modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-06-24 12:28:46
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
493 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-06-24 12:27:57
card
stringlengths
11
1.01M
willcai/wav2vec2_common_voice_accents_scotland
willcai
2022-03-23T11:15:11Z
7
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-22T19:55:53Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2_common_voice_accents_scotland results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2_common_voice_accents_scotland This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.2752 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 48 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 384 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.7171 | 1.28 | 400 | 1.1618 | | 0.4391 | 2.56 | 800 | 0.2422 | | 0.2259 | 3.83 | 1200 | 0.2071 | | 0.1813 | 5.11 | 1600 | 0.2126 | | 0.1531 | 6.39 | 2000 | 0.2010 | | 0.1383 | 7.67 | 2400 | 0.2004 | | 0.13 | 8.95 | 2800 | 0.2069 | | 0.1193 | 10.22 | 3200 | 0.2081 | | 0.1124 | 11.5 | 3600 | 0.2051 | | 0.1023 | 12.78 | 4000 | 0.2175 | | 0.097 | 14.06 | 4400 | 0.2261 | | 0.0863 | 15.34 | 4800 | 0.2301 | | 0.0823 | 16.61 | 5200 | 0.2334 | | 0.079 | 17.89 | 5600 | 0.2252 | | 0.0743 | 19.17 | 6000 | 0.2393 | | 0.0696 | 20.45 | 6400 | 0.2481 | | 0.0644 | 21.73 | 6800 | 0.2416 | | 0.064 | 23.0 | 7200 | 0.2449 | | 0.0584 | 24.28 | 7600 | 0.2660 | | 0.0544 | 25.56 | 8000 | 0.2630 | | 0.0523 | 26.84 | 8400 | 0.2677 | | 0.0494 | 28.12 | 8800 | 0.2730 | | 0.0462 | 29.39 | 9200 | 0.2752 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.4 - Tokenizers 0.11.6
willcai/wav2vec2_common_voice_accents_us
willcai
2022-03-23T11:03:06Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-22T18:14:42Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2_common_voice_accents_us results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2_common_voice_accents_us This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.2722 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 48 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 384 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.549 | 1.28 | 400 | 0.8521 | | 0.4066 | 2.56 | 800 | 0.2407 | | 0.2262 | 3.83 | 1200 | 0.2070 | | 0.1828 | 5.11 | 1600 | 0.2134 | | 0.1565 | 6.39 | 2000 | 0.2060 | | 0.1448 | 7.67 | 2400 | 0.2100 | | 0.1333 | 8.95 | 2800 | 0.2036 | | 0.121 | 10.22 | 3200 | 0.2192 | | 0.1146 | 11.5 | 3600 | 0.2154 | | 0.1108 | 12.78 | 4000 | 0.2223 | | 0.1017 | 14.06 | 4400 | 0.2331 | | 0.094 | 15.34 | 4800 | 0.2257 | | 0.0896 | 16.61 | 5200 | 0.2229 | | 0.0825 | 17.89 | 5600 | 0.2229 | | 0.0777 | 19.17 | 6000 | 0.2417 | | 0.0719 | 20.45 | 6400 | 0.2433 | | 0.0659 | 21.73 | 6800 | 0.2447 | | 0.0651 | 23.0 | 7200 | 0.2446 | | 0.0587 | 24.28 | 7600 | 0.2542 | | 0.056 | 25.56 | 8000 | 0.2587 | | 0.0521 | 26.84 | 8400 | 0.2640 | | 0.0494 | 28.12 | 8800 | 0.2753 | | 0.0465 | 29.39 | 9200 | 0.2722 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.4 - Tokenizers 0.11.6
Newt007/multi-class-attacks
Newt007
2022-03-23T10:30:59Z
0
0
null
[ "license:afl-3.0", "region:us" ]
null
2022-03-23T10:28:31Z
--- license: afl-3.0 --- --- language: - python 3.7 --- libraries: - keras==2.0.2 - tensorflow==2.4.1
Daniele/italian-spellchecker
Daniele
2022-03-23T10:19:19Z
35
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "seq2seq", "it", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-21T14:33:20Z
--- language: - it tags: - seq2seq license: mit --- # Italian Contextual Spellchecker The model is a fine-tuned version of [IT5](https://huggingface.co/models?search=it5)[1], specifically modelled for computing a spellchecking in the shape of a sequence-to-sequence task. ### USAGE The input sequence should have the structure <b>seq: <i>your text</i>.</b>. Missing the seq token at the beginning or the final punctuation mark may lead to bad performances.
pyannote/TestModelForContinuousIntegration
pyannote
2022-03-23T09:24:42Z
5
0
pyannote-audio
[ "pyannote-audio", "pytorch", "tensorboard", "pyannote", "pyannote-audio-model", "license:mit", "region:us" ]
null
2022-03-02T23:29:05Z
--- tags: - pyannote - pyannote-audio - pyannote-audio-model license: mit inference: false --- ## Dummy model used for continuous integration purposes ```bash $ pyannote-audio-train protocol=Debug.SpeakerDiarization.Debug \ task=VoiceActivityDetection \ task.duration=2. \ model=DebugSegmentation \ trainer.max_epochs=10 ```
Alvenir/bert-punct-restoration-da
Alvenir
2022-03-23T09:05:15Z
17,347
4
transformers
[ "transformers", "pytorch", "bert", "token-classification", "punctuation restoration", "da", "dataset:custom", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-22T17:33:25Z
--- language: da tags: - bert - punctuation restoration license: apache-2.0 datasets: - custom --- # Bert Punctuation Restoration Danish This model performs the punctuation restoration task in Danish. The method used is sequence classification similar to how NER models are trained. ## Model description TODO ### How to use The model requires some additional inference code, hence we created an awesome little pip package for inference. The inference code is based on the `TokenClassificationPipeline` pipeline from huggingface. First, install the little package by running ``` pip install punctfix ``` Then restoration is as simple as the following snippet: ```python >>> from punctfix import PunctFixer >>> fixer = PunctFixer(language="da") >>> example_text = "mit navn det er rasmus og jeg kommer fra firmaet alvenir det er mig som har trænet denne lækre model" >>> print(fixer.punctuate(example_text)) 'Mit navn det er Rasmus og jeg kommer fra firmaet Alvenir. Det er mig som har trænet denne lækre model.' >>> example_text = "en dag bliver vi sku glade for at vi nu kan sætte punktummer og kommaer i en sætning det fungerer da meget godt ikke" >>> print(fixer.punctuate(example_text)) 'En dag bliver vi sku glade for, at vi nu kan sætte punktummer og kommaer i en sætning. Det fungerer da meget godt, ikke?' ``` ## Training data To Do ## Training procedure To Do ### Preprocessing TODO ## Evaluation results TODO
bigmorning/my-gpt-model-3
bigmorning
2022-03-23T08:22:22Z
3
0
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-23T05:52:35Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: my-gpt-model-3 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # my-gpt-model-3 This model is a fine-tuned version of [bigmorning/my-gpt-model](https://huggingface.co/bigmorning/my-gpt-model) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 5.1163 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 5.1163 | 0 | ### Framework versions - Transformers 4.17.0 - TensorFlow 2.8.0 - Datasets 2.0.0 - Tokenizers 0.11.6
krishnayogik/distilbert-base-uncased-finetuned-emotion
krishnayogik
2022-03-23T07:27:09Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-23T07:14:35Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9245 - name: F1 type: f1 value: 0.9247696388302888 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2258 - Accuracy: 0.9245 - F1: 0.9248 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8359 | 1.0 | 250 | 0.3316 | 0.901 | 0.8967 | | 0.2584 | 2.0 | 500 | 0.2258 | 0.9245 | 0.9248 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
aaraki/wav2vec2-base-finetuned-ks
aaraki
2022-03-23T05:55:15Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "audio-classification", "generated_from_trainer", "dataset:superb", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2022-03-23T04:52:10Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - superb metrics: - accuracy model-index: - name: wav2vec2-base-finetuned-ks results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-finetuned-ks This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the superb dataset. It achieves the following results on the evaluation set: - Loss: 0.9949 - Accuracy: 0.6958 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0231 | 1.0 | 399 | 0.9949 | 0.6958 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
mimicheng/codeparrot-ds-sample
mimicheng
2022-03-23T05:30:38Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-22T22:13:05Z
--- license: mit tags: - generated_from_trainer model-index: - name: codeparrot-ds-sample results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # codeparrot-ds-sample This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6003 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.5057 | 0.93 | 5000 | 1.6003 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
Axon/resnet50-v1
Axon
2022-03-22T23:54:44Z
0
0
null
[ "Axon", "Elixir", "dataset:ImageNet", "arxiv:1512.03385", "license:apache-2.0", "region:us" ]
null
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - Axon - Elixir datasets: - ImageNet --- # ResNet This ResNet50 model was translated from the ONNX ResNetv1 model found at https://github.com/onnx/models/tree/main/vision/classification/resnet into Axon using [AxonOnnx](https://github.com/elixir-nx/axon_onnx) The following description is copied from the relevant description at the ONNX repository. ## Use cases These ResNet models perform image classification - they take images as input and classify the major object in the image into a set of pre-defined classes. They are trained on ImageNet dataset which contains images from 1000 classes. ResNet models provide very high accuracies with affordable model sizes. They are ideal for cases when high accuracy of classification is required. ImageNet trained models are often used as the base layers for a transfer learning approach to training a model in your domain. Transfer learning can significantly reduce the processing necessary to train an accurate model in your domain. This model was published here with the expectation that it would be useful to the Elixir community for transfer learning and other similar approaches. ## Description Deeper neural networks are more difficult to train. Residual learning framework ease the training of networks that are substantially deeper. The research explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. It also provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset the residual nets were evaluated with a depth of up to 152 layers — 8× deeper than VGG nets but still having lower complexity. ## Model ResNet models consists of residual blocks and came up to counter the effect of deteriorating accuracies with more layers due to network not learning the initial layers. ResNet v1 uses post-activation for the residual blocks. ### Input All pre-trained models expect input images normalized in the same way, i.e. mini-batches of 3-channel RGB images of shape (N x 3 x H x W), where N is the batch size, and H and W are expected to be at least 224. The inference was done using jpeg image. ### Preprocessing The images have to be loaded in to a range of [0, 1] and then normalized using mean = [0.485, 0.456, 0.406] and std = [0.229, 0.224, 0.225]. The transformation should preferably happen at preprocessing. ### Output The model outputs image scores for each of the 1000 classes of ImageNet. ### Postprocessing The post-processing involves calculating the softmax probability scores for each class. You can also sort them to report the most probable classes. Check [imagenet_postprocess.py](../imagenet_postprocess.py) for code. ## Dataset Dataset used for train and validation: [ImageNet (ILSVRC2012)](http://www.image-net.org/challenges/LSVRC/2012/). Check [imagenet_prep](../imagenet_prep.md) for guidelines on preparing the dataset. ## References * **ResNetv1** [Deep residual learning for image recognition](https://arxiv.org/abs/1512.03385) He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770-778. 2016. * **ONNX source model** [onnx/models vision/classification/resnet resnet50-v1-7.onnx](https://github.com/onnx/models/tree/main/vision/classification/resnet/README)
CogComp/roberta-temporal-predictor
CogComp
2022-03-22T20:15:03Z
15
3
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "arxiv:2202.00436", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- license: mit widget: - text: "The man turned on the faucet <mask> water flows out." - text: "The woman received her pension <mask> she retired." --- # roberta-temporal-predictor A RoBERTa-base model that is fine-tuned on the [The New York Times Annotated Corpus](https://catalog.ldc.upenn.edu/LDC2008T19) to predict temporal precedence of two events. This is used as the ``temporality prediction'' component in our ROCK framework for reasoning about commonsense causality. See our [paper](https://arxiv.org/abs/2202.00436) for more details. # Usage You can directly use this model for filling-mask tasks, as shown in the example widget. However, for better temporal inference, it is recommended to symmetrize the outputs as $$ P(E_1 \prec E_2) = \frac{1}{2} (f(E_1,E_2) + f(E_2,E_1)) $$ where ``f(E_1,E_2)`` denotes the predicted probability for ``E_1`` to occur preceding ``E_2``. For simplicity, we implement the following TempPredictor class that incorporate this symmetrization automatically. Below is an example usage for the ``TempPredictor`` class: ```python from transformers import (RobertaForMaskedLM, RobertaTokenizer) from src.temp_predictor import TempPredictor TORCH_DEV = "cuda:0" # change as needed tp_roberta_ft = src.TempPredictor( model=RobertaForMaskedLM.from_pretrained("CogComp/roberta-temporal-predictor"), tokenizer=RobertaTokenizer.from_pretrained("CogComp/roberta-temporal-predictor"), device=TORCH_DEV ) E1 = "The man turned on the faucet." E2 = "Water flows out." t12 = tp_roberta_ft(E1, E2, top_k=5) print(f"P('{E1}' before '{E2}'): {t12}") ``` # BibTeX entry and citation info ```bib @misc{zhang2022causal, title={Causal Inference Principles for Reasoning about Commonsense Causality}, author={Jiayao Zhang and Hongming Zhang and Dan Roth and Weijie J. Su}, year={2022}, eprint={2202.00436}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
blckwdw61/sysformver1
blckwdw61
2022-03-22T19:46:14Z
3
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-22T18:35:28Z
# CES BERT sysform model Fine-tuned BERT cased model
msamogh/autonlp-cai-out-of-scope-649919116
msamogh
2022-03-22T15:27:18Z
5
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autonlp", "en", "dataset:msamogh/autonlp-data-cai-out-of-scope", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-19T21:40:42Z
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - msamogh/autonlp-data-cai-out-of-scope co2_eq_emissions: 2.438401649319185 --- # What do the class labels mean? 0 - out of scope 1 - in scope # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 649919116 - CO2 Emissions (in grams): 2.438401649319185 ## Validation Metrics - Loss: 0.5314930081367493 - Accuracy: 0.7526881720430108 - Precision: 0.8490566037735849 - Recall: 0.75 - AUC: 0.8515151515151514 - F1: 0.7964601769911505 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/msamogh/autonlp-cai-out-of-scope-649919116 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("msamogh/autonlp-cai-out-of-scope-649919116", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("msamogh/autonlp-cai-out-of-scope-649919116", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
speeqo/bert-restore-punctuation
speeqo
2022-03-22T15:01:06Z
18
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "punctuation", "en", "dataset:yelp_polarity", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-22T14:57:22Z
--- language: - en tags: - punctuation license: mit datasets: - yelp_polarity metrics: - f1 --- # ✨ bert-restore-punctuation [![forthebadge](https://forthebadge.com/images/badges/gluten-free.svg)]() This a bert-base-uncased model finetuned for punctuation restoration on [Yelp Reviews](https://www.tensorflow.org/datasets/catalog/yelp_polarity_reviews). The model predicts the punctuation and upper-casing of plain, lower-cased text. An example use case can be ASR output. Or other cases when text has lost punctuation. This model is intended for direct use as a punctuation restoration model for the general English language. Alternatively, you can use this for further fine-tuning on domain-specific texts for punctuation restoration tasks. Model restores the following punctuations -- **[! ? . , - : ; ' ]** The model also restores the upper-casing of words. ----------------------------------------------- ## 🚋 Usage **Below is a quick way to get up and running with the model.** 1. First, install the package. ```bash pip install rpunct ``` 2. Sample python code. ```python from rpunct import RestorePuncts # The default language is 'english' rpunct = RestorePuncts() rpunct.punctuate("""in 2018 cornell researchers built a high-powered detector that in combination with an algorithm-driven process called ptychography set a world record by tripling the resolution of a state-of-the-art electron microscope as successful as it was that approach had a weakness it only worked with ultrathin samples that were a few atoms thick anything thicker would cause the electrons to scatter in ways that could not be disentangled now a team again led by david muller the samuel b eckert professor of engineering has bested its own record by a factor of two with an electron microscope pixel array detector empad that incorporates even more sophisticated 3d reconstruction algorithms the resolution is so fine-tuned the only blurring that remains is the thermal jiggling of the atoms themselves""") # Outputs the following: # In 2018, Cornell researchers built a high-powered detector that, in combination with an algorithm-driven process called Ptychography, set a world record by tripling the # resolution of a state-of-the-art electron microscope. As successful as it was, that approach had a weakness. It only worked with ultrathin samples that were a few atoms # thick. Anything thicker would cause the electrons to scatter in ways that could not be disentangled. Now, a team again led by David Muller, the Samuel B. # Eckert Professor of Engineering, has bested its own record by a factor of two with an Electron microscope pixel array detector empad that incorporates even more # sophisticated 3d reconstruction algorithms. The resolution is so fine-tuned the only blurring that remains is the thermal jiggling of the atoms themselves. ``` **This model works on arbitrarily large text in English language and uses GPU if available.** ----------------------------------------------- ## 📡 Training data Here is the number of product reviews we used for finetuning the model: | Language | Number of text samples| | -------- | ----------------- | | English | 560,000 | We found the best convergence around _**3 epochs**_, which is what presented here and available via a download. ----------------------------------------------- ## 🎯 Accuracy The fine-tuned model obtained the following accuracy on 45,990 held-out text samples: | Accuracy | Overall F1 | Eval Support | | -------- | ---------------------- | ------------------- | | 91% | 90% | 45,990 Below is a breakdown of the performance of the model by each label: | label | precision | recall | f1-score | support| | --------- | -------------|-------- | ----------|--------| | **!** | 0.45 | 0.17 | 0.24 | 424 | **!+Upper** | 0.43 | 0.34 | 0.38 | 98 | **'** | 0.60 | 0.27 | 0.37 | 11 | **,** | 0.59 | 0.51 | 0.55 | 1522 | **,+Upper** | 0.52 | 0.50 | 0.51 | 239 | **-** | 0.00 | 0.00 | 0.00 | 18 | **.** | 0.69 | 0.84 | 0.75 | 2488 | **.+Upper** | 0.65 | 0.52 | 0.57 | 274 | **:** | 0.52 | 0.31 | 0.39 | 39 | **:+Upper** | 0.36 | 0.62 | 0.45 | 16 | **;** | 0.00 | 0.00 | 0.00 | 17 | **?** | 0.54 | 0.48 | 0.51 | 46 | **?+Upper** | 0.40 | 0.50 | 0.44 | 4 | **none** | 0.96 | 0.96 | 0.96 |35352 | **Upper** | 0.84 | 0.82 | 0.83 | 5442 ----------------------------------------------- ## ☕ Contact Contact [Daulet Nurmanbetov]([email protected]) for questions, feedback and/or requests for similar models. -----------------------------------------------
espnet/YushiUeda_swbd_sentiment_asr_train_asr_conformer_wav2vec2_2
espnet
2022-03-22T14:14:26Z
0
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:swbd_sentiment", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-03-22T14:10:53Z
--- tags: - espnet - audio - automatic-speech-recognition language: en datasets: - swbd_sentiment license: cc-by-4.0 --- ## ESPnet2 ASR model ### `espnet/YushiUeda_swbd_sentiment_asr_train_asr_conformer_wav2vec2_2` This model was trained by YushiUeda using swbd_sentiment recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout 17089cb2cf5f1275132163f6327defbcc1b1bc1b pip install -e . cd egs2/swbd_sentiment/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/YushiUeda_swbd_sentiment_asr_train_asr_conformer_wav2vec2_2 ``` ## ASR config <details><summary>expand</summary> ``` config: conf/tuning/train_asr_conformer_wav2vec2_2.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_conformer_wav2vec2_2_raw_en_word ngpu: 1 seed: 2022 num_workers: 2 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: 2 dist_rank: 0 local_rank: 0 dist_master_addr: localhost dist_master_port: 43183 dist_launcher: null multiprocessing_distributed: true unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 70 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 10 nbest_averaging_interval: 10 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 2 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: 100 use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: - frontend.upstream num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 6000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_en_word/train/speech_shape - exp/asr_stats_raw_en_word/train/text_shape.word valid_shape_file: - exp/asr_stats_raw_en_word/valid/speech_shape - exp/asr_stats_raw_en_word/valid/text_shape.word batch_type: numel valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train/wav.scp - speech - sound - - dump/raw/train/text - text - text valid_data_path_and_name_and_type: - - dump/raw/dev/wav.scp - speech - sound - - dump/raw/dev/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.002 weight_decay: 1.0e-05 scheduler: warmuplr scheduler_conf: warmup_steps: 5000 token_list: - <blank> - <unk> - i - and - the - you - that - it - a - Neutral - to - uh - '''s' - of - know - Positive - they - in - we - '''t' - have - but - so - was - like - Negative - yeah - is - just - um - well - do - for - think - don - there - or - 'on' - '''re' - my - what - really - be - with - not - if - are - one - he - '''ve' - because - '''m' - about - all - get - can - had - out - at - them - when - this - as - oh - lot - up - people - some - then - would - go - right - mean - now - time - kind - got - going - good - she - things - more - were - from - something - been - 'no' - see - me - too - an - your - much - little - guess - how - where - our - very - here - their - thing - two - '''ll' - other - did - years - work - even - has - any - way - probably - those - could - say - real - back - '''d' - year - down - home - than - want - didn - into - pretty - okay - who - take - huh - school - said - make - over - kids - never - always - put - by - her - stuff - went - doing - three - these - 'yes' - which - around - only - big - maybe - 'off' - anything - day - t - sure - actually - come - money - him - different - everything - still - used - many - five - will - sort - nice - us - last - his - thought - every - most - getting - first - feel - bit - need - children - same - course - also - new - care - family - hum - long - through - before - use - done - should - house - old - let - does - car - being - problem - doesn - four - seems - though - pay - look - whole - great - husband - haven - try - live - trying - ever - why - read - better - find - far - keep - ago - sometimes - watch - interesting - quite - area - hard - talking - else - another - part - bad - having - twenty - whatever - place - couple - usually - 'true' - high - texas - seen - fact - s - enough - after - own - college - while - country - hundred - somebody - few - either - times - week - away - gonna - type - job - six - dollars - tell - might - remember - again - came - give - started - start - ten - made - play - able - dallas - enjoy - working - once - c - someone - life - least - v - everybody - since - fun - both - talk - wouldn - ones - news - anyway - wasn - person - heard - believe - am - th - buy - may - point - call - night - y - almost - bye - isn - system - wanted - called - took - state - wife - child - half - women - goes - next - yet - especially - love - looking - parents - gone - such - gets - understand - together - movie - until - w - days - end - saying - idea - saw - music - mother - thirty - couldn - makes - stay - change - m - basically - wonderful - problems - guy - worked - spend - help - lived - credit - whether - seem - eight - n - best - world - run - hear - bought - young - each - months - seven - places - supposed - city - matter - coming - exactly - d - small - summer - comes - certain - company - less - thinking - won - during - b - thousand - agree - show - daughter - sounds - myself - funny - water - o - month - dog - fifty - paper - gotten - found - taking - today - certainly - boy - friends - number - mine - program - food - son - p - older - name - air - movies - government - moved - schools - outside - deal - close - tried - paying - eat - drive - hours - nine - rather - cars - crime - important - war - living - between - business - anymore - reason - weeks - public - vote - situation - recently - nothing - easy - sit - pick - taxes - turn - full - percent - making - friend - book - happen - minutes - middle - town - watching - paid - eighty - tax - several - listen - set - talked - north - takes - reading - definitely - law - jury - kinds - married - u - enjoyed - says - without - works - learn - everyone - drug - major - side - cost - room - education - morning - computer - involved - mostly - aren - health - l - anybody - along - amount - man - against - weather - often - under - age - forty - insurance - favorite - hope - card - must - happened - lives - left - drugs - expensive - american - miles - yourself - hour - already - plano - cards - decided - large - difference - ahead - fifteen - camping - told - although - second - r - woman - twelve - knew - guys - cut - neat - fish - mind - wrong - unless - sense - instead - leave - wear - class - hand - top - walk - bring - past - f - running - e - absolutely - weekend - line - books - question - team - wish - exercise - interested - areas - baby - states - liked - somewhere - father - experience - phone - case - men - lots - cat - society - taken - changed - game - worth - seventy - gun - h - wonder - hit - group - service - kept - shows - gosh - early - interest - trouble - control - themselves - ha - finally - using - god - dad - cook - hot - difficult - nursing - front - terms - growing - late - kid - looked - felt - rain - teach - tend - realize - weren - sixty - except - needs - social - budget - figure - recycling - lake - wanna - looks - wh - forth - mom - concerned - south - grew - topic - ways - death - christmas - regular - wait - imagine - television - east - trees - check - fairly - hate - general - catch - dinner - built - ready - fine - sister - story - playing - starting - homes - office - awful - radio - needed - companies - changes - programs - fishing - nineteen - ask - tough - cans - easier - yard - cold - ought - street - later - door - wants - students - national - space - across - brother - free - local - tha - level - happens - sitting - newspaper - move - countries - store - subject - girl - beautiful - turned - soon - income - putting - church - university - dress - information - lately - degree - york - vacation - pollution - totally - winter - america - ah - ours - cats - spent - happy - played - consider - cases - spring - california - longer - teacher - oil - send - lost - sports - garden - teachers - families - particular - buying - amazing - likes - football - united - teaching - hey - benefits - brought - gave - party - worry - throw - testing - given - bunch - near - nobody - community - driving - open - personal - sell - force - chance - wow - test - baseball - within - biggest - quality - building - example - seeing - power - afford - support - caught - inside - plan - seemed - ninety - younger - learned - generation - charge - punishment - rest - dogs - become - clean - short - privacy - g - calls - plus - particularly - decide - terrible - twice - fall - extra - period - choice - hold - ended - hadn - main - guilty - depends - save - excellent - price - strange - feeling - size - trial - military - boys - per - bet - judge - parts - noticed - anywhere - fan - head - center - glad - clothes - rate - stop - eleven - white - stand - suppose - guns - grade - watched - bigger - scary - issue - special - dollar - green - its - jobs - means - black - worse - knows - plastic - low - spending - picked - golf - gas - single - neighborhood - necessarily - alone - cooking - newspapers - pull - fast - completely - road - student - crimes - houses - paint - medical - learning - fair - restaurant - miss - lawn - giving - washington - doctor - word - killed - recycle - light - cash - visit - familiar - grass - itself - season - chicken - rid - president - stayed - normally - whenever - machine - graduate - eighteen - capital - shouldn - virginia - private - field - magazines - kill - market - apartment - anyone - waiting - asked - classes - break - crazy - helps - aware - sunday - hm - speak - term - sound - property - sad - comfortable - waste - channel - evening - cover - heavy - carry - everyday - systems - gives - wa - answer - higher - unfortunately - minute - future - serious - snow - available - smaller - handle - ground - behind - huge - west - plant - allowed - wind - peace - costs - cause - serve - rent - lucky - gee - build - english - telling - lose - individual - gardening - busy - order - raised - basic - basis - rock - training - happening - opinion - heart - follow - mainly - history - walking - ye - average - towards - houston - games - travel - decision - environment - respect - list - hopefully - grow - others - sorry - san - taught - weight - bags - hurt - finding - attention - hasn - computers - raise - aerobics - quick - shot - personally - bedroom - similar - loved - sixties - park - helping - feet - industry - write - generally - weird - record - benefit - pool - mail - pennsylvania - glass - notice - calling - process - land - originally - richardson - cities - afraid - utah - entire - colorado - ball - boat - grandmother - possible - folks - helped - strong - keeping - bill - keeps - thank - camp - third - types - eventually - obviously - yesterday - apparently - instance - pet - central - club - flowers - trash - trip - classical - europe - changing - perhaps - self - color - foot - video - based - station - saturday - french - normal - fire - '''clock' - issues - starts - piece - hobby - quit - prison - parent - oldest - bush - coverage - police - forget - girls - occasionally - bank - shape - beginning - moving - sent - vietnam - nights - current - salary - himself - stories - mountains - aluminum - luck - invasion - tape - florida - bed - laws - research - mess - hoping - players - tired - thirteen - magazine - expect - sleep - words - language - push - position - hobbies - background - plants - inches - easily - stopped - murder - shoot - maryland - hardly - bills - attitude - pro - civil - sometime - human - wanting - goodness - security - doctors - kitchen - somehow - penalty - county - eating - simply - die - bike - reunion - project - typical - j - however - total - mexico - base - economy - restaurants - responsibility - jail - lower - died - tested - safe - voting - elderly - sh - listening - sudden - numbers - career - stick - born - wondering - poor - painting - active - professional - supposedly - li - lady - reasons - cool - sixteen - yep - excuse - horrible - political - red - science - federal - besides - shop - opportunity - ride - planning - degrees - writing - mexican - engineering - surprised - bother - share - graduated - account - financial - hands - activities - seventies - step - thanks - bag - role - england - limit - willing - hospital - view - band - teams - tonight - groups - advantage - heat - department - turns - tree - telephone - became - brand - criminal - blue - dry - warm - weekends - grown - stores - rights - garbage - junior - everywhere - prices - metric - ran - equipment - till - cross - considered - track - moment - figured - americans - met - worst - ridiculous - grocery - yours - neighbor - piano - sold - cowboys - selling - savings - grandchildren - nowadays - add - plays - conversation - lunch - straight - sentence - floor - dead - fourteen - meet - ideas - foods - israel - fix - ourselves - swimming - upset - sign - sewing - wood - recipe - van - upon - standard - box - win - wall - offer - products - otherwise - pounds - stations - ex - staying - drop - body - carolina - sales - meal - ice - basketball - mixed - careful - possibly - sick - farm - retired - compared - western - hearing - finished - separate - mentioned - soviet - truck - river - defense - oklahoma - harder - k - re - stuck - cable - trade - favor - positive - related - smoke - effect - various - bottom - awhile - kindergarten - beat - court - beach - baltimore - choose - allow - brown - hang - known - sorts - bathroom - scared - popular - extremely - politics - hair - policy - wha - saint - covered - ca - sisters - boston - lakes - forever - fight - downtown - visa - sauce - garage - lines - suit - whereas - speech - direction - animals - corps - fit - majority - chinese - dark - painted - milk - concern - dump - nature - safety - shoes - star - questions - switch - clear - trips - management - beyond - depending - sing - iraq - pressure - cute - runs - windows - salad - board - chicago - population - legal - super - '''all' - puts - slow - pets - forward - thousands - style - debt - becoming - mo - pop - violent - italian - earlier - cheap - weapons - coast - austin - traveling - passed - x - speaking - points - prefer - threat - further - master - table - broken - random - row - northern - simple - appreciate - district - train - continue - rangers - pittsburgh - truth - value - quickly - raising - pass - tennis - flower - bass - engine - becomes - variety - jeans - exciting - organization - spread - sat - incredible - somewhat - loan - engineer - doubt - southern - monday - backyard - forced - papers - express - saving - owned - recent - toward - fortunate - liberal - shopping - rough - brothers - worried - meals - scouts - vacations - hunting - lawyers - wisconsin - bucks - act - voice - helpful - wide - retirement - cannot - picture - picking - suspect - spare - held - election - study - report - begin - antonio - drove - opposed - league - ju - se - solution - closer - character - finish - knowing - million - common - services - thinks - player - violence - wrote - highway - reasonable - afternoon - series - developed - effort - christian - fantastic - saved - seventeen - barbecue - sun - conditioning - ohio - babies - arlington - hole - visited - rural - herself - knowledge - kn - plans - instruments - above - border - bible - losing - china - events - leaving - written - taste - friday - schedule - anytime - showed - aspect - range - earth - rice - broke - tent - excited - roles - situations - rooms - spot - laid - duty - bottles - russia - fighting - pound - letter - convenient - thi - storm - original - wild - showing - percentage - required - grandparents - extent - economic - voted - canada - trust - healthy - dealing - face - hired - discuss - larger - pleased - eye - constantly - perfect - stupid - square - mix - meat - semester - necessary - mandatory - burning - fly - mothers - aids - checked - bedrooms - fresh - advice - tomatoes - treat - sale - ford - japanese - burn - correct - limited - sleeping - actual - ends - female - hundreds - feelings - impact - leaves - section - lay - provide - planted - factor - fill - rich - deep - someplace - drives - circumstances - honda - jersey - smoking - feels - fifties - access - doors - pattern - names - payment - facilities - automatic - boxes - hi - pictures - versus - ability - edge - politicians - amazed - boss - union - neighbors - distance - prime - article - mistake - grades - bread - bothers - jeez - rented - fourth - alcohol - gulf - catfish - license - shooting - touch - asking - realized - require - natural - expenses - purchase - energy - talks - colors - smart - considering - lessons - tremendous - participate - ages - missed - quiet - cheaper - cents - payments - iron - frightening - forgot - cheese - daughters - lawyer - creek - dental - seat - humid - belt - michigan - extended - flat - driver - foreign - stays - adults - songs - due - wet - double - stress - desert - drink - material - equal - deterrent - machines - eastern - boring - apart - vegetables - recipes - unusual - responsible - hire - garland - ho - dangerous - loans - colleges - served - prisons - recycled - cousins - gorgeous - member - values - fell - fund - metal - wolves - technology - form - enjoyable - entertainment - successful - juries - brings - likely - convicted - appeal - minimum - opposite - sport - complete - smell - gallon - lord - employees - centers - alive - blow - meant - cutting - relatives - bus - commit - none - jus - holding - sand - swing - courses - ski - breed - heck - casual - blood - admit - join - fi - draw - upper - bell - youngest - traffic - protect - tends - medicine - strongly - committed - opinions - brick - sides - congress - gasoline - regularly - plenty - collect - williams - tickets - perspective - damage - present - bowl - kidding - employee - tests - loves - round - nations - german - roof - august - october - disney - pieces - solid - knock - facts - concept - specific - option - jump - stage - block - items - murders - breaks - dirty - shirts - package - pair - pants - data - opera - standing - roll - count - action - physical - differently - teenagers - checks - replace - independent - neither - tuition - eyes - theater - educational - bins - animal - reports - senior - window - curious - de - argument - june - date - extreme - innocent - december - germany - salt - et - cetera - tomorrow - educated - clubs - bird - sons - journal - visiting - pulled - letting - tech - fixed - el - shorts - assume - message - primarily - signs - cuts - john - jazz - balance - un - walked - shirt - dropped - latin - feed - influence - wondered - adult - aid - inner - elementary - negative - swim - projects - raleigh - practically - grand - nearly - turning - cleaning - fort - recommend - ate - skiing - rules - yellow - cruise - impressed - address - labor - dish - highly - repair - prior - fee - terribly - experiences - lead - accept - mart - immediately - portion - nicer - seafood - fault - disease - truly - wearing - male - dances - closed - product - expected - caused - tapes - relaxing - culture - technical - criminals - sentencing - summertime - indiana - killing - encourage - housing - practice - ups - stitch - compare - sentenced - freedom - belong - purpose - throwing - crafts - pushing - sweet - decent - sew - campus - carpet - channels - repairs - preschool - please - minnesota - activity - naturally - cooked - quarterback - wise - satisfied - cadillac - streets - businesses - honest - automatically - routine - coach - arm - driven - dishes - mornings - contact - mall - deficit - humidity - location - fortunately - atmosphere - corporate - meeting - improvement - engineers - network - dressed - mcdonald - spanish - catholic - organizations - hill - model - fifth - elected - articles - expecting - seriously - volunteer - handy - riding - threw - ooh - trend - ba - arts - thursday - uncle - relationship - members - throughout - buffalo - solve - pain - auto - cholesterol - planned - prepared - presented - staff - choices - march - filled - overall - discipline - justice - weights - mile - unit - bringing - beef - camped - wal - mow - microwave - weapon - inch - rule - traveled - subscribe - proper - di - classic - software - pays - complex - missing - shepherd - pleasure - st - cream - expense - automobile - hers - orleans - king - philosophy - singing - eighties - enjoys - democratic - significant - chore - ev - combination - patterns - disappointed - republican - media - pre - sesame - fixing - seconds - passing - daily - trek - signed - raining - accident - scale - interests - route - ma - whoever - reach - judges - evidence - european - seasons - supporting - dirt - loose - france - cancer - planting - iowa - increase - hospitals - maintain - odd - pregnant - math - press - agency - shrimp - beer - key - puppy - sending - hardest - tr - wi - return - corner - suits - dakota - al - immediate - possibility - hooked - song - stadium - frame - dig - navy - comedy - annual - fear - island - exercising - fancy - fat - enjoying - motivated - design - affect - investment - recall - co - luxury - trim - flexible - international - furniture - potatoes - wou - fellow - breakfast - bath - trucks - uses - onto - beans - apple - alabama - records - musical - tie - setting - offs - michael - bugs - freeze - anyhow - properly - underneath - dining - aside - quarter - kentucky - skills - parole - parks - nation - complain - wine - summers - fans - golden - unanimous - shift - warranty - plastics - rates - rains - charged - lincoln - decisions - checking - gray - laugh - hills - commercial - recognize - quote - receive - recording - illegal - generations - advance - motor - outdoor - lab - honestly - rap - oriented - match - art - fiction - manage - flip - appropriate - strict - mad - mental - hung - adds - mileage - bicycle - thoroughly - elections - deserve - indian - according - latest - bu - ta - vehicle - holidays - july - junk - emergency - convinced - graduating - kick - including - teenage - ceiling - valley - victim - ocean - hell - steel - rainy - noise - marvelous - drunk - studying - mountain - hood - greatest - facility - generate - desk - improve - tells - sex - results - si - manager - goal - teenager - concert - copy - africa - paycheck - woods - lubbock - sentences - prevent - impossible - split - faster - speed - thin - chose - monthly - stands - turkey - repeat - japan - financially - lights - page - pulling - explain - potential - rape - wash - minor - thrown - professor - pan - vegetable - fried - onions - roommate - effects - wire - shame - individuals - sweat - scene - yards - whose - thoughts - draft - useful - welfare - organized - communities - realistic - directly - print - printer - purchased - aunt - prepare - millions - challenge - twins - badly - thick - pure - bar - roads - missouri - tall - library - added - sam - marriage - gardens - lesser - views - understanding - prove - deer - delicious - containers - depend - denver - favorites - tear - site - code - winds - parties - relatively - opened - falling - fascinating - forties - options - sharing - attached - owner - version - modern - standpoint - eaten - fully - neck - trials - knee - uncomfortable - temperature - chemical - processing - fruit - lovely - bothered - pot - causes - rea - diet - theory - conflict - earn - disagree - exposed - administration - breaking - buildings - fence - shocked - retire - wedding - ch - dust - acid - pushed - blame - contract - carried - nurse - overseas - texan - fuel - whe - vehicles - increased - necessity - plate - hitting - reduce - blocks - hide - silly - length - writer - film - development - refrigerator - engines - louis - relate - citizens - dorm - began - hawaii - january - wheel - gourmet - shots - bushes - theirs - outrageous - sea - hook - conscious - videos - mastercard - suburb - chevy - tiny - mowing - bulbs - flag - detroit - brakes - charges - retriever - towns - contribute - arms - slacks - definite - difficulty - produce - cultures - cou - discovered - whatnot - philadelphia - ou - electronic - strictly - tendency - mister - regard - con - approach - friendly - handled - governor - louisiana - urban - develop - pardon - construction - classroom - personality - currently - tour - apply - memory - francisco - affected - complicated - risk - shock - roses - movement - tied - teaches - nuts - halfway - softball - masters - causing - cake - unbelievable - cast - characters - actor - association - wallpaper - habit - blowing - expert - screen - bake - dessert - tents - minneapolis - tin - wars - steps - structure - motivation - buddy - minds - wound - coat - holes - covers - shell - tries - undergraduate - springs - banks - kuwait - kansas - established - dozen - steak - following - massachusetts - jewish - affects - hotel - sight - tight - birthday - statement - weeds - consumer - understood - tastes - cartoons - apartments - cares - settled - september - letters - atlanta - newer - guarantee - citizen - occasion - attorneys - tom - levels - sweaters - tires - direct - wagon - remarkable - result - shower - hello - commercials - cassette - forms - standards - james - native - falls - comment - peers - wore - pleasant - mid - region - essentially - differences - fitness - symphony - finger - ad - sounded - joined - trained - toyota - motors - aspects - candidate - votes - hunt - electronics - charging - registered - ed - electric - bite - gifts - manufacturing - farmers - participating - legislation - los - angeles - ticket - survive - catching - eliminate - ryan - luckily - teeth - ill - hated - offices - file - hassle - universal - entertain - roast - traditional - entertaining - crisis - officer - saudi - participated - profession - gue - soap - johnson - task - dumb - gain - broad - surgery - dressing - condition - tex - grill - camper - note - managed - increasing - rained - parking - wake - mistakes - pitch - cucumbers - prescription - shut - forgotten - conditions - rehabilitation - gold - waited - substitute - lift - crowd - gym - tools - divorced - practical - avoid - spray - seats - severe - litter - trunk - programming - soft - discover - cs - zero - firm - army - post - rarely - virtually - suddenly - relative - technically - frustrating - nursery - checkbook - rolls - colored - division - jack - districts - guitar - leaders - permanent - puerto - su - ultimately - race - biking - statistics - accepted - hussein - steal - shown - menu - pension - youth - pride - create - knit - walks - guide - fry - til - requirements - reporting - networks - chain - soil - jumped - hysterical - target - wasting - horse - buses - dear - butter - thanksgiving - instrument - cared - unemployment - switchboard - vice - morals - focus - beds - wednesday - george - principal - non - scores - grandfather - qualified - burned - courts - cousin - proud - ham - hits - literally - transferred - institution - debts - collection - weed - cigarettes - homework - corruption - clarion - purposes - improved - applied - closet - corn - tomato - lasagna - pickup - collecting - immigration - sooner - resources - largest - hurting - soccer - treated - shore - bored - abuse - mayor - continental - professionals - verdict - carrying - button - drinking - dying - reliable - transportation - subjects - fees - unfortunate - evenings - craft - scout - languages - scratch - sears - thirties - solutions - sherman - stack - funds - skirt - fed - correctly - listened - clothing - serving - supervisor - mark - materials - lewisville - below - chemicals - era - incentive - coffee - offered - interior - determine - sets - alternative - instructor - dance - saddam - discussion - joke - boating - fabulous - ship - funding - groceries - entirely - sitter - communications - democrat - cafeteria - corporation - squash - peppers - nor - pour - flour - waco - controls - argentina - flying - coal - nuclear - february - saturdays - phoenix - electrical - wage - laying - effective - robin - wealthy - hampshire - concerns - hall - figures - rochester - agreement - pages - bitty - cowboy - dealers - features - argue - commitment - hanging - policeman - critical - user - dried - strip - pie - balls - eggs - among - lifting - phase - desire - final - jogging - bless - attack - taxed - acres - april - oven - pack - claim - gorbachev - wherever - troops - illinois - industries - trailer - grab - pitching - nineties - ranch - ti - mortgage - mill - sue - register - attorney - alike - adopted - tournament - involvement - silver - perfectly - slightly - meetings - primary - sixth - employer - survey - indoor - partly - addition - nervous - georgia - recreation - internal - rise - schooling - previous - mood - stolen - birds - director - named - mustang - mystery - upstairs - goods - reunions - perform - reality - hurry - scattered - environmental - limits - cleaned - tons - concrete - belts - cabin - rolling - review - invaded - invade - obvious - requires - typically - religious - religion - opportunities - intelligent - peter - album - drawing - trumpet - stock - household - customer - kay - cotton - tennessee - specifically - lowest - moon - reputation - honor - secretary - rico - assumed - realizing - attitudes - rat - vegetarian - occurred - practicing - promote - adding - designed - delivered - nah - category - disk - exact - pilot - costing - brake - mercedes - pr - abortion - texans - moral - capable - applications - beneficial - flavor - drain - reporter - clock - aggravating - politically - governments - clearly - designing - burden - laughed - topics - chunk - spots - streams - efficient - slowly - arkansas - discussed - conservative - flute - choir - sugar - answering - lists - babysitter - impression - lets - david - forces - thumb - cop - creative - dip - switched - pine - content - aerobic - conversations - touched - candidates - legitimate - assistant - annoying - finance - vietnamese - husbands - storms - pump - lawns - patio - roots - russian - plot - mouth - amounts - suffering - headlines - hunter - acre - ties - measure - la - trout - guidelines - bonus - emotional - cow - unique - providing - encouraged - positions - barely - criteria - olds - tradition - scares - workers - iran - toys - tornado - moves - ton - recyclable - crowded - ladies - melt - crack - finances - score - crawfish - transmission - purple - mavericks - eve - babysitting - committing - maintenance - exposure - cassettes - socially - reagan - soup - hiking - athlete - cheesecake - grandson - skunk - addison - skied - realistically - profit - emissions - skirts - heels - awards - silence - lambs - whatsoever - lotus - offering - unquote - forest - phones - miniature - medium - grandma - goo - finishing - judicial - penalties - ki - hose - hungry - success - monitor - application - pink - depressing - supper - bureaucracy - status - territory - mississippi - exercises - preference - peo - packages - broadcast - doctorate - scholarship - grows - lean - anxious - core - voluntary - minority - couples - ears - crochet - selected - voters - democrats - authority - airport - horror - fox - sub - professors - legs - stir - celery - eats - chocolate - cup - asleep - studies - afterwards - slip - lap - connection - individually - dependent - foundation - worthwhile - fields - freedoms - giants - stars - kittens - vet - balanced - homeless - birth - mu - campaign - empty - scenes - heads - kicked - messed - arabia - greatly - bob - talent - nurses - strike - reached - dedicated - suggested - guard - basement - laughing - communication - ghost - abused - token - plane - beating - former - films - fought - failed - lesson - lo - walls - sink - girlfriend - accused - hurts - loud - gang - consistent - stereo - fa - struggling - interview - employment - borrowed - spoiled - tub - tea - mex - lemon - bin - evidently - grant - tremendously - cartons - opening - mi - skin - seed - acceptable - filter - golly - sits - coke - followed - basics - psychology - operate - owns - freezing - nissan - te - accidents - settle - leader - poverty - dr - masking - fiancee - jugs - landfill - heavily - lie - trends - interstate - competitive - arguments - weigh - competition - surprising - temporary - inclined - overnight - priority - darn - honey - roy - accurate - rocks - babysit - priced - twin - le - ban - athletes - lack - pond - muscles - connecticut - anyways - pacific - owners - freon - responsibilities - toxic - permit - closely - pitched - dresses - scenery - kevin - costner - greater - enemy - granted - welcome - define - advertising - salesman - reverse - ideal - locked - directions - object - figuring - frequently - boot - therefore - jails - murdered - purdue - received - led - picks - include - democracy - studied - fond - climate - alaska - sake - avid - healthier - fired - connected - stealing - chances - humane - supported - enjoyment - penny - turtles - encouraging - ea - marketing - garlic - broccoli - potato - suburbs - formal - rush - concentrate - woodworking - leaf - cent - automobiles - ozone - devices - source - comedies - landing - semi - agent - string - precious - ugly - phenomenal - hilarious - winning - doe - mobile - farther - chili - landscape - path - someday - complaining - sky - load - baked - stove - bend - en - command - decides - attacks - wished - ac - yearly - weekly - indeed - brief - mike - dealer - emergencies - event - charlotte - slapstick - purely - included - unfair - meaning - injuries - vermont - cornstarch - egg - worrying - wrap - buff - advertisements - plain - chores - mention - allows - novels - bases - billion - protected - workout - cancel - daddy - outdoors - novel - bruce - awfully - constant - spends - accent - deductions - dealt - informed - tournaments - snake - penn - sox - tho - root - rip - combat - polls - sundays - blank - frozen - assistance - ads - hiring - drivers - recession - convert - alternate - dryer - lightning - gr - chair - emotionally - angry - mature - treatment - lousy - seventh - ninth - deck - printed - answers - jumping - mentality - popcorn - shade - oaks - reasonably - budgeting - controlled - british - unreal - mini - performance - tip - ge - handgun - toy - skip - armed - fleas - redo - deposit - goldfish - childhood - removed - surprises - dodge - consulting - sacrifice - placed - sailing - classics - bottle - secretaries - diesel - liter - chosen - boats - returned - item - november - adoption - fewer - pizza - feature - nebraska - cafe - alzheimer - agreed - choosing - council - bermuda - suspense - satisfaction - winters - headed - murphy - customers - habits - norm - loss - bec - crawl - exist - attractive - wor - leg - selection - prob - sources - audience - styles - davis - borrow - goals - determined - accounts - pat - vs - whi - advantages - diapers - pin - models - queen - sticks - mesquite - canal - incredibly - feeding - importance - salvador - fathers - regardless - translation - frustrated - bond - structured - counting - factors - economical - involves - radical - depressed - universities - shall - tank - jesus - counselor - proposal - allowing - pocket - airplane - gangs - saints - consideration - dolls - horses - spouse - midwest - fashioned - screw - curriculum - oakland - candy - blanket - backpack - industrial - smog - canyon - elect - backed - bear - comfort - economically - warmer - sunny - exhausted - afternoons - ranger - worries - orange - physically - experiment - famous - copies - cardboard - pa - demand - polluted - tail - compatible - wordperfect - drag - float - carter - presidential - dug - israelis - relations - arab - rings - estate - salaries - recognition - headline - nowhere - ratings - asia - ei - lifestyle - tenth - preparing - cookies - fifteenth - bait - experienced - defendant - surprise - cocaine - reminds - liquid - destroy - century - admire - rare - tuned - schwartzkopf - reduced - cruel - cheers - picnic - accounting - pace - jane - tune - knees - holy - owe - pepper - worms - bricks - mound - additional - flow - tended - refuse - landfills - stance - cry - dumping - memories - anyplace - geared - arrangements - depth - tuesday - raw - neighborhoods - policemen - net - located - trail - edition - purchases - injury - beliefs - statements - sin - cultural - shorter - guilt - 'false' - economics - enormous - lifetime - advanced - adopt - mechanical - liters - dream - bachelor - nasty - scare - laundry - strikes - quilt - chlorine - shed - whom - ds - convince - courtroom - volleyball - domestic - stomach - concerts - stepfather - typewriter - clouds - rating - gifted - generals - clip - screwed - australia - maine - quarters - chrysler - oldsmobile - pistol - membership - seldom - supply - tornadoes - hu - oth - porch - persian - lakers - tarpley - seattle - thrilled - boards - brian - roughly - paints - attic - ceilings - baths - pig - killer - pros - paris - brooks - dealership - developing - islands - kennedy - ending - ratio - created - separated - lasts - wives - jean - spaghetti - village - biased - operating - enid - crappie - employers - conference - tuna - tole - pollutants - jones - handling - emission - vary - initially - finds - obligation - select - carefully - barrier - strangest - spaniel - blues - comparison - attend - focused - ver - blacks - jurors - floors - spell - wears - heel - wooden - assistants - accustomed - mild - bands - bang - alrighty - campbell - tours - panama - believes - corrupt - cocoa - interestingly - makeup - communism - etcetera - historical - heating - hispanic - bilingual - ultimate - bicycling - elsewhere - scientific - combine - ar - consequences - gal - cure - grader - corporations - stitching - grief - leading - graphics - regards - rank - personalities - mission - whiz - voter - controlling - believed - minded - kyle - author - certified - shelter - historically - protecting - fits - carrots - knitting - professionally - specialty - jars - needlework - robert - regarding - billions - rental - nolan - ruined - searching - taco - mama - relationships - exchange - highways - handicapped - scouting - discouraging - dropping - electricity - stacks - catalytic - muffler - pipe - error - compete - cajun - haul - discussing - kurds - anti - orchestra - needle - ireland - investments - dramatically - drawback - raises - growth - definition - guatemala - receiving - reported - aikman - shoulder - banking - highest - jimmy - jim - cardinals - jamaica - magic - convictions - usage - hamburgers - sporting - muscle - sophisticated - element - occur - designated - depression - covering - tooth - filling - sharp - strawberry - relax - advise - enter - throat - instances - allowance - stronger - debate - literature - shelves - remove - advertised - progress - smith - richard - raped - offense - detail - christians - tore - accomplish - released - loaning - bright - intense - dies - peas - steaks - spicy - conditioner - convenience - drought - cups - nee - russians - yeltsin - thirds - acting - northwest - freeway - curbside - corpus - publicized - mets - memorial - onion - garages - employed - lazy - wrestling - crab - loaded - stationary - coupons - ripped - balances - convict - loving - represent - judgment - pork - wasted - selecting - recover - divide - civic - builds - quicker - translate - churches - slice - discount - swear - nap - centered - vitamins - planes - contractor - drastically - elaborate - continued - decline - uncles - utilities - camera - musicians - musician - condominium - augustine - tolerant - southwest - counselors - mirrors - communicate - worker - medication - powerful - manure - replaced - redone - shotgun - memphis - turtle - supreme - owning - cycle - jay - airline - sir - method - mayonnaise - execution - plea - mower - buttons - campaigns - log - quarterbacks - hamburger - arizona - ignore - bred - indianapolis - envelope - conversion - hail - flooding - spanked - fluid - bay - leather - italy - locations - blew - extensive - traded - transition - kilometers - robbing - kills - cadillacs - randomly - institute - triangle - mercury - volvo - dan - leads - pe - rome - attraction - aunts - latex - texoma - rabbit - audi - methodist - basements - tee - clarinet - walker - massive - stroke - leak - sites - deals - lined - embarrassed - slab - officially - behavior - examples - witness - wishes - unlisted - terminal - modem - poodle - weighs - paul - subscription - chapter - likewise - documents - shoe - miserable - jacket - lax - varies - peach - blows - disco - suicide - bo - downhill - profitable - twenties - official - pressures - image - monies - absentee - senate - ethnic - involve - proven - offenders - afghans - borders - peaceful - ab - blown - lock - adequate - scholarships - offers - bat - injection - useless - revolution - mormon - enforce - cosby - preapproved - fortune - messing - promised - sum - frankly - damn - gravy - boil - remembered - consuming - metropolitan - gift - seeds - factories - layer - costly - usual - cooler - daytime - appearance - sufficient - balcony - chasing - chest - las - plumbing - farming - becau - cleaner - packed - cried - lover - indians - racial - occasional - rivers - pollute - locally - contribution - presentations - laser - represented - guests - apples - hank - closest - oak - missionaries - rob - mailing - ring - bias - newsweek - nicely - tables - zone - faith - cheapest - excuses - fail - administrator - baylor - sued - emotions - appeared - notes - tying - nail - shake - comp - entry - peer - sore - sticky - pudding - knowledgeable - haze - mass - stressed - academy - considerably - rowlett - shortly - nose - ordered - crying - handed - wages - input - praying - warfare - accomplished - woke - regulation - equivalent - bankrupt - jog - ell - ri - appeals - extraordinary - metroplex - absolute - conclusion - accountable - glory - pray - prisoners - bomb - destroyed - testament - pu - suggest - polish - principle - gardener - beets - behave - periods - shrubs - sprinkler - fajitas - describe - release - motorcycle - bound - styrofoam - valuable - tolerate - attempt - jordan - exists - screaming - stump - breathing - selfish - dick - blonde - maximum - max - secret - holds - landscaping - reads - prevalent - galveston - weirdest - joy - nationwide - soda - coin - dukakis - steam - embarrassing - plates - incorporate - deductible - machinery - categories - funded - chairs - recommended - handicap - bowling - meantime - accord - tyler - mosquitoes - booklet - coaches - syria - dinners - holiday - baltic - priorities - recognized - wipe - longest - suburban - delayed - backgrounds - varied - eighth - den - coats - theme - nicest - penney - adjust - hou - toilet - bullet - rapidly - capabilities - hilly - container - layoff - watches - jewelry - maker - infant - resent - blade - watering - wildlife - decorating - fabric - leadership - privilege - exotic - loop - seasoning - chopped - retiring - backseat - par - leukemia - ammunition - barrel - pontiac - mazda - expressway - administer - unions - function - stopping - organize - parenting - schedules - slept - wheels - resource - competing - sees - careers - pits - carpeting - legislature - functional - divorce - bridge - transfer - needlepoint - cookbook - breast - published - portland - throws - counts - larry - louisville - com - glued - tube - slide - protective - felony - dursban - renting - rebuild - london - shingles - lea - stink - puppies - schnauzer - steering - plugs - mechanic - worn - inflation - diving - stretch - purse - introduced - stripped - occupied - siamese - controversy - buick - religiously - allergic - edges - sail - nancy - biographies - nonfiction - thunderstorms - intend - educate - nerve - recordings - concentration - steve - academic - freshman - sophomore - neutered - ponds - disgusting - narrow - comparing - associate - adjusted - cottage - foster - rake - outstanding - appreciated - malpractice - thankful - personnel - selective - administrative - comparable - pier - contributing - cart - explore - commits - affair - cleveland - glasses - downstairs - details - backpacking - blackberries - alternator - antilock - peeves - chris - billy - henry - smooth - polluting - sweats - fever - sweater - wyoming - filmed - guts - respond - theories - database - culturally - threatened - tears - messages - ear - bark - grandpa - versions - lee - wave - analysis - gear - comments - colorful - photography - victims - resolution - stiff - brazil - minister - interpret - hero - lebanon - declare - heritage - escape - columbia - prescriptions - assumption - berkeley - combined - traditionally - relaxation - entering - regulate - consciousness - react - sexual - proved - booze - cloth - herald - instructors - vested - consultant - taxpayer - lethal - restricted - pub - directed - frequent - tempted - hat - treadmill - abilene - hates - skinny - turnout - bouncing - wayne - beforehand - deserves - ninja - expand - probation - eliminated - yogurt - powder - boyfriend - blankets - alarm - vacuum - chop - strips - ruin - knots - bits - rogers - guessing - addicted - pitcher - fingers - rascal - whip - ag - vegas - response - advocate - donate - proposed - emphasis - transit - carpool - map - sheets - punch - calories - strenuous - laboratory - resolve - serves - drum - compact - tigon - initial - moms - identify - respected - vision - visits - eagle - summary - illustrated - dial - extraordinarily - intelligence - stages - troy - injured - increases - joints - dayton - mary - deduct - administrators - pressing - contest - arguing - marked - seek - gross - roberts - mentally - session - failing - occasions - videotape - clever - jerry - mutant - warning - intellectual - approve - declared - hallway - edging - pressed - strawberries - nieces - sour - homemade - trick - mixture - solar - inspection - global - winner - drawn - trace - sympathetic - managing - anchors - sulphur - chuck - overcrowded - stole - dean - steven - bi - thursdays - appear - collapse - dome - flex - stressful - ok - paroled - apt - patient - injustice - farmer - socialized - snap - clay - wintertime - beaches - touching - curb - clippings - flowerbeds - toes - buffer - hardware - republic - battle - heading - units - shadow - yankees - rounded - immigrant - diseases - caesar - saves - nephews - slowed - grounds - snakes - abilities - missiles - nova - pen - digging - drew - pools - strung - port - sticking - orioles - hopes - ov - fertilizer - railroad - rub - robberies - theft - tourist - sta - stood - eligible - freshwater - saltwater - shark - fool - commute - deciding - fam - terrific - catalogs - froze - ethic - controversial - crossed - georgetown - soy - hoi - pasta - dreams - painful - filthy - innocence - leaning - cleared - feasible - perception - lottery - parochial - announced - ll - gallons - kindercare - behavioral - classrooms - merchandise - washer - refrigerators - tinker - supplies - stimulation - alert - furthest - cease - reward - biology - starter - prairie - drill - johnny - experiments - exercised - paneling - tougher - strain - noisy - instill - housework - gap - auditor - dot - maternity - butler - amarillo - mulch - actions - lawsuits - senators - anniversary - bonding - leisure - fertilize - dragging - decorated - statewide - format - skeptical - pad - mode - justify - budgets - seniors - chief - efforts - hispanics - drastic - frost - layoffs - temperatures - airlines - hoses - safer - nails - salads - clients - vans - surely - pulls - operation - sells - bikes - unable - permanently - slight - rifle - impulse - manual - handguns - gauge - someth - youngsters - karate - hotels - demanding - wool - warnings - sanctions - attract - mysteries - tenths - pots - neglected - sliced - leagues - bulls - celtics - struggle - qualify - bars - lucked - cliff - cabins - relaxed - gates - oregon - loads - crystal - fumes - previews - floating - reviews - peaks - poorer - matters - continues - costa - geographic - earthquake - intrigued - ain - albums - singapore - proof - bulb - spayed - fr - skating - robbery - sector - horn - drafting - premeditated - frustration - radiator - boundaries - bureau - belonged - nephew - officers - serger - seam - choral - dating - genuine - requirement - gradually - asians - establish - effectively - reel - ra - steady - produces - switzerland - calm - anthony - suzuki - plymouth - sized - thread - centimeters - recorder - signal - brands - resolved - converted - dumped - spur - trap - yell - smarter - humanities - amherst - sheriff - safely - completed - equally - labs - foam - sociology - entertained - lobster - title - recommendation - residential - vicious - lease - outer - honesty - switching - freezer - tollway - heavier - bahamas - sperry - rollers - mowed - cougar - chi - crooks - lips - remodeled - cocker - eigh - syndrome - overweight - titles - lettuce - gather - span - greenville - drip - senator - dam - zip - lexus - peninsula - counseling - grapevine - parental - branch - travels - atlantic - screening - thr - veterans - substance - golfers - golfer - manually - carbon - disposition - harrison - putt - disability - marry - infants - engaged - braves - mums - provo - boots - commercialized - replacing - moisture - assign - router - saws - translators - alleviate - acquainted - caring - incinerator - receipt - scrub - setup - hazardous - wardrobe - jackets - blouses - suspenseful - graphic - gary - monitoring - hacker - india - desirable - invite - reaction - fantasy - shocking - recorded - addresses - rig - instructions - faced - advances - paperwork - tongue - cha - accommodate - motion - performed - composer - horrendous - beatles - crop - applying - budgeted - coda - seminars - challenging - righty - cave - dragged - conscientious - lenient - warehouse - managers - windy - allergies - flu - inordinately - cinderella - shoulders - progressive - cam - colonial - nicaragua - exception - translations - scream - independence - cope - economies - tropical - consequently - difficulties - plead - disturbed - correlation - movements - athletic - stoned - invested - coincidence - analyze - chip - miracle - fif - kee - inmates - external - civilian - trapped - ghetto - amenities - clutch - disposable - makers - pursue - organ - blast - pluses - racquetball - lobbyists - republicans - outskirts - carpenter - buck - predict - backwards - wok - sweets - ugh - tablespoon - singer - shops - singers - stockings - mirror - crocheting - zucchini - voices - pockets - exhaust - oxides - victimized - cynical - colder - castle - listed - deliberately - spoken - adventure - repeats - imagination - viewing - bench - catcher - bull - corners - dustin - hoffman - kmart - concerning - bulk - accepting - eerie - na - properties - lying - sturdy - logic - dated - slick - separating - talented - raiders - device - macintosh - statistical - sausage - italians - canoe - thrill - honeymoon - arabs - defending - stability - pops - musicals - sends - asks - ringing - versa - opens - offhand - dana - envision - philosophical - charity - volunteering - commentaries - informal - commentary - viewpoint - independently - sections - nope - firmly - forcing - flags - gathered - gett - neil - jagged - awakening - julia - beside - initiated - pole - kidnapping - witnesses - handles - panel - refined - portions - moments - accessible - hollywood - norman - assets - tire - pursued - factory - au - romance - fuels - presentation - closets - hips - rated - publish - protestant - females - crowds - poorly - identified - buys - stuffed - chamber - brass - arrest - productive - ticks - earned - prisoner - reimbursement - spiritual - z - pronounce - riskier - protection - consistently - endless - charles - rebellion - pacifist - curse - unto - spirit - barbara - bombs - tearing - struck - heaven - theaters - northeast - licensed - reducing - peoples - lithuania - damaged - bacon - worm - bug - sprays - bloom - rye - leasing - nightmare - beautifully - washing - nurseries - neglect - mixes - frying - guacamole - disc - populated - cooperation - bundle - nickel - rely - insulation - powers - soldiers - leery - iraqi - germans - safest - appears - whoa - republics - participation - reference - disgusted - hauling - permitted - orientals - excluded - stone - sack - crush - fills - crap - fisher - leap - interact - publicity - brooklyn - idiot - easter - vines - extensively - fou - extras - shootings - knife - outcome - pensacola - fished - interviews - disappointing - overworked - speedy - apathy - juror - ann - appointed - spite - ballot - counter - appetite - technician - complaints - begins - reaching - referred - influences - swayed - award - slips - stranded - bankruptcy - users - socialize - boom - secondary - captured - backward - intellectually - bean - measured - remind - bolt - swung - dryers - extension - hooks - trinity - lasting - hatred - snack - altogether - heal - restore - restored - deeper - strength - link - graders - noticeable - lowering - preferred - remarkably - baroque - barry - townhouse - fertilizing - decade - slower - pl - hop - creates - alternatives - gains - operated - forgetting - detector - deliberate - cycling - legally - bridges - prize - adolescents - gamut - slant - fascinated - baskets - glue - collector - accountant - rides - def - remote - professions - suggesting - crafty - remembers - bears - identical - burns - basket - believer - document - korea - lasted - meatballs - waist - rear - stretching - fold - kroger - linoleum - angle - wo - diverse - buyer - bullets - banning - bargain - breeding - humor - evil - q - illness - peop - oldsmobiles - fiance - bodied - educating - showers - mud - connect - bothering - rebuilding - kuwaiti - possibilities - overcast - cloudy - hurricanes - forecast - ru - therapist - scott - rugs - angel - wheat - editor - caretaker - liking - kiss - inevitably - chat - unhappy - comfortably - litt - variation - protest - fences - samples - messy - affectionate - disabled - barking - production - kelly - corvette - fanatic - towel - firing - coaching - presents - burglar - overcrowding - lane - imprisonment - arrested - asian - wrecked - beauty - olympics - conviction - playground - garth - rs - jam - literary - cre - execute - cartoon - nearby - fundamental - ribbon - bobby - montessori - sofa - fetched - rolled - sewed - starters - crocheted - liberties - nintendo - majoring - associated - threatening - freezes - traction - perspectives - southeast - carp - advertise - pint - merit - durham - meryl - snowed - advisors - terrorism - sectors - joint - terrain - citizenship - melted - ounces - ounce - keys - races - smokers - sensible - bradshaw - hip - af - richmond - sen - readily - consistency - canned - enforcement - contracts - cons - differ - suffer - tool - specialist - flies - confidence - esteem - ironing - inexpensive - slots - buffet - cuisine - congressman - persuaded - minorities - stranger - brush - coastline - blind - cape - dow - partially - calcium - vast - abroad - museum - physician - physicians - redid - erie - cooperative - survival - har - exac - intentionally - affecting - urine - grandkids - agricultural - beam - display - constitution - capitol - ordinary - babysat - aggressive - journalism - grad - tia - olive - collin - casserole - cakes - operas - accents - almo - oprah - tiles - tile - trillions - struggled - tips - tulsa - museums - sailboat - perch - styling - seville - rotten - ken - dentist - maverick - medicare - douglas - leased - insane - madison - dock - subdivision - pouring - wooded - departments - airplanes - pilots - premium - ol - liberty - malls - fossil - produced - bumper - purchasing - gentleman - tribe - wordstar - rinse - santa - broth - thomas - addressed - unconsciously - enchiladas - slickers - rib - lawry - housekeeping - opener - doll - sierra - nuskin - legend - ruben - batteries - drywall - disturbing - relief - devastating - confined - strides - incineration - drums - cement - leaked - presently - semiconductor - firms - foremost - hoods - sample - client - update - predominantly - gory - dancing - inherent - harmed - sneak - invisible - obligated - invariably - supervisors - dentists - chew - randy - understandable - springer - artist - stardom - taylor - synthesis - adapt - pla - labeled - label - attended - manuals - stephen - stimulating - improvements - veterinarian - serial - wrongly - preschoolers - conditioned - detailed - unload - highs - collar - identification - stones - zoo - owens - sandinistas - greedy - kings - roosevelt - bananas - tempting - lessened - performances - greek - plots - sean - statehood - quo - assuming - significantly - woul - ve - occurring - stringent - troubled - resistance - regional - disastrous - practices - alternates - approved - believing - joe - iraqis - habitual - bone - dope - threaten - inventory - bibs - tasted - afghan - quilts - riot - earning - backup - christ - begun - guaranteed - beats - monetary - ne - involving - punishable - instantly - hog - logistics - joining - tutor - doggone - hats - remodeling - allen - cabinets - motivate - inspired - computerized - pers - extremes - willingness - excitement - jacobs - architect - lump - shared - evaluate - exclusive - expanded - tablespoons - ginger - peanuts - sang - choirs - finals - aggravated - okra - ruled - landmark - restrictions - smack - investing - drier - hotter - orlando - adventures - scrap - battery - timing - boeing - alcoholic - sullivan - continuing - ukraine - adjustments - astros - claws - declawed - rushed - stray - void - chase - messes - procedures - underwear - skill - politician - mitch - caddo - prizes - lids - files - tra - questioned - wolf - thunder - howl - buffaloes - honduras - wealth - contributes - wider - soak - installed - converter - authorities - visible - ash - suspected - agencies - mouse - printout - producing - unix - blueberry - hike - overly - baker - assault - restraint - enj - danny - couch - arnold - ridge - gene - clo - unemployed - ahold - dislike - equality - mistaken - aged - quoted - harsh - realizes - upstate - expend - brinkley - complaint - slanted - restricting - halls - wheelchair - supervised - terry - monstrous - drawbacks - fights - learns - fallen - challenged - rewarding - mailed - snowing - ni - wreck - amongst - misery - schwarzenegger - goofy - entered - rationale - prosecutor - excused - bare - lawsuit - audio - teti - eh - lacking - memorable - wisdom - succeed - jokes - frenchman - liability - workmen - executives - marijuana - surface - lengths - fondue - cheddar - watermelon - saucepan - lukewarm - cookbooks - collected - saran - hollow - warming - spa - bathing - incur - institutions - freshmen - sinking - description - graduates - nelson - commerce - recruiting - homemaker - cri - ankle - install - sympathy - burnt - episode - awesome - scandal - grasp - multiple - fonda - tolerance - enforced - lighter - enemies - gentle - avoided - approaches - sheep - grace - reserve - claimed - abusing - borrowing - servants - stops - moist - ass - kin - trimmed - varieties - experimenting - mashed - foo - barbecued - barbecues - marinate - manages - sacks - giant - pact - confused - stepping - seams - michener - blooming - stewart - tim - rebel - grammar - yankee - restriction - biblical - paychecks - request - stable - diego - lush - ga - limb - flooded - strokes - animated - muddy - sharks - quantum - partners - deedee - formula - subtle - solved - tow - bounds - rooting - championship - toronto - ontario - cabbage - cantaloupe - siding - twist - sirens - reminded - affluent - bee - captain - tackle - advancement - isolated - destroying - foggy - regulating - cigarette - linguistics - canadian - payless - cashways - bucket - cereal - maxed - rally - richards - convention - everytime - mar - dairy - doubts - pursuing - flight - crew - oops - misses - amazingly - punished - suited - flexibility - rehabilitate - deduction - debit - executive - requested - implemented - disadvantage - shoddy - naive - moscow - marcos - shoots - blessed - cad - noon - formed - bargains - circuit - dissertation - serviceable - roughing - cots - condo - poles - locks - ob - hearts - passover - seder - catholics - attacking - syrian - bagels - affairs - iranian - ideals - dividend - voluntarily - devote - performing - pipes - arteriosclerosis - nonexistent - torn - outfits - prejudice - invited - remembering - remedial - certification - textured - insides - tone - tornados - exxon - brain - photographer - audit - mainframe - jet - upgraded - baghdad - scheduled - receptacles - continual - potentially - prestige - perceived - trivial - broader - sided - claims - adjustment - tread - richland - discouraged - stepdaughter - sacrificed - possession - castroville - timer - shady - lehrer - editorial - embroidery - envelopes - continuous - typing - claude - aging - attending - trainable - watered - composition - dis - disabilities - intentions - inter - gay - facing - interviewed - seasonal - patch - peculiar - rec - brilliant - invest - payday - buddies - wiped - indoors - fiddle - inspect - peel - hors - impress - ridden - objects - surprisingly - servicemen - teeny - equitable - tier - stair - targets - knocked - accuracy - impressive - cycles - writers - rehabilitated - fleet - drops - quarts - peeve - sa - pregnancy - meets - campsite - specialized - indicated - beings - obnoxious - stereotype - communist - sway - soviets - monetarily - circle - blah - carnival - outs - indication - gigantic - ownership - feeds - latch - pansies - cau - screened - references - tabs - steamed - blueberries - desserts - sandwich - slices - mba - describing - duke - mechanics - secorski - financing - punishments - whack - addiction - '7' - specials - climbing - shells - spectrum - ins - ants - painter - painters - noises - rats - sequel - rocky - stallone - pai - exterior - afterward - greasy - builders - intervention - solving - appliances - fu - hesitant - incorrectly - lizards - bats - evils - refugees - permission - dive - instituted - parked - landry - scope - eagles - cows - orders - tokyo - subway - remorse - heinous - manufacturer - occupation - neal - brushes - manhattan - stud - leftover - coll - rifles - shelf - robbed - temporarily - inconvenient - limitations - spelling - precise - commodore - specifications - belief - aggravates - nev - bites - knox - overheard - rows - frederick - pointed - stu - rusty - reelected - loses - pretend - symptoms - biography - destroys - delicate - speakers - happier - grub - raiser - petroleum - menial - jeff - blink - recommending - diner - streep - copper - explosives - disappear - cosmopolitan - swimmer - vogue - felon - converting - bolts - ross - ro - reject - outfit - automotive - mexicans - envious - risking - shifts - cylinder - gaining - tragic - expressing - expression - chilly - yorker - dall - deny - bonuses - lucrative - congressmen - portray - needing - scallops - susan - protein - gained - baking - academically - kenyon - admissions - sciences - provides - preparation - logical - cage - owed - devastated - despite - pillsbury - surrounding - prosecution - liable - limitation - writes - follows - nash - paso - juice - reusable - procedure - vegetation - bach - delivery - rapes - thou - contemporary - brookhaven - heater - curiosity - fuse - assembly - limestone - danger - ferry - ducks - pilgrimage - annoyance - seniority - ben - partner - executed - healing - darker - diff - routes - touring - footage - abandoned - retain - warped - leslie - mockingbird - tricky - steep - overwhelming - killers - calendar - faculty - bingo - fog - rationing - visas - awareness - howard - repairing - bathrooms - upside - symbol - conception - veteran - daylight - babysitters - valentine - ideally - driveway - digest - danielle - severely - confident - idaho - searched - appointment - givers - pappasito - dillard - expertise - tasty - publisher - reruns - soaps - repaired - theatre - cedar - mainstream - refer - tina - secure - rockets - loo - contacts - carpooling - appalachian - adventurous - hostages - fatal - patients - '2' - sunfish - donated - shepherds - joey - treats - researcher - unnecessary - stucco - payroll - scan - conductors - versed - midway - beard - princess - naked - custom - mount - marshmallows - mommy - committee - allegedly - tap - woodstock - routinely - rod - tuesdays - patterned - czar - donald - booked - intent - granddaughter - chips - sedan - discounts - inn - dent - crib - deliver - schutzhund - alsatian - refused - nola - grapes - marinated - maxima - oahu - conferences - newly - kauai - maui - hunters - concentrated - bakery - hay - sleeve - niro - builder - curtain - spain - crust - intriguing - reimbursed - licenses - physics - reaches - donahue - cruises - nassau - olives - lodge - grandsons - acoustics - waves - uniforms - fancier - mesa - dalmatians - soapdish - mushroom - milwaukee - violin - harpsichord - rumor - disneyworld - thinner - carolyn - risque - saxophone - jodie - hopkins - credibility - barbies - motel - wendy - broncos - chico - troop - warranties - picky - aberdeen - solicitors - autumn - nevada - marlin - operations - exhibit - shuttle - wycliffe - sheltie - particulates - colombo - duties - burner - hometown - permits - contributions - astronomical - attire - blazer - critics - omaha - disturbs - politeness - polite - presumably - conscience - canceled - respects - norms - rang - solicitations - gossipy - obtained - frequency - turf - soliciting - medications - chow - smiling - leash - acts - gin - dispute - reactions - intimidated - alm - inundated - switches - influenced - rhythm - sim - mus - jimi - hendrix - pitiful - promise - simon - qualities - achieve - unexpected - alw - loaned - quota - holler - leeway - pains - wing - coordinated - spelled - skid - counsel - violation - actu - modeling - lyrics - oldies - phil - collins - criticize - suggestions - petting - farms - exit - determination - preservation - ted - teddy - underclass - considerable - watcher - gathering - sexually - justified - territories - capita - carefree - taxing - weak - territorial - resist - attempts - craze - uni - subscribed - tractors - regulated - cal - organic - weaponry - tanks - offender - cured - slave - foul - flipping - shades - acclimated - squares - tapped - jerusalem - fearful - interrupt - interrupted - erase - monterey - jose - ram - supplement - standardized - overtime - amazes - circumstance - summons - conservation - indestructible - littlest - missionary - wrapped - ellen - toyotas - preferences - rag - straw - wallpapering - hoe - vo - tubes - dulles - incoming - eldorado - coun - tenure - evaluation - assigned - flatter - chickens - curry - overextended - compl - housewife - simmer - yarn - demo - ensemble - bas - transmissions - frivolous - sessions - grind - ranges - quits - disconnected - substances - etched - notion - redeeming - grabbing - scrape - por - funniest - rotted - harvest - adaptations - mining - incaviglia - excess - exhibition - da - nightmares - biscuits - echoes - actress - believable - drafted - truman - snider - extend - planet - packing - dumpsters - awakenings - deniro - actors - ser - garp - attacked - ralph - rapid - agreements - forests - polluters - penalize - undergrad - output - sensational - failure - fattening - catered - brownies - crock - downy - delta - cooled - duplicate - clearing - pheasant - genuinely - capability - shield - agenda - coup - briefly - context - governors - irish - reserved - collectors - ole - antique - eights - irate - noticing - solo - shipped - dramatic - grateful - segments - updates - trite - platter - inc - incidences - estimate - walter - cronkite - mold - efficiency - spouses - widely - redskins - lynn - deaths - observe - educators - nother - visual - graded - objectives - principals - passes - poli - interaction - prescribed - breakthrough - fake - fears - web - housewives - awake - reservations - suggestion - genre - innovative - umbrella - annoyed - myth - proportion - generational - exams - gung - essential - pushers - cathy - sassafras - dye - barn - outlets - hollering - dents - scratches - layers - swiss - cauliflower - trays - pans - boiling - vanilla - custard - unsweetened - spoon - freons - officials - disaster - contributor - analyzing - respiratory - powered - desired - trainer - butt - psychological - majors - staggering - hamilton - tracy - protesting - prejudices - dale - willie - summoned - questionnaire - skipped - bail - hebert - mangione - breeze - fairer - regulations - seriousness - darkness - remem - judith - dedicate - owes - domino - insured - backing - risks - devalued - magnitude - taped - breakdown - beep - murderers - murderer - insanity - slap - wrist - merry - reinstated - atrocities - prayer - premature - pushes - offend - ridiculously - bind - identity - bombed - keepers - deducted - offset - owing - giveaway - immigrants - seeking - insects - daffodils - bud - dandelions - plagued - tiller - trie - plum - fescue - dries - greenbelt - cracks - smokey - megahertz - samna - proficient - poison - reused - mash - heights - lone - vicksburg - handful - futuristic - patrick - foggiest - soldier - buckets - tot - immigrate - render - fab - principles - payoff - incinerators - smelled - ozarks - disappeared - tad - tiers - glance - enlightening - nashville - fellows - communicated - catalog - insight - spoke - flounder - padre - aransas - dingy - marriages - becky - squeezed - triple - caribbean - bees - lilac - overhead - static - lumber - juan - irresponsible - bold - carmel - smarts - surf - snappers - snapper - described - aetna - medi - irving - provided - wells - romania - resort - affords - printing - seminar - thaw - payoffs - persuade - judeo - litigious - opponent - underdog - equate - fred - divided - separately - turnover - descent - filet - sole - jerk - therapy - companions - dresser - explained - hush - agrees - aff - drama - at&t - modest - bef - prep - vocational - col - inevitable - atomic - disadvantages - distracted - measurement - arrogant - clientele - jelly - biting - acceptance - fir - overdue - optima - suckers - honored - chevrolet - taurus - recreational - campers - shines - holly - mattresses - elastic - hectic - volunteered - heartbreaking - bargaining - forgive - adamant - moderates - egypt - muslims - palestinians - poem - naps - demonstrations - restless - underlying - dissatisfied - proposing - upbringing - outlook - quilting - amish - acreage - eyed - motivates - vitamin - drilled - extensions - quantities - carson - doses - experimented - chlorinated - rode - nationalities - exam - memorize - readers - scales - grain - matching - explains - semigloss - marks - experiencing - upbeat - connections - dah - seated - alley - uncertainty - hoot - itemize - processors - portable - hewlett - rival - rugged - decks - printers - obsolete - quitting - approximately - martin - achieved - tact - disappointment - trusting - corrected - opted - perjured - barred - script - ironic - witnessed - answered - dependents - mobility - preventative - lung - carrier - filed - pissed - offensive - opinionated - textbooks - forbid - advertisement - cordless - porcelain - sandy - tracks - amateur - sings - contraceptives - luxuries - continually - perennials - arriving - bows - ribbons - designs - bunny - ink - canvas - crewel - decorations - victorian - stiffen - uncommon - compensate - typed - correcting - frustrations - acted - rumors - lebanese - newsmen - chemistry - tw - literacy - jackson - macho - hint - cer - cutbacks - slogan - preserving - trigger - greenhouse - plattsburgh - digital - sane - boost - vacationing - stationed - slope - attach - starving - distant - mideast - bureaucratic - bearing - nightline - eng - centuries - decking - crawling - buds - vine - chops - guest - sucks - tails - '''oeuvres' - cooks - elegant - crumbs - crunchy - bouillon - 20/20 - cord - irritated - luggage - climates - richer - civilized - israeli - jazzercise - ego - exer - leaned - firearm - firearms - twirling - edited - dribble - accidental - resale - trading - strangely - cutlass - semesters - recipients - recipient - pathetic - import - partnership - ambition - disciplined - prenatal - peru - thir - filters - tourists - canadians - panamanians - initiate - concentrating - cellular - awkward - aw - sanitation - kuwaitis - accomplishment - defend - amy - sunshine - hurricane - flood - muggy - royals - pitchers - nat - indicator - lineup - knives - publishing - laptop - search - significance - chains - jonathan - petunias - blooms - stitches - fruits - righ - opportune - tang - inspiring - incomes - ferraro - isaiah - alma - mater - dominant - greed - hud - pit - bounced - installation - stinking - forgets - morally - millionaire - observer - restrict - ancestors - kitchenette - neatest - miniskirts - grandmothers - feminine - marching - bizarre - overboard - gu - neon - tints - condominiums - walt - crummy - flake - woodwork - widespread - worldwide - bow - contrast - vocal - removing - passive - colonies - bury - presence - quietly - whichever - vacant - equity - litters - fin - aquarium - commands - anticipate - resulted - ranches - repentance - mas - olympic - wicked - climbed - stretched - explaining - wayside - combinations - carpets - str - tickled - tinted - carmakers - sporty - miata - authentic - demands - parkway - gabriel - shannon - patriot - mansion - alan - blessing - catnip - bombay - himmy - champion - gloves - devon - curly - mice - associations - haired - qualifications - attracted - irritating - cops - irks - ron - relation - germantown - hondas - skins - errands - pigs - substituting - spoil - butts - experts - markets - hong - kong - tens - conflicts - bangladesh - prevention - barrels - lily - humongous - azaleas - fielder - cubs - pri - aft - kinder - callers - capone - arsenio - flatliners - scheduling - threads - bedspread - lobby - mckinney - spaced - ethical - expenditures - recovery - sitters - reader - authors - scraping - backlash - estes - sensitive - taxpayers - fisherman - soul - lures - hea - propose - reinforcement - exempt - pendulum - applies - flea - skilled - petty - brochures - bussed - african - glen - godfather - sooners - hump - summit - strengthen - meaningful - steamer - sprinkle - skillet - teflon - passion - increasingly - privileges - constitutional - thousandths - motorcycles - eighths - annoys - horizon - tooling - essence - decimal - inherited - fifths - sweatshirts - blouse - programmer - fashions - taiwan - keyboard - unpopular - plumber - sucker - transporting - indifferent - shallow - undo - seeming - kilograms - dates - propaganda - confidently - badge - clipper - steelers - temperament - scoring - warren - proving - arthritis - revenue - scheme - os - wholeheartedly - unknown - capacity - noodles - instincts - lecture - stanford - unlike - academics - cannon - instinct - stereotypical - mac - firepower - mug - antenna - denton - psych - hamsters - smelling - expenditure - dec - diploma - radioactive - packaging - detect - stream - particles - cattle - creeks - alaskan - roam - booster - contagious - scientist - wednesdays - shopper - species - tribes - underpaid - ambience - texture - enthralled - mel - presidents - consultants - persons - sweaty - speaker - subsidy - lies - ano - offenses - housekeeper - hottest - firewheel - salisbury - hams - locking - prosecuting - gettysburg - arena - openness - duplex - fords - carburetor - cap - notch - overlap - dash - vegetarians - cleanliness - vegan - bodies - utilize - coo - hens - ballpark - kicking - getaway - des - vitelle - a&m - oriental - yellowstone - lion - rio - grande - marble - jealous - ruins - objecting - fireman - malicious - compensation - executing - falsely - statistic - meanwhile - storing - internship - cooper - clinic - cardiovascular - rotate - picturesque - biggie - killeen - purebred - virus - affection - caravan - storage - libber - heated - shrubbery - supportive - unacceptable - appalled - reimburse - explorer - middlekauff - stiffer - disneyland - amusement - solely - lafayette - allies - liars - masses - majored - discriminated - valid - lonely - smile - consists - lisa - floods - historian - societies - eater - rewiring - praised - openly - logically - nest - pap - supporter - runner - moth - devastate - mediocre - excel - insist - halloween - toning - dramas - shakespeare - multimillionaire - supervise - imports - inferior - wallet - dwell - po - iguana - br - twentieth - assertive - chewing - freelance - reputable - avenues - smoothly - avenue - classify - spices - tort - riots - methods - textbook - sprayed - wiring - busting - minimal - youngster - manner - fringe - beeper - pill - spraying - heavens - splitting - maturity - cues - nineteenth - velcro - cole - codependency - losses - worlds - representation - roller - maternal - franchise - bones - quickie - resorts - inept - tossed - superior - enthusiastic - stripper - eth - shotguns - vital - mutual - laura - lotion - accumulate - dime - unfinished - toned - treatments - rust - instruction - productivity - wherewithal - indigent - employ - medicaid - desperately - equipped - alto - jerker - christopher - reeves - climb - mastercards - beaver - champions - pines - berries - dutch - shou - cathedral - constructed - rainfall - chased - tossing - peonies - hardy - divorces - drank - tan - sunburn - interfere - fo - custody - bottoms - guidance - flew - jar - eisenhower - bitter - motivational - presidency - leaps - noriega - tunnel - anger - roger - mis - universe - bargained - interviewing - potluck - trump - hyacinths - purply - mugged - paroling - int - avon - spectator - deeply - amou - crepe - pile - toll - dependable - cavalier - squish - drinks - census - pell - vienna - waitresses - ultra - regency - progressing - retrievers - prompt - brisket - reliability - graveyard - submit - reception - watercolor - jan - shanghai - effected - micro - satisfying - preston - broiled - violated - appealed - martha - melodies - speaks - squad - cutback - texasville - breathe - homemakers - dreyfuss - spit - presumed - cra - coordination - irons - perry - stepmother - ambulance - deteriorated - bunk - flan - vinegar - pies - happiest - wheeling - geriatric - cockapoo - rabbits - ignored - earnings - pencil - taller - glorified - sch - eyre - sung - madam - butterfly - puccini - canoeing - receptive - jackie - gymnastics - im - steadily - ronald - brownwood - temple - substantial - les - broadway - orthodontic - verge - orthopedic - silverton - drafter - drawings - unbiased - equals - secretarial - overturned - thelma - louise - tacky - chipped - sledding - ambulatory - reluctantly - adequately - cheryl - hearty - skim - thai - lunches - molestation - releasing - sketch - subscriptions - upright - paddle - appliance - tops - pant - gail - centralized - claus - earns - coit - orchestras - breasts - chill - punk - '101' - rebate - perkins - fluffy - parker - coppell - bleeding - pittosporum - thumper - carney - trailers - eager - signature - whoops - discovery - macaroni - golfing - superbowl - tease - includes - desperate - entitled - dill - suing - semiautomatic - cuddle - legislate - hubbard - screams - competitiveness - mechanically - jesuit - duh - haiti - constituents - ordering - striped - bonham - donna - du - nist - sheet - sergeant - rebuilt - spy - thorough - fame - hydrocarbons - nitrogen - ville - manufacturers - mats - algebra - glossy - pathology - towncar - missions - mat - gut - precaution - kenosha - pianos - commissioners - exemptions - daytona - holder - gloss - exploring - hatchback - abuses - royalty - rehearsals - meg - boise - barbie - radial - lathe - distributor - parakeets - chimney - telecom - bran - piedmont - howse - duncanville - admitted - warriors - marketplace - dunn - bradstreet - vivaldi - boutique - decorative - volume - honeywell - quicken - strengthened - quantity - hinge - cumbersome - qua - transport - makings - seal - entitle - opacity - abouts - forum - ductwork - shave - interchange - ber - scruffy - critic - trivia - sharon - invitation - astounded - effectiveness - insulted - conspiracy - paranoia - surmise - latches - invading - knocking - ritual - introducing - click - occurrences - summed - absenteeism - errand - discrimination - improving - uncertain - suspicious - detectors - hammer - royalties - hideous - militant - objections - absurd - frampton - performer - eclectic - listener - ravi - shankar - spreadsheet - dedication - mardi - gras - straps - convincing - carl - casually - horrifying - litigation - retention - dusty - regulars - texteller - stripe - tipped - pastel - pallet - patent - spin - coul - southbend - variable - intended - workplace - inputs - toured - reich - genesis - bottomed - shoul - devoted - detriment - manipulating - softly - alleged - accuse - exploiting - cuba - starve - hun - ashamed - connery - dwarf - favors - freer - imposed - demanded - natives - representative - undoubtedly - abou - melting - clinging - quebec - mountaineering - implies - fads - institutes - newsletter - orientation - meditation - desks - laborers - keyed - enc - incorporated - predominant - intending - trafficking - aghast - frito - artistic - kits - pinks - kit - lilly - greens - stocking - selections - chapel - percentile - stabilized - illegally - errors - nasa - quaint - mem - supplemental - applaud - competitors - generous - repayment - celebrated - negatives - ind - privately - brutal - hoped - slim - administrating - latter - nickname - customs - defeating - gadgets - bluegrass - pizzas - anderson - predominately - standings - moore - pennant - pirates - appraised - overpriced - longevity - satisfy - resell - editing - availability - prohibit - janitors - endurance - mutually - supervisory - quotas - swampers - laborer - happ - mushrooms - consisted - terr - siren - alarms - jamaican - knitted - granny - moderate - carpentry - candle - contributors - ai - comply - helicopter - sting - nitrous - chemist - unseasonable - ust - nostalgic - calligraphy - tidbits - mcgyver - inventing - baling - washers - junkyard - portraying - invented - attempting - innings - ke - weaned - meows - docile - traumatic - secretive - daisy - hype - mimic - predicting - fictional - swamp - margin - teasing - crosses - dang - dumpster - openings - recycles - imaginable - folded - straightened - reminding - settlement - beaten - ramifications - margaret - thatcher - gandhi - volcanos - rhode - residue - pitted - comeback - nader - volcano - indicates - previously - regulatory - arrows - zoom - calculate - yugo - pricing - dos - pastor - sauces - coleman - sacramento - backpacked - undeveloped - opposition - negotiate - factions - refreshing - reveal - occupy - responding - tunes - jigs - instrumental - mickey - wills - nickelodeon - fl - shenandoah - flimsy - programmers - mentioning - irritates - aspen - contel - demonstrated - surrogacy - crass - nurturing - donation - auction - shelters - bedridden - gals - '''am' - factual - nightly - chancellor - gaps - newscaster - excerpts - rises - choi - assisted - deteriorate - sponsor - caretakers - supplemented - possessions - signing - sectioned - zones - vikings - hart - educator - beg - initiative - administrations - maj - sabbatical - minuscule - referring - hourly - gardened - remotely - shack - broaden - ivy - couches - careless - anybo - oreo - twisted - actresses - kenny - columbus - disrupted - mistrial - chooses - confession - placing - inception - insure - burglars - jacques - lewis - chagrin - ame - preferably - loudly - epileptic - aftermath - snob - broadened - expectations - swore - amphetamines - endangering - hassles - splotches - scratching - dread - hardwood - toothbrush - proclaimed - nicks - breads - chunks - quart - slender - blender - thickens - thickened - thicken - cooling - leaded - endorse - caprice - converters - arguable - lit - meteorological - circulation - lungs - focal - volkswagen - pinned - fulfilling - obligations - belonging - wealthier - adulthood - functioning - monster - wandering - ropes - appreciation - confess - tolerances - pete - arnett - sporadically - impartial - diversity - affiliate - cutesy - beeped - moody - wonderfully - vowed - booklets - recruit - courthouse - strangled - testify - neurotic - crooked - bracelet - instructed - whereabouts - bracket - koontz - bachman - letterman - hologram - pitches - speculative - deregulation - teapot - vaguely - hoover - pennies - nickels - investors - holders - asphalt - charts - kathy - walkman - simmons - rapists - manson - repealed - thousandth - pac - kingdoms - ruler - scriptural - elses - discernment - walters - wiley - communists - assaulted - compensated - medicines - rude - returns - indebted - deli - strings - crabgrass - slimy - tempered - standby - surgeon - pruning - undertaking - irrigation - leafy - remain - flowering - chick - lem - humus - barbe - stoves - flame - grease - tortillas - turkeys - smoked - hickories - spreadsheets - specs - montana - hazards - crash - burlap - coupon - subtract - compost - branches - heed - staunch - withstand - buffers - scuds - provinces - merely - demilitarize - confusing - sucked - incomprehensible - disarm - socialism - boris - nationality - nut - sabine - consequence - wade - camps - kingsley - centennial - canton - dinky - proclamation - mason - dixon - seller - avalon - chilling - wits - characteristics - tuberculosis - wafer - linear - mismanaged - outraged - breyiana - demos - boggles - contaminated - refineries - desires - delaware - caves - fading - anythi - pantry - crushers - hallways - casualties - magnified - tones - questionable - andy - creatures - extends - fork - spills - degrading - spark - probab - hints - stereotypes - romanticize - thugs - beaumont - predictions - barring - substantially - separates - zealous - farmhouse - pumpkins - planter - creosote - landlord - brushing - rose - cantaloupes - cubic - wary - youths - hostilities - judging - burlington - confronted - slit - divisions - rash - monterrey - objective - hamper - grouper - oysters - tiring - canals - grabs - grabbed - dogfish - antibiotics - commuting - deprived - clinics - infections - enrolled - rigid - fined - mills - deceiving - surroundings - paths - motive - motivations - upwards - bundled - doubling - financed - integrity - benefitted - perceive - unfairness - wiser - segment - vengeful - pitifully - massively - respon - represents - speeches - slapped - inflammatory - atrocious - blitz - zoning - wholesaler - turnovers - argentine - microwaves - waxed - flakes - purplish - cubes - sherry - argentinean - sausages - breaded - publications - thesis - disgruntled - cries - replaces - belongings - roaches - overhaul - uniform - discretionary - emotion - hence - fines - documentary - dealings - declaring - dire - squirrelly - miscellaneous - nd - deposited - scurried - skaggs - endangerment - assumes - endanger - endangered - accidentally - suspicion - continents - ingrained - confuse - trans - centimeter - measurements - peanut - kindercares - alphabet - scold - inappropriate - trauma - weath - predictable - inversions - threesome - novice - rut - yo - delightful - ferrari - resembled - satellite - bathed - jacuzzi - wings - fastest - ant - kitchens - dented - refresher - kosher - knishes - mea - unstable - relevant - americanized - hugged - scam - apologize - hug - shiite - poss - wheth - countrymen - wom - implementing - decreasing - finland - selfishness - benefited - mil - flunk - canning - zinc - processed - bogged - distributed - moderately - companion - organs - sally - petite - isometrics - ingestation - plight - surrounded - directing - coed - subbing - calculator - behaved - versatile - applicable - depot - spackling - creamy - similarly - formative - contacting - aptitude - sounding - upkeep - cellar - rents - complexes - nanny - prefabs - enou - scoot - emulate - guru - auditors - packard - matrix - transparencies - outdated - advisor - panhandle - piling - shredded - pessimism - racism - destined - fronts - hippie - texaco - pennzoil - miscarriage - rational - testimony - testifying - paralegal - priors - aggravate - enlightened - niceties - flop - horrified - absence - taxation - flabbergasted - gracious - flops - certificate - explanation - univer - dustbuster - plated - bowls - patty - womb - soothing - repetitious - wilder - eleventh - painless - necessities - harm - magnolias - raking - underground - grasses - blend - macneil - jennings - informative - bureaus - comics - mourning - lace - weave - lacy - draping - batting - anticipating - splurge - deci - typist - damme - bland - widow - dummies - caan - rescuers - submarine - studio - survived - einstein - stepson - literate - honors - lifesaver - framing - hindsight - incidents - outsiders - jesse - complains - threatens - entrepreneur - achievement - clue - sights - transplant - glamorous - uncontrollable - constitute - denial - champlain - resume - technicians - fad - timid - macon - hous - espec - contacted - liquor - repairman - popped - radishes - turnips - loam - intensive - attachment - pickles - unfairly - seasonings - paralyzed - spinal - discrete - seatbelt - arrow - reuse - collects - dorms - perimeter - orthopedist - freak - diane - diver - limping - tights - casts - nautilus - cushion - singled - tighter - lonesome - naw - everyb - imitate - oscars - booth - demographic - judgments - texins - crest - demonstrator - reps - partying - tracking - perpetuate - manpower - coincide - cl - soreness - nighttime - evacuated - winnebago - benefiting - incidence - abundance - creature - aim - shah - felons - unseasonably - comparisons - waning - surviving - diplomacy - eliminating - processes - righteous - filtered - launch - unmet - strife - ray - blatant - fax - proactive - buil - treaty - bully - repay - swallow - evolve - tug - skewed - intersection - trampoline - downs - cy - swept - streak - averages - catches - tigers - strategy - bayless - advised - brunt - rooted - dseg - documentation - floppy - disks - hus - touchy - linda - rossa - teen - boo - livingston - seagull - wro - midland - odessa - practiced - fur - contra - haunt - resentment - laughable - arises - browns - topping - toast - mustard - cucumber - bonanza - meta - rearing - robinson - cylinders - akeem - dominate - reselling - jap - wichita - galen - amrein - snacks - elephant - transferring - fare - veterinarians - wonders - developer - breathed - limiting - cookouts - individuality - frills - fluctuates - tastefully - smashed - organizing - dare - reform - bri - gate - felonies - ima - racist - gripe - gar - width - spreader - lightly - freshly - arthur - waterfront - movers - frames - enamel - spun - descendants - favorable - intervening - advancing - frightened - revolting - upsetting - acquired - creeps - kitten - teacup - frustrates - cheaply - brunch - crook - mock - primaries - workday - chows - guinea - harming - bellies - rubbed - terrified - louder - lid - collie - mechanism - inspected - cheated - fingernails - uninformed - disinterested - honduran - rica - tourism - enabled - policies - engrossed - virgo - elder - ricans - rican - loaner - revival - christianity - revered - pyramid - birthdays - disciplinarian - nutri - stairs - elevator - powerhouse - alway - rehearse - patriots - photo - guards - congested - incarcerating - foreground - snatched - astro - minivan - subaru - ticking - rack - upgrade - retail - campgrounds - bearable - dipper - addict - sportsmanship - describes - strasbourg - missile - bounce - goll - humiliating - chauffeur - valet - condemning - airs - tithe - blessings - foley - croak - critters - turkish - himalayan - patches - paws - lanky - hillside - communicating - swam - supervision - stephanie - keel - tuba - nerves - turntable - dual - processor - edit - layout - preventing - overloaded - mentions - sevren - montgomery - piddly - compressor - prelude - impractical - wharf - colts - seahawks - winners - champs - expansion - attendance - kites - strangers - tasting - arrangement - rewards - interfering - inhumane - overtaken - underwater - intention - philippines - tag - quarterly - incentives - justification - sorting - insurmountable - forestry - trails - emphasized - obtain - cubicles - advent - op - accurately - orchids - dodgers - brat - petrified - circular - terrifies - niece - laughs - exc - negate - rejected - lawlessness - founded - crippled - perpetrators - breath - intake - valleys - pencils - abreast - ethics - scandalous - churchill - dickens - withstood - mindless - pi - sincerely - whew - spreading - petersburg - finest - southwestern - cincinnati - roaring - perpetual - lhasa - scuba - pampered - dinosaur - fires - ventured - dooming - plunked - cooperated - adjusting - decades - valued - downstream - lure - bumble - wasp - squirrels - popularity - isolation - disciplining - spank - isolate - handicraft - dough - ornaments - empties - posted - ruining - kurdish - roseanne - matthew - brando - levinson - follower - marino - keystone - cunningham - tactics - granada - cuban - salinas - terrorist - buried - hyundee - helicopters - stepper - pillow - staring - aqua - blisters - rubber - trashed - dwindling - cooker - cherry - blackening - gumbo - portuguese - ribs - ya - jumbo - initiatives - revolt - obliged - argues - constrained - fools - indoctrinated - millimeters - fractions - fittings - wrench - header - screws - progressively - pullover - smokes - sw - othe - designer - foolish - puzzled - warned - cab - tractor - sixes - diesels - injector - asylum - governmental - antiwar - translated - soapbox - usable - antimetric - sweden - midnight - plains - collapsible - helper - motivator - huff - phenomena - temper - miami - cyclical - oilers - stallworth - swan - oppose - decisive - wrath - constituency - nuggets - meatless - ingredients - hostess - soybeans - proteins - belton - pennsyl - lsats - als - sev - abcs - especiall - affordable - carpools - symbolic - scenario - gunfire - outlaw - abiding - restrictive - concealed - sp - deterrence - weighed - objection - misusing - impose - crackdown - dawn - liners - gerbils - mutts - counted - eel - tiniest - debated - symptom - furnish - nonsense - handicrafts - awarding - topsy - turvy - worldly - sparked - reg - flours - dublin - bulldozers - overflow - posters - chained - tabby - rampant - girlfriends - inadequate - '8088' - monitors - respectable - secondly - binary - calibrated - qualification - brackets - rescue - passport - mou - alcoholics - returning - laurie - clout - grilled - buffets - brunches - woodland - colo - prix - seagal - starred - premise - preoccupation - belly - millimeter - darndest - assembled - hauled - fertilizers - prohibited - facets - denied - loaf - dawned - boulders - marbles - duck - shish - odor - boneless - scrambled - armenian - consume - punishing - devil - suffered - agreeing - enforcing - burglaries - rationalize - busiest - airy - wires - compartment - soldered - restrain - overeat - pastas - minerals - accepts - supplements - toledo - oriole - steeper - moines - bleachers - collapsed - herbs - sill - appleseed - pecans - wes - enterprise - bulletin - electrician - terminology - gaithersburg - valedictorian - pushy - seemingly - rockies - carries - yells - breezed - solicit - coworkers - alright - humans - bust - holdup - underst - convicting - restoring - ankles - landscaped - sal - continuance - pensions - allergy - baxter - ceo - homa - rallies - anaerobic - improves - ls - adverse - hunk - pulse - resting - mirrored - fireplace - tucked - condos - abandon - dennis - distributing - refuses - glove - pricey - passenger - lowered - questioning - dummy - mans - occupations - norma - techniques - karen - spotted - incompetent - exper - priest - kindergartners - conform - creativity - manners - mannerisms - establishment - norfork - farthest - charleston - hairs - follicles - rehab - fro - weddings - graduation - med - saudis - thieves - chaos - promotion - unconditional - offspring - quotes - dumps - bluebonnets - absorb - es - flash - medina - salty - beirut - penalized - lining - faucets - repainting - arrange - tripping - ingest - ingesting - arteries - reacts - framers - framed - viable - supports - viewpoints - delay - nevertheless - allocation - infrastructure - expended - restock - twen - spider - marigolds - impatiens - replacement - teased - bacillus - gypsy - toddlers - recommendations - skits - attachments - slacked - contributed - bombarded - mrs - cleaver - senses - romantic - illiterate - paced - ridged - totaled - hesitate - technologies - stacked - renters - counties - citibank - scams - swayze - clyde - drummer - scratched - demographics - companionship - dependency - everyth - prospective - pairs - unsupervised - morton - lu - offended - drinker - measures - lions - arapaho - drool - yuppie - cheat - reinforced - fashion - defrosting - pilaf - mixing - mushy - korean - auxiliary - curriculums - kathleen - accordingly - residency - sportswise - blitzer - fanny - treadmills - cinema - dripping - shorted - enlarge - valves - shingle - fixtures - detached - stigma - pioneers - households - beepers - bulky - vibrates - hepatitis - freed - expectation - boyfriends - homeowners - existence - anguish - charming - weathered - leveled - wallpapered - conserving - diagnosed - inspiration - alerted - swimmers - extracurricular - loser - sats - barber - verses - robber - dachshunds - spaniels - anthropology - presses - clerical - forthcoming - homecoming - famil - familiarized - virgin - qui - divine - skates - cot - shove - nannies - objectivity - digressing - ordinarily - weirder - revolved - hatchery - intimate - calendars - decoration - passage - continuity - percentages - cavaliers - ewing - highlights - patience - bethesda - beijing - pooling - restful - pends - dells - starring - rage - terminator - twists - treble - mackerel - pike - stung - fleetwood - displayed - freaks - backs - buicks - convertible - vintage - setter - feathers - conducted - ethically - patrol - kidnapped - pun - exceedingly - albany - syracuse - rapist - investigation - pamper - waits - assistantship - newlyweds - hopping - annually - journals - figurines - sanded - 4h - refinish - hormones - lip - fender - sparingly - lime - sands - upscale - gum - rips - shreds - sponge - mate - averaged - harvard - successfully - approaching - nutrition - conductor - cringe - mcneil - criticism - palo - columns - candles - psycho - deadly - uneasy - robocop - molly - savage - resented - retrospect - juggling - density - crucial - oft - lame - assaulting - pleading - psychiatrist - psychiatrists - psychotics - assaults - sponsors - rainier - snowy - immune - tawakoni - cones - fearless - enclosed - roofs - sizes - cei - furnace - ambitious - poking - fountains - latitude - underpass - hiding - petals - slows - oscar - durant - alo - notorious - settles - smoker - sponsored - educations - ele - approached - proponent - thus - endeavor - wri - fingerprints - slipped - fingerprinted - astounding - intervals - contracted - dea - imm - soaking - visitors - rug - daddies - conformist - revolutionary - kramer - celebration - feeder - nets - minnow - burping - purina - parade - compound - pursuit - refuted - refute - turnouts - vi - relates - regain - moats - staubach - encountered - unrealistic - landon - portrayed - josey - clint - jot - baptist - reflection - damages - shortage - clerks - doubled - smallest - pavilion - fuses - alter - sensing - bandit - theatres - ellison - activist - photographs - hyacinth - hollies - spike - perennial - gomphrena - repeating - minimize - ornamental - happiness - acquire - congratulations - simpler - circles - wham - forgiving - detrimental - immature - maple - myrtles - screwing - disguise - formatting - paragraph - voyager - crank - pepsi - mcmahon - racking - recharged - seabrook - nucleus - billed - mints - adaptation - crown - lunchtime - celebrate - incident - shreveport - limbo - diaper - chassis - bent - soapies - bichon - frise - personable - rin - tervurien - latchkey - considerations - sunroom - rambler - sandstone - beltway - adored - surrendering - cooperate - allah - sakes - stirring - pineapple - oatmeal - casseroles - bronze - catherine - nissans - escort - trusted - insurances - provider - postal - recourse - invades - complained - susceptible - newhart - comedians - contrary - bart - simpson - morocco - continent - ripping - photos - reef - melbourne - squirrel - agents - hockey - christi - diverted - pea - fiasco - liver - caution - expediency - misplaced - technicalities - technicality - ruffle - conducive - sandwiches - vendors - pins - ligaments - beethoven - mozart - softer - banned - regime - liberalization - civics - dart - wasteful - wounded - mcmurtry - trashy - grou - grouchy - projectionist - subtitles - intuitive - footnotes - footnote - operator - lands - appetizers - premed - specialize - matinee - cocoon - alien - maintained - sharif - oddly - exceed - incapacitated - images - dangerfield - stacking - leftovers - catering - scooped - amelia - anyth - wolfe - myths - haggard - phonetics - relearning - wheelers - transaction - checkup - reserves - cranky - measuring - coating - cognitive - jour - austen - reviewed - attracts - grandchild - congealed - soprano - canoed - cancun - bummer - teenaged - manhood - ostracized - liken - pear - daytimes - ransom - sightseeing - gubernatorial - robb - receipts - gambling - sedentary - tortilla - picante - grated - jell - timely - subjected - athletics - bathe - commercially - accordion - miserables - milkman - travis - phantom - lloyd - listens - illnesses - diligent - invaluable - scotland - jaw - periodically - durango - jeep - destin - jetty - draftsman - roman - recognizes - regarded - mediation - crises - bystander - awe - prac - gannan - valerie - addicts - sayings - possi - restrooms - festival - alpine - uneven - sleds - knob - mows - mulched - presbyterian - willingly - littler - strategies - rapport - walnut - impersonal - hack - cheerful - emily - dell - preschools - pediatrician - dane - tangent - backfire - ethiopian - venison - fries - waitress - waiter - attentive - adventuresome - heyday - bernie - dra - assortment - piled - veal - evident - unleaded - ambivalent - clothe - rehabilitating - confessed - amendment - xeros - quartet - technique - carols - mechanisms - decompose - murray - sorted - dimes - crusher - renewed - prostate - antigen - fourths - smells - spinner - baits - fisherwoman - imitation - sticker - sn - pantsuit - pantsuits - enthusiasm - begging - fitting - harold - taft - milder - gimmicks - hemorrhaging - mennonite - sealer - premier - landed - suites - invalid - invalids - labels - frugal - substituted - legacy - reside - partial - yuck - balloting - sibling - colds - discontinued - primitive - tulips - hazard - codes - zenith - ques - slides - purity - richie - bushel - wines - napa - ronnie - whittle - satire - monotonous - menus - frankenstein - blazing - saddles - grants - hitler - paintings - specimen - fussing - presume - pollu - decorate - kindergartner - arguably - cradle - grave - fluff - swings - queens - beltline - thrus - aerosol - corny - fridays - camry - elway - moneys - exponentially - crawls - grieve - greg - foresee - uninsured - noses - rudman - accountability - proportionally - gruesome - couscous - repercussions - wimpy - shortened - befitting - nece - asset - flushed - dressy - slack - sl - tro - bidness - apiece - smokeys - sur - outlawed - legislating - creating - activated - steinbeck - grizzly - encounters - doubting - doug - ranked - sierras - rai - tempe - yelling - explored - bogey - burgled - plop - pee - ay - handyman - tighten - loopholes - withhold - advantageous - bueno - librarian - coma - seasick - minnows - seas - fore - calico - yaupon - labrador - wax - scalp - salsa - hidden - continuously - hibiscus - wetter - mitsubishi - '90210' - nicole - matlock - charlene - beverly - shred - pierre - recognizing - cinematography - invasions - premises - '911' - sitcoms - misbehaving - faces - censor - morality - jumps - finite - infinite - whining - panels - resurfaced - cimarron - jeopardizing - retirees - ladder - investigative - catastrophes - existed - halogen - sulfur - combustion - hitch - moynihan - skillman - lynch - chil - amnesty - abstinence - crayon - detest - ph - allante - peppy - saddle - inca - dub - regiment - twisters - toe - prone - adjustable - conspired - premiums - reasonableness - parkland - losers - witt - greave - wins - dilemma - reallowed - implement - unsmashed - crazies - fabricating - sampling - steele - youn - upsets - magnetic - resonance - sober - molesting - boar - constraints - betcha - severity - entitlements - reductions - defaults - blackman - manned - dealerships - purrs - feeders - frontier - jetsons - nearest - trough - sli - howatch - birmingham - disregard - darned - greenery - tahoe - skidding - surveyors - tracer - '486' - measles - crunch - burger - cameroon - scoutmaster - sitcom - seato - colony - nato - disbanded - arrive - uncooked - overdone - yummy - bendix - pontiacs - hattiesburg - bir - boa - constrictor - parrot - overspending - coughing - julio - misuse - sniff - milan - anchoring - tedious - stragglers - tobogganing - baggy - reduction - hewett - scaffolds - excessive - rep - disappoints - nairobi - safari - wesley - hospice - theoretically - mishap - electoral - stew - hardaway - dioxide - vapor - aye - pickings - legitimately - sails - bisquick - lopsided - boarding - freezers - genealogy - stash - proliferates - brokers - patterson - subsidized - amway - nonpolluting - bicycles - bullheads - nikki - jig - stroll - ogden - puzzles - combo - airless - scroll - dolphin - torpedo - malamute - trillion - ludicrous - payers - column - dumbbells - controllers - harrisville - specialties - virtue - accrued - transfusion - refund - pup - patron - parenthesis - earmarked - greatful - striper - senegalese - perks - parkinson - industrialized - truer - dispose - mega - tonnage - scrubber - ammonia - compounds - acids - thickness - pronto - finalization - utmost - cognizitive - scarves - uns - unseasonal - sleeves - sweatpants - corduroy - compliments - skorts - nominated - dud - recurring - fami - overreact - terror - cohill - cohi - drivel - eldon - housepainter - extracts - overtly - uncontrolled - pirated - ominous - thief - westerner - lunatic - violate - socia - jehovah - mormons - intrusive - solicited - invasive - soli - intruded - defining - surmised - incorrect - unsolicited - nonsol - unconscious - cli - sequence - peddling - harassment - generated - lois - intimidating - rver - greeting - stake - mitzi - yip - ranging - soaked - rhyme - ruckus - parallels - cov - hooker - absolu - phenomenon - brazilian - listenable - elec - acoustic - interchangeably - folk - arranger - sitar - muted - existing - tally - slush - stocks - expired - pleasures - albridge - slogans - outlooks - haggerty - spookier - pecially - airways - focusing - taj - mahals - prolongs - whim - deserved - prevents - mopping - odds - unair - facial - beards - skids - repack - buttoned - starched - suspenders - reorganization - cruddy - reall - notre - dame - explosion - untypically - accumulation - flatlands - zeppelin - floyd - brash - bump - bohemian - rhapsody - pumped - siskel - ebert - thumbs - travolta - quee - tokens - divi - showbiz - admission - scyene - inexpensively - sao - paulo - usefulness - spheres - spaniards - rulers - conquistadors - socialistic - horribly - dishonor - defenses - sabotaged - peasant - exploitation - exerts - export - broadcasting - ruddy - minist - wr - ler - interpretations - histories - copes - indicate - resident - fledged - barefoot - pejorative - unrest - citizenry - ignorance - ult - constitutionally - creole - prohibitions - strengths - cuisines - throes - reassess - functionally - fractiousness - faddish - wellness - biweekly - dispensed - distinctions - dev - fizzled - acupuncture - gestalt - irony - cert - vigorous - carbohydrates - kinesiology - calc - calculated - calisthenics - myerson - frantic - astonishing - mortars - formulated - sociopathic - pronounced - unfit - mouthed - transcribing - customized - anne - glenn - improvise - concentrates - password - verbal - rowing - lution - rower - transforms - markov - naval - postgraduate - civilians - mainline - respondent - unders - allergist - smorgasbord - compensatory - profile - bonds - deducting - disproportionate - brutally - commuted - delays - electrocution - determent - deter - dubious - internally - organiz - coordinating - scandals - kisha - knight - pullman - exacerbate - clutches - pads - benz - absorbed - keyboards - spaghettis - lasagnas - hor - horseback - dabbled - banjo - druther - stre - farts - polly - followers - inspir - booths - commutiv - billboards - bartman - simpsons - debbie - nigh - appraisers - onward - ease - folds - performs - tenured - microcomputer - comprehensive - rigamarole - teachable - specially - spicier - tofu - pistachios - pistachio - bumped - curried - saute - gigs - perse - ow - conventions - slippers - teller - alterations - utilitarian - knickknacks - sconces - jalapeno - almanac - concluding - warms - shutting - piloting - spectacle - lobbyist - legislators - individ - unbelieving - justifiable - nucle - kilowatt - washes - stinging - swelter - lively - eureka - rentals - inspires - glider - welder - treks - '747' - mindlessly - pacifier - reme - destructed - milton - berle - stepchild - tumultuous - regions - siberia - oppression - attentions - hopely - catchers - gladly - unheard - babe - ruth - thru - lovingest - cosmo - pellet - tod - lovey - dovey - kneading - trimming - bonzo - poindexter - felix - tortoise - possessive - bedtime - rendering - jessica - tandy - warmth - manhunt - manhunter - dysfunction - slay - toothpicks - outwardly - awfulness - wonderfulness - lapses - telecommunications - profits - waivers - earners - physicals - subsist - lodges - moss - footing - alumi - defrays - defray - unfold - walmart - discourages - catatonic - discovers - buzzards - pal - imagined - slaughter - earthquakes - robby - graze - indira - observed - attleboro - freeways - jets - swinging - kerosene - eah - boilerhouse - powerhouses - belch - kodak - smokestack - phosphorous - grenades - photograph - overstated - environmentalists - claiming - automakers - soot - particulate - meter - tailpipe - devise - mufflers - resumes - graph - erased - simplified - anduille - doughnuts - cobbler - fudge - fiber - sloughs - rafting - potty - packs - noth - outfitter - headwaters - damper - hostage - rhetoric - rolm - engi - sheer - estimated - doctrine - turks - cheering - reconcile - divisive - unprecedented - authorize - frontal - sununu - commend - scud - lefty - frizzell - galway - harpist - bagpipes - whistle - violins - instrumentals - rooney - dancer - entertainer - eddy - smiley - burnette - raspy - playboys - ernest - tubbs - rector - scratchy - opry - stadler - autry - anymo - vegetate - fri - relly - complication - eith - demolishing - stereos - annoy - troubleshooting - initials - conversed - sexes - consist - childbearing - storly - var - biological - urges - encumbered - heirs - characterized - acquaintances - terming - emerging - marathon - idear - discrepancies - overview - encapsulated - introductory - glamour - updated - airspace - huntley - analyst - paragraphs - noontime - dose - spee - fastened - wander - aides - debilitated - arboretum - maid - tackles - spinning - irvin - overwork - reinjuring - scab - revamped - metcalf - smuggled - investigated - rehi - renamed - psychologists - ration - modalities - learner - kinesthetic - gladewater - baccalaureate - unle - commentator - golsome - superintendent - adminis - scarce - overachievers - overachiever - beeps - expre - phoe - easiest - horizons - hurtling - brothers' - clips - madly - fetish - luring - costuming - remarked - thriller - distinguished - terrorized - branching - vito - flicks - bawled - toughest - venue - disrup - sequestered - entrapment - displeasure - waive - bungling - caricature - bloodless - comic - functions - thrash - fixes - climactic - joseph - reborn - targeted - hypercritical - fart - gags - slapsti - funniness - gag - retreading - tec - preemployment - brazen - wisened - ventilated - motorola - tack - orangish - feat - brighter - coloring - haphazard - baseboards - edger - granary - stocked - formulas - perfectionist - tasks - freehand - gratin - banana - dissipate - thickening - globs - rubbery - blenders - cools - favoring - nestle - quik - groedy - whisk - beater - melon - baler - cond - octane - generating - volt - v8s - repellent - erupted - meteorologists - chernobyl - tracers - smoky - array - fiero - undisciplined - jacuzzis - abdominals - thighs - mattered - alienated - suffocating - choke - differing - grads - quirks - academies - cadets - espouse - anglo - saxon - inveterate - switcher - dave - wylie - pumping - weatherman - hansen - gordon - lightfoot - winston - headphones - toweling - investigator - tailing - socialite - extradited - levy - uplifting - interpreting - jur - gui - overcrowd - connects - businessmen - sente - penned - duff - penal - beca - litigating - respo - spiritually - begats - durn - kratz - kranz - hedges - nathaniel - hawthorne - storybooks - woe - glossary - krantz - twilight - bogused - fuck - dares - hangover - sarcastic - fishbone - spirited - venezuela - avalanche - gobs - inflated - beneath - captures - resulting - risky - contain - vague - guaranty - guarantees - guaranties - disasters - vulnerability - regul - workup - incline - unjust - revoke - reverked - revoked - vengeance - sayeth - mao - tse - chung - temples - unified - humbly - sovereignly - rebuke - ager - preface - admonition - agrarian - commander - conceal - napalm - gro - clayton - uproots - residents - deba - servant - repaid - granddaddy - dodger - militia - bologna - alleviating - afresh - lifestyles - cabbages - broccolis - insecticides - dandelion - roly - poly - slug - dragons - sockets - alkaline - stem - peaches - silt - shrivels - mes - cottonwoods - irr - smartest - gardenias - revitalizing - mayb - chopping - blasted - hybrid - editions - spruce - dips - dipping - arabic - pita - eggplant - marinating - hickory - clones - mach - databases - searches - deleting - pieced - bypass - monochrome - enthusiasts - nathan - swollen - manuscripts - composts - nurserymen - goop - doorknob - compress - mugs - expressions - ungodly - expansionism - nationalistic - succ - origins - angolan - sinai - warsaw - militory - indu - chan - clobber - conquered - autonomists - shortages - bulgaria - czechoslovakia - placate - alienate - emancipated - slaves - emancipate - supplied - battleground - val - verde - briefcase - bookcase - armageddon - grove - imposing - yoakum - trilogy - terrifying - '''brien' - crappy - jakes - compendium - lobbying - emancimation - afterthought - luted - honorary - isaac - asimov - robot - developmental - blockbuster - mist - dune - freeman - debating - suave - charac - egalitarian - scripture - disciples - wafers - contradict - buyers - elma - sheds - pasadena - refinery - phoenixville - grumble - northwestern - piped - almetco - pantr - deanne - multipurpose - vide - launched - groupings - gentlem - dyke - griffith - idn - brave - shallows - gig - naughty - murky - spectrums - abso - feldon - madonna - lamar - gators - sneaky - buckner - stadiums - cornell - redwings - peewee - crude - tilled - screeching - acorn - scents - pollinate - yield - tiered - shrub - locus - thorns - pollination - pollinated - littleton - trucked - shovel - pressurized - chainsaw - dusk - unfeeling - spreads - datsun - ku - klux - klan - incumbents - larou - larouche - chord - mayport - brim - snagging - owl - baiting - oyster - cracker - trophies - rockport - netted - ugliest - archaic - dots - croaking - croaker - friendships - copayment - seclor - exemplary - snatch - impressions - inspections - yellowish - misty - emphysema - isolating - biker - vowel - lint - phrase - cub - smash - conv - ding - dongs - guathier - eliminates - briberies - sidedness - lengthy - judo - hoc - deltaing - disagreement - wapner - judean - vibrant - undoable - semitic - predetermined - wandered - defeated - astaire - sto - plank - poultry - empenadas - eu - scallions - sesa - slivers - overcook - dashes - ketchup - bishu - meats - empanadas - bun - niokes - requi - bah - humbug - fives - phony - interdisciplinary - dispelled - grating - reputations - impaired - institutional - quiche - growls - overrun - hussy - settlements - poll - tiddlywinks - volumes - ignorant - ironsides - affixing - chart - commingle - confusion - issuer - conven - shucks - profitability - shifted - itemized - alpha - beta - accusation - linemen - rotation - thereafter - proves - encouragement - chemists - overinflate - southward - nonconventional - warheads - parallel - resolves - negotiations - inhabiting - lith - neutral - crazier - libya - treaties - overthrow - survives - inhabitants - dancers - outweigh - wayward - attained - sharpness - acuity - disorient - decimeter - superpowers - toddler - indoctrinate - understa - skipping - lows - chillier - handicappers - mosey - twosome - mellowed - doubles - rationalizing - purged - goofed - nastier - cashed - burgeoning - metropolis - carey - thes - intern - sanger - harris - lifelong - thunderbird - citation - mazaratti - conceive - degray - stutters - antennas - roadside - cords - heaters - hookups - sopping - dialect - hums - nuns - trin - shun - hospitalized - pumps - stimul - flipper - retraining - stagnant - sores - golan - kishkes - matzi - goyim - pocketful - heston - commandments - grips - muslim - religions - sects - protestants - lennon - zionist - nosed - tampa - scariest - coincidently - lox - generic - predates - jihads - toge - secretly - unity - revert - baltics - forcibly - impossibility - insightful - prays - dissimilar - forefathers - esc - disseminated - giv - postpones - juniors - disgust - centeredness - inability - multicultural - multiracial - psychologist - refers - preoccupied - infor - cults - motorbike - maureen - solomon - eastland - farmed - millennium - hopeless - ideology - eden - distributorship - supplier - dirkson - extansion - dirk - pearson - embarked - isometric - chlorination - firsthand - detectives - hunky - dory - gi - barbados - colleagues - covert - suburbia - roasted - goat - hating - stunts - bending - alleviates - indicative - handcuffed - elem - escalated - bett - reemphasis - rote - spitted - memorizer - wiping - mennonites - electronically - determines - sherwin - molding - bled - spackle - lighting - nerdy - garfunkel - fascination - innate - supp - manilow - badness - behinds - pajamas - yardage - enclose - fanatically - subcontract - ducts - materialistic - dwelling - necess - branched - dishwasher - inventions - trashing - diskette - ordeal - configured - prestigious - innova - innovation - audits - pry - peripherals - lance - restraints - thermal - razzle - dazzle - flats - clairon - rath - educa - feast - waking - tentatively - receptacle - raisers - distribute - disposables - incremental - fiery - luther - galvanized - bashing - environmentalist - respons - glow - wartime - overlook - affirmative - junkyards - testimonies - defendants - legalistic - achieving - likelihood - tilted - sleaze - protects - choreographed - patents - antic - repeater - vendetta - observing - proceedings - weightless - effortless - sweatless - surveys - adjusters - expressed - meningitis - fetal - terminated - termination - codependents - goddess - observations - firemen - overtones - astonished - phys - cokes - sternness - forbi - expressways - patricia - handlebars - rewarded - dubbed - booger - diamonds - numbered - redeem - attache - suitcases - lamps - wheelbarrows - mixer - toaster - waffle - clocks - candlesticks - aloud - fussy - babbly - druthers - rockville - ballady - abortions - pregnancies - handing - landscapers - replant - alleys - cultivate - replenished - subside - prune - hosted - correspondents - translating - masks - typeface - piddley - braunsfel - unread - skimming - imperialism - reasserting - hangings - needlepointed - outlined - intricate - geometric - upholster - stiffened - streamers - stiffener - quilted - stamp - foresaw - refrain - expedite - franc - francs - diem - consternation - godfrey - goodies - prin - perforated - metrics - typos - retyping - retypes - encyclopedia - prints - limi - clone - bleep - lionheart - singular - superstar - norris - deserts - bates - floats - animation - retitled - reshot - rout - cosmic - enlightenment - dichotomy - educatable - prodigies - precocious - harks - schoolwork - construct - convey - verbally - stressing - penalizing - eternity - bradley - activists - demonstrating - agreeable - gerrymandered - lipscomb - disservice - pauken - politicking - upmanship - fooled - nationally - applicants - dissolved - shutdown - mathematics - outgo - kidney - positives - spe - sadder - anxieties - detected - dismissal - pard - certainty - handcraft - wreaths - eucalyptus - dowels - goofs - bulch - straying - koala - shapes - wintered - transplanting - leafed - pasture - jungles - rubs - validity - disagrees - guessed - lux - accom - transcontinental - throats - coalition - armaments - congressional - fuss - shiites - fiddling - shaped - topsoil - herb - rollback - spurts - loppers - rotor - dethatch - heave - ingredient - shrip - fettucini - straightens - disconnect - sucking - depended - peeled - chestnuts - burgundy - browned - bruises - retires - swivels - collisions - automation - iaccoca - airbags - sc - spine - harness - nifty - chryslers - aerodynamic - conveyor - magnet - pennsylvanians - brownie - pamphlet - slicks - slot - poundage - instant - wisely - shboom - befriended - ironically - resumed - gymnasium - flooring - chrome - height - pounding - engineered - curbs - gravity - singles - assorted - immobilized - screamed - climbers - limp - matches - ammn - amm - initi - initiation - mishandle - guiding - deregister - tumbling - themself - banding - pis - julie - tense - bundles - childish - kazoo - numb - suffices - rela - weakness - weaknesses - experi - temporaries - retest - retested - rx7 - whatso - seater - narrowed - assessment - thirsty - stint - wanderlust - poker - admiration - miners - roadsides - harvey - uneducated - flaunting - relinquished - strikers - speeded - aerobically - calmed - postnatal - cise - birthing - axle - windstorm - overlooking - embankment - arkan - sweeping - tows - beavers - flee - attitu - flaunt - americanism - slums - coops - inoculation - hungary - requesting - rotely - panamanian - quieted - anticommunist - excesses - playtex - flowery - jaded - comforts - thorn - bureaucratics - dyed - pollen - gah - blowy - rebellions - massacred - protested - diminishing - renegade - launching - strifes - defect - obtaining - globally - demise - glasnost - escalate - reins - intentioned - conveniences - nonfeeling - uphold - unpopularity - geez - honorable - massad - madman - straddle - personalties - rethinking - gesture - miscalculated - liberate - underestimated - miscalculation - huss - assassinate - staking - precedent - bullies - powdered - bombing - khomeini - normalized - sanc - juggle - friction - bookkeeping - earner - kite - idling - spooky - lat - tracing - hitter - shorten - saberhagen - crain - craning - reds - stri - fouls - steinbrenner - bogus - workable - peripheral - notebook - modems - revise - furnishes - deadline - courier - magee - peretti - piercing - fic - soun - illu - illusions - quintupled - flied - nailed - gibbons - exempts - planters - shedding - proj - beau - insi - sunlight - sulked - overmilitarization - disparity - civilization - bigge - trickle - hemisphere - kingsport - masala - sweeter - amaretta - dijon - basil - turgeon - laroute - gastro - lamink - restructured - hardships - subcultures - debates - patronizing - demeaning - midwife - pater - paternity - troit - misunderstood - ranks - aines - peak - olajuwon - dunk - businessman - murchison - bottomless - leanings - assholes - reaganomics - nonexempt - visitations - shuts - hunts - wan - degreed - jenny - outdoorsie - twix - braniff - gossip - hound - host - pause - mic - '''clo' - participators - primal - kicks - tabloids - journalistic - fondly - steeped - repu - unnecessarily - glancing - nod - tonic - unhooking - uncoupling - rotating - rotated - dieting - ourself - wrapping - kip - centrally - sickness - folder - emphasize - miniskirt - evoke - overdo - laces - flounces - adornment - unprofessional - sexist - tailored - vulgar - redford - lewisburg - emblems - grotesque - imag - shoo - padlock - pawn - someway - neatness - psychiatric - hinkleys - accidently - distinguishable - barbed - curi - prayed - reestablish - lengthways - mounds - clumps - southw - slapping - formidable - adcose - exaggeration - harmful - structural - hankering - tick - excalibur - newmarket - edmunds - barnyard - treacherous - journey - climbs - creation - touristing - asbestos - repaint - roughed - energized - bids - bleed - caulk - masonite - bid - varnished - intervene - toppling - descend - latinos - mee - meek - europeans - vocalism - comparably - bitch - moan - compromise - dependence - cartels - mistreating - slovak - catacombs - persecution - idi - amin - oopsy - pood - greets - recouped - evi - burial - countenance - uncanny - litterbox - anointed - buzzer - cheerleaders - courage - cheerleader - precincts - precinct - harmfulness - heroin - forefront - estimation - demolish - cur - tract - scaredy - straits - quieter - comfy - husb - prance - paw - lovable - lapdogs - cockatoos - squawking - som - cower - akita - aq - padding - chewed - wiper - blades - tinkering - rightly - punctured - patched - restores - feminist - amer - undoing - stains - altar - spooked - butterflies - dee - nicaraguan - housed - spiders - repent - evangelical - surpassing - override - rejoice - borrower - bondage - squatters - witchcraft - mayans - incas - worshipped - pyramids - sacrifices - gods - oppressed - warehouses - cumulative - itemizing - scrimp - walkabout - boonies - attribute - eric - dickerson - smi - linebacker - bickering - wen - appropriately - arcade - drafts - archie - manning - nobodies - showi - furious - veg - padded - opposing - satin - bridesmaids - maids - accessibility - harsher - aerostar - stealth - slipping - celicas - perfor - racing - surreal - fulfilled - blair - reformed - gambler - microbiologist - competitions - minnea - dowling - ren - entrances - periphery - paired - deacons - blesses - fugate - proverb - macy - lowe - purebreds - studs - sweetest - sweetheart - breeders - bree - inbreeding - inquisitive - hindquarters - predominate - rex - rexes - rodents - groundhogs - mesh - remains - teetering - refusal - presc - pharmacy - mens - absoluteness - foiled - mere - outlawing - conspicuous - inconspicuous - inappropriately - hunted - squirted - novelty - outdo - raciness - calculators - euphonium - mellow - deejays - grafting - cough - graphs - sponsoring - enhanced - bytes - '128' - callously - deterr - blooded - midsized - porting - attendant - vessels - overbuilding - phe - phenomenally - galant - serviced - 49ers - harbor - niners - kim - redskin - cartoonist - ellicott - basicall - importantly - devaluated - goats - schoolyard - motherhood - overcompensate - destabilize - vying - regroup - standpoints - easterners - couched - proclaim - weaving - dike - plug - unveiling - takers - roomie - slaughtered - sudan - occurrence - shredding - bedding - wrappers - reviving - yosemite - objectors - assigning - examined - idealistic - pakistan - algeria - blinking - manipulations - insofar - clowns - partition - dividers - baloney - daylilies - orchid - closes - velvety - multiplied - weeded - lilies - azalea - glories - ned - skeldon - ojeda - hubie - offerman - prediction - cecil - orel - hershiser - darrell - interleague - introduce - anoth - homey - randi - dawdle - steamy - lawrence - mae - rambo - hogan - associates - realist - garments - vogues - knits - garment - loopers - piping - cording - twe - sewn - exceptional - bev - reap - sow - establishes - pardons - lust - incest - swiftly - integral - reeks - expediting - compunction - appropr - sins - stoning - clog - streamlining - extremism - bubble - habitat - humanity - inefficient - preconceived - notions - delivering - spiraling - conservatism - hampers - patchwork - unflattering - autobiographies - randolph - descriptive - affluents - tale - binge - bookl - francis - momentarily - connecting - sigh - chowperd - snowbirds - spawned - contend - melts - kitty - apso - panic - preserve - campsites - twang - pfeiffer - rim - glenrose - latrines - gemini - genocide - hmong - unsure - slash - intercultural - dissimilated - conceptualize - slavery - linguist - withholding - worthless - cambodians - graft - falk - drugstore - coils - mosquito - crickets - foamy - pristine - froth - bobber - reeling - saturated - soggy - damp - claustrophobia - terrify - spanking - revamping - lev - plaques - stenciling - cushions - impeme - interface - janitor - reams - dalmarva - deinking - contaminate - wastebaskets - publicly - yucky - interven - occupying - schwartz - iranians - egyptians - kane - matinees - burton - batman - glover - kline - dennehe - goldblum - clease - arquett - untouchables - graffiti - broderick - marlon - parody - tinman - humphrey - bogart - maltese - falcon - quinn - rainman - okie - homeboys - optimism - reconstruction - redefining - trait - longhorns - randal - streaky - touted - sentimental - instability - indoctrination - marines - ak - 47s - cubans - capturing - nicaraguans - crate - patrice - lamumba - teachings - extremist - gen - irregardless - albania - revolts - psychos - chiefs - staffs - uprisings - squadrons - afghanistan - boils - cen - berlin - wat - steppers - soles - reword - indi - environmentalism - ruther - environmentally - blasphemy - acutely - bureaucracies - relegated - heartache - grudge - succeeding - parish - policed - comforting - reminders - pyrex - teaspoon - blackened - skewers - basin - chefs - clams - instinctual - demographically - democratically - proposition - proposals - revolted - obligatory - considers - australians - looses - leas - denies - hamilt - passionate - democ - candi - antigovernment - misspending - bastards - inte - hundredths - sixteenths - mismatch - clamps - meters - drams - perfume - machinist - indic - indicators - micrometer - finders - nondecimal - halves - listing - beverages - whiskey - ploy - conversant - milling - measu - calipers - pliers - milliliter - drilling - hundre - lawy - strangle - neiman - marcus - outgrowing - necked - embellished - dre - presentable - outrageously - busters - campinas - oursel - asses - orient - optimist - jungle - resonates - profound - bullying - dreamed - wildest - semantics - transcribes - onl - guzzlers - fours - threes - transverse - mounted - shoved - serpentine - stickers - reinstalled - nozzle - stroking - groves - surinam - natio - internationally - amaco - mobil - rectified - inward - hateful - kilom - thumbnail - kilogram - britain - adopting - precisely - grams - sync - orchestrate - unfamiliar - toting - stroganoff - allendale - waldwick - adirondacks - pancakes - outgrew - beth - knowl - roanoke - randall - duplicated - gamble - ditka - nate - newton - branded - outlaws - webster - cocky - lambert - bloopers - receivers - tackled - necks - fav - entities - overburdened - fairness - pondsy - invu - invulnerable - belongs - electing - politic - floored - maryl - nurture - credits - ukrainian - scallop - buns - batter - bourguignonne - grudgingly - pinch - reversal - beck - subsidize - bennington - liber - refinement - etiquette - advises - renaissance - bowdoin - bucknell - lectures - confirm - guitarist - yale - minoring - irrevocable - irrespective - clinical - pathologist - kayla - bachelors - profess - traced - rung - maladjusted - compelling - distaste - resp - beret - uzis - disorderly - unc - unconcealed - matched - vibes - clearest - confi - junkins - mandated - prompted - tobacco - bandwagon - cour - tricked - syst - maintenances - scoop - fetch - pooper - scooper - colombia - reek - kindhearted - nixed - asthma - outgrown - misclass - stately - sunk - furnished - swoop - situational - punches - momentum - lockheed - arose - courageous - accredita - accreditation - keying - adjacent - refine - classified - chemicalwise - refining - strean - stillwater - stephenville - toxins - bacterial - bleaching - sinked - australian - dominique - neek - wimp - feline - unconditionally - feisty - snuggle - investigate - beaner - wadded - fixture - decor - panty - garb - polyesters - wools - neatly - layerings - eyesore - mended - ironed - compose - upgrading - plummeted - acro - daltons - wholly - understands - disadvantaged - winnowed - structures - casing - connectors - workmanship - hal - fluke - highlands - patronage - cranberry - pou - lobsters - billboard - steams - culinary - adventurer - franchised - shacks - shoney - reliably - communercation - compe - renditions - organizer - defeat - registration - dragginess - headache - draggy - locker - sauna - motiv - agony - dictatorship - uganda - mils - distances - centigrade - celsius - metropolitans - heeley - wentworth - differential - microns - whatev - responded - favorably - bagged - ecological - prod - additives - pickups - hangers - cupboards - fountain - faucet - exceeding - decomposed - shocker - bizmart - upseted - taxwise - toilets - smashing - soaker - sheltered - disapp - rankled - cheerfully - outermost - inland - curving - ventura - buildi - overflows - anaheim - simi - meanings - rhymed - balti - strayed - kabob - breakfasts - galunkies - marsh - pierogies - grandparent - newarth - cholest - margarine - margarines - kebabs - utensils - goulashes - juices - sealed - galore - finer - drains - shakers - journalist - crux - remo - appease - pob - patr - paro - paroles - partake - traumatizing - viaducts - ceremonies - dozens - pageants - riveted - confuses - thrilling - producers - tony - dorsett - hershel - rationalized - cinemax - correspondence - '30' - cod - reso - repossessed - 635's - looper - ramblers - brook - dealie - diversion - chevys - nex - v8 - carburetors - gingerly - yanked - tinkerer - evaporator - rubbing - testers - diagnostic - tester - diagnostics - carriage - chilton - multiplying - lincolns - tremend - leaking - condenser - busted - haas - ovolacto - lard - nutrient - lactose - synthesize - slough - utilizing - rids - utili - paperback - novelization - lucas - freder - brink - feinstein - fairfax - deaf - insulate - scrubby - pecan - paralegals - clears - interference - surplus - tariffs - mon - apprentices - advisable - journeyman - exporting - imminent - oodles - salutatorian - prided - welcom - welcoming - tol - resentful - zales - spiegel - hurried - circulating - walrus - porpoises - mainland - sanctuary - whooping - cranes - pelicans - antone - alamo - brewery - caverns - uncourteous - actua - irritant - hullabaloo - stockholders - inebriated - unsafe - surgeries - subsidizing - quack - waiveable - refresh - somewh - willy - horton - consolation - microscopic - kneecap - curtailed - forming - bison - weakening - strengthening - '401' - continuation - telephones - handbook - badger - showering - physiological - advan - fledgling - bikers - bicyclist - knocks - coronary - artery - decreases - embark - motivating - disevered - knobby - vaulted - woodhollow - villa - secluded - joking - sellers - coworker - doorstep - housebroken - playful - gastrointestinal - beagle - romping - waters - retrieve - paddled - unrequir - degenerating - rosebud - sociable - smu - synopsis - furrier - judgement - distribution - wrongfully - penitentiary - sitt - caravans - lending - simulation - resemble - adroit - oddity - moonlighting - strengthwise - divulging - tarnished - faye - socialist - undone - inefficiency - platform - lieu - mamma - disruptive - brow - browbeat - wist - mugging - faceless - persuadable - thunderbirds - topaz - camaro - reim - dominated - wrenches - eas - champ - premeditate - premeditatively - stiffening - lessening - retarded - pleaded - phrased - dayers - correctness - promoting - niceness - vouch - waterfall - busch - blacksburg - portsmith - williamsburg - epcot - temp - buccaneers - assessing - opp - benef - wadley - milestone - tainted - snickered - examine - aircraft - astound - pusher - circularly - chairman - judy - perturbed - promotions - programmed - brightens - hallmark - servi - seizures - brighten - tonya - sneaks - rainstorm - breezes - temperate - promises - westernize - intact - extensly - vely - woodward - projected - commanders - colin - powell - embargo - misread - earliest - disarray - hopeful - prosecute - stature - statesman - foreseeable - selves - volatile - retile - bathtubs - scouter - drippy - panes - putty - gazoo - pes - pesticides - bulging - chlorinating - coronarys - diets - quadrupled - ingestion - clogging - primates - regimen - kenneth - innovator - inactivity - neurosurgeon - strictest - idiots - stan - destruction - symbolism - evokes - lynched - modified - possess - condone - adamantly - symbolizes - circum - satisfactory - budg - spartan - frugally - jordache - nonessential - victory - cliche - enactment - adjourned - mot - expending - reasoning - allege - myriad - departure - restocked - guided - unconstitutional - reforms - gard - arranging - orig - florist - slowdown - runners - geraniums - coleus - vinca - thuringiansis - caterpillars - expands - unlicensed - brittle - excelled - wei - denotes - tension - bicep - tricep - instructing - grindstone - hovering - configuration - blended - muscular - dystrophy - documentaries - paroe - planner - uruguay - concepts - yuppies - legislated - dynamics - auditing - rev - revenues - millspec - operates - elevens - hammers - federalized - ci - emphas - identi - americard - adios - commu - demeanor - announcement - calcutta - foreigner - worldliness - attributed - chuckle - pogo - mourn - tolerated - drumming - scrunch - glamor - sprigs - ricksun - tender - lamp - ashes - overcame - nondescript - damned - hierarchy - restructuring - feminism - boomer - creep - rapidity - electroni - luncheon - existent - consulted - alters - stamina - goi - denying - revolve - entrusting - omniscious - omniscipotent - alec - precedes - daders - shrinking - worthy - whate - responses - spoils - flashbacks - flashback - fidgety - discriminate - pertaining - distraction - males - ital - entree - sagar - presby - kimonos - grishman - bavarian - constricted - putrid - folley - tableclo - crayons - disintegration - flickers - prevalence - excusing - signals - mechanized - requiring - antipasta - stuffing - poached - kernel - spinach - wilson - beeping - bakes - frosting - frostings - chatting - mentor - adversaries - manuscript - harried - interruptions - feedback - videotaping - adopts - twelfth - tangible - overseen - alternately - ilk - phonic - pistons - snooty - telev - leno - carvey - deduce - cros - wheeled - porked - termites - chess - rearrange - hisself - bathtub - prettier - rewired - shorting - surges - famili - rearranging - shuffle - pane - breakers - valve - drips - walkway - splash - vein - downfall - yuppiedom - restructure - biologically - physiologically - wonderment - swooshed - viva - talents - mongst - jealousy - computerizing - pecking - punched - slightest - epidemiological - guesswork - transmitted - semen - illegitimate - exploded - stepchildren - socio - radios - faxes - sensors - stalk - jurisdiction - outnumber - solicitation - prostitution - unlocked - fallout - probability - indentured - servitude - vigilantes - victimless - ridicul - auctioning - bidding - patios - insecticide - diazinon - carefu - deb - wallpa - stagger - renovator - sheeting - resilient - stairway - sworn - rud - veto - bout - yea - dams - droughts - reservoirs - poole - reflected - counteract - learners - genius - perspiration - diagnose - predisposition - flashing - drowsy - facilitators - manipulated - burdening - toot - weekdays - racket - drawer - dennison - derby - siphon - cu - uba - tailgate - deterrents - publishers - poisons - ergotisms - fungus - gender - confidential - tide - vatted - archeology - shoelace - promising - upcoming - reprinting - thurber - hundredth - riveting - viorst - sci - revol - revolves - shoelaces - binds - melody - workbooks - workbook - geometry - cypress - greece - irrelevant - tortola - gorda - infusion - ethnicity - familial - acclimate - retaining - latino - continentals - roberto - unprepared - vociferous - attain - imported - territorialism - horns - encompass - handcrafts - wreath - phillips - ranching - contemplating - stabilize - occupies - baseline - flextime - grading - scribble - sensitivities - akin - minimized - prematurely - dumper - geria - empathize - tandem - providers - prohibitive - fantastically - moslem - surro - surrogate - regretful - arou - swims - nationals - quarries - tumbled - avail - denmark - appliqued - eraser - maturing - rite - unmarried - aquariums - zoos - paternal - traditions - disintegrated - trinket - sociologist - multigeneration - eightch - scorer - rebounders - assists - thown - laker - marriott - spittering - sputtering - swimsuit - mavs - favored - endorsements - prospects - stanley - underclassmen - myrna - curfew - fiscally - jockey - catton - dives - cayman - itinerary - viet - doves - abnormal - puppet - heartbeats - reviewing - bocket - hannibal - lector - fascin - luster - attractiveness - originality - pinpoint - lavon - upstream - sever - benders - grea - musky - perches - salami - sonar - maneuver - charter - suntan - hobbyist - styled - convertibles - sevi - welded - welding - sunroof - soured - contention - jags - contractors - bends - enthused - enthusi - ap - vending - cartilage - glanced - fenced - econ - repeatable - bundy - exe - strauss - punish - electrocute - problematic - candid - fraud - intangible - reinstate - mario - cuomo - legislatures - molested - incarcerate - sylvan - reenacted - paltry - polishing - lotions - meniar - cringes - thrifty - flier - psycholinguistics - ivory - godsend - pathe - willow - cana - bacally - obese - reimburses - collared - widget - bramalea - 401k - weeny - nonex - censored - bombarding - dramatize - statues - weld - epoxy - resin - shattered - statue - cricket - thatches - thatched - vapors - stained - lacquered - tung - fanatical - pills - hem - sweating - bulge - wrinkles - vices - sha - germ - ecru - undercoat - peachy - steamers - mottled - grey - maroon - vivid - turquoise - coral - renovating - hallucinations - cloths - slop - soluble - tricks - skimp - tediously - rewallpaper - racks - metlife - worki - workm - inconsistencies - amateurs - footballs - fencing - earl - princeton - pacers - subminimum - administered - reluctant - poured - chiropractor - cautious - janitorial - rafael - septien - applicant - eduardo - mana - sai - mafia - newcomers - ellis - redoing - comm - elitist - concise - rathers - yous - segregate - wretched - horrid - shortchanged - brokaw - demi - ringwald - sixteenth - doogie - howser - freckly - ferris - moustache - reeve - dreaming - ooze - bride - pretended - occupational - exemption - judiciously - incidental - figuratively - westport - bradford - indirectly - clair - dayt - baldwin - bebble - foreclosed - rider - homestead - creeping - livable - retrial - retry - wond - seeded - raping - choking - shotcross - televised - vendettas - trialed - revoted - annihilated - enterprises - misgivings - quiz - sprint - capture - extending - endowment - joes - alumni - splits - governme - faired - undertaken - deficiency - dilly - sangre - cristos - wichitas - lakefront - pinon - naturalist - stools - binding - component - carol - playroom - realtors - dominantly - alleyways - shifting - popping - bangla - hugo - bedroo - barometric - borger - funnel - pillowy - radar - veer - swirl - junes - budding - crimp - scorch - distracting - heats - therapeutic - northe - mayer - denison - purify - purifying - philodendron - acc - divert - blurred - fluoro - fluorocarbons - provoking - brandeis - fift - readings - iliad - mythology - choo - scientifically - grumbled - unpleasant - imparting - cluster - vicarious - compromised - profiles - telemarketeers - outcry - cited - crashes - eroded - erosion - lockers - latitudes - motorists - liens - representing - landlo - dakotas - alarmed - exclusion - parameters - interpreted - adoptive - carting - arresting - interval - orwell - tay - unusually - leathery - venture - wea - pebbles - drainage - deceptive - fiend - wrinkled - oils - fishermen - tricycles - kiddie - wilds - calves - heifer - jea - flared - hep - themsel - continuum - astute - propagate - raccoon - filleted - livestock - whiskers - growling - widen - weaker - ticker - pentagon - whomever - nutrisweet - bitterness - ancient - vets - complicate - preregister - registrations - eligibility - preceded - theodore - upward - rascals - stinks - precluded - gullibility - democracies - redistricting - subsidizes - lineman - spilled - camouflage - booby - traps - apocalypse - influx - surge - buckle - overcome - castaways - depicting - dudley - bloody - olden - realism - pioneer - worship - chri - videotapes - shrunk - eastwood - showy - westerns - cursed - pointy - melissa - gilbert - idol - verse - shep - immemorial - misdemeanor - waving - prevail - appoint - bailiffs - clerk - verbalize - tripled - cameras - reporters - prosecutors - outweighs - prosecuted - sump - sewage - towed - aut - trad - marina - hears - acclaim - sequels - earle - recluse - essays - qu - conclusions - photographers - arro - gorillas - sloth - fascinates - bottoming - landers - tycoon - bloomed - fade - spiky - bl - hya - colossians - thistles - landscaper - junipers - puny - foliage - iris - fuzzies - wildflower - insists - camcorder - pastime - muggings - grates - claustrophobic - tendencies - deviant - anguished - cleaners - meridian - inlaws - sneakers - jordans - brains - caps - videoed - repeated - repetition - termed - allowable - purs - discretion - freely - altering - preparations - namely - minuses - factored - competitor - trevino - influencing - wholesome - exclamations - sportsman - phooey - applicator - nurseryman - elm - circumference - stubs - propelled - pest - sawed - rot - rotter - autobiography - liquidating - emulating - compu - ause - accomplishing - spacings - formattings - insert - reset - rewrite - typesetting - typeset - spaces - compatibles - adhere - brochco - hillstreet - finale - nudity - delight - shudder - flabby - telemarketing - classification - lotteries - kalamazoo - sinus - carton - stakes - mounts - hub - airports - altitudes - intermediate - simp - fluorides - guerrilla - marched - lied - expire - xerox - modify - soo - terminals - insur - breakable - hangouts - haunts - southerners - rudest - bartenders - wee - ferrings - taiwanese - jambalaya - wowed - univerisity - arias - casks - hospitalization - hos - crowns - fluctuate - celebr - inordinate - axe - newscast - js - recap - sensationalize - sensationalized - asinine - puzzle - precede - preclu - preclude - stretches - wakes - depreciate - tru - unibody - granddaughters - gol - wagging - trainers - airheaded - yappy - dignified - culling - tamper - innately - tractable - selectively - culled - belgian - distinct - breeds - kennel - translates - shit - unreliable - handlers - indiscriminate - breeder - handler - bab - doorbell - stipulation - laundromat - grasslands - surrounds - betty - parades - palestine - id - peg - catalyst - palestinian - kindest - abounding - kindness - godly - compassion - humanness - mandarin - oranges - grape - fridge - gelatin - carrot - eggo - waffles - adolph - breakfa - craftsmanship - opt - stanza - glitters - oasis - warp - clearinghouse - consolidating - salespers - tel - compan - announcing - telepho - discard - episodes - cramp - vela - someb - thirtysomething - mclaughlin - yogi - loner - comedian - cantankerous - echoed - withdrawal - grumpy - stooges - mouthiest - kiddos - mouthy - touristy - besieged - defini - badgering - galapagos - sidney - adelaide - chengdu - quingdao - retreat - flights - rita - oah - destitute - ree - snorkeling - prawns - milli - arsenal - traffi - bennett - gangsters - corp - arr - pris - crowding - statutory - verbalizing - stints - citing - intensity - limbaugh - lamenting - microwaved - healthiest - teases - accuses - deprivation - nourishing - evaporated - broil - marinara - grapefruit - starch - pleasurable - kalli - cater - rodolfo - royal - maitre - pilgrim - unnatural - lookout - arby - wastes - reduces - speedup - healthily - sup - quoting - disputes - commas - reevaluated - inma - blinded - restitution - willfully - contradictory - caveman - coleslaw - tablecloths - bakeries - regretted - purch - pastrami - '''oeuvre' - complicat - sustain - addressing - fellowship - prefers - troublesome - camels - beatle - orchestration - okeydoke - statler - stated - debut - investigating - bootstraps - baptisms - clergy - imprisoned - confiscated - bourgeoisie - commonality - recanting - courtyard - motions - commandant - escaped - perseverance - bureauc - persecuted - dab - chorus - mothering - rerate - precluding - analogy - spade - marketeer - warring - peacefully - trampling - fantas - crabby - coated - willis - sarandon - gena - vatican - paradeso - befriends - friendship - califor - drying - nippy - mucky - thunderstormed - shoveling - michelle - lan - footnoting - retype - appetizer - criterion - alumnae - heavyset - poignant - subtleties - gore - warlock - omelet - characterizing - conceited - portay - goer - prosecu - cutor - struggles - flowing - ir - slicing - locust - omar - swallowed - redwood - brownstone - caulking - myneer - spacious - inhaled - revived - airway - revive - sol - dignity - luxurious - blossoming - brazos - sleeps - purdis - sandlin - quake - mak - caramelized - customary - orchard - accor - ply - crier - waistline - jewels - earhart - thurow - perceptive - pinpointing - flimflam - hughes - assis - plod - rereading - ditched - findings - bonfire - vanities - temporally - burdened - cafeterias - linen - napkins - duplexes - hodgkin - undergoing - interim - constancy - sufficiently - farfetched - wheeler - cock - slowing - pals - unjudgmental - homy - reprimand - secrets - brooksville - campuses - eyesight - enrichment - schooled - rejection - proceed - herman - foreigners - polluter - rigs - busses - incinerate - pollutant - untold - cockroach - accelerated - nutrients - sponges - tending - newark - vividly - entrance - biggies - consumable - calculation - physiology - snowball - dieters - robbers - trendsetters - correspond - circulates - centralize - descendancy - closeness - caliber - differentiate - stevens - shippensburg - specializes - novelist - intricately - johann - sebastian - copyright - compile - poems - baudelaire - jennie - abridged - reunited - rituals - equated - communion - repetitively - vernon - salmonella - silverware - caterer - biographer - obituaries - succeeded - vigor - bulletins - chorals - beginner - violinist - percussion - accompany - choruses - audition - verdi - hermit - vacationed - anonymous - whirlwinded - effortlessly - elicited - unwound - guadalupe - penetrates - alda - burt - reynolds - vignettes - dinosaurs - robots - satur - sniping - howling - gleason - snippets - idle - workshop - gra - dividing - moses - hab - scavenge - conserve - indulgent - exceptions - contemplate - permitting - calming - aboard - docks - cozumel - ocho - rios - jurisdictions - tapping - lynda - slandered - landslide - thornburg - landslided - characteristically - savory - petition - resisted - dirtier - muddier - sensibilities - transpired - nixon - edible - accumulating - elbow - cho - grandes - refried - katy - avocados - avocado - coolwhip - horseshoes - auctions - sidelines - loosely - socioeconomic - tracked - pressured - vandalism - outward - custodial - skyline - irritable - unattended - environments - dunked - compaq - honk - prodigy - mush - shareware - paradox - shooter - crawford - andrew - webber - paranoid - unlucky - anonymously - competency - wholesale - lon - exa - beginnings - kuenzer - rebelled - debtor - angela - eyeglasses - indiv - staffing - examines - optometrist - ophthalmologist - extractions - publication - unfeasible - bettle - orthodontal - outsor - roo - suite - scattering - leniency - underhanded - perpetrator - injustices - wherein - dist - unsavory - elimi - rarity - chairmen - ministers - congregations - catholicism - forthright - disorders - soothe - exertion - characteristic - cram - guarded - sacrificing - mediators - interpersonal - mediator - doable - devised - stimulations - goof - whipping - nickie - snail - hards - futuristically - subjective - harmony - impregnated - challenges - motherly - competent - militaristic - colonel - infantry - embrey - reynold - riddle - aeronautical - pratt - whitney - daphne - dictated - qualifying - rhodes - scholars - homogeneous - realities - socialization - insular - sheriffs - evict - continuances - abundantly - appealing - retried - lowers - percep - gypped - slicker - bruno - kirby - chauvinistic - punching - correlations - opium - dens - weakened - duress - drunken - induced - legalized - quantify - deg - safeguards - fraction - oath - sensings - sentencings - pertains - introduction - accordance - clark - parachute - presiding - reorganizing - sweeper - univerty - versity - lakeway - expose - jun - bethany - unfocused - midst - instigated - marrie - remained - tomorr - whitmore - arbor - slushy - sled - icy - lingering - exodus - eternally - snowfall - grassy - sachse - goddard - stickler - mulcher - seni - antisocial - adapting - deteriorates - glimpse - unwilling - appalachia - stopgap - rougher - strategic - fails - worded - peoria - dropouts - insecure - scaring - stylish - interpretive - fathom - expanding - wean - referrals - advisory - myrtle - barricaded - blackberry - defeats - enchila - boiled - toasted - calorie - hereditary - headstart - preschooler - tacos - tamales - romanian - backfires - waiters - batty - momo - colter - pas - campari - adventured - souper - prey - backlogged - patrolled - frus - imme - dialogue - aisles - cornball - overacted - applauding - waterskiing - ashley - jamie - warner - deanna - cheeks - backdraft - berry - raspberries - shaved - entrees - accompaniments - gershwin - puree - antipollution - gases - accumulates - groundwater - fusion - optimistic - pessimistic - reconvicted - sicko - merciful - cannibalism - hunch - coordinate - communicable - memos - orchestral - fiddler - oboe - classy - corresponds - christening - elijah - marches - poinsettias - bouncy - haunting - conventional - disposal - odors - throwaway - ditches - drinkers - churn - shipwrecked - explodes - maims - sylvester - mermaid - outfitted - crushing - hobnail - phobia - bifocers - trifocals - mccalls - byte - afflicted - exceeded - antibody - realm - telethons - doling - receives - ociety - aesthetic - enhancing - frightens - dahmer - burglary - enquirer - cranks - fuzz - repala - sil - shiny - heartbeat - spins - rainbow - packaged - trespass - tidbit - refrozen - cheesecakes - refreeze - liabilities - wrecks - tattoos - speedboats - chambers - afloat - maneuvers - stormy - nibble - rope - entice - sneaking - paged - favo - flyer - shaky - iffy - sentra - subdued - urinalysis - bums - overdress - overkill - businesslike - nylons - nutrisystem - dreaded - toppers - ceramics - seamstress - cramped - negligent - initiates - squeegees - newscasters - postponed - a1 - alfredo - clowning - circuits - sfuzzi - copeland - transported - thirteenth - wobbly - bookends - jug - viscosity - saver - brushed - tooken - turpentine - towels - shi - jul - shindig - boulevard - maizeland - skier - minnie - canaveral - reschedule - hilton - eighteenth - raton - '287' - '70' - broadmoor - breckenridge - trinidad - '25' - hexpired - disheartening - elders - albertson - limbs - sodas - arranged - brookshires - pickle - piles - emporium - cinch - consolidate - alluring - cupcake - henpecked - instilled - gatherings - subtracts - debits - incidentals - scotch - igloos - strateg - strategically - incurred - cashes - reunio - entryway - roaming - ris - risen - appraisal - disoriented - blissful - unexpectedly - cockroaches - complacent - bitterly - polling - campaigning - napping - structuring - digested - perfumes - geese - peaked - balloon - canyons - weatherwise - sleet - maps - sy - pearls - loafers - distinguishes - '1200' - whereby - extract - generates - bursts - navc - blazey - obscure - promotes - goe - refrigerate - tartness - raspberry - connoisseur - tastings - mesina - exorbitant - kaiser - mccullum - catastrophic - implants - transplants - howe - dislikes - chopin - expresses - discussions - chords - panicking - kielbasa - bak - ravioli - reggae - twangy - agr - cackle - atteck - scholar - adolf - imaginative - sty - antiques - winnie - pooh - grimm - fairy - tales - gentlest - jewel - restroom - spitz - extravagant - overpass - littering - timers - tans - mauve - distantly - swap - bichons - barks - hind - origina - bernards - lega - belittling - liberals - suppos - tcat - examination - clicker - screens - carpooled - bolivia - sundresses - polyester - overheat - sweltering - newborn - pleats - absent - strep - bookkeeper - partitions - duality - extenuating - newsworthy - leafing - mccall - subscribing - gott - newsy - putterer - caladiums - hardened - semitropical - carrollton - architecture - hairless - coon - manx - tame - ships - folklore - faint - chincoteague - burgers - teriyaki - shakes - grandy - fend - snowballed - inconveniences - woozy - sys - squirt - flicking - whales - showtime - adder - dragon - rosa - sorrento - dine - mah - jongg - yearbook - imprinted - depreciated - cribs - bestes - giver - enables - ly - confining - bronco - moder - cowb - cheer - schnauzers - dachshund - starved - curled - skittish - spaying - belon - severing - sr - suicidal - craziness - mistrust - lacks - poland - weeding - mankind - uninsurable - medcenter - hearings - overstaffed - mortgages - outlaid - intergovernmental - plugging - indepth - capsize - sensationalism - blase - sel - sadist - oleo - oregano - ight - semolina - absorbs - vulnerable - align - bombings - aligned - tensions - forceful - cr - expedited - deserving - mandate - grassroots - introspective - schoo - visitation - advantaged - energies - tiananmen - custodians - immigrated - brightest - burst - lanes - winterized - yourselfer - representatives - homemaking - accessed - uzi - flyswatter - utilized - acquiring - illicit - gatlinburg - cosa - hiked - ardmore - cloud - ledges - hyatt - gully - trench - tenkiller - enlisting - seductive - pinion - totality - revealed - legislat - abrupt - ruder - arrives - '1' - microcomputers - gateway - apollo - faulkner - emblem - candice - bergen - ghosts - haunted - dianetics - gibberish - broudigan - journeys - mailman - karl - malone - hacking - fillmont - generically - cyclist - techy - hackers - davy - crockett - sailor - sailed - mck - equalize - semiretired - dementia - insisted - rejuvenating - coldest - cus - celltrex - jeri - maceo - rampages - cocoons - occa - uniqueness - winfrey - prebuilt - workbench - subcontracted - subbed - scramble - championships - peacefulness - birdie - quadruple - whizzing - spectators - scrambles - kerr - mcgee - infrared - suffice - notifies - supplying - angles - anticrime - outings - sec - arlene - lister - poked - togethers - dearly - swoosh - skate - begonias - destruct - concessions - drizzly - huddled - cages - fanatics - straightforward - piston - oiling - altog - reelection - provisional - locate - incomewise - ifs - ands - buts - '4' - hel - discontinue - narrowing - nitty - gritty - faithful - shoppers - yourselves - straighten - stems - relating - supporters - antisupporters - contras - dictator - fascist - siesta - mouths - reflecting - dabble - chalk - chesapeake - suspended - ath - tutored - goofing - piney - diameter - calmness - outwitting - shiners - infla - inflatable - raft - cottonmouth - coves - walkie - talkies - handcrafted - semifixed - automated - crafted - stateside - adage - advising - embarrassment - jessie - helms - intelligently - mistreated - papa - doc - tyrant - puberty - tibby - perfumed - legendary - brookies - rainbows - accommodated - specialists - replanted - rods - norfolk - portsmouth - hikes - pests - chaperon - calloway - variegated - beetles - borderline - zaps - ligustrum - apron - gourds - bolton - symphonies - caller - sax - houseful - crabs - sensation - tingling - oddball - waitressing - crunches - relevance - federally - hogs - barns - revealing - horticultural - groundskeepers - dormant - centipede - crops - behold - cuttings - mit - diamante - boozier - passengers - shining - becca - nina - palmer - remarrying - griffins - crackers - burritos - debone - notoriety - jurisprudence - thoroughfare - sleeper - herd - cima - savages - plywood - beams - migrate - undercover - barbiturates - codeine - drixoral - unsolved - mcgillis - weeknights - physicist - facet - hurst - greensboro - celebrities - repeaters - zealand - statistically - outbound - astronomy - gallagher - pictured - betters - hubble - telescope - planets - habitable - backers - zippers - snaps - dull - pretechnology - shelled - duplicates - regulat - regulators - regulator - lever - pulley - chev - oi - resur - ourse - hesitating - russ - noons - flaw - gasket - fury - exceptionally - surfaced - repeatedly - escapes - pragmatic - consti - opponents - laural - squeaked - andrews - clou - crept - firewood - maples - dogwoods - lowell - unu - periodicals - historic - interes - lawful - scanners - attempted - thoroughness - mag - announcers - tele - ivan - rodriguez - ballplayers - routing - enthusiast - ducted - gettin - brussels - sprouts - kale - pony - grazing - pears - extinguishers - depleter - extinguisher - timed - contaminants - probe - ionization - miller - temptation - squareness - buckles - fea - lettering - vin - vinyl - balloons - recy - commented - nudge - decomposable - flips - emptying - regressive - defen - kate - curves - raphael - atchafalaya - sausa - alvarez - applebee - nonstructured - torture - nur - fai - glorious - esoteric - producer - hairspray - batch - partic - preteen - unlikely - dynamic - raunchy - horrifyingly - poppins - differed - eclipses - belie - lebaron - peeling - gears - oklahoman - beatings - proy - condoms - stupidity - truthful - faded - marker - reflective - adheres - sealing - dings - variance - prop - pressuring - primed - bragging - sickening - shitty - drags - burners - putts - teeing - lodging - dialers - provision - specify - dialing - prised - weir - overloads - hoosiers - crossing - delancey - thrillers - backless - ani - nick - nite - dragnet - bald - marlo - collier - brigham - estonia - agriculture - foodwise - rioting - secede - proportionately - hinders - tubs - brougham - trunks - shy - gadgetry - '6' - interiors - veered - revolving - reverting - envy - exhausts - hairy - gettingest - daught - bertinelli - dysfunctional - childfaring - miracles - bette - midler - redbook - previewing - postage - unauthorized - mayors - discredit - ps - productions - chariots - gladiator - fluent - batches - subtitle - subtitled - gems - supernatural - accusing - migh - mondays - thrust - lifters - drills - rocking - referee - abrasive - maintaining - posed - refusing - coins - conversions - dormitory - unused - ramp - hydraulic - disposer - escapement - incorporating - leonard - nimoy - trekkie - luke - spock - mccoy - admiral - hobbled - vulcans - doohan - scotty - addams - averaging - decrease - munich - snows - chattanooga - lori - coldness - membered - unemp - fetus - complications - slobs - equation - nameless - malformed - sincere - deliberations - dismissed - indicted - revenge - subsequent - provoked - provocation - qualifies - mitigating - contender - linguini - hawaiian - luau - angie - shellfish - clam - cheeses - nachos - resurrection - lutheran - scanned - cooperating - toss - inmate - interpretation - blanks - executioner - bamorghini - skyhawk - dominican - nantes - castles - vineyard - consignment - goodwill - crushes - sewer - res - unoccupied - assassinated - menace - perspec - relativity - vantage - weighted - reflect - subservient - integration - ith - frien - drudgery - montpe - mont - monteplier - montpelier - everett - yack - tromping - unlimited - wedge - fairway - flus - startling - '286' - turret - scien - simulators - plugged - upgrades - custer - '386' - trenches - trencher - stunt - cul - sac - rearranged - clancy - novell - netware - ark - ladonna - peck - bourne - ultimatum - enveloped - amsterdam - holland - harpsichordist - forte - warrington - cheating - harry - heroic - mayfield - corrupts - lig - hatteras - imaging - legalese - himsnelf - koop - scarcity - highland - jogs - gyms - inequities - stimulate - deductor - bentsen - drunks - lafferty - infringe - snuffed - snuff - compares - gilmore - accomplishes - william - thrice - mating - sows - suckling - hernia - carcass - cloves - pineapples - cranberries - hominy - barb - automatics - avis - crashed - lens - porsche - turbo - carrera - mys - mushrooming - percentagewise - folderol - lifeguard - jarring - flui - watchers - pokes - blamed - ceases - intravenous - cell - quests - subsidies - slashed - entitlement - trades - beauticians - unending - spiral - consumers - unf - ailments - magerick - celtic - transplanted - rolando - harper - plaint - straighter - dayer - plumbed - bolted - logan - accredited - professorship - distressing - fiel - treasury - refunds - halt - spying - scaled - loading - challenger - stat - mirv - roomy - cargo - recommends - volvos - wagons - conscientiously - emiss - hypothesize - muncie - terre - haute - triggering - verify - drivable - emerges - overgrazed - reclaimed - prettiest - palm - paintbrush - septic - hummingbirds - hummingbird - pooped - annuals - countrified - supermarket - coaster - afterburners - gliding - oomph - subs - gambled - insulating - spec - verandas - genes - drapes - guppies - platies - fishies - glacier - playgrounds - wilderness - scaries - rayburn - curling - nominal - fulfill - synagogue - geriatrics - app - degenerative - communiky - enhance - assist - text - biogra - daniels - prince - phillip - criticizing - miniseries - scarlett - spectacular - torrents - ligh - horizontally - arid - crisp - sleigh - brighton - springtime - skie - hammered - subtly - brianna - lib - submerged - loosening - leaks - tar - gravel - plastered - drywalled - plastering - terri - exasperating - swelling - squirming - swells - shrinks - retains - highlight - captive - legos - technic - lego - stare - engagements - sousa - refreshments - rehearsal - donations - municipal - conduct - nitny - altoona - lockhaven - nighttimes - ama - emerson - maceboast - circuitry - vacationer - wausau - unduly - sunglasses - grip - durable - faulty - recliner - pinto - sequoias - redwoods - bryce - tetons - sequoia - driveways - snowmen - snowballs - marketed - acceleration - suspension - lumbar - sma - bur - skyrocketing - govern - exclude - ballgame - warrant - rounds - brats - eff - nativity - facings - casings - relieve - strase - reliever - relieving - sander - cabinet - equipments - dado - rotary - sicknesses - bryan - mamas - packards - solburns - frown - niggardly - chintzy - megs - mirroring - epidemic - immunizations - rays - mumps - rubella - inaccuracy - defined - issued - hypocritical - stings - laundering - contr - governed - discomfort - stea - holster - spontaneous - headquarters - bitterest - fluctuations - texts - doen - rosie - '''neil' - thomases - trimmer - clump - tithing - homeowner - computerization - stale - subroutine - libra - clara - beastie - triggered - pledged - fren - ally - organi - trombone - weathers - facetious - directors - spells - compulsive - childr - fluffs - toppings - brea - torque - underdrive - sportier - beetle - coolers - bonneville - secondaries - quadrajet - compulsion - elevation - variations - hilltops - mines - hamster - cruelty - parakeet - parakreet - burmese - deactivated - infatuated - jobbies - visualize - boggling - slid - clamped - kisses - everywh - brag - gramm - overturning - renegotiate - kickbacks - valdez - defi - batted - hangs - threats - emit - che - churning - remembrance - networking - conformance - wyatt - extremey - bennigan - vincent - chefalia - whataburger - zillion - mercado - juarez - tallest - ewaldes - cont - stoneleigh - chews - yapping - collies - roughest - hollered - battling - obedience - squats - vaca - pilgrims - medieval - relics - bemerton - newness - turin - muffins - requests - helman - tart - zing - cele - layering - fluffier - joins - jennifer - unselfish - tutoring - affiliated - aimlessly - perky - shins - hyper - burdensome - earphones - timbuktu - onna - lieutenant - biologist - sliding - tremors - variedly - bakers - aprons - sweatshirt - wigs - lamb - bunnies - symbols - milky - polytechnochloride - mought - trashmore - lifts - riverview - tranged - strongest - recessionary - stagnate - unteachable - prominent - chide - remaining - backbone - newborns - fullest - firewh - daffodil - jung - aquinas - libretto - rossini - mahler - dutchen - trumpets - elixir - floated - swapped - tyme - tempco - trooper - gisland - carribean - unpacking - lotto - alcatraz - hairdresser - crui - janice - furry - eaves - rafter - cactuses - furrows - wrung - plink - construe - thinkings - bue - buechele - grieves - gullible - manufactures - borden - bib - overalls - oshman - evaluated - unfor - linguistic - austria - niagara - coasts - carolinas - leisurely - modesto - cheeseburgers - incapable - hygienic - inoperable - oxygen - banish - relocated - realtor - listings - precautions - integrate - cooperatives - reallocate - reorganize - accelerate - transient - commish - tenderhearted - galaxies - crud - mutations - feazure - ballooned - reclamation - merits - axiom - fiends - sensitivity - aboveboard - evaluating - veggies - unarmed - resembling - tallow - scalloped - weighing - strap - squeaker - closing - mullin - squeakers - marquee - bluish - hydrogen - sulfide - h2s - ramps - vaccine - preventable - syringes - needles - feared - ruf - riffraff - haves - nots - earhout - bulletproof - vest - hedge - tollbooth - hatcher - taverns - sailboats - ancle - lounge - cocktail - sailer - cruiser - hull - spars - rigging - gusts - wearisome - flaky - markups - arming - stra - quail - swedish - munch - intermission - doughy - frosts - iceberg - schoolteacher - altrusa - upholstery - garl - jupiter - musically - auditions - repertory - outlet - auditory - lear - educationally - verified - chording - pianist - min - ec - subbranch - emigrated - beware - entrepreneurial - ventures - banked - stored - footsteps - postcards - notify - notifying - steals - hides - subsequently - corrective - leers - downright - outright - shu - newest - apathetic - absol - prolong - roofing - retool - zigzag - kan - untalented - washed - salvageable - gluing - feds - interrupting - faults - caucasian - educ - thei - officed - deputy - pruned - gladiolas - amaryllis - conf - plantings - sprout - narcissus - psychic - rerun - activate - rusted - rusts - fenders - repainted - acco - dreary - expen - salting - weinstocks - wad - hilt - dolphene - feelt - throwed - wheelchairs - emjoy - anheimer - tela - kindly - innovated - endeavors - adam - particulars - abusive - evolutionary - duplication - imagers - allocate - optimally - squawk - evolution - insurers - entity - burnable - ticketed - charities - braved - suede - cardigan - appointments - unlined - toasty - lightweight - fireplaces - dense - ethanol - smokestacks - mowers - wedded - organism - nutritionally - bamba - szechuan - pancho - binders - assignments - developments - cashew - avoiding - suey - disburse - squeeze - sq - faculties - pauper - brokerage - anticipation - cherished - commodity - famuel - slopes - biness - furlough - promoted - nec - shasta - salmon - sk - walleye - fighters - fillet - foil - seekers - scrutiny - tarrant - bobsy - accu - smiled - growled - mistrials - railroaded - convalescent - unsettling - senile - graying - exercisings - unaffordable - restricts - casse - gabrielli - bankrupted - cello - viola - composers - boutiques - darling - chanting - canseco - ramming - vinny - utility - outweighing - sundance - smithsonian - crosswords - planners - artists - bazo - faron - spiro - gyro - dulcimer - jarreau - contorted - bonnie - rait - grammy - unedu - sprayer - routers - cookie - varnish - smoother - hayloft - franklin - gradual - increasement - torpedoed - downside - blythe - tonkin - macintoshes - graphical - multitasking - gestures - vocabulary - compilers - consultation - interactive - discriminating - correlate - funnest - gentler - panicked - sassy - westmin - westminster - infra - mondale - situa - circuses - disrepair - dashboard - ce - beefing - patrols - visibility - lifted - cumberland - cobb - thefts - superficial - cracked - electrically - manufactured - bordering - elects - aerodyne - aerob - brace - publicize - killings - duri - commentators - blurbs - bog - dur - countdown - newscasts - unreasonable - moderator - unorganized - moderated - assumingly - importers - dahlmer - ohi - nightmarish - withheld - sovereign - martial - puritanical - permissible - acquitting - acquit - impaneling - dismissing - foreman - deliberating - una - restate - unannounced - sweep - definitive - bodily - behaviors - enters - privacies - melanie - spry - announcements - anson - fayetteville - waynesboro - delinquency - fre - gainfully - tremen - thriving - towar - grit - pail - latent - compression - ovens - armor - fierce - finagle - nationalizing - cutoff - operat - unionized - distinction - institutionally - expedient - innovativeness - expedi - unequal - plaintiff - novices - bets - leaky - luby - taping - promo - blurb - mutt - hooper - veterin - spay - neuter - frie - shorties - decreased - unrestricted - glut - magnum - rushes - oper - preset - styro - frank - shocks - allot - frowned - chronicle - analytical - abnormality - overwhelmingly - academia - descriptions - addictive - reevaluate - divvy - allocated - psy - psychedelic - crosby - stills - performers - secular - druggie - shipping - maximize - actuall - revelation - polymers - roadways - hoop - funn - heavenly - retailers - induce - inducement - recycler - saskatoon - welfor - employing - deposits - arithmetic - sums - colleague - internet - infusions - incurring - surveying - assesses - footloose - smattering - greetings - snobby - paled - refrained - acute - indivigal - thrives - categorized - receptionist - lar - curve - critter - incumbent - entrenched - standardizing - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true joint_net_conf: null model_conf: ctc_weight: 0.3 lsm_weight: 0.1 length_normalized_loss: false extract_feats_in_collect_stats: false use_preprocessor: true token_type: word bpemodel: null non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: s3prl frontend_conf: frontend_conf: upstream: wav2vec2_large_ll60k download_dir: ./hub multilayer_feature: true fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 27 num_freq_mask: 2 apply_time_mask: true time_mask_width_ratio_range: - 0.0 - 0.05 num_time_mask: 2 normalize: utterance_mvn normalize_conf: {} preencoder: linear preencoder_conf: input_size: 1024 output_size: 80 encoder: conformer encoder_conf: output_size: 256 attention_heads: 4 linear_units: 1024 num_blocks: 12 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.1 input_layer: conv2d2 normalize_before: true macaron_style: true rel_pos_type: latest pos_enc_layer_type: rel_pos selfattention_layer_type: rel_selfattn activation_type: swish use_cnn_module: true cnn_module_kernel: 31 postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: attention_heads: 4 linear_units: 2048 num_blocks: 6 dropout_rate: 0.1 positional_dropout_rate: 0.1 self_attention_dropout_rate: 0.1 src_attention_dropout_rate: 0.1 required: - output_dir - token_list version: 0.10.7a1 distributed: true ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
esiebomajeremiah/autonlp-email-classification-657119381
esiebomajeremiah
2022-03-22T13:57:29Z
11
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autonlp", "en", "dataset:esiebomajeremiah/autonlp-data-email-classification", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-22T13:54:29Z
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - esiebomajeremiah/autonlp-data-email-classification co2_eq_emissions: 3.516233232503715 --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 657119381 - CO2 Emissions (in grams): 3.516233232503715 ## Validation Metrics - Loss: 0.00037395773688331246 - Accuracy: 1.0 - Precision: 1.0 - Recall: 1.0 - AUC: 1.0 - F1: 1.0 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/esiebomajeremiah/autonlp-email-classification-657119381 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("esiebomajeremiah/autonlp-email-classification-657119381", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("esiebomajeremiah/autonlp-email-classification-657119381", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
edwardjross/xlm-roberta-base-finetuned-panx-all
edwardjross
2022-03-22T13:46:27Z
5
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-22T13:33:47Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-all results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-all This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1812 - F1: 0.8567 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2983 | 1.0 | 1252 | 0.1945 | 0.8033 | | 0.1603 | 2.0 | 2504 | 0.1889 | 0.8441 | | 0.1012 | 3.0 | 3756 | 0.1812 | 0.8567 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
Ketzu/koelectra-sts-v0.6
Ketzu
2022-03-22T13:18:11Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "electra", "text-classification", "generated_from_trainer", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-20T11:10:57Z
--- tags: - generated_from_trainer metrics: - spearmanr model-index: - name: koelectra-sts-v0.6 results: - task: name: Text Classification type: text-classification metrics: - name: Spearmanr type: spearmanr value: 0.8698381401893762 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # koelectra-sts-v0.6 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0059 - Pearson: 0.9988 - Spearmanr: 0.8698 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:---------:| | 0.0036 | 1.0 | 6250 | 0.0082 | 0.9983 | 0.8698 | | 0.0038 | 2.0 | 12500 | 0.0065 | 0.9986 | 0.8697 | | 0.0105 | 3.0 | 18750 | 0.0071 | 0.9985 | 0.8698 | | 0.0008 | 4.0 | 25000 | 0.0059 | 0.9988 | 0.8698 | | 0.0008 | 5.0 | 31250 | 0.0059 | 0.9988 | 0.8698 | ### Framework versions - Transformers 4.10.0 - Pytorch 1.10.1+cu113 - Datasets 1.17.0 - Tokenizers 0.10.3
huggingtweets/laurentozon
huggingtweets
2022-03-22T12:21:52Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-22T12:21:17Z
--- language: en thumbnail: http://www.huggingtweets.com/laurentozon/1647951707700/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1505670688635564034/K4L2yhhB_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Laurent Ozon</div> <div style="text-align: center; font-size: 14px;">@laurentozon</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Laurent Ozon. | Data | Laurent Ozon | | --- | --- | | Tweets downloaded | 3192 | | Retweets | 753 | | Short tweets | 382 | | Tweets kept | 2057 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3uddth9b/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @laurentozon's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2dzqbuuu) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2dzqbuuu/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/laurentozon') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
saattrupdan/voxpopuli-wav2vec2-large-cv8-da
saattrupdan
2022-03-22T09:58:54Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "da", "dataset:common_voice_8_0", "license:cc-by-nc-4.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - da license: cc-by-nc-4.0 tasks: - automatic-speech-recognition datasets: - common_voice_8_0 metrics: - wer model-index: - name: voxpopuli-wav2vec2-large-cv8-da results: - task: type: automatic-speech-recognition dataset: type: mozilla-foundation/common_voice_8_0 args: da name: Danish Common Voice 8.0 metrics: - type: wer value: 40.54 - task: type: automatic-speech-recognition dataset: type: Alvenir/alvenir_asr_da_eval name: Alvenir ASR test dataset metrics: - type: wer value: 40.66 --- # VoxPopuli-Wav2vec2-large-CV8-da ## Model description This model is a fine-tuned version of the Swedish acoustic model [facebook/wav2vec2-large-sv-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-sv-voxpopuli) on the Danish part of [Common Voice 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0), containing ~6 crowdsourced hours of read-aloud Danish speech. ## Performance The model achieves the following WER scores (lower is better): | **Dataset** | **WER without LM** | **WER with 5-gram LM** | | :---: | ---: | ---: | | [Danish part of Common Voice 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0/viewer/da/train) | 48.04 | 40.54 | | [Alvenir test set](https://huggingface.co/datasets/Alvenir/alvenir_asr_da_eval) | 48.43 | 40.66 |
edoumazane/distilbert-base-uncased-finetuned-ner
edoumazane
2022-03-22T09:56:14Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-22T09:27:52Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9247134038800705 - name: Recall type: recall value: 0.9384718648618414 - name: F1 type: f1 value: 0.9315418355449449 - name: Accuracy type: accuracy value: 0.9836529143565221 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0612 - Precision: 0.9247 - Recall: 0.9385 - F1: 0.9315 - Accuracy: 0.9837 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2421 | 1.0 | 878 | 0.0701 | 0.9083 | 0.9217 | 0.9149 | 0.9801 | | 0.0555 | 2.0 | 1756 | 0.0599 | 0.9204 | 0.9357 | 0.9280 | 0.9830 | | 0.0311 | 3.0 | 2634 | 0.0612 | 0.9247 | 0.9385 | 0.9315 | 0.9837 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
merve/anime-faces-generator
merve
2022-03-22T09:15:31Z
0
2
keras
[ "keras", "tf-keras", "dcgan", "dataset:merve/anime-faces", "license:apache-2.0", "region:us" ]
null
2022-03-04T16:41:30Z
--- license: apache-2.0 library_name: keras tags: - dcgan datasets: - merve/anime-faces --- ## Model description Anime face generator model using [TensorFlow DCGAN example](https://www.tensorflow.org/tutorials/generative/dcgan). ## Training and evaluation data Model is trained on [anime faces dataset](https://huggingface.co/datasets/merve/anime-faces). The dataset consists of 21551 anime faces scraped from www.getchu.com, which are then cropped using the anime face detection algorithm [here](https://github.com/nagadomi/lbpcascade_animeface). All images are resized to 64 * 64 for the sake of convenience. The model takes a noise as input and then Conv2DTranspose is used to do upsampling. If you want to pass this to another discriminator, the output shape consists of 28x28 images. ## How to use this model You can use this model to generate new anime faces. If you want to continuously train, use with [discriminator](https://huggingface.co/merve/anime-faces-discriminator) using `tf.GradientTape()` as mentioned in the DCGAN tutorial. ``` from huggingface_hub import from_pretrained_keras model = from_pretrained_keras("merve/anime-faces-generator") ``` You can generate examples using a noise. ``` seed = tf.random.normal([number_of_examples_to_generate, noise]) predictions = model(seed, training=False) # inference mode ``` ## Intended use and biases This model is not intended for production. ### Generated images ![Example](./example.png)
Yaxin/xlm-roberta-base-conll2003-ner
Yaxin
2022-03-22T08:11:52Z
81
3
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-22T07:36:34Z
--- license: mit tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: test-conll2003-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9459188783174762 - name: Recall type: recall value: 0.9537192864355436 - name: F1 type: f1 value: 0.94980306712478 - name: Accuracy type: accuracy value: 0.9911218410498034 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test-conll2003-ner This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0470 - Precision: 0.9459 - Recall: 0.9537 - F1: 0.9498 - Accuracy: 0.9911 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.0 - Datasets 1.18.3 - Tokenizers 0.11.0
lazyturtl/WEC-types
lazyturtl
2022-03-22T04:54:04Z
60
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-22T04:53:55Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: WEC-types results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.7830188870429993 --- # WEC-types Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### Attenuators ![Attenuators](images/Attenuators.jpg) #### Oscillating water column ![Oscillating water column](images/Oscillating_water_column.png) #### Overtopping Devices ![Overtopping Devices](images/Overtopping_Devices.jpg) #### Point Absorber ![Point Absorber](images/Point_Absorber.jpg)
razent/SciFive-large-Pubmed_PMC-MedNLI
razent
2022-03-22T04:05:21Z
675
2
transformers
[ "transformers", "pytorch", "tf", "t5", "text2text-generation", "mednli", "en", "dataset:pubmed", "dataset:pmc/open_access", "arxiv:2106.03598", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-20T17:24:33Z
--- language: - en tags: - text2text-generation - mednli datasets: - pubmed - pmc/open_access widget: - text: "mednli: sentence1: In the ED, initial VS revealed T 98.9, HR 73, BP 121/90, RR 15, O2 sat 98% on RA. sentence2: The patient is hemodynamically stable" --- # SciFive Pubmed+PMC Large on MedNLI ## Introduction Finetuned SciFive Pubmed+PMC Large model achieved state-of-the-art results on [MedNLI (Medical Natural Language Inference)](https://paperswithcode.com/sota/natural-language-inference-on-mednli) Paper: [SciFive: a text-to-text transformer model for biomedical literature](https://arxiv.org/abs/2106.03598) Authors: _Long N. Phan, James T. Anibal, Hieu Tran, Shaurya Chanana, Erol Bahadroglu, Alec Peltekian, Grégoire Altan-Bonnet_ ## How to use For more details, do check out [our Github repo](https://github.com/justinphan3110/SciFive). ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM ​ tokenizer = AutoTokenizer.from_pretrained("razent/SciFive-large-Pubmed_PMC-MedNLI") model = AutoModelForSeq2SeqLM.from_pretrained("razent/SciFive-large-Pubmed_PMC-MedNLI") model.cuda() ​ sent_1 = "In the ED, initial VS revealed T 98.9, HR 73, BP 121/90, RR 15, O2 sat 98% on RA." sent_2 = "The patient is hemodynamically stable" text = f"mednli: sentence1: {sent_1} sentence2: {sent_2}" encoding = tokenizer.encode_plus(text, padding='max_length', max_length=256, return_tensors="pt") input_ids, attention_masks = encoding["input_ids"].to("cuda"), encoding["attention_mask"].to("cuda") outputs = model.generate( input_ids=input_ids, attention_mask=attention_masks, max_length=8, early_stopping=True ) for output in outputs: line = tokenizer.decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=True) print(line) ```
StivenLancheros/roberta-base-biomedical-clinical-es-finetuned-ner-CRAFT_AugmentedTransfer_ES
StivenLancheros
2022-03-21T22:36:06Z
11
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-21T22:05:55Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: roberta-base-biomedical-clinical-es-finetuned-ner-CRAFT_AugmentedTransfer_ES results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-biomedical-clinical-es-finetuned-ner-CRAFT_AugmentedTransfer_ES This model is a fine-tuned version of [StivenLancheros/roberta-base-biomedical-clinical-es-finetuned-ner-CRAFT_Augmented_ES](https://huggingface.co/StivenLancheros/roberta-base-biomedical-clinical-es-finetuned-ner-CRAFT_Augmented_ES) on the CRAFT dataset. It achieves the following results on the evaluation set: - Loss: 0.2043 - Precision: 0.8666 - Recall: 0.8614 - F1: 0.8639 - Accuracy: 0.9734 ## Model description This model performs Named Entity Recognition for 6 entity tags: Sequence, Cell, Protein, Gene, Taxon, and Chemical from the CRAFT(Colorado Richly Annotated Full Text) Corpus in Spanish (MT translated) and English. Entity tags have been normalized and replaced from the original three letter code to a full name e.g. B-Protein, I-Chemical. This model is trained on augmented data created using Entity Replacement. 20% of the entities were replaced using a list of entities for each entity tag obtained from the official ontologies for each entity class. Three datasets (original, augmented, MT translated CRAFT) were concatenated. To improve F1 score the transfer learning was completed in two steps. Using [StivenLancheros/roberta-base-biomedical-clinical-es-finetuned-ner-CRAFT_Augmented_ES](https://huggingface.co/StivenLancheros/roberta-base-biomedical-clinical-es-finetuned-ner-CRAFT_Augmented_ES) as a base model, I finetuned once more on the original CRAFT dataset in English. Biobert --> Augmented CRAFT --> CRAFT ES (MT translated) ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0088 | 1.0 | 1360 | 0.1793 | 0.8616 | 0.8487 | 0.8551 | 0.9721 | | 0.0046 | 2.0 | 2720 | 0.1925 | 0.8618 | 0.8426 | 0.8521 | 0.9713 | | 0.0032 | 3.0 | 4080 | 0.1926 | 0.8558 | 0.8630 | 0.8594 | 0.9725 | | 0.0011 | 4.0 | 5440 | 0.2043 | 0.8666 | 0.8614 | 0.8639 | 0.9734 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
StivenLancheros/roberta-base-biomedical-clinical-es-finetuned-ner-CRAFT_Augmented_ES
StivenLancheros
2022-03-21T22:25:59Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-21T20:16:37Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: roberta-base-biomedical-clinical-es-finetuned-ner-CRAFT_Augmented_ES results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-biomedical-clinical-es-finetuned-ner-CRAFT_Augmented_ES This model is a fine-tuned version of [PlanTL-GOB-ES/roberta-base-biomedical-clinical-es](https://huggingface.co/PlanTL-GOB-ES/roberta-base-biomedical-clinical-es) on the CRAFT dataset. It achieves the following results on the evaluation set: - Loss: 0.2224 - Precision: 0.8298 - Recall: 0.8306 - F1: 0.8302 - Accuracy: 0.9659 ## Model description This model performs Named Entity Recognition for 6 entity tags: Sequence, Cell, Protein, Gene, Taxon, and Chemical from the CRAFT(Colorado Richly Annotated Full Text) Corpus in English. Entity tags have been normalized and replaced from the original three letter code to a full name e.g. B-Protein, I-Chemical. This model is trained on augmented data created using Entity Replacement. 20% of the entities were replaced using a list of entities for each entity tag obtained from the official ontologies for each entity class. Three datasets (original, augmented, MT translated CRAFT) were concatenated. ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0624 | 1.0 | 4078 | 0.1844 | 0.8002 | 0.7923 | 0.7963 | 0.9607 | | 0.0284 | 2.0 | 8156 | 0.1937 | 0.8394 | 0.7988 | 0.8186 | 0.9637 | | 0.0118 | 3.0 | 12234 | 0.2007 | 0.8285 | 0.8232 | 0.8258 | 0.9649 | | 0.0043 | 4.0 | 16312 | 0.2224 | 0.8298 | 0.8306 | 0.8302 | 0.9659 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
elena-soare/bat-pre-trained
elena-soare
2022-03-21T22:23:37Z
9
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-21T21:28:30Z
# Text2SQL Task T5-Base + E-commerce pre-training This is our T5 model pre-trained on 18k e-commerce pages from popular blogs and fine-tuned on Spider using a schema serialization. ## Running the model Inspired by the work done by [Picard](https://github.com/ElementAI/picard/) by adding a pre-training step for better performance on e-commerce data. ```python [question] | [db_id] | [table] : [column] ( [content] , [content] ) , [column] ( ... ) , [...] | [table] : ... | ... ```
StivenLancheros/roberta-base-biomedical-clinical-es-finetuned-ner-CRAFT_Augmented_EN
StivenLancheros
2022-03-21T22:07:55Z
5
1
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-21T20:11:24Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: roberta-base-biomedical-clinical-es-finetuned-ner-CRAFT_Augmented_EN results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-biomedical-clinical-es-finetuned-ner-CRAFT_Augmented_EN This model is a fine-tuned version of [PlanTL-GOB-ES/roberta-base-biomedical-clinical-es](https://huggingface.co/PlanTL-GOB-ES/roberta-base-biomedical-clinical-es) on the CRAFT dataset. It achieves the following results on the evaluation set: - Loss: 0.2276 - Precision: 0.8078 - Recall: 0.8258 - F1: 0.8167 - Accuracy: 0.9629 ## Model description This model performs Named Entity Recognition for 6 entity tags: Sequence, Cell, Protein, Gene, Taxon, and Chemical from the CRAFT(Colorado Richly Annotated Full Text) Corpus in English. Entity tags have been normalized and replaced from the original three letter code to a full name e.g. B-Protein, I-Chemical. This model is trained on augmented data created using Entity Replacement. 20% of the entities were replaced using a list of entities for each entity tag obtained from the official ontologies for each entity class. Both datasets (original, augmented) were concatenated. ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0842 | 1.0 | 2719 | 0.1765 | 0.7606 | 0.7785 | 0.7695 | 0.9542 | | 0.0392 | 2.0 | 5438 | 0.1971 | 0.7990 | 0.7958 | 0.7974 | 0.9596 | | 0.0138 | 3.0 | 8157 | 0.2094 | 0.8013 | 0.8196 | 0.8103 | 0.9620 | | 0.0082 | 4.0 | 10876 | 0.2276 | 0.8078 | 0.8258 | 0.8167 | 0.9629 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
Ebtihal/AraBertMo_base_V8
Ebtihal
2022-03-21T22:03:44Z
5
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
Arabic Model AraBertMo_base_V8 --- language: ar tags: Fill-Mask datasets: OSCAR widget: - text: " السلام عليكم ورحمة[MASK] وبركاتة" - text: " اهلا وسهلا بكم في [MASK] من سيربح المليون" - text: " مرحبا بك عزيزي الزائر [MASK] موقعنا " --- # Arabic BERT Model **AraBERTMo** is an Arabic pre-trained language model based on [Google's BERT architechture](https://github.com/google-research/bert). AraBERTMo_base uses the same BERT-Base config. AraBERTMo_base now comes in 10 new variants All models are available on the `HuggingFace` model page under the [Ebtihal](https://huggingface.co/Ebtihal/) name. Checkpoints are available in PyTorch formats. ## Pretraining Corpus `AraBertMo_base_V8' model was pre-trained on ~3 million words: [OSCAR](https://traces1.inria.fr/oscar/) - Arabic version "unshuffled_deduplicated_ar". ## Training results this model achieves the following results: | Task | Num examples | Num Epochs | Batch Size | steps | Wall time | training loss| |:----:|:----:|:----:|:----:|:-----:|:----:|:-----:| | Fill-Mask| 40032| 8 | 64 | 5008 | 10h 5m 57s | 7.2164 | ## Load Pretrained Model You can use this model by installing `torch` or `tensorflow` and Huggingface library `transformers`. And you can use it directly by initializing it like this: ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Ebtihal/AraBertMo_base_V8") model = AutoModelForMaskedLM.from_pretrained("Ebtihal/AraBertMo_base_V8") ``` ## This model was built for master's degree research in an organization: - [University of kufa](https://uokufa.edu.iq/). - [Faculty of Computer Science and Mathematics](https://mathcomp.uokufa.edu.iq/). - **Department of Computer Science**
huggingtweets/elonmusk-garyvee
huggingtweets
2022-03-21T19:57:10Z
4
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-21T19:55:22Z
--- language: en thumbnail: http://www.huggingtweets.com/elonmusk-garyvee/1647892564866/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1503591435324563456/foUrqiEw_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1493524673962852353/qRxbC9Xq_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Elon Musk & Gary Vaynerchuk</div> <div style="text-align: center; font-size: 14px;">@elonmusk-garyvee</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Elon Musk & Gary Vaynerchuk. | Data | Elon Musk | Gary Vaynerchuk | | --- | --- | --- | | Tweets downloaded | 2200 | 3247 | | Retweets | 102 | 712 | | Short tweets | 671 | 842 | | Tweets kept | 1427 | 1693 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/abt9l46e/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @elonmusk-garyvee's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/4wls4y5v) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/4wls4y5v/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/elonmusk-garyvee') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Ameer05/distilbart-cnn-12-6-finetuned-resume-summarizer
Ameer05
2022-03-21T19:35:06Z
17
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "summarization", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-03-21T19:18:43Z
--- tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: distilbart-cnn-12-6-finetuned-resume-summarizer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbart-cnn-12-6-finetuned-resume-summarizer This model is a fine-tuned version of [Ameer05/model-tokenizer-repo](https://huggingface.co/Ameer05/model-tokenizer-repo) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.1123 - Rouge1: 52.5826 - Rouge2: 34.3861 - Rougel: 41.8525 - Rougelsum: 51.0015 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | No log | 0.91 | 5 | 3.2243 | 42.8593 | 24.8652 | 34.1789 | 41.406 | | No log | 1.91 | 10 | 2.6948 | 48.8571 | 28.6711 | 39.2648 | 46.188 | | No log | 2.91 | 15 | 2.4665 | 50.6085 | 30.4034 | 39.7406 | 48.5449 | | No log | 3.91 | 20 | 2.3329 | 52.2357 | 32.3398 | 41.574 | 49.4316 | | 3.6611 | 4.91 | 25 | 2.2362 | 52.0134 | 33.1612 | 41.3103 | 50.255 | | 3.6611 | 5.91 | 30 | 2.1833 | 51.5434 | 32.7045 | 40.5683 | 49.4238 | | 3.6611 | 6.91 | 35 | 2.1462 | 53.5144 | 35.4518 | 42.8615 | 51.4053 | | 3.6611 | 7.91 | 40 | 2.1518 | 52.0985 | 33.6754 | 41.5936 | 50.5159 | | 2.0326 | 8.91 | 45 | 2.1075 | 53.1401 | 34.9721 | 42.2973 | 51.8454 | | 2.0326 | 9.91 | 50 | 2.1123 | 52.5826 | 34.3861 | 41.8525 | 51.0015 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.9.1 - Datasets 2.0.0 - Tokenizers 0.10.3
cb2-kai/finetuning-sentiment-model-3000-samples
cb2-kai
2022-03-21T18:34:27Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-21T14:19:30Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.86 - name: F1 type: f1 value: 0.8679245283018867 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3568 - Accuracy: 0.86 - F1: 0.8679 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
huggingtweets/rebeudeter
huggingtweets
2022-03-21T17:55:17Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-21T17:55:08Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1421289007753859077/3X1VHMRx_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Billy ☄️🧡</div> <div style="text-align: center; font-size: 14px;">@rebeudeter</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Billy ☄️🧡. | Data | Billy ☄️🧡 | | --- | --- | | Tweets downloaded | 3220 | | Retweets | 363 | | Short tweets | 205 | | Tweets kept | 2652 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3mz5i9lj/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @rebeudeter's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1qau529e) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1qau529e/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/rebeudeter') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
ianMconversica/autonlp-test-654919306
ianMconversica
2022-03-21T17:29:34Z
5
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autonlp", "unk", "dataset:McIan91/autonlp-data-test", "co2_eq_emissions", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-21T17:28:50Z
--- tags: autonlp language: unk widget: - text: "I love AutoNLP 🤗" datasets: - McIan91/autonlp-data-test co2_eq_emissions: 0.7013851565380207 --- # Model Trained Using AutoNLP - Problem type: Summarization - Model ID: 654919306 - CO2 Emissions (in grams): 0.7013851565380207 ## Validation Metrics - Loss: 2.5570242404937744 - Rouge1: 72.7273 - Rouge2: 44.4444 - RougeL: 72.7273 - RougeLsum: 72.7273 - Gen Len: 17.0 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/McIan91/autonlp-test-654919306 ```
espnet/marathi_openslr64
espnet
2022-03-21T16:23:56Z
1
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "dataset:mr_openslr64", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-03-21T16:17:30Z
--- tags: - espnet - audio - automatic-speech-recognition language: noinfo datasets: - mr_openslr64 license: cc-by-4.0 --- ## ESPnet2 ASR model ### `espnet/marathi_openslr64` This model was trained by Sujay Suresh Kumar using mr_openslr64 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout 91325a1e58ca0b13494b94bf79b186b095fe0b58 pip install -e . cd egs2/mr_openslr64/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/marathi_openslr64 ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Mon Mar 21 16:06:03 UTC 2022` - python version: `3.9.7 (default, Sep 16 2021, 13:09:58) [GCC 7.5.0]` - espnet version: `espnet 0.10.7a1` - pytorch version: `pytorch 1.11.0+cu102` - Git hash: `91325a1e58ca0b13494b94bf79b186b095fe0b58` - Commit date: `Mon Mar 21 00:40:52 2022 +0000` ## asr_train_asr_conformer_xlsr_raw_bpe150_sp ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_batch_size1_asr_model_valid.acc.ave/marathi_test|299|3625|72.9|22.5|4.7|1.7|28.9|88.6| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_batch_size1_asr_model_valid.acc.ave/marathi_test|299|20557|91.4|3.1|5.5|1.9|10.5|88.6| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_batch_size1_asr_model_valid.acc.ave/marathi_test|299|13562|86.5|6.3|7.1|1.4|14.9|88.6| ## ASR config <details><summary>expand</summary> ``` config: conf/tuning/train_asr_conformer_xlsr.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_conformer_xlsr_raw_bpe150_sp ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 60 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 5 nbest_averaging_interval: 0 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 3 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: - frontend.upstream num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 10000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_bpe150_sp/train/speech_shape - exp/asr_stats_raw_bpe150_sp/train/text_shape.bpe valid_shape_file: - exp/asr_stats_raw_bpe150_sp/valid/speech_shape - exp/asr_stats_raw_bpe150_sp/valid/text_shape.bpe batch_type: numel valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/marathi_train_sp/wav.scp - speech - sound - - dump/raw/marathi_train_sp/text - text - text valid_data_path_and_name_and_type: - - dump/raw/marathi_dev/wav.scp - speech - sound - - dump/raw/marathi_dev/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.0005 scheduler: warmuplr scheduler_conf: warmup_steps: 20000 token_list: - <blank> - <unk> - ▁ - ा - ी - े - त - र - ं - न - क - ् - व - ि - ल - ▁म - स - ो - श - द - च - म - ▁अ - ▁आ - ण - ु - ला - ह - ▁आहे - य - ▁स - ग - ▁ह - ्या - चा - ▁प - ड - ▁क - प - ट - ▁ब - ज - र् - ्र - ▁? - ▁ज - ब - ून - वा - ▁एक - ▁या - ळ - ात - ख - ध - ▁ति - ठ - ल्या - ले - ू - ▁तुम्हाला - ां - ार - घ - ची - ▁अस - थ - ▁का - ने - णि - ॅ - ▁त - ▁परवा - ▁ते - ली - ▁गेल - ळा - ष - ▁कर - . - च्या - ▁न - वर - ▁त्या - ▁प्र - ▁करू - ▁ग - ्ट - ई - झ - ▁फ - ाय - क्ष - ▁काय - पूर - ▁होती - मध - ▁तिथ - ▁काही - ए - ▁वि - ▁दोन - ▁महिन्या - व्हा - तील - जार - ▁नाही - ँ - ▁पुत - ॉ - ▁झाला - ▁दिसल - ▁साल - ▁रस्त्यावर - स्त - जवळ - न्म - मध्य - ऊ - ▁इथे - ▁तुमच - ▁शकते - मान - ▁उद् - फ - ै - ढ - ',' - इ - ौ - ‍ - ृ - ओ - ः - ॲ - आ - '-' - ञ - औ - '!' - ऑ - ऱ - ऐ - छ - उ - '?' - भ - अ - ऋ - <sos/eos> init: xavier_uniform input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true joint_net_conf: null use_preprocessor: true token_type: bpe bpemodel: data/token_list/bpe_unigram150/bpe.model non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: s3prl frontend_conf: frontend_conf: upstream: wav2vec2_xlsr download_dir: ./hub multilayer_feature: true fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 30 num_freq_mask: 2 apply_time_mask: true time_mask_width_range: - 0 - 40 num_time_mask: 2 normalize: utterance_mvn normalize_conf: {} model: espnet model_conf: ctc_weight: 0.3 lsm_weight: 0.1 length_normalized_loss: false extract_feats_in_collect_stats: false preencoder: linear preencoder_conf: input_size: 1024 output_size: 80 encoder: conformer encoder_conf: output_size: 512 attention_heads: 4 linear_units: 1024 num_blocks: 3 dropout_rate: 0.3 positional_dropout_rate: 0.3 attention_dropout_rate: 0.3 input_layer: conv2d normalize_before: true macaron_style: false pos_enc_layer_type: rel_pos selfattention_layer_type: rel_selfattn activation_type: swish use_cnn_module: true cnn_module_kernel: 17 postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: attention_heads: 4 linear_units: 1024 num_blocks: 3 dropout_rate: 0.3 positional_dropout_rate: 0.3 self_attention_dropout_rate: 0.3 src_attention_dropout_rate: 0.3 required: - output_dir - token_list version: 0.10.7a1 distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/aaf_openslr57
espnet
2022-03-21T14:36:37Z
1
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "fr", "dataset:openslr", "arxiv:1804.00015", "region:us" ]
automatic-speech-recognition
2022-03-21T04:58:18Z
--- tags: - espnet - audio - automatic-speech-recognition language: fr datasets: - openslr --- ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
Newt007/bin_cls_att.h5
Newt007
2022-03-21T14:18:09Z
0
0
null
[ "region:us" ]
null
2022-03-21T14:11:06Z
Binary-classification model for malicious and benign requests ``` from keras import models models.load_model('xxx.h5') ``` --- language: - python 3.7 --- libraries: - keras==2.4.3 - tensorflow==2.3.1
huggingtweets/rupertboneham-rupertskids-survivorcbs
huggingtweets
2022-03-21T13:31:40Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-21T13:26:08Z
--- language: en thumbnail: http://www.huggingtweets.com/rupertboneham-rupertskids-survivorcbs/1647869465531/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/2879716355/bd3a0d75f2ec004c61cf470e66895eda_400x400.png&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/984777181963448321/GZEqLnVr_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1488244197467381765/3F2BzfCJ_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Rupert Boneham & Rupert Boneham & SURVIVOR</div> <div style="text-align: center; font-size: 14px;">@rupertboneham-rupertskids-survivorcbs</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Rupert Boneham & Rupert Boneham & SURVIVOR. | Data | Rupert Boneham | Rupert Boneham | SURVIVOR | | --- | --- | --- | --- | | Tweets downloaded | 3139 | 352 | 3222 | | Retweets | 710 | 151 | 551 | | Short tweets | 142 | 17 | 540 | | Tweets kept | 2287 | 184 | 2131 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2m3rl64a/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @rupertboneham-rupertskids-survivorcbs's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1o5vktei) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1o5vktei/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/rupertboneham-rupertskids-survivorcbs') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
beston91/gpt2-xl_ft_logits_5k_2
beston91
2022-03-21T10:16:30Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-20T23:02:24Z
--- tags: - generated_from_trainer model-index: - name: gpt2-xl_ft_logits_5k_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-xl_ft_logits_5k_2 This model is a fine-tuned version of [gpt2-xl](https://huggingface.co/gpt2-xl) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 6.2407 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100.0 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.99 | 27 | 6.1106 | | No log | 1.99 | 54 | 6.1400 | | No log | 2.99 | 81 | 6.1875 | | No log | 3.99 | 108 | 6.2407 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6 ### Perplexity Score: 17.59415626525879
imkaushalpatel/YOLOv5
imkaushalpatel
2022-03-21T09:50:21Z
0
0
null
[ "region:us" ]
null
2022-03-21T09:49:14Z
YOLOv5 🚀 is a family of compound-scaled object detection models trained on the COCO dataset, and includes simple functionality for Test Time Augmentation (TTA), model ensembling, hyperparameter evolution, and export to ONNX, CoreML and TFLite.
Ameer05/test
Ameer05
2022-03-21T09:35:03Z
18
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "summarization", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-03-21T08:16:45Z
--- tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test This model is a fine-tuned version of [Ameer05/tokenizer-repo](https://huggingface.co/Ameer05/tokenizer-repo) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6109 - Rouge1: 54.9442 - Rouge2: 45.3299 - Rougel: 50.5219 - Rougelsum: 53.6475 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | No log | 0.91 | 5 | 2.3705 | 53.62 | 44.3835 | 49.6135 | 52.693 | | No log | 1.91 | 10 | 1.9035 | 47.478 | 37.0934 | 39.7935 | 45.1881 | | No log | 2.91 | 15 | 1.7990 | 54.2488 | 45.0782 | 49.8421 | 52.7564 | | No log | 3.91 | 20 | 1.7125 | 55.7903 | 46.7554 | 52.2733 | 54.9389 | | 2.4456 | 4.91 | 25 | 1.6421 | 52.2279 | 43.4391 | 49.6955 | 51.2915 | | 2.4456 | 5.91 | 30 | 1.6102 | 55.8598 | 47.3293 | 53.1337 | 54.8596 | | 2.4456 | 6.91 | 35 | 1.6164 | 53.7902 | 44.6622 | 49.5045 | 52.2304 | | 2.4456 | 7.91 | 40 | 1.6015 | 51.5597 | 42.0333 | 47.9639 | 50.1154 | | 1.239 | 8.91 | 45 | 1.6067 | 53.0301 | 43.7214 | 49.0227 | 51.8109 | | 1.239 | 9.91 | 50 | 1.6109 | 54.9442 | 45.3299 | 50.5219 | 53.6475 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.9.1 - Datasets 2.0.0 - Tokenizers 0.10.3
Yaxin/electra-small-discriminator-yelp-mlm
Yaxin
2022-03-21T09:21:02Z
5
0
transformers
[ "transformers", "pytorch", "electra", "fill-mask", "generated_from_trainer", "dataset:yelp_review_full", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-21T08:41:41Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - yelp_review_full metrics: - accuracy model-index: - name: test-electra-small-yelp results: - task: name: Masked Language Modeling type: fill-mask dataset: name: yelp_review_full yelp_review_full type: yelp_review_full args: yelp_review_full metrics: - name: Accuracy type: accuracy value: 0.5677007577622891 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test-electra-small-yelp This model is a fine-tuned version of [google/electra-small-discriminator](https://huggingface.co/google/electra-small-discriminator) on the yelp_review_full yelp_review_full dataset. It achieves the following results on the evaluation set: - Loss: 2.2601 - Accuracy: 0.5677 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.0 - Datasets 1.18.3 - Tokenizers 0.11.0
doctorlan/autonlp-ctrip-653519223
doctorlan
2022-03-21T09:01:53Z
5
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autonlp", "unk", "dataset:doctorlan/autonlp-data-ctrip", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-21T08:38:42Z
--- tags: autonlp language: unk widget: - text: "I love AutoNLP 🤗" datasets: - doctorlan/autonlp-data-ctrip co2_eq_emissions: 24.879856894708393 --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 653519223 - CO2 Emissions (in grams): 24.879856894708393 ## Validation Metrics - Loss: 0.14671853184700012 - Accuracy: 0.9676666666666667 - Precision: 0.9794159885112494 - Recall: 0.9742857142857143 - AUC: 0.9901396825396825 - F1: 0.9768441155407017 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/doctorlan/autonlp-ctrip-653519223 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("doctorlan/autonlp-ctrip-653519223", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("doctorlan/autonlp-ctrip-653519223", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
doctorlan/autonlp-JD-bert-653619233
doctorlan
2022-03-21T08:54:10Z
3
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autonlp", "unk", "dataset:doctorlan/autonlp-data-JD-bert", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-21T08:48:42Z
--- tags: autonlp language: unk widget: - text: "I love AutoNLP 🤗" datasets: - doctorlan/autonlp-data-JD-bert co2_eq_emissions: 5.919372931976555 --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 653619233 - CO2 Emissions (in grams): 5.919372931976555 ## Validation Metrics - Loss: 0.15083155035972595 - Accuracy: 0.952650883627876 - Precision: 0.9631399317406143 - Recall: 0.9412941961307538 - AUC: 0.9828776962419389 - F1: 0.9520917678812415 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/doctorlan/autonlp-JD-bert-653619233 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("doctorlan/autonlp-JD-bert-653619233", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("doctorlan/autonlp-JD-bert-653619233", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
mrp/SimCSE-model-WangchanBERTa-V2
mrp
2022-03-21T08:34:51Z
7
1
sentence-transformers
[ "sentence-transformers", "pytorch", "camembert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-21T08:33:54Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch def cls_pooling(model_output, attention_mask): return model_output[0][:,0] # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 221 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 3e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 32, 'do_lower_case': False}) with Transformer model: CamembertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
IsaacSST/gpt2-xl-ft-d4-0.3
IsaacSST
2022-03-21T04:24:22Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-21T01:38:11Z
--- tags: - generated_from_trainer model-index: - name: gpt2-xl-ft-d4-0.3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-xl-ft-d4-0.3 This model is a fine-tuned version of [gpt2-xl](https://huggingface.co/gpt2-xl) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3401 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 2022 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100.0 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 156 | 1.2334 | | No log | 2.0 | 312 | 1.2392 | | No log | 3.0 | 468 | 1.2944 | | 1.1868 | 4.0 | 624 | 1.3401 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
BigSalmon/InformalToFormalLincoln28
BigSalmon
2022-03-21T03:14:50Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-21T03:03:13Z
``` from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln28") model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln28") ``` ``` How To Make Prompt: informal english: i am very ready to do that just that. Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end. Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task. *** informal english: space is huge and needs to be explored. Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless. Translated into the Style of Abraham Lincoln: space is a ( limitless / boundless ) expanse, a vast virgin domain awaiting exploration. *** informal english: corn fields are all across illinois, visible once you leave chicago. Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago. informal english: ``` ``` - declining viewership facing the nba. - does not have to be this way. - in fact, many solutions exist. - the four point line would surely draw in eyes. Text: failing to draw in the masses, the NBA has fallen into disrepair. such does not have to be the case, however. in fact, a myriad of simple, relatively cheap solutions could revive the league. the addition of the much-hyped four-point line would surely juice viewership. *** - ``` ``` infill: chrome extensions [MASK] accomplish everyday tasks. Translated into the Style of Abraham Lincoln: chrome extensions ( expedite the ability to / unlock the means to more readily ) accomplish everyday tasks. infill: at a time when nintendo has become inflexible, [MASK] consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. Translated into the Style of Abraham Lincoln: at a time when nintendo has become inflexible, ( stubbornly [MASK] on / firmly set on / unyielding in its insistence on ) consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. infill: ``` ``` Essay Intro (Warriors vs. Rockets in Game 7): text: eagerly anticipated by fans, game 7's are the highlight of the post-season. text: ever-building in suspense, game 7's have the crowd captivated. *** Essay Intro (South Korean TV Is Becoming Popular): text: maturing into a bona fide paragon of programming, south korean television ( has much to offer / entertains without fail / never disappoints ). text: increasingly held in critical esteem, south korean television continues to impress. text: at the forefront of quality content, south korea is quickly achieving celebrity status. *** Essay Intro ( ``` ``` Search: What is the definition of Checks and Balances? https://en.wikipedia.org/wiki/Checks_and_balances Checks and Balances is the idea of having a system where each and every action in government should be subject to one or more checks that would not allow one branch or the other to overly dominate. https://www.harvard.edu/glossary/Checks_and_Balances Checks and Balances is a system that allows each branch of government to limit the powers of the other branches in order to prevent abuse of power https://www.law.cornell.edu/library/constitution/Checks_and_Balances Checks and Balances is a system of separation through which branches of government can control the other, thus preventing excess power. *** Search: What is the definition of Separation of Powers? https://en.wikipedia.org/wiki/Separation_of_powers The separation of powers is a principle in government, whereby governmental powers are separated into different branches, each with their own set of powers, that are prevent one branch from aggregating too much power. https://www.yale.edu/tcf/Separation_of_Powers.html Separation of Powers is the division of governmental functions between the executive, legislative and judicial branches, clearly demarcating each branch's authority, in the interest of ensuring that individual liberty or security is not undermined. *** Search: What is the definition of Connection of Powers? https://en.wikipedia.org/wiki/Connection_of_powers Connection of Powers is a feature of some parliamentary forms of government where different branches of government are intermingled, typically the executive and legislative branches. https://simple.wikipedia.org/wiki/Connection_of_powers The term Connection of Powers describes a system of government in which there is overlap between different parts of the government. *** Search: What is the definition of ``` ``` Search: What are phrase synonyms for "second-guess"? https://www.powerthesaurus.org/second-guess/synonyms Shortest to Longest: - feel dubious about - raise an eyebrow at - wrinkle their noses at - cast a jaundiced eye at - teeter on the fence about *** Search: What are phrase synonyms for "mean to newbies"? https://www.powerthesaurus.org/mean_to_newbies/synonyms Shortest to Longest: - readiness to balk at rookies - absence of tolerance for novices - hostile attitude toward newcomers *** Search: What are phrase synonyms for "make use of"? https://www.powerthesaurus.org/make_use_of/synonyms Shortest to Longest: - call upon - glean value from - reap benefits from - derive utility from - seize on the merits of - draw on the strength of - tap into the potential of *** Search: What are phrase synonyms for "hurting itself"? https://www.powerthesaurus.org/hurting_itself/synonyms Shortest to Longest: - erring - slighting itself - forfeiting its integrity - doing itself a disservice - evincing a lack of backbone *** Search: What are phrase synonyms for " ``` ``` - declining viewership facing the nba. - does not have to be this way. - in fact, many solutions exist. - the four point line would surely draw in eyes. text: failing to draw in the masses, the nba has ( fallen into / succumb to / bowed to ) disrepair. such does not have to be the case, however. in fact, a myriad of simple, relatively cheap ( solutions / interventions / enhancements ) could revive the league. the addition of the much-hyped four-point line would surely juice viewership. *** - ``` ``` original: sports teams are profitable for owners. [MASK], their valuations experience a dramatic uptick. infill: sports teams are profitable for owners. ( accumulating vast sums / stockpiling treasure / realizing benefits / cashing in / registering robust financials / scoring on balance sheets ), their valuations experience a dramatic uptick. *** original: ```
dodobird/distilbert-base-uncased-finetuned-emotion
dodobird
2022-03-21T03:04:10Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-21T00:37:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9245 - name: F1 type: f1 value: 0.9248889383977278 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2154 - Accuracy: 0.9245 - F1: 0.9249 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8175 | 1.0 | 250 | 0.3139 | 0.9025 | 0.8986 | | 0.2485 | 2.0 | 500 | 0.2154 | 0.9245 | 0.9249 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
youzanai/bert-shipping-address-chinese
youzanai
2022-03-21T02:43:54Z
4
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- license: apache-2.0 --- 基于有赞客户收货地址语料训练的bert模型。 模型示例代码参考 https://github.com/youzanai/trexpark
youzanai/bert-customer-message-chinese
youzanai
2022-03-21T02:43:18Z
5
1
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-08T01:52:53Z
基于有赞商家客服中客户提问语料训练的bert模型。 模型示例代码参考 https://github.com/youzanai/trexpark
espnet/MInDS-14_es-ES
espnet
2022-03-21T02:31:06Z
0
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "license:mit", "region:us" ]
automatic-speech-recognition
2022-03-21T01:15:24Z
--- tags: - espnet - audio - automatic-speech-recognition language: es-ES license: mit --- # RESULTS ## Environments - date: `Mon Mar 14 22:28:37 UTC 2022` - python version: `3.8.12 | packaged by conda-forge | (default, Jan 30 2022, 23:42:07) [GCC 9.4.0]` - espnet version: `espnet 0.10.7a1` - pytorch version: `pytorch 1.10.1` - Git hash: `d5322b2dc4844dce1d14268b6848607e2a3dee21` - Commit date: `Mon Mar 14 20:21:16 2022 +0000` ## asr_train_asr_raw_word ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |inference_asr_model_valid.acc.ave_5best/test|49|4134|64.6|23.5|11.8|16.4|51.8|98.0| |inference_asr_model_valid.acc.ave_5best/valid|47|4178|66.8|20.2|13.0|19.2|52.5|100.0| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |inference_asr_model_valid.acc.ave_5best/test|49|8690|73.2|18.0|8.8|12.9|39.7|98.0| |inference_asr_model_valid.acc.ave_5best/valid|47|8751|74.3|15.7|10.0|15.6|41.3|100.0| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---|
beston91/gpt2-xl_ft_mult_10k
beston91
2022-03-20T22:27:58Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-18T15:46:08Z
--- tags: - generated_from_trainer model-index: - name: gpt2-xl_ft_mult_10k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-xl_ft_mult_10k This model is a fine-tuned version of [gpt2-xl](https://huggingface.co/gpt2-xl) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6916 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100.0 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.99 | 54 | 1.3358 | | No log | 1.99 | 108 | 0.7486 | | No log | 2.99 | 162 | 0.6997 | | No log | 3.99 | 216 | 0.6916 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6 ### Perplexity Score: 25.89222526550293 ### Dataset Size Size: 5000
wasilkas/wav2vec2-base-timit-demo-colab
wasilkas
2022-03-20T20:04:11Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-20T18:08:10Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the TIMIT dataset. It achieves the following results on the evaluation set: - Loss: 0.4491 - Wer: 0.3382 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4787 | 4.0 | 500 | 1.4190 | 0.9939 | | 0.5835 | 8.0 | 1000 | 0.4711 | 0.4370 | | 0.219 | 12.0 | 1500 | 0.4555 | 0.3994 | | 0.1251 | 16.0 | 2000 | 0.4515 | 0.3654 | | 0.0834 | 20.0 | 2500 | 0.4923 | 0.3564 | | 0.0632 | 24.0 | 3000 | 0.4410 | 0.3399 | | 0.0491 | 28.0 | 3500 | 0.4491 | 0.3382 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
KoboldAI/GPT-Neo-2.7B-Shinen
KoboldAI
2022-03-20T18:49:18Z
669
22
transformers
[ "transformers", "pytorch", "gpt_neo", "text-generation", "en", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
--- language: en license: mit --- # GPT-Neo 2.7B - Shinen ## Model Description GPT-Neo 2.7B-Shinen is a finetune created using EleutherAI's GPT-Neo 2.7B model. Compared to GPT-Neo-2.7-Horni, this model is much heavier on the sexual content. **Warning: THIS model is NOT suitable for use by minors. The model will output X-rated content.** ## Training data The training data contains user-generated stories from sexstories.com. All stories are tagged using the following way: ``` [Theme: <theme1>, <theme2> ,<theme3>] <Story goes here> ``` ### How to use You can use this model directly with a pipeline for text generation. This example generates a different sequence each time it's run: ```py >>> from transformers import pipeline >>> generator = pipeline('text-generation', model='KoboldAI/GPT-Neo-2.7B-Shinen') >>> generator("She was staring at me", do_sample=True, min_length=50) [{'generated_text': 'She was staring at me with a look that said it all. She wanted me so badly tonight that I wanted'}] ``` ### Limitations and Biases GPT-Neo was trained as an autoregressive language model. This means that its core functionality is taking a string of text and predicting the next token. While language models are widely used for tasks other than this, there are a lot of unknowns with this work. GPT-Neo-Shinen was trained on a dataset known to contain profanity, lewd, and otherwise abrasive language. GPT-Neo-Shinen *WILL* produce socially unacceptable text without warning. GPT-Neo-Shinen will respond to particular prompts and offensive content may occur without warning. We recommend having a human curate or filter the outputs before releasing them, both to censor undesirable content and to improve the quality of the results. ### BibTeX entry and citation info The model is made using the following software: ```bibtex @software{gpt-neo, author = {Black, Sid and Leo, Gao and Wang, Phil and Leahy, Connor and Biderman, Stella}, title = {{GPT-Neo: Large Scale Autoregressive Language Modeling with Mesh-Tensorflow}}, month = mar, year = 2021, note = {{If you use this software, please cite it using these metadata.}}, publisher = {Zenodo}, version = {1.0}, doi = {10.5281/zenodo.5297715}, url = {https://doi.org/10.5281/zenodo.5297715} } ```
cammy/pegasus-cnn_dailymail-1000-lit-evalMA-ga
cammy
2022-03-20T14:36:20Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "pegasus", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-20T13:26:27Z
--- tags: - generated_from_trainer metrics: - rouge model-index: - name: pegasus-cnn_dailymail-1000-lit-evalMA-ga results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-cnn_dailymail-1000-lit-evalMA-ga This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6852 - Rouge1: 25.789 - Rouge2: 11.0694 - Rougel: 20.7716 - Rougelsum: 22.4851 - Gen Len: 46.32 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 250 | 1.7061 | 25.8286 | 10.8156 | 20.9502 | 22.6588 | 44.36 | | 1.4533 | 2.0 | 500 | 1.6876 | 26.0862 | 11.5197 | 21.1282 | 23.0963 | 45.65 | | 1.4533 | 3.0 | 750 | 1.6852 | 25.789 | 11.0694 | 20.7716 | 22.4851 | 46.32 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.0
vinaykudari/gpt2-acled-t2s
vinaykudari
2022-03-20T14:26:41Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-20T03:17:45Z
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2-acled-t2s results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-acled-t2s This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9414 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2978 | 1.0 | 6621 | 1.2262 | | 1.0378 | 2.0 | 13242 | 1.0048 | | 0.9537 | 3.0 | 19863 | 0.9414 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.6.0 - Datasets 2.0.0 - Tokenizers 0.11.6
KoboldAI/GPT-J-6B-Janeway
KoboldAI
2022-03-20T12:59:44Z
4,477
13
transformers
[ "transformers", "pytorch", "gptj", "text-generation", "en", "arxiv:2101.00027", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
--- language: en license: mit --- # GPT-J 6B - Janeway ## Model Description GPT-J 6B-Janeway is a finetune created using EleutherAI's GPT-J 6B model. ## Training data The training data contains around 2210 ebooks, mostly in the sci-fi and fantasy genres. The dataset is based on the same dataset used by GPT-Neo-2.7B-Picard, with 20% more data in various genres. Some parts of the dataset have been prepended using the following text: `[Genre: <genre1>,<genre2>]` ### How to use You can use this model directly with a pipeline for text generation. This example generates a different sequence each time it's run: ```py >>> from transformers import pipeline >>> generator = pipeline('text-generation', model='KoboldAI/GPT-J-6B-Janeway') >>> generator("Welcome Captain Janeway, I apologize for the delay.", do_sample=True, min_length=50) [{'generated_text': 'Welcome Captain Janeway, I apologize for the delay."\nIt's all right," Janeway said. "I'm certain that you're doing your best to keep me informed of what\'s going on."'}] ``` ### Limitations and Biases The core functionality of GPT-J is taking a string of text and predicting the next token. While language models are widely used for tasks other than this, there are a lot of unknowns with this work. When prompting GPT-J it is important to remember that the statistically most likely next token is often not the token that produces the most "accurate" text. Never depend upon GPT-J to produce factually accurate output. GPT-J was trained on the Pile, a dataset known to contain profanity, lewd, and otherwise abrasive language. Depending upon use case GPT-J may produce socially unacceptable text. See [Sections 5 and 6 of the Pile paper](https://arxiv.org/abs/2101.00027) for a more detailed analysis of the biases in the Pile. As with all language models, it is hard to predict in advance how GPT-J will respond to particular prompts and offensive content may occur without warning. We recommend having a human curate or filter the outputs before releasing them, both to censor undesirable content and to improve the quality of the results. ### BibTeX entry and citation info The model uses the following model as base: ```bibtex @misc{gpt-j, author = {Wang, Ben and Komatsuzaki, Aran}, title = {{GPT-J-6B: A 6 Billion Parameter Autoregressive Language Model}}, howpublished = {\url{https://github.com/kingoflolz/mesh-transformer-jax}}, year = 2021, month = May } ``` ## Acknowledgements This project would not have been possible without compute generously provided by Google through the [TPU Research Cloud](https://sites.research.google/trc/), as well as the Cloud TPU team for providing early access to the [Cloud TPU VM](https://cloud.google.com/blog/products/compute/introducing-cloud-tpu-vms) Alpha.
KoboldAI/GPT-Neo-2.7B-Janeway
KoboldAI
2022-03-20T12:57:50Z
124
6
transformers
[ "transformers", "pytorch", "gpt_neo", "text-generation", "en", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
--- language: en license: mit --- # GPT-Neo 2.7B - Janeway ## Model Description GPT-Neo 2.7B-Janeway is a finetune created using EleutherAI's GPT-Neo 2.7B model. ## Training data The training data contains around 2210 ebooks, mostly in the sci-fi and fantasy genres. The dataset is based on the same dataset used by GPT-Neo-2.7B-Picard, with 20% more data in various genres. Some parts of the dataset have been prepended using the following text: `[Genre: <genre1>,<genre2>]` ### How to use You can use this model directly with a pipeline for text generation. This example generates a different sequence each time it's run: ```py >>> from transformers import pipeline >>> generator = pipeline('text-generation', model='KoboldAI/GPT-Neo-2.7B-Janeway') >>> generator("Welcome Captain Janeway, I apologize for the delay.", do_sample=True, min_length=50) [{'generated_text': 'Welcome Captain Janeway, I apologize for the delay."\nIt's all right," Janeway said. "I'm certain that you're doing your best to keep me informed of what\'s going on."'}] ``` ### Limitations and Biases GPT-Neo was trained as an autoregressive language model. This means that its core functionality is taking a string of text and predicting the next token. While language models are widely used for tasks other than this, there are a lot of unknowns with this work. GPT-Neo was trained on the Pile, a dataset known to contain profanity, lewd, and otherwise abrasive language. Depending on your usecase GPT-Neo may produce socially unacceptable text. See Sections 5 and 6 of the Pile paper for a more detailed analysis of the biases in the Pile. As with all language models, it is hard to predict in advance how GPT-Neo will respond to particular prompts and offensive content may occur without warning. We recommend having a human curate or filter the outputs before releasing them, both to censor undesirable content and to improve the quality of the results. ### BibTeX entry and citation info The model is made using the following software: ```bibtex @software{gpt-neo, author = {Black, Sid and Leo, Gao and Wang, Phil and Leahy, Connor and Biderman, Stella}, title = {{GPT-Neo: Large Scale Autoregressive Language Modeling with Mesh-Tensorflow}}, month = mar, year = 2021, note = {{If you use this software, please cite it using these metadata.}}, publisher = {Zenodo}, version = {1.0}, doi = {10.5281/zenodo.5297715}, url = {https://doi.org/10.5281/zenodo.5297715} } ```
mitiku/AmharicWICPostag10Tags
mitiku
2022-03-20T10:11:33Z
4
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-06T20:46:20Z
--- tags: - generated_from_trainer model-index: - name: AmharicWICPostag10Tags results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # AmharicWICPostag10Tags This model was trained from scratch on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
mitiku/AmharicCacoPostag
mitiku
2022-03-20T10:11:18Z
4
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-06T20:34:40Z
--- tags: - generated_from_trainer model-index: - name: AmharicCacoPostag results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # AmharicCacoPostag This model was trained from scratch on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
mitiku/AmharicWICPostag
mitiku
2022-03-20T10:10:58Z
3
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-06T20:42:53Z
--- tags: - generated_from_trainer model-index: - name: AmharicWICPostag results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # AmharicWICPostag This model was trained from scratch on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
mrp/simcse-model-wangchanberta
mrp
2022-03-20T09:00:47Z
6
0
transformers
[ "transformers", "pytorch", "camembert", "feature-extraction", "arxiv:2104.08821", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-20T08:34:14Z
# {mrp/simcse-model-wangchanberta} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> We use SimCSE [here](https://arxiv.org/pdf/2104.08821.pdf) by using mBERT as the baseline model and training the model with Thai Wikipedia [here](https://github.com/PyThaiNLP/ThaiWiki-clean/releases/tag/20210620?fbclid=IwAR1YcmZkb-xd1ibTWCJOcu98_FQ5x3ioZaGW1ME-VHy9fAQLhEr5tXTJygA) ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["ฉันนะคือคนรักชาติยังไงละ!", "พวกสามกีบล้มเจ้า!"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ```
willcai/wav2vec2_common_voice_accents_5
willcai
2022-03-20T07:07:37Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-19T22:07:12Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2_common_voice_accents_5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2_common_voice_accents_5 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.0027 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 48 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 384 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.4163 | 1.34 | 400 | 0.5520 | | 0.3305 | 2.68 | 800 | 0.1698 | | 0.2138 | 4.03 | 1200 | 0.1104 | | 0.1714 | 5.37 | 1600 | 0.0944 | | 0.1546 | 6.71 | 2000 | 0.0700 | | 0.1434 | 8.05 | 2400 | 0.0610 | | 0.1272 | 9.4 | 2800 | 0.0493 | | 0.1183 | 10.74 | 3200 | 0.0371 | | 0.1113 | 12.08 | 3600 | 0.0468 | | 0.1013 | 13.42 | 4000 | 0.0336 | | 0.0923 | 14.77 | 4400 | 0.0282 | | 0.0854 | 16.11 | 4800 | 0.0410 | | 0.0791 | 17.45 | 5200 | 0.0252 | | 0.0713 | 18.79 | 5600 | 0.0128 | | 0.0662 | 20.13 | 6000 | 0.0252 | | 0.0635 | 21.48 | 6400 | 0.0080 | | 0.0607 | 22.82 | 6800 | 0.0098 | | 0.0557 | 24.16 | 7200 | 0.0069 | | 0.0511 | 25.5 | 7600 | 0.0057 | | 0.0474 | 26.85 | 8000 | 0.0046 | | 0.045 | 28.19 | 8400 | 0.0037 | | 0.0426 | 29.53 | 8800 | 0.0027 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.4 - Tokenizers 0.11.6
espnet/ftshijt_espnet2_asr_dsing_hubert_conformer
espnet
2022-03-20T04:46:53Z
1
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "dataset:dsing", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-03-20T04:45:28Z
--- tags: - espnet - audio - automatic-speech-recognition language: noinfo datasets: - dsing license: cc-by-4.0 --- ## ESPnet2 ASR model ### `espnet/ftshijt_espnet2_asr_dsing_hubert_conformer` This model was trained by jiatong using dsing recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet pip install -e . cd egs2/dsing/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/ftshijt_espnet2_asr_dsing_hubert_conformer ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Sat Mar 19 23:02:37 EDT 2022` - python version: `3.9.7 (default, Sep 16 2021, 13:09:58) [GCC 7.5.0]` - espnet version: `espnet 0.10.7a1` - pytorch version: `pytorch 1.10.1` - Git hash: `c1ed71c6899e54c0b3dad82687886b1183cd0885` - Commit date: `Wed Mar 16 23:34:49 2022 -0400` ## asr_train_asr_conformer7_hubert_ll60k_large_raw_bpe500_sp ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_lm_lm_train_lm_bpe500_valid.loss.ave_asr_model_latest/dev|482|4018|83.6|9.4|7.0|6.4|22.8|58.3| |decode_asr_lm_lm_train_lm_bpe500_valid.loss.ave_asr_model_latest/test|480|4632|81.4|12.3|6.3|4.5|23.1|52.1| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_lm_lm_train_lm_bpe500_valid.loss.ave_asr_model_latest/dev|482|18692|88.5|3.1|8.4|5.9|17.4|58.3| |decode_asr_lm_lm_train_lm_bpe500_valid.loss.ave_asr_model_latest/test|480|21787|87.9|4.3|7.8|4.5|16.6|52.1| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_lm_lm_train_lm_bpe500_valid.loss.ave_asr_model_latest/dev|482|6097|82.2|7.1|10.7|5.7|23.5|58.3| |decode_asr_lm_lm_train_lm_bpe500_valid.loss.ave_asr_model_latest/test|480|7736|81.7|9.2|9.1|4.0|22.3|52.1| ## ASR config <details><summary>expand</summary> ``` config: conf/tuning/train_asr_conformer7_hubert_ll60k_large.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_conformer7_hubert_ll60k_large_raw_bpe500_sp ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: true sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 35 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 10 nbest_averaging_interval: 0 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 8 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: - frontend.upstream num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_bpe500_sp/train/speech_shape - exp/asr_stats_raw_bpe500_sp/train/text_shape.bpe valid_shape_file: - exp/asr_stats_raw_bpe500_sp/valid/speech_shape - exp/asr_stats_raw_bpe500_sp/valid/text_shape.bpe batch_type: numel valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train30_sp/wav.scp - speech - kaldi_ark - - dump/raw/train30_sp/text - text - text valid_data_path_and_name_and_type: - - dump/raw/dev/wav.scp - speech - kaldi_ark - - dump/raw/dev/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.0025 scheduler: warmuplr scheduler_conf: warmup_steps: 40000 token_list: - <blank> - <unk> - ▁I - '''' - ▁YOU - S - T - ▁THE - M - ▁ME - ▁A - ▁AND - ▁TO - E - A - ING - D - ▁MY - ▁ - O - ▁IT - I - N - RE - Y - ▁BE - ▁IN - ▁ON - ▁LOVE - U - ▁WE - LL - H - ▁YOUR - ▁S - IN - ▁OF - ▁DO - ▁THAT - ▁ALL - L - ▁DON - ▁OH - ▁LIKE - ▁KNOW - ▁FOR - ▁CAN - ▁JUST - P - ▁BUT - ED - K - ▁WHEN - ▁SO - R - ▁GO - ▁WHAT - ▁C - ▁WITH - W - ▁F - C - ▁NO - ER - ▁ONE - ▁LET - VE - ES - ▁NOW - ▁BABY - G - ▁GOT - ▁COME - CAUSE - LE - B - ▁B - AR - ▁UP - ▁' - ▁W - ▁SEE - ▁TIME - ▁ARE - ▁G - ▁LOOK - ▁THIS - F - ▁IS - ▁NEVER - ▁M - ▁P - AN - ▁WAS - ▁WAY - ▁IF - OR - ▁SAY - V - ▁R - ▁T - ▁DOWN - RA - ▁THERE - ▁HEART - ▁NOT - RO - ▁WILL - ▁OUT - CE - ▁WANT - ▁YEAH - ▁HAVE - ▁GIVE - ▁TOO - ▁GONNA - ▁HOW - ▁NEED - ▁GET - ▁TAKE - ▁EVERY - ▁FEEL - ▁HE - EN - ▁FROM - ▁HA - ▁K - ▁SHE - 'ON' - ▁DI - RI - ▁ONLY - NE - ▁WHO - ▁AWAY - ▁E - ▁D - ▁LIFE - ▁MAKE - IC - ▁BACK - ▁WHERE - ▁MADE - ▁DAY - ▁HERE - ▁LO - ▁HER - ▁AS - ▁GOOD - ▁WANNA - ▁OOH - ▁TELL - LY - TH - ▁WON - ▁LIGHT - ▁KEEP - ▁MA - ▁LA - ▁SH - ▁WORLD - ▁MORE - ▁LI - AL - ▁COULD - ▁GIRL - ▁NOTHING - ▁EVER - ▁THINK - IE - ▁BY - ▁AT - ▁TONIGHT - ▁THEY - ▁CALL - ▁HO - ▁WOULD - IL - ▁OUR - ▁FALL - ▁NIGHT - ▁THAN - ▁DE - ▁SOME - ▁WAIT - ▁RIGHT - ▁RE - ▁HALLELUJAH - ▁TH - NG - ▁CO - ▁WERE - ▁TALK - ET - ▁BO - ▁HOLD - UR - ▁BEEN - ▁US - ▁PA - VER - ▁EYES - ▁DREAM - ▁SONG - ▁SHOULD - ▁STILL - ▁OVER - TA - ▁ANYMORE - IGHT - ▁STAY - ▁BETTER - LESS - ▁THROUGH - ▁LITTLE - X - ▁GONE - ▁AIN - ▁DA - ▁HOLDING - ▁HURT - ▁TRY - ▁FIND - Z - DE - ▁LAST - ▁SAID - ▁ALWAYS - ▁BODY - ▁MIND - ▁CRY - ▁EVEN - ▁RUN - ▁HOPE - ▁WITHOUT - ▁MISS - ▁ABOUT - ▁HAND - ▁J - ▁AGAIN - ▁THOUGH - ▁NAH - ▁LIVE - ▁BA - ▁OLD - ▁HEAD - ▁FIRE - ▁MAN - ▁SOMETHING - ▁WHY - THER - ▁HOME - ▁OR - ▁INSIDE - ▁NEW - ▁HEY - TION - ▁EVERYTHING - ▁HAD - ▁SOMETIMES - ▁HARD - ▁TOUCH - ▁HEAR - ▁AM - ▁MUCH - ▁LONG - ▁STAR - GETTING - ▁WALK - ▁PEOPLE - ▁BEFORE - ▁CLOSE - ▁TWO - ▁FAR - ▁SHOW - ▁STAND - ▁LOSE - ▁HELP - ▁NAME - ▁BOY - ▁TRUE - ▁PLAY - ▁DARK - ▁THINGS - ▁NA - ▁TEAR - ▁END - ▁NOBODY - ▁SEA - ▁ROCKABYE - ▁BELIEVE - ▁BROKE - ▁AROUND - ▁START - ▁KISS - ▁FEELING - ▁BREAK - ▁SOMEONE - ▁FRIEND - ▁ALONE - ▁BEAUTIFUL - ▁CRAZY - ▁OWN - OSE - ▁STOP - ▁LOST - ▁HIM - ▁BAD - ▁CHANCE - ▁REALLY - ▁WISH - ▁MOVE - ▁SKY - ▁PLACE - AKE - ▁LEAVE - ▁YA - ▁STRONG - ▁PUT - ▁OPEN - ▁WRONG - ▁COLD - OCK - ▁USED - ▁FOUND - ▁LONELY - ▁DANCE - EACH - ▁ANOTHER - ▁SIDE - ▁UNDER - ▁MATTER - ▁THESE - ▁CARE - ▁MINE - ▁SHINE - ▁AFRAID - ▁TURN - ▁PLEASE - ▁SUN - ▁DIAMOND - ▁UNTIL - ▁FACE - ▁LEARN - ▁TRUST - ▁WONDER - ▁BREATH - ATE - ▁SORRY - ▁HU - ▁WATCH - ▁LATE - ROUND - ▁ARMS - ▁PERFECT - ▁MAYBE - ▁PULL - ▁REMEMBER - ▁FIGHT - ▁MYSELF - ▁INTO - ▁DARLING - ▁THUNDER - ▁FOLLOW - ▁REASON - ▁BURN - ▁HIS - ▁MUST - ▁FREE - ▁FLASHLIGHT - ▁1 - ▁ENOUGH - ▁DRINK - ▁WORDS - ▁HIDE - ▁UN - ▁FORGET - ▁SURE - ▁CHANGE - ▁SMILE - ▁PROMISE - ▁FOREVER - '2' - ▁SWEET - ▁SAME - ▁OOOH - ▁PART - ▁SOMEBODY - NESS - ▁BRIGHT - ▁HEAVEN - ▁DEEP - ▁HIGH - ▁INSTEAD - ▁MOMENT - ▁ALONG - ▁ALRIGHT - ▁SLOW - ▁TOMORROW - ▁SOUL - ▁QU - ▁PUSH - ▁CHANDELIER - ▁LEFT - SIDE - ▁TOLD - ▁KNEW - READY - ▁LOVING - ▁SAW - '3' - ▁WORK - ▁DANCING - ▁THREE - ▁SAVE - ▁SHOOT - ▁LEAD - ▁SKI - ▁WILD - ▁WIND - ▁WHILE - ▁EDGE - ▁HAPPY - ▁FEAR - STUCK - ▁MOST - ▁LISTEN - ▁WOAH - ▁FIRST - ▁JOLENE - ▁VOICE - ▁COMP - ▁MILLION - FUL - ▁OOOOOH - ▁CAME - ▁RISE - ▁NEXT - ▁COUNT - ▁MOUNTAIN - ▁ROOM - ▁BLUE - ▁HIT - ▁RAISE - J - ▁THOUSAND - ▁SHAP - ▁TREAT - ▁DRY - ▁FINALLY - ▁TITANIUM - ▁CARRY - ▁TRUTH - ▁WATER - ▁MORNING - TIME - ▁BELONG - ▁UMA - ▁ALIVE - ▁ELSE - ▁ANGEL - ▁BRAND - ▁APART - ▁EVERYBODY - ▁SOUND - ▁GUESS - ▁PRAY - ▁FAITH - ▁AFTER - ▁THROW - ▁TRIED - ▁SLEEP - ▁FOOL - ▁DISCOVERING - ▁FUCK - ▁TASTE - ▁UNDERSTAND - ▁SHAME - ▁POWER - ▁WELCOME - ▁FELT - ▁SAFE - ▁DESERVE - ▁GAME - ▁SUPERMA - ▁SWEAR - ▁BETWEEN - ▁GLASS - ▁CATCH - ▁TOGETHER - '0' - '4' - '6' - '5' - '1' - '8' - '7' - '9' - Q - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true joint_net_conf: null model_conf: ctc_weight: 0.3 lsm_weight: 0.1 length_normalized_loss: false extract_feats_in_collect_stats: false use_preprocessor: true token_type: bpe bpemodel: data/token_list/bpe_unigram500/bpe.model non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: s3prl frontend_conf: frontend_conf: upstream: hubert_large_ll60k download_dir: ./hub multilayer_feature: true fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 30 num_freq_mask: 2 apply_time_mask: true time_mask_width_range: - 0 - 40 num_time_mask: 2 normalize: utterance_mvn normalize_conf: {} preencoder: linear preencoder_conf: input_size: 1024 output_size: 80 encoder: conformer encoder_conf: output_size: 512 attention_heads: 8 linear_units: 2048 num_blocks: 12 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.1 input_layer: conv2d2 normalize_before: true macaron_style: true pos_enc_layer_type: rel_pos selfattention_layer_type: rel_selfattn activation_type: swish use_cnn_module: true cnn_module_kernel: 31 postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: attention_heads: 8 linear_units: 2048 num_blocks: 6 dropout_rate: 0.1 positional_dropout_rate: 0.1 self_attention_dropout_rate: 0.1 src_attention_dropout_rate: 0.1 required: - output_dir - token_list version: 0.10.7a1 distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
Wikidepia/gpt2-spam
Wikidepia
2022-03-20T01:10:59Z
4
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-20T01:08:27Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: gpt2-spam results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-spam This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.11.0 - Datasets 2.0.0 - Tokenizers 0.11.6
beston91/gpt2-xl_ft_mult_1k
beston91
2022-03-19T23:56:20Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-18T23:49:34Z
--- tags: - generated_from_trainer model-index: - name: gpt2-xl_ft_mult_1k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-xl_ft_mult_1k This model is a fine-tuned version of [gpt2-xl](https://huggingface.co/gpt2-xl) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 6.1137 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100.0 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.91 | 5 | 6.7968 | | No log | 1.91 | 10 | 6.6621 | | No log | 2.91 | 15 | 6.4335 | | No log | 3.91 | 20 | 6.1137 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
espnet/ml_openslr63
espnet
2022-03-19T23:33:01Z
1
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "ml", "dataset:openslr", "arxiv:1804.00015", "region:us" ]
automatic-speech-recognition
2022-03-19T22:54:54Z
--- tags: - espnet - audio - automatic-speech-recognition language: ml datasets: - openslr --- ## ESPnet2 ASR pretrained model ### `` This model was trained by Preksha Patel, Ruben Mampilli, and Bharani Ujjaini Kempaiah using egs2/asr1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
msamogh/autonlp-cai-out-of-scope-649919112
msamogh
2022-03-19T21:40:41Z
3
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "autonlp", "en", "dataset:msamogh/autonlp-data-cai-out-of-scope", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-19T21:40:14Z
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - msamogh/autonlp-data-cai-out-of-scope co2_eq_emissions: 0.49924480682533606 --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 649919112 - CO2 Emissions (in grams): 0.49924480682533606 ## Validation Metrics - Loss: 0.49354293942451477 - Accuracy: 0.8064516129032258 - Precision: 0.8181818181818182 - Recall: 0.9 - AUC: 0.8689393939393939 - F1: 0.8571428571428572 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/msamogh/autonlp-cai-out-of-scope-649919112 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("msamogh/autonlp-cai-out-of-scope-649919112", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("msamogh/autonlp-cai-out-of-scope-649919112", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
msamogh/autonlp-cai-out-of-scope-649919118
msamogh
2022-03-19T21:40:40Z
4
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "autonlp", "en", "dataset:msamogh/autonlp-data-cai-out-of-scope", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-19T21:40:15Z
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - msamogh/autonlp-data-cai-out-of-scope co2_eq_emissions: 0.3996916853309825 --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 649919118 - CO2 Emissions (in grams): 0.3996916853309825 ## Validation Metrics - Loss: 0.48289698362350464 - Accuracy: 0.8064516129032258 - Precision: 0.828125 - Recall: 0.8833333333333333 - AUC: 0.8353535353535354 - F1: 0.8548387096774193 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/msamogh/autonlp-cai-out-of-scope-649919118 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("msamogh/autonlp-cai-out-of-scope-649919118", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("msamogh/autonlp-cai-out-of-scope-649919118", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
sanchit-gandhi/wav2vec2-2-gpt2-no-adapter-regularisation
sanchit-gandhi
2022-03-19T17:43:39Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "speech-encoder-decoder", "automatic-speech-recognition", "generated_from_trainer", "dataset:librispeech_asr", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-17T16:34:45Z
--- tags: - generated_from_trainer datasets: - librispeech_asr model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model was trained from scratch on the librispeech_asr dataset. It achieves the following results on the evaluation set: - Loss: 1.7494 - Wer: 1.0532 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.4828 | 2.8 | 2500 | 4.0554 | 1.7873 | | 0.8683 | 5.61 | 5000 | 2.5401 | 1.3156 | | 0.4394 | 8.41 | 7500 | 1.7519 | 1.1129 | | 0.0497 | 11.21 | 10000 | 1.7102 | 1.0738 | | 0.031 | 14.01 | 12500 | 1.7395 | 1.0512 | | 0.0508 | 16.82 | 15000 | 1.7254 | 1.0463 | | 0.0462 | 19.62 | 17500 | 1.7494 | 1.0532 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu113 - Datasets 1.18.3 - Tokenizers 0.11.0
vinaykudari/distilGPT-ft-eli5
vinaykudari
2022-03-19T17:24:50Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-19T16:05:12Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilGPT-ft-eli5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilGPT-ft-eli5 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 5.5643 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 30 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 281 | 5.8277 | | 5.7427 | 2.0 | 562 | 5.7525 | | 5.7427 | 3.0 | 843 | 5.7016 | | 5.5614 | 4.0 | 1124 | 5.6593 | | 5.5614 | 5.0 | 1405 | 5.6273 | | 5.4408 | 6.0 | 1686 | 5.6029 | | 5.4408 | 7.0 | 1967 | 5.5855 | | 5.3522 | 8.0 | 2248 | 5.5739 | | 5.2948 | 9.0 | 2529 | 5.5670 | | 5.2948 | 10.0 | 2810 | 5.5643 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.6.0 - Datasets 2.0.0 - Tokenizers 0.11.6
ShahafAricha/nqg-gpt2
ShahafAricha
2022-03-19T17:20:23Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-18T21:51:57Z
--- license: other --- --- datasets: - squad tags: - question-generation widget: - text: "The Technikum was conceived in the early 1900s by the German-Jewish fund Ezrah as a school of [HL]engineering and sciences[HL].[SEP]" --- # Transformer QG on SQuAD HLQG is Proposed by [Ying-Hong Chan & Yao-Chung Fan. (2019). A Re-current BERT-based Model for Question Generation.](https://www.aclweb.org/anthology/D19-5821/) **This is a Reproduce Version from distilled squad dataset** More detail: [p208p2002/Transformer-QG-on-SQuAD](https://github.com/p208p2002/Transformer-QG-on-SQuAD) ## Usage ### Input Format ``` C' = [c1, c2, ..., [HL], a1, ..., a|A|, [HL], ..., c|C|] ```
huggingtweets/abombayboy
huggingtweets
2022-03-19T16:13:12Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-19T15:53:28Z
--- language: en thumbnail: http://www.huggingtweets.com/abombayboy/1647706387106/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1465673407178043396/aYbTBRbu_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Bombay Boy</div> <div style="text-align: center; font-size: 14px;">@abombayboy</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Bombay Boy. | Data | Bombay Boy | | --- | --- | | Tweets downloaded | 3238 | | Retweets | 927 | | Short tweets | 181 | | Tweets kept | 2130 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3paz3q98/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @abombayboy's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/331ordwj) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/331ordwj/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/abombayboy') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
richardc7/electricidad-small-finetuned-amazon-review-classification
richardc7
2022-03-19T15:29:47Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "electra", "text-classification", "generated_from_trainer", "dataset:amazon_reviews_multi", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-17T12:37:33Z
--- tags: - generated_from_trainer datasets: - amazon_reviews_multi metrics: - accuracy model-index: - name: electricidad-small-finetuned-amazon-review-classification results: - task: name: Text Classification type: text-classification dataset: name: amazon_reviews_multi type: amazon_reviews_multi args: es metrics: - name: Accuracy type: accuracy value: 0.581 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electricidad-small-finetuned-amazon-review-classification This model is a fine-tuned version of [mrm8488/electricidad-small-discriminator](https://huggingface.co/mrm8488/electricidad-small-discriminator) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.9601 - Accuracy: 0.581 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.0136 | 1.0 | 25000 | 1.0153 | 0.5414 | | 0.9416 | 2.0 | 50000 | 0.9942 | 0.5576 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
IsaacSST/gpt2-xl-ft-d3
IsaacSST
2022-03-19T15:18:26Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-19T12:41:36Z
--- tags: - generated_from_trainer model-index: - name: gpt2-xl-ft-d3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-xl-ft-d3 This model is a fine-tuned version of [gpt2-xl](https://huggingface.co/gpt2-xl) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3252 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 2022 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100.0 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 156 | 1.2135 | | No log | 2.0 | 312 | 1.2181 | | No log | 3.0 | 468 | 1.2754 | | 1.1743 | 4.0 | 624 | 1.3252 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
mansidw/fake-tipping-6000-samples
mansidw
2022-03-19T09:46:11Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-19T09:23:44Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: fake-tipping-6000-samples results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fake-tipping-6000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
Pavithra/code-parrot
Pavithra
2022-03-19T04:04:29Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-19T03:52:29Z
# CodeParrot 🦜 (small) CodeParrot 🦜 is a GPT-2 model (110M parameters) trained to generate Python code. ## Usage You can load the CodeParrot model and tokenizer directly in `transformers`: ```Python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("lvwerra/codeparrot-small") model = AutoModelWithLMHead.from_pretrained("lvwerra/codeparrot-small") inputs = tokenizer("def hello_world():", return_tensors="pt") outputs = model(**inputs) ``` or with a `pipeline`: ```Python from transformers import pipeline pipe = pipeline("text-generation", model="lvwerra/codeparrot-small") outputs = pipe("def hello_world():") ``` ## Training The model was trained on the cleaned [CodeParrot 🦜 dataset](https://huggingface.co/datasets/lvwerra/codeparrot-clean) with the following settings: |Config|Value| |-------|-----| |Batch size| 192 | |Context size| 1024 | |Training steps| 150'000| |Gradient accumulation| 1| |Gradient checkpointing| False| |Learning rate| 5e-4 | |Weight decay | 0.1 | |Warmup steps| 2000 | |Schedule| Cosine | The training was executed on 16 x A100 (40GB) GPUs. This setting amounts to roughly 29 billion tokens. ## Performance We evaluated the model on OpenAI's [HumanEval](https://huggingface.co/datasets/openai_humaneval) benchmark which consists of programming challenges: | Metric | Value | |-------|-----| |pass@1 | 3.80% | |pass@10 | 6.57% | |pass@100 | 12.78% | The [pass@k metric](https://huggingface.co/metrics/code_eval) tells the probability that at least one out of k generations passes the tests. ## Resources - Dataset: [full](https://huggingface.co/datasets/lvwerra/codeparrot-clean), [train](https://huggingface.co/datasets/lvwerra/codeparrot-clean-train), [valid](https://huggingface.co/datasets/lvwerra/codeparrot-clean-valid) - Code: [repository](https://github.com/huggingface/transformers/tree/master/examples/research_projects/codeparrot) - Spaces: [generation](), [highlighting]()
vinaykudari/t5-ft-billsum
vinaykudari
2022-03-18T23:11:57Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:billsum", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-18T22:02:42Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - billsum model-index: - name: t5-ft-billsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-ft-billsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the billsum dataset. It achieves the following results on the evaluation set: - Loss: 2.2752 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 99 | 2.6250 | | No log | 2.0 | 198 | 2.4587 | | No log | 3.0 | 297 | 2.3865 | | No log | 4.0 | 396 | 2.3431 | | No log | 5.0 | 495 | 2.3226 | | 2.7775 | 6.0 | 594 | 2.3019 | | 2.7775 | 7.0 | 693 | 2.2882 | | 2.7775 | 8.0 | 792 | 2.2802 | | 2.7775 | 9.0 | 891 | 2.2764 | | 2.7775 | 10.0 | 990 | 2.2752 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.6.0 - Datasets 2.0.0 - Tokenizers 0.11.6
eliasws/openApiT5-distilled-description-v1
eliasws
2022-03-18T18:47:47Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "t5", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-18T18:44:45Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 3681 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MSELoss.MSELoss` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 0, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 3681, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': None, 'do_lower_case': False}) with Transformer model: T5EncoderModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
saattrupdan/xlmr-base-texas-squad-fr
saattrupdan
2022-03-18T16:56:07Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "question-answering", "generated_from_trainer", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer model-index: - name: xlmr-base-texas-squad-fr results: [] widget: - text: "Comment obtenir la coagulation?" context: "La coagulation peut être obtenue soit par action d'une enzyme, la présure, soit par fermentation provoquée par des bactéries lactiques (le lactose est alors transformé en acide lactique), soit très fréquemment par combinaison des deux méthodes précédentes, soit par chauffage associé à une acidification directe (vinaigre…). On procède ensuite à l'égouttage. On obtient alors le caillé et le lactosérum. Le lactosérum peut aussi être utilisé directement : fromage de lactosérum comme le sérac, ou par réincorporation de ses composants." --- # TExAS-SQuAD-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the TExAS-SQuAD-fr dataset. It achieves the following results on the evaluation set: - Exact match: xx.xx% - F1-score: xx.xx% ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.1478 | 0.23 | 1000 | 1.8543 | | 1.9827 | 0.46 | 2000 | 1.7643 | | 1.8427 | 0.69 | 3000 | 1.6789 | | 1.8372 | 0.92 | 4000 | 1.6137 | | 1.7318 | 1.15 | 5000 | 1.6093 | | 1.6603 | 1.38 | 6000 | 1.7157 | | 1.6334 | 1.61 | 7000 | 1.6302 | | 1.6716 | 1.84 | 8000 | 1.5845 | | 1.5192 | 2.06 | 9000 | 1.6690 | | 1.5174 | 2.29 | 10000 | 1.6669 | | 1.4611 | 2.52 | 11000 | 1.6301 | | 1.4648 | 2.75 | 12000 | 1.6009 | | 1.5052 | 2.98 | 13000 | 1.6133 | ### Framework versions - Transformers 4.12.2 - Pytorch 1.8.1+cu101 - Datasets 1.12.1 - Tokenizers 0.10.3
mfleck/wav2vec2-large-xls-r-300m-german-with-lm
mfleck
2022-03-18T16:48:09Z
5
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-10T16:46:25Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-xls-r-300m-german-with-lm results: [] --- # wav2vec2-large-xls-r-300m-german-with-lm This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the German set of the Common Voice dataset. It achieves a Word Error Rate of 8,8 percent on the evaluation set ## Model description German wav2vec2-xls-r-300m trained on the full train set of Common Voice dataset with a n-gram language model. Full code available in [my Github repository](https://github.com/MichaelFleck92/asr-wav2vec) ## Citation Feel free to cite this work by ``` @misc{mfleck/wav2vec2-large-xls-r-300m-german-with-lm, title={XLS-R-300 Wav2Vec2 German with language model}, author={Fleck, Michael}, publisher={Hugging Face}, journal={Hugging Face Hub}, howpublished={\url{https://huggingface.co/mfleck/wav2vec2-large-xls-r-300m-german-with-lm}}, year={2022} } ``` ## Intended uses & limitations Inference Usage ```python from transformers import pipeline pipe = pipeline(model="mfleck/wav2vec2-large-xls-r-300m-german-with-lm") output = pipe("/path/to/file.wav",chunk_length_s=5, stride_length_s=1) print(output["text"]) ``` ## Training and evaluation data Script used for training (takes about 80 hours on a single A100 40GB) ```python import random import re import json from typing import Any, Dict, List, Optional, Union import pandas as pd import numpy as np import torch # import soundfile from datasets import load_dataset, load_metric, Audio from dataclasses import dataclass, field from transformers import Wav2Vec2CTCTokenizer, Wav2Vec2FeatureExtractor, Wav2Vec2Processor, TrainingArguments, Trainer, Wav2Vec2ForCTC ''' Most parts of this script are following the tutorial: https://huggingface.co/blog/fine-tune-xlsr-wav2vec2 ''' common_voice_train = load_dataset("common_voice", "de", split="train+validation") # Use train dataset with less training data #common_voice_train = load_dataset("common_voice", "de", split="train[:3%]") common_voice_test = load_dataset("common_voice", "de", split="test") # Remove unused columns common_voice_train = common_voice_train.remove_columns(["accent", "age", "client_id", "down_votes", "gender", "locale", "segment", "up_votes"]) common_voice_test = common_voice_test.remove_columns(["accent", "age", "client_id", "down_votes", "gender", "locale", "segment", "up_votes"]) # Remove batches with chars which do not exist in German print(len(common_voice_train)) regex = "[^A-Za-zäöüÄÖÜß,?.! ]+" common_voice_train = common_voice_train.filter(lambda example: bool(re.search(regex, example['sentence']))==False) common_voice_test = common_voice_test.filter(lambda example: bool(re.search(regex, example['sentence']))==False) print(len(common_voice_train)) # Remove special chars from transcripts chars_to_remove_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\']' def remove_special_characters(batch): batch["sentence"] = re.sub(chars_to_remove_regex, '', batch["sentence"]).lower() return batch common_voice_train = common_voice_train.map(remove_special_characters, num_proc=10) common_voice_test = common_voice_test.map(remove_special_characters, num_proc=10) # Show some random transcripts to proof that preprocessing worked as expected def show_random_elements(dataset, num_examples=10): assert num_examples <= len(dataset), "Can't pick more elements than there are in the dataset." picks = [] for _ in range(num_examples): pick = random.randint(0, len(dataset)-1) while pick in picks: pick = random.randint(0, len(dataset)-1) picks.append(pick) print(str(dataset[picks])) show_random_elements(common_voice_train.remove_columns(["path","audio"])) # Extract all chars which exist in datasets and add wav2vek tokens def extract_all_chars(batch): all_text = " ".join(batch["sentence"]) vocab = list(set(all_text)) return {"vocab": [vocab], "all_text": [all_text]} vocab_train = common_voice_train.map(extract_all_chars, batched=True, batch_size=-1, keep_in_memory=True, remove_columns=common_voice_train.column_names) vocab_test = common_voice_test.map(extract_all_chars, batched=True, batch_size=-1, keep_in_memory=True, remove_columns=common_voice_test.column_names) vocab_list = list(set(vocab_train["vocab"][0]) | set(vocab_test["vocab"][0])) vocab_dict = {v: k for k, v in enumerate(sorted(vocab_list))} vocab_dict vocab_dict["|"] = vocab_dict[" "] del vocab_dict[" "] vocab_dict["[UNK]"] = len(vocab_dict) vocab_dict["[PAD]"] = len(vocab_dict) len(vocab_dict) with open('vocab.json', 'w') as vocab_file: json.dump(vocab_dict, vocab_file) # Create tokenizer and repo at Huggingface tokenizer = Wav2Vec2CTCTokenizer.from_pretrained("./", unk_token="[UNK]", pad_token="[PAD]", word_delimiter_token="|") repo_name = "wav2vec2-large-xls-r-300m-german-with-lm" tokenizer.push_to_hub(repo_name) print("pushed to hub") # Create feature extractor and processor feature_extractor = Wav2Vec2FeatureExtractor(feature_size=1, sampling_rate=16000, padding_value=0.0, do_normalize=True, return_attention_mask=True) processor = Wav2Vec2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer) # Cast audio column common_voice_train = common_voice_train.cast_column("audio", Audio(sampling_rate=16_000)) common_voice_test = common_voice_test.cast_column("audio", Audio(sampling_rate=16_000)) # Convert audio signal to array and 16khz sampling rate def prepare_dataset(batch): audio = batch["audio"] # batched output is "un-batched" batch["input_values"] = processor(audio["array"], sampling_rate=audio["sampling_rate"]).input_values[0] # Save an audio file to check if it gets loaded correctly # soundfile.write("/home/debian/trainnew/test.wav",batch["input_values"],audio["sampling_rate"]) batch["input_length"] = len(batch["input_values"]) with processor.as_target_processor(): batch["labels"] = processor(batch["sentence"]).input_ids return batch common_voice_train = common_voice_train.map(prepare_dataset, remove_columns=common_voice_train.column_names) common_voice_test = common_voice_test.map(prepare_dataset, remove_columns=common_voice_test.column_names) print("dataset prepared") @dataclass class DataCollatorCTCWithPadding: """ Data collator that will dynamically pad the inputs received. Args: processor (:class:`~transformers.Wav2Vec2Processor`) The processor used for proccessing the data. padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`): Select a strategy to pad the returned sequences (according to the model's padding side and padding index) among: * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the maximum acceptable input length for the model if that argument is not provided. * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). """ processor: Wav2Vec2Processor padding: Union[bool, str] = True def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]: # split inputs and labels since they have to be of different lenghts and need # different padding methods input_features = [{"input_values": feature["input_values"]} for feature in features] label_features = [{"input_ids": feature["labels"]} for feature in features] batch = self.processor.pad( input_features, padding=self.padding, return_tensors="pt", ) with self.processor.as_target_processor(): labels_batch = self.processor.pad( label_features, padding=self.padding, return_tensors="pt", ) # replace padding with -100 to ignore loss correctly labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100) batch["labels"] = labels return batch data_collator = DataCollatorCTCWithPadding(processor=processor, padding=True) # Use word error rate as metric wer_metric = load_metric("wer") def compute_metrics(pred): pred_logits = pred.predictions pred_ids = np.argmax(pred_logits, axis=-1) pred.label_ids[pred.label_ids == -100] = processor.tokenizer.pad_token_id pred_str = processor.batch_decode(pred_ids) # we do not want to group tokens when computing the metrics label_str = processor.batch_decode(pred.label_ids, group_tokens=False) wer = wer_metric.compute(predictions=pred_str, references=label_str) return {"wer": wer} # Model and training parameters model = Wav2Vec2ForCTC.from_pretrained( "facebook/wav2vec2-xls-r-300m", attention_dropout=0.094, hidden_dropout=0.01, feat_proj_dropout=0.04, mask_time_prob=0.08, layerdrop=0.04, ctc_loss_reduction="mean", pad_token_id=processor.tokenizer.pad_token_id, vocab_size=len(processor.tokenizer), ) model.freeze_feature_extractor() training_args = TrainingArguments( output_dir=repo_name, group_by_length=True, per_device_train_batch_size=32, gradient_accumulation_steps=2, evaluation_strategy="steps", num_train_epochs=20, gradient_checkpointing=True, fp16=True, save_steps=5000, eval_steps=5000, logging_steps=100, learning_rate=1e-4, warmup_steps=500, save_total_limit=3, push_to_hub=True, ) trainer = Trainer( model=model, data_collator=data_collator, args=training_args, compute_metrics=compute_metrics, train_dataset=common_voice_train, eval_dataset=common_voice_test, tokenizer=processor.feature_extractor, ) # Start fine tuning trainer.train() # When done push final model to Huggingface hub trainer.push_to_hub() ``` The model achieves a Word Error Rate of 8,8% using the following script: ```python import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline # load dataset dataset = load_dataset("common_voice", "de", split="test") # use only 1% of data #dataset = load_dataset("common_voice", "de", split="test[:1%]") # load processor feature_extractor = AutoFeatureExtractor.from_pretrained("mfleck/wav2vec2-large-xls-r-300m-german-with-lm") sampling_rate = feature_extractor.sampling_rate dataset = dataset.cast_column("audio", Audio(sampling_rate=sampling_rate)) # load eval pipeline # device=0 means GPU, use device=-1 for CPU asr = pipeline("automatic-speech-recognition", model="mfleck/wav2vec2-large-xls-r-300m-german-with-lm", device=0) # Remove batches with chars which do not exist in German regex = "[^A-Za-zäöüÄÖÜß,?.! ]+" dataset = dataset.filter(lambda example: bool(re.search(regex, example['sentence']))==False) chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\']' # map function to decode audio def map_to_pred(batch): prediction = asr(batch["audio"]["array"], chunk_length_s=5, stride_length_s=1) # Print automatic generated transcript #print(str(prediction)) batch["prediction"] = prediction["text"] text = batch["sentence"] batch["target"] = re.sub(chars_to_ignore_regex, "", text.lower()) + " " return batch # run inference on all examples result = dataset.map(map_to_pred, remove_columns=dataset.column_names) # load metric wer = load_metric("wer") cer = load_metric("cer") # compute metrics wer_result = wer.compute(references=result["target"], predictions=result["prediction"]) cer_result = cer.compute(references=result["target"], predictions=result["prediction"]) # print results result_str = f"WER: {wer_result}\n" f"CER: {cer_result}" print(result_str) ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.1396 | 1.42 | 5000 | 0.1449 | 0.1479 | | 0.1169 | 2.83 | 10000 | 0.1285 | 0.1286 | | 0.0938 | 4.25 | 15000 | 0.1277 | 0.1230 | | 0.0924 | 5.67 | 20000 | 0.1305 | 0.1191 | | 0.0765 | 7.09 | 25000 | 0.1256 | 0.1158 | | 0.0749 | 8.5 | 30000 | 0.1186 | 0.1092 | | 0.066 | 9.92 | 35000 | 0.1173 | 0.1068 | | 0.0581 | 11.34 | 40000 | 0.1225 | 0.1030 | | 0.0582 | 12.75 | 45000 | 0.1153 | 0.0999 | | 0.0507 | 14.17 | 50000 | 0.1182 | 0.0971 | | 0.0491 | 15.59 | 55000 | 0.1136 | 0.0939 | | 0.045 | 17.01 | 60000 | 0.1140 | 0.0914 | | 0.0395 | 18.42 | 65000 | 0.1160 | 0.0902 | | 0.037 | 19.84 | 70000 | 0.1148 | 0.0882 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.9.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
ScandinavianMrT/distilbert-IMDB-NEG
ScandinavianMrT
2022-03-18T16:43:11Z
3
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-18T16:15:50Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-IMDB-NEG results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-IMDB-NEG This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1871 - Accuracy: 0.9346 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1865 | 1.0 | 2000 | 0.1871 | 0.9346 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
facebook/wav2vec2-large-xlsr-53
facebook
2022-03-18T16:11:44Z
557,799
121
transformers
[ "transformers", "pytorch", "jax", "wav2vec2", "pretraining", "speech", "multilingual", "dataset:common_voice", "arxiv:2006.13979", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: multilingual datasets: - common_voice tags: - speech license: apache-2.0 --- # Wav2Vec2-XLSR-53 [Facebook's XLSR-Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition. Check out [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more information. [Paper](https://arxiv.org/abs/2006.13979) Authors: Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli **Abstract** This paper presents XLSR which learns cross-lingual speech representations by pretraining a single model from the raw waveform of speech in multiple languages. We build on wav2vec 2.0 which is trained by solving a contrastive task over masked latent speech representations and jointly learns a quantization of the latents shared across languages. The resulting model is fine-tuned on labeled data and experiments show that cross-lingual pretraining significantly outperforms monolingual pretraining. On the CommonVoice benchmark, XLSR shows a relative phoneme error rate reduction of 72% compared to the best known results. On BABEL, our approach improves word error rate by 16% relative compared to a comparable system. Our approach enables a single multilingual speech recognition model which is competitive to strong individual models. Analysis shows that the latent discrete speech representations are shared across languages with increased sharing for related languages. We hope to catalyze research in low-resource speech understanding by releasing XLSR-53, a large model pretrained in 53 languages. The original model can be found under https://github.com/pytorch/fairseq/tree/master/examples/wav2vec#wav2vec-20. # Usage See [this notebook](https://colab.research.google.com/github/patrickvonplaten/notebooks/blob/master/Fine_Tune_XLSR_Wav2Vec2_on_Turkish_ASR_with_%F0%9F%A4%97_Transformers.ipynb) for more information on how to fine-tune the model. ![model image](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/xlsr_wav2vec2.png)
omerm/test_model
omerm
2022-03-18T15:15:04Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2022-03-15T15:35:51Z
--- license: apache-2.0 ---
TestSB3/ppo-CartPole-v1
TestSB3
2022-03-18T13:41:36Z
0
0
null
[ "gym", "reinforcement-learning", "region:us" ]
reinforcement-learning
2022-03-18T10:20:52Z
--- tags: - gym - reinforcement-learning --- # TestSB3/ppo-CartPole-v1 This is a trained model of a PPO agent playing CartPole-v1 using the [rl-baselines3-zoo](https://github.com/DLR-RM/rl-baselines3-zoo) library. ## Usage (with RL-baselines3-zoo) Just clone the [rl-baselines3-zoo](https://github.com/DLR-RM/rl-baselines3-zoo) library. Then run: ```python python enjoy.py --algo ppo --env CartPole-v1 ``` ## Evaluation Results Mean Reward: 500.0 +/- 0.0 (300 test episodes) ## Citing the Project To cite this repository in publications: ``` @misc{rl-zoo3, author = {Raffin, Antonin}, title = {RL Baselines3 Zoo}, year = {2020}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/DLR-RM/rl-baselines3-zoo}}, } ```
willcai/wav2vec2_common_voice_accents_4
willcai
2022-03-18T11:11:03Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-18T01:46:54Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2_common_voice_accents_4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2_common_voice_accents_4 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.0047 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 48 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 384 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.615 | 1.28 | 400 | 0.8202 | | 0.3778 | 2.56 | 800 | 0.1587 | | 0.2229 | 3.85 | 1200 | 0.1027 | | 0.1799 | 5.13 | 1600 | 0.0879 | | 0.1617 | 6.41 | 2000 | 0.0772 | | 0.1474 | 7.69 | 2400 | 0.0625 | | 0.134 | 8.97 | 2800 | 0.0498 | | 0.1213 | 10.26 | 3200 | 0.0429 | | 0.1186 | 11.54 | 3600 | 0.0434 | | 0.1118 | 12.82 | 4000 | 0.0312 | | 0.1026 | 14.1 | 4400 | 0.0365 | | 0.0951 | 15.38 | 4800 | 0.0321 | | 0.0902 | 16.67 | 5200 | 0.0262 | | 0.0843 | 17.95 | 5600 | 0.0208 | | 0.0744 | 19.23 | 6000 | 0.0140 | | 0.0718 | 20.51 | 6400 | 0.0204 | | 0.0694 | 21.79 | 6800 | 0.0133 | | 0.0636 | 23.08 | 7200 | 0.0104 | | 0.0609 | 24.36 | 7600 | 0.0084 | | 0.0559 | 25.64 | 8000 | 0.0050 | | 0.0527 | 26.92 | 8400 | 0.0089 | | 0.0495 | 28.21 | 8800 | 0.0058 | | 0.0471 | 29.49 | 9200 | 0.0047 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.4 - Tokenizers 0.11.6
reichenbach/switch-transformer-classification
reichenbach
2022-03-18T10:53:01Z
2
2
tf-keras
[ "tf-keras", "generic", "switch-transformers", "mixture-of-experts", "arxiv:2101.03961", "region:us" ]
null
2022-03-06T09:20:19Z
--- tags: - generic - switch-transformers - mixture-of-experts --- ## Tensorflow Keras Implementation of Switch Transformers for Text Classification. This repo contains the models [Switch Transformers for Text Classification](https://keras.io/examples/nlp/text_classification_with_switch_transformer/). Credits: [Khalid Salama](https://www.linkedin.com/in/khalid-salama-24403144/) - Original Author HF Contribution: [Rishav Chandra Varma](https://huggingface.co/reichenbach) ## Background Information ### Introduction In this example, we demonstrates implementation of the [Switch Transformer](https://arxiv.org/abs/2101.03961) model for text classification. For the purpose of this example, we are imdb dataset present in Keras Module. ### What is specialty of Switch Transformer ? The Switch Transformer replaces the feed forward network (FFN) layer in the standard Transformer with a Mixture of Expert (MoE) routing layer, where each expert operates independently on the tokens in the sequence. This allows increasing the model size without increasing the computation needed to process each example. Note that, for training the Switch Transformer efficiently, data and model parallelism need to be applied, so that expert modules can run simultaneously, each on its own accelerator. While the implementation described in the paper uses the [TensorFlow Mesh](https://github.com/tensorflow/mesh) framework for distributed training, this example presents a simple, non-distributed implementation of the Switch Transformer model for demonstration purposes.
sven-nm/roberta_classics_ner
sven-nm
2022-03-18T10:14:20Z
22
0
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "classics", "citation mining", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - en tags: - classics - citation mining widget: - text: "Homer's Iliad opens with an invocation to the muse (1. 1)." --- ### Model and entities `roberta_classics_ner` is a domain-specific RoBERTa-based model for named entity recognition in Classical Studies. It recognises bibliographical entities, such as: | id | label | desciption | Example | | --- | ------------- | ------------------------------------------- | --------------------- | | 0 | 'O' | Out of entity | | | 1 | 'B-AAUTHOR' | Ancient authors | *Herodotus* | | 2 | 'I-AAUTHOR' | | | | 3 | 'B-AWORK' | The title of an ancient work | *Symposium*, *Aeneid* | | 4 | 'I-AWORK' | | | | 5 | 'B-REFAUWORK' | A structured reference to an ancient work | *Homer, Il.* | | 6 | 'I-REFAUWORK' | | | | 7 | 'B-REFSCOPE' | The scope of a reference | *II.1.993a30–b11* | | 8 | 'I-REFSCOPE' | | | | 9 | 'B-FRAGREF' | A reference to fragmentary texts or scholia | *Frag. 19. West* | | 10 | 'I-FRAGREF' | | | ### Example ``` B-AAUTHOR B-AWORK B-REFSCOPE Homer 's Iliad opens with an invocation to the muse ( 1. 1). ``` ### Dataset `roberta_classics_ner` was fine-tuned and evaluated on `EpiBau`, a dataset which has not been released publicly yet. It is composed of four volumes of [Structures of Epic Poetry](https://www.epische-bauformen.uni-rostock.de/), a compendium on the narrative patterns and structural elements in ancient epic. Entity counts of the `Epibau` dataset are the following: | | train-set | dev-set | test-set | | -------------- | --------- | ------- | -------- | | word count | 712462 | 125729 | 122324 | | AAUTHOR | 4436 | 1368 | 1511 | | AWORK | 3145 | 780 | 670 | | REFAUWORK | 5102 | 988 | 1209 | | REFSCOPE | 14768 | 3193 | 2847 | | FRAGREF | 266 | 29 | 33 | | total entities | 13822 | 1415 | 2419 | ### Results The model was developed in the context of experiments reported [here](http://infoscience.epfl.ch/record/291236?&ln=en).Trained and tested on `EpiBau` with a 85-15 split, the model yields a general F1 score of **.82** (micro-averages). Detailed scores are displayed below. Evaluation was performed with the [CLEF-HIPE-scorer](https://github.com/impresso/CLEF-HIPE-2020-scorer), in strict mode) | metric | AAUTHOR | AWORK | REFSCOPE | REFAUWORK | | --------- | ------- | ----- | -------- | --------- | | F1 | .819 | .796 | .863 | .756 | | Precision | .842 | .818 | .860 | .755 | | Recall | .797 | .766 | .756 | .866 | Questions, remarks, help or contribution ? Get in touch [here](https://github.com/AjaxMultiCommentary), we'll be happy to chat !
cammy/bart-large-cnn-100-MDS-own
cammy
2022-03-18T09:32:08Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-18T09:31:07Z
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-large-cnn-100-MDS-own results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-100-MDS-own This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.5357 - Rouge1: 22.4039 - Rouge2: 4.681 - Rougel: 13.1526 - Rougelsum: 15.7986 - Gen Len: 70.3 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | No log | 1.0 | 25 | 3.3375 | 25.7428 | 6.754 | 16.4131 | 19.6269 | 81.9 | | No log | 2.0 | 50 | 3.5357 | 22.4039 | 4.681 | 13.1526 | 15.7986 | 70.3 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.0
aaraki/bert-base-uncased-finetuned-swag
aaraki
2022-03-18T08:16:58Z
1
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "multiple-choice", "generated_from_trainer", "dataset:swag", "license:apache-2.0", "endpoints_compatible", "region:us" ]
multiple-choice
2022-03-18T06:29:45Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - swag metrics: - accuracy model-index: - name: bert-base-uncased-finetuned-swag results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-swag This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the swag dataset. It achieves the following results on the evaluation set: - Loss: 0.5155 - Accuracy: 0.8002 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6904 | 1.0 | 4597 | 0.5155 | 0.8002 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
youzanai/bert-product-title-chinese
youzanai
2022-03-18T06:19:06Z
6
3
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
基于有赞商品标题语料训练的bert模型。 模型示例代码参考 https://github.com/youzanai/trexpark
brad1141/Longformer-finetuned-norm
brad1141
2022-03-18T05:42:11Z
61
0
transformers
[ "transformers", "pytorch", "tensorboard", "longformer", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-18T02:29:24Z
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: Longformer-finetuned-norm results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Longformer-finetuned-norm This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8127 - Precision: 0.8429 - Recall: 0.8701 - F1: 0.8562 - Accuracy: 0.8221 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.8008 | 1.0 | 1012 | 0.5839 | 0.8266 | 0.8637 | 0.8447 | 0.8084 | | 0.5168 | 2.0 | 2024 | 0.5927 | 0.7940 | 0.9102 | 0.8481 | 0.8117 | | 0.3936 | 3.0 | 3036 | 0.5651 | 0.8476 | 0.8501 | 0.8488 | 0.8143 | | 0.2939 | 4.0 | 4048 | 0.6411 | 0.8494 | 0.8578 | 0.8536 | 0.8204 | | 0.2165 | 5.0 | 5060 | 0.6833 | 0.8409 | 0.8822 | 0.8611 | 0.8270 | | 0.1561 | 6.0 | 6072 | 0.7643 | 0.8404 | 0.8810 | 0.8602 | 0.8259 | | 0.1164 | 7.0 | 7084 | 0.8127 | 0.8429 | 0.8701 | 0.8562 | 0.8221 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
beston91/gpt2-xl-ft-logits-5k
beston91
2022-03-18T02:54:46Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-17T23:54:46Z
--- tags: - generated_from_trainer model-index: - name: gpt2-xl-vanilla-debiased-5000 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-xl-vanilla-debiased-5000 This model is a fine-tuned version of [gpt2-xl](https://huggingface.co/gpt2-xl) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 7.0371 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100.0 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.99 | 27 | 6.1985 | | No log | 1.99 | 54 | 6.4583 | | No log | 2.99 | 81 | 6.7709 | | No log | 3.99 | 108 | 7.0371 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
BigSalmon/InformalToFormalLincoln26
BigSalmon
2022-03-18T02:37:57Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-08T22:59:35Z
``` from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln26") model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln26") ``` ``` How To Make Prompt: informal english: i am very ready to do that just that. Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end. Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task. *** informal english: space is huge and needs to be explored. Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless. Translated into the Style of Abraham Lincoln: space is a ( limitless / boundless ) expanse, a vast virgin domain awaiting exploration. *** informal english: corn fields are all across illinois, visible once you leave chicago. Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago. informal english: ``` ``` - declining viewership facing the nba. - does not have to be this way. - in fact, many solutions exist. - the four point line would surely draw in eyes. Text: failing to draw in the masses, the NBA has fallen into disrepair. such does not have to be the case, however. in fact, a myriad of simple, relatively cheap solutions could revive the league. the addition of the much-hyped four-point line would surely juice viewership. *** - ``` ``` infill: chrome extensions [MASK] accomplish everyday tasks. Translated into the Style of Abraham Lincoln: chrome extensions ( expedite the ability to / unlock the means to more readily ) accomplish everyday tasks. infill: at a time when nintendo has become inflexible, [MASK] consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. Translated into the Style of Abraham Lincoln: at a time when nintendo has become inflexible, ( stubbornly [MASK] on / firmly set on / unyielding in its insistence on ) consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. infill: ``` ``` Essay Intro (California High-Speed Rail): built with an eye on the future, california's high-speed rail service resolves to change the face of travel. Essay Intro (YIMBY's Need To Win): home to the most expensive housing market in the united states, san francisco is the city in which the yimby and anti-yimby hordes wage an eternal battle. Essay Intro ( ``` ``` Search: What is the definition of Checks and Balances? https://en.wikipedia.org/wiki/Checks_and_balances Checks and Balances is the idea of having a system where each and every action in government should be subject to one or more checks that would not allow one branch or the other to overly dominate. https://www.harvard.edu/glossary/Checks_and_Balances Checks and Balances is a system that allows each branch of government to limit the powers of the other branches in order to prevent abuse of power https://www.law.cornell.edu/library/constitution/Checks_and_Balances Checks and Balances is a system of separation through which branches of government can control the other, thus preventing excess power. *** Search: What is the definition of Separation of Powers? https://en.wikipedia.org/wiki/Separation_of_powers The separation of powers is a principle in government, whereby governmental powers are separated into different branches, each with their own set of powers, that are prevent one branch from aggregating too much power. https://www.yale.edu/tcf/Separation_of_Powers.html Separation of Powers is the division of governmental functions between the executive, legislative and judicial branches, clearly demarcating each branch's authority, in the interest of ensuring that individual liberty or security is not undermined. *** Search: What is the definition of Connection of Powers? https://en.wikipedia.org/wiki/Connection_of_powers Connection of Powers is a feature of some parliamentary forms of government where different branches of government are intermingled, typically the executive and legislative branches. https://simple.wikipedia.org/wiki/Connection_of_powers The term Connection of Powers describes a system of government in which there is overlap between different parts of the government. *** Search: What is the definition of ``` ``` Search: What are phrase synonyms for "second-guess"? https://www.powerthesaurus.org/second-guess/synonyms Shortest to Longest: - feel dubious about - raise an eyebrow at - wrinkle their noses at - cast a jaundiced eye at - teeter on the fence about *** Search: What are phrase synonyms for "mean to newbies"? https://www.powerthesaurus.org/mean_to_newbies/synonyms Shortest to Longest: - readiness to balk at rookies - absence of tolerance for novices - hostile attitude toward newcomers *** Search: What are phrase synonyms for "make use of"? https://www.powerthesaurus.org/make_use_of/synonyms Shortest to Longest: - call upon - glean value from - reap benefits from - derive utility from - seize on the merits of - draw on the strength of - tap into the potential of *** Search: What are phrase synonyms for "hurting itself"? https://www.powerthesaurus.org/hurting_itself/synonyms Shortest to Longest: - erring - slighting itself - forfeiting its integrity - doing itself a disservice - evincing a lack of backbone *** Search: What are phrase synonyms for " ``` ``` - declining viewership facing the nba. - does not have to be this way. - in fact, many solutions exist. - the four point line would surely draw in eyes. text: failing to draw in the masses, the nba has ( fallen into / succumb to / bowed to ) disrepair. such does not have to be the case, however. in fact, a myriad of simple, relatively cheap ( solutions / interventions / enhancements ) could revive the league. the addition of the much-hyped four-point line would surely juice viewership. *** - ``` ``` original: sports teams are profitable for owners. [MASK], their valuations experience a dramatic uptick. infill: sports teams are profitable for owners. ( accumulating vast sums / stockpiling treasure / realizing benefits / cashing in / registering robust financials / scoring on balance sheets ), their valuations experience a dramatic uptick. *** original: ```
saghar/MiniLMv2-L6-H384-distilled-from-RoBERTa-Large-finetuned-wikitext103
saghar
2022-03-18T02:24:28Z
16
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "generated_from_trainer", "dataset:wikitext", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-17T21:19:53Z
--- tags: - generated_from_trainer datasets: - wikitext model-index: - name: MiniLMv2-L6-H384-distilled-from-RoBERTa-Large-finetuned-wikitext103 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MiniLMv2-L6-H384-distilled-from-RoBERTa-Large-finetuned-wikitext103 This model is a fine-tuned version of [nreimers/MiniLMv2-L6-H384-distilled-from-RoBERTa-Large](https://huggingface.co/nreimers/MiniLMv2-L6-H384-distilled-from-RoBERTa-Large) on the wikitext dataset. It achieves the following results on the evaluation set: - Loss: 4.8236 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 5.9694 | 1.0 | 3125 | 5.1757 | | 5.2228 | 2.0 | 6250 | 4.8847 | | 5.0653 | 3.0 | 9375 | 4.8236 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.8.1 - Datasets 1.11.0 - Tokenizers 0.10.3
anton-l/xtreme_s_xlsr_300m_minds14_old_splits
anton-l
2022-03-17T22:23:22Z
8
1
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "audio-classification", "automatic-speech-recognition", "google/xtreme_s", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-14T18:02:05Z
--- license: apache-2.0 tags: - automatic-speech-recognition - google/xtreme_s - generated_from_trainer metrics: - f1 - accuracy model-index: - name: xtreme_s_xlsr_minds14 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xtreme_s_xlsr_minds14 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the GOOGLE/XTREME_S - MINDS14 dataset. It achieves the following results on the evaluation set: - Loss: 0.2890 - F1: 0.9474 - Accuracy: 0.9470 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1500 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:| | 2.551 | 2.7 | 200 | 2.5855 | 0.0407 | 0.1201 | | 1.6934 | 5.41 | 400 | 1.5072 | 0.5862 | 0.6085 | | 0.5914 | 8.11 | 600 | 0.7274 | 0.8270 | 0.8232 | | 0.3896 | 10.81 | 800 | 0.4402 | 0.8905 | 0.8890 | | 0.5052 | 13.51 | 1000 | 0.4483 | 0.8837 | 0.8829 | | 0.4806 | 16.22 | 1200 | 0.4981 | 0.8784 | 0.8787 | | 0.2103 | 18.92 | 1400 | 0.4957 | 0.8810 | 0.8817 | | 0.4198 | 21.62 | 1600 | 0.5161 | 0.8927 | 0.8921 | | 0.11 | 24.32 | 1800 | 0.4456 | 0.8923 | 0.8902 | | 0.1233 | 27.03 | 2000 | 0.3858 | 0.9016 | 0.9012 | | 0.1827 | 29.73 | 2200 | 0.3765 | 0.9162 | 0.9159 | | 0.1235 | 32.43 | 2400 | 0.3716 | 0.9134 | 0.9128 | | 0.1873 | 35.14 | 2600 | 0.3080 | 0.9314 | 0.9311 | | 0.017 | 37.84 | 2800 | 0.2629 | 0.9415 | 0.9409 | | 0.0436 | 40.54 | 3000 | 0.3159 | 0.9397 | 0.9390 | | 0.0455 | 43.24 | 3200 | 0.2963 | 0.9393 | 0.9390 | | 0.046 | 45.95 | 3400 | 0.2914 | 0.9457 | 0.9451 | | 0.0042 | 48.65 | 3600 | 0.2890 | 0.9474 | 0.9470 | ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.2+cu113 - Datasets 1.18.4.dev0 - Tokenizers 0.11.6
huggingtweets/charlieykim
huggingtweets
2022-03-17T20:43:26Z
6
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/780199274046976001/ewIzqDV5_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Charlie Kim</div> <div style="text-align: center; font-size: 14px;">@charlieykim</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Charlie Kim. | Data | Charlie Kim | | --- | --- | | Tweets downloaded | 3248 | | Retweets | 234 | | Short tweets | 29 | | Tweets kept | 2985 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2ql0zb69/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @charlieykim's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/arss897f) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/arss897f/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/charlieykim') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
cammy/led-large-16384-arxiv-100-MDS
cammy
2022-03-17T19:09:17Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "led", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-17T18:49:41Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: led-large-16384-arxiv-100-MDS results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # led-large-16384-arxiv-100-MDS This model is a fine-tuned version of [allenai/led-large-16384-arxiv](https://huggingface.co/allenai/led-large-16384-arxiv) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.3897 - Rouge1: 0.0 - Rouge2: 0.0 - Rougel: 0.0 - Rougelsum: 0.0 - Gen Len: 512.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 25 | 3.1144 | 13.2756 | 2.6204 | 9.2686 | 10.2289 | 184.0 | | No log | 2.0 | 50 | 3.3897 | 0.0 | 0.0 | 0.0 | 0.0 | 512.0 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.0