 1.7351 | 0.5 | | 1.5534 | 2.0 | 900 | 1.2192 | 0.66 | | 0.6835 | 3.0 | 1350 | 1.0462 | 0.71 | | 1.069 | 4.0 | 1800 | 0.5503 | 0.83 | | 0.1563 | 5.0 | 2250 | 0.9394 | 0.78 | | 0.0077 | 6.0 | 2700 | 0.9394 | 0.81 | | 0.7444 | 7.0 | 3150 | 0.8934 | 0.82 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.0+cu117 - Datasets 2.13.1 - Tokenizers 0.13.2
grace-pro/afro-xlmr-base-igbo-2e-5
grace-pro
2023-07-14T16:26:52Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-07-14T15:52:27Z
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: afro-xlmr-base-igbo-2e-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # afro-xlmr-base-igbo-2e-5 This model is a fine-tuned version of [Davlan/afro-xlmr-base](https://huggingface.co/Davlan/afro-xlmr-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2264 - Precision: 0.7551 - Recall: 0.5122 - F1: 0.6104 - Accuracy: 0.9274 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2433 | 1.0 | 1257 | 0.2406 | 0.7508 | 0.3936 | 0.5165 | 0.9160 | | 0.203 | 2.0 | 2514 | 0.2336 | 0.7680 | 0.4294 | 0.5509 | 0.9206 | | 0.1745 | 3.0 | 3771 | 0.2258 | 0.7637 | 0.4741 | 0.5850 | 0.9246 | | 0.1585 | 4.0 | 5028 | 0.2276 | 0.7666 | 0.4908 | 0.5985 | 0.9264 | | 0.1446 | 5.0 | 6285 | 0.2264 | 0.7551 | 0.5122 | 0.6104 | 0.9274 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
kartikkitukale61/RobertaSentenceSimilarityKartik
kartikkitukale61
2023-07-14T16:25:34Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-07-14T16:24:16Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 460 with parameters: ``` {'batch_size': 5, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 4, "evaluation_steps": 500, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 184, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
YanJiangJerry/SA-roberta-e3-w1-1.5-b16-mt4-w0.01
YanJiangJerry
2023-07-14T16:13:32Z
93
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-14T15:53:49Z
--- tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: SA-roberta-e3-w1-1.5-b16-mt4-w0.01 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SA-roberta-e3-w1-1.5-b16-mt4-w0.01 This model is a fine-tuned version of [Amalq/autotrain-smm4h_large_roberta_clean-874027878](https://huggingface.co/Amalq/autotrain-smm4h_large_roberta_clean-874027878) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2790 - Accuracy: 0.94 - F1: 0.9470 - Precision: 0.9437 - Recall: 0.9504 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 1.0 | 285 | 0.2093 | 0.915 | 0.9214 | 0.9632 | 0.8830 | | 0.259 | 2.0 | 570 | 0.2161 | 0.935 | 0.9418 | 0.9512 | 0.9326 | | 0.259 | 3.0 | 855 | 0.2790 | 0.94 | 0.9470 | 0.9437 | 0.9504 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
prognosis/cardio_qanda_openassistant_v2
prognosis
2023-07-14T15:56:38Z
0
0
null
[ "tensorboard", "generated_from_trainer", "region:us" ]
null
2023-07-14T13:04:24Z
--- tags: - generated_from_trainer model-index: - name: cardio_qanda_openassistant_v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # cardio_qanda_openassistant_v2 This model is a fine-tuned version of [prognosis/falcon7b_merged](https://huggingface.co/prognosis/falcon7b_merged) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - training_steps: 1500 ### Training results ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
bhenrym14/airoboros-33b-gpt4-1.4.1-lxctx-PI-16384-LoRA
bhenrym14
2023-07-14T15:50:00Z
0
1
null
[ "dataset:jondurbin/airoboros-gpt4-1.4.1", "region:us" ]
null
2023-07-14T02:51:39Z
--- datasets: - jondurbin/airoboros-gpt4-1.4.1 --- NOTE: This LoRA was trained on Llama-30b AFTER additional pretraining. I intend on providing the LoRA of that pretraining too. Applying this LoRA to base Llama-30b will likely result in a performance reduction. I have uploaded the fp16 merged weights [here](https://huggingface.co/bhenrym14/airoboros-33b-gpt4-1.4.1-lxctx-PI-16384-LoRA/) Mostly untested! Find GPTQ quantized weights and full model card here: https://huggingface.co/bhenrym14/airoboros-33b-gpt4-1.4.1-lxctx-PI-16384-GPTQ # RoPE Scaled QLoRA Fine-tune of Llama-33b on airoboros-gpt4-1.4.1 (LoRA) ## Overview This is [Jon Durbin's Airoboros 33B GPT4 1.4](https://huggingface.co/jondurbin/airoboros-33b-gpt4-1.4) (LoRA) with several key modifications: - Context length extended to 16384 by RoPE Scaled Embeddings. - The Llama-33b base model is pretrained for additional 100 steps on 8192 length sequences from the pile dataset. - Used airoboros-gpt4-1.4.1 dataset instead of airoboros-gpt4-1.4 **This is a QLoRA fine-tune** Pretraining took 10 hours. Finetuning took ~41 hours on 1x RTX 6000 Ada.
Dlychan/Nadhieraa
Dlychan
2023-07-14T15:47:59Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-14T15:42:59Z
--- license: creativeml-openrail-m ---
NasimB/gpt2-concat-bnc-rarity-end-1p6
NasimB
2023-07-14T15:36:48Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-14T13:43:24Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: gpt2-concat-bnc-rarity-end-1p6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-concat-bnc-rarity-end-1p6 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.3234 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 6.7136 | 0.29 | 500 | 5.6426 | | 5.3544 | 0.59 | 1000 | 5.2039 | | 4.9956 | 0.88 | 1500 | 4.9562 | | 4.7225 | 1.17 | 2000 | 4.8042 | | 4.568 | 1.46 | 2500 | 4.6819 | | 4.4551 | 1.76 | 3000 | 4.5728 | | 4.3337 | 2.05 | 3500 | 4.5041 | | 4.1427 | 2.34 | 4000 | 4.4590 | | 4.1052 | 2.63 | 4500 | 4.3959 | | 4.0696 | 2.93 | 5000 | 4.3454 | | 3.8614 | 3.22 | 5500 | 4.3396 | | 3.813 | 3.51 | 6000 | 4.3118 | | 3.789 | 3.81 | 6500 | 4.2754 | | 3.6879 | 4.1 | 7000 | 4.2741 | | 3.5215 | 4.39 | 7500 | 4.2692 | | 3.5205 | 4.68 | 8000 | 4.2563 | | 3.5065 | 4.98 | 8500 | 4.2419 | | 3.3459 | 5.27 | 9000 | 4.2548 | | 3.3262 | 5.56 | 9500 | 4.2549 | | 3.327 | 5.85 | 10000 | 4.2536 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
crcdng/ppo-LunarLander-v2
crcdng
2023-07-14T15:33:39Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-14T15:33:23Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 270.89 +/- 19.41 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
YanJiangJerry/SA-roberta-e12-w1-1.5-b16-mt4-w0.01
YanJiangJerry
2023-07-14T15:31:52Z
3
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-14T14:13:19Z
--- tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: SA-roberta-e12-w1-1.5-b16-mt4-w0.01 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SA-roberta-e12-w1-1.5-b16-mt4-w0.01 This model is a fine-tuned version of [Amalq/autotrain-smm4h_large_roberta_clean-874027878](https://huggingface.co/Amalq/autotrain-smm4h_large_roberta_clean-874027878) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5163 - Accuracy: 0.946 - F1: 0.9523 - Precision: 0.9489 - Recall: 0.9557 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 1.0 | 285 | 0.2656 | 0.886 | 0.9059 | 0.8472 | 0.9734 | | 0.2593 | 2.0 | 570 | 0.1967 | 0.938 | 0.9453 | 0.9404 | 0.9504 | | 0.2593 | 3.0 | 855 | 0.2726 | 0.925 | 0.9353 | 0.9109 | 0.9610 | | 0.1239 | 4.0 | 1140 | 0.3039 | 0.942 | 0.9481 | 0.9567 | 0.9397 | | 0.1239 | 5.0 | 1425 | 0.3721 | 0.935 | 0.9421 | 0.9463 | 0.9379 | | 0.053 | 6.0 | 1710 | 0.4110 | 0.939 | 0.9458 | 0.9483 | 0.9433 | | 0.053 | 7.0 | 1995 | 0.4106 | 0.941 | 0.9481 | 0.9407 | 0.9557 | | 0.0183 | 8.0 | 2280 | 0.4839 | 0.94 | 0.9470 | 0.9437 | 0.9504 | | 0.0004 | 9.0 | 2565 | 0.4994 | 0.945 | 0.9516 | 0.9442 | 0.9592 | | 0.0004 | 10.0 | 2850 | 0.5032 | 0.943 | 0.9496 | 0.9471 | 0.9521 | | 0.0026 | 11.0 | 3135 | 0.5092 | 0.946 | 0.9523 | 0.9489 | 0.9557 | | 0.0026 | 12.0 | 3420 | 0.5163 | 0.946 | 0.9523 | 0.9489 | 0.9557 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3