modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
sequence
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
timjwhite/whisper-tiny-dv
timjwhite
2023-08-05T23:43:44Z
86
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "dataset:PolyAI/minds14", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-05T11:31:30Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: whisper-tiny-dv results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: PolyAI/minds14 type: PolyAI/minds14 config: en-US split: train[-19%:] args: en-US metrics: - name: Wer type: wer value: 0.3484562066792691 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-tiny-dv This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set: - Loss: 0.7263 - Wer Ortho: 0.3483 - Wer: 0.3485 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| | 0.0008 | 17.24 | 500 | 0.6662 | 0.3483 | 0.3491 | | 0.0002 | 34.48 | 1000 | 0.7263 | 0.3483 | 0.3485 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.3 - Tokenizers 0.13.3
ld76/speecht5_finetuned_voxpopuli_nl
ld76
2023-08-05T23:41:04Z
82
0
transformers
[ "transformers", "pytorch", "tensorboard", "speecht5", "text-to-audio", "generated_from_trainer", "text-to-speech", "dataset:voxpopuli", "base_model:microsoft/speecht5_tts", "base_model:finetune:microsoft/speecht5_tts", "license:mit", "endpoints_compatible", "region:us" ]
text-to-speech
2023-08-05T20:33:36Z
--- license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer - text-to-speech datasets: - voxpopuli model-index: - name: speecht5_finetuned_voxpopuli_nl results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # speecht5_finetuned_voxpopuli_nl This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the voxpopuli dataset. It achieves the following results on the evaluation set: - Loss: 0.4509 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.5074 | 18.1 | 1000 | 0.4658 | | 0.4824 | 36.2 | 2000 | 0.4533 | | 0.4766 | 54.3 | 3000 | 0.4530 | | 0.4745 | 72.4 | 4000 | 0.4509 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.3 - Tokenizers 0.13.3
sandeep12345/new_biofilm_LLM
sandeep12345
2023-08-05T23:39:11Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-05T23:38:30Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
sandeep1chataut/biofilm_custom_llama_finetune
sandeep1chataut
2023-08-05T23:25:17Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-05T23:24:39Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
Za88yes/Ri5
Za88yes
2023-08-05T23:18:05Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-05T18:10:21Z
--- license: creativeml-openrail-m ---
BreadAi/MuseCan-1-2
BreadAi
2023-08-05T22:38:58Z
211
0
transformers
[ "transformers", "pytorch", "safetensors", "gpt2", "text-generation", "dataset:breadlicker45/musenet-encoders-12k", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-03-21T10:06:37Z
--- datasets: - breadlicker45/musenet-encoders-12k ---
CyberHarem/privaty_nikke
CyberHarem
2023-08-05T22:38:56Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/privaty_nikke", "license:mit", "region:us" ]
text-to-image
2023-08-05T22:35:19Z
--- license: mit datasets: - CyberHarem/privaty_nikke pipeline_tag: text-to-image tags: - art --- # Lora of privaty_nikke This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 1500, you need to download `1500/privaty_nikke.pt` as the embedding and `1500/privaty_nikke.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The trigger word is `privaty_nikke`.** These are available steps: | Steps | bikini | free | nude | Download | |--------:|:-----------------------------------------|:-------------------------------------|:-----------------------------------------------|:-----------------------------------| | 1500 | ![bikini-1500](1500/previews/bikini.png) | ![free-1500](1500/previews/free.png) | [<NSFW, click to see>](1500/previews/nude.png) | [Download](1500/privaty_nikke.zip) | | 1400 | ![bikini-1400](1400/previews/bikini.png) | ![free-1400](1400/previews/free.png) | [<NSFW, click to see>](1400/previews/nude.png) | [Download](1400/privaty_nikke.zip) | | 1300 | ![bikini-1300](1300/previews/bikini.png) | ![free-1300](1300/previews/free.png) | [<NSFW, click to see>](1300/previews/nude.png) | [Download](1300/privaty_nikke.zip) | | 1200 | ![bikini-1200](1200/previews/bikini.png) | ![free-1200](1200/previews/free.png) | [<NSFW, click to see>](1200/previews/nude.png) | [Download](1200/privaty_nikke.zip) | | 1100 | ![bikini-1100](1100/previews/bikini.png) | ![free-1100](1100/previews/free.png) | [<NSFW, click to see>](1100/previews/nude.png) | [Download](1100/privaty_nikke.zip) | | 1000 | ![bikini-1000](1000/previews/bikini.png) | ![free-1000](1000/previews/free.png) | [<NSFW, click to see>](1000/previews/nude.png) | [Download](1000/privaty_nikke.zip) | | 900 | ![bikini-900](900/previews/bikini.png) | ![free-900](900/previews/free.png) | [<NSFW, click to see>](900/previews/nude.png) | [Download](900/privaty_nikke.zip) | | 800 | ![bikini-800](800/previews/bikini.png) | ![free-800](800/previews/free.png) | [<NSFW, click to see>](800/previews/nude.png) | [Download](800/privaty_nikke.zip) | | 700 | ![bikini-700](700/previews/bikini.png) | ![free-700](700/previews/free.png) | [<NSFW, click to see>](700/previews/nude.png) | [Download](700/privaty_nikke.zip) | | 600 | ![bikini-600](600/previews/bikini.png) | ![free-600](600/previews/free.png) | [<NSFW, click to see>](600/previews/nude.png) | [Download](600/privaty_nikke.zip) | | 500 | ![bikini-500](500/previews/bikini.png) | ![free-500](500/previews/free.png) | [<NSFW, click to see>](500/previews/nude.png) | [Download](500/privaty_nikke.zip) | | 400 | ![bikini-400](400/previews/bikini.png) | ![free-400](400/previews/free.png) | [<NSFW, click to see>](400/previews/nude.png) | [Download](400/privaty_nikke.zip) | | 300 | ![bikini-300](300/previews/bikini.png) | ![free-300](300/previews/free.png) | [<NSFW, click to see>](300/previews/nude.png) | [Download](300/privaty_nikke.zip) | | 200 | ![bikini-200](200/previews/bikini.png) | ![free-200](200/previews/free.png) | [<NSFW, click to see>](200/previews/nude.png) | [Download](200/privaty_nikke.zip) | | 100 | ![bikini-100](100/previews/bikini.png) | ![free-100](100/previews/free.png) | [<NSFW, click to see>](100/previews/nude.png) | [Download](100/privaty_nikke.zip) |
eliorcohen/ppo-Huggy
eliorcohen
2023-08-05T22:22:03Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-08-05T22:21:59Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: eliorcohen/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Eilliar/llama-2-7b-test
Eilliar
2023-08-05T22:20:51Z
8
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-04T14:41:55Z
This is a test, the model was fine tuned on Colab using the [mlabonne/guanaco-llama2-1k](https://huggingface.co/datasets/mlabonne/guanaco-llama2-1k) dataset. I'm just curious to learn the fine tune and upload process.
helamri/dqn-SpaceInvadersNoFrameskip-v4
helamri
2023-08-05T22:15:19Z
1
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-05T22:14:43Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 622.50 +/- 134.87 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga helamri -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga helamri -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga helamri ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
salohnana2018/ABSA-SentencePair-corrected-domainAdapt-Stack-HARD50-Adapter-pfeiffer-run2
salohnana2018
2023-08-05T22:07:34Z
0
0
adapter-transformers
[ "adapter-transformers", "pytorch", "tensorboard", "bert", "adapterhub:Arabic ABSA/SemEvalHotelReview", "dataset:Hotel", "region:us" ]
null
2023-08-05T21:24:15Z
--- tags: - adapterhub:Arabic ABSA/SemEvalHotelReview - adapter-transformers - bert datasets: - Hotel --- # Adapter `salohnana2018/ABSA-SentencePair-corrected-domainAdapt-Stack-HARD50-Adapter-pfeiffer-run2` for CAMeL-Lab/bert-base-arabic-camelbert-msa An [adapter](https://adapterhub.ml) for the `CAMeL-Lab/bert-base-arabic-camelbert-msa` model that was trained on the [Arabic ABSA/SemEvalHotelReview](https://adapterhub.ml/explore/Arabic ABSA/SemEvalHotelReview/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoAdapterModel model = AutoAdapterModel.from_pretrained("CAMeL-Lab/bert-base-arabic-camelbert-msa") adapter_name = model.load_adapter("salohnana2018/ABSA-SentencePair-corrected-domainAdapt-Stack-HARD50-Adapter-pfeiffer-run2", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
marc-bordessoule/llama2-qlora-finetunined-french
marc-bordessoule
2023-08-05T21:49:46Z
2
0
peft
[ "peft", "text-generation", "region:us" ]
text-generation
2023-07-31T07:28:37Z
--- library_name: peft pipeline_tag: text-generation --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
CyberHarem/noir_nikke
CyberHarem
2023-08-05T21:36:48Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/noir_nikke", "license:mit", "region:us" ]
text-to-image
2023-08-05T21:33:15Z
--- license: mit datasets: - CyberHarem/noir_nikke pipeline_tag: text-to-image tags: - art --- # Lora of noir_nikke This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 1500, you need to download `1500/noir_nikke.pt` as the embedding and `1500/noir_nikke.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The trigger word is `noir_nikke`.** These are available steps: | Steps | pattern_1 | bikini | free | nude | Download | |--------:|:-----------------------------------------------|:-----------------------------------------|:-------------------------------------|:-----------------------------------------------|:--------------------------------| | 1500 | ![pattern_1-1500](1500/previews/pattern_1.png) | ![bikini-1500](1500/previews/bikini.png) | ![free-1500](1500/previews/free.png) | [<NSFW, click to see>](1500/previews/nude.png) | [Download](1500/noir_nikke.zip) | | 1400 | ![pattern_1-1400](1400/previews/pattern_1.png) | ![bikini-1400](1400/previews/bikini.png) | ![free-1400](1400/previews/free.png) | [<NSFW, click to see>](1400/previews/nude.png) | [Download](1400/noir_nikke.zip) | | 1300 | ![pattern_1-1300](1300/previews/pattern_1.png) | ![bikini-1300](1300/previews/bikini.png) | ![free-1300](1300/previews/free.png) | [<NSFW, click to see>](1300/previews/nude.png) | [Download](1300/noir_nikke.zip) | | 1200 | ![pattern_1-1200](1200/previews/pattern_1.png) | ![bikini-1200](1200/previews/bikini.png) | ![free-1200](1200/previews/free.png) | [<NSFW, click to see>](1200/previews/nude.png) | [Download](1200/noir_nikke.zip) | | 1100 | ![pattern_1-1100](1100/previews/pattern_1.png) | ![bikini-1100](1100/previews/bikini.png) | ![free-1100](1100/previews/free.png) | [<NSFW, click to see>](1100/previews/nude.png) | [Download](1100/noir_nikke.zip) | | 1000 | ![pattern_1-1000](1000/previews/pattern_1.png) | ![bikini-1000](1000/previews/bikini.png) | ![free-1000](1000/previews/free.png) | [<NSFW, click to see>](1000/previews/nude.png) | [Download](1000/noir_nikke.zip) | | 900 | ![pattern_1-900](900/previews/pattern_1.png) | ![bikini-900](900/previews/bikini.png) | ![free-900](900/previews/free.png) | [<NSFW, click to see>](900/previews/nude.png) | [Download](900/noir_nikke.zip) | | 800 | ![pattern_1-800](800/previews/pattern_1.png) | ![bikini-800](800/previews/bikini.png) | ![free-800](800/previews/free.png) | [<NSFW, click to see>](800/previews/nude.png) | [Download](800/noir_nikke.zip) | | 700 | ![pattern_1-700](700/previews/pattern_1.png) | ![bikini-700](700/previews/bikini.png) | ![free-700](700/previews/free.png) | [<NSFW, click to see>](700/previews/nude.png) | [Download](700/noir_nikke.zip) | | 600 | ![pattern_1-600](600/previews/pattern_1.png) | ![bikini-600](600/previews/bikini.png) | ![free-600](600/previews/free.png) | [<NSFW, click to see>](600/previews/nude.png) | [Download](600/noir_nikke.zip) | | 500 | ![pattern_1-500](500/previews/pattern_1.png) | ![bikini-500](500/previews/bikini.png) | ![free-500](500/previews/free.png) | [<NSFW, click to see>](500/previews/nude.png) | [Download](500/noir_nikke.zip) | | 400 | ![pattern_1-400](400/previews/pattern_1.png) | ![bikini-400](400/previews/bikini.png) | ![free-400](400/previews/free.png) | [<NSFW, click to see>](400/previews/nude.png) | [Download](400/noir_nikke.zip) | | 300 | ![pattern_1-300](300/previews/pattern_1.png) | ![bikini-300](300/previews/bikini.png) | ![free-300](300/previews/free.png) | [<NSFW, click to see>](300/previews/nude.png) | [Download](300/noir_nikke.zip) | | 200 | ![pattern_1-200](200/previews/pattern_1.png) | ![bikini-200](200/previews/bikini.png) | ![free-200](200/previews/free.png) | [<NSFW, click to see>](200/previews/nude.png) | [Download](200/noir_nikke.zip) | | 100 | ![pattern_1-100](100/previews/pattern_1.png) | ![bikini-100](100/previews/bikini.png) | ![free-100](100/previews/free.png) | [<NSFW, click to see>](100/previews/nude.png) | [Download](100/noir_nikke.zip) |
s3nh/Llama2-Chinese-13b-Chat-GGML
s3nh
2023-08-05T21:26:45Z
0
8
transformers
[ "transformers", "text-generation", "zh", "license:openrail", "endpoints_compatible", "region:us" ]
text-generation
2023-08-05T20:30:45Z
--- license: openrail language: - zh pipeline_tag: text-generation library_name: transformers --- ## Original model card Buy me a coffee if you like this project ;) <a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a> #### Description GGML Format model files for [This project](https://huggingface.co/FlagAlpha/Llama2-Chinese-13b-Chat). ### inference ```python import ctransformers from ctransformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained(output_dir, ggml_file, gpu_layers=32, model_type="llama") manual_input: str = "Tell me about your last dream, please." llm(manual_input, max_new_tokens=256, temperature=0.9, top_p= 0.7) ``` # Original model card # Llama2中文社区 --- ## Llama2中文微调参数 由于Llama2本身的中文对齐较弱,我们采用中文指令集,对meta-llama/Llama-2-13b-chat-hf进行LoRA微调,使其具备较强的中文对话能力。 🎯 **该版本为LoRA中文微调参数FlagAlpha/Llama2-Chinese-13b-Chat-LoRA和meta-llama/Llama-2-13b-chat-hf参数结合后的版本,可直接使用** --- ## 🚀 社区地址: Github:[**Llama2-Chinese**](https://github.com/FlagAlpha/Llama2-Chinese) 在线体验链接:[**llama.family**](https://llama.family/) ## 🔥 社区介绍 欢迎来到Llama2中文社区! 我们是一个专注于Llama2模型在中文方面的优化和上层建设的高级技术社区。 **基于大规模中文数据,从预训练开始对Llama2模型进行中文能力的持续迭代升级**。 我们热忱欢迎对大模型LLM充满热情的开发者和研究者加入我们的行列。 ## 🐼 社区资源 - Llama2在线体验链接[**llama.family**](https://llama.family/),同时包含Meta原版和中文微调版本! - Llama2 Chat模型的[中文问答能力评测](https://github.com/FlagAlpha/Llama2-Chinese/tree/main#-%E6%A8%A1%E5%9E%8B%E8%AF%84%E6%B5%8B)! - [社区飞书知识库](https://chinesellama.feishu.cn/wiki/space/7257824476874768388?ccm_open_type=lark_wiki_spaceLink),欢迎大家一起共建!
shubhamagarwal92/ppo-PyramidsTraining
shubhamagarwal92
2023-08-05T21:10:49Z
10
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-08-05T21:10:43Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: shubhamagarwal92/ppo-PyramidsTraining 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Henk717/spring-dragon-qlora
Henk717
2023-08-05T21:06:52Z
6
7
peft
[ "peft", "tensorboard", "region:us" ]
null
2023-08-05T20:59:57Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
Patsflynn/ppo-lunar-lander
Patsflynn
2023-08-05T21:06:45Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-05T21:06:21Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 270.90 +/- 21.29 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
arindamatcalgm/w266_model3_BERT_CNN
arindamatcalgm
2023-08-05T21:06:19Z
1
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2023-08-03T03:06:37Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: w266_model3_BERT_CNN results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # w266_model3_BERT_CNN This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7935 - Accuracy: {'accuracy': 0.67} - F1: {'f1': 0.6539863523155215} - Precision: {'precision': 0.6655888523241464} - Recall: {'recall': 0.67} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:-------------------:|:--------------------------:|:---------------------------------:|:-----------------:| | 0.7881 | 1.0 | 1923 | 0.8177 | {'accuracy': 0.638} | {'f1': 0.6219209356584174} | {'precision': 0.6325213408748697} | {'recall': 0.638} | | 0.649 | 2.0 | 3846 | 0.8257 | {'accuracy': 0.669} | {'f1': 0.6701535233107099} | {'precision': 0.672307962349643} | {'recall': 0.669} | | 0.4771 | 3.0 | 5769 | 0.8922 | {'accuracy': 0.676} | {'f1': 0.6778795418743319} | {'precision': 0.6805694646691987} | {'recall': 0.676} | | 0.3403 | 4.0 | 7692 | 1.4285 | {'accuracy': 0.669} | {'f1': 0.666176554548987} | {'precision': 0.6653390405441227} | {'recall': 0.669} | | 0.2088 | 5.0 | 9615 | 1.7417 | {'accuracy': 0.67} | {'f1': 0.6716636513157895} | {'precision': 0.6752339933799478} | {'recall': 0.67} | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.3 - Tokenizers 0.13.3
patonw/Reinforce-Pixelcopter-PLE-v0
patonw
2023-08-05T21:03:29Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-08-05T01:33:19Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 106.80 +/- 100.67 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
arhamk/q-Taxi-v3
arhamk
2023-08-05T21:03:17Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-02T19:56:15Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="arhamk/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
polejowska/detr-r50-cd45rb-8ah-6l-dilation-corrected
polejowska
2023-08-05T21:01:51Z
161
0
transformers
[ "transformers", "pytorch", "detr", "object-detection", "generated_from_trainer", "dataset:cd45rb", "license:apache-2.0", "endpoints_compatible", "region:us" ]
object-detection
2023-08-04T07:11:27Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - cd45rb model-index: - name: detr-r50-cd45rb-8ah-6l-dilation-corrected results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # detr-r50-cd45rb-8ah-6l-dilation-corrected This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on the cd45rb dataset. It achieves the following results on the evaluation set: - Loss: 1.5202 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 2.4024 | 1.0 | 4606 | 1.7613 | | 2.1798 | 2.0 | 9212 | 1.7139 | | 2.1158 | 3.0 | 13818 | 1.6784 | | 2.0907 | 4.0 | 18424 | 1.6514 | | 2.0665 | 5.0 | 23030 | 1.6573 | | 2.0511 | 6.0 | 27636 | 1.6508 | | 2.0401 | 7.0 | 32242 | 1.6145 | | 2.0217 | 8.0 | 36848 | 1.6353 | | 2.0119 | 9.0 | 41454 | 1.6176 | | 1.9921 | 10.0 | 46060 | 1.6012 | | 1.9841 | 11.0 | 50666 | 1.5832 | | 1.9774 | 12.0 | 55272 | 1.6204 | | 1.9567 | 13.0 | 59878 | 1.5836 | | 1.9542 | 14.0 | 64484 | 1.5789 | | 1.9347 | 15.0 | 69090 | 1.5565 | | 1.9348 | 16.0 | 73696 | 1.5833 | | 1.9188 | 17.0 | 78302 | 1.5547 | | 1.9085 | 18.0 | 82908 | 1.5456 | | 1.8956 | 19.0 | 87514 | 1.5433 | | 1.8891 | 20.0 | 92120 | 1.5555 | | 1.8899 | 21.0 | 96726 | 1.5278 | | 1.8782 | 22.0 | 101332 | 1.5235 | | 1.8676 | 23.0 | 105938 | 1.5314 | | 1.8699 | 24.0 | 110544 | 1.5172 | | 1.8627 | 25.0 | 115150 | 1.5202 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.3
CyberHarem/neon_nikke
CyberHarem
2023-08-05T20:57:49Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/neon_nikke", "license:mit", "region:us" ]
text-to-image
2023-08-05T20:54:35Z
--- license: mit datasets: - CyberHarem/neon_nikke pipeline_tag: text-to-image tags: - art --- # Lora of neon_nikke This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 1500, you need to download `1500/neon_nikke.pt` as the embedding and `1500/neon_nikke.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The trigger word is `neon_nikke`.** These are available steps: | Steps | pattern_1 | bikini | free | nude | Download | |--------:|:-----------------------------------------------|:-----------------------------------------|:-------------------------------------|:-----------------------------------------------|:--------------------------------| | 1500 | ![pattern_1-1500](1500/previews/pattern_1.png) | ![bikini-1500](1500/previews/bikini.png) | ![free-1500](1500/previews/free.png) | [<NSFW, click to see>](1500/previews/nude.png) | [Download](1500/neon_nikke.zip) | | 1400 | ![pattern_1-1400](1400/previews/pattern_1.png) | ![bikini-1400](1400/previews/bikini.png) | ![free-1400](1400/previews/free.png) | [<NSFW, click to see>](1400/previews/nude.png) | [Download](1400/neon_nikke.zip) | | 1300 | ![pattern_1-1300](1300/previews/pattern_1.png) | ![bikini-1300](1300/previews/bikini.png) | ![free-1300](1300/previews/free.png) | [<NSFW, click to see>](1300/previews/nude.png) | [Download](1300/neon_nikke.zip) | | 1200 | ![pattern_1-1200](1200/previews/pattern_1.png) | ![bikini-1200](1200/previews/bikini.png) | ![free-1200](1200/previews/free.png) | [<NSFW, click to see>](1200/previews/nude.png) | [Download](1200/neon_nikke.zip) | | 1100 | ![pattern_1-1100](1100/previews/pattern_1.png) | ![bikini-1100](1100/previews/bikini.png) | ![free-1100](1100/previews/free.png) | [<NSFW, click to see>](1100/previews/nude.png) | [Download](1100/neon_nikke.zip) | | 1000 | ![pattern_1-1000](1000/previews/pattern_1.png) | ![bikini-1000](1000/previews/bikini.png) | ![free-1000](1000/previews/free.png) | [<NSFW, click to see>](1000/previews/nude.png) | [Download](1000/neon_nikke.zip) | | 900 | ![pattern_1-900](900/previews/pattern_1.png) | ![bikini-900](900/previews/bikini.png) | ![free-900](900/previews/free.png) | [<NSFW, click to see>](900/previews/nude.png) | [Download](900/neon_nikke.zip) | | 800 | ![pattern_1-800](800/previews/pattern_1.png) | ![bikini-800](800/previews/bikini.png) | ![free-800](800/previews/free.png) | [<NSFW, click to see>](800/previews/nude.png) | [Download](800/neon_nikke.zip) | | 700 | ![pattern_1-700](700/previews/pattern_1.png) | ![bikini-700](700/previews/bikini.png) | ![free-700](700/previews/free.png) | [<NSFW, click to see>](700/previews/nude.png) | [Download](700/neon_nikke.zip) | | 600 | ![pattern_1-600](600/previews/pattern_1.png) | ![bikini-600](600/previews/bikini.png) | ![free-600](600/previews/free.png) | [<NSFW, click to see>](600/previews/nude.png) | [Download](600/neon_nikke.zip) | | 500 | ![pattern_1-500](500/previews/pattern_1.png) | ![bikini-500](500/previews/bikini.png) | ![free-500](500/previews/free.png) | [<NSFW, click to see>](500/previews/nude.png) | [Download](500/neon_nikke.zip) | | 400 | ![pattern_1-400](400/previews/pattern_1.png) | ![bikini-400](400/previews/bikini.png) | ![free-400](400/previews/free.png) | [<NSFW, click to see>](400/previews/nude.png) | [Download](400/neon_nikke.zip) | | 300 | ![pattern_1-300](300/previews/pattern_1.png) | ![bikini-300](300/previews/bikini.png) | ![free-300](300/previews/free.png) | [<NSFW, click to see>](300/previews/nude.png) | [Download](300/neon_nikke.zip) | | 200 | ![pattern_1-200](200/previews/pattern_1.png) | ![bikini-200](200/previews/bikini.png) | ![free-200](200/previews/free.png) | [<NSFW, click to see>](200/previews/nude.png) | [Download](200/neon_nikke.zip) | | 100 | ![pattern_1-100](100/previews/pattern_1.png) | ![bikini-100](100/previews/bikini.png) | ![free-100](100/previews/free.png) | [<NSFW, click to see>](100/previews/nude.png) | [Download](100/neon_nikke.zip) |
ClementXie/ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan-finetuned-gtzan
ClementXie
2023-08-05T20:40:23Z
163
0
transformers
[ "transformers", "pytorch", "tensorboard", "audio-spectrogram-transformer", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "base_model:ptah23/ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan", "base_model:finetune:ptah23/ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan", "license:bsd-3-clause", "model-index", "endpoints_compatible", "region:us" ]
audio-classification
2023-08-05T20:10:40Z
--- license: bsd-3-clause base_model: ptah23/ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan-finetuned-gtzan This model is a fine-tuned version of [ptah23/ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan](https://huggingface.co/ptah23/ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.7839 - Accuracy: 0.9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0007 | 1.0 | 112 | 0.7015 | 0.82 | | 0.063 | 2.0 | 225 | 0.7797 | 0.82 | | 0.1259 | 3.0 | 337 | 1.1225 | 0.83 | | 0.0003 | 4.0 | 450 | 0.5694 | 0.89 | | 0.0016 | 5.0 | 562 | 0.7449 | 0.89 | | 0.0 | 6.0 | 675 | 0.9446 | 0.89 | | 0.0 | 7.0 | 787 | 0.8780 | 0.88 | | 0.0 | 8.0 | 900 | 0.7953 | 0.89 | | 0.0988 | 9.0 | 1012 | 0.7962 | 0.9 | | 0.0 | 9.96 | 1120 | 0.7839 | 0.9 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 1.13.1 - Datasets 2.14.3 - Tokenizers 0.13.2
CyberHarem/scarlet_nikke
CyberHarem
2023-08-05T20:18:23Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/scarlet_nikke", "license:mit", "region:us" ]
text-to-image
2023-08-05T20:15:21Z
--- license: mit datasets: - CyberHarem/scarlet_nikke pipeline_tag: text-to-image tags: - art --- # Lora of scarlet_nikke This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 1500, you need to download `1500/scarlet_nikke.pt` as the embedding and `1500/scarlet_nikke.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The trigger word is `scarlet_nikke`.** These are available steps: | Steps | bikini | free | nude | Download | |--------:|:-----------------------------------------|:-------------------------------------|:-----------------------------------------------|:-----------------------------------| | 1500 | ![bikini-1500](1500/previews/bikini.png) | ![free-1500](1500/previews/free.png) | [<NSFW, click to see>](1500/previews/nude.png) | [Download](1500/scarlet_nikke.zip) | | 1400 | ![bikini-1400](1400/previews/bikini.png) | ![free-1400](1400/previews/free.png) | [<NSFW, click to see>](1400/previews/nude.png) | [Download](1400/scarlet_nikke.zip) | | 1300 | ![bikini-1300](1300/previews/bikini.png) | ![free-1300](1300/previews/free.png) | [<NSFW, click to see>](1300/previews/nude.png) | [Download](1300/scarlet_nikke.zip) | | 1200 | ![bikini-1200](1200/previews/bikini.png) | ![free-1200](1200/previews/free.png) | [<NSFW, click to see>](1200/previews/nude.png) | [Download](1200/scarlet_nikke.zip) | | 1100 | ![bikini-1100](1100/previews/bikini.png) | ![free-1100](1100/previews/free.png) | [<NSFW, click to see>](1100/previews/nude.png) | [Download](1100/scarlet_nikke.zip) | | 1000 | ![bikini-1000](1000/previews/bikini.png) | ![free-1000](1000/previews/free.png) | [<NSFW, click to see>](1000/previews/nude.png) | [Download](1000/scarlet_nikke.zip) | | 900 | ![bikini-900](900/previews/bikini.png) | ![free-900](900/previews/free.png) | [<NSFW, click to see>](900/previews/nude.png) | [Download](900/scarlet_nikke.zip) | | 800 | ![bikini-800](800/previews/bikini.png) | ![free-800](800/previews/free.png) | [<NSFW, click to see>](800/previews/nude.png) | [Download](800/scarlet_nikke.zip) | | 700 | ![bikini-700](700/previews/bikini.png) | ![free-700](700/previews/free.png) | [<NSFW, click to see>](700/previews/nude.png) | [Download](700/scarlet_nikke.zip) | | 600 | ![bikini-600](600/previews/bikini.png) | ![free-600](600/previews/free.png) | [<NSFW, click to see>](600/previews/nude.png) | [Download](600/scarlet_nikke.zip) | | 500 | ![bikini-500](500/previews/bikini.png) | ![free-500](500/previews/free.png) | [<NSFW, click to see>](500/previews/nude.png) | [Download](500/scarlet_nikke.zip) | | 400 | ![bikini-400](400/previews/bikini.png) | ![free-400](400/previews/free.png) | [<NSFW, click to see>](400/previews/nude.png) | [Download](400/scarlet_nikke.zip) | | 300 | ![bikini-300](300/previews/bikini.png) | ![free-300](300/previews/free.png) | [<NSFW, click to see>](300/previews/nude.png) | [Download](300/scarlet_nikke.zip) | | 200 | ![bikini-200](200/previews/bikini.png) | ![free-200](200/previews/free.png) | [<NSFW, click to see>](200/previews/nude.png) | [Download](200/scarlet_nikke.zip) | | 100 | ![bikini-100](100/previews/bikini.png) | ![free-100](100/previews/free.png) | [<NSFW, click to see>](100/previews/nude.png) | [Download](100/scarlet_nikke.zip) |
Ussen/whisper-medium-swc-drc-kat-1
Ussen
2023-08-05T19:56:35Z
89
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "dataset:Ussen/swc-drc-kat", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-05T16:32:32Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - Ussen/swc-drc-kat metrics: - wer model-index: - name: whisper-medium-swc-drc-kat-1 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Ussen/swc-drc-kat type: Ussen/swc-drc-kat config: default split: train args: default metrics: - name: Wer type: wer value: 0.49379203310915676 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-medium-swc-drc-kat-1 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Ussen/swc-drc-kat dataset. It achieves the following results on the evaluation set: - Loss: 0.9701 - Wer Ortho: 50.0388 - Wer: 0.4938 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 500 - training_steps: 4000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| | 0.6769 | 2.96 | 1000 | 0.8341 | 51.2296 | 0.5072 | | 0.365 | 5.93 | 2000 | 0.8083 | 49.3917 | 0.4876 | | 0.165 | 8.89 | 3000 | 0.8806 | 51.3073 | 0.5067 | | 0.059 | 11.85 | 4000 | 0.9701 | 50.0388 | 0.4938 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.14.3 - Tokenizers 0.13.3
o33iemars/Gpt
o33iemars
2023-08-05T19:44:14Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2023-08-05T19:41:46Z
--- license: bigscience-openrail-m ---
Surya-Teja-Menta/PPO-LunarLander-v2
Surya-Teja-Menta
2023-08-05T19:41:57Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-05T19:05:58Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: MLPpolicy results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 273.64 +/- 14.87 name: mean_reward verified: false --- # **MLPpolicy** Agent playing **LunarLander-v2** This is a trained model of a **MLPpolicy** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
CyberHarem/volume_nikke
CyberHarem
2023-08-05T19:39:14Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/volume_nikke", "license:mit", "region:us" ]
text-to-image
2023-08-05T19:35:13Z
--- license: mit datasets: - CyberHarem/volume_nikke pipeline_tag: text-to-image tags: - art --- # Lora of volume_nikke This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 1500, you need to download `1500/volume_nikke.pt` as the embedding and `1500/volume_nikke.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The trigger word is `volume_nikke`.** These are available steps: | Steps | pattern_1 | bikini | free | nude | Download | |--------:|:-----------------------------------------------|:-----------------------------------------|:-------------------------------------|:-----------------------------------------------|:----------------------------------| | 1500 | ![pattern_1-1500](1500/previews/pattern_1.png) | ![bikini-1500](1500/previews/bikini.png) | ![free-1500](1500/previews/free.png) | [<NSFW, click to see>](1500/previews/nude.png) | [Download](1500/volume_nikke.zip) | | 1400 | ![pattern_1-1400](1400/previews/pattern_1.png) | ![bikini-1400](1400/previews/bikini.png) | ![free-1400](1400/previews/free.png) | [<NSFW, click to see>](1400/previews/nude.png) | [Download](1400/volume_nikke.zip) | | 1300 | ![pattern_1-1300](1300/previews/pattern_1.png) | ![bikini-1300](1300/previews/bikini.png) | ![free-1300](1300/previews/free.png) | [<NSFW, click to see>](1300/previews/nude.png) | [Download](1300/volume_nikke.zip) | | 1200 | ![pattern_1-1200](1200/previews/pattern_1.png) | ![bikini-1200](1200/previews/bikini.png) | ![free-1200](1200/previews/free.png) | [<NSFW, click to see>](1200/previews/nude.png) | [Download](1200/volume_nikke.zip) | | 1100 | ![pattern_1-1100](1100/previews/pattern_1.png) | ![bikini-1100](1100/previews/bikini.png) | ![free-1100](1100/previews/free.png) | [<NSFW, click to see>](1100/previews/nude.png) | [Download](1100/volume_nikke.zip) | | 1000 | ![pattern_1-1000](1000/previews/pattern_1.png) | ![bikini-1000](1000/previews/bikini.png) | ![free-1000](1000/previews/free.png) | [<NSFW, click to see>](1000/previews/nude.png) | [Download](1000/volume_nikke.zip) | | 900 | ![pattern_1-900](900/previews/pattern_1.png) | ![bikini-900](900/previews/bikini.png) | ![free-900](900/previews/free.png) | [<NSFW, click to see>](900/previews/nude.png) | [Download](900/volume_nikke.zip) | | 800 | ![pattern_1-800](800/previews/pattern_1.png) | ![bikini-800](800/previews/bikini.png) | ![free-800](800/previews/free.png) | [<NSFW, click to see>](800/previews/nude.png) | [Download](800/volume_nikke.zip) | | 700 | ![pattern_1-700](700/previews/pattern_1.png) | ![bikini-700](700/previews/bikini.png) | ![free-700](700/previews/free.png) | [<NSFW, click to see>](700/previews/nude.png) | [Download](700/volume_nikke.zip) | | 600 | ![pattern_1-600](600/previews/pattern_1.png) | ![bikini-600](600/previews/bikini.png) | ![free-600](600/previews/free.png) | [<NSFW, click to see>](600/previews/nude.png) | [Download](600/volume_nikke.zip) | | 500 | ![pattern_1-500](500/previews/pattern_1.png) | ![bikini-500](500/previews/bikini.png) | ![free-500](500/previews/free.png) | [<NSFW, click to see>](500/previews/nude.png) | [Download](500/volume_nikke.zip) | | 400 | ![pattern_1-400](400/previews/pattern_1.png) | ![bikini-400](400/previews/bikini.png) | ![free-400](400/previews/free.png) | [<NSFW, click to see>](400/previews/nude.png) | [Download](400/volume_nikke.zip) | | 300 | ![pattern_1-300](300/previews/pattern_1.png) | ![bikini-300](300/previews/bikini.png) | ![free-300](300/previews/free.png) | [<NSFW, click to see>](300/previews/nude.png) | [Download](300/volume_nikke.zip) | | 200 | ![pattern_1-200](200/previews/pattern_1.png) | ![bikini-200](200/previews/bikini.png) | ![free-200](200/previews/free.png) | [<NSFW, click to see>](200/previews/nude.png) | [Download](200/volume_nikke.zip) | | 100 | ![pattern_1-100](100/previews/pattern_1.png) | ![bikini-100](100/previews/bikini.png) | ![free-100](100/previews/free.png) | [<NSFW, click to see>](100/previews/nude.png) | [Download](100/volume_nikke.zip) |
Indra99-01/food_semeval_bigscience_bloomz-560m_PROMPT_TUNING_CAUSAL_LM_v1_60.pt
Indra99-01
2023-08-05T19:38:38Z
2
0
peft
[ "peft", "region:us" ]
null
2023-08-05T19:38:35Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0
kejolong/police
kejolong
2023-08-05T19:35:46Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-05T19:30:51Z
--- license: creativeml-openrail-m ---
arhamk/a2c-AntBulletEnv-v0
arhamk
2023-08-05T19:27:40Z
0
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-05T19:26:33Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 925.76 +/- 168.74 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
tilyupo/t5-large-trivia-ca2q
tilyupo
2023-08-05T19:10:40Z
4
0
transformers
[ "transformers", "tf", "t5", "text2text-generation", "generated_from_keras_callback", "base_model:google/flan-t5-large", "base_model:finetune:google/flan-t5-large", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-08-04T08:59:03Z
--- license: apache-2.0 base_model: google/flan-t5-large tags: - generated_from_keras_callback model-index: - name: t5-large-trivia-v2-ca2q results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # t5-large-trivia-v2-ca2q This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1879 - Validation Loss: 0.3243 - Epoch: 2 <pre> {'eval_loss': 1.0877012014389038, 'eval_bleu': 21.018623207468856, 'eval_rouge1': 58.42, 'eval_rouge2': 35.27, 'eval_rougeL': 51.13, 'eval_rougeLsum': 51.15, 'eval_exact': 0.02536196676707803, 'eval_runtime': 346.7508, 'eval_samples_per_second': 29.678, 'eval_steps_per_second': 0.929} </pre> ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adafactor', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 0.001, 'beta_2_decay': -0.8, 'epsilon_1': 1e-30, 'epsilon_2': 0.001, 'clip_threshold': 1.0, 'relative_step': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.4719 | 0.3053 | 0 | | 0.2556 | 0.3032 | 1 | | 0.1879 | 0.3243 | 2 | ### Framework versions - Transformers 4.31.0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
tilyupo/t5-base-trivia-ca2q
tilyupo
2023-08-05T18:45:13Z
60
0
transformers
[ "transformers", "tf", "t5", "text2text-generation", "generated_from_keras_callback", "base_model:google/flan-t5-base", "base_model:finetune:google/flan-t5-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-08-04T08:15:43Z
--- license: apache-2.0 base_model: google/flan-t5-base tags: - generated_from_keras_callback model-index: - name: t5-base-trivia-v2-ca2q results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-trivia-v2-ca2q This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.2541 - Validation Loss: 0.3480 - Epoch: 2 <pre> {'eval_loss': 1.2103511095046997, 'eval_bleu': 19.63270019311908, 'eval_rouge1': 57.01, 'eval_rouge2': 33.76, 'eval_rougeL': 49.73, 'eval_rougeLsum': 49.74, 'eval_exact': 0.022446798173161014, 'eval_runtime': 224.6161, 'eval_samples_per_second': 45.816, 'eval_steps_per_second': 1.434} </pre> ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adafactor', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 0.001, 'beta_2_decay': -0.8, 'epsilon_1': 1e-30, 'epsilon_2': 0.001, 'clip_threshold': 1.0, 'relative_step': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.5159 | 0.3420 | 0 | | 0.3061 | 0.3373 | 1 | | 0.2541 | 0.3480 | 2 | ### Framework versions - Transformers 4.31.0 - TensorFlow 2.12.0 - Datasets 2.14.3 - Tokenizers 0.13.3
VicBeltran/dqn-SpaceInvadersNoFrameskip-v4
VicBeltran
2023-08-05T18:44:33Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-05T18:41:04Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 332.50 +/- 92.99 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga VicBeltran -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga VicBeltran -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga VicBeltran ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
tilyupo/t5-small-trivia-ca2q
tilyupo
2023-08-05T18:39:22Z
59
0
transformers
[ "transformers", "tf", "t5", "text2text-generation", "generated_from_keras_callback", "base_model:google/flan-t5-small", "base_model:finetune:google/flan-t5-small", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-08-04T07:19:19Z
--- license: apache-2.0 base_model: google/flan-t5-small tags: - generated_from_keras_callback model-index: - name: t5-small-trivia-v2-ca2q results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-trivia-v2-ca2q This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3095 - Validation Loss: 0.3903 - Epoch: 3 <pre> {'eval_loss': 1.3911314010620117, 'eval_bleu': 17.919726187841192, 'eval_rouge1': 54.15, 'eval_rouge2': 31.12, 'eval_rougeL': 47.29, 'eval_rougeLsum': 47.32, 'eval_exact': 0.020600524730346906, 'eval_runtime': 104.3595, 'eval_samples_per_second': 98.611, 'eval_steps_per_second': 3.085} </pre> ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adafactor', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 0.001, 'beta_2_decay': -0.8, 'epsilon_1': 1e-30, 'epsilon_2': 0.001, 'clip_threshold': 1.0, 'relative_step': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.6099 | 0.4054 | 0 | | 0.3919 | 0.3899 | 1 | | 0.3451 | 0.3880 | 2 | | 0.3095 | 0.3903 | 3 | ### Framework versions - Transformers 4.31.0 - TensorFlow 2.12.0 - Datasets 2.14.3 - Tokenizers 0.13.3
konverner/due_retail_25
konverner
2023-08-05T18:36:06Z
4
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-05-04T14:36:24Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # konverner/due_retail_25 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("konverner/due_retail_25") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
openflamingo/OpenFlamingo-4B-vitl-rpj3b
openflamingo
2023-08-05T18:28:05Z
0
3
null
[ "en", "dataset:laion2b", "arxiv:2308.01390", "arxiv:2210.08402", "arxiv:2304.06939", "region:us" ]
null
2023-06-13T21:22:22Z
--- language: en datasets: - laion2b --- # OpenFlamingo-4B (CLIP ViT-L/14, RedPajama-INCITE-Base-3B-v1) [Paper](https://arxiv.org/abs/2308.01390) | [Blog post](https://laion.ai/blog/open-flamingo-v2/) | [Code](https://github.com/mlfoundations/open_flamingo) | [Demo](https://huggingface.co/spaces/openflamingo/OpenFlamingo) OpenFlamingo is an open source implementation of DeepMind's [Flamingo](https://www.deepmind.com/blog/tackling-multiple-tasks-with-a-single-visual-language-model) models. This 4B-parameter model uses a [CLIP ViT-L/14](https://huggingface.co/openai/clip-vit-large-patch14) vision encoder and [RedPajama-3B](https://huggingface.co/togethercomputer/RedPajama-INCITE-Base-3B-v1) language model. ## Model Details We follow the Flamingo modeling paradigm, outfitting the layers of a pretrained, frozen language model such that they cross-attend to visual features when decoding. Following Flamingo, we freeze the vision encoder and language model but train the connecting modules on web-scraped image-text sequences. Specifically, we trained this model on a mixture of [LAION-2B](https://arxiv.org/abs/2210.08402), [Multimodal C4](https://arxiv.org/abs/2304.06939), and custom ChatGPT-generated sequences using images from LAION (to be released soon). This model has cross-attention modules inserted in *every other* decoder block. It was trained using FullyShardedDataParallel across 64 A100 40GB GPUs at FP32 precision. ## Uses OpenFlamingo models process arbitrarily interleaved sequences of images and text to output text. This allows the models to accept in-context examples and undertake tasks like captioning, visual question answering, and image classification. ### Initialization ``` python from open_flamingo import create_model_and_transforms model, image_processor, tokenizer = create_model_and_transforms( clip_vision_encoder_path="ViT-L-14", clip_vision_encoder_pretrained="openai", lang_encoder_path="togethercomputer/RedPajama-INCITE-Base-3B-v1", tokenizer_path="togethercomputer/RedPajama-INCITE-Base-3B-v1", cross_attn_every_n_layers=2 ) # grab model checkpoint from huggingface hub from huggingface_hub import hf_hub_download import torch checkpoint_path = hf_hub_download("openflamingo/OpenFlamingo-4B-vitl-rpj3b", "checkpoint.pt") model.load_state_dict(torch.load(checkpoint_path), strict=False) ``` ### Generation example Below is an example of generating text conditioned on interleaved images/text. In particular, let's try few-shot image captioning. ``` python from PIL import Image import requests """ Step 1: Load images """ demo_image_one = Image.open( requests.get( "http://images.cocodataset.org/val2017/000000039769.jpg", stream=True ).raw ) demo_image_two = Image.open( requests.get( "http://images.cocodataset.org/test-stuff2017/000000028137.jpg", stream=True ).raw ) query_image = Image.open( requests.get( "http://images.cocodataset.org/test-stuff2017/000000028352.jpg", stream=True ).raw ) """ Step 2: Preprocessing images Details: For OpenFlamingo, we expect the image to be a torch tensor of shape batch_size x num_media x num_frames x channels x height x width. In this case batch_size = 1, num_media = 3, num_frames = 1, channels = 3, height = 224, width = 224. """ vision_x = [image_processor(demo_image_one).unsqueeze(0), image_processor(demo_image_two).unsqueeze(0), image_processor(query_image).unsqueeze(0)] vision_x = torch.cat(vision_x, dim=0) vision_x = vision_x.unsqueeze(1).unsqueeze(0) """ Step 3: Preprocessing text Details: In the text we expect an <image> special token to indicate where an image is. We also expect an <|endofchunk|> special token to indicate the end of the text portion associated with an image. """ tokenizer.padding_side = "left" # For generation padding tokens should be on the left lang_x = tokenizer( ["<image>An image of two cats.<|endofchunk|><image>An image of a bathroom sink.<|endofchunk|><image>An image of"], return_tensors="pt", ) """ Step 4: Generate text """ generated_text = model.generate( vision_x=vision_x, lang_x=lang_x["input_ids"], attention_mask=lang_x["attention_mask"], max_new_tokens=20, num_beams=3, ) print("Generated text: ", tokenizer.decode(generated_text[0])) ``` ### Bias, Risks, and Limitations OpenFlamingo models inherit the risks of their parent models, especially the language model. As an open-source research effort, we highly value open, accessible, reproducible multimodal model research; however, it is crucial to be aware that these models are trained on web data, have not been finetuned for safety, and thus may produce unintended, inappropriate, unreliable, and/or inaccurate outputs. Please use caution before deploying OpenFlamingo models in real applications. We also hope that OpenFlamingo enables further safety and reliability research to address these issues. In an effort to mitigate current potential biases and harms, we have deployed a text content filter on model outputs in the OpenFlamingo demo. We continue to red-team the model to understand and improve its safety. ## Evaluation <table> <tr> <th></th> <th>0-shot</th> <th>4-shot</th> <th>8-shot</th> <th>16-shot</th> <th>32-shot</th> </tr> <tr> <th>COCO (CIDEr)</th> <td>76.7 (0.2)</td> <td>81.8 (0.4)</td> <td>90.7 (0.3)</td> <td>93.9 (0.4)</td> <td>95.1 (0.3)</td> </tr> <tr> <th>VQAv2 (Accuracy)</th> <td>45.7 (0.2)</td> <td>49.1 (0.1)</td> <td>47.1 (0.1)</td> <td>45.8 (0.1)</td> <td>43.1 (0.5)</td> </tr> <tr> <th>Flickr-30K (CIDEr)</th> <td>53.6 (0.9)</td> <td>60.7 (1.2)</td> <td>55.9 (1.3)</td> <td>56.8 (0.5)</td> <td>56.9 (0.7)</td> </tr> <tr> <th>OK-VQA (Accuracy)</th> <td>28.2 (0.3)</td> <td>33.9 (0.3)</td> <td>31.0 (0.3)</td> <td>30.0 (0.2)</td> <td>25.8 (0.6)</td> </tr> <tr> <th>TextVQA (Accuracy)</th> <td>21.0 (0.3)</td> <td>25.9 (0.0)</td> <td>21.3 (0.2)</td> <td>18.2 (0.4)</td> <td>14.1 (0.2)</td> </tr> <tr> <th>Vizwiz (Accuracy)</th> <td>15.4 (0.3)</td> <td>23.2 (0.5)</td> <td>26.8 (0.7)</td> <td>34.2 (1.4)</td> <td>39.9 (0.6)</td> </tr> <tr> <th>Hateful Memes (ROC AUC)</th> <td>53.9 (2.9)</td> <td>54.8 (1.2)</td> <td>55.9 (2.5)</td> <td>56.7 (0.6)</td> <td>56.2 (2.0)</td> </tr> </
openflamingo/OpenFlamingo-9B-vitl-mpt7b
openflamingo
2023-08-05T18:27:50Z
0
41
null
[ "en", "dataset:laion2b", "arxiv:2308.01390", "arxiv:2210.08402", "arxiv:2304.06939", "region:us" ]
null
2023-06-13T21:22:51Z
--- language: en datasets: - laion2b --- # OpenFlamingo-9B (CLIP ViT-L/14, MPT-7B) [Paper](https://arxiv.org/abs/2308.01390) | [Blog post](https://laion.ai/blog/open-flamingo-v2/) | [Code](https://github.com/mlfoundations/open_flamingo) | [Demo](https://huggingface.co/spaces/openflamingo/OpenFlamingo) OpenFlamingo is an open source implementation of DeepMind's [Flamingo](https://www.deepmind.com/blog/tackling-multiple-tasks-with-a-single-visual-language-model) models. This 9B-parameter model uses a [CLIP ViT-L/14](https://huggingface.co/openai/clip-vit-large-patch14) vision encoder and [MPT-7B](https://huggingface.co/mosaicml/mpt-7b) language model. ## Model Details We follow the Flamingo modeling paradigm, outfitting the layers of a pretrained, frozen language model such that they cross-attend to visual features when decoding. Following Flamingo, we freeze the vision encoder and language model but train the connecting modules on web-scraped image-text sequences. Specifically, we trained this model on a mixture of [LAION-2B](https://arxiv.org/abs/2210.08402) and [Multimodal C4](https://arxiv.org/abs/2304.06939). This model has cross-attention modules inserted in *every fourth* decoder block. It was trained using DistributedDataParallel across 64 A100 80GB GPUs at automatic BF16 mixed precision. To use these MPT weights, OpenFlamingo must be initialized using revision `68e1a8e0ebb9b30f3c45c1ef6195980f29063ae2` of the MPT-7B modeling code. We suggest using [this copy of the model](https://huggingface.co/anas-awadalla/mpt-7b) to ensure the code is loaded at that commit. ## Uses OpenFlamingo models process arbitrarily interleaved sequences of images and text to output text. This allows the models to accept in-context examples and undertake tasks like captioning, visual question answering, and image classification. ### Initialization ``` python from open_flamingo import create_model_and_transforms model, image_processor, tokenizer = create_model_and_transforms( clip_vision_encoder_path="ViT-L-14", clip_vision_encoder_pretrained="openai", lang_encoder_path="anas-awadalla/mpt-7b", tokenizer_path="anas-awadalla/mpt-7b", cross_attn_every_n_layers=4 ) # grab model checkpoint from huggingface hub from huggingface_hub import hf_hub_download import torch checkpoint_path = hf_hub_download("openflamingo/OpenFlamingo-9B-vitl-mpt7b", "checkpoint.pt") model.load_state_dict(torch.load(checkpoint_path), strict=False) ``` ### Generation example Below is an example of generating text conditioned on interleaved images/text. In particular, let's try few-shot image captioning. ``` python from PIL import Image import requests """ Step 1: Load images """ demo_image_one = Image.open( requests.get( "http://images.cocodataset.org/val2017/000000039769.jpg", stream=True ).raw ) demo_image_two = Image.open( requests.get( "http://images.cocodataset.org/test-stuff2017/000000028137.jpg", stream=True ).raw ) query_image = Image.open( requests.get( "http://images.cocodataset.org/test-stuff2017/000000028352.jpg", stream=True ).raw ) """ Step 2: Preprocessing images Details: For OpenFlamingo, we expect the image to be a torch tensor of shape batch_size x num_media x num_frames x channels x height x width. In this case batch_size = 1, num_media = 3, num_frames = 1, channels = 3, height = 224, width = 224. """ vision_x = [image_processor(demo_image_one).unsqueeze(0), image_processor(demo_image_two).unsqueeze(0), image_processor(query_image).unsqueeze(0)] vision_x = torch.cat(vision_x, dim=0) vision_x = vision_x.unsqueeze(1).unsqueeze(0) """ Step 3: Preprocessing text Details: In the text we expect an <image> special token to indicate where an image is. We also expect an <|endofchunk|> special token to indicate the end of the text portion associated with an image. """ tokenizer.padding_side = "left" # For generation padding tokens should be on the left lang_x = tokenizer( ["<image>An image of two cats.<|endofchunk|><image>An image of a bathroom sink.<|endofchunk|><image>An image of"], return_tensors="pt", ) """ Step 4: Generate text """ generated_text = model.generate( vision_x=vision_x, lang_x=lang_x["input_ids"], attention_mask=lang_x["attention_mask"], max_new_tokens=20, num_beams=3, ) print("Generated text: ", tokenizer.decode(generated_text[0])) ``` ### Bias, Risks, and Limitations OpenFlamingo models inherit the risks of their parent models, especially the language model. As an open-source research effort, we highly value open, accessible, reproducible multimodal model research; however, it is crucial to be aware that these models are trained on web data, have not been finetuned for safety, and thus may produce unintended, inappropriate, unreliable, and/or inaccurate outputs. Please use caution before deploying OpenFlamingo models in real applications. We also hope that OpenFlamingo enables further safety and reliability research to address these issues. In an effort to mitigate current potential biases and harms, we have deployed a text content filter on model outputs in the OpenFlamingo demo. We continue to red-team the model to understand and improve its safety. ## Evaluation <table> <tr> <th></th> <th>0-shot</th> <th>4-shot</th> <th>8-shot</th> <th>16-shot</th> <th>32-shot</th> </tr> <tr> <th>COCO (CIDEr)</th> <td>79.5 (0.2)</td> <td>89.0 (0.3)</td> <td>96.3 (0.1)</td> <td>98.8 (0.7)</td> <td>99.5 (0.1)</td> </tr> <tr> <th>VQAv2 (Accuracy)</th> <td>50.3 (0.7)</td> <td>50.5 (0.5)</td> <td>52.8 (0.3)</td> <td>52.3 (0.3)</td> <td>50.5 (0.0)</td> </tr> <tr> <th>Flickr-30K (CIDEr)</th> <td>59.5 (1.0)</td> <td>65.8 (0.6)</td> <td>62.9 (1.0)</td> <td>62.8 (1.0)</td> <td>61.3 (0.7)</td> </tr> <tr> <th>OK-VQA (Accuracy)</th> <td>34.7 (0.1)</td> <td>34.3 (0.1)</td> <td>38.4 (0.0)</td> <td>39.5 (0.1)</td> <td>38.1 (0.0)</td> </tr> <tr> <th>TextVQA (Accuracy)</th> <td>24.2 (0.5)</td> <td>28.2 (0.4)</td> <td>29.1 (0.1)</td> <td>27.3 (0.1)</td> <td>23.8 (0.2)</td> </tr> <tr> <th>Vizwiz (Accuracy)</th> <td>17.7 (0.7)</td> <td>23.1 (0.9)</td> <td>31.6 (1.5)</td> <td>38.0 (1.1)</td> <td>40.2 (0.7)</td> </tr> <tr> <th>Hateful Memes (ROC AUC)</th> <td>50.8 (4.7)</td> <td>47.5 (2.2)</td> <td>45.2 (2.7)</td> <td>46.9 (3.8)</td> <td>52.0 (2.1)</td> </tr> </table
openflamingo/OpenFlamingo-3B-vitl-mpt1b-langinstruct
openflamingo
2023-08-05T18:27:38Z
0
5
null
[ "en", "dataset:laion2b", "arxiv:2308.01390", "arxiv:2210.08402", "arxiv:2304.06939", "region:us" ]
null
2023-06-13T21:21:30Z
--- language: en datasets: - laion2b --- # OpenFlamingo-3B (CLIP ViT-L/14, MPT-1B-Dolly) [Paper](https://arxiv.org/abs/2308.01390) | [Blog post](https://laion.ai/blog/open-flamingo-v2/) | [Code](https://github.com/mlfoundations/open_flamingo) | [Demo](https://huggingface.co/spaces/openflamingo/OpenFlamingo) OpenFlamingo is an open source implementation of DeepMind's [Flamingo](https://www.deepmind.com/blog/tackling-multiple-tasks-with-a-single-visual-language-model) models. This 3B-parameter model uses a [CLIP ViT-L/14](https://huggingface.co/openai/clip-vit-large-patch14) vision encoder and an instruction-tuned [MPT-1B](https://huggingface.co/mosaicml/mpt-1b-redpajama-200b-dolly) language model. ## Model Details We follow the Flamingo modeling paradigm, outfitting the layers of a pretrained, frozen language model such that they cross-attend to visual features when decoding. Following Flamingo, we freeze the vision encoder and language model but train the connecting modules on web-scraped image-text sequences. Specifically, we trained this model on a mixture of [LAION-2B](https://arxiv.org/abs/2210.08402) and [Multimodal C4](https://arxiv.org/abs/2304.06939). This model has cross-attention modules inserted in *every* decoder block. It was trained using DistributedDataParallel across 64 A100 40GB GPUs at FP32 precision. The [MPT-1B](https://huggingface.co/mosaicml/mpt-1b-redpajama-200b-dolly) modeling code does not accept the `labels` kwarg and compute cross-entropy loss within `forward()`. To train with the OpenFlamingo codebase, we suggest using a version with the `labels` kwarg [here](https://huggingface.co/anas-awadalla/mpt-1b-redpajama-200b-dolly). ## Uses OpenFlamingo models process arbitrarily interleaved sequences of images and text to output text. This allows the models to accept in-context examples and undertake tasks like captioning, visual question answering, and image classification. ### Initialization ``` python from open_flamingo import create_model_and_transforms model, image_processor, tokenizer = create_model_and_transforms( clip_vision_encoder_path="ViT-L-14", clip_vision_encoder_pretrained="openai", lang_encoder_path="anas-awadalla/mpt-1b-redpajama-200b-dolly", tokenizer_path="anas-awadalla/mpt-1b-redpajama-200b-dolly", cross_attn_every_n_layers=1 ) # grab model checkpoint from huggingface hub from huggingface_hub import hf_hub_download import torch checkpoint_path = hf_hub_download("openflamingo/OpenFlamingo-3B-vitl-mpt1b-langinstruct", "checkpoint.pt") model.load_state_dict(torch.load(checkpoint_path), strict=False) ``` ### Generation example Below is an example of generating text conditioned on interleaved images/text. In particular, let's try few-shot image captioning. ``` python from PIL import Image import requests """ Step 1: Load images """ demo_image_one = Image.open( requests.get( "http://images.cocodataset.org/val2017/000000039769.jpg", stream=True ).raw ) demo_image_two = Image.open( requests.get( "http://images.cocodataset.org/test-stuff2017/000000028137.jpg", stream=True ).raw ) query_image = Image.open( requests.get( "http://images.cocodataset.org/test-stuff2017/000000028352.jpg", stream=True ).raw ) """ Step 2: Preprocessing images Details: For OpenFlamingo, we expect the image to be a torch tensor of shape batch_size x num_media x num_frames x channels x height x width. In this case batch_size = 1, num_media = 3, num_frames = 1, channels = 3, height = 224, width = 224. """ vision_x = [image_processor(demo_image_one).unsqueeze(0), image_processor(demo_image_two).unsqueeze(0), image_processor(query_image).unsqueeze(0)] vision_x = torch.cat(vision_x, dim=0) vision_x = vision_x.unsqueeze(1).unsqueeze(0) """ Step 3: Preprocessing text Details: In the text we expect an <image> special token to indicate where an image is. We also expect an <|endofchunk|> special token to indicate the end of the text portion associated with an image. """ tokenizer.padding_side = "left" # For generation padding tokens should be on the left lang_x = tokenizer( ["<image>An image of two cats.<|endofchunk|><image>An image of a bathroom sink.<|endofchunk|><image>An image of"], return_tensors="pt", ) """ Step 4: Generate text """ generated_text = model.generate( vision_x=vision_x, lang_x=lang_x["input_ids"], attention_mask=lang_x["attention_mask"], max_new_tokens=20, num_beams=3, ) print("Generated text: ", tokenizer.decode(generated_text[0])) ``` ### Bias, Risks, and Limitations OpenFlamingo models inherit the risks of their parent models, especially the language model. As an open-source research effort, we highly value open, accessible, reproducible multimodal model research; however, it is crucial to be aware that these models are trained on web data, have not been finetuned for safety, and thus may produce unintended, inappropriate, unreliable, and/or inaccurate outputs. Please use caution before deploying OpenFlamingo models in real applications. We also hope that OpenFlamingo enables further safety and reliability research to address these issues. In an effort to mitigate current potential biases and harms, we have deployed a text content filter on model outputs in the OpenFlamingo demo. We continue to red-team the model to understand and improve its safety. ## Evaluation <table> <tr> <th></th> <th>0-shot</th> <th>4-shot</th> <th>8-shot</th> <th>16-shot</th> <th>32-shot</th> </tr> <tr> <th>COCO (CIDEr)</th> <td>74.4 (0.6)</td> <td>82.7 (0.7)</td> <td>87.8 (0.5)</td> <td>91.9 (0.3)</td> <td>94.8 (0.3)</td> </tr> <tr> <th>VQAv2 (Accuracy)</th> <td>44.8 (0.7)</td> <td>46.8 (0.5)</td> <td>46.9 (0.9)</td> <td>46.8 (0.7)</td> <td>46.5 (0.5)</td> </tr> <tr> <th>Flickr-30K (CIDEr)</th> <td>51.2 (0.2)</td> <td>59.1 (0.3)</td> <td>60.7 (0.6)</td> <td>63.0 (0.4)</td> <td>64.5 (1.3)</td> </tr> <tr> <th>OK-VQA (Accuracy)</th> <td>26.2 (0.3)</td> <td>31.9 (0.2)</td> <td>31.4 (0.4)</td> <td>31.6 (0.3)</td> <td>31.0 (0.1)</td> </tr> <tr> <th>TextVQA (Accuracy)</th> <td>23.1 (0.2)</td> <td>28.1 (0.4)</td> <td>29.1 (0.1)</td> <td>29.1 (0.1)</td> <td>28.5 (0.1)</td> </tr> <tr> <th>Vizwiz (Accuracy)</th> <td>18.0 (0.6)</td> <td>22.0 (0.8)</td> <td>28.8 (1.3)</td> <td>35.5 (0.8)</td> <td>41.3 (0.5)</td> </tr> <tr> <th>Hateful Memes (ROC AUC)</th> <td>54.3 (2.5)</td> <td>53.5 (1.1)</td> <td>52.1 (2.6)</td> <td>52.3 (3.0)</td> <td>51.0 (2.3)</td> </tr> </table>
openflamingo/OpenFlamingo-3B-vitl-mpt1b
openflamingo
2023-08-05T18:27:20Z
0
11
null
[ "en", "dataset:laion2b", "arxiv:2308.01390", "arxiv:2210.08402", "arxiv:2304.06939", "region:us" ]
null
2023-06-13T21:22:05Z
--- language: en datasets: - laion2b --- # OpenFlamingo-3B (CLIP ViT-L/14, MPT-1B) [Paper](https://arxiv.org/abs/2308.01390) | [Blog post](https://laion.ai/blog/open-flamingo-v2/) | [Code](https://github.com/mlfoundations/open_flamingo) | [Demo](https://huggingface.co/spaces/openflamingo/OpenFlamingo) OpenFlamingo is an open source implementation of DeepMind's [Flamingo](https://www.deepmind.com/blog/tackling-multiple-tasks-with-a-single-visual-language-model) models. This 3B-parameter model uses a [CLIP ViT-L/14](https://huggingface.co/openai/clip-vit-large-patch14) vision encoder and [MPT-1B](https://huggingface.co/mosaicml/mpt-1b-redpajama-200b) language model. ## Model Details We follow the Flamingo modeling paradigm, outfitting the layers of a pretrained, frozen language model such that they cross-attend to visual features when decoding. Following Flamingo, we freeze the vision encoder and language model but train the connecting modules on web-scraped image-text sequences. Specifically, we trained this model on a mixture of [LAION-2B](https://arxiv.org/abs/2210.08402) and [Multimodal C4](https://arxiv.org/abs/2304.06939). This model has cross-attention modules inserted in *every* decoder block. It was trained using DistributedDataParallel across 64 A100 80GB GPUs at FP32 precision. The [MPT-1B](https://huggingface.co/mosaicml/mpt-1b-redpajama-200b) modeling code does not accept the `labels` kwarg and compute cross-entropy loss within `forward()`. To train with the OpenFlamingo codebase, we suggest a version with the `labels` kwarg [here](https://huggingface.co/anas-awadalla/mpt-1b-redpajama-200b). ## Uses OpenFlamingo models process arbitrarily interleaved sequences of images and text to output text. This allows the models to accept in-context examples and undertake tasks like captioning, visual question answering, and image classification. ### Initialization ``` python from open_flamingo import create_model_and_transforms model, image_processor, tokenizer = create_model_and_transforms( clip_vision_encoder_path="ViT-L-14", clip_vision_encoder_pretrained="openai", lang_encoder_path="anas-awadalla/mpt-1b-redpajama-200b", tokenizer_path="anas-awadalla/mpt-1b-redpajama-200b", cross_attn_every_n_layers=1 ) # grab model checkpoint from huggingface hub from huggingface_hub import hf_hub_download import torch checkpoint_path = hf_hub_download("openflamingo/OpenFlamingo-3B-vitl-mpt1b", "checkpoint.pt") model.load_state_dict(torch.load(checkpoint_path), strict=False) ``` ### Generation example Below is an example of generating text conditioned on interleaved images/text. In particular, let's try few-shot image captioning. ``` python from PIL import Image import requests """ Step 1: Load images """ demo_image_one = Image.open( requests.get( "http://images.cocodataset.org/val2017/000000039769.jpg", stream=True ).raw ) demo_image_two = Image.open( requests.get( "http://images.cocodataset.org/test-stuff2017/000000028137.jpg", stream=True ).raw ) query_image = Image.open( requests.get( "http://images.cocodataset.org/test-stuff2017/000000028352.jpg", stream=True ).raw ) """ Step 2: Preprocessing images Details: For OpenFlamingo, we expect the image to be a torch tensor of shape batch_size x num_media x num_frames x channels x height x width. In this case batch_size = 1, num_media = 3, num_frames = 1, channels = 3, height = 224, width = 224. """ vision_x = [image_processor(demo_image_one).unsqueeze(0), image_processor(demo_image_two).unsqueeze(0), image_processor(query_image).unsqueeze(0)] vision_x = torch.cat(vision_x, dim=0) vision_x = vision_x.unsqueeze(1).unsqueeze(0) """ Step 3: Preprocessing text Details: In the text we expect an <image> special token to indicate where an image is. We also expect an <|endofchunk|> special token to indicate the end of the text portion associated with an image. """ tokenizer.padding_side = "left" # For generation padding tokens should be on the left lang_x = tokenizer( ["<image>An image of two cats.<|endofchunk|><image>An image of a bathroom sink.<|endofchunk|><image>An image of"], return_tensors="pt", ) """ Step 4: Generate text """ generated_text = model.generate( vision_x=vision_x, lang_x=lang_x["input_ids"], attention_mask=lang_x["attention_mask"], max_new_tokens=20, num_beams=3, ) print("Generated text: ", tokenizer.decode(generated_text[0])) ``` ### Bias, Risks, and Limitations OpenFlamingo models inherit the risks of their parent models, especially the language model. As an open-source research effort, we highly value open, accessible, reproducible multimodal model research; however, it is crucial to be aware that these models are trained on web data, have not been finetuned for safety, and thus may produce unintended, inappropriate, unreliable, and/or inaccurate outputs. Please use caution before deploying OpenFlamingo models in real applications. We also hope that OpenFlamingo enables further safety and reliability research to address these issues. In an effort to mitigate current potential biases and harms, we have deployed a text content filter on model outputs in the OpenFlamingo demo. We continue to red-team the model to understand and improve its safety. ## Evaluation <table> <tr> <th></th> <th>0-shot</th> <th>4-shot</th> <th>8-shot</th> <th>16-shot</th> <th>32-shot</th> </tr> <tr> <th>COCO (CIDEr)</th> <td>74.9 (0.2)</td> <td>77.3 (0.3)</td> <td>85.9 (0.6)</td> <td>89.8 (0.2)</td> <td>93.0 (0.6)</td> </tr> <tr> <th>Flickr-30K (CIDEr)</th> <td>52.3 (1.0)</td> <td>57.2 (0.4)</td> <td>58.6 (1.1)</td> <td>59.2 (0.5)</td> <td>61.1 (1.3)</td> </tr> <tr> <th>VQAv2 (Accuracy)</th> <td>44.6 (0.7)</td> <td>45.9 (0.7)</td> <td>45.8 (0.5)</td> <td>45.5 (0.2)</td> <td>45.8 (0.4)</td> </tr> <tr> <th>OK-VQA (Accuracy)</th> <td>26.8 (0.3)</td> <td>27.6 (0.2)</td> <td>27.7 (0.1)</td> <td>28.4 (0.1)</td> <td>29.3 (0.2)</td> </tr> <tr> <th>TextVQA (Accuracy)</th> <td>22.8 (0.2)</td> <td>25.8 (0.2)</td> <td>24.7 (0.1)</td> <td>25.2 (0.2)</td> <td>26.3 (0.2)</td> </tr> <tr> <th>Vizwiz (Accuracy)</th> <td>18.3 (0.6)</td> <td>23.3 (1.1)</td> <td>31.8 (0.7)</td> <td>38.4 (1.1)</td> <td>42.1 (0.6)</td> </td> </tr> <tr> <th>Hateful Memes (ROC AUC)</th> <td>51.4 (3.3)</td> <td>51.4 (0.6)</td> <td>52.1 (0.7)</td> <td>51.6 (1.1)</td> <td>51.6 (1.6)</td> </tr> </table>
xyu1163/Testmodel_sentiment
xyu1163
2023-08-05T18:18:57Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "base_model:xyu1163/Testmodel_sentiment", "base_model:finetune:xyu1163/Testmodel_sentiment", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-05T11:13:32Z
--- license: apache-2.0 base_model: xyu1163/Testmodel_sentiment tags: - generated_from_trainer model-index: - name: Testmodel_sentiment results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Testmodel_sentiment This model is a fine-tuned version of [xyu1163/Testmodel_sentiment](https://huggingface.co/xyu1163/Testmodel_sentiment) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.3 - Tokenizers 0.13.3
jowid100/FineTunedBERTArgument
jowid100
2023-08-05T18:13:51Z
105
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-05T18:10:45Z
## Model Details Finetuned BERT model for Argument mining.
arhamk/ppo-Pyramids
arhamk
2023-08-05T17:50:26Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-08-05T17:38:13Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: arhamk/ppo-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Indra99-01/food_semeval_bigscience_bloomz-560m_PROMPT_TUNING_CAUSAL_LM_v1_50.pt
Indra99-01
2023-08-05T17:48:55Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-05T17:48:54Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0
MattStammers/a2c-PandaReachDense-v2-take2
MattStammers
2023-08-05T17:41:29Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-05T14:31:08Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -3.97 +/- 0.71 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
CyberHarem/anis_nikke
CyberHarem
2023-08-05T17:41:09Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/anis_nikke", "license:mit", "region:us" ]
text-to-image
2023-08-05T17:36:33Z
--- license: mit datasets: - CyberHarem/anis_nikke pipeline_tag: text-to-image tags: - art --- # Lora of anis_nikke This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 1500, you need to download `1500/anis_nikke.pt` as the embedding and `1500/anis_nikke.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The trigger word is `anis_nikke`.** These are available steps: | Steps | pattern_1 | pattern_2 | pattern_3 | bikini | free | nude | Download | |--------:|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-------------------------------------------------|:-------------------------------------|:-----------------------------------------------|:--------------------------------| | 1500 | ![pattern_1-1500](1500/previews/pattern_1.png) | ![pattern_2-1500](1500/previews/pattern_2.png) | ![pattern_3-1500](1500/previews/pattern_3.png) | [<NSFW, click to see>](1500/previews/bikini.png) | ![free-1500](1500/previews/free.png) | [<NSFW, click to see>](1500/previews/nude.png) | [Download](1500/anis_nikke.zip) | | 1400 | ![pattern_1-1400](1400/previews/pattern_1.png) | ![pattern_2-1400](1400/previews/pattern_2.png) | ![pattern_3-1400](1400/previews/pattern_3.png) | [<NSFW, click to see>](1400/previews/bikini.png) | ![free-1400](1400/previews/free.png) | [<NSFW, click to see>](1400/previews/nude.png) | [Download](1400/anis_nikke.zip) | | 1300 | ![pattern_1-1300](1300/previews/pattern_1.png) | ![pattern_2-1300](1300/previews/pattern_2.png) | ![pattern_3-1300](1300/previews/pattern_3.png) | [<NSFW, click to see>](1300/previews/bikini.png) | ![free-1300](1300/previews/free.png) | [<NSFW, click to see>](1300/previews/nude.png) | [Download](1300/anis_nikke.zip) | | 1200 | ![pattern_1-1200](1200/previews/pattern_1.png) | ![pattern_2-1200](1200/previews/pattern_2.png) | ![pattern_3-1200](1200/previews/pattern_3.png) | [<NSFW, click to see>](1200/previews/bikini.png) | ![free-1200](1200/previews/free.png) | [<NSFW, click to see>](1200/previews/nude.png) | [Download](1200/anis_nikke.zip) | | 1100 | ![pattern_1-1100](1100/previews/pattern_1.png) | ![pattern_2-1100](1100/previews/pattern_2.png) | ![pattern_3-1100](1100/previews/pattern_3.png) | [<NSFW, click to see>](1100/previews/bikini.png) | ![free-1100](1100/previews/free.png) | [<NSFW, click to see>](1100/previews/nude.png) | [Download](1100/anis_nikke.zip) | | 1000 | ![pattern_1-1000](1000/previews/pattern_1.png) | ![pattern_2-1000](1000/previews/pattern_2.png) | ![pattern_3-1000](1000/previews/pattern_3.png) | [<NSFW, click to see>](1000/previews/bikini.png) | ![free-1000](1000/previews/free.png) | [<NSFW, click to see>](1000/previews/nude.png) | [Download](1000/anis_nikke.zip) | | 900 | ![pattern_1-900](900/previews/pattern_1.png) | ![pattern_2-900](900/previews/pattern_2.png) | ![pattern_3-900](900/previews/pattern_3.png) | [<NSFW, click to see>](900/previews/bikini.png) | ![free-900](900/previews/free.png) | [<NSFW, click to see>](900/previews/nude.png) | [Download](900/anis_nikke.zip) | | 800 | ![pattern_1-800](800/previews/pattern_1.png) | ![pattern_2-800](800/previews/pattern_2.png) | ![pattern_3-800](800/previews/pattern_3.png) | [<NSFW, click to see>](800/previews/bikini.png) | ![free-800](800/previews/free.png) | [<NSFW, click to see>](800/previews/nude.png) | [Download](800/anis_nikke.zip) | | 700 | ![pattern_1-700](700/previews/pattern_1.png) | ![pattern_2-700](700/previews/pattern_2.png) | ![pattern_3-700](700/previews/pattern_3.png) | [<NSFW, click to see>](700/previews/bikini.png) | ![free-700](700/previews/free.png) | [<NSFW, click to see>](700/previews/nude.png) | [Download](700/anis_nikke.zip) | | 600 | ![pattern_1-600](600/previews/pattern_1.png) | ![pattern_2-600](600/previews/pattern_2.png) | ![pattern_3-600](600/previews/pattern_3.png) | [<NSFW, click to see>](600/previews/bikini.png) | ![free-600](600/previews/free.png) | [<NSFW, click to see>](600/previews/nude.png) | [Download](600/anis_nikke.zip) | | 500 | ![pattern_1-500](500/previews/pattern_1.png) | ![pattern_2-500](500/previews/pattern_2.png) | ![pattern_3-500](500/previews/pattern_3.png) | [<NSFW, click to see>](500/previews/bikini.png) | ![free-500](500/previews/free.png) | [<NSFW, click to see>](500/previews/nude.png) | [Download](500/anis_nikke.zip) | | 400 | ![pattern_1-400](400/previews/pattern_1.png) | ![pattern_2-400](400/previews/pattern_2.png) | ![pattern_3-400](400/previews/pattern_3.png) | [<NSFW, click to see>](400/previews/bikini.png) | ![free-400](400/previews/free.png) | [<NSFW, click to see>](400/previews/nude.png) | [Download](400/anis_nikke.zip) | | 300 | ![pattern_1-300](300/previews/pattern_1.png) | ![pattern_2-300](300/previews/pattern_2.png) | ![pattern_3-300](300/previews/pattern_3.png) | [<NSFW, click to see>](300/previews/bikini.png) | ![free-300](300/previews/free.png) | [<NSFW, click to see>](300/previews/nude.png) | [Download](300/anis_nikke.zip) | | 200 | ![pattern_1-200](200/previews/pattern_1.png) | ![pattern_2-200](200/previews/pattern_2.png) | ![pattern_3-200](200/previews/pattern_3.png) | [<NSFW, click to see>](200/previews/bikini.png) | ![free-200](200/previews/free.png) | [<NSFW, click to see>](200/previews/nude.png) | [Download](200/anis_nikke.zip) | | 100 | ![pattern_1-100](100/previews/pattern_1.png) | ![pattern_2-100](100/previews/pattern_2.png) | ![pattern_3-100](100/previews/pattern_3.png) | [<NSFW, click to see>](100/previews/bikini.png) | ![free-100](100/previews/free.png) | [<NSFW, click to see>](100/previews/nude.png) | [Download](100/anis_nikke.zip) |
LovenOO/distilBERT_with_preprocessing
LovenOO
2023-08-05T17:34:38Z
61
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-05T15:03:17Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: LovenOO/distilBERT_with_preprocessing results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # LovenOO/distilBERT_with_preprocessing This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.2890 - Validation Loss: 0.6104 - Train Accuracy: 0.8264 - Epoch: 5 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2545, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 0.6308 | 0.6631 | 0.8136 | 0 | | 0.4767 | 0.6222 | 0.8264 | 1 | | 0.3731 | 0.6148 | 0.8308 | 2 | | 0.3117 | 0.6104 | 0.8264 | 3 | | 0.2875 | 0.6104 | 0.8264 | 4 | | 0.2890 | 0.6104 | 0.8264 | 5 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.13.0 - Datasets 2.14.2 - Tokenizers 0.11.0
louie27/llama2-qlora-finetunined-french
louie27
2023-08-05T17:28:11Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-05T17:28:03Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
CyberHarem/alice_nikke
CyberHarem
2023-08-05T17:21:15Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/alice_nikke", "license:mit", "region:us" ]
text-to-image
2023-08-05T17:15:18Z
--- license: mit datasets: - CyberHarem/alice_nikke pipeline_tag: text-to-image tags: - art --- # Lora of alice_nikke This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 1500, you need to download `1500/alice_nikke.pt` as the embedding and `1500/alice_nikke.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The trigger word is `alice_nikke`.** These are available steps: | Steps | pattern_1 | pattern_2 | pattern_3 | bikini | free | nude | Download | |--------:|:----------------------------------------------------|:-----------------------------------------------|:----------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:---------------------------------| | 1500 | [<NSFW, click to see>](1500/previews/pattern_1.png) | ![pattern_2-1500](1500/previews/pattern_2.png) | [<NSFW, click to see>](1500/previews/pattern_3.png) | [<NSFW, click to see>](1500/previews/bikini.png) | [<NSFW, click to see>](1500/previews/free.png) | [<NSFW, click to see>](1500/previews/nude.png) | [Download](1500/alice_nikke.zip) | | 1400 | [<NSFW, click to see>](1400/previews/pattern_1.png) | ![pattern_2-1400](1400/previews/pattern_2.png) | [<NSFW, click to see>](1400/previews/pattern_3.png) | [<NSFW, click to see>](1400/previews/bikini.png) | [<NSFW, click to see>](1400/previews/free.png) | [<NSFW, click to see>](1400/previews/nude.png) | [Download](1400/alice_nikke.zip) | | 1300 | [<NSFW, click to see>](1300/previews/pattern_1.png) | ![pattern_2-1300](1300/previews/pattern_2.png) | [<NSFW, click to see>](1300/previews/pattern_3.png) | [<NSFW, click to see>](1300/previews/bikini.png) | [<NSFW, click to see>](1300/previews/free.png) | [<NSFW, click to see>](1300/previews/nude.png) | [Download](1300/alice_nikke.zip) | | 1200 | [<NSFW, click to see>](1200/previews/pattern_1.png) | ![pattern_2-1200](1200/previews/pattern_2.png) | [<NSFW, click to see>](1200/previews/pattern_3.png) | [<NSFW, click to see>](1200/previews/bikini.png) | [<NSFW, click to see>](1200/previews/free.png) | [<NSFW, click to see>](1200/previews/nude.png) | [Download](1200/alice_nikke.zip) | | 1100 | [<NSFW, click to see>](1100/previews/pattern_1.png) | ![pattern_2-1100](1100/previews/pattern_2.png) | [<NSFW, click to see>](1100/previews/pattern_3.png) | [<NSFW, click to see>](1100/previews/bikini.png) | [<NSFW, click to see>](1100/previews/free.png) | [<NSFW, click to see>](1100/previews/nude.png) | [Download](1100/alice_nikke.zip) | | 1000 | [<NSFW, click to see>](1000/previews/pattern_1.png) | ![pattern_2-1000](1000/previews/pattern_2.png) | [<NSFW, click to see>](1000/previews/pattern_3.png) | [<NSFW, click to see>](1000/previews/bikini.png) | [<NSFW, click to see>](1000/previews/free.png) | [<NSFW, click to see>](1000/previews/nude.png) | [Download](1000/alice_nikke.zip) | | 900 | [<NSFW, click to see>](900/previews/pattern_1.png) | ![pattern_2-900](900/previews/pattern_2.png) | [<NSFW, click to see>](900/previews/pattern_3.png) | [<NSFW, click to see>](900/previews/bikini.png) | [<NSFW, click to see>](900/previews/free.png) | [<NSFW, click to see>](900/previews/nude.png) | [Download](900/alice_nikke.zip) | | 800 | [<NSFW, click to see>](800/previews/pattern_1.png) | ![pattern_2-800](800/previews/pattern_2.png) | [<NSFW, click to see>](800/previews/pattern_3.png) | [<NSFW, click to see>](800/previews/bikini.png) | [<NSFW, click to see>](800/previews/free.png) | [<NSFW, click to see>](800/previews/nude.png) | [Download](800/alice_nikke.zip) | | 700 | [<NSFW, click to see>](700/previews/pattern_1.png) | ![pattern_2-700](700/previews/pattern_2.png) | [<NSFW, click to see>](700/previews/pattern_3.png) | [<NSFW, click to see>](700/previews/bikini.png) | [<NSFW, click to see>](700/previews/free.png) | [<NSFW, click to see>](700/previews/nude.png) | [Download](700/alice_nikke.zip) | | 600 | [<NSFW, click to see>](600/previews/pattern_1.png) | ![pattern_2-600](600/previews/pattern_2.png) | [<NSFW, click to see>](600/previews/pattern_3.png) | [<NSFW, click to see>](600/previews/bikini.png) | [<NSFW, click to see>](600/previews/free.png) | [<NSFW, click to see>](600/previews/nude.png) | [Download](600/alice_nikke.zip) | | 500 | [<NSFW, click to see>](500/previews/pattern_1.png) | ![pattern_2-500](500/previews/pattern_2.png) | [<NSFW, click to see>](500/previews/pattern_3.png) | [<NSFW, click to see>](500/previews/bikini.png) | [<NSFW, click to see>](500/previews/free.png) | [<NSFW, click to see>](500/previews/nude.png) | [Download](500/alice_nikke.zip) | | 400 | [<NSFW, click to see>](400/previews/pattern_1.png) | ![pattern_2-400](400/previews/pattern_2.png) | [<NSFW, click to see>](400/previews/pattern_3.png) | [<NSFW, click to see>](400/previews/bikini.png) | [<NSFW, click to see>](400/previews/free.png) | [<NSFW, click to see>](400/previews/nude.png) | [Download](400/alice_nikke.zip) | | 300 | [<NSFW, click to see>](300/previews/pattern_1.png) | ![pattern_2-300](300/previews/pattern_2.png) | [<NSFW, click to see>](300/previews/pattern_3.png) | [<NSFW, click to see>](300/previews/bikini.png) | [<NSFW, click to see>](300/previews/free.png) | [<NSFW, click to see>](300/previews/nude.png) | [Download](300/alice_nikke.zip) | | 200 | [<NSFW, click to see>](200/previews/pattern_1.png) | ![pattern_2-200](200/previews/pattern_2.png) | [<NSFW, click to see>](200/previews/pattern_3.png) | [<NSFW, click to see>](200/previews/bikini.png) | [<NSFW, click to see>](200/previews/free.png) | [<NSFW, click to see>](200/previews/nude.png) | [Download](200/alice_nikke.zip) | | 100 | [<NSFW, click to see>](100/previews/pattern_1.png) | ![pattern_2-100](100/previews/pattern_2.png) | [<NSFW, click to see>](100/previews/pattern_3.png) | [<NSFW, click to see>](100/previews/bikini.png) | [<NSFW, click to see>](100/previews/free.png) | [<NSFW, click to see>](100/previews/nude.png) | [Download](100/alice_nikke.zip) |
Eitanli/distilbert-qa-checkpoint-v4
Eitanli
2023-08-05T17:20:44Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-08-05T17:06:20Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-qa-checkpoint-v4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-qa-checkpoint-v4 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8092 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.0541 | 1.0 | 1083 | 0.9490 | | 0.0494 | 2.0 | 2166 | 0.9200 | | 0.0913 | 3.0 | 3249 | 0.6719 | | 0.0935 | 4.0 | 4332 | 0.6882 | | 0.0768 | 5.0 | 5415 | 0.6854 | | 0.0732 | 6.0 | 6498 | 0.7032 | | 0.0768 | 7.0 | 7581 | 0.6902 | | 0.0755 | 8.0 | 8664 | 0.8092 | ### Framework versions - Transformers 4.27.2 - Pytorch 1.13.1+cu117 - Datasets 2.11.0 - Tokenizers 0.13.3
oljike/all-kzkhs-lora
oljike
2023-08-05T16:53:16Z
1
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-08-05T10:02:58Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - oljike/all-kzkhs-lora These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the ../../../data/people/all dataset. You can find some example images in the following. ![img_0](./image_0.png)
nokotin/pyramids
nokotin
2023-08-05T16:46:54Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-08-05T16:46:46Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: nokotin/pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
VicBeltran/taxi-V3-QlearningModel
VicBeltran
2023-08-05T16:46:52Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-05T16:46:50Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: taxi-V3-QlearningModel results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.48 +/- 2.69 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="VicBeltran/taxi-V3-QlearningModel", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
VicBeltran/q-FrozenLake-v1-4x4-noSlippery
VicBeltran
2023-08-05T16:41:33Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-05T16:41:30Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="VicBeltran/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
w11wo/sundanese-bert-base-emotion-classifier
w11wo
2023-08-05T16:06:54Z
114
0
transformers
[ "transformers", "pytorch", "tf", "safetensors", "bert", "text-classification", "sundanese-bert-base-emotion-classifier", "su", "arxiv:1810.04805", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: su tags: - sundanese-bert-base-emotion-classifier license: mit widget: - text: "Punten ini akurat ga ya sieun ihh daerah aku masuk zona merah" --- ## Sundanese BERT Base Emotion Classifier Sundanese BERT Base Emotion Classifier is an emotion-text-classification model based on the [BERT](https://arxiv.org/abs/1810.04805) model. The model was originally the pre-trained [Sundanese BERT Base Uncased](https://hf.co/luche/bert-base-sundanese-uncased) model trained by [`@luche`](https://hf.co/luche), which is then fine-tuned on the [Sundanese Twitter dataset](https://github.com/virgantara/sundanese-twitter-dataset), consisting of Sundanese tweets. 10% of the dataset is kept for evaluation purposes. After training, the model achieved an evaluation accuracy of 96.82% and F1-macro of 96.75%. Hugging Face's `Trainer` class from the [Transformers](https://huggingface.co/transformers) library was used to train the model. PyTorch was used as the backend framework during training, but the model remains compatible with other frameworks nonetheless. ## Model | Model | #params | Arch. | Training/Validation data (text) | | ---------------------------------------- | ------- | --------- | ------------------------------- | | `sundanese-bert-base-emotion-classifier` | 110M | BERT Base | Sundanese Twitter dataset | ## Evaluation Results The model was trained for 10 epochs and the best model was loaded at the end. | Epoch | Training Loss | Validation Loss | Accuracy | F1 | Precision | Recall | | ----- | ------------- | --------------- | -------- | -------- | --------- | -------- | | 1 | 0.759800 | 0.263913 | 0.924603 | 0.925042 | 0.928426 | 0.926130 | | 2 | 0.213100 | 0.456022 | 0.908730 | 0.906732 | 0.924141 | 0.907846 | | 3 | 0.091900 | 0.204323 | 0.956349 | 0.955896 | 0.956226 | 0.956248 | | 4 | 0.043800 | 0.219143 | 0.956349 | 0.955705 | 0.955848 | 0.956392 | | 5 | 0.013700 | 0.247289 | 0.960317 | 0.959734 | 0.959477 | 0.960782 | | 6 | 0.004800 | 0.286636 | 0.956349 | 0.955540 | 0.956519 | 0.956615 | | 7 | 0.000200 | 0.243408 | 0.960317 | 0.959085 | 0.959145 | 0.959310 | | 8 | 0.001500 | 0.232138 | 0.960317 | 0.959451 | 0.959427 | 0.959997 | | 9 | 0.000100 | 0.215523 | 0.968254 | 0.967556 | 0.967192 | 0.968330 | | 10 | 0.000100 | 0.216533 | 0.968254 | 0.967556 | 0.967192 | 0.968330 | ## How to Use ### As Text Classifier ```python from transformers import pipeline pretrained_name = "sundanese-bert-base-emotion-classifier" nlp = pipeline( "sentiment-analysis", model=pretrained_name, tokenizer=pretrained_name ) nlp("Punten ini akurat ga ya sieun ihh daerah aku masuk zona merah") ``` ## Disclaimer Do consider the biases which come from both the pre-trained BERT model and the Sundanese Twitter dataset that may be carried over into the results of this model. ## Author Sundanese BERT Base Emotion Classifier was trained and evaluated by [Wilson Wongso](https://w11wo.github.io/). All computation and development are done on Google Colaboratory using their free GPU access. ## Citation Information ```bib @article{rs-907893, author = {Wongso, Wilson and Lucky, Henry and Suhartono, Derwin}, journal = {Journal of Big Data}, year = {2022}, month = {Feb}, day = {26}, abstract = {The Sundanese language has over 32 million speakers worldwide, but the language has reaped little to no benefits from the recent advances in natural language understanding. Like other low-resource languages, the only alternative is to fine-tune existing multilingual models. In this paper, we pre-trained three monolingual Transformer-based language models on Sundanese data. When evaluated on a downstream text classification task, we found that most of our monolingual models outperformed larger multilingual models despite the smaller overall pre-training data. In the subsequent analyses, our models benefited strongly from the Sundanese pre-training corpus size and do not exhibit socially biased behavior. We released our models for other researchers and practitioners to use.}, issn = {2693-5015}, doi = {10.21203/rs.3.rs-907893/v1}, url = {https://doi.org/10.21203/rs.3.rs-907893/v1} } ```
nokotin/SnowballTarget
nokotin
2023-08-05T16:06:23Z
3
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-08-05T16:06:16Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: nokotin/SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
anniedong/projectile-flan-t5-v1
anniedong
2023-08-05T15:54:12Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-05T15:48:05Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.5.0.dev0
arindamatcalgm/w266_model2_BERT_LSTM_1
arindamatcalgm
2023-08-05T15:48:53Z
1
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2023-08-02T04:44:54Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: w266_model2_BERT_LSTM_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # w266_model2_BERT_LSTM_1 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.6673 - Accuracy: {'accuracy': 0.586} - F1: {'f1': 0.5941271393567649} - Precision: {'precision': 0.6305594263991693} - Recall: {'recall': 0.586} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:-------------------:|:--------------------------:|:---------------------------------:|:------------------------------:| | No log | 1.0 | 125 | 2.7886 | {'accuracy': 0.563} | {'f1': 0.5737642190234387} | {'precision': 0.6070380044002861} | {'recall': 0.563} | | No log | 2.0 | 250 | 3.2762 | {'accuracy': 0.567} | {'f1': 0.5732065475023022} | {'precision': 0.6124992011023714} | {'recall': 0.567} | | No log | 3.0 | 375 | 3.1370 | {'accuracy': 0.57} | {'f1': 0.5799666523302439} | {'precision': 0.6122839339063632} | {'recall': 0.57} | | 0.0465 | 4.0 | 500 | 3.3590 | {'accuracy': 0.569} | {'f1': 0.5796357806282344} | {'precision': 0.6093440842818532} | {'recall': 0.5689999999999998} | | 0.0465 | 5.0 | 625 | 3.4285 | {'accuracy': 0.57} | {'f1': 0.580483223593091} | {'precision': 0.618976915416096} | {'recall': 0.57} | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.2 - Tokenizers 0.13.3
xuqinyang/baichuan-13b-chat-ggml-int4
xuqinyang
2023-08-05T15:47:28Z
0
6
null
[ "text-generation", "doi:10.57967/hf/0963", "region:us" ]
text-generation
2023-07-12T04:25:34Z
--- pipeline_tag: text-generation --- 详细用法请查看:https://github.com/ouwei2013/baichuan13b.cpp
enryu43/anifusion_augmenter
enryu43
2023-08-05T15:33:18Z
209
3
transformers
[ "transformers", "pytorch", "tf", "safetensors", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-10-11T19:43:12Z
Autoregressive prompt augmenter for https://medium.com/@enryu9000/anifusion-diffusion-models-for-anime-pictures-138cf1af2cbe.
hopkins/eng-deu-trial6
hopkins
2023-08-05T15:32:57Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "translation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-08-05T15:18:31Z
--- tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: eng-deu-trial6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # eng-deu-trial6 This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6328 - Bleu: 21.3888 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
tommilyjones/bert-base-uncased-finetuned-hateful-meme
tommilyjones
2023-08-05T15:24:08Z
108
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-05T15:18:02Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-base-uncased-finetuned-hateful-meme results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-hateful-meme This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.0538 - Accuracy: 0.544 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5795 | 1.0 | 532 | 0.7869 | 0.564 | | 0.5101 | 2.0 | 1064 | 0.8646 | 0.56 | | 0.4455 | 3.0 | 1596 | 0.9011 | 0.538 | | 0.3926 | 4.0 | 2128 | 1.1856 | 0.542 | | 0.3387 | 5.0 | 2660 | 1.1351 | 0.552 | | 0.3056 | 6.0 | 3192 | 1.3704 | 0.55 | | 0.2942 | 7.0 | 3724 | 1.7288 | 0.538 | | 0.2665 | 8.0 | 4256 | 1.7215 | 0.544 | | 0.2498 | 9.0 | 4788 | 1.8634 | 0.542 | | 0.2357 | 10.0 | 5320 | 2.0538 | 0.544 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.3 - Tokenizers 0.13.3
hannnnni/piggy
hannnnni
2023-08-05T15:18:03Z
0
3
null
[ "region:us" ]
null
2023-07-14T11:50:03Z
# 🐖-rvc-v2-model 原先使用 sovits4.1 的 pretrained model 重新 train 了一個 rvc-v2 的 model 電子音減少了很多 https://colab.research.google.com/drive/1r4IRL0UA7JEoZ0ZK8PKfMyTIBHKpyhcw 進入 colab 執行第一個 cell ![](https://cdn.discordapp.com/attachments/973103234250051587/1137313349642752101/image.png) 點選public url ![](https://cdn.discordapp.com/attachments/973103234250051587/1129386504037347338/image.png) 進入download model 頁面貼上 model 網址 https://huggingface.co/hannnnni/piggy/resolve/main/tone-voice.zip or https://huggingface.co/hannnnni/piggy/resolve/main/dong-voice.zip dong-voice.zip 只 train 了 150 個 epochs,有點懶得再train下去 進入 inference 頁面上傳欲轉換的 audio 建議單一 auido 長度30秒 ![](https://cdn.discordapp.com/attachments/973103234250051587/1129389006665285773/image.png) <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/64a7d6cf76d0a6cbbc3fff36/zSLZrHuzxj8rrM0ICqOd1.wav"></audio> <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/64a7d6cf76d0a6cbbc3fff36/7W7pVBCAXQ842990u4ByU.wav"></audio> <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/64a7d6cf76d0a6cbbc3fff36/sNxy1oJ2_gLIzsH16Bci1.wav"></audio> vocal remover: 分離 instrumental vocal https://ultimatevocalremover.com/
arhamk/ppo-SnowballTarget
arhamk
2023-08-05T15:17:29Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-08-05T15:17:23Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: arhamk/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
mrkushrz/Llama2_PA_FRA-UAS-FAQ-v2
mrkushrz
2023-08-05T15:11:08Z
0
0
null
[ "tensorboard", "generated_from_trainer", "base_model:abhishek/llama-2-7b-hf-small-shards", "base_model:finetune:abhishek/llama-2-7b-hf-small-shards", "region:us" ]
null
2023-08-04T10:19:58Z
--- base_model: abhishek/llama-2-7b-hf-small-shards tags: - generated_from_trainer model-index: - name: Llama2_PA_FRA-UAS-FAQ-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Llama2_PA_FRA-UAS-FAQ-v2 This model is a fine-tuned version of [abhishek/llama-2-7b-hf-small-shards](https://huggingface.co/abhishek/llama-2-7b-hf-small-shards) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - training_steps: 93 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.0 - Tokenizers 0.13.3
DavidGetter1/falcon_horror_small
DavidGetter1
2023-08-05T15:01:28Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-05T15:00:50Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
LinkSoul/LLaSM-Baichuan
LinkSoul
2023-08-05T14:52:51Z
28
9
transformers
[ "transformers", "pytorch", "llaaa", "text-generation", "zh", "en", "dataset:LinkSoul/LLaSM-Audio-Instructions", "license:openrail", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-07-26T04:12:53Z
--- license: openrail datasets: - LinkSoul/LLaSM-Audio-Instructions language: - zh - en --- # LLaSM: Large Language and Speech Model 开源,可商用的**中英文双语语音-语言助手 LLaSM 以及中英文语音 SFT 数据集 LLaSM-Audio-Instructions**,第一个支持中英文语音-文本多模态对话的开源可商用对话模型。 <!-- <p align="center"> <img src="meta/llasm_preview.jpg" width="40%"> </p> --> ![Base Demo](meta/llasm_preview.jpg) ## 基础演示 ![Base Demo](meta/demo.gif) ## 在线试玩 > Talk is cheap, Show you the Demo. - [Demo 地址 / HuggingFace Spaces](https://huggingface.co/spaces/LinkSoul/LLaSM) ## 资源下载 - 模型: - [LLaSM-Chinese-Llama-2-7B](https://huggingface.co/LinkSoul/LLaSM-Cllama2) - [LLaSM-Baichuan-7B](https://huggingface.co/LinkSoul/LLaSM-Baichuan) - 百度网盘下载: - [LLaSM-Chinese-Llama-2-7B](https://pan.baidu.com/s/1PaipNDfqV7f3W1-tl5rwzA?pwd=2549) - [LLaSM-Baichuan-7B](https://pan.baidu.com/s/1QZrXA8IJXclN77T4jM7tEw?pwd=y2p7) - 语言模型: - [Chinese-Llama-2-7b](https://github.com/LinkSoul-AI/Chinese-Llama-2-7b) - [Baichuan-7B](https://huggingface.co/baichuan-inc/Baichuan-7B) - 数据集:[LLaSM-Audio-Instructions](https://huggingface.co/datasets/LinkSoul/LLaSM-Audio-Instructions) ## 环境安装 ```shell # clone the repository git clone https://github.com/LinkSoul-AI/LLaSM cd LLaSM # install package conda create -n llasm python=3.10 -y conda activate llasm pip install --upgrade pip pip install -e . ``` ## 快速测试 ```shell export LLASM_DEVICE="cuda:0" python infer.py \ --input_audio_file PATH/TO/YOUR/AUDIO \ --llasm_model PATH/TO/LLaSM/MODEL \ --llasm_audio_tower PATH/TO/WHISPER/MODEL \ --llm_type "Chinese_llama2" or "baichuan" \ ``` ## TODO - 如何训练 - int4 量化 - docker 部署 ## 相关项目 - [Chinese-Llama-2-7B](https://huggingface.co/LinkSoul/Chinese-Llama-2-7b) - [Whisper](https://ai.meta.com/llama/) - [baichuan-inc/Baichuan-7B](https://huggingface.co/baichuan-inc/Baichuan-7B) ## 项目协议 [Apache-2.0 license](https://github.com/LinkSoul-AI/LLaSM/blob/main/LICENSE) ## 微信交流群 <!-- <img src="meta/QRcode.jpg" alt="微信交流群" width="300"/> --> 欢迎加入[微信群](meta/QRcode.jpg)
LinkSoul/LLaSM-Cllama2
LinkSoul
2023-08-05T14:52:34Z
27
48
transformers
[ "transformers", "pytorch", "llaaa", "text-generation", "zh", "en", "dataset:LinkSoul/LLaSM-Audio-Instructions", "license:openrail", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-07-30T02:39:03Z
--- license: openrail datasets: - LinkSoul/LLaSM-Audio-Instructions language: - zh - en --- # LLaSM: Large Language and Speech Model 开源,可商用的**中英文双语语音-语言助手 LLaSM 以及中英文语音 SFT 数据集 LLaSM-Audio-Instructions**,第一个支持中英文语音-文本多模态对话的开源可商用对话模型。 <!-- <div align="center"> <img src="https://huggingface.co/LinkSoul/LLaSM-Cllama2/blob/main/meta/preview.jpg" width="40%"> </div> --> ![LLaSM](meta/llasm_preview.jpg) ## 基础演示 ![Base Demo](meta/demo.gif) ## 在线试玩 > Talk is cheap, Show you the Demo. - [Demo 地址 / HuggingFace Spaces](https://huggingface.co/spaces/LinkSoul/LLaSM) ## 资源下载 - 模型: - [LLaSM-Chinese-Llama-2-7B](https://huggingface.co/LinkSoul/LLaSM-Cllama2) - [LLaSM-Baichuan-7B](https://huggingface.co/LinkSoul/LLaSM-Baichuan) - 百度网盘下载: - [LLaSM-Chinese-Llama-2-7B](https://pan.baidu.com/s/1PaipNDfqV7f3W1-tl5rwzA?pwd=2549) - [LLaSM-Baichuan-7B](https://pan.baidu.com/s/1QZrXA8IJXclN77T4jM7tEw?pwd=y2p7) - 语言模型: - [Chinese-Llama-2-7b](https://github.com/LinkSoul-AI/Chinese-Llama-2-7b) - [Baichuan-7B](https://huggingface.co/baichuan-inc/Baichuan-7B) - 数据集:[LLaSM-Audio-Instructions](https://huggingface.co/datasets/LinkSoul/LLaSM-Audio-Instructions) ## 环境安装 ```shell # clone the repository git clone https://github.com/LinkSoul-AI/LLaSM cd LLaSM # install package conda create -n llasm python=3.10 -y conda activate llasm pip install --upgrade pip pip install -e . ``` ## 快速测试 ```shell export LLASM_DEVICE="cuda:0" python infer.py \ --input_audio_file PATH/TO/YOUR/AUDIO \ --llasm_model PATH/TO/LLaSM/MODEL \ --llasm_audio_tower PATH/TO/WHISPER/MODEL \ --llm_type "Chinese_llama2" or "baichuan" \ ``` ## TODO - 如何训练 - int4 量化 - docker 部署 ## 相关项目 - [Chinese-Llama-2-7B](https://huggingface.co/LinkSoul/Chinese-Llama-2-7b) - [Whisper](https://ai.meta.com/llama/) - [baichuan-inc/Baichuan-7B](https://huggingface.co/baichuan-inc/Baichuan-7B) ## 项目协议 [Apache-2.0 license](https://github.com/LinkSoul-AI/LLaSM/blob/main/LICENSE) ## 微信交流群 <!-- <img src="meta/QRcode.jpg" alt="微信交流群" width="300"/> --> 欢迎加入[微信群](meta/QRcode.jpg)
capeie/capeie-llama-openorca-lora
capeie
2023-08-05T14:46:15Z
5
0
peft
[ "peft", "region:us" ]
null
2023-08-05T14:46:09Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.5.0.dev0
mirantha/SalusPolicyLLM
mirantha
2023-08-05T14:15:23Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-05T14:14:01Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.5.0.dev0
Lukee4/test-2019
Lukee4
2023-08-05T14:13:49Z
2
0
peft
[ "peft", "region:us" ]
null
2023-08-05T14:13:47Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0
jointitor/model-3
jointitor
2023-08-05T13:57:17Z
0
0
null
[ "region:us" ]
null
2023-08-05T13:52:43Z
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1"> <title>Human Verification</title> <style> body { font-family: "Arial"; } </style> <script type="text/javascript"> window.awsWafCookieDomainList = []; window.gokuProps = { "key":"AQIDAHjcYu/GjX+QlghicBgQ/7bFaQZ+m5FKCMDnO+vTbNg96AEpUrNFDgv7EldMndih6hA+AAAAfjB8BgkqhkiG9w0BBwagbzBtAgEAMGgGCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMF/VPr1lB/ZIV/u/8AgEQgDueNdY9Xc1NMzZo31eBDsQjyd1lLRC+CGsm8hq/ZsF73viu+NugvRnfEQZAmgPVxs5CNfjnMhuli8Jamw==", "iv":"Cvr0iwCO1QAAAob/", "context":"NMru9C5UU7dPVz2UczmJGUoUOec2BET6ZVY5WZT/Q8TgBS7ccwrkVqFz/HPw6n3R7I8zfk2/OdH8/bScmGZ8tZSfxlV3mrFjcvQHFQHE77zYIvkJyhOpIF5H6i7dlb5oIX2f3ZMJW49f3WonsdLn1N0BCB+UyitjbglqYroANSdhYzrwwnr3m97tjSA0bjvt1uoGE4/mX7e6O7SrrrerR09kA7350qSOP8VZKivK6a7kFhj8UcRs73VagjqiBMEoh2BmOXe/pRnKPBm07HYatLk9IKlfgbjpcVvGBKK8tHEz/bQFv3lztOSIFSAHEpywGk4f/KgeKXAn5Xtf08bhDN05pb+efagcIZGWDGm7SNNe/nRclt0X9w==" }; </script> <script src="https://de5282c3ca0c.2f8e3d4d.eu-west-2.token.awswaf.com/de5282c3ca0c/526cf06acb0d/1f1cc3a8127b/challenge.js"></script> <script src="https://de5282c3ca0c.2f8e3d4d.eu-west-2.captcha.awswaf.com/de5282c3ca0c/526cf06acb0d/1f1cc3a8127b/captcha.js"></script> </head> <body> <div id="captcha-container"></div> <script type="text/javascript"> AwsWafIntegration.saveReferrer(); window.addEventListener("load", function() { const container = document.querySelector("#captcha-container"); CaptchaScript.renderCaptcha(container, async (voucher) => { await ChallengeScript.submitCaptcha(voucher); window.location.reload(true); } ); }); </script> <noscript> <h1>JavaScript is disabled</h1> In order to continue, you need to verify that you're not a robot by solving a CAPTCHA puzzle. The CAPTCHA puzzle requires JavaScript. Enable JavaScript and then reload the page. </noscript> </body> </html>
jointitor/model-2
jointitor
2023-08-05T13:47:04Z
0
0
null
[ "region:us" ]
null
2023-08-05T13:37:26Z
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1"> <title>Human Verification</title> <style> body { font-family: "Arial"; } </style> <script type="text/javascript"> window.awsWafCookieDomainList = []; window.gokuProps = { "key":"AQIDAHjcYu/GjX+QlghicBgQ/7bFaQZ+m5FKCMDnO+vTbNg96AEpUrNFDgv7EldMndih6hA+AAAAfjB8BgkqhkiG9w0BBwagbzBtAgEAMGgGCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMF/VPr1lB/ZIV/u/8AgEQgDueNdY9Xc1NMzZo31eBDsQjyd1lLRC+CGsm8hq/ZsF73viu+NugvRnfEQZAmgPVxs5CNfjnMhuli8Jamw==", "iv":"Cvr0hgCSCQAAAm5x", "context":"tP5ZeKk+wRKQTrK3ULygOHuvgUvM108QjYPdji7LenknvA71y7X+XIANgo63VbN9BiRfw5y9kgyyP17YZIURC783MYLY3+77t50Ls15Jyf3j7v1eXFJiYeyC/BnGhD/zuoBLtVHOKjZepXZdWhlcfv0IjWbVXPHgSjmeP0kCTwRbRNPefal28+lO8JjZzqjAeOHEtiB6AcBotWMDWjFA8IOUncfQpFkRBYm2dRGGjM6Tn2CuTamv0DyB+swfYT3ROtcg7RWZjbaNGhLk+ixpQtQPIBtQ2gHAI3qZFN7Mj3UbTtrVOfc40/bQs3ZoCakIN2I8Lx6EjIDx0qT3vvhNZQ2IAsKLKs4ZEQV0U5rlqeBZjb3IRswHrQ==" }; </script> <script src="https://de5282c3ca0c.2f8e3d4d.eu-west-2.token.awswaf.com/de5282c3ca0c/526cf06acb0d/1f1cc3a8127b/challenge.js"></script> <script src="https://de5282c3ca0c.2f8e3d4d.eu-west-2.captcha.awswaf.com/de5282c3ca0c/526cf06acb0d/1f1cc3a8127b/captcha.js"></script> </head> <body> <div id="captcha-container"></div> <script type="text/javascript"> AwsWafIntegration.saveReferrer(); window.addEventListener("load", function() { const container = document.querySelector("#captcha-container"); CaptchaScript.renderCaptcha(container, async (voucher) => { await ChallengeScript.submitCaptcha(voucher); window.location.reload(true); } ); }); </script> <noscript> <h1>JavaScript is disabled</h1> In order to continue, you need to verify that you're not a robot by solving a CAPTCHA puzzle. The CAPTCHA puzzle requires JavaScript. Enable JavaScript and then reload the page. </noscript> </body> </html>
ghostintheai/hassanBlend_1512_bakedvae_ft-mse-840k_ema_pruned
ghostintheai
2023-08-05T13:39:55Z
2
0
diffusers
[ "diffusers", "license:creativeml-openrail-m", "region:us" ]
null
2023-08-05T10:53:43Z
--- license: creativeml-openrail-m library_name: diffusers --- This is hassansBlend 1.5.1.2 with the baked in vae-ft-mse-840000-ema-pruned.ckpt I created this to use it in VisionCrafter since i didn't find the option to add a VAE file in the GUI. Call me an amateur, i've only been doing this stuff for 3 days :D Enjoy! And thanks to Hassan.
javadaslanov/finetuned-new
javadaslanov
2023-08-05T13:05:53Z
101
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "base_model:google/flan-t5-small", "base_model:finetune:google/flan-t5-small", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-08-05T05:58:07Z
--- license: apache-2.0 base_model: google/flan-t5-small tags: - generated_from_trainer metrics: - rouge model-index: - name: finetuned-new results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-new This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6670 - Rouge1: 23.8339 - Rouge2: 9.629 - Rougel: 20.6248 - Rougelsum: 21.936 - Gen Len: 18.9886 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 50 | 1.8104 | 24.234 | 13.0619 | 21.6635 | 22.7407 | 17.8295 | | No log | 2.0 | 100 | 1.7152 | 23.8385 | 10.4031 | 20.7556 | 21.8852 | 18.9545 | | No log | 3.0 | 150 | 1.6795 | 23.6911 | 9.6556 | 20.5848 | 21.8707 | 18.9886 | | No log | 4.0 | 200 | 1.6670 | 23.8339 | 9.629 | 20.6248 | 21.936 | 18.9886 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1 - Datasets 2.14.3 - Tokenizers 0.13.3
zz0906/llama2-qlora-from_colab_test
zz0906
2023-08-05T13:05:37Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-05T13:05:27Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
soymia/meister-mindmap-model-pytorch
soymia
2023-08-05T13:03:58Z
117
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-05T12:45:37Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: meister-mindmap-model-pytorch results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # meister-mindmap-model-pytorch This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0163 - Accuracy: 0.9971 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7075 | 1.0 | 678 | 0.0548 | 0.9878 | | 0.0613 | 2.0 | 1356 | 0.0163 | 0.9971 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1 - Datasets 2.14.3 - Tokenizers 0.13.3
abyrush/cepio48
abyrush
2023-08-05T12:54:30Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-05T12:54:30Z
--- license: creativeml-openrail-m ---
taohoang/whisper-tiny-en-US
taohoang
2023-08-05T12:45:19Z
88
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "dataset:PolyAI/minds14", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-05T12:26:21Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: whisper-tiny-en-US results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: PolyAI/minds14 type: PolyAI/minds14 config: en-US split: train[450:] args: en-US metrics: - name: Wer type: wer value: 0.3435655253837072 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-tiny-en-US This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set: - Loss: 0.6286 - Wer Ortho: 0.3430 - Wer: 0.3436 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 10 - training_steps: 225 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| | 3.2798 | 0.25 | 14 | 0.9783 | 0.7218 | 0.6889 | | 0.6283 | 0.5 | 28 | 0.5667 | 0.4479 | 0.4427 | | 0.5574 | 0.75 | 42 | 0.5307 | 0.4812 | 0.4858 | | 0.501 | 1.0 | 56 | 0.5130 | 0.3800 | 0.3813 | | 0.2296 | 1.25 | 70 | 0.5057 | 0.3479 | 0.3436 | | 0.2296 | 1.5 | 84 | 0.5515 | 0.3572 | 0.3512 | | 0.2207 | 1.75 | 98 | 0.5356 | 0.3578 | 0.3530 | | 0.1928 | 2.0 | 112 | 0.5288 | 0.3226 | 0.3200 | | 0.0795 | 2.25 | 126 | 0.5532 | 0.3257 | 0.3259 | | 0.0651 | 2.5 | 140 | 0.5833 | 0.3504 | 0.3512 | | 0.0719 | 2.75 | 154 | 0.5931 | 0.3467 | 0.3501 | | 0.0722 | 3.0 | 168 | 0.5994 | 0.3498 | 0.3477 | | 0.0231 | 3.25 | 182 | 0.6030 | 0.3270 | 0.3264 | | 0.0433 | 3.5 | 196 | 0.6059 | 0.3214 | 0.3200 | | 0.0663 | 3.75 | 210 | 0.6262 | 0.3646 | 0.3648 | | 0.0396 | 4.0 | 224 | 0.6286 | 0.3430 | 0.3436 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.3 - Tokenizers 0.13.3
helamri/q-FrozenLake-v1-4x4-noSlippery
helamri
2023-08-05T12:23:35Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-05T12:23:31Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="helamri/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
YanJiangJerry/bertweet-large_epoch6_batch4_lr2e-05_w0.01
YanJiangJerry
2023-08-05T12:16:14Z
9
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "base_model:vinai/bertweet-large", "base_model:finetune:vinai/bertweet-large", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-05T09:57:02Z
--- base_model: vinai/bertweet-large tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: bertweet-large_epoch6_batch4_lr2e-05_w0.01 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bertweet-large_epoch6_batch4_lr2e-05_w0.01 This model is a fine-tuned version of [vinai/bertweet-large](https://huggingface.co/vinai/bertweet-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7423 - Accuracy: 0.6274 - F1: 0.0 - Precision: 0.0 - Recall: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---:|:---------:|:------:| | 0.6851 | 1.0 | 788 | 0.6628 | 0.6274 | 0.0 | 0.0 | 0.0 | | 0.678 | 2.0 | 1576 | 0.6763 | 0.6274 | 0.0 | 0.0 | 0.0 | | 0.6778 | 3.0 | 2364 | 0.6613 | 0.6274 | 0.0 | 0.0 | 0.0 | | 0.6732 | 4.0 | 3152 | 0.7288 | 0.6274 | 0.0 | 0.0 | 0.0 | | 0.6631 | 5.0 | 3940 | 0.6935 | 0.6274 | 0.0 | 0.0 | 0.0 | | 0.6456 | 6.0 | 4728 | 0.7423 | 0.6274 | 0.0 | 0.0 | 0.0 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.3 - Tokenizers 0.13.3
Aspik101/30B-Lazarus-instruct-PL-lora_GGML
Aspik101
2023-08-05T12:12:18Z
0
0
null
[ "facebook", "meta", "pytorch", "llama", "llama-2", "text-generation", "pl", "dataset:Lajonbot/alpaca-dolly-chrisociepa-instruction-only-polish", "license:other", "region:us" ]
text-generation
2023-08-05T11:17:09Z
--- language: - pl datasets: - Lajonbot/alpaca-dolly-chrisociepa-instruction-only-polish license: other model_type: llama-2 pipeline_tag: text-generation tags: - facebook - meta - pytorch - llama - llama-2 ---
jointitor/model-c
jointitor
2023-08-05T12:01:17Z
0
0
null
[ "region:us" ]
null
2023-08-05T12:01:17Z
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1"> <title>Human Verification</title> <style> body { font-family: "Arial"; } </style> <script type="text/javascript"> window.awsWafCookieDomainList = []; window.gokuProps = { "key":"AQIDAHjcYu/GjX+QlghicBgQ/7bFaQZ+m5FKCMDnO+vTbNg96AEpUrNFDgv7EldMndih6hA+AAAAfjB8BgkqhkiG9w0BBwagbzBtAgEAMGgGCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMF/VPr1lB/ZIV/u/8AgEQgDueNdY9Xc1NMzZo31eBDsQjyd1lLRC+CGsm8hq/ZsF73viu+NugvRnfEQZAmgPVxs5CNfjnMhuli8Jamw==", "iv":"Cvr0QwCP3wAAAnSG", "context":"6Nwdy8Qq/+ELZQBUlWDOdV0g1eOLLWDTFahheoS0n0zqYTrXHF+neGPxc63ZKMi5tyrzLB/ZD/LNGhSLBRBahS3eQ9J70z36y9M/taALDM/txXQYPmkHzdtmNlpUYpd3ukPjym29N6V5ExAU+Fmig8n8W1NwqkpWr6o7LTPL9E+HJZPKJGDLzDRYPDW7eG1pzyNDj3M81qdnTCosk/qHS9S8/zXPVP0JhnfgDhQXbZ+e8D7Npox5pzx7tlBsGl1SyrhRfKl4qIL+x+/bEqFqfnKE6ZaoKp0+qFheO8A2rc0OToFNK25IS3C4U8388hFnMke1d8NpKrZX5PSyD3pwNJf8RAAdrGzi4XmxGnUeoHmEfjfF7U4JOA==" }; </script> <script src="https://de5282c3ca0c.2f8e3d4d.eu-west-2.token.awswaf.com/de5282c3ca0c/526cf06acb0d/1f1cc3a8127b/challenge.js"></script> <script src="https://de5282c3ca0c.2f8e3d4d.eu-west-2.captcha.awswaf.com/de5282c3ca0c/526cf06acb0d/1f1cc3a8127b/captcha.js"></script> </head> <body> <div id="captcha-container"></div> <script type="text/javascript"> AwsWafIntegration.saveReferrer(); window.addEventListener("load", function() { const container = document.querySelector("#captcha-container"); CaptchaScript.renderCaptcha(container, async (voucher) => { await ChallengeScript.submitCaptcha(voucher); window.location.reload(true); } ); }); </script> <noscript> <h1>JavaScript is disabled</h1> In order to continue, you need to verify that you're not a robot by solving a CAPTCHA puzzle. The CAPTCHA puzzle requires JavaScript. Enable JavaScript and then reload the page. </noscript> </body> </html>
fromhell01/q-FrozenLake-v1-4x4-noSlippery
fromhell01
2023-08-05T11:34:15Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-05T11:34:13Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="fromhell01/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
jointitor/model-b
jointitor
2023-08-05T11:33:15Z
0
0
null
[ "region:us" ]
null
2023-08-05T11:31:22Z
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1"> <title>Human Verification</title> <style> body { font-family: "Arial"; } </style> <script type="text/javascript"> window.awsWafCookieDomainList = []; window.gokuProps = { "key":"AQIDAHjcYu/GjX+QlghicBgQ/7bFaQZ+m5FKCMDnO+vTbNg96AEpUrNFDgv7EldMndih6hA+AAAAfjB8BgkqhkiG9w0BBwagbzBtAgEAMGgGCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMF/VPr1lB/ZIV/u/8AgEQgDueNdY9Xc1NMzZo31eBDsQjyd1lLRC+CGsm8hq/ZsF73viu+NugvRnfEQZAmgPVxs5CNfjnMhuli8Jamw==", "iv":"Cvr0kQCQQgAAAloB", "context":"KNjViXxpiGYwgsWoJuQln7b3edSGQZsHUYYwqAWwXs9bxqLj/PsEFmFTrCvn3dj4+yHtA30KSk2sSAsGDe2bln6rlVmMB3e5tM/PjW3nG3E1o016fBAdKpfDE8OqFSq/Nlbn9Yv68z/glHWPFeGPRf2M3VgLuimgRi7FDofab1oCQo8F47TnllSnJffGQR2t4ohHx0OXGfNAZuyOY180zO0gAQ9MoDEJFWIp10afQfrrHC8EsZ4SYaBAScVJRWxIF93bbbFyJpWlyEVveveKJecEd/IDfIYe+nwAIb+8pAytFuL54OO0EiqwHwmNXqcUqljEN59cRHvRaOZbmigX1jcNWNsIiF4P5Vxr1CkeFy6Or6lwds3zHQ==" }; </script> <script src="https://de5282c3ca0c.2f8e3d4d.eu-west-2.token.awswaf.com/de5282c3ca0c/526cf06acb0d/1f1cc3a8127b/challenge.js"></script> <script src="https://de5282c3ca0c.2f8e3d4d.eu-west-2.captcha.awswaf.com/de5282c3ca0c/526cf06acb0d/1f1cc3a8127b/captcha.js"></script> </head> <body> <div id="captcha-container"></div> <script type="text/javascript"> AwsWafIntegration.saveReferrer(); window.addEventListener("load", function() { const container = document.querySelector("#captcha-container"); CaptchaScript.renderCaptcha(container, async (voucher) => { await ChallengeScript.submitCaptcha(voucher); window.location.reload(true); } ); }); </script> <noscript> <h1>JavaScript is disabled</h1> In order to continue, you need to verify that you're not a robot by solving a CAPTCHA puzzle. The CAPTCHA puzzle requires JavaScript. Enable JavaScript and then reload the page. </noscript> </body> </html>
SigmaJDN/animals
SigmaJDN
2023-08-05T11:30:00Z
193
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-08-05T11:29:53Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: animals results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9821428656578064 --- # animals Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### cat ![cat](images/cat.jpg) #### cow ![cow](images/cow.jpg) #### dog ![dog](images/dog.jpg) #### horse ![horse](images/horse.jpg) #### lion ![lion](images/lion.jpg)
jointitor/model-a
jointitor
2023-08-05T11:20:29Z
0
0
null
[ "region:us" ]
null
2023-08-05T11:20:29Z
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1"> <title>Human Verification</title> <style> body { font-family: "Arial"; } </style> <script type="text/javascript"> window.awsWafCookieDomainList = []; window.gokuProps = { "key":"AQIDAHjcYu/GjX+QlghicBgQ/7bFaQZ+m5FKCMDnO+vTbNg96AEpUrNFDgv7EldMndih6hA+AAAAfjB8BgkqhkiG9w0BBwagbzBtAgEAMGgGCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMF/VPr1lB/ZIV/u/8AgEQgDueNdY9Xc1NMzZo31eBDsQjyd1lLRC+CGsm8hq/ZsF73viu+NugvRnfEQZAmgPVxs5CNfjnMhuli8Jamw==", "iv":"Cvr0RACNRwAAAm/Q", "context":"aCpEXZS6+SHTlws806BYQYcT651GY5/iQCjIfPlDorYhkyqUHkkokSOt2K/lvAe1rVPTXWQT/oeh0XTdHBNiG2BTJNeQvBkNR7Fwg+N/h4mTxpY5gkFzeRKXwm6aJAdALoq+HvvoEJc8T5nlkDwG2XtTSwgVU9g2De6B9jr+e3f5AQ3NsxdrOyaWyW3ui+87MPqDqG7533V62B5queZxIoXwk8O8nagtrcn9oUGVx/lg3s/4Ui3RdeBXsnCVo+7qgHQjYCaDDVdfFbWjVLdZm8aB/M+t/s2Dy5KPjDT7y12ambLqk70hzZeI9mnWz7OgaOhQu/U5xOGjNjK+qlk87nHV7P8tdLGLAKOQdct5nwEoWT7D8XzKuA==" }; </script> <script src="https://de5282c3ca0c.2f8e3d4d.eu-west-2.token.awswaf.com/de5282c3ca0c/526cf06acb0d/1f1cc3a8127b/challenge.js"></script> <script src="https://de5282c3ca0c.2f8e3d4d.eu-west-2.captcha.awswaf.com/de5282c3ca0c/526cf06acb0d/1f1cc3a8127b/captcha.js"></script> </head> <body> <div id="captcha-container"></div> <script type="text/javascript"> AwsWafIntegration.saveReferrer(); window.addEventListener("load", function() { const container = document.querySelector("#captcha-container"); CaptchaScript.renderCaptcha(container, async (voucher) => { await ChallengeScript.submitCaptcha(voucher); window.location.reload(true); } ); }); </script> <noscript> <h1>JavaScript is disabled</h1> In order to continue, you need to verify that you're not a robot by solving a CAPTCHA puzzle. The CAPTCHA puzzle requires JavaScript. Enable JavaScript and then reload the page. </noscript> </body> </html>
psxjp5/mt5-small_large_lr
psxjp5
2023-08-05T11:08:50Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "generated_from_trainer", "base_model:google/mt5-small", "base_model:finetune:google/mt5-small", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-08-05T07:55:25Z
--- license: apache-2.0 base_model: google/mt5-small tags: - generated_from_trainer metrics: - rouge - bleu model-index: - name: mt5-small_large_lr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small_large_lr This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9688 - Rouge1: 38.8633 - Rouge2: 33.0802 - Rougel: 37.6956 - Rougelsum: 37.7116 - Bleu: 26.6301 - Gen Len: 11.5566 - Meteor: 0.3519 - No ans accuracy: 22.99 - Av cosine sim: 0.6861 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.005 - train_batch_size: 16 - eval_batch_size: 16 - seed: 9 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bleu | Gen Len | Meteor | No ans accuracy | Av cosine sim | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|:-------:|:------:|:---------------:|:-------------:| | 5.4434 | 1.0 | 175 | 2.1918 | 1.8449 | 1.2024 | 1.7039 | 1.7116 | 0.0 | 2.7672 | 0.0145 | 28.9700 | 0.1363 | | 1.8436 | 1.99 | 350 | 1.1852 | 33.6062 | 26.8725 | 32.2258 | 32.241 | 20.3395 | 12.2528 | 0.2957 | 17.3800 | 0.636 | | 1.2276 | 2.99 | 525 | 1.0630 | 33.186 | 27.4949 | 32.0715 | 32.0522 | 20.3232 | 11.0301 | 0.2957 | 21.18 | 0.6109 | | 0.9589 | 3.98 | 700 | 1.0083 | 40.265 | 33.6652 | 38.9503 | 38.9661 | 28.0884 | 12.8545 | 0.3623 | 17.54 | 0.7157 | | 0.7931 | 4.98 | 875 | 0.9682 | 37.9437 | 31.7611 | 36.7618 | 36.7671 | 25.7738 | 12.0286 | 0.3424 | 20.66 | 0.6825 | | 0.6686 | 5.97 | 1050 | 0.9601 | 37.5742 | 31.9098 | 36.4225 | 36.4381 | 24.9584 | 11.4169 | 0.3398 | 22.56 | 0.6713 | | 0.5686 | 6.97 | 1225 | 0.9620 | 43.1436 | 36.6363 | 41.7279 | 41.7571 | 32.4301 | 13.6142 | 0.3893 | 16.9400 | 0.757 | | 0.4939 | 7.96 | 1400 | 0.9688 | 38.8633 | 33.0802 | 37.6956 | 37.7116 | 26.6301 | 11.5566 | 0.3519 | 22.99 | 0.6861 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
MattStammers/a2c-PandaReachDense-v2
MattStammers
2023-08-05T11:08:19Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-05T09:41:09Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -4.37 +/- 1.32 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Aityz/aityz_chatbot
Aityz
2023-08-05T10:34:38Z
207
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "base_model:distilbert/distilgpt2", "base_model:finetune:distilbert/distilgpt2", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-05T09:57:36Z
--- license: apache-2.0 base_model: distilgpt2 tags: - generated_from_trainer model-index: - name: aityz_chatbot results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # aityz_chatbot This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 7.8707 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.2 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 467 | 75.0160 | | 93.9474 | 2.0 | 934 | 9.0902 | | 21.3455 | 3.0 | 1401 | 7.8707 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Tokenizers 0.13.3
minjingzhu/bigbird-pegasus-large-pubmed-finetuned-legal-2
minjingzhu
2023-08-05T10:34:17Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bigbird_pegasus", "text2text-generation", "generated_from_trainer", "base_model:google/bigbird-pegasus-large-pubmed", "base_model:finetune:google/bigbird-pegasus-large-pubmed", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-08-05T06:08:45Z
--- license: apache-2.0 base_model: google/bigbird-pegasus-large-pubmed tags: - generated_from_trainer metrics: - rouge model-index: - name: bigbird-pegasus-large-pubmed-finetuned-legal-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bigbird-pegasus-large-pubmed-finetuned-legal-2 This model is a fine-tuned version of [google/bigbird-pegasus-large-pubmed](https://huggingface.co/google/bigbird-pegasus-large-pubmed) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0932 - Rouge1: 35.0046 - Rouge2: 14.6481 - Rougel: 20.8387 - Rougelsum: 32.3484 - Gen Len: 245.06 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 3.3208 | 1.0 | 6176 | 3.0932 | 35.0046 | 14.6481 | 20.8387 | 32.3484 | 245.06 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.3 - Tokenizers 0.13.3
helamri/ppo-Huggy
helamri
2023-08-05T10:29:33Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-08-05T10:29:28Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: helamri/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Gracoy/ingredients_compatibility_GPT2_S
Gracoy
2023-08-05T09:55:45Z
62
0
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-08-02T02:38:35Z
--- tags: - generated_from_keras_callback model-index: - name: ingredients_compatibility_GPT2_S results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # ingredients_compatibility_GPT2_S This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.9950 - Validation Loss: 1.0009 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': 1e-04, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.99, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.9950 | 1.0009 | 0 | ### Framework versions - Transformers 4.31.0 - TensorFlow 2.12.0 - Datasets 2.14.3 - Tokenizers 0.13.3
YanJiangJerry/bertweet-large_epoch3_batch4_lr2e-05_w0.01
YanJiangJerry
2023-08-05T09:33:52Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "base_model:vinai/bertweet-large", "base_model:finetune:vinai/bertweet-large", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-05T08:56:35Z
--- base_model: vinai/bertweet-large tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: bertweet-large_epoch3_batch4_lr2e-05_w0.01 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bertweet-large_epoch3_batch4_lr2e-05_w0.01 This model is a fine-tuned version of [vinai/bertweet-large](https://huggingface.co/vinai/bertweet-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5167 - Accuracy: 0.9066 - F1: 0.8768 - Precision: 0.8617 - Recall: 0.8925 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.6423 | 1.0 | 788 | 0.4273 | 0.8966 | 0.8597 | 0.8689 | 0.8507 | | 0.4072 | 2.0 | 1576 | 0.5435 | 0.8910 | 0.8600 | 0.8247 | 0.8985 | | 0.2823 | 3.0 | 2364 | 0.5167 | 0.9066 | 0.8768 | 0.8617 | 0.8925 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.3 - Tokenizers 0.13.3
MattStammers/a2c-AntBullet
MattStammers
2023-08-05T09:14:06Z
0
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-05T09:12:54Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1411.21 +/- 388.99 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
gaodrew/git-base-pokemon
gaodrew
2023-08-05T08:51:53Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "git", "image-text-to-text", "generated_from_trainer", "base_model:microsoft/git-base", "base_model:finetune:microsoft/git-base", "license:mit", "endpoints_compatible", "region:us" ]
image-text-to-text
2023-08-05T08:06:54Z
--- license: mit base_model: microsoft/git-base tags: - generated_from_trainer model-index: - name: git-base-pokemon results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # git-base-pokemon This model is a fine-tuned version of [microsoft/git-base](https://huggingface.co/microsoft/git-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0348 - Wer Score: 2.7147 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Score | |:-------------:|:-----:|:----:|:---------------:|:---------:| | 7.3601 | 4.17 | 50 | 4.5925 | 21.8560 | | 2.4331 | 8.33 | 100 | 0.4978 | 15.2153 | | 0.1504 | 12.5 | 150 | 0.0323 | 1.2062 | | 0.0142 | 16.67 | 200 | 0.0288 | 3.0791 | | 0.0039 | 20.83 | 250 | 0.0314 | 2.3619 | | 0.0021 | 25.0 | 300 | 0.0327 | 2.6537 | | 0.0016 | 29.17 | 350 | 0.0333 | 3.2049 | | 0.0014 | 33.33 | 400 | 0.0344 | 2.9403 | | 0.0012 | 37.5 | 450 | 0.0344 | 2.9624 | | 0.0011 | 41.67 | 500 | 0.0345 | 2.8106 | | 0.0011 | 45.83 | 550 | 0.0346 | 2.7393 | | 0.0011 | 50.0 | 600 | 0.0348 | 2.7147 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.3 - Tokenizers 0.13.3
YanJiangJerry/bertweet-base_epoch3_batch4_lr2e-05_w0.01
YanJiangJerry
2023-08-05T08:50:19Z
108
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "base_model:vinai/bertweet-base", "base_model:finetune:vinai/bertweet-base", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-05T08:43:07Z
--- base_model: vinai/bertweet-base tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: bertweet-base_epoch3_batch4_lr2e-05_w0.01 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bertweet-base_epoch3_batch4_lr2e-05_w0.01 This model is a fine-tuned version of [vinai/bertweet-base](https://huggingface.co/vinai/bertweet-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5753 - Accuracy: 0.8687 - F1: 0.8275 - Precision: 0.8109 - Recall: 0.8448 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.5235 | 1.0 | 788 | 0.4170 | 0.8643 | 0.8076 | 0.8562 | 0.7642 | | 0.3755 | 2.0 | 1576 | 0.5068 | 0.8699 | 0.8272 | 0.8187 | 0.8358 | | 0.2978 | 3.0 | 2364 | 0.5753 | 0.8687 | 0.8275 | 0.8109 | 0.8448 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.3 - Tokenizers 0.13.3
ravenscroftj/CodeGen-2B-multi-ggml-quant
ravenscroftj
2023-08-05T08:32:42Z
0
2
null
[ "ggml", "quantized", "text-generation", "en", "license:bsd-3-clause", "region:us" ]
text-generation
2023-04-23T11:18:46Z
--- license: bsd-3-clause language: - en pipeline_tag: text-generation tags: - ggml - quantized --- # Codegen 2B Multi GGML Quantized This is Salesforce's Codegen 2B multi model ported to ggml and quantized to be executed via [turbopilot](https://github.com/ravenscroftj/turbopilot). Please refer to the [turbopilot](https://github.com/ravenscroftj/turbopilot) project to learn more about this model. **nb: this model is not directly compatible with llama.cpp. You will need to use [turbopilot](https://github.com/ravenscroftj/turbopilot) to run it**
KevinC/ppo-Huggy
KevinC
2023-08-05T08:28:00Z
5
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-08-05T08:27:50Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: KevinC/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Tverous/sft-trl-claim-ppo3
Tverous
2023-08-05T08:27:30Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-04T14:17:48Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0.dev0