modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
list
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
chchen/Llama-3.1-8B-Instruct-SFT-900
chchen
2025-01-12T20:55:22Z
12
0
peft
[ "peft", "safetensors", "llama-factory", "lora", "generated_from_trainer", "base_model:meta-llama/Llama-3.1-8B-Instruct", "base_model:adapter:meta-llama/Llama-3.1-8B-Instruct", "license:llama3.1", "region:us" ]
null
2025-01-12T20:43:01Z
--- base_model: meta-llama/Llama-3.1-8B-Instruct library_name: peft license: llama3.1 tags: - llama-factory - lora - generated_from_trainer model-index: - name: Llama-3.1-8B-Instruct-SFT-900 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Llama-3.1-8B-Instruct-SFT-900 This model is a fine-tuned version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) on the bct_non_cot_sft_900 dataset. It achieves the following results on the evaluation set: - Loss: 0.1053 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.201 | 0.9877 | 50 | 1.0016 | | 0.1407 | 1.9753 | 100 | 0.1513 | | 0.0885 | 2.9630 | 150 | 0.1082 | | 0.0743 | 3.9506 | 200 | 0.1068 | | 0.0855 | 4.9383 | 250 | 0.1062 | | 0.0571 | 5.9259 | 300 | 0.1058 | | 0.063 | 6.9136 | 350 | 0.1054 | | 0.0597 | 7.9012 | 400 | 0.1057 | | 0.0694 | 8.8889 | 450 | 0.1053 | | 0.0593 | 9.8765 | 500 | 0.1053 | ### Framework versions - PEFT 0.12.0 - Transformers 4.45.2 - Pytorch 2.3.0 - Datasets 2.19.0 - Tokenizers 0.20.0
akseljoonas/deberta-v3-predtrade-new-0.647-profit0.339
akseljoonas
2025-01-12T20:55:20Z
6
0
transformers
[ "transformers", "safetensors", "deberta-v2", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-01-12T20:54:55Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
kk-aivio/89934c3e-bd95-48a9-8e1d-4306b1e26c0a
kk-aivio
2025-01-12T20:55:00Z
10
0
peft
[ "peft", "safetensors", "opt", "axolotl", "generated_from_trainer", "base_model:facebook/opt-350m", "base_model:adapter:facebook/opt-350m", "license:other", "region:us" ]
null
2025-01-12T20:45:49Z
--- library_name: peft license: other base_model: facebook/opt-350m tags: - axolotl - generated_from_trainer model-index: - name: 89934c3e-bd95-48a9-8e1d-4306b1e26c0a results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: facebook/opt-350m bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - acfb77941d93072a_train_data.json ds_type: json format: custom path: /workspace/input_data/acfb77941d93072a_train_data.json type: field_input: CWE-ID field_instruction: CVE-ID field_output: DESCRIPTION format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: kk-aivio/89934c3e-bd95-48a9-8e1d-4306b1e26c0a hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/acfb77941d93072a_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: df80e456-2e8f-4f39-8af5-41f7ce1a762c wandb_project: birthday-sn56-17-Gradients-On-Demand wandb_run: your_name wandb_runid: df80e456-2e8f-4f39-8af5-41f7ce1a762c warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 89934c3e-bd95-48a9-8e1d-4306b1e26c0a This model is a fine-tuned version of [facebook/opt-350m](https://huggingface.co/facebook/opt-350m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.8645 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 16.6058 | 0.0000 | 1 | 4.0096 | | 16.8055 | 0.0001 | 3 | 4.0026 | | 18.832 | 0.0003 | 6 | 3.9527 | | 16.743 | 0.0004 | 9 | 3.8645 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Asadali12/videomae-base-finetuned-cricket_shot_detection_12_latest
Asadali12
2025-01-12T20:54:43Z
41
0
transformers
[ "transformers", "tensorboard", "safetensors", "videomae", "video-classification", "generated_from_trainer", "base_model:MCG-NJU/videomae-base", "base_model:finetune:MCG-NJU/videomae-base", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
video-classification
2025-01-12T18:56:42Z
--- library_name: transformers license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-base tags: - generated_from_trainer metrics: - accuracy - f1 - recall - precision model-index: - name: videomae-base-finetuned-cricket_shot_detection_12_latest results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # videomae-base-finetuned-cricket_shot_detection_12_latest This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4676 - Accuracy: 0.6316 - F1: 0.6366 - Recall: 0.6316 - Precision: 0.7675 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 576 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 1.7629 | 0.1267 | 73 | 1.8203 | 0.2105 | 0.1815 | 0.2105 | 0.1974 | | 1.5269 | 1.1267 | 146 | 1.7099 | 0.2632 | 0.2731 | 0.2632 | 0.5474 | | 1.2084 | 2.1267 | 219 | 1.5873 | 0.5789 | 0.5797 | 0.5789 | 0.7570 | | 1.1034 | 3.1267 | 292 | 1.5001 | 0.5789 | 0.5797 | 0.5789 | 0.7570 | | 0.9862 | 4.1267 | 365 | 1.4676 | 0.6316 | 0.6366 | 0.6316 | 0.7675 | | 0.891 | 5.1267 | 438 | 1.4256 | 0.6316 | 0.6366 | 0.6316 | 0.7675 | | 0.6645 | 6.1267 | 511 | 1.4055 | 0.6316 | 0.6476 | 0.6316 | 0.8184 | | 0.7161 | 7.1128 | 576 | 1.4041 | 0.6316 | 0.6366 | 0.6316 | 0.7675 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.19.1
usyd-community/vitpose-plus-small
usyd-community
2025-01-12T20:50:10Z
4,335
1
transformers
[ "transformers", "safetensors", "vitpose", "keypoint-detection", "arxiv:2204.12484", "arxiv:2212.04246", "license:apache-2.0", "endpoints_compatible", "region:us" ]
keypoint-detection
2025-01-12T14:41:11Z
--- library_name: transformers license: apache-2.0 pipeline_tag: keypoint-detection --- # Model Card for VitPose <img src="https://cdn-uploads.huggingface.co/production/uploads/6579e0eaa9e58aec614e9d97/ZuIwMdomy2_6aJ_JTE1Yd.png" alt="x" width="400"/> ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation and ViTPose++: Vision Transformer Foundation Model for Generic Body Pose Estimation. It obtains 81.1 AP on MS COCO Keypoint test-dev set. ## Model Details Although no specific domain knowledge is considered in the design, plain vision transformers have shown excellent performance in visual recognition tasks. However, little effort has been made to reveal the potential of such simple structures for pose estimation tasks. In this paper, we show the surprisingly good capabilities of plain vision transformers for pose estimation from various aspects, namely simplicity in model structure, scalability in model size, flexibility in training paradigm, and transferability of knowledge between models, through a simple baseline model called ViTPose. Specifically, ViTPose employs plain and non-hierarchical vision transformers as backbones to extract features for a given person instance and a lightweight decoder for pose estimation. It can be scaled up from 100M to 1B parameters by taking the advantages of the scalable model capacity and high parallelism of transformers, setting a new Pareto front between throughput and performance. Besides, ViTPose is very flexible regarding the attention type, input resolution, pre-training and finetuning strategy, as well as dealing with multiple pose tasks. We also empirically demonstrate that the knowledge of large ViTPose models can be easily transferred to small ones via a simple knowledge token. Experimental results show that our basic ViTPose model outperforms representative methods on the challenging MS COCO Keypoint Detection benchmark, while the largest model sets a new state-of-the-art, i.e., 80.9 AP on the MS COCO test-dev set. The code and models are available at https://github.com/ViTAE-Transformer/ViTPose ### Model Description This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** Yufei Xu, Jing Zhang, Qiming Zhang, Dacheng Tao - **Funded by:** ARC FL-170100117 and IH-180100002. - **License:** Apache-2.0 - **Ported to 🤗 Transformers by:** Sangbum Choi and Niels Rogge ### Model Sources - **Original repository:** https://github.com/ViTAE-Transformer/ViTPose - **Paper:** https://arxiv.org/pdf/2204.12484 - **Demo:** https://huggingface.co/spaces?sort=trending&search=vitpose ## Uses The ViTPose model, developed by the ViTAE-Transformer team, is primarily designed for pose estimation tasks. Here are some direct uses of the model: Human Pose Estimation: The model can be used to estimate the poses of humans in images or videos. This involves identifying the locations of key body joints such as the head, shoulders, elbows, wrists, hips, knees, and ankles. Action Recognition: By analyzing the poses over time, the model can help in recognizing various human actions and activities. Surveillance: In security and surveillance applications, ViTPose can be used to monitor and analyze human behavior in public spaces or private premises. Health and Fitness: The model can be utilized in fitness apps to track and analyze exercise poses, providing feedback on form and technique. Gaming and Animation: ViTPose can be integrated into gaming and animation systems to create more realistic character movements and interactions. ## Bias, Risks, and Limitations In this paper, we propose a simple yet effective vision transformer baseline for pose estimation, i.e., ViTPose. Despite no elaborate designs in structure, ViTPose obtains SOTA performance on the MS COCO dataset. However, the potential of ViTPose is not fully explored with more advanced technologies, such as complex decoders or FPN structures, which may further improve the performance. Besides, although the ViTPose demonstrates exciting properties such as simplicity, scalability, flexibility, and transferability, more research efforts could be made, e.g., exploring the prompt-based tuning to demonstrate the flexibility of ViTPose further. In addition, we believe ViTPose can also be applied to other pose estimation datasets, e.g., animal pose estimation [47, 9, 45] and face keypoint detection [21, 6]. We leave them as the future work. ## How to Get Started with the Model Use the code below to get started with the model. ```python import torch import requests import numpy as np from PIL import Image from transformers import ( AutoProcessor, RTDetrForObjectDetection, VitPoseForPoseEstimation, ) device = "cuda" if torch.cuda.is_available() else "cpu" url = "http://images.cocodataset.org/val2017/000000000139.jpg" image = Image.open(requests.get(url, stream=True).raw) # ------------------------------------------------------------------------ # Stage 1. Detect humans on the image # ------------------------------------------------------------------------ # You can choose detector by your choice person_image_processor = AutoProcessor.from_pretrained("PekingU/rtdetr_r50vd_coco_o365") person_model = RTDetrForObjectDetection.from_pretrained("PekingU/rtdetr_r50vd_coco_o365", device_map=device) inputs = person_image_processor(images=image, return_tensors="pt").to(device) with torch.no_grad(): outputs = person_model(**inputs) results = person_image_processor.post_process_object_detection( outputs, target_sizes=torch.tensor([(image.height, image.width)]), threshold=0.3 ) result = results[0] # take first image results # Human label refers 0 index in COCO dataset person_boxes = result["boxes"][result["labels"] == 0] person_boxes = person_boxes.cpu().numpy() # Convert boxes from VOC (x1, y1, x2, y2) to COCO (x1, y1, w, h) format person_boxes[:, 2] = person_boxes[:, 2] - person_boxes[:, 0] person_boxes[:, 3] = person_boxes[:, 3] - person_boxes[:, 1] # ------------------------------------------------------------------------ # Stage 2. Detect keypoints for each person found # ------------------------------------------------------------------------ image_processor = AutoProcessor.from_pretrained("usyd-community/vitpose-plus-small") model = VitPoseForPoseEstimation.from_pretrained("usyd-community/vitpose-plus-small", device_map=device) inputs = image_processor(image, boxes=[person_boxes], return_tensors="pt").to(device) with torch.no_grad(): outputs = model(**inputs) pose_results = image_processor.post_process_pose_estimation(outputs, boxes=[person_boxes], threshold=0.3) image_pose_result = pose_results[0] # results for first image for i, person_pose in enumerate(image_pose_result): print(f"Person #{i}") for keypoint, label, score in zip( person_pose["keypoints"], person_pose["labels"], person_pose["scores"] ): keypoint_name = model.config.id2label[label.item()] x, y = keypoint print(f" - {keypoint_name}: x={x.item():.2f}, y={y.item():.2f}, score={score.item():.2f}") ``` Output: ``` Person #0 - Nose: x=428.25, y=170.88, score=0.98 - L_Eye: x=428.76, y=168.03, score=0.97 - R_Eye: x=428.09, y=168.15, score=0.82 - L_Ear: x=433.28, y=167.72, score=0.95 - R_Ear: x=440.77, y=166.66, score=0.88 - L_Shoulder: x=440.52, y=177.60, score=0.92 - R_Shoulder: x=444.64, y=178.11, score=0.70 - L_Elbow: x=436.64, y=198.21, score=0.92 - R_Elbow: x=431.42, y=201.19, score=0.76 - L_Wrist: x=430.96, y=218.39, score=0.98 - R_Wrist: x=419.95, y=213.27, score=0.85 - L_Hip: x=445.33, y=222.93, score=0.77 - R_Hip: x=451.91, y=222.52, score=0.75 - L_Knee: x=443.31, y=255.61, score=0.83 - R_Knee: x=451.42, y=255.03, score=0.84 - L_Ankle: x=447.76, y=287.33, score=0.68 - R_Ankle: x=456.78, y=286.08, score=0.83 Person #1 - Nose: x=398.23, y=181.74, score=0.89 - L_Eye: x=398.31, y=179.77, score=0.84 - R_Eye: x=395.99, y=179.46, score=0.91 - R_Ear: x=388.95, y=180.24, score=0.86 - L_Shoulder: x=397.35, y=194.22, score=0.73 - R_Shoulder: x=384.50, y=190.86, score=0.58 ``` ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> Dataset details. We use MS COCO [28], AI Challenger [41], MPII [3], and CrowdPose [22] datasets for training and evaluation. OCHuman [54] dataset is only involved in the evaluation stage to measure the models’ performance in dealing with occluded people. The MS COCO dataset contains 118K images and 150K human instances with at most 17 keypoint annotations each instance for training. The dataset is under the CC-BY-4.0 license. MPII dataset is under the BSD license and contains 15K images and 22K human instances for training. There are at most 16 human keypoints for each instance annotated in this dataset. AI Challenger is much bigger and contains over 200K training images and 350 human instances, with at most 14 keypoints for each instance annotated. OCHuman contains human instances with heavy occlusion and is just used for val and test set, which includes 4K images and 8K instances. #### Training Hyperparameters - **Training regime:** ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6579e0eaa9e58aec614e9d97/Gj6gGcIGO3J5HD2MAB_4C.png) #### Speeds, Sizes, Times ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6579e0eaa9e58aec614e9d97/rsCmn48SAvhi8xwJhX8h5.png) ## Evaluation OCHuman val and test set. To evaluate the performance of human pose estimation models on the human instances with heavy occlusion, we test the ViTPose variants and representative models on the OCHuman val and test set with ground truth bounding boxes. We do not adopt extra human detectors since not all human instances are annotated in the OCHuman datasets, where the human detector will cause a lot of “false positive” bounding boxes and can not reflect the true ability of pose estimation models. Specifically, the decoder head of ViTPose corresponding to the MS COCO dataset is used, as the keypoint definitions are the same in MS COCO and OCHuman datasets. MPII val set. We evaluate the performance of ViTPose and representative models on the MPII val set with the ground truth bounding boxes. Following the default settings of MPII, we use PCKh as metric for performance evaluation. ### Results ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6579e0eaa9e58aec614e9d97/FcHVFdUmCuT2m0wzB8QSS.png) ### Model Architecture and Objective ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6579e0eaa9e58aec614e9d97/kf3e1ifJkVtOMbISvmMsM.png) #### Hardware The models are trained on 8 A100 GPUs based on the mmpose codebase ## Citation **BibTeX:** ```bibtex @article{xu2022vitposesimplevisiontransformer, title={ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation}, author={Yufei Xu and Jing Zhang and Qiming Zhang and Dacheng Tao}, year={2022}, eprint={2204.12484}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2204.12484} } @misc{xu2023vitposevisiontransformergeneric, title={ViTPose++: Vision Transformer for Generic Body Pose Estimation}, author={Yufei Xu and Jing Zhang and Qiming Zhang and Dacheng Tao}, year={2023}, eprint={2212.04246}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2212.04246}, } ```
duyphu/3bc22b23-d6db-f00b-c023-0fc40e39ee8a
duyphu
2025-01-12T20:49:59Z
12
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-Coder-7B-Instruct", "base_model:adapter:Qwen/Qwen2.5-Coder-7B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-01-12T20:37:55Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-Coder-7B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 3bc22b23-d6db-f00b-c023-0fc40e39ee8a results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-Coder-7B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 1516d1ee6d08c7db_train_data.json ds_type: json format: custom path: /workspace/input_data/1516d1ee6d08c7db_train_data.json type: field_input: p field_instruction: asks-for field_output: explanation format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 5 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: duyphu/3bc22b23-d6db-f00b-c023-0fc40e39ee8a hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 5 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/1516d1ee6d08c7db_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 1849022f-60a5-4fce-8dec-ce632a995207 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 1849022f-60a5-4fce-8dec-ce632a995207 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 3bc22b23-d6db-f00b-c023-0fc40e39ee8a This model is a fine-tuned version of [Qwen/Qwen2.5-Coder-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.4333 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0009 | 1 | 4.9763 | | 4.6934 | 0.0088 | 10 | 4.6777 | | 3.3654 | 0.0176 | 20 | 3.3385 | | 2.9184 | 0.0265 | 30 | 2.6892 | | 2.3493 | 0.0353 | 40 | 2.4670 | | 2.3078 | 0.0441 | 50 | 2.4333 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
vikyt2846/gulnara
vikyt2846
2025-01-12T20:48:31Z
177
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-12T19:58:15Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: gulnara --- # Gulnara <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `gulnara` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('vikyt2846/gulnara', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
lesso04/bb5d0e76-4ff8-46ac-a7d3-08ba460717fc
lesso04
2025-01-12T20:48:13Z
9
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:berkeley-nest/Starling-LM-7B-alpha", "base_model:adapter:berkeley-nest/Starling-LM-7B-alpha", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-12T20:37:51Z
--- library_name: peft license: apache-2.0 base_model: berkeley-nest/Starling-LM-7B-alpha tags: - axolotl - generated_from_trainer model-index: - name: bb5d0e76-4ff8-46ac-a7d3-08ba460717fc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: berkeley-nest/Starling-LM-7B-alpha bf16: true chat_template: llama3 datasets: - data_files: - d6064e0e61015da3_train_data.json ds_type: json format: custom path: /workspace/input_data/d6064e0e61015da3_train_data.json type: field_input: author field_instruction: title field_output: paragraph format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: lesso04/bb5d0e76-4ff8-46ac-a7d3-08ba460717fc hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 25 micro_batch_size: 2 mlflow_experiment_name: /tmp/d6064e0e61015da3_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 56f07b4f-9ae5-4a2a-ac20-c9250ed57e82 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 56f07b4f-9ae5-4a2a-ac20-c9250ed57e82 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # bb5d0e76-4ff8-46ac-a7d3-08ba460717fc This model is a fine-tuned version of [berkeley-nest/Starling-LM-7B-alpha](https://huggingface.co/berkeley-nest/Starling-LM-7B-alpha) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0007 | 1 | nan | | 0.0 | 0.0034 | 5 | nan | | 0.0 | 0.0068 | 10 | nan | | 0.0 | 0.0103 | 15 | nan | | 0.0 | 0.0137 | 20 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso07/d17e67a8-a09a-4baa-8ac1-0d46e5aa8886
lesso07
2025-01-12T20:46:50Z
17
0
peft
[ "peft", "safetensors", "gpt_neox", "axolotl", "generated_from_trainer", "base_model:OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5", "base_model:adapter:OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-12T20:12:48Z
--- library_name: peft license: apache-2.0 base_model: OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5 tags: - axolotl - generated_from_trainer model-index: - name: d17e67a8-a09a-4baa-8ac1-0d46e5aa8886 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5 bf16: true chat_template: llama3 datasets: - data_files: - be2ba7b03623a3f9_train_data.json ds_type: json format: custom path: /workspace/input_data/be2ba7b03623a3f9_train_data.json type: field_instruction: instruction field_output: response format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: lesso07/d17e67a8-a09a-4baa-8ac1-0d46e5aa8886 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 25 micro_batch_size: 2 mlflow_experiment_name: /tmp/be2ba7b03623a3f9_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: c0407220-bcdf-45f1-9319-5d220bd89166 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: c0407220-bcdf-45f1-9319-5d220bd89166 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # d17e67a8-a09a-4baa-8ac1-0d46e5aa8886 This model is a fine-tuned version of [OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5](https://huggingface.co/OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0038 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 6.3544 | 0.0002 | 1 | 1.5151 | | 6.0994 | 0.0009 | 5 | 1.4552 | | 5.3102 | 0.0019 | 10 | 1.2249 | | 4.9855 | 0.0028 | 15 | 1.0979 | | 4.2284 | 0.0038 | 20 | 1.0216 | | 3.8412 | 0.0047 | 25 | 1.0038 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
dimasik1987/63078e3b-e158-42d2-8c22-d99ce1d77b79
dimasik1987
2025-01-12T20:45:43Z
10
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/mistral-7b-v0.3", "base_model:adapter:unsloth/mistral-7b-v0.3", "license:apache-2.0", "region:us" ]
null
2025-01-12T20:28:16Z
--- library_name: peft license: apache-2.0 base_model: unsloth/mistral-7b-v0.3 tags: - axolotl - generated_from_trainer model-index: - name: 63078e3b-e158-42d2-8c22-d99ce1d77b79 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/mistral-7b-v0.3 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f37f4750e6ccfd17_train_data.json ds_type: json format: custom path: /workspace/input_data/f37f4750e6ccfd17_train_data.json type: field_input: my_solu field_instruction: prompt field_output: solution format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: dimasik1987/63078e3b-e158-42d2-8c22-d99ce1d77b79 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 78GiB max_steps: 30 micro_batch_size: 2 mlflow_experiment_name: /tmp/f37f4750e6ccfd17_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: fe496a38-12d8-455d-b139-0123bb7357f3 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: fe496a38-12d8-455d-b139-0123bb7357f3 warmup_steps: 10 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 63078e3b-e158-42d2-8c22-d99ce1d77b79 This model is a fine-tuned version of [unsloth/mistral-7b-v0.3](https://huggingface.co/unsloth/mistral-7b-v0.3) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0004 | 1 | nan | | 0.0 | 0.0034 | 8 | nan | | 0.0 | 0.0068 | 16 | nan | | 0.0 | 0.0102 | 24 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mdsalem17/opus-mt-en-ar-finetuned
mdsalem17
2025-01-12T20:45:06Z
8
0
transformers
[ "transformers", "safetensors", "marian", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2025-01-12T20:44:29Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
shruticic/coco_finetuned_modelv4
shruticic
2025-01-12T20:44:03Z
172
0
null
[ "safetensors", "phi3", "custom_code", "license:apache-2.0", "4-bit", "bitsandbytes", "region:us" ]
null
2025-01-12T20:32:14Z
--- license: apache-2.0 ---
thalllsssss/822a776d-c9bb-4850-a280-9cd752f236c4
thalllsssss
2025-01-12T20:42:17Z
10
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:Orenguteng/Llama-3-8B-Lexi-Uncensored", "base_model:adapter:Orenguteng/Llama-3-8B-Lexi-Uncensored", "license:llama3", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-12T20:21:46Z
--- library_name: peft license: llama3 base_model: Orenguteng/Llama-3-8B-Lexi-Uncensored tags: - axolotl - generated_from_trainer model-index: - name: 822a776d-c9bb-4850-a280-9cd752f236c4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Orenguteng/Llama-3-8B-Lexi-Uncensored bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 4731ee7238473373_train_data.json ds_type: json format: custom path: /workspace/input_data/4731ee7238473373_train_data.json type: field_instruction: query field_output: ori_review format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: thalllsssss/822a776d-c9bb-4850-a280-9cd752f236c4 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/4731ee7238473373_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 152f3551-46bc-4bdb-a1dc-a104e3faed55 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 152f3551-46bc-4bdb-a1dc-a104e3faed55 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 822a776d-c9bb-4850-a280-9cd752f236c4 This model is a fine-tuned version of [Orenguteng/Llama-3-8B-Lexi-Uncensored](https://huggingface.co/Orenguteng/Llama-3-8B-Lexi-Uncensored) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9310 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.0532 | 0.0801 | 200 | 1.9310 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
chauhoang/62676781-25e7-5ce6-e09f-565bef2a6294
chauhoang
2025-01-12T20:39:26Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:HuggingFaceM4/tiny-random-LlamaForCausalLM", "base_model:adapter:HuggingFaceM4/tiny-random-LlamaForCausalLM", "region:us" ]
null
2025-01-12T20:38:10Z
--- library_name: peft base_model: HuggingFaceM4/tiny-random-LlamaForCausalLM tags: - axolotl - generated_from_trainer model-index: - name: 62676781-25e7-5ce6-e09f-565bef2a6294 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: HuggingFaceM4/tiny-random-LlamaForCausalLM bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 120e2b58d59a1b2e_train_data.json ds_type: json format: custom path: /workspace/input_data/120e2b58d59a1b2e_train_data.json type: field_input: original_code field_instruction: update_snippet field_output: final_code format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 5 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: chauhoang/62676781-25e7-5ce6-e09f-565bef2a6294 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 5 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/120e2b58d59a1b2e_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 562f173b-b07d-4eb4-a59f-d230672ec843 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 562f173b-b07d-4eb4-a59f-d230672ec843 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 62676781-25e7-5ce6-e09f-565bef2a6294 This model is a fine-tuned version of [HuggingFaceM4/tiny-random-LlamaForCausalLM](https://huggingface.co/HuggingFaceM4/tiny-random-LlamaForCausalLM) on the None dataset. It achieves the following results on the evaluation set: - Loss: 10.3731 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0015 | 1 | 10.3742 | | 10.3739 | 0.0148 | 10 | 10.3740 | | 10.3749 | 0.0296 | 20 | 10.3736 | | 10.3723 | 0.0444 | 30 | 10.3733 | | 10.3734 | 0.0592 | 40 | 10.3732 | | 10.3744 | 0.0740 | 50 | 10.3731 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
xiuyul/mamba-2.8b-zephyr
xiuyul
2025-01-12T20:38:57Z
22,599
18
transformers
[ "transformers", "pytorch", "safetensors", "dataset:HuggingFaceH4/ultrafeedback_binarized", "arxiv:2305.18290", "base_model:xiuyul/mamba-2.8b-ultrachat", "base_model:finetune:xiuyul/mamba-2.8b-ultrachat", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2023-12-28T17:36:20Z
--- license: apache-2.0 base_model: xiuyul/mamba-2.8b-ultrachat datasets: - HuggingFaceH4/ultrafeedback_binarized model-index: - name: mamba-2.8b-zephyr results: [] --- # mamba-2.8b-zephyr This model is a fine-tuned version of [xiuyul/mamba-2.8b-ultrachat](https://huggingface.co/xiuyul/mamba-2.8b-ultrachat) on the [HuggingFaceH4/ultrafeedback_binarized](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized) dataset trained using [Direct Preference Optimization (DPO)](https://arxiv.org/abs/2305.18290). The base model, [xiuyul/mamba-2.8b-ultrachat](https://huggingface.co/xiuyul/mamba-2.8b-ultrachat), was instruction-tuned from [state-spaces/mamba-2.8b-slimpj](https://huggingface.co/state-spaces/mamba-2.8b-slimpj) on the [HuggingFaceH4/ultrachat_200k](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k) dataset. It achieves the following results on the evaluation set: - Loss: 0.4996 - Rewards/chosen: -0.4523 - Rewards/rejected: -1.6105 - Rewards/accuracies: 0.7857 - Rewards/margins: 1.1582 - Logps/rejected: -290.1885 - Logps/chosen: -359.0926 - Logits/rejected: 23.0423 - Logits/chosen: 23.1861 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.6639 | 0.1 | 100 | 0.6593 | 0.1762 | 0.0957 | 0.6151 | 0.0805 | -273.1268 | -352.8086 | 23.5852 | 23.8356 | | 0.5804 | 0.21 | 200 | 0.5836 | 0.0780 | -0.3396 | 0.6508 | 0.4176 | -277.4798 | -353.7904 | 23.5872 | 23.8302 | | 0.5815 | 0.31 | 300 | 0.5510 | -0.1923 | -0.7857 | 0.7421 | 0.5934 | -281.9403 | -356.4929 | 23.5224 | 23.7498 | | 0.5526 | 0.41 | 400 | 0.5361 | -0.1953 | -0.8928 | 0.7341 | 0.6975 | -283.0119 | -356.5235 | 23.5033 | 23.7264 | | 0.5225 | 0.52 | 500 | 0.5262 | -0.1041 | -0.8809 | 0.7540 | 0.7768 | -282.8929 | -355.6114 | 23.4578 | 23.6718 | | 0.5577 | 0.62 | 600 | 0.5156 | -0.1946 | -1.0285 | 0.7659 | 0.8339 | -284.3683 | -356.5158 | 23.4466 | 23.6618 | | 0.5515 | 0.72 | 700 | 0.5163 | 0.0648 | -0.7650 | 0.7659 | 0.8298 | -281.7334 | -353.9220 | 23.4243 | 23.6343 | | 0.5159 | 0.83 | 800 | 0.5113 | -0.1400 | -1.0595 | 0.7778 | 0.9195 | -284.6783 | -355.9698 | 23.4095 | 23.6179 | | 0.5242 | 0.93 | 900 | 0.5089 | -0.0383 | -0.9148 | 0.7659 | 0.8766 | -283.2318 | -354.9529 | 23.4035 | 23.6145 | | 0.4618 | 1.03 | 1000 | 0.5077 | -0.1223 | -1.0201 | 0.7778 | 0.8978 | -284.2841 | -355.7929 | 23.3805 | 23.5856 | | 0.4484 | 1.14 | 1100 | 0.5019 | -0.3311 | -1.3299 | 0.7778 | 0.9989 | -287.3827 | -357.8807 | 23.3427 | 23.5381 | | 0.4228 | 1.24 | 1200 | 0.5034 | -0.0617 | -1.0989 | 0.7619 | 1.0372 | -285.0726 | -355.1871 | 23.3191 | 23.5101 | | 0.4306 | 1.34 | 1300 | 0.5032 | -0.1585 | -1.1849 | 0.7698 | 1.0264 | -285.9320 | -356.1549 | 23.2889 | 23.4787 | | 0.4678 | 1.45 | 1400 | 0.5030 | -0.2351 | -1.1601 | 0.7817 | 0.9250 | -285.6841 | -356.9207 | 23.2661 | 23.4551 | | 0.4317 | 1.55 | 1500 | 0.4997 | -0.1401 | -1.1458 | 0.7619 | 1.0057 | -285.5417 | -355.9716 | 23.2621 | 23.4524 | | 0.4363 | 1.65 | 1600 | 0.5010 | -0.3313 | -1.3592 | 0.7738 | 1.0279 | -287.6752 | -357.8830 | 23.2320 | 23.4178 | | 0.408 | 1.76 | 1700 | 0.4989 | -0.2456 | -1.3073 | 0.7778 | 1.0617 | -287.1568 | -357.0265 | 23.2135 | 23.3950 | | 0.4076 | 1.86 | 1800 | 0.4996 | -0.3904 | -1.4365 | 0.7659 | 1.0461 | -288.4482 | -358.4738 | 23.1866 | 23.3617 | | 0.4547 | 1.96 | 1900 | 0.5008 | -0.2516 | -1.2648 | 0.7857 | 1.0133 | -286.7317 | -357.0858 | 23.1605 | 23.3298 | | 0.3469 | 2.07 | 2000 | 0.4977 | -0.2868 | -1.3916 | 0.7778 | 1.1048 | -287.9999 | -357.4383 | 23.1361 | 23.2990 | | 0.3547 | 2.17 | 2100 | 0.4987 | -0.4251 | -1.5510 | 0.7619 | 1.1259 | -289.5935 | -358.8210 | 23.1142 | 23.2730 | | 0.3468 | 2.27 | 2200 | 0.4979 | -0.2674 | -1.3945 | 0.7778 | 1.1271 | -288.0285 | -357.2443 | 23.0998 | 23.2561 | | 0.3432 | 2.37 | 2300 | 0.5026 | -0.3792 | -1.4630 | 0.7738 | 1.0838 | -288.7130 | -358.3621 | 23.0726 | 23.2233 | | 0.324 | 2.48 | 2400 | 0.5022 | -0.4892 | -1.6090 | 0.7698 | 1.1198 | -290.1737 | -359.4620 | 23.0543 | 23.2006 | | 0.3556 | 2.58 | 2500 | 0.5010 | -0.5270 | -1.6576 | 0.7817 | 1.1306 | -290.6595 | -359.8404 | 23.0520 | 23.1981 | | 0.3277 | 2.68 | 2600 | 0.4990 | -0.5401 | -1.6816 | 0.7778 | 1.1415 | -290.8996 | -359.9708 | 23.0449 | 23.1901 | | 0.3262 | 2.79 | 2700 | 0.4993 | -0.4952 | -1.6410 | 0.7778 | 1.1458 | -290.4932 | -359.5220 | 23.0439 | 23.1878 | | 0.3566 | 2.89 | 2800 | 0.4985 | -0.4474 | -1.5918 | 0.7778 | 1.1443 | -290.0010 | -359.0445 | 23.0433 | 23.1871 | | 0.3386 | 2.99 | 2900 | 0.4983 | -0.4598 | -1.6040 | 0.7817 | 1.1442 | -290.1235 | -359.1679 | 23.0427 | 23.1866 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.1+cu121 - Datasets 2.14.6 - Tokenizers 0.14.1
chauhoang/baa96401-589f-3e68-5b54-6af808dc0c02
chauhoang
2025-01-12T20:37:34Z
7
0
peft
[ "peft", "safetensors", "gemma", "axolotl", "generated_from_trainer", "base_model:unsloth/codegemma-7b-it", "base_model:adapter:unsloth/codegemma-7b-it", "license:apache-2.0", "region:us" ]
null
2025-01-12T17:19:30Z
--- library_name: peft license: apache-2.0 base_model: unsloth/codegemma-7b-it tags: - axolotl - generated_from_trainer model-index: - name: baa96401-589f-3e68-5b54-6af808dc0c02 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/codegemma-7b-it bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 3b1c907d61911f89_train_data.json ds_type: json format: custom path: /workspace/input_data/3b1c907d61911f89_train_data.json type: field_input: '' field_instruction: instruction field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 5 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: chauhoang/baa96401-589f-3e68-5b54-6af808dc0c02 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 5 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/3b1c907d61911f89_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: b69135f5-60c0-4b54-855e-44c16515f329 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: b69135f5-60c0-4b54-855e-44c16515f329 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # baa96401-589f-3e68-5b54-6af808dc0c02 This model is a fine-tuned version of [unsloth/codegemma-7b-it](https://huggingface.co/unsloth/codegemma-7b-it) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1329 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0000 | 1 | 2.5157 | | 2.4992 | 0.0002 | 10 | 2.2979 | | 2.1464 | 0.0004 | 20 | 2.1912 | | 2.161 | 0.0006 | 30 | 2.1511 | | 2.1858 | 0.0009 | 40 | 2.1366 | | 2.0831 | 0.0011 | 50 | 2.1329 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso10/cb151fbb-595a-464d-88dd-06303179e04f
lesso10
2025-01-12T20:37:05Z
12
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/llama-3-8b-Instruct", "base_model:adapter:unsloth/llama-3-8b-Instruct", "license:llama3", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-12T20:15:00Z
--- library_name: peft license: llama3 base_model: unsloth/llama-3-8b-Instruct tags: - axolotl - generated_from_trainer model-index: - name: cb151fbb-595a-464d-88dd-06303179e04f results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/llama-3-8b-Instruct bf16: true chat_template: llama3 datasets: - data_files: - 2a533c64ec73f9ac_train_data.json ds_type: json format: custom path: /workspace/input_data/2a533c64ec73f9ac_train_data.json type: field_instruction: instruction field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 8 gradient_checkpointing: false group_by_length: false hub_model_id: lesso10/cb151fbb-595a-464d-88dd-06303179e04f hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 25 micro_batch_size: 4 mlflow_experiment_name: /tmp/2a533c64ec73f9ac_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 25 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 5729fc3b-3dbb-42fa-ba81-0ccef9a26a22 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 5729fc3b-3dbb-42fa-ba81-0ccef9a26a22 warmup_steps: 5 weight_decay: 0.0 xformers_attention: true ``` </details><br> # cb151fbb-595a-464d-88dd-06303179e04f This model is a fine-tuned version of [unsloth/llama-3-8b-Instruct](https://huggingface.co/unsloth/llama-3-8b-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0012 | 1 | nan | | 0.0 | 0.0059 | 5 | nan | | 0.0 | 0.0117 | 10 | nan | | 0.0 | 0.0176 | 15 | nan | | 0.0 | 0.0235 | 20 | nan | | 0.0 | 0.0293 | 25 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
great0001/37f01772-fa92-4fce-9ef0-39ec815e15a4
great0001
2025-01-12T20:34:36Z
11
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/mistral-7b-v0.3", "base_model:adapter:unsloth/mistral-7b-v0.3", "license:apache-2.0", "region:us" ]
null
2025-01-12T20:29:46Z
--- library_name: peft license: apache-2.0 base_model: unsloth/mistral-7b-v0.3 tags: - axolotl - generated_from_trainer model-index: - name: 37f01772-fa92-4fce-9ef0-39ec815e15a4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/mistral-7b-v0.3 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f37f4750e6ccfd17_train_data.json ds_type: json format: custom path: /workspace/input_data/f37f4750e6ccfd17_train_data.json type: field_input: my_solu field_instruction: prompt field_output: solution format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: great0001/37f01772-fa92-4fce-9ef0-39ec815e15a4 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/f37f4750e6ccfd17_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: fe496a38-12d8-455d-b139-0123bb7357f3 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: fe496a38-12d8-455d-b139-0123bb7357f3 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 37f01772-fa92-4fce-9ef0-39ec815e15a4 This model is a fine-tuned version of [unsloth/mistral-7b-v0.3](https://huggingface.co/unsloth/mistral-7b-v0.3) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0004 | 1 | nan | | 0.0 | 0.0013 | 3 | nan | | 0.0 | 0.0026 | 6 | nan | | 0.0 | 0.0038 | 9 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
JayHyeon/Qwen_0.5-DPO_3e-7-3ep_0alp_0lam
JayHyeon
2025-01-12T20:33:33Z
21
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "trl", "dpo", "conversational", "dataset:trl-lib/ultrafeedback_binarized", "arxiv:2305.18290", "base_model:JayHyeon/Qwen2.5-0.5B-SFT-2e-5-2ep", "base_model:finetune:JayHyeon/Qwen2.5-0.5B-SFT-2e-5-2ep", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-12T14:22:17Z
--- base_model: JayHyeon/Qwen2.5-0.5B-SFT-2e-5-2ep datasets: trl-lib/ultrafeedback_binarized library_name: transformers model_name: Qwen_0.5-DPO_3e-7-3ep_0alp_0lam tags: - generated_from_trainer - trl - dpo licence: license --- # Model Card for Qwen_0.5-DPO_3e-7-3ep_0alp_0lam This model is a fine-tuned version of [JayHyeon/Qwen2.5-0.5B-SFT-2e-5-2ep](https://huggingface.co/JayHyeon/Qwen2.5-0.5B-SFT-2e-5-2ep) on the [trl-lib/ultrafeedback_binarized](https://huggingface.co/datasets/trl-lib/ultrafeedback_binarized) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="JayHyeon/Qwen_0.5-DPO_3e-7-3ep_0alp_0lam", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/bonin147/huggingface/runs/bwvj3cq0) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.13.0.dev0 - Transformers: 4.47.0.dev0 - Pytorch: 2.5.1 - Datasets: 3.1.0 - Tokenizers: 0.20.3 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
JacksonBrune/d8e319fc-baad-45cb-882a-6442579b1913
JacksonBrune
2025-01-12T20:32:58Z
10
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:defog/sqlcoder-7b-2", "base_model:adapter:defog/sqlcoder-7b-2", "license:cc-by-sa-4.0", "region:us" ]
null
2025-01-12T20:31:03Z
--- library_name: peft license: cc-by-sa-4.0 base_model: defog/sqlcoder-7b-2 tags: - axolotl - generated_from_trainer model-index: - name: d8e319fc-baad-45cb-882a-6442579b1913 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: defog/sqlcoder-7b-2 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 24222e9e99f33788_train_data.json ds_type: json format: custom path: /workspace/input_data/24222e9e99f33788_train_data.json type: field_instruction: prompt field_output: chosen format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: JacksonBrune/d8e319fc-baad-45cb-882a-6442579b1913 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/24222e9e99f33788_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 1c89b072-43fd-4d9a-a986-8347ee9352a9 wandb_project: birthdya-sn56-18-Gradients-On-Demand wandb_run: your_name wandb_runid: 1c89b072-43fd-4d9a-a986-8347ee9352a9 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # d8e319fc-baad-45cb-882a-6442579b1913 This model is a fine-tuned version of [defog/sqlcoder-7b-2](https://huggingface.co/defog/sqlcoder-7b-2) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0027 | 1 | nan | | 0.0 | 0.0080 | 3 | nan | | 0.0 | 0.0159 | 6 | nan | | 0.0 | 0.0239 | 9 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
VERSIL91/1c89b072-43fd-4d9a-a986-8347ee9352a9
VERSIL91
2025-01-12T20:32:46Z
10
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:defog/sqlcoder-7b-2", "base_model:adapter:defog/sqlcoder-7b-2", "license:cc-by-sa-4.0", "region:us" ]
null
2025-01-12T20:22:53Z
--- library_name: peft license: cc-by-sa-4.0 base_model: defog/sqlcoder-7b-2 tags: - axolotl - generated_from_trainer model-index: - name: 1c89b072-43fd-4d9a-a986-8347ee9352a9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml accelerate_config: dynamo_backend: inductor mixed_precision: bf16 num_machines: 1 num_processes: auto use_cpu: false adapter: lora base_model: defog/sqlcoder-7b-2 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 24222e9e99f33788_train_data.json ds_type: json format: custom path: /workspace/input_data/24222e9e99f33788_train_data.json type: field_instruction: prompt field_output: chosen format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 16 gradient_checkpointing: true group_by_length: false hub_model_id: VERSIL91/1c89b072-43fd-4d9a-a986-8347ee9352a9 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lora_target_modules: - q_proj - v_proj lr_scheduler: cosine max_memory: 0: 70GiB max_steps: 20 micro_batch_size: 2 mlflow_experiment_name: /tmp/24222e9e99f33788_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true quantization_config: llm_int8_enable_fp32_cpu_offload: true load_in_8bit: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer torch_compile: true train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 1c89b072-43fd-4d9a-a986-8347ee9352a9 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 1c89b072-43fd-4d9a-a986-8347ee9352a9 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 1c89b072-43fd-4d9a-a986-8347ee9352a9 This model is a fine-tuned version of [defog/sqlcoder-7b-2](https://huggingface.co/defog/sqlcoder-7b-2) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0106 | 1 | nan | | 0.0 | 0.0531 | 5 | nan | | 0.0 | 0.1062 | 10 | nan | | 0.0 | 0.1593 | 15 | nan | | 0.0 | 0.2123 | 20 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso11/704051da-f62a-414d-893d-0c20e81fe4d0
lesso11
2025-01-12T20:29:26Z
10
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "custom_code", "base_model:NousResearch/Yarn-Mistral-7b-64k", "base_model:adapter:NousResearch/Yarn-Mistral-7b-64k", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-12T19:26:45Z
--- library_name: peft license: apache-2.0 base_model: NousResearch/Yarn-Mistral-7b-64k tags: - axolotl - generated_from_trainer model-index: - name: 704051da-f62a-414d-893d-0c20e81fe4d0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Yarn-Mistral-7b-64k bf16: true chat_template: llama3 datasets: - data_files: - a05b72f12491e874_train_data.json ds_type: json format: custom path: /workspace/input_data/a05b72f12491e874_train_data.json type: field_input: llama-generation field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: lesso11/704051da-f62a-414d-893d-0c20e81fe4d0 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 25 micro_batch_size: 2 mlflow_experiment_name: /tmp/a05b72f12491e874_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 512 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 8545d224-ec4d-4dfb-907a-6c5cad06d476 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 8545d224-ec4d-4dfb-907a-6c5cad06d476 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 704051da-f62a-414d-893d-0c20e81fe4d0 This model is a fine-tuned version of [NousResearch/Yarn-Mistral-7b-64k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-64k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7693 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.9069 | 0.0002 | 1 | 0.8982 | | 3.2197 | 0.0011 | 5 | 0.8634 | | 2.8171 | 0.0021 | 10 | 0.8040 | | 5.2559 | 0.0032 | 15 | 0.7843 | | 3.455 | 0.0043 | 20 | 0.7737 | | 2.7499 | 0.0054 | 25 | 0.7693 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
havinash-ai/6a16764b-cd2f-4f75-a6d2-57a1cade08ab
havinash-ai
2025-01-12T20:27:43Z
10
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-1.5B-Instruct", "base_model:adapter:unsloth/Qwen2.5-1.5B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-01-12T20:27:01Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-1.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 6a16764b-cd2f-4f75-a6d2-57a1cade08ab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-1.5B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 107ffab1dfbb4160_train_data.json ds_type: json format: custom path: /workspace/input_data/107ffab1dfbb4160_train_data.json type: field_input: URL field_instruction: domain field_output: sentence format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: havinash-ai/6a16764b-cd2f-4f75-a6d2-57a1cade08ab hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/107ffab1dfbb4160_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 0d22ca37-eb44-4813-87aa-fe209ff97a6a wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 0d22ca37-eb44-4813-87aa-fe209ff97a6a warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 6a16764b-cd2f-4f75-a6d2-57a1cade08ab This model is a fine-tuned version of [unsloth/Qwen2.5-1.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-1.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0047 | 1 | nan | | 0.0 | 0.0140 | 3 | nan | | 0.0 | 0.0279 | 6 | nan | | 0.0 | 0.0419 | 9 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
rasta3050/lakh_rock_transfer_model
rasta3050
2025-01-12T20:26:54Z
108
0
null
[ "safetensors", "gpt2", "region:us" ]
null
2025-01-12T20:08:52Z
# Lakh MIDI Model with Rock Transfer Learning ## Model Overview This repository contains a model retrained on the **Lakh MIDI Dataset** with additional transfer learning applied to the **Rock MIDI Dataset**. The base model was trained from scratch on Lakh MIDI and fine-tuned using a smaller, curated dataset of rock compositions to enhance performance on rock music generation tasks. ### Training Details 1. **Base Training**: - Dataset: Lakh MIDI Dataset (cleaned and filtered). - Training: The model was trained from scratch on this dataset to learn general musical structures and styles. 2. **Transfer Learning**: - Dataset: A subset of **500 rock MIDI compositions**. - Epochs: **1 epoch**. - Purpose: Fine-tuning the model to specialize in generating and understanding rock-specific musical patterns. This two-step approach ensures that the model retains its general understanding of MIDI data while being optimized for rock music-specific tasks. ## Files in the Repository The repository includes the following files: 1. **`config.json`**: - Contains the configuration of the model architecture. This includes details such as the number of layers, hidden dimensions, attention heads, and other parameters used to define the model. 2. **`generation_config.json`**: - Contains generation-specific settings, such as maximum sequence length, temperature, top-k, and top-p sampling parameters. These configurations are crucial for controlling the behavior of the MIDI sequence generation process. 3. **`model.safetensors`**: - The model weights saved in the `safetensors` format for efficient and secure loading. This format ensures safe deserialization of model weights. 4. **`training_args.bin`**: - Stores the training arguments and hyperparameters used during both base training and transfer learning. This file can be useful for reproducing the training setup or understanding the specifics of the training process. ## Dataset Details ### Lakh MIDI Dataset - Focus: General MIDI compositions across various genres. - Cleaning Process: Removed duplicates, ensured proper formatting, and filtered out noisy data. ### Rock MIDI Dataset (Transfer Learning) - Focus: Rock genre-specific MIDI compositions. - Size: 500 compositions. - Epochs: 1 epoch. - Purpose: Fine-tuning the model for improved rock music generation. ## Usage This model is suitable for: - General MIDI music generation. - Specialized rock music generation tasks. - Experimentation with transfer learning techniques in music AI. ## Original Code Base The original model and architecture are based on the repository [AI-Guru/MMM-JSB](https://github.com/AI-Guru/MMM-JSB/). The base training and transfer learning were performed to adapt this architecture for diverse and genre-specific tasks. ## License This model follows the licensing terms of the original repository. Please review the license for more details.
rasta3050/lakh_pop_transfer_model
rasta3050
2025-01-12T20:26:19Z
8
0
null
[ "safetensors", "gpt2", "region:us" ]
null
2025-01-11T19:39:18Z
# Lakh MIDI Model with Pop Transfer Learning ## Model Overview This repository contains a model retrained on the **Lakh MIDI Dataset** with additional transfer learning applied to the **Pop MIDI Dataset**. The base model was trained from scratch on Lakh MIDI and fine-tuned using a smaller, curated dataset of pop music to improve performance on pop genre tasks. ### Training Details 1. **Base Training**: - Dataset: Lakh MIDI Dataset (cleaned and filtered). - Training: The model was trained from scratch on this dataset to learn general musical structures and styles. 2. **Transfer Learning**: - Dataset: A subset of **512 pop MIDI compositions**. - Epochs: **1 epoch**. - Purpose: Fine-tuning the model to improve its ability to generate and understand pop-specific musical patterns. This two-step approach ensures that the model retains its general understanding of MIDI data while being optimized for pop genre tasks. ## Files in the Repository The repository includes the following files: 1. **`config.json`**: - Contains the configuration of the model architecture. This includes details such as the number of layers, hidden dimensions, attention heads, and other parameters used to define the model. 2. **`generation_config.json`**: - Contains generation-specific settings, such as maximum sequence length, temperature, top-k, and top-p sampling parameters. These configurations are crucial for controlling the behavior of the MIDI sequence generation process. 3. **`model.safetensors`**: - The model weights saved in the `safetensors` format for efficient and secure loading. This format ensures safe deserialization of model weights. 4. **`training_args.bin`**: - Stores the training arguments and hyperparameters used during both base training and transfer learning. This file can be useful for reproducing the training setup or understanding the specifics of the training process. ## Dataset Details ### Lakh MIDI Dataset - Focus: General MIDI compositions across various genres. - Cleaning Process: Removed duplicates, ensured proper formatting, and filtered out noisy data. ### Pop MIDI Dataset (Transfer Learning) - Focus: Pop genre-specific MIDI compositions. - Size: 512 compositions. - Purpose: Fine-tuning the model for improved pop music generation. ## Usage This model is suitable for: - General MIDI music generation. - Specialized pop music generation tasks. - Experimentation with transfer learning techniques in music AI. ## Original Code Base The original model and architecture are based on the repository [AI-Guru/MMM-JSB](https://github.com/AI-Guru/MMM-JSB/). The base training and transfer learning were performed to adapt this architecture for diverse and genre-specific tasks. ## License This model follows the licensing terms of the original repository. Please review the license for more details.
lesso02/34565c90-71a0-4bc0-b749-e53aa7ea776b
lesso02
2025-01-12T20:26:13Z
10
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:defog/sqlcoder-7b-2", "base_model:adapter:defog/sqlcoder-7b-2", "license:cc-by-sa-4.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-12T20:22:49Z
--- library_name: peft license: cc-by-sa-4.0 base_model: defog/sqlcoder-7b-2 tags: - axolotl - generated_from_trainer model-index: - name: 34565c90-71a0-4bc0-b749-e53aa7ea776b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: defog/sqlcoder-7b-2 bf16: true chat_template: llama3 datasets: - data_files: - 24222e9e99f33788_train_data.json ds_type: json format: custom path: /workspace/input_data/24222e9e99f33788_train_data.json type: field_instruction: prompt field_output: chosen format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: lesso02/34565c90-71a0-4bc0-b749-e53aa7ea776b hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 25 micro_batch_size: 2 mlflow_experiment_name: /tmp/24222e9e99f33788_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 512 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 1c89b072-43fd-4d9a-a986-8347ee9352a9 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 1c89b072-43fd-4d9a-a986-8347ee9352a9 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 34565c90-71a0-4bc0-b749-e53aa7ea776b This model is a fine-tuned version of [defog/sqlcoder-7b-2](https://huggingface.co/defog/sqlcoder-7b-2) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0027 | 1 | nan | | 0.0 | 0.0133 | 5 | nan | | 0.0 | 0.0265 | 10 | nan | | 0.0 | 0.0398 | 15 | nan | | 0.0 | 0.0531 | 20 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
rasta3050/aiguru_lakh
rasta3050
2025-01-12T20:25:02Z
996
0
null
[ "safetensors", "gpt2", "region:us" ]
null
2025-01-04T13:47:46Z
# Lakh MIDI Model ## Model Overview This repository contains the retrained model based on the original code and architecture provided by [AI-Guru/MMM-JSB](https://github.com/AI-Guru/MMM-JSB/). The model has been trained from scratch on the **Lakh MIDI Dataset**, which has been carefully cleaned and prepared for this task. The model is suitable for generating MIDI sequences and offers enhanced performance due to the improved dataset and careful retraining. The training process took approximately **50 hours** on an **RTX 4080 Super** GPU, utilizing a dataset of about **6,000 MIDI compositions**. The files included in this repository are essential for loading and utilizing the model efficiently. ## Files in the Repository The repository includes the following files: 1. **`config.json`**: - Contains the configuration of the model architecture. This includes details such as the number of layers, hidden dimensions, attention heads, and other parameters used to define the model. 2. **`generation_config.json`**: - Contains generation-specific settings, such as maximum sequence length, temperature, top-k, and top-p sampling parameters. These configurations are crucial for controlling the behavior of the MIDI sequence generation process. 3. **`model.safetensors`**: - The model weights saved in the `safetensors` format for efficient and secure loading. This format ensures safe deserialization of model weights. 4. **`training_args.bin`**: - Stores the training arguments and hyperparameters used during the training process. This file can be useful for reproducing the training setup or understanding the specifics of the training process. ## Dataset Details The model was trained on the **Lakh MIDI Dataset**, which has undergone extensive cleaning to ensure high-quality training data. The cleaning process involved: - Removing duplicates. - Ensuring proper formatting of MIDI files. - Filtering out noisy or incomplete data. This dataset was chosen for its diverse range of MIDI sequences, providing the model with a rich set of training examples. ## Original Code Base The original model and architecture are based on the repository [AI-Guru/MMM-JSB](https://github.com/AI-Guru/MMM-JSB/). This implementation has been retrained from scratch to work with the Lakh MIDI Dataset for MIDI generation tasks. ## License This model follows the licensing terms of the original repository. Please review the license for more details.
Triangle104/granite-3.1-8b-instruct-abliterated-Q5_K_S-GGUF
Triangle104
2025-01-12T20:24:56Z
23
0
transformers
[ "transformers", "gguf", "language", "granite-3.1", "abliterated", "uncensored", "llama-cpp", "gguf-my-repo", "text-generation", "base_model:huihui-ai/granite-3.1-8b-instruct-abliterated", "base_model:quantized:huihui-ai/granite-3.1-8b-instruct-abliterated", "license:apache-2.0", "region:us", "conversational" ]
text-generation
2024-12-26T14:37:37Z
--- pipeline_tag: text-generation inference: false license: apache-2.0 library_name: transformers tags: - language - granite-3.1 - abliterated - uncensored - llama-cpp - gguf-my-repo base_model: huihui-ai/granite-3.1-8b-instruct-abliterated --- # Triangle104/granite-3.1-8b-instruct-abliterated-Q5_K_S-GGUF This model was converted to GGUF format from [`huihui-ai/granite-3.1-8b-instruct-abliterated`](https://huggingface.co/huihui-ai/granite-3.1-8b-instruct-abliterated) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/huihui-ai/granite-3.1-8b-instruct-abliterated) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/granite-3.1-8b-instruct-abliterated-Q5_K_S-GGUF --hf-file granite-3.1-8b-instruct-abliterated-q5_k_s.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/granite-3.1-8b-instruct-abliterated-Q5_K_S-GGUF --hf-file granite-3.1-8b-instruct-abliterated-q5_k_s.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/granite-3.1-8b-instruct-abliterated-Q5_K_S-GGUF --hf-file granite-3.1-8b-instruct-abliterated-q5_k_s.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/granite-3.1-8b-instruct-abliterated-Q5_K_S-GGUF --hf-file granite-3.1-8b-instruct-abliterated-q5_k_s.gguf -c 2048 ```
kostiantynk1205/cbb3ef21-ae49-43f8-974a-869ec00743ae
kostiantynk1205
2025-01-12T20:24:52Z
20
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:lmsys/vicuna-7b-v1.3", "base_model:adapter:lmsys/vicuna-7b-v1.3", "region:us" ]
null
2025-01-12T20:05:00Z
--- library_name: peft base_model: lmsys/vicuna-7b-v1.3 tags: - axolotl - generated_from_trainer model-index: - name: cbb3ef21-ae49-43f8-974a-869ec00743ae results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: lmsys/vicuna-7b-v1.3 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - c3f29cc94841d3ff_train_data.json ds_type: json format: custom path: /workspace/input_data/c3f29cc94841d3ff_train_data.json type: field_input: my_solu field_instruction: prompt field_output: solution format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: kostiantynk1205/cbb3ef21-ae49-43f8-974a-869ec00743ae hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/c3f29cc94841d3ff_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 98d503ad-cb5d-4e0c-9f8c-67ed3226c6ee wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 98d503ad-cb5d-4e0c-9f8c-67ed3226c6ee warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # cbb3ef21-ae49-43f8-974a-869ec00743ae This model is a fine-tuned version of [lmsys/vicuna-7b-v1.3](https://huggingface.co/lmsys/vicuna-7b-v1.3) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1578 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.1216 | 0.0001 | 1 | 1.2380 | | 1.3219 | 0.0002 | 3 | 1.2361 | | 1.3853 | 0.0005 | 6 | 1.2195 | | 1.1493 | 0.0007 | 9 | 1.1578 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
rasta3050/aiguru
rasta3050
2025-01-12T20:24:29Z
9
0
null
[ "safetensors", "gpt2", "region:us" ]
null
2024-12-21T10:20:38Z
# Lakh MIDI Model ## Model Overview This repository contains the retrained model based on the original code and architecture provided by [AI-Guru/MMM-JSB](https://github.com/AI-Guru/MMM-JSB/). The model has been trained from scratch on the **Lakh MIDI Dataset**. The model is suitable for generating MIDI sequences and serves as a baseline implementation without additional optimizations to the training process or code. The files included in this repository are essential for loading and utilizing the model efficiently. ## Files in the Repository The repository includes the following files: 1. **`config.json`**: - Contains the configuration of the model architecture. This includes details such as the number of layers, hidden dimensions, attention heads, and other parameters used to define the model. 2. **`generation_config.json`**: - Contains generation-specific settings, such as maximum sequence length, temperature, top-k, and top-p sampling parameters. These configurations are crucial for controlling the behavior of the MIDI sequence generation process. 3. **`model.safetensors`**: - The model weights saved in the `safetensors` format for efficient and secure loading. This format ensures safe deserialization of model weights. 4. **`training_args.bin`**: - Stores the training arguments and hyperparameters used during the training process. This file can be useful for reproducing the training setup or understanding the specifics of the training process. ## Dataset Details The model was trained on the **Lakh MIDI Dataset**, which has undergone cleaning to ensure high-quality training data. The cleaning process involved removing duplicates, ensuring proper formatting, and filtering out noisy or incomplete data. ## Original Code Base The original model and architecture are based on the repository [AI-Guru/MMM-JSB](https://github.com/AI-Guru/MMM-JSB/). This implementation has been retrained from scratch to work with the Lakh MIDI Dataset for MIDI generation tasks. Additionally, you can find an improved version of this model, trained on the same dataset but with modifications to the code for better training performance. You can access it here: [aiguru_lakh](https://huggingface.co/rasta3050/aiguru_lakh). ## License This model follows the licensing terms of the original repository. Please review the license for more details.
filipesantoscv11/7d6b9e8f-9f22-4ead-bb86-e5b3e99ac1da
filipesantoscv11
2025-01-12T20:24:26Z
10
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:defog/sqlcoder-7b-2", "base_model:adapter:defog/sqlcoder-7b-2", "license:cc-by-sa-4.0", "region:us" ]
null
2025-01-12T20:22:29Z
--- library_name: peft license: cc-by-sa-4.0 base_model: defog/sqlcoder-7b-2 tags: - axolotl - generated_from_trainer model-index: - name: 7d6b9e8f-9f22-4ead-bb86-e5b3e99ac1da results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: defog/sqlcoder-7b-2 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 24222e9e99f33788_train_data.json ds_type: json format: custom path: /workspace/input_data/24222e9e99f33788_train_data.json type: field_instruction: prompt field_output: chosen format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: filipesantoscv11/7d6b9e8f-9f22-4ead-bb86-e5b3e99ac1da hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 75GiB max_steps: 30 micro_batch_size: 2 mlflow_experiment_name: /tmp/24222e9e99f33788_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_hf output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 1c89b072-43fd-4d9a-a986-8347ee9352a9 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 1c89b072-43fd-4d9a-a986-8347ee9352a9 warmup_steps: 10 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 7d6b9e8f-9f22-4ead-bb86-e5b3e99ac1da This model is a fine-tuned version of [defog/sqlcoder-7b-2](https://huggingface.co/defog/sqlcoder-7b-2) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_HF with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0027 | 1 | nan | | 0.0 | 0.0212 | 8 | nan | | 0.0 | 0.0425 | 16 | nan | | 0.0 | 0.0637 | 24 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nhoxinh/7f4ffc3c-c44f-4d43-812d-33911fd40425
nhoxinh
2025-01-12T20:24:08Z
11
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen1.5-7B", "base_model:adapter:Qwen/Qwen1.5-7B", "license:other", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-12T19:39:20Z
--- library_name: peft license: other base_model: Qwen/Qwen1.5-7B tags: - axolotl - generated_from_trainer model-index: - name: 7f4ffc3c-c44f-4d43-812d-33911fd40425 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen1.5-7B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 00408dd316cd9929_train_data.json ds_type: json format: custom path: /workspace/input_data/00408dd316cd9929_train_data.json type: field_input: intent field_instruction: instruction field_output: response format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nhoxinh/7f4ffc3c-c44f-4d43-812d-33911fd40425 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/00408dd316cd9929_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: c5e8f9db-4386-4cd4-a076-74cc0ad8ee6a wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: c5e8f9db-4386-4cd4-a076-74cc0ad8ee6a warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 7f4ffc3c-c44f-4d43-812d-33911fd40425 This model is a fine-tuned version of [Qwen/Qwen1.5-7B](https://huggingface.co/Qwen/Qwen1.5-7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4018 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.3941 | 0.0112 | 200 | 0.4018 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
ariannap22/collectiveaction_sft_annotated_only_v6_prompt_v6_p100_synthetic_balanced_more_layered
ariannap22
2025-01-12T20:23:44Z
35
0
null
[ "safetensors", "llama", "base_model:meta-llama/Llama-3.1-8B-Instruct", "base_model:finetune:meta-llama/Llama-3.1-8B-Instruct", "region:us" ]
null
2025-01-12T16:47:09Z
--- base_model: - meta-llama/Llama-3.1-8B-Instruct --- # Collective Action Participation Detection Model - Fine-Tuned LLama3 **Note: this is the second step of a layered approach, see [this model](https://huggingface.co/ariannap22/collectiveaction_roberta_simplified_synthetic_weights) for the first step.** This model detects expressions of levels of participation in collective action from text. First, the binary presence of participation expression should be detected with [this model](https://huggingface.co/ariannap22/collectiveaction_roberta_simplified_synthetic_weights) for the first step. Second, for the messages expressing participation, participation levels can be detected. For details on the framework and useful code snippets, see the paper "Extracting Participation in Collective Action from Social Media", Pera and Aiello (2025). ## Usage Example To use the model, follow the example below: ```python from transformers import (AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, pipeline) model_dir = "ariannap22/collectiveaction_sft_annotated_only_v6_prompt_v6_p100_synthetic_balanced_more_layered" # Define the text you want to predict texts = [ "We need to stand together for our rights!", "I volunteer at the local food bank." ] # Define levels of participation in collective action¨ dim_def = {'Problem-Solution': "The comment highlights an issue and possibly suggests a way to fix it, often naming those responsible.", 'Call-to-Action': "The comment asks readers to take part in a specific activity, effort, or movement.", 'Intention': "The commenter shares their own desire to do something or be involved in solving a particular issue.", 'Execution': "The commenter is describing their personal experience taking direct actions towards a common goal."} # Define the prompt def generate_test_prompt6(data_point): return f""" You have the following knowledge about levels of participation in collective action that can be expressed in social media comments: {dim_def}. ### Definitions and Criteria: **Collective Action Problem:** A present issue caused by human actions or decisions that affects a group and can be addressed through individual or collective efforts. **Participation in collective action**: A comment must clearly reference a collective action problem, social movement, or activism by meeting at least one of the levels in the list {dim_def.keys()}. Classify the following social media comment into one of the levels within the list {list(dim_def.keys())}. ### Example of correct output format: text: xyz label: None Return the answer as the corresponding participation in collective action level label. text: {data_point} label: """.strip() texts_prompts = [generate_test_prompt6(text) for text in texts] # Prepare datasets and load model bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=False, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype="float16", ) model = AutoModelForCausalLM.from_pretrained( model_dir, device_map="auto", torch_dtype="float16", quantization_config=bnb_config, ) model.config.use_cache = False model.config.pretraining_tp = 1 tokenizer = AutoTokenizer.from_pretrained(model_dir) tokenizer.pad_token_id = tokenizer.eos_token_id # Define prediction def predict(texts, model, tokenizer): y_pred = [] answers = [] categories = list(dim_def.keys()) for i in range(len(texts)): prompt = texts[i] pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_new_tokens=20, temperature=0.1) result = pipe(prompt) answer = result[0]['generated_text'].split("label:")[-1].strip() answers.append(answer) # Determine the predicted category for category in categories: if category.lower() in answer.lower(): y_pred.append(category) break else: y_pred.append("error") return y_pred, answers y_pred, answer = predict(texts_prompts, model, tokenizer) # Print results for text, pred in zip(texts, y_pred): print(f"Text: {text}") print(f"Predicted Class: {pred}") print("---")
nhung03/b3bf527c-03fb-415d-ba92-b90322018d1a
nhung03
2025-01-12T20:23:39Z
10
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/Mistral-Nemo-Base-2407", "base_model:adapter:unsloth/Mistral-Nemo-Base-2407", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-12T19:57:14Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Mistral-Nemo-Base-2407 tags: - axolotl - generated_from_trainer model-index: - name: b3bf527c-03fb-415d-ba92-b90322018d1a results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Mistral-Nemo-Base-2407 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - ac97fde3045e6c49_train_data.json ds_type: json format: custom path: /workspace/input_data/ac97fde3045e6c49_train_data.json type: field_instruction: title field_output: abstract format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nhung03/b3bf527c-03fb-415d-ba92-b90322018d1a hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/ac97fde3045e6c49_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 0c937bed-41f3-4a3f-afb4-4db0e61eff26 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 0c937bed-41f3-4a3f-afb4-4db0e61eff26 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # b3bf527c-03fb-415d-ba92-b90322018d1a This model is a fine-tuned version of [unsloth/Mistral-Nemo-Base-2407](https://huggingface.co/unsloth/Mistral-Nemo-Base-2407) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1083 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 7.7143 | 0.1471 | 200 | 2.1083 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
prxy5605/65b0335f-58a3-406d-a73b-93ae7b7b38ef
prxy5605
2025-01-12T20:22:37Z
10
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:MLP-KTLim/llama-3-Korean-Bllossom-8B", "base_model:adapter:MLP-KTLim/llama-3-Korean-Bllossom-8B", "license:llama3", "region:us" ]
null
2025-01-12T20:11:31Z
--- library_name: peft license: llama3 base_model: MLP-KTLim/llama-3-Korean-Bllossom-8B tags: - axolotl - generated_from_trainer model-index: - name: 65b0335f-58a3-406d-a73b-93ae7b7b38ef results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: MLP-KTLim/llama-3-Korean-Bllossom-8B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - b03261914fc5eea7_train_data.json ds_type: json format: custom path: /workspace/input_data/b03261914fc5eea7_train_data.json type: field_instruction: prompt field_output: response-suggestion format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: null eval_batch_size: 2 eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: true hub_model_id: prxy5605/65b0335f-58a3-406d-a73b-93ae7b7b38ef hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 5 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 400 micro_batch_size: 2 mlflow_experiment_name: /tmp/b03261914fc5eea7_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null saves_per_epoch: null sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 761b9917-3fec-41e1-81b6-128f7eff9b04 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 761b9917-3fec-41e1-81b6-128f7eff9b04 warmup_steps: 30 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 65b0335f-58a3-406d-a73b-93ae7b7b38ef This model is a fine-tuned version of [MLP-KTLim/llama-3-Korean-Bllossom-8B](https://huggingface.co/MLP-KTLim/llama-3-Korean-Bllossom-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6958 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 30 - training_steps: 361 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0028 | 1 | 0.9357 | | 0.7989 | 0.2521 | 91 | 0.7140 | | 0.6568 | 0.5042 | 182 | 0.7127 | | 0.6714 | 0.7562 | 273 | 0.6958 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Triangle104/granite-3.1-8b-instruct-abliterated-Q4_K_M-GGUF
Triangle104
2025-01-12T20:21:06Z
25
0
transformers
[ "transformers", "gguf", "language", "granite-3.1", "abliterated", "uncensored", "llama-cpp", "gguf-my-repo", "text-generation", "base_model:huihui-ai/granite-3.1-8b-instruct-abliterated", "base_model:quantized:huihui-ai/granite-3.1-8b-instruct-abliterated", "license:apache-2.0", "region:us", "conversational" ]
text-generation
2024-12-26T14:32:17Z
--- pipeline_tag: text-generation inference: false license: apache-2.0 library_name: transformers tags: - language - granite-3.1 - abliterated - uncensored - llama-cpp - gguf-my-repo base_model: huihui-ai/granite-3.1-8b-instruct-abliterated --- # Triangle104/granite-3.1-8b-instruct-abliterated-Q4_K_M-GGUF This model was converted to GGUF format from [`huihui-ai/granite-3.1-8b-instruct-abliterated`](https://huggingface.co/huihui-ai/granite-3.1-8b-instruct-abliterated) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/huihui-ai/granite-3.1-8b-instruct-abliterated) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/granite-3.1-8b-instruct-abliterated-Q4_K_M-GGUF --hf-file granite-3.1-8b-instruct-abliterated-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/granite-3.1-8b-instruct-abliterated-Q4_K_M-GGUF --hf-file granite-3.1-8b-instruct-abliterated-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/granite-3.1-8b-instruct-abliterated-Q4_K_M-GGUF --hf-file granite-3.1-8b-instruct-abliterated-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/granite-3.1-8b-instruct-abliterated-Q4_K_M-GGUF --hf-file granite-3.1-8b-instruct-abliterated-q4_k_m.gguf -c 2048 ```
BallAd-15/llama-3-8b-instruct-task10-subtask3-v1
BallAd-15
2025-01-12T20:20:11Z
7
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "base_model:unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit", "base_model:finetune:unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-01-12T20:13:08Z
--- base_model: unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** BallAd-15 - **License:** apache-2.0 - **Finetuned from model :** unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
nttx/d4dd798b-b5f2-42da-b2b1-1889bcec868c
nttx
2025-01-12T20:18:54Z
10
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:MLP-KTLim/llama-3-Korean-Bllossom-8B", "base_model:adapter:MLP-KTLim/llama-3-Korean-Bllossom-8B", "license:llama3", "region:us" ]
null
2025-01-12T20:11:25Z
--- library_name: peft license: llama3 base_model: MLP-KTLim/llama-3-Korean-Bllossom-8B tags: - axolotl - generated_from_trainer model-index: - name: d4dd798b-b5f2-42da-b2b1-1889bcec868c results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: MLP-KTLim/llama-3-Korean-Bllossom-8B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - b03261914fc5eea7_train_data.json ds_type: json format: custom path: /workspace/input_data/b03261914fc5eea7_train_data.json type: field_instruction: prompt field_output: response-suggestion format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: null eval_batch_size: 2 eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: true hub_model_id: nttx/d4dd798b-b5f2-42da-b2b1-1889bcec868c hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 5 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/b03261914fc5eea7_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null saves_per_epoch: null sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 761b9917-3fec-41e1-81b6-128f7eff9b04 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 761b9917-3fec-41e1-81b6-128f7eff9b04 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # d4dd798b-b5f2-42da-b2b1-1889bcec868c This model is a fine-tuned version of [MLP-KTLim/llama-3-Korean-Bllossom-8B](https://huggingface.co/MLP-KTLim/llama-3-Korean-Bllossom-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7233 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0028 | 1 | 0.9357 | | 1.2579 | 0.1385 | 50 | 0.7369 | | 1.0147 | 0.2770 | 100 | 0.7201 | | 1.0811 | 0.4155 | 150 | 0.7046 | | 1.09 | 0.5540 | 200 | 0.7233 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
hongngo/0f3ab3a0-02af-4632-bfb0-e49c15cbd075
hongngo
2025-01-12T20:18:29Z
10
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:NousResearch/Nous-Hermes-2-SOLAR-10.7B", "base_model:adapter:NousResearch/Nous-Hermes-2-SOLAR-10.7B", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-12T19:39:51Z
--- library_name: peft license: apache-2.0 base_model: NousResearch/Nous-Hermes-2-SOLAR-10.7B tags: - axolotl - generated_from_trainer model-index: - name: 0f3ab3a0-02af-4632-bfb0-e49c15cbd075 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Nous-Hermes-2-SOLAR-10.7B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 35e42979deef2ace_train_data.json ds_type: json format: custom path: /workspace/input_data/35e42979deef2ace_train_data.json type: field_instruction: prompt field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: hongngo/0f3ab3a0-02af-4632-bfb0-e49c15cbd075 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/35e42979deef2ace_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 8a25c2d0-3f47-4475-82ef-74ba7cd1fcaa wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 8a25c2d0-3f47-4475-82ef-74ba7cd1fcaa warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 0f3ab3a0-02af-4632-bfb0-e49c15cbd075 This model is a fine-tuned version of [NousResearch/Nous-Hermes-2-SOLAR-10.7B](https://huggingface.co/NousResearch/Nous-Hermes-2-SOLAR-10.7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2444 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.5872 | 0.7583 | 200 | 1.2444 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
MayBashendy/ArabicNewSplits7_FineTuningAraBERT_run1_AugV5_k15_task5_organization
MayBashendy
2025-01-12T20:18:16Z
8
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:aubmindlab/bert-base-arabertv02", "base_model:finetune:aubmindlab/bert-base-arabertv02", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-01-12T20:11:02Z
--- library_name: transformers base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: ArabicNewSplits7_FineTuningAraBERT_run1_AugV5_k15_task5_organization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ArabicNewSplits7_FineTuningAraBERT_run1_AugV5_k15_task5_organization This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7568 - Qwk: 0.5446 - Mse: 0.7568 - Rmse: 0.8699 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:-------:|:----:|:---------------:|:-------:|:------:|:------:| | No log | 0.0513 | 2 | 4.6165 | -0.0179 | 4.6165 | 2.1486 | | No log | 0.1026 | 4 | 2.8710 | -0.0231 | 2.8710 | 1.6944 | | No log | 0.1538 | 6 | 2.1203 | -0.0647 | 2.1203 | 1.4561 | | No log | 0.2051 | 8 | 1.4524 | 0.0279 | 1.4524 | 1.2051 | | No log | 0.2564 | 10 | 1.6575 | 0.0300 | 1.6575 | 1.2874 | | No log | 0.3077 | 12 | 1.5431 | 0.0371 | 1.5431 | 1.2422 | | No log | 0.3590 | 14 | 1.3230 | -0.0511 | 1.3230 | 1.1502 | | No log | 0.4103 | 16 | 1.1595 | 0.0882 | 1.1595 | 1.0768 | | No log | 0.4615 | 18 | 1.2108 | 0.0909 | 1.2108 | 1.1004 | | No log | 0.5128 | 20 | 1.1741 | 0.1154 | 1.1741 | 1.0836 | | No log | 0.5641 | 22 | 1.1535 | 0.0792 | 1.1535 | 1.0740 | | No log | 0.6154 | 24 | 1.1449 | 0.1408 | 1.1449 | 1.0700 | | No log | 0.6667 | 26 | 1.1799 | 0.0970 | 1.1799 | 1.0862 | | No log | 0.7179 | 28 | 1.2804 | 0.0232 | 1.2804 | 1.1315 | | No log | 0.7692 | 30 | 1.3531 | 0.0 | 1.3531 | 1.1632 | | No log | 0.8205 | 32 | 1.2932 | 0.0380 | 1.2932 | 1.1372 | | No log | 0.8718 | 34 | 1.1336 | 0.2074 | 1.1336 | 1.0647 | | No log | 0.9231 | 36 | 1.0738 | 0.1218 | 1.0738 | 1.0363 | | No log | 0.9744 | 38 | 1.0661 | 0.1370 | 1.0661 | 1.0325 | | No log | 1.0256 | 40 | 1.0737 | 0.1848 | 1.0737 | 1.0362 | | No log | 1.0769 | 42 | 1.0947 | 0.2074 | 1.0947 | 1.0463 | | No log | 1.1282 | 44 | 1.1012 | 0.2125 | 1.1012 | 1.0494 | | No log | 1.1795 | 46 | 1.0272 | 0.1725 | 1.0272 | 1.0135 | | No log | 1.2308 | 48 | 0.9670 | 0.2944 | 0.9670 | 0.9833 | | No log | 1.2821 | 50 | 0.9680 | 0.3288 | 0.9680 | 0.9838 | | No log | 1.3333 | 52 | 0.9473 | 0.2944 | 0.9473 | 0.9733 | | No log | 1.3846 | 54 | 0.9451 | 0.2842 | 0.9451 | 0.9722 | | No log | 1.4359 | 56 | 0.9414 | 0.2865 | 0.9414 | 0.9703 | | No log | 1.4872 | 58 | 0.9470 | 0.3979 | 0.9470 | 0.9731 | | No log | 1.5385 | 60 | 1.0563 | 0.2441 | 1.0563 | 1.0277 | | No log | 1.5897 | 62 | 1.0513 | 0.2834 | 1.0513 | 1.0253 | | No log | 1.6410 | 64 | 1.0556 | 0.3108 | 1.0556 | 1.0274 | | No log | 1.6923 | 66 | 1.0785 | 0.3547 | 1.0785 | 1.0385 | | No log | 1.7436 | 68 | 1.1076 | 0.2835 | 1.1076 | 1.0524 | | No log | 1.7949 | 70 | 1.1437 | 0.2669 | 1.1437 | 1.0694 | | No log | 1.8462 | 72 | 1.0474 | 0.2551 | 1.0474 | 1.0234 | | No log | 1.8974 | 74 | 1.0008 | 0.3414 | 1.0008 | 1.0004 | | No log | 1.9487 | 76 | 0.9496 | 0.3819 | 0.9496 | 0.9745 | | No log | 2.0 | 78 | 0.9968 | 0.3063 | 0.9968 | 0.9984 | | No log | 2.0513 | 80 | 1.0099 | 0.2474 | 1.0099 | 1.0050 | | No log | 2.1026 | 82 | 0.9361 | 0.3153 | 0.9361 | 0.9675 | | No log | 2.1538 | 84 | 0.9225 | 0.3304 | 0.9225 | 0.9605 | | No log | 2.2051 | 86 | 0.8860 | 0.3214 | 0.8860 | 0.9413 | | No log | 2.2564 | 88 | 0.8880 | 0.3175 | 0.8880 | 0.9423 | | No log | 2.3077 | 90 | 0.8734 | 0.3744 | 0.8734 | 0.9346 | | No log | 2.3590 | 92 | 0.8972 | 0.3976 | 0.8972 | 0.9472 | | No log | 2.4103 | 94 | 0.9447 | 0.4466 | 0.9447 | 0.9719 | | No log | 2.4615 | 96 | 0.9653 | 0.4231 | 0.9653 | 0.9825 | | No log | 2.5128 | 98 | 0.9781 | 0.4231 | 0.9781 | 0.9890 | | No log | 2.5641 | 100 | 0.9767 | 0.4404 | 0.9767 | 0.9883 | | No log | 2.6154 | 102 | 1.0069 | 0.4711 | 1.0069 | 1.0034 | | No log | 2.6667 | 104 | 0.9996 | 0.4662 | 0.9996 | 0.9998 | | No log | 2.7179 | 106 | 1.1371 | 0.3437 | 1.1371 | 1.0663 | | No log | 2.7692 | 108 | 1.0179 | 0.4211 | 1.0179 | 1.0089 | | No log | 2.8205 | 110 | 0.9999 | 0.4211 | 0.9999 | 0.9999 | | No log | 2.8718 | 112 | 1.0285 | 0.3787 | 1.0285 | 1.0142 | | No log | 2.9231 | 114 | 1.0194 | 0.3787 | 1.0194 | 1.0096 | | No log | 2.9744 | 116 | 0.9353 | 0.3335 | 0.9353 | 0.9671 | | No log | 3.0256 | 118 | 0.9335 | 0.4606 | 0.9335 | 0.9662 | | No log | 3.0769 | 120 | 1.0004 | 0.4278 | 1.0004 | 1.0002 | | No log | 3.1282 | 122 | 0.8726 | 0.4879 | 0.8726 | 0.9341 | | No log | 3.1795 | 124 | 1.0981 | 0.4515 | 1.0981 | 1.0479 | | No log | 3.2308 | 126 | 1.1562 | 0.4471 | 1.1562 | 1.0753 | | No log | 3.2821 | 128 | 0.9591 | 0.5106 | 0.9591 | 0.9794 | | No log | 3.3333 | 130 | 0.8275 | 0.5618 | 0.8275 | 0.9097 | | No log | 3.3846 | 132 | 1.0220 | 0.3878 | 1.0220 | 1.0109 | | No log | 3.4359 | 134 | 1.1379 | 0.3666 | 1.1379 | 1.0667 | | No log | 3.4872 | 136 | 0.9192 | 0.4268 | 0.9192 | 0.9587 | | No log | 3.5385 | 138 | 0.8057 | 0.4792 | 0.8057 | 0.8976 | | No log | 3.5897 | 140 | 0.9502 | 0.2543 | 0.9502 | 0.9748 | | No log | 3.6410 | 142 | 0.9009 | 0.3622 | 0.9009 | 0.9492 | | No log | 3.6923 | 144 | 0.7538 | 0.5510 | 0.7538 | 0.8682 | | No log | 3.7436 | 146 | 0.8009 | 0.4943 | 0.8009 | 0.8949 | | No log | 3.7949 | 148 | 0.9927 | 0.4493 | 0.9927 | 0.9963 | | No log | 3.8462 | 150 | 0.9957 | 0.4579 | 0.9957 | 0.9979 | | No log | 3.8974 | 152 | 0.8076 | 0.5291 | 0.8076 | 0.8986 | | No log | 3.9487 | 154 | 0.7955 | 0.5920 | 0.7955 | 0.8919 | | No log | 4.0 | 156 | 0.7960 | 0.6082 | 0.7960 | 0.8922 | | No log | 4.0513 | 158 | 0.7556 | 0.5260 | 0.7556 | 0.8693 | | No log | 4.1026 | 160 | 0.8811 | 0.3001 | 0.8811 | 0.9387 | | No log | 4.1538 | 162 | 1.0139 | 0.1487 | 1.0139 | 1.0069 | | No log | 4.2051 | 164 | 0.9353 | 0.3743 | 0.9353 | 0.9671 | | No log | 4.2564 | 166 | 0.7945 | 0.4988 | 0.7945 | 0.8913 | | No log | 4.3077 | 168 | 0.8683 | 0.3541 | 0.8683 | 0.9318 | | No log | 4.3590 | 170 | 0.8541 | 0.3704 | 0.8541 | 0.9242 | | No log | 4.4103 | 172 | 0.8820 | 0.5065 | 0.8820 | 0.9391 | | No log | 4.4615 | 174 | 0.9687 | 0.4794 | 0.9687 | 0.9842 | | No log | 4.5128 | 176 | 0.8793 | 0.4824 | 0.8793 | 0.9377 | | No log | 4.5641 | 178 | 0.7916 | 0.4119 | 0.7916 | 0.8897 | | No log | 4.6154 | 180 | 0.8567 | 0.4004 | 0.8567 | 0.9256 | | No log | 4.6667 | 182 | 0.8216 | 0.5089 | 0.8216 | 0.9064 | | No log | 4.7179 | 184 | 0.7702 | 0.5939 | 0.7702 | 0.8776 | | No log | 4.7692 | 186 | 0.8413 | 0.5059 | 0.8413 | 0.9172 | | No log | 4.8205 | 188 | 0.8852 | 0.4607 | 0.8852 | 0.9409 | | No log | 4.8718 | 190 | 0.8603 | 0.5305 | 0.8603 | 0.9275 | | No log | 4.9231 | 192 | 0.8574 | 0.4799 | 0.8574 | 0.9259 | | No log | 4.9744 | 194 | 0.8373 | 0.4661 | 0.8373 | 0.9150 | | No log | 5.0256 | 196 | 0.8090 | 0.4110 | 0.8090 | 0.8995 | | No log | 5.0769 | 198 | 0.7960 | 0.4244 | 0.7960 | 0.8922 | | No log | 5.1282 | 200 | 0.7876 | 0.4411 | 0.7876 | 0.8874 | | No log | 5.1795 | 202 | 0.8073 | 0.3941 | 0.8073 | 0.8985 | | No log | 5.2308 | 204 | 0.9128 | 0.5292 | 0.9128 | 0.9554 | | No log | 5.2821 | 206 | 0.9012 | 0.4250 | 0.9012 | 0.9493 | | No log | 5.3333 | 208 | 0.8633 | 0.4875 | 0.8633 | 0.9292 | | No log | 5.3846 | 210 | 0.8718 | 0.4869 | 0.8718 | 0.9337 | | No log | 5.4359 | 212 | 0.8762 | 0.5002 | 0.8762 | 0.9360 | | No log | 5.4872 | 214 | 0.8698 | 0.5129 | 0.8698 | 0.9326 | | No log | 5.5385 | 216 | 0.8721 | 0.4863 | 0.8721 | 0.9338 | | No log | 5.5897 | 218 | 0.8440 | 0.5304 | 0.8440 | 0.9187 | | No log | 5.6410 | 220 | 0.9335 | 0.4270 | 0.9335 | 0.9662 | | No log | 5.6923 | 222 | 0.9326 | 0.4349 | 0.9326 | 0.9657 | | No log | 5.7436 | 224 | 0.8294 | 0.4728 | 0.8294 | 0.9107 | | No log | 5.7949 | 226 | 0.8017 | 0.4353 | 0.8017 | 0.8954 | | No log | 5.8462 | 228 | 0.8143 | 0.3959 | 0.8143 | 0.9024 | | No log | 5.8974 | 230 | 0.8392 | 0.4712 | 0.8392 | 0.9161 | | No log | 5.9487 | 232 | 0.7845 | 0.5010 | 0.7845 | 0.8857 | | No log | 6.0 | 234 | 0.7825 | 0.5370 | 0.7825 | 0.8846 | | No log | 6.0513 | 236 | 0.8422 | 0.5279 | 0.8422 | 0.9177 | | No log | 6.1026 | 238 | 0.8607 | 0.5057 | 0.8607 | 0.9278 | | No log | 6.1538 | 240 | 0.8598 | 0.5057 | 0.8598 | 0.9273 | | No log | 6.2051 | 242 | 0.8166 | 0.5463 | 0.8166 | 0.9036 | | No log | 6.2564 | 244 | 0.8020 | 0.4918 | 0.8020 | 0.8955 | | No log | 6.3077 | 246 | 0.8120 | 0.4012 | 0.8120 | 0.9011 | | No log | 6.3590 | 248 | 0.8552 | 0.3922 | 0.8552 | 0.9248 | | No log | 6.4103 | 250 | 0.8461 | 0.3922 | 0.8461 | 0.9198 | | No log | 6.4615 | 252 | 0.7902 | 0.4223 | 0.7902 | 0.8889 | | No log | 6.5128 | 254 | 0.7790 | 0.4692 | 0.7790 | 0.8826 | | No log | 6.5641 | 256 | 0.7647 | 0.4804 | 0.7647 | 0.8745 | | No log | 6.6154 | 258 | 0.7802 | 0.5074 | 0.7802 | 0.8833 | | No log | 6.6667 | 260 | 0.8180 | 0.4845 | 0.8180 | 0.9044 | | No log | 6.7179 | 262 | 0.8144 | 0.5370 | 0.8144 | 0.9025 | | No log | 6.7692 | 264 | 0.8191 | 0.5669 | 0.8191 | 0.9050 | | No log | 6.8205 | 266 | 0.8116 | 0.5370 | 0.8116 | 0.9009 | | No log | 6.8718 | 268 | 0.8203 | 0.4706 | 0.8203 | 0.9057 | | No log | 6.9231 | 270 | 0.8084 | 0.4706 | 0.8084 | 0.8991 | | No log | 6.9744 | 272 | 0.8021 | 0.5275 | 0.8021 | 0.8956 | | No log | 7.0256 | 274 | 0.7935 | 0.5580 | 0.7935 | 0.8908 | | No log | 7.0769 | 276 | 0.7835 | 0.5545 | 0.7835 | 0.8852 | | No log | 7.1282 | 278 | 0.8000 | 0.5494 | 0.8000 | 0.8944 | | No log | 7.1795 | 280 | 0.8327 | 0.5366 | 0.8327 | 0.9125 | | No log | 7.2308 | 282 | 0.7913 | 0.5331 | 0.7913 | 0.8895 | | No log | 7.2821 | 284 | 0.7506 | 0.5570 | 0.7506 | 0.8664 | | No log | 7.3333 | 286 | 0.7462 | 0.6076 | 0.7462 | 0.8638 | | No log | 7.3846 | 288 | 0.7442 | 0.5582 | 0.7442 | 0.8627 | | No log | 7.4359 | 290 | 0.7762 | 0.5558 | 0.7762 | 0.8810 | | No log | 7.4872 | 292 | 0.7830 | 0.5331 | 0.7830 | 0.8849 | | No log | 7.5385 | 294 | 0.7635 | 0.5121 | 0.7635 | 0.8738 | | No log | 7.5897 | 296 | 0.7906 | 0.5234 | 0.7906 | 0.8892 | | No log | 7.6410 | 298 | 0.8031 | 0.4645 | 0.8031 | 0.8962 | | No log | 7.6923 | 300 | 0.7985 | 0.4645 | 0.7985 | 0.8936 | | No log | 7.7436 | 302 | 0.8470 | 0.5291 | 0.8470 | 0.9203 | | No log | 7.7949 | 304 | 0.9654 | 0.5222 | 0.9654 | 0.9826 | | No log | 7.8462 | 306 | 1.0083 | 0.4354 | 1.0083 | 1.0041 | | No log | 7.8974 | 308 | 0.9160 | 0.3523 | 0.9160 | 0.9571 | | No log | 7.9487 | 310 | 0.8343 | 0.4251 | 0.8343 | 0.9134 | | No log | 8.0 | 312 | 0.8437 | 0.4165 | 0.8437 | 0.9185 | | No log | 8.0513 | 314 | 0.8416 | 0.4440 | 0.8416 | 0.9174 | | No log | 8.1026 | 316 | 0.7828 | 0.4660 | 0.7828 | 0.8848 | | No log | 8.1538 | 318 | 0.8145 | 0.4630 | 0.8145 | 0.9025 | | No log | 8.2051 | 320 | 0.9292 | 0.5230 | 0.9292 | 0.9640 | | No log | 8.2564 | 322 | 0.8687 | 0.5372 | 0.8687 | 0.9320 | | No log | 8.3077 | 324 | 0.7532 | 0.4760 | 0.7532 | 0.8679 | | No log | 8.3590 | 326 | 0.7863 | 0.4984 | 0.7863 | 0.8867 | | No log | 8.4103 | 328 | 0.8325 | 0.5220 | 0.8325 | 0.9124 | | No log | 8.4615 | 330 | 0.7714 | 0.5176 | 0.7714 | 0.8783 | | No log | 8.5128 | 332 | 0.7843 | 0.5442 | 0.7843 | 0.8856 | | No log | 8.5641 | 334 | 0.8575 | 0.5291 | 0.8575 | 0.9260 | | No log | 8.6154 | 336 | 0.8189 | 0.5410 | 0.8189 | 0.9049 | | No log | 8.6667 | 338 | 0.7704 | 0.5010 | 0.7704 | 0.8777 | | No log | 8.7179 | 340 | 0.7651 | 0.5402 | 0.7651 | 0.8747 | | No log | 8.7692 | 342 | 0.7648 | 0.4760 | 0.7648 | 0.8745 | | No log | 8.8205 | 344 | 0.7866 | 0.4353 | 0.7866 | 0.8869 | | No log | 8.8718 | 346 | 0.7921 | 0.4082 | 0.7921 | 0.8900 | | No log | 8.9231 | 348 | 0.8006 | 0.4082 | 0.8006 | 0.8948 | | No log | 8.9744 | 350 | 0.7787 | 0.4223 | 0.7787 | 0.8824 | | No log | 9.0256 | 352 | 0.7718 | 0.4625 | 0.7718 | 0.8785 | | No log | 9.0769 | 354 | 0.7708 | 0.5142 | 0.7708 | 0.8779 | | No log | 9.1282 | 356 | 0.7802 | 0.4760 | 0.7802 | 0.8833 | | No log | 9.1795 | 358 | 0.8296 | 0.4491 | 0.8296 | 0.9108 | | No log | 9.2308 | 360 | 0.8122 | 0.4960 | 0.8122 | 0.9012 | | No log | 9.2821 | 362 | 0.7961 | 0.5288 | 0.7961 | 0.8922 | | No log | 9.3333 | 364 | 0.8481 | 0.4749 | 0.8481 | 0.9209 | | No log | 9.3846 | 366 | 0.8183 | 0.4444 | 0.8183 | 0.9046 | | No log | 9.4359 | 368 | 0.8061 | 0.4371 | 0.8061 | 0.8978 | | No log | 9.4872 | 370 | 0.8997 | 0.5305 | 0.8997 | 0.9485 | | No log | 9.5385 | 372 | 0.8998 | 0.4952 | 0.8998 | 0.9486 | | No log | 9.5897 | 374 | 0.8120 | 0.4216 | 0.8120 | 0.9011 | | No log | 9.6410 | 376 | 0.7773 | 0.4277 | 0.7773 | 0.8816 | | No log | 9.6923 | 378 | 0.8506 | 0.4752 | 0.8506 | 0.9223 | | No log | 9.7436 | 380 | 0.8252 | 0.5204 | 0.8252 | 0.9084 | | No log | 9.7949 | 382 | 0.7663 | 0.5548 | 0.7663 | 0.8754 | | No log | 9.8462 | 384 | 0.7358 | 0.5288 | 0.7358 | 0.8578 | | No log | 9.8974 | 386 | 0.7881 | 0.5208 | 0.7881 | 0.8877 | | No log | 9.9487 | 388 | 0.8637 | 0.5160 | 0.8637 | 0.9294 | | No log | 10.0 | 390 | 0.8491 | 0.4946 | 0.8491 | 0.9215 | | No log | 10.0513 | 392 | 0.8079 | 0.4494 | 0.8079 | 0.8988 | | No log | 10.1026 | 394 | 0.7924 | 0.4507 | 0.7924 | 0.8902 | | No log | 10.1538 | 396 | 0.7694 | 0.4405 | 0.7694 | 0.8772 | | No log | 10.2051 | 398 | 0.7560 | 0.5142 | 0.7560 | 0.8695 | | No log | 10.2564 | 400 | 0.7817 | 0.4858 | 0.7817 | 0.8842 | | No log | 10.3077 | 402 | 0.8922 | 0.5458 | 0.8922 | 0.9445 | | No log | 10.3590 | 404 | 0.9171 | 0.4916 | 0.9171 | 0.9577 | | No log | 10.4103 | 406 | 0.8472 | 0.5306 | 0.8472 | 0.9205 | | No log | 10.4615 | 408 | 0.7580 | 0.4628 | 0.7580 | 0.8706 | | No log | 10.5128 | 410 | 0.7043 | 0.5399 | 0.7043 | 0.8392 | | No log | 10.5641 | 412 | 0.6979 | 0.5399 | 0.6979 | 0.8354 | | No log | 10.6154 | 414 | 0.6915 | 0.5498 | 0.6915 | 0.8316 | | No log | 10.6667 | 416 | 0.7144 | 0.5346 | 0.7144 | 0.8452 | | No log | 10.7179 | 418 | 0.7029 | 0.5492 | 0.7029 | 0.8384 | | No log | 10.7692 | 420 | 0.7007 | 0.5831 | 0.7007 | 0.8371 | | No log | 10.8205 | 422 | 0.7120 | 0.5409 | 0.7120 | 0.8438 | | No log | 10.8718 | 424 | 0.7198 | 0.4778 | 0.7198 | 0.8484 | | No log | 10.9231 | 426 | 0.7308 | 0.4659 | 0.7308 | 0.8549 | | No log | 10.9744 | 428 | 0.7425 | 0.4659 | 0.7425 | 0.8617 | | No log | 11.0256 | 430 | 0.7532 | 0.4540 | 0.7532 | 0.8679 | | No log | 11.0769 | 432 | 0.7558 | 0.4908 | 0.7558 | 0.8694 | | No log | 11.1282 | 434 | 0.7613 | 0.4628 | 0.7613 | 0.8725 | | No log | 11.1795 | 436 | 0.7515 | 0.4628 | 0.7515 | 0.8669 | | No log | 11.2308 | 438 | 0.7441 | 0.5017 | 0.7441 | 0.8626 | | No log | 11.2821 | 440 | 0.7399 | 0.4888 | 0.7399 | 0.8602 | | No log | 11.3333 | 442 | 0.7240 | 0.4644 | 0.7240 | 0.8509 | | No log | 11.3846 | 444 | 0.7116 | 0.4988 | 0.7116 | 0.8436 | | No log | 11.4359 | 446 | 0.7072 | 0.5654 | 0.7072 | 0.8410 | | No log | 11.4872 | 448 | 0.6701 | 0.5905 | 0.6701 | 0.8186 | | No log | 11.5385 | 450 | 0.6630 | 0.5988 | 0.6630 | 0.8142 | | No log | 11.5897 | 452 | 0.6584 | 0.5988 | 0.6584 | 0.8114 | | No log | 11.6410 | 454 | 0.6558 | 0.5988 | 0.6558 | 0.8098 | | No log | 11.6923 | 456 | 0.6526 | 0.5988 | 0.6526 | 0.8079 | | No log | 11.7436 | 458 | 0.6552 | 0.5988 | 0.6552 | 0.8095 | | No log | 11.7949 | 460 | 0.6613 | 0.5988 | 0.6613 | 0.8132 | | No log | 11.8462 | 462 | 0.6737 | 0.5988 | 0.6737 | 0.8208 | | No log | 11.8974 | 464 | 0.6644 | 0.5988 | 0.6644 | 0.8151 | | No log | 11.9487 | 466 | 0.6623 | 0.5961 | 0.6623 | 0.8138 | | No log | 12.0 | 468 | 0.6670 | 0.5542 | 0.6670 | 0.8167 | | No log | 12.0513 | 470 | 0.6739 | 0.5845 | 0.6739 | 0.8209 | | No log | 12.1026 | 472 | 0.6654 | 0.5542 | 0.6654 | 0.8157 | | No log | 12.1538 | 474 | 0.6615 | 0.5542 | 0.6615 | 0.8133 | | No log | 12.2051 | 476 | 0.6597 | 0.5759 | 0.6597 | 0.8122 | | No log | 12.2564 | 478 | 0.6686 | 0.5492 | 0.6686 | 0.8177 | | No log | 12.3077 | 480 | 0.6927 | 0.5235 | 0.6927 | 0.8323 | | No log | 12.3590 | 482 | 0.7280 | 0.5654 | 0.7280 | 0.8532 | | No log | 12.4103 | 484 | 0.7181 | 0.5208 | 0.7181 | 0.8474 | | No log | 12.4615 | 486 | 0.7171 | 0.5657 | 0.7171 | 0.8468 | | No log | 12.5128 | 488 | 0.7037 | 0.6028 | 0.7037 | 0.8389 | | No log | 12.5641 | 490 | 0.6923 | 0.5713 | 0.6923 | 0.8321 | | No log | 12.6154 | 492 | 0.6854 | 0.5606 | 0.6854 | 0.8279 | | No log | 12.6667 | 494 | 0.6867 | 0.4923 | 0.6867 | 0.8287 | | No log | 12.7179 | 496 | 0.6851 | 0.5174 | 0.6851 | 0.8277 | | No log | 12.7692 | 498 | 0.6821 | 0.5626 | 0.6821 | 0.8259 | | 0.313 | 12.8205 | 500 | 0.6865 | 0.5736 | 0.6865 | 0.8286 | | 0.313 | 12.8718 | 502 | 0.6896 | 0.5500 | 0.6896 | 0.8304 | | 0.313 | 12.9231 | 504 | 0.6987 | 0.5945 | 0.6987 | 0.8359 | | 0.313 | 12.9744 | 506 | 0.7213 | 0.6234 | 0.7213 | 0.8493 | | 0.313 | 13.0256 | 508 | 0.7276 | 0.6256 | 0.7276 | 0.8530 | | 0.313 | 13.0769 | 510 | 0.6891 | 0.6078 | 0.6891 | 0.8301 | | 0.313 | 13.1282 | 512 | 0.7008 | 0.5010 | 0.7008 | 0.8372 | | 0.313 | 13.1795 | 514 | 0.7365 | 0.5093 | 0.7365 | 0.8582 | | 0.313 | 13.2308 | 516 | 0.7148 | 0.4988 | 0.7148 | 0.8454 | | 0.313 | 13.2821 | 518 | 0.6964 | 0.5428 | 0.6964 | 0.8345 | | 0.313 | 13.3333 | 520 | 0.7568 | 0.5446 | 0.7568 | 0.8699 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1
phungkhaccuong/01b092b7-7e7a-ccbc-4011-c74e23a869d1
phungkhaccuong
2025-01-12T20:16:28Z
10
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/Mistral-Nemo-Base-2407", "base_model:adapter:unsloth/Mistral-Nemo-Base-2407", "license:apache-2.0", "region:us" ]
null
2025-01-12T19:56:59Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Mistral-Nemo-Base-2407 tags: - axolotl - generated_from_trainer model-index: - name: 01b092b7-7e7a-ccbc-4011-c74e23a869d1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Mistral-Nemo-Base-2407 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - ac97fde3045e6c49_train_data.json ds_type: json format: custom path: /workspace/input_data/ac97fde3045e6c49_train_data.json type: field_instruction: title field_output: abstract format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 5 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: phungkhaccuong/01b092b7-7e7a-ccbc-4011-c74e23a869d1 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 5 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/ac97fde3045e6c49_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 0c937bed-41f3-4a3f-afb4-4db0e61eff26 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 0c937bed-41f3-4a3f-afb4-4db0e61eff26 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 01b092b7-7e7a-ccbc-4011-c74e23a869d1 This model is a fine-tuned version of [unsloth/Mistral-Nemo-Base-2407](https://huggingface.co/unsloth/Mistral-Nemo-Base-2407) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1157 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0007 | 1 | 2.2312 | | 8.8291 | 0.0074 | 10 | 2.1780 | | 8.6161 | 0.0147 | 20 | 2.1303 | | 8.1037 | 0.0221 | 30 | 2.1198 | | 8.2349 | 0.0294 | 40 | 2.1164 | | 8.4466 | 0.0368 | 50 | 2.1157 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nhung01/73ee70c3-e362-4fbc-bad0-95142e478684
nhung01
2025-01-12T20:15:57Z
10
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:NousResearch/Nous-Hermes-2-SOLAR-10.7B", "base_model:adapter:NousResearch/Nous-Hermes-2-SOLAR-10.7B", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-12T19:39:47Z
--- library_name: peft license: apache-2.0 base_model: NousResearch/Nous-Hermes-2-SOLAR-10.7B tags: - axolotl - generated_from_trainer model-index: - name: 73ee70c3-e362-4fbc-bad0-95142e478684 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Nous-Hermes-2-SOLAR-10.7B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 35e42979deef2ace_train_data.json ds_type: json format: custom path: /workspace/input_data/35e42979deef2ace_train_data.json type: field_instruction: prompt field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nhung01/73ee70c3-e362-4fbc-bad0-95142e478684 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/35e42979deef2ace_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 8a25c2d0-3f47-4475-82ef-74ba7cd1fcaa wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 8a25c2d0-3f47-4475-82ef-74ba7cd1fcaa warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 73ee70c3-e362-4fbc-bad0-95142e478684 This model is a fine-tuned version of [NousResearch/Nous-Hermes-2-SOLAR-10.7B](https://huggingface.co/NousResearch/Nous-Hermes-2-SOLAR-10.7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2362 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.5874 | 0.7583 | 200 | 1.2362 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
vermoney/c07ec7b8-c7fb-4b72-97ba-27729a734d72
vermoney
2025-01-12T20:15:02Z
11
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:MLP-KTLim/llama-3-Korean-Bllossom-8B", "base_model:adapter:MLP-KTLim/llama-3-Korean-Bllossom-8B", "license:llama3", "region:us" ]
null
2025-01-12T20:11:58Z
--- library_name: peft license: llama3 base_model: MLP-KTLim/llama-3-Korean-Bllossom-8B tags: - axolotl - generated_from_trainer model-index: - name: c07ec7b8-c7fb-4b72-97ba-27729a734d72 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: MLP-KTLim/llama-3-Korean-Bllossom-8B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - b03261914fc5eea7_train_data.json ds_type: json format: custom path: /workspace/input_data/b03261914fc5eea7_train_data.json type: field_instruction: prompt field_output: response-suggestion format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: vermoney/c07ec7b8-c7fb-4b72-97ba-27729a734d72 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 78GiB max_steps: 30 micro_batch_size: 2 mlflow_experiment_name: /tmp/b03261914fc5eea7_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_hf output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 761b9917-3fec-41e1-81b6-128f7eff9b04 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 761b9917-3fec-41e1-81b6-128f7eff9b04 warmup_steps: 10 weight_decay: 0.01 xformers_attention: true ``` </details><br> # c07ec7b8-c7fb-4b72-97ba-27729a734d72 This model is a fine-tuned version of [MLP-KTLim/llama-3-Korean-Bllossom-8B](https://huggingface.co/MLP-KTLim/llama-3-Korean-Bllossom-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0593 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_HF with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0028 | 1 | 1.2117 | | 1.1092 | 0.0222 | 8 | 1.1768 | | 0.9801 | 0.0443 | 16 | 1.0897 | | 1.0679 | 0.0665 | 24 | 1.0593 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
ell-hol/zr-all-lr-fx-dv
ell-hol
2025-01-12T20:12:36Z
76
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-12T20:12:35Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: Zara --- # Zr All Lr Fx Dv <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `Zara` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('ell-hol/zr-all-lr-fx-dv', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
SenhorDasMoscas/acho-classification-06-01-2025-update
SenhorDasMoscas
2025-01-12T20:12:31Z
33
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-01-06T18:22:20Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
MayBashendy/ArabicNewSplits7_FineTuningAraBERT_run1_AugV5_k14_task5_organization
MayBashendy
2025-01-12T20:10:37Z
8
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:aubmindlab/bert-base-arabertv02", "base_model:finetune:aubmindlab/bert-base-arabertv02", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-01-12T20:03:10Z
--- library_name: transformers base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: ArabicNewSplits7_FineTuningAraBERT_run1_AugV5_k14_task5_organization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ArabicNewSplits7_FineTuningAraBERT_run1_AugV5_k14_task5_organization This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6658 - Qwk: 0.4692 - Mse: 0.6658 - Rmse: 0.8160 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:-------:|:----:|:---------------:|:-------:|:------:|:------:| | No log | 0.0556 | 2 | 3.8567 | -0.0047 | 3.8567 | 1.9639 | | No log | 0.1111 | 4 | 2.0105 | 0.0727 | 2.0105 | 1.4179 | | No log | 0.1667 | 6 | 1.2549 | -0.0148 | 1.2549 | 1.1202 | | No log | 0.2222 | 8 | 1.3524 | -0.0245 | 1.3524 | 1.1629 | | No log | 0.2778 | 10 | 2.0829 | 0.0342 | 2.0829 | 1.4432 | | No log | 0.3333 | 12 | 1.9277 | 0.0733 | 1.9277 | 1.3884 | | No log | 0.3889 | 14 | 1.3579 | -0.0212 | 1.3579 | 1.1653 | | No log | 0.4444 | 16 | 1.1292 | 0.2068 | 1.1292 | 1.0626 | | No log | 0.5 | 18 | 1.0421 | 0.2140 | 1.0421 | 1.0209 | | No log | 0.5556 | 20 | 1.0086 | 0.1504 | 1.0086 | 1.0043 | | No log | 0.6111 | 22 | 1.0858 | 0.2873 | 1.0858 | 1.0420 | | No log | 0.6667 | 24 | 1.0611 | 0.4051 | 1.0611 | 1.0301 | | No log | 0.7222 | 26 | 1.0456 | 0.3014 | 1.0456 | 1.0226 | | No log | 0.7778 | 28 | 1.1047 | 0.2004 | 1.1047 | 1.0510 | | No log | 0.8333 | 30 | 1.1097 | 0.2030 | 1.1097 | 1.0534 | | No log | 0.8889 | 32 | 1.0770 | 0.2100 | 1.0770 | 1.0378 | | No log | 0.9444 | 34 | 1.0185 | 0.3540 | 1.0185 | 1.0092 | | No log | 1.0 | 36 | 1.0004 | 0.2416 | 1.0004 | 1.0002 | | No log | 1.0556 | 38 | 1.0030 | 0.2978 | 1.0030 | 1.0015 | | No log | 1.1111 | 40 | 0.9584 | 0.2214 | 0.9584 | 0.9790 | | No log | 1.1667 | 42 | 1.0020 | 0.2611 | 1.0020 | 1.0010 | | No log | 1.2222 | 44 | 0.9943 | 0.2196 | 0.9943 | 0.9971 | | No log | 1.2778 | 46 | 0.9484 | 0.2114 | 0.9484 | 0.9738 | | No log | 1.3333 | 48 | 0.9981 | 0.2077 | 0.9981 | 0.9991 | | No log | 1.3889 | 50 | 1.1638 | 0.2188 | 1.1638 | 1.0788 | | No log | 1.4444 | 52 | 1.0401 | 0.2604 | 1.0401 | 1.0199 | | No log | 1.5 | 54 | 0.8369 | 0.4 | 0.8369 | 0.9148 | | No log | 1.5556 | 56 | 0.9467 | 0.3541 | 0.9467 | 0.9730 | | No log | 1.6111 | 58 | 0.9212 | 0.3666 | 0.9212 | 0.9598 | | No log | 1.6667 | 60 | 0.8263 | 0.3876 | 0.8263 | 0.9090 | | No log | 1.7222 | 62 | 0.8329 | 0.3961 | 0.8329 | 0.9126 | | No log | 1.7778 | 64 | 0.9074 | 0.4025 | 0.9074 | 0.9526 | | No log | 1.8333 | 66 | 0.9100 | 0.4273 | 0.9100 | 0.9539 | | No log | 1.8889 | 68 | 0.7956 | 0.4516 | 0.7956 | 0.8920 | | No log | 1.9444 | 70 | 0.7761 | 0.4019 | 0.7761 | 0.8810 | | No log | 2.0 | 72 | 0.7771 | 0.4086 | 0.7771 | 0.8816 | | No log | 2.0556 | 74 | 0.8137 | 0.3071 | 0.8137 | 0.9021 | | No log | 2.1111 | 76 | 0.8307 | 0.3476 | 0.8307 | 0.9114 | | No log | 2.1667 | 78 | 0.8999 | 0.3569 | 0.8999 | 0.9487 | | No log | 2.2222 | 80 | 0.9733 | 0.3308 | 0.9733 | 0.9865 | | No log | 2.2778 | 82 | 0.9681 | 0.4533 | 0.9681 | 0.9839 | | No log | 2.3333 | 84 | 0.8659 | 0.5176 | 0.8659 | 0.9305 | | No log | 2.3889 | 86 | 0.8541 | 0.3721 | 0.8541 | 0.9242 | | No log | 2.4444 | 88 | 0.9335 | 0.3654 | 0.9335 | 0.9662 | | No log | 2.5 | 90 | 1.0241 | 0.2794 | 1.0241 | 1.0120 | | No log | 2.5556 | 92 | 0.9529 | 0.2618 | 0.9529 | 0.9762 | | No log | 2.6111 | 94 | 1.0164 | 0.2171 | 1.0164 | 1.0081 | | No log | 2.6667 | 96 | 1.0313 | 0.2465 | 1.0313 | 1.0155 | | No log | 2.7222 | 98 | 0.8804 | 0.3414 | 0.8804 | 0.9383 | | No log | 2.7778 | 100 | 0.8379 | 0.4301 | 0.8379 | 0.9154 | | No log | 2.8333 | 102 | 0.9872 | 0.3400 | 0.9872 | 0.9936 | | No log | 2.8889 | 104 | 1.0138 | 0.3663 | 1.0138 | 1.0069 | | No log | 2.9444 | 106 | 1.1835 | 0.3293 | 1.1835 | 1.0879 | | No log | 3.0 | 108 | 1.0381 | 0.3744 | 1.0381 | 1.0189 | | No log | 3.0556 | 110 | 0.7990 | 0.5680 | 0.7990 | 0.8938 | | No log | 3.1111 | 112 | 0.8047 | 0.4734 | 0.8047 | 0.8970 | | No log | 3.1667 | 114 | 0.7846 | 0.4644 | 0.7846 | 0.8858 | | No log | 3.2222 | 116 | 0.8866 | 0.2873 | 0.8866 | 0.9416 | | No log | 3.2778 | 118 | 0.8347 | 0.3658 | 0.8347 | 0.9136 | | No log | 3.3333 | 120 | 0.7583 | 0.4822 | 0.7583 | 0.8708 | | No log | 3.3889 | 122 | 0.7847 | 0.4472 | 0.7847 | 0.8859 | | No log | 3.4444 | 124 | 0.7473 | 0.4914 | 0.7473 | 0.8645 | | No log | 3.5 | 126 | 0.8041 | 0.4697 | 0.8041 | 0.8967 | | No log | 3.5556 | 128 | 0.7461 | 0.5572 | 0.7461 | 0.8638 | | No log | 3.6111 | 130 | 0.6856 | 0.5302 | 0.6856 | 0.8280 | | No log | 3.6667 | 132 | 0.6942 | 0.5428 | 0.6942 | 0.8332 | | No log | 3.7222 | 134 | 0.6679 | 0.5635 | 0.6679 | 0.8172 | | No log | 3.7778 | 136 | 0.6672 | 0.5635 | 0.6672 | 0.8168 | | No log | 3.8333 | 138 | 0.6548 | 0.5635 | 0.6548 | 0.8092 | | No log | 3.8889 | 140 | 0.6604 | 0.6001 | 0.6604 | 0.8126 | | No log | 3.9444 | 142 | 0.6668 | 0.5302 | 0.6668 | 0.8166 | | No log | 4.0 | 144 | 0.8030 | 0.5359 | 0.8030 | 0.8961 | | No log | 4.0556 | 146 | 0.9382 | 0.4764 | 0.9382 | 0.9686 | | No log | 4.1111 | 148 | 0.8548 | 0.4752 | 0.8548 | 0.9246 | | No log | 4.1667 | 150 | 0.6831 | 0.4960 | 0.6831 | 0.8265 | | No log | 4.2222 | 152 | 0.7376 | 0.4560 | 0.7376 | 0.8589 | | No log | 4.2778 | 154 | 0.7601 | 0.4162 | 0.7601 | 0.8719 | | No log | 4.3333 | 156 | 0.7126 | 0.5108 | 0.7126 | 0.8442 | | No log | 4.3889 | 158 | 0.6749 | 0.6127 | 0.6749 | 0.8215 | | No log | 4.4444 | 160 | 0.7123 | 0.5083 | 0.7123 | 0.8440 | | No log | 4.5 | 162 | 0.9315 | 0.3847 | 0.9315 | 0.9651 | | No log | 4.5556 | 164 | 1.0390 | 0.3744 | 1.0390 | 1.0193 | | No log | 4.6111 | 166 | 0.8702 | 0.4284 | 0.8702 | 0.9329 | | No log | 4.6667 | 168 | 0.7008 | 0.5712 | 0.7008 | 0.8372 | | No log | 4.7222 | 170 | 0.7060 | 0.5202 | 0.7060 | 0.8402 | | No log | 4.7778 | 172 | 0.6833 | 0.5060 | 0.6833 | 0.8266 | | No log | 4.8333 | 174 | 0.7466 | 0.4714 | 0.7466 | 0.8641 | | No log | 4.8889 | 176 | 0.8303 | 0.3864 | 0.8303 | 0.9112 | | No log | 4.9444 | 178 | 0.8768 | 0.4407 | 0.8768 | 0.9364 | | No log | 5.0 | 180 | 0.7330 | 0.5400 | 0.7330 | 0.8562 | | No log | 5.0556 | 182 | 0.6685 | 0.5432 | 0.6685 | 0.8176 | | No log | 5.1111 | 184 | 0.6778 | 0.5441 | 0.6778 | 0.8233 | | No log | 5.1667 | 186 | 0.6483 | 0.6475 | 0.6483 | 0.8052 | | No log | 5.2222 | 188 | 0.6542 | 0.6465 | 0.6542 | 0.8089 | | No log | 5.2778 | 190 | 0.6345 | 0.5432 | 0.6345 | 0.7966 | | No log | 5.3333 | 192 | 0.7223 | 0.4893 | 0.7223 | 0.8499 | | No log | 5.3889 | 194 | 0.8536 | 0.4841 | 0.8536 | 0.9239 | | No log | 5.4444 | 196 | 0.7374 | 0.5459 | 0.7374 | 0.8587 | | No log | 5.5 | 198 | 0.6579 | 0.5386 | 0.6579 | 0.8111 | | No log | 5.5556 | 200 | 0.7636 | 0.5356 | 0.7636 | 0.8739 | | No log | 5.6111 | 202 | 0.8157 | 0.4681 | 0.8157 | 0.9032 | | No log | 5.6667 | 204 | 0.7589 | 0.4352 | 0.7589 | 0.8712 | | No log | 5.7222 | 206 | 0.7304 | 0.5171 | 0.7304 | 0.8547 | | No log | 5.7778 | 208 | 0.8545 | 0.4578 | 0.8545 | 0.9244 | | No log | 5.8333 | 210 | 0.8673 | 0.4240 | 0.8673 | 0.9313 | | No log | 5.8889 | 212 | 0.7512 | 0.4998 | 0.7512 | 0.8667 | | No log | 5.9444 | 214 | 0.6793 | 0.5156 | 0.6793 | 0.8242 | | No log | 6.0 | 216 | 0.7309 | 0.5433 | 0.7309 | 0.8549 | | No log | 6.0556 | 218 | 0.7435 | 0.5618 | 0.7435 | 0.8622 | | No log | 6.1111 | 220 | 0.6781 | 0.5605 | 0.6781 | 0.8235 | | No log | 6.1667 | 222 | 0.6499 | 0.5523 | 0.6499 | 0.8062 | | No log | 6.2222 | 224 | 0.6521 | 0.5647 | 0.6521 | 0.8075 | | No log | 6.2778 | 226 | 0.6465 | 0.5626 | 0.6465 | 0.8041 | | No log | 6.3333 | 228 | 0.6457 | 0.5274 | 0.6457 | 0.8036 | | No log | 6.3889 | 230 | 0.6560 | 0.6073 | 0.6560 | 0.8099 | | No log | 6.4444 | 232 | 0.6533 | 0.5505 | 0.6533 | 0.8083 | | No log | 6.5 | 234 | 0.6527 | 0.5523 | 0.6527 | 0.8079 | | No log | 6.5556 | 236 | 0.6646 | 0.6154 | 0.6646 | 0.8153 | | No log | 6.6111 | 238 | 0.6942 | 0.6415 | 0.6942 | 0.8332 | | No log | 6.6667 | 240 | 0.6928 | 0.6051 | 0.6928 | 0.8323 | | No log | 6.7222 | 242 | 0.6591 | 0.6311 | 0.6591 | 0.8118 | | No log | 6.7778 | 244 | 0.6321 | 0.6076 | 0.6321 | 0.7951 | | No log | 6.8333 | 246 | 0.6480 | 0.5830 | 0.6480 | 0.8050 | | No log | 6.8889 | 248 | 0.6462 | 0.6144 | 0.6462 | 0.8039 | | No log | 6.9444 | 250 | 0.6119 | 0.6046 | 0.6119 | 0.7823 | | No log | 7.0 | 252 | 0.6487 | 0.6479 | 0.6487 | 0.8054 | | No log | 7.0556 | 254 | 0.7613 | 0.5120 | 0.7613 | 0.8725 | | No log | 7.1111 | 256 | 0.7467 | 0.5120 | 0.7467 | 0.8641 | | No log | 7.1667 | 258 | 0.6497 | 0.5774 | 0.6497 | 0.8060 | | No log | 7.2222 | 260 | 0.6021 | 0.6606 | 0.6021 | 0.7760 | | No log | 7.2778 | 262 | 0.6476 | 0.5536 | 0.6476 | 0.8047 | | No log | 7.3333 | 264 | 0.6541 | 0.5635 | 0.6541 | 0.8088 | | No log | 7.3889 | 266 | 0.6790 | 0.5558 | 0.6790 | 0.8240 | | No log | 7.4444 | 268 | 0.7201 | 0.5400 | 0.7201 | 0.8486 | | No log | 7.5 | 270 | 0.7019 | 0.5688 | 0.7019 | 0.8378 | | No log | 7.5556 | 272 | 0.6896 | 0.5415 | 0.6896 | 0.8304 | | No log | 7.6111 | 274 | 0.7182 | 0.5312 | 0.7182 | 0.8475 | | No log | 7.6667 | 276 | 0.7048 | 0.5300 | 0.7048 | 0.8395 | | No log | 7.7222 | 278 | 0.7254 | 0.5748 | 0.7254 | 0.8517 | | No log | 7.7778 | 280 | 0.7108 | 0.6035 | 0.7108 | 0.8431 | | No log | 7.8333 | 282 | 0.7227 | 0.5748 | 0.7227 | 0.8501 | | No log | 7.8889 | 284 | 0.6794 | 0.5936 | 0.6794 | 0.8242 | | No log | 7.9444 | 286 | 0.6504 | 0.5887 | 0.6504 | 0.8065 | | No log | 8.0 | 288 | 0.6483 | 0.6154 | 0.6483 | 0.8052 | | No log | 8.0556 | 290 | 0.6534 | 0.6262 | 0.6534 | 0.8083 | | No log | 8.1111 | 292 | 0.6549 | 0.5932 | 0.6549 | 0.8093 | | No log | 8.1667 | 294 | 0.6574 | 0.6325 | 0.6574 | 0.8108 | | No log | 8.2222 | 296 | 0.6522 | 0.6113 | 0.6522 | 0.8076 | | No log | 8.2778 | 298 | 0.6485 | 0.6335 | 0.6485 | 0.8053 | | No log | 8.3333 | 300 | 0.6521 | 0.5722 | 0.6521 | 0.8075 | | No log | 8.3889 | 302 | 0.6817 | 0.5640 | 0.6817 | 0.8256 | | No log | 8.4444 | 304 | 0.6939 | 0.4473 | 0.6939 | 0.8330 | | No log | 8.5 | 306 | 0.6712 | 0.5432 | 0.6712 | 0.8193 | | No log | 8.5556 | 308 | 0.6979 | 0.4510 | 0.6979 | 0.8354 | | No log | 8.6111 | 310 | 0.6809 | 0.4868 | 0.6809 | 0.8252 | | No log | 8.6667 | 312 | 0.6536 | 0.5856 | 0.6536 | 0.8084 | | No log | 8.7222 | 314 | 0.6560 | 0.6165 | 0.6560 | 0.8100 | | No log | 8.7778 | 316 | 0.6687 | 0.6043 | 0.6687 | 0.8177 | | No log | 8.8333 | 318 | 0.6792 | 0.5375 | 0.6792 | 0.8241 | | No log | 8.8889 | 320 | 0.6884 | 0.4778 | 0.6884 | 0.8297 | | No log | 8.9444 | 322 | 0.7004 | 0.4888 | 0.7004 | 0.8369 | | No log | 9.0 | 324 | 0.7251 | 0.4981 | 0.7251 | 0.8515 | | No log | 9.0556 | 326 | 0.7389 | 0.5446 | 0.7389 | 0.8596 | | No log | 9.1111 | 328 | 0.7136 | 0.4858 | 0.7136 | 0.8447 | | No log | 9.1667 | 330 | 0.6789 | 0.4995 | 0.6789 | 0.8240 | | No log | 9.2222 | 332 | 0.6778 | 0.4858 | 0.6778 | 0.8233 | | No log | 9.2778 | 334 | 0.7040 | 0.4966 | 0.7040 | 0.8391 | | No log | 9.3333 | 336 | 0.7311 | 0.5385 | 0.7311 | 0.8550 | | No log | 9.3889 | 338 | 0.7625 | 0.5672 | 0.7625 | 0.8732 | | No log | 9.4444 | 340 | 0.7041 | 0.5292 | 0.7041 | 0.8391 | | No log | 9.5 | 342 | 0.6118 | 0.6096 | 0.6118 | 0.7822 | | No log | 9.5556 | 344 | 0.5940 | 0.6096 | 0.5940 | 0.7707 | | No log | 9.6111 | 346 | 0.6146 | 0.5712 | 0.6146 | 0.7840 | | No log | 9.6667 | 348 | 0.6602 | 0.6053 | 0.6602 | 0.8125 | | No log | 9.7222 | 350 | 0.6863 | 0.5905 | 0.6863 | 0.8284 | | No log | 9.7778 | 352 | 0.6276 | 0.5932 | 0.6276 | 0.7922 | | No log | 9.8333 | 354 | 0.6096 | 0.5647 | 0.6096 | 0.7808 | | No log | 9.8889 | 356 | 0.6545 | 0.5242 | 0.6545 | 0.8090 | | No log | 9.9444 | 358 | 0.6652 | 0.5242 | 0.6652 | 0.8156 | | No log | 10.0 | 360 | 0.6239 | 0.5199 | 0.6239 | 0.7898 | | No log | 10.0556 | 362 | 0.6163 | 0.6096 | 0.6163 | 0.7851 | | No log | 10.1111 | 364 | 0.6531 | 0.6054 | 0.6531 | 0.8082 | | No log | 10.1667 | 366 | 0.6405 | 0.6065 | 0.6405 | 0.8003 | | No log | 10.2222 | 368 | 0.6097 | 0.5724 | 0.6097 | 0.7808 | | No log | 10.2778 | 370 | 0.6081 | 0.5505 | 0.6081 | 0.7798 | | No log | 10.3333 | 372 | 0.6033 | 0.5724 | 0.6033 | 0.7767 | | No log | 10.3889 | 374 | 0.5995 | 0.6065 | 0.5995 | 0.7743 | | No log | 10.4444 | 376 | 0.6005 | 0.6065 | 0.6005 | 0.7749 | | No log | 10.5 | 378 | 0.6027 | 0.6407 | 0.6027 | 0.7763 | | No log | 10.5556 | 380 | 0.5776 | 0.6186 | 0.5776 | 0.7600 | | No log | 10.6111 | 382 | 0.5751 | 0.5988 | 0.5751 | 0.7583 | | No log | 10.6667 | 384 | 0.5997 | 0.6119 | 0.5997 | 0.7744 | | No log | 10.7222 | 386 | 0.5899 | 0.6119 | 0.5899 | 0.7680 | | No log | 10.7778 | 388 | 0.5658 | 0.6796 | 0.5658 | 0.7522 | | No log | 10.8333 | 390 | 0.5950 | 0.6597 | 0.5950 | 0.7713 | | No log | 10.8889 | 392 | 0.5903 | 0.6639 | 0.5903 | 0.7683 | | No log | 10.9444 | 394 | 0.5907 | 0.5882 | 0.5907 | 0.7685 | | No log | 11.0 | 396 | 0.5926 | 0.5659 | 0.5926 | 0.7698 | | No log | 11.0556 | 398 | 0.5859 | 0.6427 | 0.5859 | 0.7655 | | No log | 11.1111 | 400 | 0.6109 | 0.6479 | 0.6109 | 0.7816 | | No log | 11.1667 | 402 | 0.6601 | 0.5846 | 0.6601 | 0.8124 | | No log | 11.2222 | 404 | 0.6575 | 0.5521 | 0.6575 | 0.8108 | | No log | 11.2778 | 406 | 0.6268 | 0.5640 | 0.6268 | 0.7917 | | No log | 11.3333 | 408 | 0.6207 | 0.5644 | 0.6207 | 0.7878 | | No log | 11.3889 | 410 | 0.6283 | 0.4554 | 0.6283 | 0.7927 | | No log | 11.4444 | 412 | 0.6256 | 0.4554 | 0.6256 | 0.7910 | | No log | 11.5 | 414 | 0.6096 | 0.5288 | 0.6096 | 0.7808 | | No log | 11.5556 | 416 | 0.5969 | 0.5939 | 0.5969 | 0.7726 | | No log | 11.6111 | 418 | 0.5971 | 0.6133 | 0.5971 | 0.7727 | | No log | 11.6667 | 420 | 0.6110 | 0.6500 | 0.6110 | 0.7817 | | No log | 11.7222 | 422 | 0.6229 | 0.6564 | 0.6229 | 0.7892 | | No log | 11.7778 | 424 | 0.6050 | 0.6133 | 0.6050 | 0.7778 | | No log | 11.8333 | 426 | 0.6056 | 0.5505 | 0.6056 | 0.7782 | | No log | 11.8889 | 428 | 0.6218 | 0.5428 | 0.6218 | 0.7885 | | No log | 11.9444 | 430 | 0.6260 | 0.5555 | 0.6260 | 0.7912 | | No log | 12.0 | 432 | 0.6217 | 0.6013 | 0.6217 | 0.7885 | | No log | 12.0556 | 434 | 0.6157 | 0.6219 | 0.6157 | 0.7846 | | No log | 12.1111 | 436 | 0.6028 | 0.6606 | 0.6028 | 0.7764 | | No log | 12.1667 | 438 | 0.6124 | 0.6632 | 0.6124 | 0.7825 | | No log | 12.2222 | 440 | 0.7129 | 0.5572 | 0.7129 | 0.8443 | | No log | 12.2778 | 442 | 0.7703 | 0.5417 | 0.7703 | 0.8777 | | No log | 12.3333 | 444 | 0.7334 | 0.5543 | 0.7334 | 0.8564 | | No log | 12.3889 | 446 | 0.6798 | 0.5888 | 0.6798 | 0.8245 | | No log | 12.4444 | 448 | 0.6413 | 0.5949 | 0.6413 | 0.8008 | | No log | 12.5 | 450 | 0.6256 | 0.5784 | 0.6256 | 0.7910 | | No log | 12.5556 | 452 | 0.6255 | 0.5784 | 0.6255 | 0.7909 | | No log | 12.6111 | 454 | 0.6456 | 0.5823 | 0.6456 | 0.8035 | | No log | 12.6667 | 456 | 0.6693 | 0.5833 | 0.6693 | 0.8181 | | No log | 12.7222 | 458 | 0.6561 | 0.6177 | 0.6561 | 0.8100 | | No log | 12.7778 | 460 | 0.6258 | 0.6335 | 0.6258 | 0.7911 | | No log | 12.8333 | 462 | 0.6302 | 0.6133 | 0.6302 | 0.7939 | | No log | 12.8889 | 464 | 0.6594 | 0.6133 | 0.6594 | 0.8120 | | No log | 12.9444 | 466 | 0.6565 | 0.6133 | 0.6565 | 0.8102 | | No log | 13.0 | 468 | 0.6298 | 0.5712 | 0.6298 | 0.7936 | | No log | 13.0556 | 470 | 0.6144 | 0.5498 | 0.6144 | 0.7839 | | No log | 13.1111 | 472 | 0.6108 | 0.5939 | 0.6108 | 0.7815 | | No log | 13.1667 | 474 | 0.6064 | 0.5939 | 0.6064 | 0.7787 | | No log | 13.2222 | 476 | 0.6052 | 0.5939 | 0.6052 | 0.7779 | | No log | 13.2778 | 478 | 0.6047 | 0.5939 | 0.6047 | 0.7776 | | No log | 13.3333 | 480 | 0.6035 | 0.5939 | 0.6035 | 0.7769 | | No log | 13.3889 | 482 | 0.6271 | 0.5329 | 0.6271 | 0.7919 | | No log | 13.4444 | 484 | 0.6543 | 0.5343 | 0.6543 | 0.8089 | | No log | 13.5 | 486 | 0.6666 | 0.5228 | 0.6666 | 0.8164 | | No log | 13.5556 | 488 | 0.6569 | 0.5228 | 0.6569 | 0.8105 | | No log | 13.6111 | 490 | 0.6600 | 0.5112 | 0.6600 | 0.8124 | | No log | 13.6667 | 492 | 0.6355 | 0.5328 | 0.6355 | 0.7972 | | No log | 13.7222 | 494 | 0.6101 | 0.5626 | 0.6101 | 0.7811 | | No log | 13.7778 | 496 | 0.6057 | 0.5939 | 0.6057 | 0.7783 | | No log | 13.8333 | 498 | 0.6061 | 0.6133 | 0.6061 | 0.7785 | | 0.2855 | 13.8889 | 500 | 0.6159 | 0.5412 | 0.6159 | 0.7848 | | 0.2855 | 13.9444 | 502 | 0.6816 | 0.5112 | 0.6816 | 0.8256 | | 0.2855 | 14.0 | 504 | 0.8116 | 0.4686 | 0.8116 | 0.9009 | | 0.2855 | 14.0556 | 506 | 0.8213 | 0.4670 | 0.8213 | 0.9063 | | 0.2855 | 14.1111 | 508 | 0.7411 | 0.4755 | 0.7411 | 0.8609 | | 0.2855 | 14.1667 | 510 | 0.6658 | 0.4692 | 0.6658 | 0.8160 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1
chchen/Llama-3.1-8B-Instruct-SFT-500
chchen
2025-01-12T20:08:32Z
9
0
peft
[ "peft", "safetensors", "llama-factory", "lora", "generated_from_trainer", "base_model:meta-llama/Llama-3.1-8B-Instruct", "base_model:adapter:meta-llama/Llama-3.1-8B-Instruct", "license:llama3.1", "region:us" ]
null
2025-01-12T20:01:34Z
--- base_model: meta-llama/Llama-3.1-8B-Instruct library_name: peft license: llama3.1 tags: - llama-factory - lora - generated_from_trainer model-index: - name: Llama-3.1-8B-Instruct-SFT-500 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Llama-3.1-8B-Instruct-SFT-500 This model is a fine-tuned version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) on the bct_non_cot_sft_500 dataset. It achieves the following results on the evaluation set: - Loss: 0.0781 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.8493 | 1.7778 | 50 | 0.8185 | | 0.1595 | 3.5556 | 100 | 0.1123 | | 0.0797 | 5.3333 | 150 | 0.0811 | | 0.0997 | 7.1111 | 200 | 0.0789 | | 0.0896 | 8.8889 | 250 | 0.0781 | ### Framework versions - PEFT 0.12.0 - Transformers 4.45.2 - Pytorch 2.3.0 - Datasets 2.19.0 - Tokenizers 0.20.0
marialvsantiago/001e5a2b-be1d-4d67-af2c-1a4f49b19281
marialvsantiago
2025-01-12T20:06:14Z
10
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/Mistral-Nemo-Base-2407", "base_model:adapter:unsloth/Mistral-Nemo-Base-2407", "license:apache-2.0", "region:us" ]
null
2025-01-12T19:57:20Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Mistral-Nemo-Base-2407 tags: - axolotl - generated_from_trainer model-index: - name: 001e5a2b-be1d-4d67-af2c-1a4f49b19281 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Mistral-Nemo-Base-2407 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - ac97fde3045e6c49_train_data.json ds_type: json format: custom path: /workspace/input_data/ac97fde3045e6c49_train_data.json type: field_instruction: title field_output: abstract format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: marialvsantiago/001e5a2b-be1d-4d67-af2c-1a4f49b19281 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 78GiB max_steps: 30 micro_batch_size: 2 mlflow_experiment_name: /tmp/ac97fde3045e6c49_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_hf output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 0c937bed-41f3-4a3f-afb4-4db0e61eff26 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 0c937bed-41f3-4a3f-afb4-4db0e61eff26 warmup_steps: 10 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 001e5a2b-be1d-4d67-af2c-1a4f49b19281 This model is a fine-tuned version of [unsloth/Mistral-Nemo-Base-2407](https://huggingface.co/unsloth/Mistral-Nemo-Base-2407) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_HF with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0007 | 1 | nan | | 0.0 | 0.0059 | 8 | nan | | 0.0 | 0.0118 | 16 | nan | | 0.0 | 0.0176 | 24 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
kostiantynk-out/377d5b04-4449-464f-9d43-f479c577f5f0
kostiantynk-out
2025-01-12T20:01:11Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-Coder-7B-Instruct", "base_model:adapter:Qwen/Qwen2.5-Coder-7B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-01-12T19:59:37Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-Coder-7B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 377d5b04-4449-464f-9d43-f479c577f5f0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-Coder-7B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 1516d1ee6d08c7db_train_data.json ds_type: json format: custom path: /workspace/input_data/1516d1ee6d08c7db_train_data.json type: field_input: p field_instruction: asks-for field_output: explanation format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: kostiantynk-out/377d5b04-4449-464f-9d43-f479c577f5f0 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/1516d1ee6d08c7db_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 1849022f-60a5-4fce-8dec-ce632a995207 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 1849022f-60a5-4fce-8dec-ce632a995207 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 377d5b04-4449-464f-9d43-f479c577f5f0 This model is a fine-tuned version of [Qwen/Qwen2.5-Coder-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.3282 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 4.5635 | 0.0009 | 1 | 4.9762 | | 5.135 | 0.0026 | 3 | 4.9728 | | 5.2364 | 0.0053 | 6 | 4.8602 | | 5.4171 | 0.0079 | 9 | 4.3282 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
AriKu999/autotrain-09geq-q069u
AriKu999
2025-01-12T20:01:08Z
9
0
null
[ "tensorboard", "safetensors", "bert", "autotrain", "text-classification", "base_model:google-bert/bert-base-multilingual-cased", "base_model:finetune:google-bert/bert-base-multilingual-cased", "region:us" ]
text-classification
2025-01-12T19:10:48Z
--- tags: - autotrain - text-classification base_model: google-bert/bert-base-multilingual-cased widget: - text: "I love AutoTrain" --- # Model Trained Using AutoTrain - Problem type: Text Classification ## Validation Metrics loss: 1.1588923931121826 f1_macro: 0.47992976001676585 f1_micro: 0.62 f1_weighted: 0.5779788692093073 precision_macro: 0.5334613415258577 precision_micro: 0.62 precision_weighted: 0.5919508448540707 recall_macro: 0.5009906477566362 recall_micro: 0.62 recall_weighted: 0.62 accuracy: 0.62
saifkabeer/scottrsg
saifkabeer
2025-01-12T20:00:50Z
23
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-12T19:13:35Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: scottrsg --- # Scottrsg <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `scottrsg` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('saifkabeer/scottrsg', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
thaffggg/dd9efce6-2343-4f78-a69f-6dccfad4eea2
thaffggg
2025-01-12T20:00:28Z
9
0
peft
[ "peft", "safetensors", "gpt_neox", "axolotl", "generated_from_trainer", "base_model:beomi/polyglot-ko-12.8b-safetensors", "base_model:adapter:beomi/polyglot-ko-12.8b-safetensors", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-12T18:35:10Z
--- library_name: peft license: apache-2.0 base_model: beomi/polyglot-ko-12.8b-safetensors tags: - axolotl - generated_from_trainer model-index: - name: dd9efce6-2343-4f78-a69f-6dccfad4eea2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: beomi/polyglot-ko-12.8b-safetensors bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 9b614758bc251daf_train_data.json ds_type: json format: custom path: /workspace/input_data/9b614758bc251daf_train_data.json type: field_instruction: query field_output: response format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: thaffggg/dd9efce6-2343-4f78-a69f-6dccfad4eea2 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/9b614758bc251daf_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: bc82f8eb-5dea-492d-bdd6-fe8377922ab6 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: bc82f8eb-5dea-492d-bdd6-fe8377922ab6 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # dd9efce6-2343-4f78-a69f-6dccfad4eea2 This model is a fine-tuned version of [beomi/polyglot-ko-12.8b-safetensors](https://huggingface.co/beomi/polyglot-ko-12.8b-safetensors) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7661 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.009 | 0.0282 | 200 | 0.7661 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
LucileFavero/AM_model_AAEC_1
LucileFavero
2025-01-12T19:58:23Z
25
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-01-12T19:57:21Z
--- base_model: unsloth/meta-llama-3.1-8b-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** LucileFavero - **License:** apache-2.0 - **Finetuned from model :** unsloth/meta-llama-3.1-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
lesso08/549cb4b2-b770-4326-9eaa-113ac962c8bd
lesso08
2025-01-12T19:57:59Z
8
0
peft
[ "peft", "safetensors", "gpt_neox", "axolotl", "generated_from_trainer", "base_model:beomi/polyglot-ko-12.8b-safetensors", "base_model:adapter:beomi/polyglot-ko-12.8b-safetensors", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-12T18:34:27Z
--- library_name: peft license: apache-2.0 base_model: beomi/polyglot-ko-12.8b-safetensors tags: - axolotl - generated_from_trainer model-index: - name: 549cb4b2-b770-4326-9eaa-113ac962c8bd results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: beomi/polyglot-ko-12.8b-safetensors bf16: true chat_template: llama3 datasets: - data_files: - 9b614758bc251daf_train_data.json ds_type: json format: custom path: /workspace/input_data/9b614758bc251daf_train_data.json type: field_instruction: query field_output: response format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: lesso08/549cb4b2-b770-4326-9eaa-113ac962c8bd hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 25 micro_batch_size: 2 mlflow_experiment_name: /tmp/9b614758bc251daf_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: bc82f8eb-5dea-492d-bdd6-fe8377922ab6 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: bc82f8eb-5dea-492d-bdd6-fe8377922ab6 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 549cb4b2-b770-4326-9eaa-113ac962c8bd This model is a fine-tuned version of [beomi/polyglot-ko-12.8b-safetensors](https://huggingface.co/beomi/polyglot-ko-12.8b-safetensors) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9208 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 5.2829 | 0.0001 | 1 | 1.1717 | | 4.1689 | 0.0007 | 5 | 1.1591 | | 4.8329 | 0.0014 | 10 | 1.0454 | | 4.1252 | 0.0021 | 15 | 0.9561 | | 3.6456 | 0.0028 | 20 | 0.9251 | | 3.7173 | 0.0035 | 25 | 0.9208 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
3004skylar/robin_lora_xl
3004skylar
2025-01-12T19:57:45Z
33
1
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:stabilityai/stable-diffusion-3.5-large", "base_model:adapter:stabilityai/stable-diffusion-3.5-large", "region:us" ]
text-to-image
2025-01-12T19:56:12Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: None output: url: >- images/692a9c0f277de7dd6e5eb8f722286c48ac309d3c12948c5bde679158234ba185.png base_model: stabilityai/stable-diffusion-3.5-large instance_prompt: null --- # robin <Gallery /> ## Download model Weights for this model are available in Safetensors format. [Download](/3004skylar/robin_lora_xl/tree/main) them in the Files & versions tab.
duyphu/6a675f5b-c4e9-4aa2-ea2c-5d906bf3bf4e
duyphu
2025-01-12T19:55:04Z
12
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:jhflow/mistral7b-lora-multi-turn-v2", "base_model:adapter:jhflow/mistral7b-lora-multi-turn-v2", "region:us" ]
null
2025-01-12T19:46:19Z
--- library_name: peft base_model: jhflow/mistral7b-lora-multi-turn-v2 tags: - axolotl - generated_from_trainer model-index: - name: 6a675f5b-c4e9-4aa2-ea2c-5d906bf3bf4e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: jhflow/mistral7b-lora-multi-turn-v2 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - fb0d93ffd295c2a8_train_data.json ds_type: json format: custom path: /workspace/input_data/fb0d93ffd295c2a8_train_data.json type: field_instruction: instruction field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 5 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: duyphu/6a675f5b-c4e9-4aa2-ea2c-5d906bf3bf4e hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 5 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/fb0d93ffd295c2a8_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 7a5a77d7-23c7-4fa5-91b5-25fb954aebc0 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 7a5a77d7-23c7-4fa5-91b5-25fb954aebc0 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 6a675f5b-c4e9-4aa2-ea2c-5d906bf3bf4e This model is a fine-tuned version of [jhflow/mistral7b-lora-multi-turn-v2](https://huggingface.co/jhflow/mistral7b-lora-multi-turn-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1013 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0092 | 1 | 2.4488 | | 8.1093 | 0.0924 | 10 | 2.2831 | | 8.3922 | 0.1848 | 20 | 2.1757 | | 8.6908 | 0.2771 | 30 | 2.1262 | | 7.8807 | 0.3695 | 40 | 2.1058 | | 7.9822 | 0.4619 | 50 | 2.1013 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Triangle104/VersatiLlama-Llama-3.2-3B-Instruct-Abliterated-Q8_0-GGUF
Triangle104
2025-01-12T19:54:09Z
35
0
transformers
[ "transformers", "gguf", "llama-cpp", "gguf-my-repo", "text-generation", "en", "base_model:Devarui379/VersatiLlama-Llama-3.2-3B-Instruct-Abliterated", "base_model:quantized:Devarui379/VersatiLlama-Llama-3.2-3B-Instruct-Abliterated", "license:cc-by-4.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-01-12T19:52:58Z
--- base_model: Devarui379/VersatiLlama-Llama-3.2-3B-Instruct-Abliterated license: cc-by-4.0 language: - en pipeline_tag: text-generation library_name: transformers tags: - llama-cpp - gguf-my-repo --- # Triangle104/VersatiLlama-Llama-3.2-3B-Instruct-Abliterated-Q8_0-GGUF This model was converted to GGUF format from [`Devarui379/VersatiLlama-Llama-3.2-3B-Instruct-Abliterated`](https://huggingface.co/Devarui379/VersatiLlama-Llama-3.2-3B-Instruct-Abliterated) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Devarui379/VersatiLlama-Llama-3.2-3B-Instruct-Abliterated) for more details on the model. --- Model details: - Small but Smart Fine-Tuned on Vast dataset of Conversations Able to Generate Human like text with high performance within its size. It is Very Versatile when compared for it's size and Parameters and offers capability almost as good as Llama 3.1 8B Instruct Feel free to Check it out!! [This model was trained for 5hrs on GPU T4 15gb vram] Developed by: Meta AI Fine-Tuned by: Devarui379 Model type: Transformers Language(s) (NLP): English License: cc-by-4.0 Model Sources [optional] base model:meta-llama/Llama-3.2-3B-Instruct Repository: Devarui379/VersatiLlama-Llama-3.2-3B-Instruct-Abliterated Demo: Use LM Studio with the Quantized version Uses Use desired System prompt when using in LM Studio The optimal chat template seems to be Jinja but feel free to test it out as you want! Technical Specifications Model Architecture and Objective Llama 3.2 Hardware NVIDIA TESLA T4 GPU 15GB VRAM --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/VersatiLlama-Llama-3.2-3B-Instruct-Abliterated-Q8_0-GGUF --hf-file versatillama-llama-3.2-3b-instruct-abliterated-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/VersatiLlama-Llama-3.2-3B-Instruct-Abliterated-Q8_0-GGUF --hf-file versatillama-llama-3.2-3b-instruct-abliterated-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/VersatiLlama-Llama-3.2-3B-Instruct-Abliterated-Q8_0-GGUF --hf-file versatillama-llama-3.2-3b-instruct-abliterated-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/VersatiLlama-Llama-3.2-3B-Instruct-Abliterated-Q8_0-GGUF --hf-file versatillama-llama-3.2-3b-instruct-abliterated-q8_0.gguf -c 2048 ```
MayBashendy/ArabicNewSplits7_FineTuningAraBERT_run1_AugV5_k12_task5_organization
MayBashendy
2025-01-12T19:53:09Z
8
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:aubmindlab/bert-base-arabertv02", "base_model:finetune:aubmindlab/bert-base-arabertv02", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-01-12T19:43:59Z
--- library_name: transformers base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: ArabicNewSplits7_FineTuningAraBERT_run1_AugV5_k12_task5_organization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ArabicNewSplits7_FineTuningAraBERT_run1_AugV5_k12_task5_organization This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6880 - Qwk: 0.5028 - Mse: 0.6880 - Rmse: 0.8294 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:-------:|:----:|:---------------:|:-------:|:------:|:------:| | No log | 0.0625 | 2 | 3.8998 | 0.0124 | 3.8998 | 1.9748 | | No log | 0.125 | 4 | 1.8693 | 0.0318 | 1.8693 | 1.3672 | | No log | 0.1875 | 6 | 1.1996 | -0.0627 | 1.1996 | 1.0953 | | No log | 0.25 | 8 | 1.0795 | 0.2441 | 1.0795 | 1.0390 | | No log | 0.3125 | 10 | 1.0976 | 0.1418 | 1.0976 | 1.0476 | | No log | 0.375 | 12 | 1.2351 | 0.0249 | 1.2351 | 1.1114 | | No log | 0.4375 | 14 | 1.4945 | -0.0858 | 1.4945 | 1.2225 | | No log | 0.5 | 16 | 1.6856 | -0.0411 | 1.6856 | 1.2983 | | No log | 0.5625 | 18 | 1.5115 | -0.0560 | 1.5115 | 1.2294 | | No log | 0.625 | 20 | 1.2983 | -0.0328 | 1.2983 | 1.1394 | | No log | 0.6875 | 22 | 1.1399 | 0.1268 | 1.1399 | 1.0676 | | No log | 0.75 | 24 | 1.0546 | 0.2416 | 1.0546 | 1.0270 | | No log | 0.8125 | 26 | 1.0514 | 0.0762 | 1.0514 | 1.0254 | | No log | 0.875 | 28 | 1.0289 | 0.1076 | 1.0289 | 1.0143 | | No log | 0.9375 | 30 | 1.0153 | 0.4051 | 1.0153 | 1.0076 | | No log | 1.0 | 32 | 1.0239 | 0.2343 | 1.0239 | 1.0119 | | No log | 1.0625 | 34 | 1.1216 | 0.1142 | 1.1216 | 1.0591 | | No log | 1.125 | 36 | 1.1869 | 0.0 | 1.1869 | 1.0894 | | No log | 1.1875 | 38 | 1.1328 | 0.0996 | 1.1328 | 1.0643 | | No log | 1.25 | 40 | 0.9713 | 0.4167 | 0.9713 | 0.9855 | | No log | 1.3125 | 42 | 0.9117 | 0.4031 | 0.9117 | 0.9548 | | No log | 1.375 | 44 | 0.9185 | 0.4218 | 0.9185 | 0.9584 | | No log | 1.4375 | 46 | 0.9131 | 0.4512 | 0.9131 | 0.9556 | | No log | 1.5 | 48 | 0.9881 | 0.3790 | 0.9881 | 0.9940 | | No log | 1.5625 | 50 | 1.1039 | 0.2513 | 1.1039 | 1.0507 | | No log | 1.625 | 52 | 1.1056 | 0.2850 | 1.1056 | 1.0515 | | No log | 1.6875 | 54 | 0.9419 | 0.375 | 0.9419 | 0.9705 | | No log | 1.75 | 56 | 0.9125 | 0.2314 | 0.9125 | 0.9553 | | No log | 1.8125 | 58 | 1.0117 | 0.1799 | 1.0117 | 1.0058 | | No log | 1.875 | 60 | 1.0029 | 0.1545 | 1.0029 | 1.0014 | | No log | 1.9375 | 62 | 0.9630 | 0.1783 | 0.9630 | 0.9813 | | No log | 2.0 | 64 | 0.9759 | 0.3310 | 0.9759 | 0.9879 | | No log | 2.0625 | 66 | 0.9466 | 0.4167 | 0.9466 | 0.9730 | | No log | 2.125 | 68 | 0.8062 | 0.3435 | 0.8062 | 0.8979 | | No log | 2.1875 | 70 | 0.7766 | 0.3652 | 0.7766 | 0.8813 | | No log | 2.25 | 72 | 0.8180 | 0.3164 | 0.8180 | 0.9044 | | No log | 2.3125 | 74 | 0.7902 | 0.3603 | 0.7902 | 0.8889 | | No log | 2.375 | 76 | 0.7130 | 0.4831 | 0.7130 | 0.8444 | | No log | 2.4375 | 78 | 0.7098 | 0.5763 | 0.7098 | 0.8425 | | No log | 2.5 | 80 | 0.7035 | 0.5559 | 0.7035 | 0.8387 | | No log | 2.5625 | 82 | 0.6607 | 0.5153 | 0.6607 | 0.8128 | | No log | 2.625 | 84 | 0.6674 | 0.5562 | 0.6674 | 0.8170 | | No log | 2.6875 | 86 | 0.6472 | 0.6272 | 0.6472 | 0.8045 | | No log | 2.75 | 88 | 0.6978 | 0.6015 | 0.6978 | 0.8353 | | No log | 2.8125 | 90 | 0.8254 | 0.5614 | 0.8254 | 0.9085 | | No log | 2.875 | 92 | 1.0173 | 0.3942 | 1.0173 | 1.0086 | | No log | 2.9375 | 94 | 1.0334 | 0.4073 | 1.0334 | 1.0166 | | No log | 3.0 | 96 | 0.9522 | 0.4668 | 0.9522 | 0.9758 | | No log | 3.0625 | 98 | 0.8172 | 0.6035 | 0.8172 | 0.9040 | | No log | 3.125 | 100 | 0.7584 | 0.5902 | 0.7584 | 0.8708 | | No log | 3.1875 | 102 | 0.7434 | 0.5675 | 0.7434 | 0.8622 | | No log | 3.25 | 104 | 0.7553 | 0.5521 | 0.7553 | 0.8691 | | No log | 3.3125 | 106 | 0.6617 | 0.6071 | 0.6617 | 0.8134 | | No log | 3.375 | 108 | 0.6579 | 0.6445 | 0.6579 | 0.8111 | | No log | 3.4375 | 110 | 0.7094 | 0.6529 | 0.7094 | 0.8423 | | No log | 3.5 | 112 | 0.7746 | 0.5275 | 0.7746 | 0.8801 | | No log | 3.5625 | 114 | 0.8172 | 0.5485 | 0.8172 | 0.9040 | | No log | 3.625 | 116 | 0.7899 | 0.5239 | 0.7899 | 0.8887 | | No log | 3.6875 | 118 | 0.8011 | 0.5968 | 0.8011 | 0.8950 | | No log | 3.75 | 120 | 0.8089 | 0.6141 | 0.8089 | 0.8994 | | No log | 3.8125 | 122 | 0.7102 | 0.6147 | 0.7102 | 0.8427 | | No log | 3.875 | 124 | 0.6779 | 0.5495 | 0.6779 | 0.8234 | | No log | 3.9375 | 126 | 0.6320 | 0.5603 | 0.6320 | 0.7950 | | No log | 4.0 | 128 | 0.6061 | 0.5934 | 0.6061 | 0.7785 | | No log | 4.0625 | 130 | 0.5689 | 0.6886 | 0.5689 | 0.7543 | | No log | 4.125 | 132 | 0.5828 | 0.6719 | 0.5828 | 0.7634 | | No log | 4.1875 | 134 | 0.5386 | 0.6878 | 0.5386 | 0.7339 | | No log | 4.25 | 136 | 0.4913 | 0.7231 | 0.4913 | 0.7009 | | No log | 4.3125 | 138 | 0.4835 | 0.7182 | 0.4835 | 0.6954 | | No log | 4.375 | 140 | 0.5285 | 0.7483 | 0.5285 | 0.7270 | | No log | 4.4375 | 142 | 0.6167 | 0.7469 | 0.6167 | 0.7853 | | No log | 4.5 | 144 | 0.5436 | 0.7437 | 0.5436 | 0.7373 | | No log | 4.5625 | 146 | 0.4737 | 0.7544 | 0.4737 | 0.6883 | | No log | 4.625 | 148 | 0.4855 | 0.7449 | 0.4855 | 0.6967 | | No log | 4.6875 | 150 | 0.5315 | 0.7437 | 0.5315 | 0.7291 | | No log | 4.75 | 152 | 0.6915 | 0.6653 | 0.6915 | 0.8315 | | No log | 4.8125 | 154 | 0.7098 | 0.6061 | 0.7098 | 0.8425 | | No log | 4.875 | 156 | 0.6298 | 0.6053 | 0.6298 | 0.7936 | | No log | 4.9375 | 158 | 0.6191 | 0.6301 | 0.6191 | 0.7868 | | No log | 5.0 | 160 | 0.6033 | 0.6311 | 0.6033 | 0.7767 | | No log | 5.0625 | 162 | 0.6026 | 0.5798 | 0.6026 | 0.7763 | | No log | 5.125 | 164 | 0.7041 | 0.6170 | 0.7041 | 0.8391 | | No log | 5.1875 | 166 | 0.9354 | 0.4854 | 0.9354 | 0.9671 | | No log | 5.25 | 168 | 0.9265 | 0.5404 | 0.9265 | 0.9626 | | No log | 5.3125 | 170 | 0.7382 | 0.6071 | 0.7382 | 0.8592 | | No log | 5.375 | 172 | 0.6831 | 0.6743 | 0.6831 | 0.8265 | | No log | 5.4375 | 174 | 0.7235 | 0.5995 | 0.7235 | 0.8506 | | No log | 5.5 | 176 | 0.7447 | 0.5800 | 0.7447 | 0.8629 | | No log | 5.5625 | 178 | 0.6538 | 0.6362 | 0.6538 | 0.8086 | | No log | 5.625 | 180 | 0.5523 | 0.6973 | 0.5523 | 0.7432 | | No log | 5.6875 | 182 | 0.5142 | 0.6788 | 0.5142 | 0.7171 | | No log | 5.75 | 184 | 0.5317 | 0.6748 | 0.5317 | 0.7292 | | No log | 5.8125 | 186 | 0.6390 | 0.6079 | 0.6390 | 0.7994 | | No log | 5.875 | 188 | 0.6886 | 0.5943 | 0.6886 | 0.8298 | | No log | 5.9375 | 190 | 0.6433 | 0.6229 | 0.6433 | 0.8021 | | No log | 6.0 | 192 | 0.5722 | 0.6746 | 0.5722 | 0.7564 | | No log | 6.0625 | 194 | 0.5545 | 0.7436 | 0.5545 | 0.7447 | | No log | 6.125 | 196 | 0.5597 | 0.7436 | 0.5597 | 0.7481 | | No log | 6.1875 | 198 | 0.5615 | 0.7079 | 0.5615 | 0.7493 | | No log | 6.25 | 200 | 0.7072 | 0.6563 | 0.7072 | 0.8410 | | No log | 6.3125 | 202 | 0.7178 | 0.6466 | 0.7178 | 0.8472 | | No log | 6.375 | 204 | 0.5644 | 0.7368 | 0.5644 | 0.7513 | | No log | 6.4375 | 206 | 0.4260 | 0.6980 | 0.4260 | 0.6527 | | No log | 6.5 | 208 | 0.5349 | 0.6974 | 0.5349 | 0.7314 | | No log | 6.5625 | 210 | 0.5654 | 0.6974 | 0.5654 | 0.7520 | | No log | 6.625 | 212 | 0.4946 | 0.6087 | 0.4946 | 0.7033 | | No log | 6.6875 | 214 | 0.5122 | 0.6296 | 0.5122 | 0.7157 | | No log | 6.75 | 216 | 0.5672 | 0.5811 | 0.5672 | 0.7531 | | No log | 6.8125 | 218 | 0.5607 | 0.6301 | 0.5607 | 0.7488 | | No log | 6.875 | 220 | 0.5755 | 0.6014 | 0.5755 | 0.7586 | | No log | 6.9375 | 222 | 0.6424 | 0.6015 | 0.6424 | 0.8015 | | No log | 7.0 | 224 | 0.7807 | 0.6029 | 0.7807 | 0.8836 | | No log | 7.0625 | 226 | 0.9065 | 0.5123 | 0.9065 | 0.9521 | | No log | 7.125 | 228 | 0.8704 | 0.5145 | 0.8704 | 0.9330 | | No log | 7.1875 | 230 | 0.7475 | 0.5147 | 0.7475 | 0.8646 | | No log | 7.25 | 232 | 0.6928 | 0.4809 | 0.6928 | 0.8324 | | No log | 7.3125 | 234 | 0.6443 | 0.5232 | 0.6443 | 0.8027 | | No log | 7.375 | 236 | 0.6312 | 0.5949 | 0.6312 | 0.7945 | | No log | 7.4375 | 238 | 0.6608 | 0.4937 | 0.6608 | 0.8129 | | No log | 7.5 | 240 | 0.7649 | 0.5405 | 0.7649 | 0.8746 | | No log | 7.5625 | 242 | 0.7997 | 0.6110 | 0.7997 | 0.8942 | | No log | 7.625 | 244 | 0.6729 | 0.6275 | 0.6729 | 0.8203 | | No log | 7.6875 | 246 | 0.5453 | 0.7477 | 0.5453 | 0.7384 | | No log | 7.75 | 248 | 0.4845 | 0.7283 | 0.4845 | 0.6961 | | No log | 7.8125 | 250 | 0.5035 | 0.7283 | 0.5035 | 0.7096 | | No log | 7.875 | 252 | 0.5655 | 0.7477 | 0.5655 | 0.7520 | | No log | 7.9375 | 254 | 0.5849 | 0.7531 | 0.5849 | 0.7648 | | No log | 8.0 | 256 | 0.5314 | 0.7217 | 0.5314 | 0.7290 | | No log | 8.0625 | 258 | 0.4647 | 0.7171 | 0.4647 | 0.6817 | | No log | 8.125 | 260 | 0.4610 | 0.7179 | 0.4610 | 0.6790 | | No log | 8.1875 | 262 | 0.4578 | 0.7066 | 0.4578 | 0.6766 | | No log | 8.25 | 264 | 0.5117 | 0.7492 | 0.5117 | 0.7153 | | No log | 8.3125 | 266 | 0.6155 | 0.6401 | 0.6155 | 0.7846 | | No log | 8.375 | 268 | 0.6728 | 0.6151 | 0.6728 | 0.8203 | | No log | 8.4375 | 270 | 0.6915 | 0.5734 | 0.6915 | 0.8316 | | No log | 8.5 | 272 | 0.6398 | 0.6102 | 0.6398 | 0.7998 | | No log | 8.5625 | 274 | 0.6145 | 0.6065 | 0.6145 | 0.7839 | | No log | 8.625 | 276 | 0.6022 | 0.5747 | 0.6022 | 0.7760 | | No log | 8.6875 | 278 | 0.5641 | 0.6198 | 0.5641 | 0.7511 | | No log | 8.75 | 280 | 0.6241 | 0.5579 | 0.6241 | 0.7900 | | No log | 8.8125 | 282 | 0.6690 | 0.5346 | 0.6690 | 0.8179 | | No log | 8.875 | 284 | 0.6612 | 0.5463 | 0.6612 | 0.8131 | | No log | 8.9375 | 286 | 0.6295 | 0.5663 | 0.6295 | 0.7934 | | No log | 9.0 | 288 | 0.6285 | 0.5856 | 0.6285 | 0.7928 | | No log | 9.0625 | 290 | 0.5589 | 0.6310 | 0.5589 | 0.7476 | | No log | 9.125 | 292 | 0.5466 | 0.6420 | 0.5466 | 0.7393 | | No log | 9.1875 | 294 | 0.6236 | 0.5833 | 0.6236 | 0.7897 | | No log | 9.25 | 296 | 0.7751 | 0.5920 | 0.7751 | 0.8804 | | No log | 9.3125 | 298 | 0.8750 | 0.5668 | 0.8750 | 0.9354 | | No log | 9.375 | 300 | 0.8819 | 0.5330 | 0.8819 | 0.9391 | | No log | 9.4375 | 302 | 0.7336 | 0.5320 | 0.7336 | 0.8565 | | No log | 9.5 | 304 | 0.6952 | 0.5644 | 0.6952 | 0.8338 | | No log | 9.5625 | 306 | 0.6473 | 0.5663 | 0.6473 | 0.8045 | | No log | 9.625 | 308 | 0.6357 | 0.6151 | 0.6357 | 0.7973 | | No log | 9.6875 | 310 | 0.7411 | 0.5614 | 0.7411 | 0.8609 | | No log | 9.75 | 312 | 0.9103 | 0.5943 | 0.9103 | 0.9541 | | No log | 9.8125 | 314 | 0.9162 | 0.5943 | 0.9162 | 0.9572 | | No log | 9.875 | 316 | 0.7175 | 0.5631 | 0.7175 | 0.8470 | | No log | 9.9375 | 318 | 0.5872 | 0.5927 | 0.5872 | 0.7663 | | No log | 10.0 | 320 | 0.5730 | 0.6301 | 0.5730 | 0.7570 | | No log | 10.0625 | 322 | 0.5982 | 0.5733 | 0.5982 | 0.7734 | | No log | 10.125 | 324 | 0.6469 | 0.5437 | 0.6469 | 0.8043 | | No log | 10.1875 | 326 | 0.7588 | 0.5320 | 0.7588 | 0.8711 | | No log | 10.25 | 328 | 0.8064 | 0.5272 | 0.8064 | 0.8980 | | No log | 10.3125 | 330 | 0.7763 | 0.5272 | 0.7763 | 0.8811 | | No log | 10.375 | 332 | 0.7256 | 0.5750 | 0.7256 | 0.8518 | | No log | 10.4375 | 334 | 0.7657 | 0.5562 | 0.7657 | 0.8750 | | No log | 10.5 | 336 | 0.8493 | 0.4969 | 0.8493 | 0.9216 | | No log | 10.5625 | 338 | 0.8219 | 0.4775 | 0.8219 | 0.9066 | | No log | 10.625 | 340 | 0.8065 | 0.4775 | 0.8065 | 0.8981 | | No log | 10.6875 | 342 | 0.6869 | 0.5265 | 0.6869 | 0.8288 | | No log | 10.75 | 344 | 0.5937 | 0.6004 | 0.5937 | 0.7705 | | No log | 10.8125 | 346 | 0.5117 | 0.7277 | 0.5117 | 0.7153 | | No log | 10.875 | 348 | 0.4934 | 0.7171 | 0.4934 | 0.7024 | | No log | 10.9375 | 350 | 0.5352 | 0.6719 | 0.5352 | 0.7316 | | No log | 11.0 | 352 | 0.6561 | 0.5636 | 0.6561 | 0.8100 | | No log | 11.0625 | 354 | 0.6766 | 0.5543 | 0.6766 | 0.8225 | | No log | 11.125 | 356 | 0.6126 | 0.5491 | 0.6126 | 0.7827 | | No log | 11.1875 | 358 | 0.5561 | 0.6413 | 0.5561 | 0.7457 | | No log | 11.25 | 360 | 0.5310 | 0.7051 | 0.5310 | 0.7287 | | No log | 11.3125 | 362 | 0.5524 | 0.6639 | 0.5524 | 0.7432 | | No log | 11.375 | 364 | 0.6326 | 0.6226 | 0.6326 | 0.7954 | | No log | 11.4375 | 366 | 0.6798 | 0.6385 | 0.6798 | 0.8245 | | No log | 11.5 | 368 | 0.6136 | 0.6247 | 0.6136 | 0.7833 | | No log | 11.5625 | 370 | 0.5218 | 0.6946 | 0.5218 | 0.7224 | | No log | 11.625 | 372 | 0.4883 | 0.6597 | 0.4883 | 0.6988 | | No log | 11.6875 | 374 | 0.4914 | 0.6175 | 0.4914 | 0.7010 | | No log | 11.75 | 376 | 0.5096 | 0.6499 | 0.5096 | 0.7139 | | No log | 11.8125 | 378 | 0.5218 | 0.6392 | 0.5218 | 0.7223 | | No log | 11.875 | 380 | 0.5099 | 0.6764 | 0.5099 | 0.7141 | | No log | 11.9375 | 382 | 0.5140 | 0.7012 | 0.5140 | 0.7169 | | No log | 12.0 | 384 | 0.5074 | 0.7012 | 0.5074 | 0.7123 | | No log | 12.0625 | 386 | 0.4942 | 0.7012 | 0.4942 | 0.7030 | | No log | 12.125 | 388 | 0.4984 | 0.7213 | 0.4984 | 0.7059 | | No log | 12.1875 | 390 | 0.5431 | 0.6940 | 0.5431 | 0.7370 | | No log | 12.25 | 392 | 0.6403 | 0.7149 | 0.6403 | 0.8002 | | No log | 12.3125 | 394 | 0.6484 | 0.6878 | 0.6484 | 0.8052 | | No log | 12.375 | 396 | 0.5750 | 0.7036 | 0.5750 | 0.7583 | | No log | 12.4375 | 398 | 0.4893 | 0.7341 | 0.4893 | 0.6995 | | No log | 12.5 | 400 | 0.4747 | 0.7035 | 0.4747 | 0.6890 | | No log | 12.5625 | 402 | 0.4704 | 0.7101 | 0.4704 | 0.6858 | | No log | 12.625 | 404 | 0.4819 | 0.7141 | 0.4819 | 0.6942 | | No log | 12.6875 | 406 | 0.5444 | 0.6815 | 0.5444 | 0.7378 | | No log | 12.75 | 408 | 0.7225 | 0.6020 | 0.7225 | 0.8500 | | No log | 12.8125 | 410 | 0.8058 | 0.5546 | 0.8058 | 0.8977 | | No log | 12.875 | 412 | 0.7505 | 0.5177 | 0.7505 | 0.8663 | | No log | 12.9375 | 414 | 0.6641 | 0.5463 | 0.6641 | 0.8149 | | No log | 13.0 | 416 | 0.6724 | 0.5515 | 0.6724 | 0.8200 | | No log | 13.0625 | 418 | 0.7042 | 0.5045 | 0.7042 | 0.8392 | | No log | 13.125 | 420 | 0.7629 | 0.4157 | 0.7629 | 0.8735 | | No log | 13.1875 | 422 | 0.7825 | 0.4157 | 0.7825 | 0.8846 | | No log | 13.25 | 424 | 0.8108 | 0.4175 | 0.8108 | 0.9004 | | No log | 13.3125 | 426 | 0.8044 | 0.4197 | 0.8044 | 0.8969 | | No log | 13.375 | 428 | 0.8090 | 0.4326 | 0.8090 | 0.8995 | | No log | 13.4375 | 430 | 0.7798 | 0.4667 | 0.7798 | 0.8831 | | No log | 13.5 | 432 | 0.7228 | 0.5360 | 0.7228 | 0.8502 | | No log | 13.5625 | 434 | 0.6733 | 0.5824 | 0.6733 | 0.8205 | | No log | 13.625 | 436 | 0.6322 | 0.5875 | 0.6322 | 0.7951 | | No log | 13.6875 | 438 | 0.6288 | 0.5875 | 0.6288 | 0.7930 | | No log | 13.75 | 440 | 0.6844 | 0.5390 | 0.6844 | 0.8273 | | No log | 13.8125 | 442 | 0.7568 | 0.5320 | 0.7568 | 0.8699 | | No log | 13.875 | 444 | 0.7395 | 0.5420 | 0.7395 | 0.8599 | | No log | 13.9375 | 446 | 0.6493 | 0.5567 | 0.6493 | 0.8058 | | No log | 14.0 | 448 | 0.6001 | 0.6021 | 0.6001 | 0.7746 | | No log | 14.0625 | 450 | 0.5753 | 0.6121 | 0.5753 | 0.7585 | | No log | 14.125 | 452 | 0.5772 | 0.6121 | 0.5772 | 0.7598 | | No log | 14.1875 | 454 | 0.5761 | 0.5970 | 0.5761 | 0.7590 | | No log | 14.25 | 456 | 0.5841 | 0.6220 | 0.5841 | 0.7643 | | No log | 14.3125 | 458 | 0.6320 | 0.6336 | 0.6320 | 0.7950 | | No log | 14.375 | 460 | 0.6716 | 0.6053 | 0.6716 | 0.8195 | | No log | 14.4375 | 462 | 0.6388 | 0.6154 | 0.6388 | 0.7992 | | No log | 14.5 | 464 | 0.5529 | 0.6601 | 0.5529 | 0.7435 | | No log | 14.5625 | 466 | 0.4954 | 0.6728 | 0.4954 | 0.7038 | | No log | 14.625 | 468 | 0.4680 | 0.7402 | 0.4680 | 0.6841 | | No log | 14.6875 | 470 | 0.4710 | 0.7285 | 0.4710 | 0.6863 | | No log | 14.75 | 472 | 0.5060 | 0.6871 | 0.5060 | 0.7113 | | No log | 14.8125 | 474 | 0.5924 | 0.6290 | 0.5924 | 0.7697 | | No log | 14.875 | 476 | 0.5959 | 0.6489 | 0.5959 | 0.7720 | | No log | 14.9375 | 478 | 0.5627 | 0.6422 | 0.5627 | 0.7502 | | No log | 15.0 | 480 | 0.5402 | 0.6983 | 0.5402 | 0.7349 | | No log | 15.0625 | 482 | 0.4998 | 0.7193 | 0.4998 | 0.7070 | | No log | 15.125 | 484 | 0.4732 | 0.6659 | 0.4732 | 0.6879 | | No log | 15.1875 | 486 | 0.4898 | 0.6779 | 0.4898 | 0.6998 | | No log | 15.25 | 488 | 0.4895 | 0.7012 | 0.4895 | 0.6996 | | No log | 15.3125 | 490 | 0.5249 | 0.7388 | 0.5249 | 0.7245 | | No log | 15.375 | 492 | 0.5612 | 0.6885 | 0.5612 | 0.7491 | | No log | 15.4375 | 494 | 0.5642 | 0.6619 | 0.5642 | 0.7511 | | No log | 15.5 | 496 | 0.6264 | 0.6640 | 0.6264 | 0.7914 | | No log | 15.5625 | 498 | 0.6910 | 0.6589 | 0.6910 | 0.8313 | | 0.2924 | 15.625 | 500 | 0.6767 | 0.6094 | 0.6767 | 0.8226 | | 0.2924 | 15.6875 | 502 | 0.6553 | 0.5952 | 0.6553 | 0.8095 | | 0.2924 | 15.75 | 504 | 0.6032 | 0.6021 | 0.6032 | 0.7767 | | 0.2924 | 15.8125 | 506 | 0.5653 | 0.6290 | 0.5653 | 0.7519 | | 0.2924 | 15.875 | 508 | 0.5607 | 0.6582 | 0.5607 | 0.7488 | | 0.2924 | 15.9375 | 510 | 0.5676 | 0.6132 | 0.5676 | 0.7534 | | 0.2924 | 16.0 | 512 | 0.6098 | 0.6275 | 0.6098 | 0.7809 | | 0.2924 | 16.0625 | 514 | 0.6297 | 0.6281 | 0.6297 | 0.7935 | | 0.2924 | 16.125 | 516 | 0.6173 | 0.6608 | 0.6173 | 0.7857 | | 0.2924 | 16.1875 | 518 | 0.5480 | 0.7013 | 0.5480 | 0.7403 | | 0.2924 | 16.25 | 520 | 0.4986 | 0.7198 | 0.4986 | 0.7061 | | 0.2924 | 16.3125 | 522 | 0.5003 | 0.7198 | 0.5003 | 0.7073 | | 0.2924 | 16.375 | 524 | 0.5152 | 0.7191 | 0.5152 | 0.7177 | | 0.2924 | 16.4375 | 526 | 0.5144 | 0.7348 | 0.5144 | 0.7172 | | 0.2924 | 16.5 | 528 | 0.5287 | 0.6821 | 0.5287 | 0.7271 | | 0.2924 | 16.5625 | 530 | 0.5562 | 0.6791 | 0.5562 | 0.7458 | | 0.2924 | 16.625 | 532 | 0.5832 | 0.6529 | 0.5832 | 0.7637 | | 0.2924 | 16.6875 | 534 | 0.5558 | 0.6993 | 0.5558 | 0.7455 | | 0.2924 | 16.75 | 536 | 0.5247 | 0.6842 | 0.5247 | 0.7244 | | 0.2924 | 16.8125 | 538 | 0.5110 | 0.6995 | 0.5110 | 0.7149 | | 0.2924 | 16.875 | 540 | 0.5042 | 0.7131 | 0.5042 | 0.7100 | | 0.2924 | 16.9375 | 542 | 0.4960 | 0.6886 | 0.4960 | 0.7043 | | 0.2924 | 17.0 | 544 | 0.5230 | 0.6871 | 0.5230 | 0.7232 | | 0.2924 | 17.0625 | 546 | 0.5488 | 0.6556 | 0.5488 | 0.7408 | | 0.2924 | 17.125 | 548 | 0.5529 | 0.6278 | 0.5529 | 0.7436 | | 0.2924 | 17.1875 | 550 | 0.5724 | 0.6450 | 0.5724 | 0.7566 | | 0.2924 | 17.25 | 552 | 0.5595 | 0.6417 | 0.5595 | 0.7480 | | 0.2924 | 17.3125 | 554 | 0.5368 | 0.7050 | 0.5368 | 0.7326 | | 0.2924 | 17.375 | 556 | 0.5374 | 0.7015 | 0.5374 | 0.7331 | | 0.2924 | 17.4375 | 558 | 0.5410 | 0.6906 | 0.5410 | 0.7355 | | 0.2924 | 17.5 | 560 | 0.5600 | 0.6411 | 0.5600 | 0.7483 | | 0.2924 | 17.5625 | 562 | 0.5271 | 0.7191 | 0.5271 | 0.7260 | | 0.2924 | 17.625 | 564 | 0.4938 | 0.6916 | 0.4938 | 0.7027 | | 0.2924 | 17.6875 | 566 | 0.4951 | 0.6916 | 0.4951 | 0.7036 | | 0.2924 | 17.75 | 568 | 0.5220 | 0.7059 | 0.5220 | 0.7225 | | 0.2924 | 17.8125 | 570 | 0.5961 | 0.6413 | 0.5961 | 0.7721 | | 0.2924 | 17.875 | 572 | 0.6279 | 0.5902 | 0.6279 | 0.7924 | | 0.2924 | 17.9375 | 574 | 0.6013 | 0.6596 | 0.6013 | 0.7754 | | 0.2924 | 18.0 | 576 | 0.5338 | 0.6584 | 0.5338 | 0.7306 | | 0.2924 | 18.0625 | 578 | 0.5031 | 0.6806 | 0.5031 | 0.7093 | | 0.2924 | 18.125 | 580 | 0.4860 | 0.7081 | 0.4860 | 0.6971 | | 0.2924 | 18.1875 | 582 | 0.4981 | 0.6929 | 0.4981 | 0.7058 | | 0.2924 | 18.25 | 584 | 0.5627 | 0.7203 | 0.5627 | 0.7501 | | 0.2924 | 18.3125 | 586 | 0.6312 | 0.6878 | 0.6312 | 0.7945 | | 0.2924 | 18.375 | 588 | 0.6485 | 0.6909 | 0.6485 | 0.8053 | | 0.2924 | 18.4375 | 590 | 0.5977 | 0.6738 | 0.5977 | 0.7731 | | 0.2924 | 18.5 | 592 | 0.5620 | 0.6520 | 0.5620 | 0.7496 | | 0.2924 | 18.5625 | 594 | 0.5461 | 0.6753 | 0.5461 | 0.7390 | | 0.2924 | 18.625 | 596 | 0.5394 | 0.6925 | 0.5394 | 0.7344 | | 0.2924 | 18.6875 | 598 | 0.5242 | 0.7109 | 0.5242 | 0.7240 | | 0.2924 | 18.75 | 600 | 0.5296 | 0.6946 | 0.5296 | 0.7277 | | 0.2924 | 18.8125 | 602 | 0.5359 | 0.6983 | 0.5359 | 0.7321 | | 0.2924 | 18.875 | 604 | 0.5611 | 0.6871 | 0.5611 | 0.7491 | | 0.2924 | 18.9375 | 606 | 0.5999 | 0.6035 | 0.5999 | 0.7745 | | 0.2924 | 19.0 | 608 | 0.6188 | 0.6035 | 0.6188 | 0.7867 | | 0.2924 | 19.0625 | 610 | 0.6217 | 0.6181 | 0.6217 | 0.7885 | | 0.2924 | 19.125 | 612 | 0.5918 | 0.7030 | 0.5918 | 0.7693 | | 0.2924 | 19.1875 | 614 | 0.5289 | 0.6766 | 0.5289 | 0.7273 | | 0.2924 | 19.25 | 616 | 0.4887 | 0.7291 | 0.4887 | 0.6990 | | 0.2924 | 19.3125 | 618 | 0.4783 | 0.7253 | 0.4783 | 0.6916 | | 0.2924 | 19.375 | 620 | 0.4849 | 0.7049 | 0.4849 | 0.6963 | | 0.2924 | 19.4375 | 622 | 0.4865 | 0.7253 | 0.4865 | 0.6975 | | 0.2924 | 19.5 | 624 | 0.5522 | 0.6869 | 0.5522 | 0.7431 | | 0.2924 | 19.5625 | 626 | 0.6427 | 0.6071 | 0.6427 | 0.8017 | | 0.2924 | 19.625 | 628 | 0.6374 | 0.6071 | 0.6374 | 0.7984 | | 0.2924 | 19.6875 | 630 | 0.5602 | 0.6869 | 0.5602 | 0.7485 | | 0.2924 | 19.75 | 632 | 0.4917 | 0.6753 | 0.4917 | 0.7012 | | 0.2924 | 19.8125 | 634 | 0.4830 | 0.6750 | 0.4830 | 0.6950 | | 0.2924 | 19.875 | 636 | 0.4962 | 0.6566 | 0.4962 | 0.7044 | | 0.2924 | 19.9375 | 638 | 0.4991 | 0.6598 | 0.4991 | 0.7065 | | 0.2924 | 20.0 | 640 | 0.5182 | 0.6805 | 0.5182 | 0.7198 | | 0.2924 | 20.0625 | 642 | 0.5493 | 0.6878 | 0.5493 | 0.7412 | | 0.2924 | 20.125 | 644 | 0.6080 | 0.6605 | 0.6080 | 0.7797 | | 0.2924 | 20.1875 | 646 | 0.6353 | 0.6136 | 0.6353 | 0.7970 | | 0.2924 | 20.25 | 648 | 0.6259 | 0.6296 | 0.6259 | 0.7912 | | 0.2924 | 20.3125 | 650 | 0.6217 | 0.6263 | 0.6217 | 0.7885 | | 0.2924 | 20.375 | 652 | 0.5919 | 0.6740 | 0.5919 | 0.7694 | | 0.2924 | 20.4375 | 654 | 0.5643 | 0.6938 | 0.5643 | 0.7512 | | 0.2924 | 20.5 | 656 | 0.5456 | 0.7109 | 0.5456 | 0.7386 | | 0.2924 | 20.5625 | 658 | 0.5330 | 0.7223 | 0.5330 | 0.7300 | | 0.2924 | 20.625 | 660 | 0.5325 | 0.7335 | 0.5325 | 0.7297 | | 0.2924 | 20.6875 | 662 | 0.5473 | 0.7385 | 0.5473 | 0.7398 | | 0.2924 | 20.75 | 664 | 0.5997 | 0.7001 | 0.5997 | 0.7744 | | 0.2924 | 20.8125 | 666 | 0.6200 | 0.6455 | 0.6200 | 0.7874 | | 0.2924 | 20.875 | 668 | 0.6244 | 0.6385 | 0.6244 | 0.7902 | | 0.2924 | 20.9375 | 670 | 0.6483 | 0.5953 | 0.6483 | 0.8052 | | 0.2924 | 21.0 | 672 | 0.6735 | 0.5463 | 0.6735 | 0.8207 | | 0.2924 | 21.0625 | 674 | 0.6887 | 0.5229 | 0.6887 | 0.8299 | | 0.2924 | 21.125 | 676 | 0.6850 | 0.5028 | 0.6850 | 0.8277 | | 0.2924 | 21.1875 | 678 | 0.6880 | 0.5028 | 0.6880 | 0.8294 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1
VERSIL91/a58ac106-6bc2-4e63-bb6f-30052f9b9185
VERSIL91
2025-01-12T19:53:04Z
10
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:Maykeye/TinyLLama-v0", "base_model:adapter:Maykeye/TinyLLama-v0", "license:apache-2.0", "region:us" ]
null
2025-01-12T19:51:15Z
--- library_name: peft license: apache-2.0 base_model: Maykeye/TinyLLama-v0 tags: - axolotl - generated_from_trainer model-index: - name: a58ac106-6bc2-4e63-bb6f-30052f9b9185 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml accelerate_config: dynamo_backend: inductor mixed_precision: bf16 num_machines: 1 num_processes: auto use_cpu: false adapter: lora base_model: Maykeye/TinyLLama-v0 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - cc55b427d5fc1cea_train_data.json ds_type: json format: custom path: /workspace/input_data/cc55b427d5fc1cea_train_data.json type: field_instruction: context field_output: question format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 16 gradient_checkpointing: true group_by_length: false hub_model_id: VERSIL91/a58ac106-6bc2-4e63-bb6f-30052f9b9185 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lora_target_modules: - q_proj - v_proj lr_scheduler: cosine max_memory: 0: 70GiB max_steps: 20 micro_batch_size: 2 mlflow_experiment_name: /tmp/cc55b427d5fc1cea_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true quantization_config: llm_int8_enable_fp32_cpu_offload: true load_in_8bit: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer torch_compile: true train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: a58ac106-6bc2-4e63-bb6f-30052f9b9185 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: a58ac106-6bc2-4e63-bb6f-30052f9b9185 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # a58ac106-6bc2-4e63-bb6f-30052f9b9185 This model is a fine-tuned version of [Maykeye/TinyLLama-v0](https://huggingface.co/Maykeye/TinyLLama-v0) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.6674 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 7.1517 | 0.0182 | 1 | 7.0191 | | 7.2267 | 0.0912 | 5 | 6.9810 | | 6.9111 | 0.1824 | 10 | 6.8554 | | 6.9094 | 0.2737 | 15 | 6.7058 | | 6.7143 | 0.3649 | 20 | 6.6674 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Viscoke/qx25
Viscoke
2025-01-12T19:53:04Z
82
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-12T18:57:34Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
prxy5605/619a503b-e15e-48f6-970e-7f84e37b7bf0
prxy5605
2025-01-12T19:52:21Z
11
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:NousResearch/Nous-Hermes-2-SOLAR-10.7B", "base_model:adapter:NousResearch/Nous-Hermes-2-SOLAR-10.7B", "license:apache-2.0", "region:us" ]
null
2025-01-12T19:39:26Z
--- library_name: peft license: apache-2.0 base_model: NousResearch/Nous-Hermes-2-SOLAR-10.7B tags: - axolotl - generated_from_trainer model-index: - name: 619a503b-e15e-48f6-970e-7f84e37b7bf0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Nous-Hermes-2-SOLAR-10.7B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 35e42979deef2ace_train_data.json ds_type: json format: custom path: /workspace/input_data/35e42979deef2ace_train_data.json type: field_instruction: prompt field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: null eval_batch_size: 2 eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: true hub_model_id: prxy5605/619a503b-e15e-48f6-970e-7f84e37b7bf0 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 5 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 400 micro_batch_size: 2 mlflow_experiment_name: /tmp/35e42979deef2ace_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null saves_per_epoch: null sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 8a25c2d0-3f47-4475-82ef-74ba7cd1fcaa wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 8a25c2d0-3f47-4475-82ef-74ba7cd1fcaa warmup_steps: 30 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 619a503b-e15e-48f6-970e-7f84e37b7bf0 This model is a fine-tuned version of [NousResearch/Nous-Hermes-2-SOLAR-10.7B](https://huggingface.co/NousResearch/Nous-Hermes-2-SOLAR-10.7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1479 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 30 - training_steps: 264 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0038 | 1 | 2.0063 | | 1.0091 | 0.2502 | 66 | 1.3693 | | 1.0864 | 0.5005 | 132 | 1.2408 | | 1.4613 | 0.7507 | 198 | 1.1725 | | 1.0496 | 1.0028 | 264 | 1.1479 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
DebopamC/Text-to-SQL__Qwen2.5-Coder-3B-FineTuned
DebopamC
2025-01-12T19:51:37Z
25
0
null
[ "gguf", "qwen2", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-05T17:50:16Z
--- license: apache-2.0 ---
AmberYifan/Gemma-7B-sft-gen-dpo-10k
AmberYifan
2025-01-12T19:50:11Z
17
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "generated_from_trainer", "trl", "dpo", "conversational", "arxiv:2305.18290", "base_model:AmberYifan/Gemma-7b-sft-ultrachat-safeRLHF", "base_model:finetune:AmberYifan/Gemma-7b-sft-ultrachat-safeRLHF", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-12T18:15:07Z
--- base_model: AmberYifan/Gemma-7b-sft-ultrachat-safeRLHF library_name: transformers model_name: Gemma-7B-sft-gen-dpo-10k tags: - generated_from_trainer - trl - dpo licence: license --- # Model Card for Gemma-7B-sft-gen-dpo-10k This model is a fine-tuned version of [AmberYifan/Gemma-7b-sft-ultrachat-safeRLHF](https://huggingface.co/AmberYifan/Gemma-7b-sft-ultrachat-safeRLHF). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="AmberYifan/Gemma-7B-sft-gen-dpo-10k", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/yifanwang/huggingface/runs/k8ru4b4w) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.12.2 - Transformers: 4.46.3 - Pytorch: 2.5.1+cu118 - Datasets: 3.2.0 - Tokenizers: 0.20.3 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Triangle104/VersatiLlama-Llama-3.2-3B-Instruct-Abliterated-Q5_K_M-GGUF
Triangle104
2025-01-12T19:49:30Z
56
0
transformers
[ "transformers", "gguf", "llama-cpp", "gguf-my-repo", "text-generation", "en", "base_model:Devarui379/VersatiLlama-Llama-3.2-3B-Instruct-Abliterated", "base_model:quantized:Devarui379/VersatiLlama-Llama-3.2-3B-Instruct-Abliterated", "license:cc-by-4.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-01-12T19:48:20Z
--- base_model: Devarui379/VersatiLlama-Llama-3.2-3B-Instruct-Abliterated license: cc-by-4.0 language: - en pipeline_tag: text-generation library_name: transformers tags: - llama-cpp - gguf-my-repo --- # Triangle104/VersatiLlama-Llama-3.2-3B-Instruct-Abliterated-Q5_K_M-GGUF This model was converted to GGUF format from [`Devarui379/VersatiLlama-Llama-3.2-3B-Instruct-Abliterated`](https://huggingface.co/Devarui379/VersatiLlama-Llama-3.2-3B-Instruct-Abliterated) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Devarui379/VersatiLlama-Llama-3.2-3B-Instruct-Abliterated) for more details on the model. --- Model details: - Small but Smart Fine-Tuned on Vast dataset of Conversations Able to Generate Human like text with high performance within its size. It is Very Versatile when compared for it's size and Parameters and offers capability almost as good as Llama 3.1 8B Instruct Feel free to Check it out!! [This model was trained for 5hrs on GPU T4 15gb vram] Developed by: Meta AI Fine-Tuned by: Devarui379 Model type: Transformers Language(s) (NLP): English License: cc-by-4.0 Model Sources [optional] base model:meta-llama/Llama-3.2-3B-Instruct Repository: Devarui379/VersatiLlama-Llama-3.2-3B-Instruct-Abliterated Demo: Use LM Studio with the Quantized version Uses Use desired System prompt when using in LM Studio The optimal chat template seems to be Jinja but feel free to test it out as you want! Technical Specifications Model Architecture and Objective Llama 3.2 Hardware NVIDIA TESLA T4 GPU 15GB VRAM --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/VersatiLlama-Llama-3.2-3B-Instruct-Abliterated-Q5_K_M-GGUF --hf-file versatillama-llama-3.2-3b-instruct-abliterated-q5_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/VersatiLlama-Llama-3.2-3B-Instruct-Abliterated-Q5_K_M-GGUF --hf-file versatillama-llama-3.2-3b-instruct-abliterated-q5_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/VersatiLlama-Llama-3.2-3B-Instruct-Abliterated-Q5_K_M-GGUF --hf-file versatillama-llama-3.2-3b-instruct-abliterated-q5_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/VersatiLlama-Llama-3.2-3B-Instruct-Abliterated-Q5_K_M-GGUF --hf-file versatillama-llama-3.2-3b-instruct-abliterated-q5_k_m.gguf -c 2048 ```
chchen/Llama-3.1-8B-Instruct-SFT-200
chchen
2025-01-12T19:48:07Z
12
0
peft
[ "peft", "safetensors", "llama-factory", "lora", "generated_from_trainer", "base_model:meta-llama/Llama-3.1-8B-Instruct", "base_model:adapter:meta-llama/Llama-3.1-8B-Instruct", "license:llama3.1", "region:us" ]
null
2025-01-12T19:45:03Z
--- base_model: meta-llama/Llama-3.1-8B-Instruct library_name: peft license: llama3.1 tags: - llama-factory - lora - generated_from_trainer model-index: - name: Llama-3.1-8B-Instruct-SFT-200 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Llama-3.1-8B-Instruct-SFT-200 This model is a fine-tuned version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) on the bct_non_cot_sft_200 dataset. It achieves the following results on the evaluation set: - Loss: 0.2912 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.7576 | 4.4444 | 50 | 0.6173 | | 0.3664 | 8.8889 | 100 | 0.2912 | ### Framework versions - PEFT 0.12.0 - Transformers 4.45.2 - Pytorch 2.3.0 - Datasets 2.19.0 - Tokenizers 0.20.0
lesso01/0300f9a2-cfe5-41bb-9f8c-d50f48298b0d
lesso01
2025-01-12T19:47:59Z
10
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:jhflow/mistral7b-lora-multi-turn-v2", "base_model:adapter:jhflow/mistral7b-lora-multi-turn-v2", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-12T19:46:33Z
--- library_name: peft base_model: jhflow/mistral7b-lora-multi-turn-v2 tags: - axolotl - generated_from_trainer model-index: - name: 0300f9a2-cfe5-41bb-9f8c-d50f48298b0d results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: jhflow/mistral7b-lora-multi-turn-v2 bf16: true chat_template: llama3 datasets: - data_files: - fb0d93ffd295c2a8_train_data.json ds_type: json format: custom path: /workspace/input_data/fb0d93ffd295c2a8_train_data.json type: field_instruction: instruction field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: lesso01/0300f9a2-cfe5-41bb-9f8c-d50f48298b0d hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 25 micro_batch_size: 2 mlflow_experiment_name: /tmp/fb0d93ffd295c2a8_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 7a5a77d7-23c7-4fa5-91b5-25fb954aebc0 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 7a5a77d7-23c7-4fa5-91b5-25fb954aebc0 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 0300f9a2-cfe5-41bb-9f8c-d50f48298b0d This model is a fine-tuned version of [jhflow/mistral7b-lora-multi-turn-v2](https://huggingface.co/jhflow/mistral7b-lora-multi-turn-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0092 | 1 | nan | | 0.0 | 0.0462 | 5 | nan | | 0.0 | 0.0924 | 10 | nan | | 0.0 | 0.1386 | 15 | nan | | 0.0 | 0.1848 | 20 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
filipesantoscv11/f92ca67b-efbc-4d17-b065-c095de7e2b56
filipesantoscv11
2025-01-12T19:47:32Z
10
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:jhflow/mistral7b-lora-multi-turn-v2", "base_model:adapter:jhflow/mistral7b-lora-multi-turn-v2", "region:us" ]
null
2025-01-12T19:46:15Z
--- library_name: peft base_model: jhflow/mistral7b-lora-multi-turn-v2 tags: - axolotl - generated_from_trainer model-index: - name: f92ca67b-efbc-4d17-b065-c095de7e2b56 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: jhflow/mistral7b-lora-multi-turn-v2 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - fb0d93ffd295c2a8_train_data.json ds_type: json format: custom path: /workspace/input_data/fb0d93ffd295c2a8_train_data.json type: field_instruction: instruction field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: filipesantoscv11/f92ca67b-efbc-4d17-b065-c095de7e2b56 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 75GiB max_steps: 30 micro_batch_size: 2 mlflow_experiment_name: /tmp/fb0d93ffd295c2a8_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_hf output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 7a5a77d7-23c7-4fa5-91b5-25fb954aebc0 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 7a5a77d7-23c7-4fa5-91b5-25fb954aebc0 warmup_steps: 10 weight_decay: 0.01 xformers_attention: true ``` </details><br> # f92ca67b-efbc-4d17-b065-c095de7e2b56 This model is a fine-tuned version of [jhflow/mistral7b-lora-multi-turn-v2](https://huggingface.co/jhflow/mistral7b-lora-multi-turn-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_HF with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0092 | 1 | nan | | 0.0 | 0.0739 | 8 | nan | | 0.0 | 0.1478 | 16 | nan | | 0.0 | 0.2217 | 24 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Triangle104/VersatiLlama-Llama-3.2-3B-Instruct-Abliterated-Q4_K_M-GGUF
Triangle104
2025-01-12T19:46:49Z
33
0
transformers
[ "transformers", "gguf", "llama-cpp", "gguf-my-repo", "text-generation", "en", "base_model:Devarui379/VersatiLlama-Llama-3.2-3B-Instruct-Abliterated", "base_model:quantized:Devarui379/VersatiLlama-Llama-3.2-3B-Instruct-Abliterated", "license:cc-by-4.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-01-12T19:45:47Z
--- base_model: Devarui379/VersatiLlama-Llama-3.2-3B-Instruct-Abliterated license: cc-by-4.0 language: - en pipeline_tag: text-generation library_name: transformers tags: - llama-cpp - gguf-my-repo --- # Triangle104/VersatiLlama-Llama-3.2-3B-Instruct-Abliterated-Q4_K_M-GGUF This model was converted to GGUF format from [`Devarui379/VersatiLlama-Llama-3.2-3B-Instruct-Abliterated`](https://huggingface.co/Devarui379/VersatiLlama-Llama-3.2-3B-Instruct-Abliterated) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Devarui379/VersatiLlama-Llama-3.2-3B-Instruct-Abliterated) for more details on the model. --- Model details: - Small but Smart Fine-Tuned on Vast dataset of Conversations Able to Generate Human like text with high performance within its size. It is Very Versatile when compared for it's size and Parameters and offers capability almost as good as Llama 3.1 8B Instruct Feel free to Check it out!! [This model was trained for 5hrs on GPU T4 15gb vram] Developed by: Meta AI Fine-Tuned by: Devarui379 Model type: Transformers Language(s) (NLP): English License: cc-by-4.0 Model Sources [optional] base model:meta-llama/Llama-3.2-3B-Instruct Repository: Devarui379/VersatiLlama-Llama-3.2-3B-Instruct-Abliterated Demo: Use LM Studio with the Quantized version Uses Use desired System prompt when using in LM Studio The optimal chat template seems to be Jinja but feel free to test it out as you want! Technical Specifications Model Architecture and Objective Llama 3.2 Hardware NVIDIA TESLA T4 GPU 15GB VRAM --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/VersatiLlama-Llama-3.2-3B-Instruct-Abliterated-Q4_K_M-GGUF --hf-file versatillama-llama-3.2-3b-instruct-abliterated-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/VersatiLlama-Llama-3.2-3B-Instruct-Abliterated-Q4_K_M-GGUF --hf-file versatillama-llama-3.2-3b-instruct-abliterated-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/VersatiLlama-Llama-3.2-3B-Instruct-Abliterated-Q4_K_M-GGUF --hf-file versatillama-llama-3.2-3b-instruct-abliterated-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/VersatiLlama-Llama-3.2-3B-Instruct-Abliterated-Q4_K_M-GGUF --hf-file versatillama-llama-3.2-3b-instruct-abliterated-q4_k_m.gguf -c 2048 ```
0x1202/e9bfbbca-67a1-4bcc-ab50-fdfe6d558cbf
0x1202
2025-01-12T19:45:09Z
11
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:HuggingFaceM4/tiny-random-LlamaForCausalLM", "base_model:adapter:HuggingFaceM4/tiny-random-LlamaForCausalLM", "region:us" ]
null
2025-01-12T19:44:21Z
--- library_name: peft base_model: HuggingFaceM4/tiny-random-LlamaForCausalLM tags: - axolotl - generated_from_trainer model-index: - name: e9bfbbca-67a1-4bcc-ab50-fdfe6d558cbf results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: HuggingFaceM4/tiny-random-LlamaForCausalLM bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 120e2b58d59a1b2e_train_data.json ds_type: json format: custom path: /workspace/input_data/120e2b58d59a1b2e_train_data.json type: field_input: original_code field_instruction: update_snippet field_output: final_code format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: null eval_batch_size: 2 eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: true hub_model_id: 0x1202/e9bfbbca-67a1-4bcc-ab50-fdfe6d558cbf hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 5 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 400 micro_batch_size: 2 mlflow_experiment_name: /tmp/120e2b58d59a1b2e_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null saves_per_epoch: null sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 562f173b-b07d-4eb4-a59f-d230672ec843 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 562f173b-b07d-4eb4-a59f-d230672ec843 warmup_steps: 30 weight_decay: 0.0 xformers_attention: null ``` </details><br> # e9bfbbca-67a1-4bcc-ab50-fdfe6d558cbf This model is a fine-tuned version of [HuggingFaceM4/tiny-random-LlamaForCausalLM](https://huggingface.co/HuggingFaceM4/tiny-random-LlamaForCausalLM) on the None dataset. It achieves the following results on the evaluation set: - Loss: 10.3488 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 30 - training_steps: 400 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0015 | 1 | 10.3748 | | 10.3663 | 0.1480 | 100 | 10.3656 | | 10.3467 | 0.2961 | 200 | 10.3506 | | 10.3463 | 0.4441 | 300 | 10.3490 | | 10.3444 | 0.5922 | 400 | 10.3488 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
hgutjh/VJ4
hgutjh
2025-01-12T19:44:13Z
550
1
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-01-12T19:44:03Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: '-' output: url: images/big15-31-21_00001_.jpeg base_model: black-forest-labs/FLUX.1-dev instance_prompt: null --- # VJ4 <Gallery /> ## Download model Weights for this model are available in Safetensors format. [Download](/hgutjh/VJ4/tree/main) them in the Files & versions tab.
mergekit-community/mergekit-task_arithmetic-abcjxga
mergekit-community
2025-01-12T19:41:12Z
21
0
transformers
[ "transformers", "safetensors", "gemma2", "text-generation", "mergekit", "merge", "conversational", "arxiv:2212.04089", "base_model:IlyaGusev/gemma-2-9b-it-abliterated", "base_model:merge:IlyaGusev/gemma-2-9b-it-abliterated", "base_model:KR-X-AI/gemma-2-9b-untied", "base_model:merge:KR-X-AI/gemma-2-9b-untied", "base_model:sam-paech/Darkest-muse-v1", "base_model:merge:sam-paech/Darkest-muse-v1", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-12T19:33:20Z
--- base_model: - KR-X-AI/gemma-2-9b-untied - sam-paech/Darkest-muse-v1 - IlyaGusev/gemma-2-9b-it-abliterated library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [task arithmetic](https://arxiv.org/abs/2212.04089) merge method using [KR-X-AI/gemma-2-9b-untied](https://huggingface.co/KR-X-AI/gemma-2-9b-untied) as a base. ### Models Merged The following models were included in the merge: * [sam-paech/Darkest-muse-v1](https://huggingface.co/sam-paech/Darkest-muse-v1) * [IlyaGusev/gemma-2-9b-it-abliterated](https://huggingface.co/IlyaGusev/gemma-2-9b-it-abliterated) ### Configuration The following YAML configuration was used to produce this model: ```yaml base_model: KR-X-AI/gemma-2-9b-untied dtype: float32 merge_method: task_arithmetic slices: - sources: - layer_range: [0, 42] model: sam-paech/Darkest-muse-v1 parameters: weight: 1.0 - layer_range: [0, 42] model: IlyaGusev/gemma-2-9b-it-abliterated parameters: weight: 1.0 - layer_range: [0, 42] model: KR-X-AI/gemma-2-9b-untied ```
chchen/Llama-3.1-8B-Instruct-SAA-1000
chchen
2025-01-12T19:40:55Z
8
0
peft
[ "peft", "safetensors", "llama-factory", "lora", "trl", "dpo", "generated_from_trainer", "base_model:meta-llama/Llama-3.1-8B-Instruct", "base_model:adapter:meta-llama/Llama-3.1-8B-Instruct", "license:llama3.1", "region:us" ]
null
2025-01-12T19:20:06Z
--- base_model: meta-llama/Llama-3.1-8B-Instruct library_name: peft license: llama3.1 tags: - llama-factory - lora - trl - dpo - generated_from_trainer model-index: - name: Llama-3.1-8B-Instruct-SAA-1000 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Llama-3.1-8B-Instruct-SAA-1000 This model is a fine-tuned version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) on the bct_non_cot_dpo_1000 dataset. It achieves the following results on the evaluation set: - Loss: 0.1041 - Rewards/chosen: -0.0071 - Rewards/rejected: -0.0574 - Rewards/accuracies: 0.8700 - Rewards/margins: 0.0503 - Logps/rejected: -0.5741 - Logps/chosen: -0.0707 - Logits/rejected: -0.3997 - Logits/chosen: -0.3439 - Sft Loss: 0.0083 - Odds Ratio Loss: 0.9577 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | Sft Loss | Odds Ratio Loss | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|:--------:|:---------------:| | 1.61 | 0.8889 | 50 | 1.4462 | -0.1395 | -0.1818 | 0.7900 | 0.0423 | -1.8179 | -1.3950 | -0.4872 | -0.4121 | 0.1643 | 12.8185 | | 0.3241 | 1.7778 | 100 | 0.2648 | -0.0222 | -0.0659 | 0.8200 | 0.0438 | -0.6595 | -0.2217 | -0.4637 | -0.3875 | 0.0232 | 2.4164 | | 0.1509 | 2.6667 | 150 | 0.1238 | -0.0084 | -0.0490 | 0.8600 | 0.0406 | -0.4900 | -0.0840 | -0.4176 | -0.3601 | 0.0101 | 1.1374 | | 0.1335 | 3.5556 | 200 | 0.1089 | -0.0074 | -0.0505 | 0.8600 | 0.0432 | -0.5055 | -0.0738 | -0.4038 | -0.3492 | 0.0087 | 1.0023 | | 0.1253 | 4.4444 | 250 | 0.1136 | -0.0078 | -0.0536 | 0.8800 | 0.0458 | -0.5355 | -0.0776 | -0.3998 | -0.3449 | 0.0097 | 1.0396 | | 0.0851 | 5.3333 | 300 | 0.1041 | -0.0071 | -0.0574 | 0.8700 | 0.0503 | -0.5741 | -0.0707 | -0.3997 | -0.3439 | 0.0083 | 0.9577 | | 0.0824 | 6.2222 | 350 | 0.1065 | -0.0073 | -0.0587 | 0.8700 | 0.0514 | -0.5869 | -0.0728 | -0.3969 | -0.3419 | 0.0088 | 0.9767 | | 0.0869 | 7.1111 | 400 | 0.1160 | -0.0080 | -0.0625 | 0.8800 | 0.0545 | -0.6250 | -0.0801 | -0.3942 | -0.3392 | 0.0102 | 1.0581 | | 0.0715 | 8.0 | 450 | 0.1095 | -0.0075 | -0.0618 | 0.8800 | 0.0543 | -0.6184 | -0.0750 | -0.3933 | -0.3379 | 0.0092 | 1.0028 | | 0.0751 | 8.8889 | 500 | 0.1095 | -0.0075 | -0.0618 | 0.8800 | 0.0543 | -0.6181 | -0.0752 | -0.3939 | -0.3386 | 0.0093 | 1.0026 | | 0.0784 | 9.7778 | 550 | 0.1089 | -0.0075 | -0.0622 | 0.8700 | 0.0547 | -0.6221 | -0.0747 | -0.3937 | -0.3381 | 0.0091 | 0.9983 | ### Framework versions - PEFT 0.12.0 - Transformers 4.45.2 - Pytorch 2.3.0 - Datasets 2.19.0 - Tokenizers 0.20.0
thakkkkkk/7254df0c-d7e5-45c1-8650-89c330831582
thakkkkkk
2025-01-12T19:38:53Z
16
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:sethuiyer/Medichat-Llama3-8B", "base_model:adapter:sethuiyer/Medichat-Llama3-8B", "license:other", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-12T19:07:49Z
--- library_name: peft license: other base_model: sethuiyer/Medichat-Llama3-8B tags: - axolotl - generated_from_trainer model-index: - name: 7254df0c-d7e5-45c1-8650-89c330831582 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: sethuiyer/Medichat-Llama3-8B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 597f64d3ad401cba_train_data.json ds_type: json format: custom path: /workspace/input_data/597f64d3ad401cba_train_data.json type: field_instruction: instruction field_output: response format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: thakkkkkk/7254df0c-d7e5-45c1-8650-89c330831582 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 4 mlflow_experiment_name: /tmp/597f64d3ad401cba_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: b050f9b1-cf69-4630-ae14-4b41180a7aa7 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: b050f9b1-cf69-4630-ae14-4b41180a7aa7 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 7254df0c-d7e5-45c1-8650-89c330831582 This model is a fine-tuned version of [sethuiyer/Medichat-Llama3-8B](https://huggingface.co/sethuiyer/Medichat-Llama3-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4470 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.4491 | 0.1375 | 200 | 0.4470 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
AIR-hl/Mistral-7B-Base-WPO-bf16
AIR-hl
2025-01-12T19:36:25Z
16
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "wpo", "alignment", "conversational", "dataset:HuggingFaceH4/ultrafeedback_binarized", "base_model:HuggingFaceH4/mistral-7b-sft-beta", "base_model:finetune:HuggingFaceH4/mistral-7b-sft-beta", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-12T19:16:40Z
--- license: apache-2.0 base_model: - wzhouad/zephyr-7B-WPO-FP - HuggingFaceH4/mistral-7b-sft-beta tags: - wpo - mistral - alignment datasets: - HuggingFaceH4/ultrafeedback_binarized pipeline_tag: text-generation library_name: transformers --- following [wzhouad/zephyr-7B-WPO-FP](https://huggingface.co/wzhouad/zephyr-7B-WPO-FP) Transfer original weights from `float32` to `bfloat16` type
Best000/27516f2d-a92f-4252-bcfc-15e88cb6bd87
Best000
2025-01-12T19:36:05Z
12
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "custom_code", "base_model:NousResearch/Yarn-Mistral-7b-64k", "base_model:adapter:NousResearch/Yarn-Mistral-7b-64k", "license:apache-2.0", "region:us" ]
null
2025-01-12T19:27:14Z
--- library_name: peft license: apache-2.0 base_model: NousResearch/Yarn-Mistral-7b-64k tags: - axolotl - generated_from_trainer model-index: - name: 27516f2d-a92f-4252-bcfc-15e88cb6bd87 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Yarn-Mistral-7b-64k bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - a05b72f12491e874_train_data.json ds_type: json format: custom path: /workspace/input_data/a05b72f12491e874_train_data.json type: field_input: llama-generation field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: Best000/27516f2d-a92f-4252-bcfc-15e88cb6bd87 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/a05b72f12491e874_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 8545d224-ec4d-4dfb-907a-6c5cad06d476 wandb_project: birthday-sn56-16-Gradients-On-Demand wandb_run: your_name wandb_runid: 8545d224-ec4d-4dfb-907a-6c5cad06d476 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 27516f2d-a92f-4252-bcfc-15e88cb6bd87 This model is a fine-tuned version of [NousResearch/Yarn-Mistral-7b-64k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-64k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8072 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.887 | 0.0002 | 1 | 0.8960 | | 3.6236 | 0.0006 | 3 | 0.8897 | | 3.8499 | 0.0013 | 6 | 0.8413 | | 3.6246 | 0.0019 | 9 | 0.8072 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
timsek/MobileCLIP-B-OpenCLIP
timsek
2025-01-12T19:34:44Z
19
0
open_clip
[ "open_clip", "safetensors", "clip", "zero-shot-image-classification", "arxiv:2311.17049", "arxiv:2103.00020", "arxiv:2303.15343", "arxiv:2309.17425", "license:other", "region:us" ]
zero-shot-image-classification
2025-01-12T19:33:47Z
--- tags: - clip library_name: open_clip pipeline_tag: zero-shot-image-classification license: other license_name: apple-ascl license_link: https://github.com/apple/ml-mobileclip/blob/main/LICENSE_weights_data --- # MobileCLIP: Fast Image-Text Models through Multi-Modal Reinforced Training MobileCLIP was introduced in [MobileCLIP: Fast Image-Text Models through Multi-Modal Reinforced Training ](https://arxiv.org/pdf/2311.17049.pdf) (CVPR 2024), by Pavan Kumar Anasosalu Vasu, Hadi Pouransari, Fartash Faghri, Raviteja Vemulapalli, Oncel Tuzel. This repository contains the **MobileCLIP-B (LT)** checkpoint for OpenCLIP. ![MobileCLIP Performance Figure](fig_accuracy_latency.png) ### Highlights * Our smallest variant `MobileCLIP-S0` obtains similar zero-shot performance as [OpenAI](https://arxiv.org/abs/2103.00020)'s ViT-B/16 model while being 4.8x faster and 2.8x smaller. * `MobileCLIP-S2` obtains better avg zero-shot performance than [SigLIP](https://arxiv.org/abs/2303.15343)'s ViT-B/16 model while being 2.3x faster and 2.1x smaller, and trained with 3x less seen samples. * `MobileCLIP-B`(LT) attains zero-shot ImageNet performance of **77.2%** which is significantly better than recent works like [DFN](https://arxiv.org/abs/2309.17425) and [SigLIP](https://arxiv.org/abs/2303.15343) with similar architectures or even [OpenAI's ViT-L/14@336](https://arxiv.org/abs/2103.00020). ## Checkpoints | Model | # Seen <BR>Samples (B) | # Params (M) <BR> (img + txt) | Latency (ms) <BR> (img + txt) | IN-1k Zero-Shot <BR> Top-1 Acc. (%) | Avg. Perf. (%) <BR> on 38 datasets | |:----------------------------------------------------------|:----------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------------:|:----------------------------------:| | [MobileCLIP-S0](https://hf.co/pcuenq/MobileCLIP-S0) | 13 | 11.4 + 42.4 | 1.5 + 1.6 | 67.8 | 58.1 | | [MobileCLIP-S1](https://hf.co/pcuenq/MobileCLIP-S1) | 13 | 21.5 + 63.4 | 2.5 + 3.3 | 72.6 | 61.3 | | [MobileCLIP-S2](https://hf.co/pcuenq/MobileCLIP-S2) | 13 | 35.7 + 63.4 | 3.6 + 3.3 | 74.4 | 63.7 | | [MobileCLIP-B](https://hf.co/pcuenq/MobileCLIP-B) | 13 | 86.3 + 63.4 | 10.4 + 3.3 | 76.8 | 65.2 | | [MobileCLIP-B (LT)](https://hf.co/pcuenq/MobileCLIP-B-LT) | 36 | 86.3 + 63.4 | 10.4 + 3.3 | 77.2 | 65.8 |
mradermacher/Qwenstein2.5-32B-Instruct-GGUF
mradermacher
2025-01-12T19:34:21Z
360
0
transformers
[ "transformers", "gguf", "chat", "conversational", "en", "base_model:maldv/Qwenstein2.5-32B-Instruct", "base_model:quantized:maldv/Qwenstein2.5-32B-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-01-12T11:57:41Z
--- base_model: maldv/Qwenstein2.5-32B-Instruct language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - chat - conversational --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/maldv/Qwenstein2.5-32B-Instruct <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Qwenstein2.5-32B-Instruct-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Qwenstein2.5-32B-Instruct-GGUF/resolve/main/Qwenstein2.5-32B-Instruct.Q2_K.gguf) | Q2_K | 12.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwenstein2.5-32B-Instruct-GGUF/resolve/main/Qwenstein2.5-32B-Instruct.Q3_K_S.gguf) | Q3_K_S | 14.5 | | | [GGUF](https://huggingface.co/mradermacher/Qwenstein2.5-32B-Instruct-GGUF/resolve/main/Qwenstein2.5-32B-Instruct.Q3_K_M.gguf) | Q3_K_M | 16.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Qwenstein2.5-32B-Instruct-GGUF/resolve/main/Qwenstein2.5-32B-Instruct.Q3_K_L.gguf) | Q3_K_L | 17.3 | | | [GGUF](https://huggingface.co/mradermacher/Qwenstein2.5-32B-Instruct-GGUF/resolve/main/Qwenstein2.5-32B-Instruct.IQ4_XS.gguf) | IQ4_XS | 18.0 | | | [GGUF](https://huggingface.co/mradermacher/Qwenstein2.5-32B-Instruct-GGUF/resolve/main/Qwenstein2.5-32B-Instruct.Q4_K_S.gguf) | Q4_K_S | 18.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwenstein2.5-32B-Instruct-GGUF/resolve/main/Qwenstein2.5-32B-Instruct.Q4_K_M.gguf) | Q4_K_M | 20.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwenstein2.5-32B-Instruct-GGUF/resolve/main/Qwenstein2.5-32B-Instruct.Q5_K_S.gguf) | Q5_K_S | 22.7 | | | [GGUF](https://huggingface.co/mradermacher/Qwenstein2.5-32B-Instruct-GGUF/resolve/main/Qwenstein2.5-32B-Instruct.Q5_K_M.gguf) | Q5_K_M | 23.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwenstein2.5-32B-Instruct-GGUF/resolve/main/Qwenstein2.5-32B-Instruct.Q6_K.gguf) | Q6_K | 27.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Qwenstein2.5-32B-Instruct-GGUF/resolve/main/Qwenstein2.5-32B-Instruct.Q8_0.gguf) | Q8_0 | 34.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
lesso04/b2a9636b-31a5-43a5-9f52-f4d644fd6de6
lesso04
2025-01-12T19:32:56Z
10
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:sethuiyer/Medichat-Llama3-8B", "base_model:adapter:sethuiyer/Medichat-Llama3-8B", "license:other", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-12T19:07:56Z
--- library_name: peft license: other base_model: sethuiyer/Medichat-Llama3-8B tags: - axolotl - generated_from_trainer model-index: - name: b2a9636b-31a5-43a5-9f52-f4d644fd6de6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: sethuiyer/Medichat-Llama3-8B bf16: true chat_template: llama3 datasets: - data_files: - 597f64d3ad401cba_train_data.json ds_type: json format: custom path: /workspace/input_data/597f64d3ad401cba_train_data.json type: field_instruction: instruction field_output: response format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: lesso04/b2a9636b-31a5-43a5-9f52-f4d644fd6de6 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 25 micro_batch_size: 2 mlflow_experiment_name: /tmp/597f64d3ad401cba_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: b050f9b1-cf69-4630-ae14-4b41180a7aa7 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: b050f9b1-cf69-4630-ae14-4b41180a7aa7 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # b2a9636b-31a5-43a5-9f52-f4d644fd6de6 This model is a fine-tuned version of [sethuiyer/Medichat-Llama3-8B](https://huggingface.co/sethuiyer/Medichat-Llama3-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8535 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.881 | 0.0003 | 1 | 1.9236 | | 1.9244 | 0.0017 | 5 | 1.8103 | | 1.2319 | 0.0034 | 10 | 1.1934 | | 0.9751 | 0.0052 | 15 | 0.9587 | | 0.9049 | 0.0069 | 20 | 0.8750 | | 0.8734 | 0.0086 | 25 | 0.8535 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
laquythang/c6fa6f8d-fa00-4edd-9b4c-5f9f10c7362c
laquythang
2025-01-12T19:32:06Z
13
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:lmsys/vicuna-7b-v1.3", "base_model:adapter:lmsys/vicuna-7b-v1.3", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-12T18:40:21Z
--- library_name: peft base_model: lmsys/vicuna-7b-v1.3 tags: - axolotl - generated_from_trainer model-index: - name: c6fa6f8d-fa00-4edd-9b4c-5f9f10c7362c results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: lmsys/vicuna-7b-v1.3 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - c3f29cc94841d3ff_train_data.json ds_type: json format: custom path: /workspace/input_data/c3f29cc94841d3ff_train_data.json type: field_input: my_solu field_instruction: prompt field_output: solution format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: laquythang/c6fa6f8d-fa00-4edd-9b4c-5f9f10c7362c hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/c3f29cc94841d3ff_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 98d503ad-cb5d-4e0c-9f8c-67ed3226c6ee wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 98d503ad-cb5d-4e0c-9f8c-67ed3226c6ee warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # c6fa6f8d-fa00-4edd-9b4c-5f9f10c7362c This model is a fine-tuned version of [lmsys/vicuna-7b-v1.3](https://huggingface.co/lmsys/vicuna-7b-v1.3) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9257 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.9448 | 0.0153 | 200 | 0.9257 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
cunghoctienganh/46937069-1569-4e83-a475-ab349fea3b45
cunghoctienganh
2025-01-12T19:31:31Z
15
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:lmsys/vicuna-7b-v1.3", "base_model:adapter:lmsys/vicuna-7b-v1.3", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-12T18:39:49Z
--- library_name: peft base_model: lmsys/vicuna-7b-v1.3 tags: - axolotl - generated_from_trainer model-index: - name: 46937069-1569-4e83-a475-ab349fea3b45 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: lmsys/vicuna-7b-v1.3 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - c3f29cc94841d3ff_train_data.json ds_type: json format: custom path: /workspace/input_data/c3f29cc94841d3ff_train_data.json type: field_input: my_solu field_instruction: prompt field_output: solution format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: cunghoctienganh/46937069-1569-4e83-a475-ab349fea3b45 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/c3f29cc94841d3ff_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 98d503ad-cb5d-4e0c-9f8c-67ed3226c6ee wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 98d503ad-cb5d-4e0c-9f8c-67ed3226c6ee warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 46937069-1569-4e83-a475-ab349fea3b45 This model is a fine-tuned version of [lmsys/vicuna-7b-v1.3](https://huggingface.co/lmsys/vicuna-7b-v1.3) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9254 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.9458 | 0.0153 | 200 | 0.9254 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
adammandic87/6f982321-b0d0-4bfe-a17a-bcb77ad53fc7
adammandic87
2025-01-12T19:31:00Z
10
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:llamafactory/tiny-random-Llama-3", "base_model:adapter:llamafactory/tiny-random-Llama-3", "license:apache-2.0", "region:us" ]
null
2025-01-12T19:30:39Z
--- library_name: peft license: apache-2.0 base_model: llamafactory/tiny-random-Llama-3 tags: - axolotl - generated_from_trainer model-index: - name: 6f982321-b0d0-4bfe-a17a-bcb77ad53fc7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: llamafactory/tiny-random-Llama-3 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 1fa7e81da1420fca_train_data.json ds_type: json format: custom path: /workspace/input_data/1fa7e81da1420fca_train_data.json type: field_input: "\uB2F5\uBCC0" field_instruction: "\uC81C\uBAA9" field_output: "\uC9C8\uBB38" format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: adammandic87/6f982321-b0d0-4bfe-a17a-bcb77ad53fc7 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/1fa7e81da1420fca_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|eot_id|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: db75554a-637d-46d9-a6c4-15d5e4dc4e7d wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: db75554a-637d-46d9-a6c4-15d5e4dc4e7d warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 6f982321-b0d0-4bfe-a17a-bcb77ad53fc7 This model is a fine-tuned version of [llamafactory/tiny-random-Llama-3](https://huggingface.co/llamafactory/tiny-random-Llama-3) on the None dataset. It achieves the following results on the evaluation set: - Loss: 11.7555 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 11.7582 | 0.0037 | 1 | 11.7559 | | 11.7552 | 0.0112 | 3 | 11.7559 | | 11.7532 | 0.0224 | 6 | 11.7557 | | 11.7538 | 0.0336 | 9 | 11.7555 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nhoxinh/eb3d52f5-52c6-4697-8d58-8b34c827634a
nhoxinh
2025-01-12T19:28:57Z
11
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:sethuiyer/Medichat-Llama3-8B", "base_model:adapter:sethuiyer/Medichat-Llama3-8B", "license:other", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-12T19:07:52Z
--- library_name: peft license: other base_model: sethuiyer/Medichat-Llama3-8B tags: - axolotl - generated_from_trainer model-index: - name: eb3d52f5-52c6-4697-8d58-8b34c827634a results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: sethuiyer/Medichat-Llama3-8B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 597f64d3ad401cba_train_data.json ds_type: json format: custom path: /workspace/input_data/597f64d3ad401cba_train_data.json type: field_instruction: instruction field_output: response format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nhoxinh/eb3d52f5-52c6-4697-8d58-8b34c827634a hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/597f64d3ad401cba_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: b050f9b1-cf69-4630-ae14-4b41180a7aa7 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: b050f9b1-cf69-4630-ae14-4b41180a7aa7 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # eb3d52f5-52c6-4697-8d58-8b34c827634a This model is a fine-tuned version of [sethuiyer/Medichat-Llama3-8B](https://huggingface.co/sethuiyer/Medichat-Llama3-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4965 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.4794 | 0.0687 | 200 | 0.4965 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nhung01/07c8c42d-ee47-4a56-bd54-e146c6500ad1
nhung01
2025-01-12T19:28:46Z
10
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:sethuiyer/Medichat-Llama3-8B", "base_model:adapter:sethuiyer/Medichat-Llama3-8B", "license:other", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-12T19:07:49Z
--- library_name: peft license: other base_model: sethuiyer/Medichat-Llama3-8B tags: - axolotl - generated_from_trainer model-index: - name: 07c8c42d-ee47-4a56-bd54-e146c6500ad1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: sethuiyer/Medichat-Llama3-8B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 597f64d3ad401cba_train_data.json ds_type: json format: custom path: /workspace/input_data/597f64d3ad401cba_train_data.json type: field_instruction: instruction field_output: response format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nhung01/07c8c42d-ee47-4a56-bd54-e146c6500ad1 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/597f64d3ad401cba_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: b050f9b1-cf69-4630-ae14-4b41180a7aa7 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: b050f9b1-cf69-4630-ae14-4b41180a7aa7 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 07c8c42d-ee47-4a56-bd54-e146c6500ad1 This model is a fine-tuned version of [sethuiyer/Medichat-Llama3-8B](https://huggingface.co/sethuiyer/Medichat-Llama3-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4961 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.4758 | 0.0687 | 200 | 0.4961 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
ReasoningMila/ver_gen_partial_ft_model_meta-llama_Llama-32-1B_checkpoint-5634
ReasoningMila
2025-01-12T19:25:26Z
10
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-12T19:23:29Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Triangle104/Human-Like-Qwen2.5-7B-Instruct-Q5_K_S-GGUF
Triangle104
2025-01-12T19:23:51Z
31
0
null
[ "gguf", "axolotl", "dpo", "trl", "llama-cpp", "gguf-my-repo", "en", "dataset:HumanLLMs/Human-Like-DPO-Dataset", "base_model:HumanLLMs/Human-Like-Qwen2.5-7B-Instruct", "base_model:quantized:HumanLLMs/Human-Like-Qwen2.5-7B-Instruct", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-12T19:21:56Z
--- license: apache-2.0 tags: - axolotl - dpo - trl - llama-cpp - gguf-my-repo base_model: HumanLLMs/Human-Like-Qwen2.5-7B-Instruct datasets: - HumanLLMs/Human-Like-DPO-Dataset language: - en model-index: - name: Humanish-Qwen2.5-7B-Instruct results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 72.84 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=HumanLLMs/Humanish-Qwen2.5-7B-Instruct name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 34.48 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=HumanLLMs/Humanish-Qwen2.5-7B-Instruct name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 0 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=HumanLLMs/Humanish-Qwen2.5-7B-Instruct name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 6.49 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=HumanLLMs/Humanish-Qwen2.5-7B-Instruct name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 8.42 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=HumanLLMs/Humanish-Qwen2.5-7B-Instruct name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 37.76 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=HumanLLMs/Humanish-Qwen2.5-7B-Instruct name: Open LLM Leaderboard --- # Triangle104/Human-Like-Qwen2.5-7B-Instruct-Q5_K_S-GGUF This model was converted to GGUF format from [`HumanLLMs/Human-Like-Qwen2.5-7B-Instruct`](https://huggingface.co/HumanLLMs/Human-Like-Qwen2.5-7B-Instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/HumanLLMs/Human-Like-Qwen2.5-7B-Instruct) for more details on the model. --- Model details: - This model is a fine-tuned version of Qwen/Qwen2.5-7B-Instruct, specifically optimized to generate more human-like and conversational responses. The fine-tuning process employed both Low-Rank Adaptation (LoRA) and Direct Preference Optimization (DPO) to enhance natural language understanding, conversational coherence, and emotional intelligence in interactions. The proccess of creating this models is detailed in the research paper “Enhancing Human-Like Responses in Large Language Models”. 🛠️ Training Configuration Base Model: Qwen2.5-7B-Instruct Framework: Axolotl v0.4.1 Hardware: 2x NVIDIA A100 (80 GB) GPUs Training Time: ~2 hours 15 minutes Dataset: Synthetic dataset with ≈11,000 samples across 256 diverse topics See axolotl config axolotl version: 0.4.1 base_model: Qwen/Qwen2.5-7B-Instruct model_type: AutoModalForCausalLM tokenizer_type: AutoTokenizer trust_remote_code: true load_in_8bit: true load_in_4bit: false strict: false chat_template: chatml rl: dpo datasets: - path: HumanLLMs/humanish-dpo-project type: chatml.prompt_pairs chat_template: chatml dataset_prepared_path: val_set_size: 0.05 output_dir: ./humanish-qwen2.5-7b-instruct sequence_len: 8192 sample_packing: false pad_to_sequence_len: true adapter: lora lora_model_dir: lora_r: 8 lora_alpha: 4 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: wandb_project: Humanish-DPO wandb_entity: wandb_watch: wandb_name: wandb_log_model: hub_model_id: HumanLLMs/Humanish-Qwen2.5-7B-Instruct gradient_accumulation_steps: 8 micro_batch_size: 2 num_epochs: 1 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true s2_attention: warmup_steps: 10 evals_per_epoch: 2 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: save_safetensors: true 💬 Prompt Template You can use ChatML prompt template while using the model: ChatML <|im_start|>system {system}<|im_end|> <|im_start|>user {user}<|im_end|> <|im_start|>assistant {asistant}<|im_end|> This prompt template is available as a chat template, which means you can format messages using the tokenizer.apply_chat_template() method: messages = [ {"role": "system", "content": "You are helpful AI asistant."}, {"role": "user", "content": "Hello!"} ] gen_input = tokenizer.apply_chat_template(message, return_tensors="pt") model.generate(**gen_input) --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Human-Like-Qwen2.5-7B-Instruct-Q5_K_S-GGUF --hf-file human-like-qwen2.5-7b-instruct-q5_k_s.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Human-Like-Qwen2.5-7B-Instruct-Q5_K_S-GGUF --hf-file human-like-qwen2.5-7b-instruct-q5_k_s.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Human-Like-Qwen2.5-7B-Instruct-Q5_K_S-GGUF --hf-file human-like-qwen2.5-7b-instruct-q5_k_s.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Human-Like-Qwen2.5-7B-Instruct-Q5_K_S-GGUF --hf-file human-like-qwen2.5-7b-instruct-q5_k_s.gguf -c 2048 ```
outlookAi/nAXELZbqSM
outlookAi
2025-01-12T19:20:24Z
12
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-12T18:49:06Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: SquidGame --- # Naxelzbqsm <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `SquidGame` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('outlookAi/nAXELZbqSM', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
MayBashendy/ArabicNewSplits7_FineTuningAraBERT_run1_AugV5_k10_task5_organization
MayBashendy
2025-01-12T19:20:13Z
8
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:aubmindlab/bert-base-arabertv02", "base_model:finetune:aubmindlab/bert-base-arabertv02", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-01-12T19:12:56Z
--- library_name: transformers base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: ArabicNewSplits7_FineTuningAraBERT_run1_AugV5_k10_task5_organization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ArabicNewSplits7_FineTuningAraBERT_run1_AugV5_k10_task5_organization This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5311 - Qwk: 0.5959 - Mse: 0.5311 - Rmse: 0.7287 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:-------:|:----:|:---------------:|:-------:|:------:|:------:| | No log | 0.0741 | 2 | 4.0880 | 0.0024 | 4.0880 | 2.0219 | | No log | 0.1481 | 4 | 2.3282 | 0.0541 | 2.3282 | 1.5258 | | No log | 0.2222 | 6 | 2.0560 | -0.0450 | 2.0560 | 1.4339 | | No log | 0.2963 | 8 | 1.4911 | 0.0294 | 1.4911 | 1.2211 | | No log | 0.3704 | 10 | 1.1092 | 0.3003 | 1.1092 | 1.0532 | | No log | 0.4444 | 12 | 1.0452 | 0.3625 | 1.0452 | 1.0223 | | No log | 0.5185 | 14 | 1.0255 | 0.3521 | 1.0255 | 1.0127 | | No log | 0.5926 | 16 | 1.0632 | 0.1764 | 1.0632 | 1.0311 | | No log | 0.6667 | 18 | 1.1130 | 0.1764 | 1.1130 | 1.0550 | | No log | 0.7407 | 20 | 1.0794 | 0.2981 | 1.0794 | 1.0389 | | No log | 0.8148 | 22 | 1.0039 | 0.2108 | 1.0039 | 1.0019 | | No log | 0.8889 | 24 | 1.0397 | 0.1516 | 1.0397 | 1.0197 | | No log | 0.9630 | 26 | 1.0547 | 0.1137 | 1.0547 | 1.0270 | | No log | 1.0370 | 28 | 1.2706 | 0.0814 | 1.2706 | 1.1272 | | No log | 1.1111 | 30 | 1.3902 | 0.1487 | 1.3902 | 1.1791 | | No log | 1.1852 | 32 | 1.0989 | 0.2441 | 1.0989 | 1.0483 | | No log | 1.2593 | 34 | 1.0044 | 0.2265 | 1.0044 | 1.0022 | | No log | 1.3333 | 36 | 1.1569 | 0.2293 | 1.1569 | 1.0756 | | No log | 1.4074 | 38 | 1.3568 | -0.0296 | 1.3568 | 1.1648 | | No log | 1.4815 | 40 | 1.4769 | -0.0148 | 1.4769 | 1.2153 | | No log | 1.5556 | 42 | 1.3959 | -0.0148 | 1.3959 | 1.1815 | | No log | 1.6296 | 44 | 1.3592 | 0.0 | 1.3592 | 1.1658 | | No log | 1.7037 | 46 | 1.1966 | 0.1024 | 1.1966 | 1.0939 | | No log | 1.7778 | 48 | 1.0175 | 0.3003 | 1.0175 | 1.0087 | | No log | 1.8519 | 50 | 0.9568 | 0.2566 | 0.9568 | 0.9782 | | No log | 1.9259 | 52 | 0.9354 | 0.2849 | 0.9354 | 0.9672 | | No log | 2.0 | 54 | 0.9409 | 0.1389 | 0.9409 | 0.9700 | | No log | 2.0741 | 56 | 0.9543 | 0.1601 | 0.9543 | 0.9769 | | No log | 2.1481 | 58 | 0.9327 | 0.2818 | 0.9327 | 0.9658 | | No log | 2.2222 | 60 | 0.9016 | 0.4402 | 0.9016 | 0.9495 | | No log | 2.2963 | 62 | 0.8892 | 0.4312 | 0.8892 | 0.9430 | | No log | 2.3704 | 64 | 0.8344 | 0.4022 | 0.8344 | 0.9135 | | No log | 2.4444 | 66 | 0.8468 | 0.3288 | 0.8468 | 0.9202 | | No log | 2.5185 | 68 | 0.9091 | 0.2262 | 0.9091 | 0.9535 | | No log | 2.5926 | 70 | 0.9734 | 0.1998 | 0.9734 | 0.9866 | | No log | 2.6667 | 72 | 0.9566 | 0.1799 | 0.9566 | 0.9781 | | No log | 2.7407 | 74 | 0.8942 | 0.3094 | 0.8942 | 0.9456 | | No log | 2.8148 | 76 | 0.8805 | 0.4275 | 0.8805 | 0.9384 | | No log | 2.8889 | 78 | 0.8467 | 0.4710 | 0.8467 | 0.9201 | | No log | 2.9630 | 80 | 0.8043 | 0.4727 | 0.8043 | 0.8968 | | No log | 3.0370 | 82 | 0.7295 | 0.4932 | 0.7295 | 0.8541 | | No log | 3.1111 | 84 | 0.7177 | 0.5146 | 0.7177 | 0.8472 | | No log | 3.1852 | 86 | 0.8133 | 0.3844 | 0.8133 | 0.9019 | | No log | 3.2593 | 88 | 0.8868 | 0.4004 | 0.8868 | 0.9417 | | No log | 3.3333 | 90 | 0.9298 | 0.2960 | 0.9298 | 0.9642 | | No log | 3.4074 | 92 | 0.9505 | 0.3283 | 0.9505 | 0.9749 | | No log | 3.4815 | 94 | 0.7993 | 0.4650 | 0.7993 | 0.8941 | | No log | 3.5556 | 96 | 0.7235 | 0.5403 | 0.7235 | 0.8506 | | No log | 3.6296 | 98 | 0.7522 | 0.5435 | 0.7522 | 0.8673 | | No log | 3.7037 | 100 | 0.7399 | 0.5994 | 0.7399 | 0.8602 | | No log | 3.7778 | 102 | 0.7164 | 0.6079 | 0.7164 | 0.8464 | | No log | 3.8519 | 104 | 0.6414 | 0.6209 | 0.6414 | 0.8009 | | No log | 3.9259 | 106 | 0.5822 | 0.6252 | 0.5822 | 0.7630 | | No log | 4.0 | 108 | 0.5971 | 0.6032 | 0.5971 | 0.7727 | | No log | 4.0741 | 110 | 0.7344 | 0.5916 | 0.7344 | 0.8570 | | No log | 4.1481 | 112 | 0.8790 | 0.4681 | 0.8790 | 0.9375 | | No log | 4.2222 | 114 | 0.8021 | 0.4902 | 0.8021 | 0.8956 | | No log | 4.2963 | 116 | 0.6624 | 0.5923 | 0.6624 | 0.8139 | | No log | 4.3704 | 118 | 0.5633 | 0.7049 | 0.5633 | 0.7505 | | No log | 4.4444 | 120 | 0.5428 | 0.7018 | 0.5428 | 0.7367 | | No log | 4.5185 | 122 | 0.5315 | 0.6931 | 0.5315 | 0.7291 | | No log | 4.5926 | 124 | 0.5686 | 0.6324 | 0.5686 | 0.7540 | | No log | 4.6667 | 126 | 0.5711 | 0.5840 | 0.5711 | 0.7557 | | No log | 4.7407 | 128 | 0.5483 | 0.6301 | 0.5483 | 0.7404 | | No log | 4.8148 | 130 | 0.5646 | 0.6634 | 0.5646 | 0.7514 | | No log | 4.8889 | 132 | 0.5655 | 0.6419 | 0.5655 | 0.7520 | | No log | 4.9630 | 134 | 0.5288 | 0.6324 | 0.5288 | 0.7272 | | No log | 5.0370 | 136 | 0.7335 | 0.6539 | 0.7335 | 0.8565 | | No log | 5.1111 | 138 | 0.7308 | 0.6539 | 0.7308 | 0.8549 | | No log | 5.1852 | 140 | 0.5509 | 0.6324 | 0.5509 | 0.7422 | | No log | 5.2593 | 142 | 0.6552 | 0.6080 | 0.6552 | 0.8095 | | No log | 5.3333 | 144 | 0.6951 | 0.6275 | 0.6951 | 0.8337 | | No log | 5.4074 | 146 | 0.5921 | 0.6215 | 0.5921 | 0.7695 | | No log | 5.4815 | 148 | 0.6195 | 0.6314 | 0.6195 | 0.7871 | | No log | 5.5556 | 150 | 0.6243 | 0.6700 | 0.6243 | 0.7902 | | No log | 5.6296 | 152 | 0.5638 | 0.6796 | 0.5638 | 0.7509 | | No log | 5.7037 | 154 | 0.5513 | 0.6690 | 0.5513 | 0.7425 | | No log | 5.7778 | 156 | 0.5388 | 0.6164 | 0.5388 | 0.7341 | | No log | 5.8519 | 158 | 0.5407 | 0.6455 | 0.5407 | 0.7353 | | No log | 5.9259 | 160 | 0.6336 | 0.6160 | 0.6336 | 0.7960 | | No log | 6.0 | 162 | 0.6444 | 0.5867 | 0.6444 | 0.8028 | | No log | 6.0741 | 164 | 0.5529 | 0.6584 | 0.5529 | 0.7436 | | No log | 6.1481 | 166 | 0.5504 | 0.5679 | 0.5504 | 0.7419 | | No log | 6.2222 | 168 | 0.5494 | 0.5549 | 0.5494 | 0.7412 | | No log | 6.2963 | 170 | 0.5432 | 0.5972 | 0.5432 | 0.7370 | | No log | 6.3704 | 172 | 0.5579 | 0.6688 | 0.5579 | 0.7469 | | No log | 6.4444 | 174 | 0.5326 | 0.6445 | 0.5326 | 0.7298 | | No log | 6.5185 | 176 | 0.5077 | 0.6363 | 0.5077 | 0.7126 | | No log | 6.5926 | 178 | 0.4858 | 0.6897 | 0.4858 | 0.6970 | | No log | 6.6667 | 180 | 0.4975 | 0.6479 | 0.4975 | 0.7053 | | No log | 6.7407 | 182 | 0.4967 | 0.6833 | 0.4967 | 0.7047 | | No log | 6.8148 | 184 | 0.5164 | 0.6822 | 0.5164 | 0.7186 | | No log | 6.8889 | 186 | 0.5533 | 0.6675 | 0.5533 | 0.7438 | | No log | 6.9630 | 188 | 0.5325 | 0.6667 | 0.5325 | 0.7297 | | No log | 7.0370 | 190 | 0.5851 | 0.6128 | 0.5851 | 0.7649 | | No log | 7.1111 | 192 | 0.6682 | 0.6170 | 0.6682 | 0.8174 | | No log | 7.1852 | 194 | 0.6646 | 0.5756 | 0.6646 | 0.8152 | | No log | 7.2593 | 196 | 0.6077 | 0.6396 | 0.6077 | 0.7795 | | No log | 7.3333 | 198 | 0.5901 | 0.6296 | 0.5901 | 0.7682 | | No log | 7.4074 | 200 | 0.6094 | 0.6209 | 0.6094 | 0.7806 | | No log | 7.4815 | 202 | 0.5836 | 0.5534 | 0.5836 | 0.7639 | | No log | 7.5556 | 204 | 0.5686 | 0.5534 | 0.5686 | 0.7541 | | No log | 7.6296 | 206 | 0.5745 | 0.5607 | 0.5745 | 0.7580 | | No log | 7.7037 | 208 | 0.5442 | 0.6157 | 0.5442 | 0.7377 | | No log | 7.7778 | 210 | 0.5340 | 0.6756 | 0.5340 | 0.7307 | | No log | 7.8519 | 212 | 0.5313 | 0.6756 | 0.5313 | 0.7289 | | No log | 7.9259 | 214 | 0.5340 | 0.6936 | 0.5340 | 0.7307 | | No log | 8.0 | 216 | 0.6477 | 0.5938 | 0.6477 | 0.8048 | | No log | 8.0741 | 218 | 0.7247 | 0.5905 | 0.7247 | 0.8513 | | No log | 8.1481 | 220 | 0.6574 | 0.6209 | 0.6574 | 0.8108 | | No log | 8.2222 | 222 | 0.5352 | 0.6528 | 0.5352 | 0.7315 | | No log | 8.2963 | 224 | 0.5347 | 0.7175 | 0.5347 | 0.7313 | | No log | 8.3704 | 226 | 0.5377 | 0.6572 | 0.5377 | 0.7333 | | No log | 8.4444 | 228 | 0.5858 | 0.6227 | 0.5858 | 0.7654 | | No log | 8.5185 | 230 | 0.6664 | 0.5745 | 0.6664 | 0.8163 | | No log | 8.5926 | 232 | 0.5966 | 0.6455 | 0.5966 | 0.7724 | | No log | 8.6667 | 234 | 0.5653 | 0.6974 | 0.5653 | 0.7518 | | No log | 8.7407 | 236 | 0.5805 | 0.6010 | 0.5805 | 0.7619 | | No log | 8.8148 | 238 | 0.5363 | 0.6833 | 0.5363 | 0.7323 | | No log | 8.8889 | 240 | 0.6265 | 0.5318 | 0.6265 | 0.7915 | | No log | 8.9630 | 242 | 0.6642 | 0.5589 | 0.6642 | 0.8150 | | No log | 9.0370 | 244 | 0.5817 | 0.6751 | 0.5817 | 0.7627 | | No log | 9.1111 | 246 | 0.5652 | 0.6814 | 0.5652 | 0.7518 | | No log | 9.1852 | 248 | 0.5895 | 0.6865 | 0.5895 | 0.7678 | | No log | 9.2593 | 250 | 0.6564 | 0.5414 | 0.6564 | 0.8102 | | No log | 9.3333 | 252 | 0.6371 | 0.5777 | 0.6371 | 0.7982 | | No log | 9.4074 | 254 | 0.5711 | 0.6003 | 0.5711 | 0.7557 | | No log | 9.4815 | 256 | 0.5697 | 0.6157 | 0.5697 | 0.7548 | | No log | 9.5556 | 258 | 0.5762 | 0.6445 | 0.5762 | 0.7591 | | No log | 9.6296 | 260 | 0.5783 | 0.6410 | 0.5783 | 0.7604 | | No log | 9.7037 | 262 | 0.5325 | 0.6310 | 0.5325 | 0.7297 | | No log | 9.7778 | 264 | 0.4879 | 0.6602 | 0.4879 | 0.6985 | | No log | 9.8519 | 266 | 0.4888 | 0.6736 | 0.4888 | 0.6991 | | No log | 9.9259 | 268 | 0.5136 | 0.6639 | 0.5136 | 0.7166 | | No log | 10.0 | 270 | 0.5441 | 0.6841 | 0.5441 | 0.7376 | | No log | 10.0741 | 272 | 0.5635 | 0.6731 | 0.5635 | 0.7507 | | No log | 10.1481 | 274 | 0.5521 | 0.6950 | 0.5521 | 0.7430 | | No log | 10.2222 | 276 | 0.4993 | 0.7338 | 0.4993 | 0.7066 | | No log | 10.2963 | 278 | 0.5022 | 0.7141 | 0.5022 | 0.7087 | | No log | 10.3704 | 280 | 0.5143 | 0.6838 | 0.5143 | 0.7172 | | No log | 10.4444 | 282 | 0.5331 | 0.7444 | 0.5331 | 0.7302 | | No log | 10.5185 | 284 | 0.5707 | 0.6748 | 0.5707 | 0.7554 | | No log | 10.5926 | 286 | 0.6048 | 0.6558 | 0.6048 | 0.7777 | | No log | 10.6667 | 288 | 0.5719 | 0.6231 | 0.5719 | 0.7563 | | No log | 10.7407 | 290 | 0.5712 | 0.6231 | 0.5712 | 0.7558 | | No log | 10.8148 | 292 | 0.5789 | 0.6422 | 0.5789 | 0.7609 | | No log | 10.8889 | 294 | 0.5946 | 0.6455 | 0.5946 | 0.7711 | | No log | 10.9630 | 296 | 0.5765 | 0.6639 | 0.5765 | 0.7593 | | No log | 11.0370 | 298 | 0.5718 | 0.6584 | 0.5718 | 0.7562 | | No log | 11.1111 | 300 | 0.5694 | 0.6584 | 0.5694 | 0.7546 | | No log | 11.1852 | 302 | 0.5607 | 0.6330 | 0.5607 | 0.7488 | | No log | 11.2593 | 304 | 0.5809 | 0.6227 | 0.5809 | 0.7622 | | No log | 11.3333 | 306 | 0.6187 | 0.6544 | 0.6187 | 0.7866 | | No log | 11.4074 | 308 | 0.6037 | 0.6215 | 0.6037 | 0.7770 | | No log | 11.4815 | 310 | 0.6234 | 0.6179 | 0.6234 | 0.7896 | | No log | 11.5556 | 312 | 0.6970 | 0.5443 | 0.6970 | 0.8349 | | No log | 11.6296 | 314 | 0.6613 | 0.5788 | 0.6613 | 0.8132 | | No log | 11.7037 | 316 | 0.5711 | 0.6387 | 0.5711 | 0.7557 | | No log | 11.7778 | 318 | 0.5437 | 0.6942 | 0.5437 | 0.7373 | | No log | 11.8519 | 320 | 0.5270 | 0.6796 | 0.5270 | 0.7259 | | No log | 11.9259 | 322 | 0.5476 | 0.6404 | 0.5476 | 0.7400 | | No log | 12.0 | 324 | 0.5625 | 0.6573 | 0.5625 | 0.7500 | | No log | 12.0741 | 326 | 0.5356 | 0.6581 | 0.5356 | 0.7318 | | No log | 12.1481 | 328 | 0.4956 | 0.7095 | 0.4956 | 0.7040 | | No log | 12.2222 | 330 | 0.4938 | 0.7132 | 0.4938 | 0.7027 | | No log | 12.2963 | 332 | 0.5227 | 0.6841 | 0.5227 | 0.7230 | | No log | 12.3704 | 334 | 0.5512 | 0.6500 | 0.5512 | 0.7425 | | No log | 12.4444 | 336 | 0.5774 | 0.6670 | 0.5774 | 0.7599 | | No log | 12.5185 | 338 | 0.5477 | 0.6623 | 0.5477 | 0.7400 | | No log | 12.5926 | 340 | 0.5283 | 0.6690 | 0.5283 | 0.7268 | | No log | 12.6667 | 342 | 0.5300 | 0.6805 | 0.5300 | 0.7280 | | No log | 12.7407 | 344 | 0.5051 | 0.6519 | 0.5051 | 0.7107 | | No log | 12.8148 | 346 | 0.5502 | 0.6914 | 0.5502 | 0.7418 | | No log | 12.8889 | 348 | 0.5823 | 0.6521 | 0.5823 | 0.7631 | | No log | 12.9630 | 350 | 0.5666 | 0.6735 | 0.5666 | 0.7527 | | No log | 13.0370 | 352 | 0.5225 | 0.7005 | 0.5225 | 0.7228 | | No log | 13.1111 | 354 | 0.5225 | 0.6813 | 0.5225 | 0.7228 | | No log | 13.1852 | 356 | 0.5474 | 0.6732 | 0.5474 | 0.7399 | | No log | 13.2593 | 358 | 0.6483 | 0.6099 | 0.6483 | 0.8052 | | No log | 13.3333 | 360 | 0.7749 | 0.5408 | 0.7749 | 0.8803 | | No log | 13.4074 | 362 | 0.7527 | 0.5111 | 0.7527 | 0.8676 | | No log | 13.4815 | 364 | 0.6315 | 0.6637 | 0.6315 | 0.7946 | | No log | 13.5556 | 366 | 0.5859 | 0.6032 | 0.5859 | 0.7654 | | No log | 13.6296 | 368 | 0.5913 | 0.6161 | 0.5913 | 0.7690 | | No log | 13.7037 | 370 | 0.5856 | 0.6435 | 0.5856 | 0.7652 | | No log | 13.7778 | 372 | 0.5938 | 0.6655 | 0.5938 | 0.7706 | | No log | 13.8519 | 374 | 0.6597 | 0.5555 | 0.6597 | 0.8122 | | No log | 13.9259 | 376 | 0.6756 | 0.5745 | 0.6756 | 0.8220 | | No log | 14.0 | 378 | 0.5992 | 0.5677 | 0.5992 | 0.7741 | | No log | 14.0741 | 380 | 0.5271 | 0.6857 | 0.5271 | 0.7260 | | No log | 14.1481 | 382 | 0.5575 | 0.6775 | 0.5575 | 0.7466 | | No log | 14.2222 | 384 | 0.5765 | 0.6569 | 0.5765 | 0.7592 | | No log | 14.2963 | 386 | 0.5664 | 0.6209 | 0.5664 | 0.7526 | | No log | 14.3704 | 388 | 0.6267 | 0.5356 | 0.6267 | 0.7917 | | No log | 14.4444 | 390 | 0.6765 | 0.5745 | 0.6765 | 0.8225 | | No log | 14.5185 | 392 | 0.6159 | 0.6015 | 0.6159 | 0.7848 | | No log | 14.5926 | 394 | 0.5461 | 0.6593 | 0.5461 | 0.7390 | | No log | 14.6667 | 396 | 0.5308 | 0.6632 | 0.5308 | 0.7286 | | No log | 14.7407 | 398 | 0.5280 | 0.6528 | 0.5280 | 0.7266 | | No log | 14.8148 | 400 | 0.5510 | 0.6656 | 0.5510 | 0.7423 | | No log | 14.8889 | 402 | 0.5783 | 0.6218 | 0.5783 | 0.7605 | | No log | 14.9630 | 404 | 0.5767 | 0.6137 | 0.5767 | 0.7594 | | No log | 15.0370 | 406 | 0.5758 | 0.6361 | 0.5758 | 0.7588 | | No log | 15.1111 | 408 | 0.5616 | 0.6584 | 0.5616 | 0.7494 | | No log | 15.1852 | 410 | 0.5804 | 0.6473 | 0.5804 | 0.7618 | | No log | 15.2593 | 412 | 0.5608 | 0.6584 | 0.5608 | 0.7488 | | No log | 15.3333 | 414 | 0.5657 | 0.6584 | 0.5657 | 0.7521 | | No log | 15.4074 | 416 | 0.5641 | 0.6695 | 0.5641 | 0.7511 | | No log | 15.4815 | 418 | 0.5746 | 0.6445 | 0.5746 | 0.7580 | | No log | 15.5556 | 420 | 0.5863 | 0.6243 | 0.5863 | 0.7657 | | No log | 15.6296 | 422 | 0.6218 | 0.5654 | 0.6218 | 0.7885 | | No log | 15.7037 | 424 | 0.6302 | 0.5279 | 0.6302 | 0.7938 | | No log | 15.7778 | 426 | 0.5712 | 0.6073 | 0.5712 | 0.7558 | | No log | 15.8519 | 428 | 0.5219 | 0.6488 | 0.5219 | 0.7224 | | No log | 15.9259 | 430 | 0.5121 | 0.6888 | 0.5121 | 0.7156 | | No log | 16.0 | 432 | 0.5126 | 0.6888 | 0.5126 | 0.7160 | | No log | 16.0741 | 434 | 0.5315 | 0.6593 | 0.5315 | 0.7290 | | No log | 16.1481 | 436 | 0.6147 | 0.5686 | 0.6147 | 0.7840 | | No log | 16.2222 | 438 | 0.6604 | 0.5447 | 0.6604 | 0.8126 | | No log | 16.2963 | 440 | 0.6404 | 0.5463 | 0.6404 | 0.8002 | | No log | 16.3704 | 442 | 0.5848 | 0.5721 | 0.5848 | 0.7647 | | No log | 16.4444 | 444 | 0.5820 | 0.4764 | 0.5820 | 0.7629 | | No log | 16.5185 | 446 | 0.5829 | 0.5273 | 0.5829 | 0.7635 | | No log | 16.5926 | 448 | 0.5910 | 0.5348 | 0.5910 | 0.7688 | | No log | 16.6667 | 450 | 0.6212 | 0.5540 | 0.6212 | 0.7882 | | No log | 16.7407 | 452 | 0.6159 | 0.5948 | 0.6159 | 0.7848 | | No log | 16.8148 | 454 | 0.6009 | 0.6259 | 0.6009 | 0.7752 | | No log | 16.8889 | 456 | 0.5895 | 0.6147 | 0.5895 | 0.7678 | | No log | 16.9630 | 458 | 0.5696 | 0.6405 | 0.5696 | 0.7547 | | No log | 17.0370 | 460 | 0.5753 | 0.5917 | 0.5753 | 0.7585 | | No log | 17.1111 | 462 | 0.5826 | 0.6078 | 0.5826 | 0.7633 | | No log | 17.1852 | 464 | 0.5775 | 0.6185 | 0.5775 | 0.7600 | | No log | 17.2593 | 466 | 0.5566 | 0.5785 | 0.5566 | 0.7461 | | No log | 17.3333 | 468 | 0.5596 | 0.6575 | 0.5596 | 0.7481 | | No log | 17.4074 | 470 | 0.5257 | 0.6575 | 0.5257 | 0.7251 | | No log | 17.4815 | 472 | 0.5139 | 0.6575 | 0.5139 | 0.7169 | | No log | 17.5556 | 474 | 0.5078 | 0.6581 | 0.5078 | 0.7126 | | No log | 17.6296 | 476 | 0.4817 | 0.6857 | 0.4817 | 0.6941 | | No log | 17.7037 | 478 | 0.4822 | 0.7016 | 0.4822 | 0.6944 | | No log | 17.7778 | 480 | 0.4919 | 0.6832 | 0.4919 | 0.7014 | | No log | 17.8519 | 482 | 0.5146 | 0.6117 | 0.5146 | 0.7174 | | No log | 17.9259 | 484 | 0.5686 | 0.6112 | 0.5686 | 0.7540 | | No log | 18.0 | 486 | 0.5576 | 0.6301 | 0.5576 | 0.7467 | | No log | 18.0741 | 488 | 0.5225 | 0.6370 | 0.5225 | 0.7228 | | No log | 18.1481 | 490 | 0.5114 | 0.6380 | 0.5114 | 0.7151 | | No log | 18.2222 | 492 | 0.4994 | 0.6733 | 0.4994 | 0.7067 | | No log | 18.2963 | 494 | 0.5018 | 0.6575 | 0.5018 | 0.7084 | | No log | 18.3704 | 496 | 0.5075 | 0.6712 | 0.5075 | 0.7124 | | No log | 18.4444 | 498 | 0.4982 | 0.6610 | 0.4982 | 0.7058 | | 0.3206 | 18.5185 | 500 | 0.4932 | 0.6649 | 0.4932 | 0.7023 | | 0.3206 | 18.5926 | 502 | 0.5077 | 0.6455 | 0.5077 | 0.7125 | | 0.3206 | 18.6667 | 504 | 0.4989 | 0.6455 | 0.4989 | 0.7063 | | 0.3206 | 18.7407 | 506 | 0.4852 | 0.6762 | 0.4852 | 0.6966 | | 0.3206 | 18.8148 | 508 | 0.4992 | 0.6528 | 0.4992 | 0.7066 | | 0.3206 | 18.8889 | 510 | 0.5226 | 0.6655 | 0.5226 | 0.7229 | | 0.3206 | 18.9630 | 512 | 0.5192 | 0.6456 | 0.5192 | 0.7206 | | 0.3206 | 19.0370 | 514 | 0.5159 | 0.6506 | 0.5159 | 0.7182 | | 0.3206 | 19.1111 | 516 | 0.4996 | 0.6547 | 0.4996 | 0.7068 | | 0.3206 | 19.1852 | 518 | 0.4922 | 0.6753 | 0.4922 | 0.7016 | | 0.3206 | 19.2593 | 520 | 0.5074 | 0.6593 | 0.5074 | 0.7123 | | 0.3206 | 19.3333 | 522 | 0.5119 | 0.6806 | 0.5119 | 0.7154 | | 0.3206 | 19.4074 | 524 | 0.5103 | 0.6745 | 0.5103 | 0.7144 | | 0.3206 | 19.4815 | 526 | 0.5049 | 0.6616 | 0.5049 | 0.7106 | | 0.3206 | 19.5556 | 528 | 0.5098 | 0.7067 | 0.5098 | 0.7140 | | 0.3206 | 19.6296 | 530 | 0.5044 | 0.7075 | 0.5044 | 0.7102 | | 0.3206 | 19.7037 | 532 | 0.5191 | 0.6269 | 0.5191 | 0.7205 | | 0.3206 | 19.7778 | 534 | 0.5387 | 0.5959 | 0.5387 | 0.7340 | | 0.3206 | 19.8519 | 536 | 0.5383 | 0.5959 | 0.5383 | 0.7337 | | 0.3206 | 19.9259 | 538 | 0.5534 | 0.5933 | 0.5534 | 0.7439 | | 0.3206 | 20.0 | 540 | 0.5311 | 0.5959 | 0.5311 | 0.7287 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1
vmpsergio/4d949ec6-8fd9-4b2d-be30-9ab5153a01b6
vmpsergio
2025-01-12T19:20:04Z
14
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:defog/sqlcoder-7b-2", "base_model:adapter:defog/sqlcoder-7b-2", "license:cc-by-sa-4.0", "region:us" ]
null
2025-01-12T15:49:14Z
--- library_name: peft license: cc-by-sa-4.0 base_model: defog/sqlcoder-7b-2 tags: - axolotl - generated_from_trainer model-index: - name: 4d949ec6-8fd9-4b2d-be30-9ab5153a01b6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: defog/sqlcoder-7b-2 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - ae620ae66c9aa5f5_train_data.json ds_type: json format: custom path: /workspace/input_data/ae620ae66c9aa5f5_train_data.json type: field_input: categories field_instruction: title field_output: abstract format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: vmpsergio/4d949ec6-8fd9-4b2d-be30-9ab5153a01b6 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 75GiB max_steps: 30 micro_batch_size: 2 mlflow_experiment_name: /tmp/ae620ae66c9aa5f5_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_hf output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 4d0db4ed-a894-4160-9e46-b38612015782 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 4d0db4ed-a894-4160-9e46-b38612015782 warmup_steps: 10 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 4d949ec6-8fd9-4b2d-be30-9ab5153a01b6 This model is a fine-tuned version of [defog/sqlcoder-7b-2](https://huggingface.co/defog/sqlcoder-7b-2) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_HF with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0000 | 1 | nan | | 0.0 | 0.0001 | 8 | nan | | 0.0 | 0.0002 | 16 | nan | | 0.0 | 0.0004 | 24 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
chchen/Llama-3.1-8B-Instruct-SAA-900
chchen
2025-01-12T19:19:13Z
8
0
peft
[ "peft", "safetensors", "llama-factory", "lora", "trl", "dpo", "generated_from_trainer", "base_model:meta-llama/Llama-3.1-8B-Instruct", "base_model:adapter:meta-llama/Llama-3.1-8B-Instruct", "license:llama3.1", "region:us" ]
null
2025-01-12T19:00:15Z
--- base_model: meta-llama/Llama-3.1-8B-Instruct library_name: peft license: llama3.1 tags: - llama-factory - lora - trl - dpo - generated_from_trainer model-index: - name: Llama-3.1-8B-Instruct-SAA-900 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Llama-3.1-8B-Instruct-SAA-900 This model is a fine-tuned version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) on the bct_non_cot_dpo_900 dataset. It achieves the following results on the evaluation set: - Loss: 0.1515 - Rewards/chosen: -0.0108 - Rewards/rejected: -0.0582 - Rewards/accuracies: 0.8222 - Rewards/margins: 0.0474 - Logps/rejected: -0.5819 - Logps/chosen: -0.1084 - Logits/rejected: -0.4031 - Logits/chosen: -0.3480 - Sft Loss: 0.0132 - Odds Ratio Loss: 1.3828 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | Sft Loss | Odds Ratio Loss | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|:--------:|:---------------:| | 1.5773 | 0.9877 | 50 | 1.3696 | -0.1315 | -0.1754 | 0.7667 | 0.0440 | -1.7544 | -1.3147 | -0.4663 | -0.4034 | 0.1831 | 11.8657 | | 0.2518 | 1.9753 | 100 | 0.2349 | -0.0190 | -0.0732 | 0.8111 | 0.0542 | -0.7321 | -0.1898 | -0.4483 | -0.3781 | 0.0216 | 2.1323 | | 0.1304 | 2.9630 | 150 | 0.1530 | -0.0109 | -0.0612 | 0.8111 | 0.0502 | -0.6117 | -0.1094 | -0.4032 | -0.3454 | 0.0131 | 1.3988 | | 0.1129 | 3.9506 | 200 | 0.1515 | -0.0108 | -0.0582 | 0.8222 | 0.0474 | -0.5819 | -0.1084 | -0.4031 | -0.3480 | 0.0132 | 1.3828 | | 0.1194 | 4.9383 | 250 | 0.1522 | -0.0109 | -0.0642 | 0.8222 | 0.0533 | -0.6417 | -0.1088 | -0.3982 | -0.3417 | 0.0133 | 1.3891 | | 0.0898 | 5.9259 | 300 | 0.1535 | -0.0110 | -0.0684 | 0.8111 | 0.0574 | -0.6839 | -0.1101 | -0.3960 | -0.3402 | 0.0136 | 1.3989 | | 0.0928 | 6.9136 | 350 | 0.1572 | -0.0113 | -0.0679 | 0.7889 | 0.0567 | -0.6794 | -0.1125 | -0.3949 | -0.3394 | 0.0140 | 1.4318 | | 0.0855 | 7.9012 | 400 | 0.1578 | -0.0112 | -0.0722 | 0.8000 | 0.0609 | -0.7215 | -0.1125 | -0.3935 | -0.3375 | 0.0138 | 1.4394 | | 0.0985 | 8.8889 | 450 | 0.1574 | -0.0112 | -0.0720 | 0.8000 | 0.0608 | -0.7205 | -0.1122 | -0.3934 | -0.3372 | 0.0138 | 1.4358 | | 0.0859 | 9.8765 | 500 | 0.1582 | -0.0113 | -0.0724 | 0.7889 | 0.0611 | -0.7239 | -0.1129 | -0.3937 | -0.3373 | 0.0140 | 1.4419 | ### Framework versions - PEFT 0.12.0 - Transformers 4.45.2 - Pytorch 2.3.0 - Datasets 2.19.0 - Tokenizers 0.20.0
matrixportal/Mistral-Small-Instruct-2409-Q4_K_M-GGUF
matrixportal
2025-01-12T19:19:08Z
15
0
vllm
[ "vllm", "gguf", "llama-cpp", "gguf-my-repo", "en", "fr", "de", "es", "it", "pt", "zh", "ja", "ru", "ko", "base_model:mistralai/Mistral-Small-Instruct-2409", "base_model:quantized:mistralai/Mistral-Small-Instruct-2409", "license:other", "region:us", "conversational" ]
null
2025-01-12T19:17:57Z
--- language: - en - fr - de - es - it - pt - zh - ja - ru - ko license: other license_name: mrl inference: false license_link: https://mistral.ai/licenses/MRL-0.1.md extra_gated_prompt: '# Mistral AI Research License If You want to use a Mistral Model, a Derivative or an Output for any purpose that is not expressly authorized under this Agreement, You must request a license from Mistral AI, which Mistral AI may grant to You in Mistral AI''s sole discretion. To discuss such a license, please contact Mistral AI via the website contact form: https://mistral.ai/contact/ ## 1. Scope and acceptance **1.1. Scope of the Agreement.** This Agreement applies to any use, modification, or Distribution of any Mistral Model by You, regardless of the source You obtained a copy of such Mistral Model. **1.2. Acceptance.** By accessing, using, modifying, Distributing a Mistral Model, or by creating, using or distributing a Derivative of the Mistral Model, You agree to be bound by this Agreement. **1.3. Acceptance on behalf of a third-party.** If You accept this Agreement on behalf of Your employer or another person or entity, You warrant and represent that You have the authority to act and accept this Agreement on their behalf. In such a case, the word "You" in this Agreement will refer to Your employer or such other person or entity. ## 2. License **2.1. Grant of rights**. Subject to Section 3 below, Mistral AI hereby grants You a non-exclusive, royalty-free, worldwide, non-sublicensable, non-transferable, limited license to use, copy, modify, and Distribute under the conditions provided in Section 2.2 below, the Mistral Model and any Derivatives made by or for Mistral AI and to create Derivatives of the Mistral Model. **2.2. Distribution of Mistral Model and Derivatives made by or for Mistral AI.** Subject to Section 3 below, You may Distribute copies of the Mistral Model and/or Derivatives made by or for Mistral AI, under the following conditions: You must make available a copy of this Agreement to third-party recipients of the Mistral Models and/or Derivatives made by or for Mistral AI you Distribute, it being specified that any rights to use the Mistral Models and/or Derivatives made by or for Mistral AI shall be directly granted by Mistral AI to said third-party recipients pursuant to the Mistral AI Research License agreement executed between these parties; You must retain in all copies of the Mistral Models the following attribution notice within a "Notice" text file distributed as part of such copies: "Licensed by Mistral AI under the Mistral AI Research License". **2.3. Distribution of Derivatives made by or for You.** Subject to Section 3 below, You may Distribute any Derivatives made by or for You under additional or different terms and conditions, provided that: In any event, the use and modification of Mistral Model and/or Derivatives made by or for Mistral AI shall remain governed by the terms and conditions of this Agreement; You include in any such Derivatives made by or for You prominent notices stating that You modified the concerned Mistral Model; and Any terms and conditions You impose on any third-party recipients relating to Derivatives made by or for You shall neither limit such third-party recipients'' use of the Mistral Model or any Derivatives made by or for Mistral AI in accordance with the Mistral AI Research License nor conflict with any of its terms and conditions. ## 3. Limitations **3.1. Misrepresentation.** You must not misrepresent or imply, through any means, that the Derivatives made by or for You and/or any modified version of the Mistral Model You Distribute under your name and responsibility is an official product of Mistral AI or has been endorsed, approved or validated by Mistral AI, unless You are authorized by Us to do so in writing. **3.2. Usage Limitation.** You shall only use the Mistral Models, Derivatives (whether or not created by Mistral AI) and Outputs for Research Purposes. ## 4. Intellectual Property **4.1. Trademarks.** No trademark licenses are granted under this Agreement, and in connection with the Mistral Models, You may not use any name or mark owned by or associated with Mistral AI or any of its affiliates, except (i) as required for reasonable and customary use in describing and Distributing the Mistral Models and Derivatives made by or for Mistral AI and (ii) for attribution purposes as required by this Agreement. **4.2. Outputs.** We claim no ownership rights in and to the Outputs. You are solely responsible for the Outputs You generate and their subsequent uses in accordance with this Agreement. Any Outputs shall be subject to the restrictions set out in Section 3 of this Agreement. **4.3. Derivatives.** By entering into this Agreement, You accept that any Derivatives that You may create or that may be created for You shall be subject to the restrictions set out in Section 3 of this Agreement. ## 5. Liability **5.1. Limitation of liability.** In no event, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall Mistral AI be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this Agreement or out of the use or inability to use the Mistral Models and Derivatives (including but not limited to damages for loss of data, loss of goodwill, loss of expected profit or savings, work stoppage, computer failure or malfunction, or any damage caused by malware or security breaches), even if Mistral AI has been advised of the possibility of such damages. **5.2. Indemnification.** You agree to indemnify and hold harmless Mistral AI from and against any claims, damages, or losses arising out of or related to Your use or Distribution of the Mistral Models and Derivatives. ## 6. Warranty **6.1. Disclaimer.** Unless required by applicable law or prior agreed to by Mistral AI in writing, Mistral AI provides the Mistral Models and Derivatives on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. Mistral AI does not represent nor warrant that the Mistral Models and Derivatives will be error-free, meet Your or any third party''s requirements, be secure or will allow You or any third party to achieve any kind of result or generate any kind of content. You are solely responsible for determining the appropriateness of using or Distributing the Mistral Models and Derivatives and assume any risks associated with Your exercise of rights under this Agreement. ## 7. Termination **7.1. Term.** This Agreement is effective as of the date of your acceptance of this Agreement or access to the concerned Mistral Models or Derivatives and will continue until terminated in accordance with the following terms. **7.2. Termination.** Mistral AI may terminate this Agreement at any time if You are in breach of this Agreement. Upon termination of this Agreement, You must cease to use all Mistral Models and Derivatives and shall permanently delete any copy thereof. The following provisions, in their relevant parts, will survive any termination or expiration of this Agreement, each for the duration necessary to achieve its own intended purpose (e.g. the liability provision will survive until the end of the applicable limitation period):Sections 5 (Liability), 6(Warranty), 7 (Termination) and 8 (General Provisions). **7.3. Litigation.** If You initiate any legal action or proceedings against Us or any other entity (including a cross-claim or counterclaim in a lawsuit), alleging that the Model or a Derivative, or any part thereof, infringe upon intellectual property or other rights owned or licensable by You, then any licenses granted to You under this Agreement will immediately terminate as of the date such legal action or claim is filed or initiated. ## 8. General provisions **8.1. Governing laws.** This Agreement will be governed by the laws of France, without regard to choice of law principles, and the UN Convention on Contracts for the International Sale of Goods does not apply to this Agreement. **8.2. Competent jurisdiction.** The courts of Paris shall have exclusive jurisdiction of any dispute arising out of this Agreement. **8.3. Severability.** If any provision of this Agreement is held to be invalid, illegal or unenforceable, the remaining provisions shall be unaffected thereby and remain valid as if such provision had not been set forth herein. ## 9. Definitions "Agreement": means this Mistral AI Research License agreement governing the access, use, and Distribution of the Mistral Models, Derivatives and Outputs. "Derivative": means any (i) modified version of the Mistral Model (including but not limited to any customized or fine-tuned version thereof), (ii) work based on the Mistral Model, or (iii) any other derivative work thereof. "Distribution", "Distributing", "Distribute" or "Distributed": means supplying, providing or making available, by any means, a copy of the Mistral Models and/or the Derivatives as the case may be, subject to Section 3 of this Agreement. "Mistral AI", "We" or "Us": means Mistral AI, a French société par actions simplifiée registered in the Paris commercial registry under the number 952 418 325, and having its registered seat at 15, rue des Halles, 75001 Paris. "Mistral Model": means the foundational large language model(s), and its elements which include algorithms, software, instructed checkpoints, parameters, source code (inference code, evaluation code and, if applicable, fine-tuning code) and any other elements associated thereto made available by Mistral AI under this Agreement, including, if any, the technical documentation, manuals and instructions for the use and operation thereof. "Research Purposes": means any use of a Mistral Model, Derivative, or Output that is solely for (a) personal, scientific or academic research, and (b) for non-profit and non-commercial purposes, and not directly or indirectly connected to any commercial activities or business operations. For illustration purposes, Research Purposes does not include (1) any usage of the Mistral Model, Derivative or Output by individuals or contractors employed in or engaged by companies in the context of (a) their daily tasks, or (b) any activity (including but not limited to any testing or proof-of-concept) that is intended to generate revenue, nor (2) any Distribution by a commercial entity of the Mistral Model, Derivative or Output whether in return for payment or free of charge, in any medium or form, including but not limited to through a hosted or managed service (e.g. SaaS, cloud instances, etc.), or behind a software layer. "Outputs": means any content generated by the operation of the Mistral Models or the Derivatives from a prompt (i.e., text instructions) provided by users. For the avoidance of doubt, Outputs do not include any components of a Mistral Models, such as any fine-tuned versions of the Mistral Models, the weights, or parameters. "You": means the individual or entity entering into this Agreement with Mistral AI. *Mistral AI processes your personal data below to provide the model and enforce its license. If you are affiliated with a commercial entity, we may also send you communications about our models. For more information on your rights and data handling, please see our <a href="https://mistral.ai/terms/">privacy policy</a>.*' extra_gated_fields: First Name: text Last Name: text Country: country Affiliation: text Job title: text I understand that I can only use the model, any derivative versions and their outputs for non-commercial research purposes: checkbox ? I understand that if I am a commercial entity, I am not permitted to use or distribute the model internally or externally, or expose it in my own offerings without a commercial license : checkbox ? I understand that if I upload the model, or any derivative version, on any platform, I must include the Mistral Research License : checkbox ? I understand that for commercial use of the model, I can contact Mistral or use the Mistral AI API on la Plateforme or any of our cloud provider partners : checkbox ? By clicking Submit below I accept the terms of the license and acknowledge that the information I provide will be collected stored processed and shared in accordance with the Mistral Privacy Policy : checkbox geo: ip_location extra_gated_description: Mistral AI processes your personal data below to provide the model and enforce its license. If you are affiliated with a commercial entity, we may also send you communications about our models. For more information on your rights and data handling, please see our <a href="https://mistral.ai/terms/">privacy policy</a>. extra_gated_button_content: Submit library_name: vllm tags: - llama-cpp - gguf-my-repo base_model: mistralai/Mistral-Small-Instruct-2409 --- # matrixportal/Mistral-Small-Instruct-2409-Q4_K_M-GGUF This model was converted to GGUF format from [`mistralai/Mistral-Small-Instruct-2409`](https://huggingface.co/mistralai/Mistral-Small-Instruct-2409) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/mistralai/Mistral-Small-Instruct-2409) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo matrixportal/Mistral-Small-Instruct-2409-Q4_K_M-GGUF --hf-file mistral-small-instruct-2409-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo matrixportal/Mistral-Small-Instruct-2409-Q4_K_M-GGUF --hf-file mistral-small-instruct-2409-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo matrixportal/Mistral-Small-Instruct-2409-Q4_K_M-GGUF --hf-file mistral-small-instruct-2409-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo matrixportal/Mistral-Small-Instruct-2409-Q4_K_M-GGUF --hf-file mistral-small-instruct-2409-q4_k_m.gguf -c 2048 ```
krish4950/detr-finetuned-wireharness
krish4950
2025-01-12T19:18:21Z
20
0
transformers
[ "transformers", "safetensors", "detr", "object-detection", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
object-detection
2025-01-12T18:26:50Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
MayBashendy/ArabicNewSplits7_FineTuningAraBERT_run1_AugV5_k9_task5_organization
MayBashendy
2025-01-12T19:12:33Z
7
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:aubmindlab/bert-base-arabertv02", "base_model:finetune:aubmindlab/bert-base-arabertv02", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-01-12T19:05:17Z
--- library_name: transformers base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: ArabicNewSplits7_FineTuningAraBERT_run1_AugV5_k9_task5_organization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ArabicNewSplits7_FineTuningAraBERT_run1_AugV5_k9_task5_organization This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7778 - Qwk: 0.5588 - Mse: 0.7778 - Rmse: 0.8819 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:-------:|:----:|:---------------:|:-------:|:------:|:------:| | No log | 0.0833 | 2 | 4.1156 | 0.0024 | 4.1156 | 2.0287 | | No log | 0.1667 | 4 | 1.9847 | 0.0633 | 1.9847 | 1.4088 | | No log | 0.25 | 6 | 1.2650 | 0.0232 | 1.2650 | 1.1247 | | No log | 0.3333 | 8 | 1.1427 | 0.1296 | 1.1427 | 1.0690 | | No log | 0.4167 | 10 | 1.4212 | 0.0273 | 1.4212 | 1.1921 | | No log | 0.5 | 12 | 1.4855 | 0.1438 | 1.4855 | 1.2188 | | No log | 0.5833 | 14 | 1.3519 | 0.0170 | 1.3519 | 1.1627 | | No log | 0.6667 | 16 | 1.3687 | 0.0712 | 1.3687 | 1.1699 | | No log | 0.75 | 18 | 1.0846 | 0.2539 | 1.0846 | 1.0414 | | No log | 0.8333 | 20 | 1.0034 | 0.2035 | 1.0034 | 1.0017 | | No log | 0.9167 | 22 | 1.1764 | 0.0427 | 1.1764 | 1.0846 | | No log | 1.0 | 24 | 1.6202 | 0.0399 | 1.6202 | 1.2729 | | No log | 1.0833 | 26 | 1.7089 | 0.0651 | 1.7089 | 1.3073 | | No log | 1.1667 | 28 | 1.2862 | -0.0296 | 1.2862 | 1.1341 | | No log | 1.25 | 30 | 1.0896 | 0.2734 | 1.0896 | 1.0438 | | No log | 1.3333 | 32 | 1.1734 | 0.2150 | 1.1734 | 1.0833 | | No log | 1.4167 | 34 | 1.1268 | 0.1910 | 1.1268 | 1.0615 | | No log | 1.5 | 36 | 1.1471 | 0.1910 | 1.1471 | 1.0710 | | No log | 1.5833 | 38 | 1.2530 | 0.0380 | 1.2530 | 1.1194 | | No log | 1.6667 | 40 | 1.1814 | 0.1910 | 1.1814 | 1.0869 | | No log | 1.75 | 42 | 1.1412 | 0.2150 | 1.1412 | 1.0683 | | No log | 1.8333 | 44 | 1.1151 | 0.2150 | 1.1151 | 1.0560 | | No log | 1.9167 | 46 | 1.1561 | 0.2295 | 1.1561 | 1.0752 | | No log | 2.0 | 48 | 1.1455 | 0.2150 | 1.1455 | 1.0703 | | No log | 2.0833 | 50 | 1.1505 | 0.2150 | 1.1505 | 1.0726 | | No log | 2.1667 | 52 | 1.0827 | 0.1979 | 1.0827 | 1.0405 | | No log | 2.25 | 54 | 1.0039 | 0.2416 | 1.0039 | 1.0019 | | No log | 2.3333 | 56 | 0.9863 | 0.2068 | 0.9863 | 0.9931 | | No log | 2.4167 | 58 | 1.0020 | 0.2441 | 1.0020 | 1.0010 | | No log | 2.5 | 60 | 1.1079 | 0.2175 | 1.1079 | 1.0526 | | No log | 2.5833 | 62 | 1.1474 | 0.2143 | 1.1474 | 1.0712 | | No log | 2.6667 | 64 | 0.9963 | 0.2781 | 0.9963 | 0.9981 | | No log | 2.75 | 66 | 0.9530 | 0.2390 | 0.9530 | 0.9762 | | No log | 2.8333 | 68 | 1.0258 | 0.0445 | 1.0258 | 1.0128 | | No log | 2.9167 | 70 | 0.9939 | 0.1076 | 0.9939 | 0.9970 | | No log | 3.0 | 72 | 0.9553 | 0.2912 | 0.9553 | 0.9774 | | No log | 3.0833 | 74 | 1.0256 | 0.2731 | 1.0256 | 1.0127 | | No log | 3.1667 | 76 | 1.1163 | 0.2260 | 1.1163 | 1.0566 | | No log | 3.25 | 78 | 1.0419 | 0.3131 | 1.0419 | 1.0207 | | No log | 3.3333 | 80 | 0.9537 | 0.3370 | 0.9537 | 0.9766 | | No log | 3.4167 | 82 | 0.9233 | 0.4438 | 0.9233 | 0.9609 | | No log | 3.5 | 84 | 0.9231 | 0.4275 | 0.9231 | 0.9608 | | No log | 3.5833 | 86 | 0.9396 | 0.4365 | 0.9396 | 0.9693 | | No log | 3.6667 | 88 | 0.9266 | 0.4915 | 0.9266 | 0.9626 | | No log | 3.75 | 90 | 0.8538 | 0.4769 | 0.8538 | 0.9240 | | No log | 3.8333 | 92 | 0.7824 | 0.6133 | 0.7824 | 0.8845 | | No log | 3.9167 | 94 | 0.7449 | 0.5035 | 0.7449 | 0.8631 | | No log | 4.0 | 96 | 0.7973 | 0.4421 | 0.7973 | 0.8929 | | No log | 4.0833 | 98 | 1.0362 | 0.3283 | 1.0362 | 1.0180 | | No log | 4.1667 | 100 | 1.1811 | 0.3001 | 1.1811 | 1.0868 | | No log | 4.25 | 102 | 1.0545 | 0.3218 | 1.0545 | 1.0269 | | No log | 4.3333 | 104 | 0.7491 | 0.4949 | 0.7491 | 0.8655 | | No log | 4.4167 | 106 | 0.6625 | 0.5446 | 0.6625 | 0.8139 | | No log | 4.5 | 108 | 0.6912 | 0.5329 | 0.6912 | 0.8314 | | No log | 4.5833 | 110 | 0.7396 | 0.4444 | 0.7396 | 0.8600 | | No log | 4.6667 | 112 | 0.7369 | 0.5057 | 0.7369 | 0.8585 | | No log | 4.75 | 114 | 0.7602 | 0.5127 | 0.7602 | 0.8719 | | No log | 4.8333 | 116 | 0.7781 | 0.4615 | 0.7781 | 0.8821 | | No log | 4.9167 | 118 | 0.8226 | 0.5065 | 0.8226 | 0.9070 | | No log | 5.0 | 120 | 0.9131 | 0.4051 | 0.9131 | 0.9556 | | No log | 5.0833 | 122 | 0.8026 | 0.5079 | 0.8026 | 0.8959 | | No log | 5.1667 | 124 | 0.7402 | 0.4962 | 0.7402 | 0.8603 | | No log | 5.25 | 126 | 0.7355 | 0.5512 | 0.7355 | 0.8576 | | No log | 5.3333 | 128 | 0.8009 | 0.5181 | 0.8009 | 0.8949 | | No log | 5.4167 | 130 | 0.9722 | 0.4359 | 0.9722 | 0.9860 | | No log | 5.5 | 132 | 0.8379 | 0.5538 | 0.8379 | 0.9154 | | No log | 5.5833 | 134 | 0.7056 | 0.5692 | 0.7056 | 0.8400 | | No log | 5.6667 | 136 | 0.8537 | 0.5019 | 0.8537 | 0.9240 | | No log | 5.75 | 138 | 0.7697 | 0.4893 | 0.7697 | 0.8773 | | No log | 5.8333 | 140 | 0.6772 | 0.5949 | 0.6772 | 0.8229 | | No log | 5.9167 | 142 | 0.7273 | 0.5540 | 0.7273 | 0.8528 | | No log | 6.0 | 144 | 0.6865 | 0.6043 | 0.6865 | 0.8286 | | No log | 6.0833 | 146 | 0.6663 | 0.5485 | 0.6663 | 0.8163 | | No log | 6.1667 | 148 | 0.6526 | 0.5262 | 0.6526 | 0.8078 | | No log | 6.25 | 150 | 0.6653 | 0.6325 | 0.6653 | 0.8157 | | No log | 6.3333 | 152 | 0.6915 | 0.6315 | 0.6915 | 0.8316 | | No log | 6.4167 | 154 | 0.6887 | 0.5980 | 0.6887 | 0.8299 | | No log | 6.5 | 156 | 0.7030 | 0.5980 | 0.7030 | 0.8385 | | No log | 6.5833 | 158 | 0.7386 | 0.5869 | 0.7386 | 0.8594 | | No log | 6.6667 | 160 | 0.7053 | 0.5680 | 0.7053 | 0.8398 | | No log | 6.75 | 162 | 0.7432 | 0.5759 | 0.7432 | 0.8621 | | No log | 6.8333 | 164 | 0.7517 | 0.5890 | 0.7517 | 0.8670 | | No log | 6.9167 | 166 | 0.7268 | 0.5659 | 0.7268 | 0.8525 | | No log | 7.0 | 168 | 0.7370 | 0.5204 | 0.7370 | 0.8585 | | No log | 7.0833 | 170 | 0.6638 | 0.6307 | 0.6638 | 0.8147 | | No log | 7.1667 | 172 | 0.6463 | 0.6762 | 0.6464 | 0.8040 | | No log | 7.25 | 174 | 0.6661 | 0.5955 | 0.6661 | 0.8162 | | No log | 7.3333 | 176 | 0.6305 | 0.6610 | 0.6305 | 0.7940 | | No log | 7.4167 | 178 | 0.7525 | 0.5735 | 0.7525 | 0.8675 | | No log | 7.5 | 180 | 0.7804 | 0.5443 | 0.7804 | 0.8834 | | No log | 7.5833 | 182 | 0.6912 | 0.5666 | 0.6912 | 0.8314 | | No log | 7.6667 | 184 | 0.6456 | 0.6456 | 0.6456 | 0.8035 | | No log | 7.75 | 186 | 0.6756 | 0.6165 | 0.6756 | 0.8220 | | No log | 7.8333 | 188 | 0.7471 | 0.5397 | 0.7471 | 0.8643 | | No log | 7.9167 | 190 | 0.7352 | 0.5410 | 0.7352 | 0.8575 | | No log | 8.0 | 192 | 0.7067 | 0.6724 | 0.7067 | 0.8407 | | No log | 8.0833 | 194 | 0.7465 | 0.5774 | 0.7465 | 0.8640 | | No log | 8.1667 | 196 | 0.8731 | 0.4470 | 0.8731 | 0.9344 | | No log | 8.25 | 198 | 0.8658 | 0.4588 | 0.8658 | 0.9305 | | No log | 8.3333 | 200 | 0.8049 | 0.5195 | 0.8049 | 0.8971 | | No log | 8.4167 | 202 | 0.7887 | 0.5160 | 0.7887 | 0.8881 | | No log | 8.5 | 204 | 0.8056 | 0.5301 | 0.8056 | 0.8976 | | No log | 8.5833 | 206 | 0.7984 | 0.5017 | 0.7984 | 0.8935 | | No log | 8.6667 | 208 | 0.8057 | 0.4375 | 0.8057 | 0.8976 | | No log | 8.75 | 210 | 0.7880 | 0.4757 | 0.7880 | 0.8877 | | No log | 8.8333 | 212 | 0.7851 | 0.4757 | 0.7851 | 0.8861 | | No log | 8.9167 | 214 | 0.7983 | 0.4974 | 0.7983 | 0.8935 | | No log | 9.0 | 216 | 0.7876 | 0.5261 | 0.7876 | 0.8875 | | No log | 9.0833 | 218 | 0.7914 | 0.5248 | 0.7914 | 0.8896 | | No log | 9.1667 | 220 | 0.7937 | 0.5473 | 0.7937 | 0.8909 | | No log | 9.25 | 222 | 0.7868 | 0.5798 | 0.7868 | 0.8870 | | No log | 9.3333 | 224 | 0.7797 | 0.5607 | 0.7797 | 0.8830 | | No log | 9.4167 | 226 | 0.7597 | 0.5540 | 0.7597 | 0.8716 | | No log | 9.5 | 228 | 0.7408 | 0.5614 | 0.7408 | 0.8607 | | No log | 9.5833 | 230 | 0.7787 | 0.5425 | 0.7787 | 0.8825 | | No log | 9.6667 | 232 | 0.7730 | 0.5635 | 0.7730 | 0.8792 | | No log | 9.75 | 234 | 0.8063 | 0.5370 | 0.8063 | 0.8979 | | No log | 9.8333 | 236 | 0.8565 | 0.4834 | 0.8565 | 0.9255 | | No log | 9.9167 | 238 | 0.8620 | 0.4450 | 0.8620 | 0.9284 | | No log | 10.0 | 240 | 0.8645 | 0.4537 | 0.8645 | 0.9298 | | No log | 10.0833 | 242 | 0.8889 | 0.4455 | 0.8889 | 0.9428 | | No log | 10.1667 | 244 | 0.9977 | 0.3781 | 0.9977 | 0.9989 | | No log | 10.25 | 246 | 0.9224 | 0.4642 | 0.9224 | 0.9604 | | No log | 10.3333 | 248 | 0.8796 | 0.4636 | 0.8796 | 0.9379 | | No log | 10.4167 | 250 | 0.9158 | 0.4517 | 0.9158 | 0.9570 | | No log | 10.5 | 252 | 0.8244 | 0.4871 | 0.8244 | 0.9079 | | No log | 10.5833 | 254 | 0.8311 | 0.4849 | 0.8311 | 0.9116 | | No log | 10.6667 | 256 | 0.8233 | 0.5393 | 0.8233 | 0.9074 | | No log | 10.75 | 258 | 0.8131 | 0.5518 | 0.8131 | 0.9017 | | No log | 10.8333 | 260 | 0.8746 | 0.4639 | 0.8746 | 0.9352 | | No log | 10.9167 | 262 | 0.8527 | 0.4954 | 0.8527 | 0.9234 | | No log | 11.0 | 264 | 0.8344 | 0.5379 | 0.8344 | 0.9135 | | No log | 11.0833 | 266 | 0.8635 | 0.4963 | 0.8635 | 0.9293 | | No log | 11.1667 | 268 | 0.8319 | 0.5671 | 0.8319 | 0.9121 | | No log | 11.25 | 270 | 0.8751 | 0.4440 | 0.8751 | 0.9354 | | No log | 11.3333 | 272 | 0.9062 | 0.4601 | 0.9062 | 0.9520 | | No log | 11.4167 | 274 | 0.8486 | 0.5006 | 0.8486 | 0.9212 | | No log | 11.5 | 276 | 0.7821 | 0.5637 | 0.7821 | 0.8844 | | No log | 11.5833 | 278 | 0.8129 | 0.5255 | 0.8129 | 0.9016 | | No log | 11.6667 | 280 | 0.8372 | 0.5358 | 0.8372 | 0.9150 | | No log | 11.75 | 282 | 0.8156 | 0.5042 | 0.8156 | 0.9031 | | No log | 11.8333 | 284 | 0.7989 | 0.5167 | 0.7989 | 0.8938 | | No log | 11.9167 | 286 | 0.7635 | 0.5774 | 0.7635 | 0.8738 | | No log | 12.0 | 288 | 0.7476 | 0.5751 | 0.7476 | 0.8647 | | No log | 12.0833 | 290 | 0.7327 | 0.6177 | 0.7327 | 0.8560 | | No log | 12.1667 | 292 | 0.8021 | 0.5668 | 0.8021 | 0.8956 | | No log | 12.25 | 294 | 0.7558 | 0.5934 | 0.7558 | 0.8694 | | No log | 12.3333 | 296 | 0.6879 | 0.5594 | 0.6879 | 0.8294 | | No log | 12.4167 | 298 | 0.6936 | 0.5647 | 0.6936 | 0.8328 | | No log | 12.5 | 300 | 0.7173 | 0.5894 | 0.7173 | 0.8469 | | No log | 12.5833 | 302 | 0.8856 | 0.4970 | 0.8856 | 0.9411 | | No log | 12.6667 | 304 | 0.9932 | 0.4458 | 0.9932 | 0.9966 | | No log | 12.75 | 306 | 0.9394 | 0.4359 | 0.9394 | 0.9692 | | No log | 12.8333 | 308 | 0.8255 | 0.4825 | 0.8255 | 0.9086 | | No log | 12.9167 | 310 | 0.7724 | 0.5766 | 0.7724 | 0.8789 | | No log | 13.0 | 312 | 0.8436 | 0.4719 | 0.8436 | 0.9185 | | No log | 13.0833 | 314 | 0.8301 | 0.4613 | 0.8301 | 0.9111 | | No log | 13.1667 | 316 | 0.7263 | 0.6008 | 0.7263 | 0.8522 | | No log | 13.25 | 318 | 0.6973 | 0.5455 | 0.6973 | 0.8350 | | No log | 13.3333 | 320 | 0.7162 | 0.5894 | 0.7162 | 0.8463 | | No log | 13.4167 | 322 | 0.7536 | 0.4586 | 0.7536 | 0.8681 | | No log | 13.5 | 324 | 0.7285 | 0.5093 | 0.7285 | 0.8535 | | No log | 13.5833 | 326 | 0.7366 | 0.4850 | 0.7366 | 0.8582 | | No log | 13.6667 | 328 | 0.7166 | 0.5331 | 0.7166 | 0.8465 | | No log | 13.75 | 330 | 0.7049 | 0.5858 | 0.7049 | 0.8396 | | No log | 13.8333 | 332 | 0.6818 | 0.5869 | 0.6818 | 0.8257 | | No log | 13.9167 | 334 | 0.7261 | 0.5766 | 0.7261 | 0.8521 | | No log | 14.0 | 336 | 0.8149 | 0.5705 | 0.8149 | 0.9027 | | No log | 14.0833 | 338 | 0.7586 | 0.5788 | 0.7586 | 0.8710 | | No log | 14.1667 | 340 | 0.7024 | 0.4772 | 0.7024 | 0.8381 | | No log | 14.25 | 342 | 0.7079 | 0.5135 | 0.7079 | 0.8413 | | No log | 14.3333 | 344 | 0.7171 | 0.5274 | 0.7171 | 0.8468 | | No log | 14.4167 | 346 | 0.7125 | 0.4772 | 0.7125 | 0.8441 | | No log | 14.5 | 348 | 0.7743 | 0.6071 | 0.7743 | 0.8800 | | No log | 14.5833 | 350 | 0.7630 | 0.5766 | 0.7630 | 0.8735 | | No log | 14.6667 | 352 | 0.7198 | 0.6048 | 0.7198 | 0.8484 | | No log | 14.75 | 354 | 0.7876 | 0.5222 | 0.7876 | 0.8875 | | No log | 14.8333 | 356 | 0.8086 | 0.4686 | 0.8086 | 0.8992 | | No log | 14.9167 | 358 | 0.7294 | 0.4565 | 0.7294 | 0.8540 | | No log | 15.0 | 360 | 0.7745 | 0.5602 | 0.7745 | 0.8801 | | No log | 15.0833 | 362 | 0.7899 | 0.5487 | 0.7899 | 0.8888 | | No log | 15.1667 | 364 | 0.7196 | 0.5540 | 0.7196 | 0.8483 | | No log | 15.25 | 366 | 0.6896 | 0.5038 | 0.6896 | 0.8305 | | No log | 15.3333 | 368 | 0.6799 | 0.5149 | 0.6799 | 0.8246 | | No log | 15.4167 | 370 | 0.6943 | 0.5821 | 0.6943 | 0.8332 | | No log | 15.5 | 372 | 0.7752 | 0.5726 | 0.7752 | 0.8805 | | No log | 15.5833 | 374 | 0.7772 | 0.5106 | 0.7772 | 0.8816 | | No log | 15.6667 | 376 | 0.7086 | 0.6081 | 0.7086 | 0.8418 | | No log | 15.75 | 378 | 0.6802 | 0.6091 | 0.6802 | 0.8247 | | No log | 15.8333 | 380 | 0.6879 | 0.6091 | 0.6879 | 0.8294 | | No log | 15.9167 | 382 | 0.6506 | 0.6301 | 0.6506 | 0.8066 | | No log | 16.0 | 384 | 0.6485 | 0.6154 | 0.6485 | 0.8053 | | No log | 16.0833 | 386 | 0.6613 | 0.6133 | 0.6613 | 0.8132 | | No log | 16.1667 | 388 | 0.6644 | 0.5590 | 0.6644 | 0.8151 | | No log | 16.25 | 390 | 0.6562 | 0.5301 | 0.6562 | 0.8101 | | No log | 16.3333 | 392 | 0.6545 | 0.5202 | 0.6545 | 0.8090 | | No log | 16.4167 | 394 | 0.6464 | 0.5934 | 0.6464 | 0.8040 | | No log | 16.5 | 396 | 0.6429 | 0.6716 | 0.6429 | 0.8018 | | No log | 16.5833 | 398 | 0.6835 | 0.6266 | 0.6835 | 0.8267 | | No log | 16.6667 | 400 | 0.6597 | 0.5909 | 0.6597 | 0.8122 | | No log | 16.75 | 402 | 0.6265 | 0.6518 | 0.6265 | 0.7915 | | No log | 16.8333 | 404 | 0.6342 | 0.6322 | 0.6342 | 0.7964 | | No log | 16.9167 | 406 | 0.6359 | 0.6165 | 0.6359 | 0.7974 | | No log | 17.0 | 408 | 0.6215 | 0.6276 | 0.6215 | 0.7883 | | No log | 17.0833 | 410 | 0.6144 | 0.5894 | 0.6144 | 0.7839 | | No log | 17.1667 | 412 | 0.6026 | 0.6441 | 0.6026 | 0.7762 | | No log | 17.25 | 414 | 0.6059 | 0.6441 | 0.6059 | 0.7784 | | No log | 17.3333 | 416 | 0.6103 | 0.6623 | 0.6103 | 0.7812 | | No log | 17.4167 | 418 | 0.6229 | 0.6291 | 0.6229 | 0.7892 | | No log | 17.5 | 420 | 0.6376 | 0.5869 | 0.6376 | 0.7985 | | No log | 17.5833 | 422 | 0.6365 | 0.5774 | 0.6365 | 0.7978 | | No log | 17.6667 | 424 | 0.6622 | 0.4822 | 0.6622 | 0.8137 | | No log | 17.75 | 426 | 0.6652 | 0.4938 | 0.6652 | 0.8156 | | No log | 17.8333 | 428 | 0.6641 | 0.5174 | 0.6641 | 0.8149 | | No log | 17.9167 | 430 | 0.6599 | 0.5032 | 0.6599 | 0.8123 | | No log | 18.0 | 432 | 0.6770 | 0.6209 | 0.6770 | 0.8228 | | No log | 18.0833 | 434 | 0.6982 | 0.5708 | 0.6982 | 0.8356 | | No log | 18.1667 | 436 | 0.6796 | 0.5933 | 0.6796 | 0.8244 | | No log | 18.25 | 438 | 0.6412 | 0.6390 | 0.6412 | 0.8008 | | No log | 18.3333 | 440 | 0.6426 | 0.6427 | 0.6426 | 0.8017 | | No log | 18.4167 | 442 | 0.6695 | 0.6073 | 0.6695 | 0.8182 | | No log | 18.5 | 444 | 0.6943 | 0.6147 | 0.6943 | 0.8333 | | No log | 18.5833 | 446 | 0.6640 | 0.6133 | 0.6640 | 0.8149 | | No log | 18.6667 | 448 | 0.6490 | 0.6107 | 0.6490 | 0.8056 | | No log | 18.75 | 450 | 0.6559 | 0.5441 | 0.6559 | 0.8099 | | No log | 18.8333 | 452 | 0.6515 | 0.5315 | 0.6515 | 0.8071 | | No log | 18.9167 | 454 | 0.6428 | 0.6479 | 0.6428 | 0.8017 | | No log | 19.0 | 456 | 0.6687 | 0.5708 | 0.6687 | 0.8178 | | No log | 19.0833 | 458 | 0.6558 | 0.6588 | 0.6558 | 0.8098 | | No log | 19.1667 | 460 | 0.6510 | 0.5057 | 0.6510 | 0.8069 | | No log | 19.25 | 462 | 0.6695 | 0.5554 | 0.6695 | 0.8182 | | No log | 19.3333 | 464 | 0.6635 | 0.5403 | 0.6635 | 0.8145 | | No log | 19.4167 | 466 | 0.6686 | 0.6259 | 0.6686 | 0.8177 | | No log | 19.5 | 468 | 0.6990 | 0.5875 | 0.6990 | 0.8361 | | No log | 19.5833 | 470 | 0.6863 | 0.6325 | 0.6863 | 0.8284 | | No log | 19.6667 | 472 | 0.6838 | 0.5847 | 0.6838 | 0.8269 | | No log | 19.75 | 474 | 0.6944 | 0.5516 | 0.6944 | 0.8333 | | No log | 19.8333 | 476 | 0.7085 | 0.5746 | 0.7085 | 0.8417 | | No log | 19.9167 | 478 | 0.7675 | 0.5729 | 0.7675 | 0.8760 | | No log | 20.0 | 480 | 0.8332 | 0.5018 | 0.8332 | 0.9128 | | No log | 20.0833 | 482 | 0.8044 | 0.5436 | 0.8044 | 0.8969 | | No log | 20.1667 | 484 | 0.7871 | 0.5571 | 0.7871 | 0.8872 | | No log | 20.25 | 486 | 0.7719 | 0.6118 | 0.7719 | 0.8786 | | No log | 20.3333 | 488 | 0.7597 | 0.5933 | 0.7597 | 0.8716 | | No log | 20.4167 | 490 | 0.7517 | 0.5986 | 0.7517 | 0.8670 | | No log | 20.5 | 492 | 0.7653 | 0.5774 | 0.7653 | 0.8748 | | No log | 20.5833 | 494 | 0.7571 | 0.5131 | 0.7571 | 0.8701 | | No log | 20.6667 | 496 | 0.7491 | 0.5260 | 0.7491 | 0.8655 | | No log | 20.75 | 498 | 0.7648 | 0.5729 | 0.7648 | 0.8745 | | 0.3451 | 20.8333 | 500 | 0.7563 | 0.5708 | 0.7563 | 0.8697 | | 0.3451 | 20.9167 | 502 | 0.7387 | 0.5708 | 0.7387 | 0.8595 | | 0.3451 | 21.0 | 504 | 0.7095 | 0.6147 | 0.7095 | 0.8423 | | 0.3451 | 21.0833 | 506 | 0.7003 | 0.5587 | 0.7003 | 0.8368 | | 0.3451 | 21.1667 | 508 | 0.7426 | 0.4977 | 0.7426 | 0.8617 | | 0.3451 | 21.25 | 510 | 0.7559 | 0.4641 | 0.7559 | 0.8694 | | 0.3451 | 21.3333 | 512 | 0.7304 | 0.5563 | 0.7304 | 0.8546 | | 0.3451 | 21.4167 | 514 | 0.7778 | 0.5588 | 0.7778 | 0.8819 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1
RyanYr/reflect_mini8B_MistlrgOrcl460kSftT1_Om2G8kOm2AgG8k40kIpsdpT1-b1.0
RyanYr
2025-01-12T19:11:24Z
23
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "generated_from_trainer", "trl", "dpo", "conversational", "arxiv:2305.18290", "base_model:RyanYr/reflect_mini8B_MistlrgOrcl460kSftT1", "base_model:finetune:RyanYr/reflect_mini8B_MistlrgOrcl460kSftT1", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-12T17:45:41Z
--- base_model: RyanYr/reflect_mini8B_MistlrgOrcl460kSftT1 library_name: transformers model_name: reflect_mini8B_MistlrgOrcl460kSftT1_Om2G8kOm2AgG8k40kIpsdpT1-b1.0 tags: - generated_from_trainer - trl - dpo licence: license --- # Model Card for reflect_mini8B_MistlrgOrcl460kSftT1_Om2G8kOm2AgG8k40kIpsdpT1-b1.0 This model is a fine-tuned version of [RyanYr/reflect_mini8B_MistlrgOrcl460kSftT1](https://huggingface.co/RyanYr/reflect_mini8B_MistlrgOrcl460kSftT1). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="RyanYr/reflect_mini8B_MistlrgOrcl460kSftT1_Om2G8kOm2AgG8k40kIpsdpT1-b1.0", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/yyr/huggingface/runs/qhnts2j4) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.12.0.dev0 - Transformers: 4.45.2 - Pytorch: 2.5.1 - Datasets: 3.1.0 - Tokenizers: 0.20.3 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
dzanbek/48aaa683-5c1a-43fc-8de7-96a7a901c247
dzanbek
2025-01-12T19:11:02Z
10
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:HuggingFaceM4/tiny-random-LlamaForCausalLM", "base_model:adapter:HuggingFaceM4/tiny-random-LlamaForCausalLM", "region:us" ]
null
2025-01-12T19:10:37Z
--- library_name: peft base_model: HuggingFaceM4/tiny-random-LlamaForCausalLM tags: - axolotl - generated_from_trainer model-index: - name: 48aaa683-5c1a-43fc-8de7-96a7a901c247 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: HuggingFaceM4/tiny-random-LlamaForCausalLM bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 120e2b58d59a1b2e_train_data.json ds_type: json format: custom path: /workspace/input_data/120e2b58d59a1b2e_train_data.json type: field_input: original_code field_instruction: update_snippet field_output: final_code format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: dzanbek/48aaa683-5c1a-43fc-8de7-96a7a901c247 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 78GiB max_steps: 30 micro_batch_size: 2 mlflow_experiment_name: /tmp/120e2b58d59a1b2e_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 562f173b-b07d-4eb4-a59f-d230672ec843 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 562f173b-b07d-4eb4-a59f-d230672ec843 warmup_steps: 10 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 48aaa683-5c1a-43fc-8de7-96a7a901c247 This model is a fine-tuned version of [HuggingFaceM4/tiny-random-LlamaForCausalLM](https://huggingface.co/HuggingFaceM4/tiny-random-LlamaForCausalLM) on the None dataset. It achieves the following results on the evaluation set: - Loss: 10.3716 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0015 | 1 | 10.3744 | | 10.3758 | 0.0118 | 8 | 10.3739 | | 10.3737 | 0.0237 | 16 | 10.3725 | | 10.3709 | 0.0355 | 24 | 10.3716 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
innov8academy/alex
innov8academy
2025-01-12T19:10:49Z
16
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-12T18:49:45Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: Alex --- # Alex <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `Alex` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('innov8academy/alex', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
Davlan/afro-xlmr-large-76L
Davlan
2025-01-12T19:10:31Z
721
3
transformers
[ "transformers", "pytorch", "jax", "safetensors", "xlm-roberta", "fill-mask", "generated_from_trainer", "en", "am", "ar", "so", "sw", "pt", "af", "fr", "zu", "mg", "ha", "sn", "arz", "ny", "ig", "xh", "yo", "st", "rw", "tn", "ti", "ts", "om", "run", "nso", "ee", "ln", "tw", "pcm", "gaa", "loz", "lg", "guw", "bem", "efi", "lue", "lua", "toi", "ve", "tum", "tll", "iso", "kqn", "zne", "umb", "mos", "tiv", "lu", "ff", "kwy", "bci", "rnd", "luo", "wal", "ss", "lun", "wo", "nyk", "kj", "ki", "fon", "bm", "cjk", "din", "dyu", "kab", "kam", "kbp", "kr", "kmb", "kg", "nus", "sg", "taq", "tzm", "nqo", "arxiv:2309.07445", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2024-02-18T15:13:51Z
--- license: mit tags: - generated_from_trainer model-index: - name: afro-xlmr-large-76L results: [] language: - en - am - ar - so - sw - pt - af - fr - zu - mg - ha - sn - arz - ny - ig - xh - yo - st - rw - tn - ti - ts - om - run - nso - ee - ln - tw - pcm - gaa - loz - lg - guw - bem - efi - lue - lua - toi - ve - tum - tll - iso - kqn - zne - umb - mos - tiv - lu - ff - kwy - bci - rnd - luo - wal - ss - lun - wo - nyk - kj - ki - fon - bm - cjk - din - dyu - kab - kam - kbp - kr - kmb - kg - nus - sg - taq - tzm - nqo --- # afro-xlmr-large-76L AfroXLMR-large-76L was created by an MLM adaptation of the expanded XLM-R-large model on 76 languages widely spoken in Africa including 4 high-resource languages. ### Pre-training corpus A mix of mC4, Wikipedia and OPUS data ### Languages There are 76 languages available : - English (eng) - Amharic (amh) - Arabic (ara) - Somali (som) - Kiswahili (swa) - Portuguese (por) - Afrikaans (afr) - French (fra) - isiZulu (zul) - Malagasy (mlg) - Hausa (hau) - chiShona (sna) - Egyptian Arabic (arz) - Chichewa (nya) - Igbo (ibo) - isiXhosa (xho) - Yorùbá (yor) - Sesotho (sot) - Kinyarwanda (kin) - Tigrinya (tir) - Tsonga (tso) - Oromo (orm) - Rundi (run) - Northern Sotho (nso) - Ewe (ewe) - Lingala (lin) - Twi (twi) - Nigerian Pidgin (pcm) - Ga (gaa) - Lozi (loz) - Luganda (lug) - Gun (guw) - Bemba (bem) - Efik (efi) - Luvale (lue) - Luba-Lulua (lua) - Tonga (toi) - Tshivenḓa (ven) - Tumbuka (tum) - Tetela (tll) - Isoko (iso) - Kaonde (kqn) - Zande (zne) - Umbundu (umb) - Mossi (mos) - Tiv (tiv) - Luba-Katanga (lub) - Fula (fuv) - San Salvador Kongo (kwy) - Baoulé (bci) - Ruund (rnd) - Luo (luo) - Wolaitta (wal) - Swazi (ssw) - Lunda (lun) - Wolof (wol) - Nyaneka (nyk) - Kwanyama (kua) - Kikuyu (kik) - Fon (fon) - Bambara (bam) - Chokwe (cjk) - Dinka (dik) - Dyula (dyu) - Kabyle (kab) - Kamba (kam) - Kabiyè (kbp) - Kanuri (knc) - Kimbundu (kmb) - Kikongo (kon) - Nuer (nus) - Sango (sag) - Tamasheq (taq) - Tamazight (tzm) - N'ko (nqo) ### Acknowledgment We would like to thank Google Cloud for providing us access to TPU v3-8 through the free cloud credits. Model trained using flax, before converted to pytorch. ### BibTeX entry and citation info. ``` @misc{adelani2023sib200, title={SIB-200: A Simple, Inclusive, and Big Evaluation Dataset for Topic Classification in 200+ Languages and Dialects}, author={David Ifeoluwa Adelani and Hannah Liu and Xiaoyu Shen and Nikita Vassilyev and Jesujoba O. Alabi and Yanke Mao and Haonan Gao and Annie En-Shiun Lee}, year={2023}, eprint={2309.07445}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
ArjTheHacker/diabetic-retinopathy-detection
ArjTheHacker
2025-01-12T19:06:53Z
5
0
null
[ "pytorch", "vision-classification", "region:us" ]
null
2025-01-12T19:06:46Z
# Diabetic Retinopathy Detection Model This model is designed to detect and classify diabetic retinopathy from retinal images. It provides both color and black & white image analysis capabilities. ## Model Description The model comes in two variants: 1. Color image model (`the_full_color_model.pth`) 2. Black & White image model (`the_full_BW_model.pth`) ### Input - Image size: [Please specify the input image size requirements] - Format: Both RGB and grayscale images supported ### Output - Classification of diabetic retinopathy severity - Confidence scores for each class ## Usage ```python from transformers import AutoModelForImageClassification model = AutoModelForImageClassification.from_pretrained("ArjTheHacker/diabetic-retinopathy-detection") ``` ## Training The model was originally trained on [specify dataset] and fine-tuned for diabetic retinopathy detection. ## Performance [Add performance metrics when available] ## Limitations This model is intended to assist in diabetic retinopathy screening but should not be used as the sole diagnostic tool. Always consult healthcare professionals for medical decisions.
nhung03/1854cbe5-4cf0-4910-848f-ff80137befc9
nhung03
2025-01-12T19:05:00Z
10
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-1.5B-Instruct", "base_model:adapter:unsloth/Qwen2.5-1.5B-Instruct", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-12T18:54:54Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-1.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 1854cbe5-4cf0-4910-848f-ff80137befc9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-1.5B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 107ffab1dfbb4160_train_data.json ds_type: json format: custom path: /workspace/input_data/107ffab1dfbb4160_train_data.json type: field_input: URL field_instruction: domain field_output: sentence format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nhung03/1854cbe5-4cf0-4910-848f-ff80137befc9 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/107ffab1dfbb4160_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 0d22ca37-eb44-4813-87aa-fe209ff97a6a wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 0d22ca37-eb44-4813-87aa-fe209ff97a6a warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 1854cbe5-4cf0-4910-848f-ff80137befc9 This model is a fine-tuned version of [unsloth/Qwen2.5-1.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-1.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.4324 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.0652 | 0.9313 | 200 | 3.4324 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
MayBashendy/ArabicNewSplits7_FineTuningAraBERT_run1_AugV5_k8_task5_organization
MayBashendy
2025-01-12T19:04:53Z
7
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:aubmindlab/bert-base-arabertv02", "base_model:finetune:aubmindlab/bert-base-arabertv02", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-01-12T18:51:00Z
--- library_name: transformers base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: ArabicNewSplits7_FineTuningAraBERT_run1_AugV5_k8_task5_organization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ArabicNewSplits7_FineTuningAraBERT_run1_AugV5_k8_task5_organization This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5623 - Qwk: 0.6610 - Mse: 0.5623 - Rmse: 0.7499 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:-------:|:----:|:---------------:|:-------:|:------:|:------:| | No log | 0.0909 | 2 | 3.9092 | -0.0323 | 3.9092 | 1.9772 | | No log | 0.1818 | 4 | 2.2398 | -0.0409 | 2.2398 | 1.4966 | | No log | 0.2727 | 6 | 1.9043 | -0.0623 | 1.9043 | 1.3800 | | No log | 0.3636 | 8 | 1.4071 | 0.0143 | 1.4071 | 1.1862 | | No log | 0.4545 | 10 | 1.1548 | 0.0760 | 1.1548 | 1.0746 | | No log | 0.5455 | 12 | 1.1534 | 0.0374 | 1.1534 | 1.0739 | | No log | 0.6364 | 14 | 1.2925 | -0.0963 | 1.2925 | 1.1369 | | No log | 0.7273 | 16 | 1.3598 | -0.1043 | 1.3598 | 1.1661 | | No log | 0.8182 | 18 | 1.1437 | 0.2341 | 1.1437 | 1.0695 | | No log | 0.9091 | 20 | 1.0272 | 0.1799 | 1.0272 | 1.0135 | | No log | 1.0 | 22 | 1.0297 | 0.1203 | 1.0297 | 1.0147 | | No log | 1.0909 | 24 | 0.9481 | 0.2161 | 0.9481 | 0.9737 | | No log | 1.1818 | 26 | 1.0111 | 0.2711 | 1.0111 | 1.0055 | | No log | 1.2727 | 28 | 1.4042 | 0.1136 | 1.4042 | 1.1850 | | No log | 1.3636 | 30 | 1.4280 | 0.1136 | 1.4280 | 1.1950 | | No log | 1.4545 | 32 | 1.2236 | 0.0 | 1.2236 | 1.1062 | | No log | 1.5455 | 34 | 1.0511 | 0.1764 | 1.0511 | 1.0252 | | No log | 1.6364 | 36 | 0.9370 | 0.3666 | 0.9370 | 0.9680 | | No log | 1.7273 | 38 | 0.9329 | 0.375 | 0.9329 | 0.9658 | | No log | 1.8182 | 40 | 0.9752 | 0.3229 | 0.9752 | 0.9875 | | No log | 1.9091 | 42 | 0.9844 | 0.3104 | 0.9844 | 0.9922 | | No log | 2.0 | 44 | 0.8800 | 0.3243 | 0.8800 | 0.9381 | | No log | 2.0909 | 46 | 0.8903 | 0.2350 | 0.8903 | 0.9435 | | No log | 2.1818 | 48 | 0.8951 | 0.2796 | 0.8951 | 0.9461 | | No log | 2.2727 | 50 | 0.8685 | 0.3921 | 0.8685 | 0.9319 | | No log | 2.3636 | 52 | 0.8208 | 0.4078 | 0.8208 | 0.9060 | | No log | 2.4545 | 54 | 0.7933 | 0.4557 | 0.7933 | 0.8907 | | No log | 2.5455 | 56 | 0.8182 | 0.4472 | 0.8182 | 0.9045 | | No log | 2.6364 | 58 | 0.7379 | 0.4796 | 0.7379 | 0.8590 | | No log | 2.7273 | 60 | 0.7649 | 0.5715 | 0.7649 | 0.8746 | | No log | 2.8182 | 62 | 0.8347 | 0.5251 | 0.8347 | 0.9136 | | No log | 2.9091 | 64 | 0.7545 | 0.5849 | 0.7545 | 0.8686 | | No log | 3.0 | 66 | 0.7995 | 0.5435 | 0.7995 | 0.8941 | | No log | 3.0909 | 68 | 0.7304 | 0.5478 | 0.7304 | 0.8546 | | No log | 3.1818 | 70 | 0.6738 | 0.6429 | 0.6738 | 0.8209 | | No log | 3.2727 | 72 | 0.7029 | 0.6251 | 0.7029 | 0.8384 | | No log | 3.3636 | 74 | 0.6662 | 0.6139 | 0.6662 | 0.8162 | | No log | 3.4545 | 76 | 0.6546 | 0.6377 | 0.6546 | 0.8091 | | No log | 3.5455 | 78 | 0.6404 | 0.6377 | 0.6404 | 0.8003 | | No log | 3.6364 | 80 | 0.6202 | 0.6570 | 0.6202 | 0.7875 | | No log | 3.7273 | 82 | 0.6225 | 0.6835 | 0.6225 | 0.7890 | | No log | 3.8182 | 84 | 0.6741 | 0.7011 | 0.6741 | 0.8210 | | No log | 3.9091 | 86 | 0.7546 | 0.6344 | 0.7546 | 0.8687 | | No log | 4.0 | 88 | 0.8790 | 0.5435 | 0.8790 | 0.9376 | | No log | 4.0909 | 90 | 0.8167 | 0.6291 | 0.8167 | 0.9037 | | No log | 4.1818 | 92 | 0.9996 | 0.4826 | 0.9996 | 0.9998 | | No log | 4.2727 | 94 | 0.9352 | 0.5262 | 0.9352 | 0.9670 | | No log | 4.3636 | 96 | 0.8110 | 0.6174 | 0.8110 | 0.9005 | | No log | 4.4545 | 98 | 0.6637 | 0.6886 | 0.6637 | 0.8147 | | No log | 4.5455 | 100 | 0.7296 | 0.6557 | 0.7296 | 0.8542 | | No log | 4.6364 | 102 | 0.8078 | 0.6450 | 0.8078 | 0.8988 | | No log | 4.7273 | 104 | 0.7972 | 0.6244 | 0.7972 | 0.8929 | | No log | 4.8182 | 106 | 0.6259 | 0.6594 | 0.6259 | 0.7911 | | No log | 4.9091 | 108 | 0.6092 | 0.6298 | 0.6092 | 0.7805 | | No log | 5.0 | 110 | 0.6659 | 0.6626 | 0.6659 | 0.8161 | | No log | 5.0909 | 112 | 0.7127 | 0.7088 | 0.7127 | 0.8442 | | No log | 5.1818 | 114 | 0.6168 | 0.6568 | 0.6168 | 0.7854 | | No log | 5.2727 | 116 | 0.6510 | 0.6199 | 0.6510 | 0.8069 | | No log | 5.3636 | 118 | 0.6162 | 0.6112 | 0.6162 | 0.7850 | | No log | 5.4545 | 120 | 0.6233 | 0.6322 | 0.6233 | 0.7895 | | No log | 5.5455 | 122 | 0.6498 | 0.6322 | 0.6498 | 0.8061 | | No log | 5.6364 | 124 | 0.6154 | 0.6060 | 0.6154 | 0.7845 | | No log | 5.7273 | 126 | 0.6079 | 0.6553 | 0.6079 | 0.7797 | | No log | 5.8182 | 128 | 0.6146 | 0.6345 | 0.6146 | 0.7840 | | No log | 5.9091 | 130 | 0.6870 | 0.6420 | 0.6870 | 0.8289 | | No log | 6.0 | 132 | 0.8137 | 0.5731 | 0.8137 | 0.9021 | | No log | 6.0909 | 134 | 0.7674 | 0.5911 | 0.7674 | 0.8760 | | No log | 6.1818 | 136 | 0.6482 | 0.6295 | 0.6482 | 0.8051 | | No log | 6.2727 | 138 | 0.6058 | 0.6157 | 0.6058 | 0.7783 | | No log | 6.3636 | 140 | 0.6172 | 0.6328 | 0.6172 | 0.7856 | | No log | 6.4545 | 142 | 0.5726 | 0.6646 | 0.5726 | 0.7567 | | No log | 6.5455 | 144 | 0.6113 | 0.6704 | 0.6113 | 0.7819 | | No log | 6.6364 | 146 | 0.7584 | 0.5908 | 0.7584 | 0.8709 | | No log | 6.7273 | 148 | 0.6990 | 0.6076 | 0.6990 | 0.8361 | | No log | 6.8182 | 150 | 0.6135 | 0.6380 | 0.6135 | 0.7833 | | No log | 6.9091 | 152 | 0.5873 | 0.6239 | 0.5873 | 0.7664 | | No log | 7.0 | 154 | 0.6610 | 0.6053 | 0.6610 | 0.8130 | | No log | 7.0909 | 156 | 0.6385 | 0.5676 | 0.6385 | 0.7990 | | No log | 7.1818 | 158 | 0.6411 | 0.4730 | 0.6411 | 0.8007 | | No log | 7.2727 | 160 | 0.6331 | 0.5302 | 0.6331 | 0.7957 | | No log | 7.3636 | 162 | 0.6095 | 0.5160 | 0.6095 | 0.7807 | | No log | 7.4545 | 164 | 0.6183 | 0.6053 | 0.6183 | 0.7863 | | No log | 7.5455 | 166 | 0.6101 | 0.6045 | 0.6101 | 0.7811 | | No log | 7.6364 | 168 | 0.5907 | 0.6528 | 0.5907 | 0.7686 | | No log | 7.7273 | 170 | 0.5883 | 0.6067 | 0.5883 | 0.7670 | | No log | 7.8182 | 172 | 0.5909 | 0.5882 | 0.5909 | 0.7687 | | No log | 7.9091 | 174 | 0.5942 | 0.5882 | 0.5942 | 0.7708 | | No log | 8.0 | 176 | 0.6508 | 0.5366 | 0.6508 | 0.8067 | | No log | 8.0909 | 178 | 0.8051 | 0.5272 | 0.8051 | 0.8973 | | No log | 8.1818 | 180 | 0.7174 | 0.5451 | 0.7174 | 0.8470 | | No log | 8.2727 | 182 | 0.6595 | 0.6709 | 0.6595 | 0.8121 | | No log | 8.3636 | 184 | 0.7896 | 0.5750 | 0.7896 | 0.8886 | | No log | 8.4545 | 186 | 0.7673 | 0.5975 | 0.7673 | 0.8760 | | No log | 8.5455 | 188 | 0.6851 | 0.6374 | 0.6851 | 0.8277 | | No log | 8.6364 | 190 | 0.7824 | 0.5455 | 0.7824 | 0.8846 | | No log | 8.7273 | 192 | 0.9163 | 0.5095 | 0.9163 | 0.9572 | | No log | 8.8182 | 194 | 0.8269 | 0.5273 | 0.8269 | 0.9094 | | No log | 8.9091 | 196 | 0.6290 | 0.6740 | 0.6290 | 0.7931 | | No log | 9.0 | 198 | 0.7383 | 0.5864 | 0.7383 | 0.8592 | | No log | 9.0909 | 200 | 0.9172 | 0.5251 | 0.9172 | 0.9577 | | No log | 9.1818 | 202 | 0.8445 | 0.5251 | 0.8445 | 0.9190 | | No log | 9.2727 | 204 | 0.6484 | 0.6240 | 0.6484 | 0.8052 | | No log | 9.3636 | 206 | 0.5585 | 0.6460 | 0.5585 | 0.7473 | | No log | 9.4545 | 208 | 0.5669 | 0.6460 | 0.5669 | 0.7529 | | No log | 9.5455 | 210 | 0.5905 | 0.6555 | 0.5905 | 0.7685 | | No log | 9.6364 | 212 | 0.7448 | 0.6145 | 0.7448 | 0.8630 | | No log | 9.7273 | 214 | 0.8127 | 0.6208 | 0.8127 | 0.9015 | | No log | 9.8182 | 216 | 0.7194 | 0.6106 | 0.7194 | 0.8482 | | No log | 9.9091 | 218 | 0.6678 | 0.5964 | 0.6678 | 0.8172 | | No log | 10.0 | 220 | 0.7135 | 0.5727 | 0.7135 | 0.8447 | | No log | 10.0909 | 222 | 0.6958 | 0.5816 | 0.6958 | 0.8341 | | No log | 10.1818 | 224 | 0.6813 | 0.5603 | 0.6813 | 0.8254 | | No log | 10.2727 | 226 | 0.7207 | 0.6362 | 0.7207 | 0.8489 | | No log | 10.3636 | 228 | 0.6957 | 0.6209 | 0.6957 | 0.8341 | | No log | 10.4545 | 230 | 0.6225 | 0.5986 | 0.6225 | 0.7890 | | No log | 10.5455 | 232 | 0.6129 | 0.5693 | 0.6129 | 0.7829 | | No log | 10.6364 | 234 | 0.6250 | 0.5585 | 0.6250 | 0.7906 | | No log | 10.7273 | 236 | 0.6462 | 0.6460 | 0.6462 | 0.8039 | | No log | 10.8182 | 238 | 0.6643 | 0.6414 | 0.6643 | 0.8150 | | No log | 10.9091 | 240 | 0.6863 | 0.6414 | 0.6863 | 0.8285 | | No log | 11.0 | 242 | 0.6806 | 0.6347 | 0.6806 | 0.8250 | | No log | 11.0909 | 244 | 0.6878 | 0.6009 | 0.6878 | 0.8293 | | No log | 11.1818 | 246 | 0.6821 | 0.6144 | 0.6821 | 0.8259 | | No log | 11.2727 | 248 | 0.7301 | 0.5642 | 0.7301 | 0.8545 | | No log | 11.3636 | 250 | 0.7298 | 0.5661 | 0.7298 | 0.8543 | | No log | 11.4545 | 252 | 0.7089 | 0.6065 | 0.7089 | 0.8420 | | No log | 11.5455 | 254 | 0.6160 | 0.6097 | 0.6160 | 0.7849 | | No log | 11.6364 | 256 | 0.5889 | 0.6701 | 0.5889 | 0.7674 | | No log | 11.7273 | 258 | 0.5841 | 0.6758 | 0.5841 | 0.7643 | | No log | 11.8182 | 260 | 0.5800 | 0.6617 | 0.5800 | 0.7616 | | No log | 11.9091 | 262 | 0.5605 | 0.7211 | 0.5605 | 0.7486 | | No log | 12.0 | 264 | 0.5416 | 0.6903 | 0.5416 | 0.7359 | | No log | 12.0909 | 266 | 0.5364 | 0.6903 | 0.5364 | 0.7324 | | No log | 12.1818 | 268 | 0.5296 | 0.7003 | 0.5296 | 0.7277 | | No log | 12.2727 | 270 | 0.5243 | 0.7003 | 0.5243 | 0.7241 | | No log | 12.3636 | 272 | 0.5489 | 0.7101 | 0.5489 | 0.7409 | | No log | 12.4545 | 274 | 0.5630 | 0.6951 | 0.5630 | 0.7504 | | No log | 12.5455 | 276 | 0.5826 | 0.6377 | 0.5826 | 0.7633 | | No log | 12.6364 | 278 | 0.6001 | 0.6195 | 0.6001 | 0.7747 | | No log | 12.7273 | 280 | 0.6108 | 0.6377 | 0.6108 | 0.7815 | | No log | 12.8182 | 282 | 0.6206 | 0.6630 | 0.6206 | 0.7878 | | No log | 12.9091 | 284 | 0.6168 | 0.6553 | 0.6168 | 0.7854 | | No log | 13.0 | 286 | 0.6172 | 0.5599 | 0.6172 | 0.7856 | | No log | 13.0909 | 288 | 0.6439 | 0.5542 | 0.6439 | 0.8025 | | No log | 13.1818 | 290 | 0.6906 | 0.5342 | 0.6906 | 0.8310 | | No log | 13.2727 | 292 | 0.6958 | 0.5342 | 0.6958 | 0.8342 | | No log | 13.3636 | 294 | 0.6308 | 0.5342 | 0.6308 | 0.7942 | | No log | 13.4545 | 296 | 0.5751 | 0.5770 | 0.5751 | 0.7584 | | No log | 13.5455 | 298 | 0.5466 | 0.6553 | 0.5466 | 0.7393 | | No log | 13.6364 | 300 | 0.5575 | 0.6901 | 0.5575 | 0.7467 | | No log | 13.7273 | 302 | 0.6591 | 0.6631 | 0.6591 | 0.8118 | | No log | 13.8182 | 304 | 0.7236 | 0.5982 | 0.7236 | 0.8506 | | No log | 13.9091 | 306 | 0.6016 | 0.6791 | 0.6016 | 0.7756 | | No log | 14.0 | 308 | 0.5181 | 0.7437 | 0.5181 | 0.7198 | | No log | 14.0909 | 310 | 0.4892 | 0.7314 | 0.4892 | 0.6994 | | No log | 14.1818 | 312 | 0.4981 | 0.7266 | 0.4981 | 0.7058 | | No log | 14.2727 | 314 | 0.5207 | 0.6572 | 0.5207 | 0.7216 | | No log | 14.3636 | 316 | 0.5297 | 0.6447 | 0.5297 | 0.7278 | | No log | 14.4545 | 318 | 0.5429 | 0.6380 | 0.5429 | 0.7368 | | No log | 14.5455 | 320 | 0.5478 | 0.6575 | 0.5478 | 0.7401 | | No log | 14.6364 | 322 | 0.5614 | 0.6358 | 0.5614 | 0.7493 | | No log | 14.7273 | 324 | 0.6095 | 0.5839 | 0.6095 | 0.7807 | | No log | 14.8182 | 326 | 0.6097 | 0.5839 | 0.6097 | 0.7808 | | No log | 14.9091 | 328 | 0.5810 | 0.6256 | 0.5810 | 0.7622 | | No log | 15.0 | 330 | 0.5683 | 0.6488 | 0.5683 | 0.7539 | | No log | 15.0909 | 332 | 0.5619 | 0.6606 | 0.5619 | 0.7496 | | No log | 15.1818 | 334 | 0.5678 | 0.6311 | 0.5678 | 0.7535 | | No log | 15.2727 | 336 | 0.5689 | 0.6435 | 0.5689 | 0.7543 | | No log | 15.3636 | 338 | 0.5687 | 0.6067 | 0.5687 | 0.7541 | | No log | 15.4545 | 340 | 0.6046 | 0.5805 | 0.6046 | 0.7776 | | No log | 15.5455 | 342 | 0.6203 | 0.6004 | 0.6203 | 0.7876 | | No log | 15.6364 | 344 | 0.6030 | 0.5966 | 0.6030 | 0.7765 | | No log | 15.7273 | 346 | 0.5892 | 0.6491 | 0.5892 | 0.7676 | | No log | 15.8182 | 348 | 0.5922 | 0.6813 | 0.5922 | 0.7695 | | No log | 15.9091 | 350 | 0.5830 | 0.6284 | 0.5830 | 0.7635 | | No log | 16.0 | 352 | 0.5810 | 0.6798 | 0.5810 | 0.7623 | | No log | 16.0909 | 354 | 0.5928 | 0.6249 | 0.5928 | 0.7699 | | No log | 16.1818 | 356 | 0.6027 | 0.6157 | 0.6027 | 0.7763 | | No log | 16.2727 | 358 | 0.6141 | 0.5953 | 0.6141 | 0.7836 | | No log | 16.3636 | 360 | 0.6065 | 0.6157 | 0.6065 | 0.7788 | | No log | 16.4545 | 362 | 0.5964 | 0.6249 | 0.5964 | 0.7723 | | No log | 16.5455 | 364 | 0.6321 | 0.6933 | 0.6321 | 0.7950 | | No log | 16.6364 | 366 | 0.7402 | 0.6023 | 0.7402 | 0.8604 | | No log | 16.7273 | 368 | 0.7393 | 0.6423 | 0.7393 | 0.8598 | | No log | 16.8182 | 370 | 0.6731 | 0.6137 | 0.6731 | 0.8204 | | No log | 16.9091 | 372 | 0.6213 | 0.6415 | 0.6213 | 0.7882 | | No log | 17.0 | 374 | 0.6112 | 0.5861 | 0.6112 | 0.7818 | | No log | 17.0909 | 376 | 0.6133 | 0.5861 | 0.6133 | 0.7832 | | No log | 17.1818 | 378 | 0.6049 | 0.5763 | 0.6049 | 0.7778 | | No log | 17.2727 | 380 | 0.5946 | 0.5881 | 0.5946 | 0.7711 | | No log | 17.3636 | 382 | 0.5843 | 0.5716 | 0.5843 | 0.7644 | | No log | 17.4545 | 384 | 0.5761 | 0.5716 | 0.5761 | 0.7590 | | No log | 17.5455 | 386 | 0.5755 | 0.5905 | 0.5755 | 0.7586 | | No log | 17.6364 | 388 | 0.5732 | 0.6586 | 0.5732 | 0.7571 | | No log | 17.7273 | 390 | 0.5741 | 0.6493 | 0.5741 | 0.7577 | | No log | 17.8182 | 392 | 0.5839 | 0.5915 | 0.5839 | 0.7642 | | No log | 17.9091 | 394 | 0.5907 | 0.5726 | 0.5907 | 0.7686 | | No log | 18.0 | 396 | 0.5591 | 0.6134 | 0.5591 | 0.7477 | | No log | 18.0909 | 398 | 0.5593 | 0.5820 | 0.5593 | 0.7478 | | No log | 18.1818 | 400 | 0.5678 | 0.5626 | 0.5678 | 0.7535 | | No log | 18.2727 | 402 | 0.5748 | 0.6249 | 0.5748 | 0.7581 | | No log | 18.3636 | 404 | 0.5841 | 0.6186 | 0.5841 | 0.7642 | | No log | 18.4545 | 406 | 0.6027 | 0.5316 | 0.6027 | 0.7763 | | No log | 18.5455 | 408 | 0.6357 | 0.5089 | 0.6357 | 0.7973 | | No log | 18.6364 | 410 | 0.7081 | 0.5339 | 0.7081 | 0.8415 | | No log | 18.7273 | 412 | 0.7752 | 0.5233 | 0.7752 | 0.8805 | | No log | 18.8182 | 414 | 0.7621 | 0.4750 | 0.7621 | 0.8730 | | No log | 18.9091 | 416 | 0.6734 | 0.5891 | 0.6734 | 0.8206 | | No log | 19.0 | 418 | 0.7248 | 0.6521 | 0.7248 | 0.8513 | | No log | 19.0909 | 420 | 0.7156 | 0.6458 | 0.7156 | 0.8459 | | No log | 19.1818 | 422 | 0.6237 | 0.7110 | 0.6237 | 0.7897 | | No log | 19.2727 | 424 | 0.5489 | 0.7048 | 0.5489 | 0.7409 | | No log | 19.3636 | 426 | 0.5363 | 0.6695 | 0.5363 | 0.7323 | | No log | 19.4545 | 428 | 0.5621 | 0.7136 | 0.5621 | 0.7497 | | No log | 19.5455 | 430 | 0.6385 | 0.6209 | 0.6385 | 0.7990 | | No log | 19.6364 | 432 | 0.7423 | 0.5686 | 0.7423 | 0.8616 | | No log | 19.7273 | 434 | 0.7729 | 0.5358 | 0.7729 | 0.8791 | | No log | 19.8182 | 436 | 0.7096 | 0.5475 | 0.7096 | 0.8424 | | No log | 19.9091 | 438 | 0.6199 | 0.6272 | 0.6199 | 0.7873 | | No log | 20.0 | 440 | 0.5678 | 0.6198 | 0.5678 | 0.7535 | | No log | 20.0909 | 442 | 0.5544 | 0.6841 | 0.5544 | 0.7445 | | No log | 20.1818 | 444 | 0.5386 | 0.6553 | 0.5386 | 0.7339 | | No log | 20.2727 | 446 | 0.5304 | 0.6796 | 0.5304 | 0.7283 | | No log | 20.3636 | 448 | 0.5335 | 0.6875 | 0.5335 | 0.7304 | | No log | 20.4545 | 450 | 0.5597 | 0.6865 | 0.5597 | 0.7481 | | No log | 20.5455 | 452 | 0.5578 | 0.6623 | 0.5578 | 0.7469 | | No log | 20.6364 | 454 | 0.5381 | 0.6841 | 0.5381 | 0.7335 | | No log | 20.7273 | 456 | 0.5455 | 0.6139 | 0.5455 | 0.7386 | | No log | 20.8182 | 458 | 0.5868 | 0.6317 | 0.5868 | 0.7660 | | No log | 20.9091 | 460 | 0.5954 | 0.6317 | 0.5954 | 0.7716 | | No log | 21.0 | 462 | 0.5515 | 0.6164 | 0.5515 | 0.7426 | | No log | 21.0909 | 464 | 0.5294 | 0.6703 | 0.5294 | 0.7276 | | No log | 21.1818 | 466 | 0.5330 | 0.6602 | 0.5330 | 0.7301 | | No log | 21.2727 | 468 | 0.5446 | 0.7259 | 0.5446 | 0.7380 | | No log | 21.3636 | 470 | 0.5415 | 0.6680 | 0.5415 | 0.7359 | | No log | 21.4545 | 472 | 0.5332 | 0.6689 | 0.5332 | 0.7302 | | No log | 21.5455 | 474 | 0.5356 | 0.6838 | 0.5356 | 0.7319 | | No log | 21.6364 | 476 | 0.5454 | 0.6327 | 0.5454 | 0.7385 | | No log | 21.7273 | 478 | 0.5471 | 0.5783 | 0.5471 | 0.7396 | | No log | 21.8182 | 480 | 0.5516 | 0.5783 | 0.5516 | 0.7427 | | No log | 21.9091 | 482 | 0.5469 | 0.5783 | 0.5469 | 0.7395 | | No log | 22.0 | 484 | 0.5309 | 0.6251 | 0.5309 | 0.7287 | | No log | 22.0909 | 486 | 0.5268 | 0.6251 | 0.5268 | 0.7258 | | No log | 22.1818 | 488 | 0.5281 | 0.6118 | 0.5281 | 0.7267 | | No log | 22.2727 | 490 | 0.5392 | 0.6164 | 0.5392 | 0.7343 | | No log | 22.3636 | 492 | 0.5782 | 0.6623 | 0.5782 | 0.7604 | | No log | 22.4545 | 494 | 0.6317 | 0.6071 | 0.6317 | 0.7948 | | No log | 22.5455 | 496 | 0.7019 | 0.6032 | 0.7019 | 0.8378 | | No log | 22.6364 | 498 | 0.6928 | 0.5860 | 0.6928 | 0.8323 | | 0.2493 | 22.7273 | 500 | 0.6768 | 0.5217 | 0.6768 | 0.8227 | | 0.2493 | 22.8182 | 502 | 0.6890 | 0.5416 | 0.6890 | 0.8301 | | 0.2493 | 22.9091 | 504 | 0.6969 | 0.5835 | 0.6969 | 0.8348 | | 0.2493 | 23.0 | 506 | 0.6781 | 0.5953 | 0.6781 | 0.8235 | | 0.2493 | 23.0909 | 508 | 0.6262 | 0.6305 | 0.6262 | 0.7913 | | 0.2493 | 23.1818 | 510 | 0.5766 | 0.5784 | 0.5766 | 0.7593 | | 0.2493 | 23.2727 | 512 | 0.5741 | 0.5469 | 0.5741 | 0.7577 | | 0.2493 | 23.3636 | 514 | 0.5709 | 0.5469 | 0.5709 | 0.7555 | | 0.2493 | 23.4545 | 516 | 0.5615 | 0.6107 | 0.5615 | 0.7493 | | 0.2493 | 23.5455 | 518 | 0.5671 | 0.6441 | 0.5671 | 0.7530 | | 0.2493 | 23.6364 | 520 | 0.6036 | 0.6538 | 0.6036 | 0.7769 | | 0.2493 | 23.7273 | 522 | 0.6142 | 0.6218 | 0.6142 | 0.7837 | | 0.2493 | 23.8182 | 524 | 0.6055 | 0.6282 | 0.6055 | 0.7781 | | 0.2493 | 23.9091 | 526 | 0.5834 | 0.6441 | 0.5834 | 0.7638 | | 0.2493 | 24.0 | 528 | 0.5681 | 0.6488 | 0.5681 | 0.7537 | | 0.2493 | 24.0909 | 530 | 0.5534 | 0.6690 | 0.5534 | 0.7439 | | 0.2493 | 24.1818 | 532 | 0.5384 | 0.6649 | 0.5384 | 0.7337 | | 0.2493 | 24.2727 | 534 | 0.5317 | 0.6959 | 0.5317 | 0.7291 | | 0.2493 | 24.3636 | 536 | 0.5311 | 0.6561 | 0.5311 | 0.7288 | | 0.2493 | 24.4545 | 538 | 0.5358 | 0.6812 | 0.5358 | 0.7320 | | 0.2493 | 24.5455 | 540 | 0.5316 | 0.6947 | 0.5316 | 0.7291 | | 0.2493 | 24.6364 | 542 | 0.5352 | 0.6947 | 0.5352 | 0.7316 | | 0.2493 | 24.7273 | 544 | 0.5322 | 0.6770 | 0.5322 | 0.7295 | | 0.2493 | 24.8182 | 546 | 0.5292 | 0.6667 | 0.5292 | 0.7274 | | 0.2493 | 24.9091 | 548 | 0.5240 | 0.6659 | 0.5240 | 0.7239 | | 0.2493 | 25.0 | 550 | 0.5235 | 0.6720 | 0.5235 | 0.7235 | | 0.2493 | 25.0909 | 552 | 0.5440 | 0.7042 | 0.5440 | 0.7375 | | 0.2493 | 25.1818 | 554 | 0.5589 | 0.7489 | 0.5589 | 0.7476 | | 0.2493 | 25.2727 | 556 | 0.5798 | 0.7269 | 0.5798 | 0.7614 | | 0.2493 | 25.3636 | 558 | 0.5686 | 0.7210 | 0.5686 | 0.7540 | | 0.2493 | 25.4545 | 560 | 0.5372 | 0.6629 | 0.5372 | 0.7329 | | 0.2493 | 25.5455 | 562 | 0.5353 | 0.6024 | 0.5353 | 0.7316 | | 0.2493 | 25.6364 | 564 | 0.5512 | 0.5464 | 0.5512 | 0.7424 | | 0.2493 | 25.7273 | 566 | 0.5718 | 0.5225 | 0.5718 | 0.7562 | | 0.2493 | 25.8182 | 568 | 0.5657 | 0.5210 | 0.5657 | 0.7521 | | 0.2493 | 25.9091 | 570 | 0.5554 | 0.6269 | 0.5554 | 0.7452 | | 0.2493 | 26.0 | 572 | 0.5615 | 0.6508 | 0.5615 | 0.7493 | | 0.2493 | 26.0909 | 574 | 0.5450 | 0.7059 | 0.5450 | 0.7382 | | 0.2493 | 26.1818 | 576 | 0.5317 | 0.6973 | 0.5317 | 0.7292 | | 0.2493 | 26.2727 | 578 | 0.5313 | 0.7384 | 0.5313 | 0.7289 | | 0.2493 | 26.3636 | 580 | 0.5281 | 0.7059 | 0.5281 | 0.7267 | | 0.2493 | 26.4545 | 582 | 0.5204 | 0.7171 | 0.5204 | 0.7214 | | 0.2493 | 26.5455 | 584 | 0.5125 | 0.6649 | 0.5125 | 0.7159 | | 0.2493 | 26.6364 | 586 | 0.5240 | 0.6409 | 0.5240 | 0.7239 | | 0.2493 | 26.7273 | 588 | 0.5291 | 0.5871 | 0.5291 | 0.7274 | | 0.2493 | 26.8182 | 590 | 0.5432 | 0.6815 | 0.5432 | 0.7370 | | 0.2493 | 26.9091 | 592 | 0.5842 | 0.6450 | 0.5842 | 0.7643 | | 0.2493 | 27.0 | 594 | 0.5942 | 0.5964 | 0.5942 | 0.7709 | | 0.2493 | 27.0909 | 596 | 0.5896 | 0.6697 | 0.5896 | 0.7679 | | 0.2493 | 27.1818 | 598 | 0.5986 | 0.6697 | 0.5986 | 0.7737 | | 0.2493 | 27.2727 | 600 | 0.5985 | 0.6232 | 0.5985 | 0.7737 | | 0.2493 | 27.3636 | 602 | 0.5949 | 0.5440 | 0.5949 | 0.7713 | | 0.2493 | 27.4545 | 604 | 0.5978 | 0.6232 | 0.5978 | 0.7732 | | 0.2493 | 27.5455 | 606 | 0.5899 | 0.6508 | 0.5899 | 0.7681 | | 0.2493 | 27.6364 | 608 | 0.5739 | 0.6054 | 0.5739 | 0.7576 | | 0.2493 | 27.7273 | 610 | 0.5721 | 0.6087 | 0.5721 | 0.7564 | | 0.2493 | 27.8182 | 612 | 0.6100 | 0.5554 | 0.6100 | 0.7810 | | 0.2493 | 27.9091 | 614 | 0.6368 | 0.5674 | 0.6368 | 0.7980 | | 0.2493 | 28.0 | 616 | 0.6006 | 0.5554 | 0.6006 | 0.7750 | | 0.2493 | 28.0909 | 618 | 0.5968 | 0.5795 | 0.5968 | 0.7725 | | 0.2493 | 28.1818 | 620 | 0.6074 | 0.5183 | 0.6074 | 0.7794 | | 0.2493 | 28.2727 | 622 | 0.6103 | 0.4935 | 0.6103 | 0.7812 | | 0.2493 | 28.3636 | 624 | 0.6083 | 0.5432 | 0.6083 | 0.7799 | | 0.2493 | 28.4545 | 626 | 0.5975 | 0.5783 | 0.5975 | 0.7730 | | 0.2493 | 28.5455 | 628 | 0.5906 | 0.5409 | 0.5906 | 0.7685 | | 0.2493 | 28.6364 | 630 | 0.5949 | 0.5770 | 0.5949 | 0.7713 | | 0.2493 | 28.7273 | 632 | 0.5786 | 0.5736 | 0.5786 | 0.7606 | | 0.2493 | 28.8182 | 634 | 0.5754 | 0.6087 | 0.5754 | 0.7585 | | 0.2493 | 28.9091 | 636 | 0.5859 | 0.5972 | 0.5859 | 0.7654 | | 0.2493 | 29.0 | 638 | 0.5977 | 0.6620 | 0.5977 | 0.7731 | | 0.2493 | 29.0909 | 640 | 0.5887 | 0.6620 | 0.5887 | 0.7673 | | 0.2493 | 29.1818 | 642 | 0.5809 | 0.6578 | 0.5809 | 0.7622 | | 0.2493 | 29.2727 | 644 | 0.5719 | 0.6771 | 0.5719 | 0.7562 | | 0.2493 | 29.3636 | 646 | 0.5542 | 0.7074 | 0.5542 | 0.7444 | | 0.2493 | 29.4545 | 648 | 0.5447 | 0.6507 | 0.5447 | 0.7381 | | 0.2493 | 29.5455 | 650 | 0.5501 | 0.6750 | 0.5501 | 0.7417 | | 0.2493 | 29.6364 | 652 | 0.5722 | 0.6384 | 0.5722 | 0.7565 | | 0.2493 | 29.7273 | 654 | 0.5740 | 0.6545 | 0.5740 | 0.7576 | | 0.2493 | 29.8182 | 656 | 0.5446 | 0.6750 | 0.5446 | 0.7380 | | 0.2493 | 29.9091 | 658 | 0.5245 | 0.6788 | 0.5245 | 0.7242 | | 0.2493 | 30.0 | 660 | 0.5585 | 0.7050 | 0.5585 | 0.7473 | | 0.2493 | 30.0909 | 662 | 0.5942 | 0.6791 | 0.5942 | 0.7708 | | 0.2493 | 30.1818 | 664 | 0.5875 | 0.6892 | 0.5875 | 0.7665 | | 0.2493 | 30.2727 | 666 | 0.5531 | 0.7253 | 0.5531 | 0.7437 | | 0.2493 | 30.3636 | 668 | 0.5266 | 0.6689 | 0.5266 | 0.7257 | | 0.2493 | 30.4545 | 670 | 0.5388 | 0.6830 | 0.5388 | 0.7340 | | 0.2493 | 30.5455 | 672 | 0.5418 | 0.6830 | 0.5418 | 0.7361 | | 0.2493 | 30.6364 | 674 | 0.5350 | 0.6770 | 0.5350 | 0.7315 | | 0.2493 | 30.7273 | 676 | 0.5511 | 0.6704 | 0.5511 | 0.7424 | | 0.2493 | 30.8182 | 678 | 0.5770 | 0.6822 | 0.5770 | 0.7596 | | 0.2493 | 30.9091 | 680 | 0.6327 | 0.6209 | 0.6327 | 0.7954 | | 0.2493 | 31.0 | 682 | 0.7090 | 0.5800 | 0.7090 | 0.8420 | | 0.2493 | 31.0909 | 684 | 0.7522 | 0.5636 | 0.7522 | 0.8673 | | 0.2493 | 31.1818 | 686 | 0.7369 | 0.5636 | 0.7369 | 0.8584 | | 0.2493 | 31.2727 | 688 | 0.6961 | 0.5745 | 0.6961 | 0.8343 | | 0.2493 | 31.3636 | 690 | 0.6609 | 0.6127 | 0.6609 | 0.8129 | | 0.2493 | 31.4545 | 692 | 0.6422 | 0.6127 | 0.6422 | 0.8014 | | 0.2493 | 31.5455 | 694 | 0.6225 | 0.6807 | 0.6225 | 0.7890 | | 0.2493 | 31.6364 | 696 | 0.5864 | 0.6929 | 0.5864 | 0.7658 | | 0.2493 | 31.7273 | 698 | 0.5770 | 0.6872 | 0.5770 | 0.7596 | | 0.2493 | 31.8182 | 700 | 0.5725 | 0.6954 | 0.5725 | 0.7567 | | 0.2493 | 31.9091 | 702 | 0.5542 | 0.6680 | 0.5542 | 0.7444 | | 0.2493 | 32.0 | 704 | 0.5531 | 0.6874 | 0.5531 | 0.7437 | | 0.2493 | 32.0909 | 706 | 0.5547 | 0.7203 | 0.5547 | 0.7448 | | 0.2493 | 32.1818 | 708 | 0.5568 | 0.7203 | 0.5568 | 0.7462 | | 0.2493 | 32.2727 | 710 | 0.5596 | 0.7095 | 0.5596 | 0.7481 | | 0.2493 | 32.3636 | 712 | 0.5493 | 0.6896 | 0.5493 | 0.7411 | | 0.2493 | 32.4545 | 714 | 0.5350 | 0.6796 | 0.5350 | 0.7314 | | 0.2493 | 32.5455 | 716 | 0.5239 | 0.6796 | 0.5239 | 0.7238 | | 0.2493 | 32.6364 | 718 | 0.5218 | 0.6796 | 0.5218 | 0.7224 | | 0.2493 | 32.7273 | 720 | 0.5285 | 0.6796 | 0.5285 | 0.7270 | | 0.2493 | 32.8182 | 722 | 0.5450 | 0.6909 | 0.5450 | 0.7383 | | 0.2493 | 32.9091 | 724 | 0.5569 | 0.6936 | 0.5569 | 0.7462 | | 0.2493 | 33.0 | 726 | 0.5516 | 0.7034 | 0.5516 | 0.7427 | | 0.2493 | 33.0909 | 728 | 0.5392 | 0.6699 | 0.5392 | 0.7343 | | 0.2493 | 33.1818 | 730 | 0.5327 | 0.6708 | 0.5327 | 0.7299 | | 0.2493 | 33.2727 | 732 | 0.5313 | 0.6667 | 0.5313 | 0.7289 | | 0.2493 | 33.3636 | 734 | 0.5255 | 0.6796 | 0.5255 | 0.7249 | | 0.2493 | 33.4545 | 736 | 0.5174 | 0.6764 | 0.5174 | 0.7193 | | 0.2493 | 33.5455 | 738 | 0.5199 | 0.6764 | 0.5199 | 0.7210 | | 0.2493 | 33.6364 | 740 | 0.5254 | 0.6703 | 0.5254 | 0.7248 | | 0.2493 | 33.7273 | 742 | 0.5211 | 0.6703 | 0.5211 | 0.7218 | | 0.2493 | 33.8182 | 744 | 0.5191 | 0.6861 | 0.5191 | 0.7205 | | 0.2493 | 33.9091 | 746 | 0.5284 | 0.6861 | 0.5284 | 0.7269 | | 0.2493 | 34.0 | 748 | 0.5289 | 0.6896 | 0.5289 | 0.7273 | | 0.2493 | 34.0909 | 750 | 0.5197 | 0.6861 | 0.5197 | 0.7209 | | 0.2493 | 34.1818 | 752 | 0.5167 | 0.6838 | 0.5167 | 0.7188 | | 0.2493 | 34.2727 | 754 | 0.5218 | 0.6667 | 0.5218 | 0.7223 | | 0.2493 | 34.3636 | 756 | 0.5359 | 0.6770 | 0.5359 | 0.7320 | | 0.2493 | 34.4545 | 758 | 0.5458 | 0.6788 | 0.5458 | 0.7388 | | 0.2493 | 34.5455 | 760 | 0.5501 | 0.6962 | 0.5501 | 0.7417 | | 0.2493 | 34.6364 | 762 | 0.5498 | 0.6962 | 0.5498 | 0.7415 | | 0.2493 | 34.7273 | 764 | 0.5314 | 0.7165 | 0.5314 | 0.7290 | | 0.2493 | 34.8182 | 766 | 0.5064 | 0.7070 | 0.5064 | 0.7116 | | 0.2493 | 34.9091 | 768 | 0.4980 | 0.6959 | 0.4980 | 0.7057 | | 0.2493 | 35.0 | 770 | 0.5009 | 0.7115 | 0.5009 | 0.7078 | | 0.2493 | 35.0909 | 772 | 0.5037 | 0.7070 | 0.5037 | 0.7097 | | 0.2493 | 35.1818 | 774 | 0.5022 | 0.7077 | 0.5022 | 0.7086 | | 0.2493 | 35.2727 | 776 | 0.5022 | 0.7115 | 0.5022 | 0.7087 | | 0.2493 | 35.3636 | 778 | 0.5088 | 0.6796 | 0.5088 | 0.7133 | | 0.2493 | 35.4545 | 780 | 0.5180 | 0.6796 | 0.5180 | 0.7197 | | 0.2493 | 35.5455 | 782 | 0.5257 | 0.6796 | 0.5257 | 0.7251 | | 0.2493 | 35.6364 | 784 | 0.5228 | 0.6796 | 0.5228 | 0.7230 | | 0.2493 | 35.7273 | 786 | 0.5219 | 0.6667 | 0.5219 | 0.7224 | | 0.2493 | 35.8182 | 788 | 0.5281 | 0.6644 | 0.5281 | 0.7267 | | 0.2493 | 35.9091 | 790 | 0.5369 | 0.6551 | 0.5369 | 0.7327 | | 0.2493 | 36.0 | 792 | 0.5385 | 0.6586 | 0.5385 | 0.7338 | | 0.2493 | 36.0909 | 794 | 0.5344 | 0.6426 | 0.5344 | 0.7310 | | 0.2493 | 36.1818 | 796 | 0.5386 | 0.6708 | 0.5386 | 0.7339 | | 0.2493 | 36.2727 | 798 | 0.5365 | 0.6708 | 0.5365 | 0.7324 | | 0.2493 | 36.3636 | 800 | 0.5341 | 0.6822 | 0.5341 | 0.7309 | | 0.2493 | 36.4545 | 802 | 0.5298 | 0.6822 | 0.5298 | 0.7279 | | 0.2493 | 36.5455 | 804 | 0.5280 | 0.6667 | 0.5280 | 0.7266 | | 0.2493 | 36.6364 | 806 | 0.5280 | 0.6667 | 0.5280 | 0.7266 | | 0.2493 | 36.7273 | 808 | 0.5287 | 0.6903 | 0.5287 | 0.7271 | | 0.2493 | 36.8182 | 810 | 0.5270 | 0.6835 | 0.5270 | 0.7259 | | 0.2493 | 36.9091 | 812 | 0.5336 | 0.6773 | 0.5336 | 0.7305 | | 0.2493 | 37.0 | 814 | 0.5419 | 0.6780 | 0.5419 | 0.7362 | | 0.2493 | 37.0909 | 816 | 0.5563 | 0.7111 | 0.5563 | 0.7459 | | 0.2493 | 37.1818 | 818 | 0.6007 | 0.6640 | 0.6007 | 0.7750 | | 0.2493 | 37.2727 | 820 | 0.6044 | 0.6470 | 0.6044 | 0.7774 | | 0.2493 | 37.3636 | 822 | 0.5905 | 0.6525 | 0.5905 | 0.7684 | | 0.2493 | 37.4545 | 824 | 0.5754 | 0.6194 | 0.5754 | 0.7586 | | 0.2493 | 37.5455 | 826 | 0.5702 | 0.6080 | 0.5702 | 0.7551 | | 0.2493 | 37.6364 | 828 | 0.5582 | 0.6368 | 0.5582 | 0.7471 | | 0.2493 | 37.7273 | 830 | 0.5593 | 0.6244 | 0.5593 | 0.7479 | | 0.2493 | 37.8182 | 832 | 0.5458 | 0.6843 | 0.5458 | 0.7388 | | 0.2493 | 37.9091 | 834 | 0.5354 | 0.6835 | 0.5354 | 0.7317 | | 0.2493 | 38.0 | 836 | 0.5282 | 0.6796 | 0.5282 | 0.7268 | | 0.2493 | 38.0909 | 838 | 0.5276 | 0.6796 | 0.5276 | 0.7264 | | 0.2493 | 38.1818 | 840 | 0.5315 | 0.6830 | 0.5315 | 0.7291 | | 0.2493 | 38.2727 | 842 | 0.5415 | 0.6919 | 0.5415 | 0.7359 | | 0.2493 | 38.3636 | 844 | 0.5619 | 0.6682 | 0.5619 | 0.7496 | | 0.2493 | 38.4545 | 846 | 0.5742 | 0.6697 | 0.5742 | 0.7578 | | 0.2493 | 38.5455 | 848 | 0.5636 | 0.6841 | 0.5636 | 0.7507 | | 0.2493 | 38.6364 | 850 | 0.5412 | 0.7074 | 0.5412 | 0.7356 | | 0.2493 | 38.7273 | 852 | 0.5286 | 0.6796 | 0.5286 | 0.7271 | | 0.2493 | 38.8182 | 854 | 0.5242 | 0.6796 | 0.5242 | 0.7240 | | 0.2493 | 38.9091 | 856 | 0.5379 | 0.6830 | 0.5379 | 0.7334 | | 0.2493 | 39.0 | 858 | 0.5468 | 0.6238 | 0.5468 | 0.7395 | | 0.2493 | 39.0909 | 860 | 0.5405 | 0.6238 | 0.5405 | 0.7352 | | 0.2493 | 39.1818 | 862 | 0.5382 | 0.6634 | 0.5382 | 0.7336 | | 0.2493 | 39.2727 | 864 | 0.5451 | 0.6753 | 0.5451 | 0.7383 | | 0.2493 | 39.3636 | 866 | 0.5589 | 0.6894 | 0.5589 | 0.7476 | | 0.2493 | 39.4545 | 868 | 0.5766 | 0.6886 | 0.5766 | 0.7594 | | 0.2493 | 39.5455 | 870 | 0.5687 | 0.7001 | 0.5687 | 0.7541 | | 0.2493 | 39.6364 | 872 | 0.5466 | 0.6796 | 0.5466 | 0.7393 | | 0.2493 | 39.7273 | 874 | 0.5318 | 0.6796 | 0.5318 | 0.7292 | | 0.2493 | 39.8182 | 876 | 0.5335 | 0.6796 | 0.5335 | 0.7304 | | 0.2493 | 39.9091 | 878 | 0.5360 | 0.6667 | 0.5360 | 0.7321 | | 0.2493 | 40.0 | 880 | 0.5360 | 0.6667 | 0.5360 | 0.7321 | | 0.2493 | 40.0909 | 882 | 0.5353 | 0.6796 | 0.5353 | 0.7317 | | 0.2493 | 40.1818 | 884 | 0.5385 | 0.6796 | 0.5385 | 0.7338 | | 0.2493 | 40.2727 | 886 | 0.5437 | 0.6830 | 0.5437 | 0.7373 | | 0.2493 | 40.3636 | 888 | 0.5531 | 0.6460 | 0.5531 | 0.7437 | | 0.2493 | 40.4545 | 890 | 0.5630 | 0.6460 | 0.5630 | 0.7503 | | 0.2493 | 40.5455 | 892 | 0.5630 | 0.6262 | 0.5630 | 0.7503 | | 0.2493 | 40.6364 | 894 | 0.5597 | 0.6262 | 0.5597 | 0.7481 | | 0.2493 | 40.7273 | 896 | 0.5588 | 0.6262 | 0.5588 | 0.7475 | | 0.2493 | 40.8182 | 898 | 0.5717 | 0.6229 | 0.5717 | 0.7561 | | 0.2493 | 40.9091 | 900 | 0.5828 | 0.6147 | 0.5828 | 0.7634 | | 0.2493 | 41.0 | 902 | 0.5940 | 0.6228 | 0.5940 | 0.7707 | | 0.2493 | 41.0909 | 904 | 0.5632 | 0.6347 | 0.5632 | 0.7505 | | 0.2493 | 41.1818 | 906 | 0.5410 | 0.6572 | 0.5410 | 0.7356 | | 0.2493 | 41.2727 | 908 | 0.5269 | 0.6756 | 0.5269 | 0.7259 | | 0.2493 | 41.3636 | 910 | 0.5248 | 0.6903 | 0.5248 | 0.7244 | | 0.2493 | 41.4545 | 912 | 0.5295 | 0.6772 | 0.5295 | 0.7276 | | 0.2493 | 41.5455 | 914 | 0.5280 | 0.6903 | 0.5280 | 0.7266 | | 0.2493 | 41.6364 | 916 | 0.5348 | 0.6756 | 0.5348 | 0.7313 | | 0.2493 | 41.7273 | 918 | 0.5746 | 0.6237 | 0.5746 | 0.7580 | | 0.2493 | 41.8182 | 920 | 0.6400 | 0.6564 | 0.6400 | 0.8000 | | 0.2493 | 41.9091 | 922 | 0.7096 | 0.5938 | 0.7096 | 0.8424 | | 0.2493 | 42.0 | 924 | 0.7669 | 0.6069 | 0.7669 | 0.8757 | | 0.2493 | 42.0909 | 926 | 0.7547 | 0.5895 | 0.7547 | 0.8688 | | 0.2493 | 42.1818 | 928 | 0.6965 | 0.5470 | 0.6965 | 0.8346 | | 0.2493 | 42.2727 | 930 | 0.6469 | 0.6157 | 0.6469 | 0.8043 | | 0.2493 | 42.3636 | 932 | 0.6207 | 0.5964 | 0.6207 | 0.7878 | | 0.2493 | 42.4545 | 934 | 0.6111 | 0.6082 | 0.6111 | 0.7817 | | 0.2493 | 42.5455 | 936 | 0.6040 | 0.6728 | 0.6040 | 0.7772 | | 0.2493 | 42.6364 | 938 | 0.6043 | 0.6841 | 0.6043 | 0.7773 | | 0.2493 | 42.7273 | 940 | 0.6142 | 0.6900 | 0.6142 | 0.7837 | | 0.2493 | 42.8182 | 942 | 0.6416 | 0.6669 | 0.6416 | 0.8010 | | 0.2493 | 42.9091 | 944 | 0.6519 | 0.6669 | 0.6519 | 0.8074 | | 0.2493 | 43.0 | 946 | 0.6415 | 0.6708 | 0.6415 | 0.8009 | | 0.2493 | 43.0909 | 948 | 0.6128 | 0.6687 | 0.6128 | 0.7828 | | 0.2493 | 43.1818 | 950 | 0.5728 | 0.6528 | 0.5728 | 0.7568 | | 0.2493 | 43.2727 | 952 | 0.5553 | 0.6649 | 0.5553 | 0.7452 | | 0.2493 | 43.3636 | 954 | 0.5486 | 0.6830 | 0.5486 | 0.7406 | | 0.2493 | 43.4545 | 956 | 0.5508 | 0.6697 | 0.5508 | 0.7422 | | 0.2493 | 43.5455 | 958 | 0.5529 | 0.6697 | 0.5529 | 0.7436 | | 0.2493 | 43.6364 | 960 | 0.5552 | 0.6796 | 0.5552 | 0.7451 | | 0.2493 | 43.7273 | 962 | 0.5696 | 0.6924 | 0.5696 | 0.7547 | | 0.2493 | 43.8182 | 964 | 0.6014 | 0.6237 | 0.6014 | 0.7755 | | 0.2493 | 43.9091 | 966 | 0.6277 | 0.6438 | 0.6277 | 0.7923 | | 0.2493 | 44.0 | 968 | 0.6284 | 0.6510 | 0.6284 | 0.7927 | | 0.2493 | 44.0909 | 970 | 0.6217 | 0.6510 | 0.6217 | 0.7885 | | 0.2493 | 44.1818 | 972 | 0.6243 | 0.6510 | 0.6243 | 0.7901 | | 0.2493 | 44.2727 | 974 | 0.6108 | 0.6623 | 0.6108 | 0.7815 | | 0.2493 | 44.3636 | 976 | 0.5902 | 0.6602 | 0.5902 | 0.7683 | | 0.2493 | 44.4545 | 978 | 0.5777 | 0.6610 | 0.5777 | 0.7601 | | 0.2493 | 44.5455 | 980 | 0.5689 | 0.6610 | 0.5689 | 0.7542 | | 0.2493 | 44.6364 | 982 | 0.5610 | 0.6788 | 0.5610 | 0.7490 | | 0.2493 | 44.7273 | 984 | 0.5612 | 0.6756 | 0.5612 | 0.7491 | | 0.2493 | 44.8182 | 986 | 0.5646 | 0.6756 | 0.5646 | 0.7514 | | 0.2493 | 44.9091 | 988 | 0.5702 | 0.6610 | 0.5702 | 0.7551 | | 0.2493 | 45.0 | 990 | 0.5674 | 0.6610 | 0.5674 | 0.7532 | | 0.2493 | 45.0909 | 992 | 0.5612 | 0.6788 | 0.5612 | 0.7491 | | 0.2493 | 45.1818 | 994 | 0.5600 | 0.6788 | 0.5600 | 0.7484 | | 0.2493 | 45.2727 | 996 | 0.5602 | 0.6788 | 0.5602 | 0.7485 | | 0.2493 | 45.3636 | 998 | 0.5583 | 0.6649 | 0.5583 | 0.7472 | | 0.0507 | 45.4545 | 1000 | 0.5559 | 0.6830 | 0.5559 | 0.7456 | | 0.0507 | 45.5455 | 1002 | 0.5518 | 0.6830 | 0.5518 | 0.7428 | | 0.0507 | 45.6364 | 1004 | 0.5520 | 0.6649 | 0.5520 | 0.7429 | | 0.0507 | 45.7273 | 1006 | 0.5542 | 0.6610 | 0.5542 | 0.7444 | | 0.0507 | 45.8182 | 1008 | 0.5575 | 0.6610 | 0.5575 | 0.7467 | | 0.0507 | 45.9091 | 1010 | 0.5623 | 0.6610 | 0.5623 | 0.7499 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1
SemilleroCV/resnet50-finetuned-bwmp2-224
SemilleroCV
2025-01-12T19:03:11Z
14
1
null
[ "onnx", "resnet", "image-classification", "es", "en", "dataset:SemilleroCV/BWMP2", "doi:10.57967/hf/4039", "license:mit", "region:us" ]
image-classification
2024-09-02T12:48:12Z
--- license: mit datasets: - SemilleroCV/BWMP2 language: - es - en pipeline_tag: image-classification --- # BWMP2: Dataset RGB para Clasificación de Materiales con un Modelo Fundacional Finamente Ajustado" <p align="center"> <img src="https://github.com/Sneider-exe/Clasificacion_Materiales/raw/main/logo.jpg" alt="Descripción alternativa de la imagen"> </p> Este proyecto presenta un modelo fundacional(ResNet50) finamente ajustado para la clasificación de materiales. Utilizando un dataset propio de imágenes RGB que contiene cinco clases (Ladrillo, Metal, Madera, Papel, Plástico), el modelo es capaz de identificar y clasificar correctamente una imagen dentro de estas categorías # Sobre Resnet50 <p align="center"> <img src="https://miro.medium.com/v2/resize:fit:1400/0*tH9evuOFqk8F41FG.png" alt="Descripción alternativa de la imagen"> </p> Resnet50 es una arquitectura CNN, perteneciente a la familia de ResNet(redes residuales), modelos diseñados para trabajar con el entrenamiento de redes neuronales profundas Fue desarrollada por investigador de Microsoft Research Asia, conocida por su profundidad y eficiencia en tareas de clasificación de imágenes.