modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-06-25 06:27:54
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
495 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-06-25 06:24:22
card
stringlengths
11
1.01M
ericw0530/bert-finetuned-squad
ericw0530
2022-05-22T06:27:50Z
3
0
transformers
[ "transformers", "tf", "bert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-05-20T15:43:12Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: ericw0530/bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # ericw0530/bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.1800 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-06, 'decay_steps': 2565, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 4.9079 | 0 | | 3.5422 | 1 | | 2.5645 | 2 | | 2.2832 | 3 | | 2.1800 | 4 | ### Framework versions - Transformers 4.19.2 - TensorFlow 2.8.0 - Datasets 2.2.2 - Tokenizers 0.12.1
Yuriky/q-FrozenLake-v1-8x8-slippery
Yuriky
2022-05-22T04:12:40Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-22T04:12:29Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-8x8-slippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Yuriky/q-FrozenLake-v1-8x8-slippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
stevemobs/bert-base-spanish-wwm-uncased-finetuned-squad_es
stevemobs
2022-05-22T03:38:07Z
416
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad_es", "endpoints_compatible", "region:us" ]
question-answering
2022-05-21T22:57:12Z
--- tags: - generated_from_trainer datasets: - squad_es model-index: - name: bert-base-spanish-wwm-uncased-finetuned-squad_es results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-spanish-wwm-uncased-finetuned-squad_es This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-uncased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) on the squad_es dataset. It achieves the following results on the evaluation set: - Loss: 1.7747 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.5377 | 1.0 | 8259 | 1.4632 | | 1.1928 | 2.0 | 16518 | 1.5536 | | 0.9486 | 3.0 | 24777 | 1.7747 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
DavidCollier/q-Taxi-v3
DavidCollier
2022-05-22T02:46:31Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-22T02:46:25Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="DavidCollier/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
ruselkomp/sber-framebank-hidesize-1
ruselkomp
2022-05-22T01:57:09Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
question-answering
2022-05-21T22:10:53Z
--- tags: - generated_from_trainer model-index: - name: sber-framebank-hidesize-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sber-framebank-hidesize-1 This model is a fine-tuned version of [sberbank-ai/sbert_large_nlu_ru](https://huggingface.co/sberbank-ai/sbert_large_nlu_ru) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4154 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.053 | 1.0 | 11307 | 1.0655 | | 0.835 | 2.0 | 22614 | 1.2487 | | 0.6054 | 3.0 | 33921 | 1.4154 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.2.3.dev0 - Tokenizers 0.12.1
Forkits/q-FrozenLake-v1-4x4-no-slippery
Forkits
2022-05-22T00:58:04Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-22T00:51:52Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-no-slippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Forkits/q-FrozenLake-v1-4x4-no-slippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
sandrokim/two_tower_sentence_snoobert
sandrokim
2022-05-22T00:02:17Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-05-22T00:00:32Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # sandrokim/two_tower_sentence_snoobert This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sandrokim/two_tower_sentence_snoobert') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sandrokim/two_tower_sentence_snoobert') model = AutoModel.from_pretrained('sandrokim/two_tower_sentence_snoobert') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sandrokim/two_tower_sentence_snoobert) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 719 with parameters: ``` {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 992, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
drscotthawley/wav2vec2-base-timit-demo-google-colab
drscotthawley
2022-05-21T23:41:05Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-21T22:20:45Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-google-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-google-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5436 - Wer: 0.3401 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.5276 | 1.0 | 500 | 1.9983 | 1.0066 | | 0.8606 | 2.01 | 1000 | 0.5323 | 0.5220 | | 0.4339 | 3.01 | 1500 | 0.4697 | 0.4512 | | 0.3026 | 4.02 | 2000 | 0.4342 | 0.4266 | | 0.2297 | 5.02 | 2500 | 0.5001 | 0.4135 | | 0.1939 | 6.02 | 3000 | 0.4350 | 0.3897 | | 0.1613 | 7.03 | 3500 | 0.4740 | 0.3883 | | 0.1452 | 8.03 | 4000 | 0.4289 | 0.3825 | | 0.1362 | 9.04 | 4500 | 0.4721 | 0.3927 | | 0.1146 | 10.04 | 5000 | 0.4707 | 0.3730 | | 0.1061 | 11.04 | 5500 | 0.4470 | 0.3701 | | 0.0947 | 12.05 | 6000 | 0.4694 | 0.3722 | | 0.0852 | 13.05 | 6500 | 0.5222 | 0.3733 | | 0.0741 | 14.06 | 7000 | 0.4881 | 0.3657 | | 0.069 | 15.06 | 7500 | 0.4957 | 0.3677 | | 0.0679 | 16.06 | 8000 | 0.5241 | 0.3634 | | 0.0618 | 17.07 | 8500 | 0.5091 | 0.3564 | | 0.0576 | 18.07 | 9000 | 0.5055 | 0.3557 | | 0.0493 | 19.08 | 9500 | 0.5013 | 0.3515 | | 0.0469 | 20.08 | 10000 | 0.5506 | 0.3530 | | 0.044 | 21.08 | 10500 | 0.5564 | 0.3528 | | 0.0368 | 22.09 | 11000 | 0.5213 | 0.3509 | | 0.0355 | 23.09 | 11500 | 0.5707 | 0.3495 | | 0.0357 | 24.1 | 12000 | 0.5558 | 0.3483 | | 0.0285 | 25.1 | 12500 | 0.5613 | 0.3455 | | 0.0285 | 26.1 | 13000 | 0.5533 | 0.3480 | | 0.0266 | 27.11 | 13500 | 0.5526 | 0.3462 | | 0.0249 | 28.11 | 14000 | 0.5488 | 0.3429 | | 0.0237 | 29.12 | 14500 | 0.5436 | 0.3401 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu115 - Datasets 1.18.3 - Tokenizers 0.12.1
JDog/90
JDog
2022-05-21T22:47:48Z
0
0
null
[ "license:cc-by-nc-sa-4.0", "region:us" ]
null
2022-05-21T22:47:48Z
--- license: cc-by-nc-sa-4.0 ---
dalvarez/q-Taxi-v3
dalvarez
2022-05-21T22:19:49Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-21T22:19:42Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="dalvarez/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
brad/q-Taxi-v3
brad
2022-05-21T22:11:03Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-21T22:10:57Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="brad/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
brad/q-FrozenLake-v1-4x4-no_slippery
brad
2022-05-21T21:58:15Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-21T21:58:09Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-no_slippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="brad/q-FrozenLake-v1-4x4-no_slippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
kRo0T/q-FrozenLake-v1-8x8-slippery
kRo0T
2022-05-21T21:33:24Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-21T21:33:16Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-8x8-slippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="kRo0T/q-FrozenLake-v1-8x8-slippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
itaihay/wav2vec_asr_swbd
itaihay
2022-05-21T20:37:08Z
134
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-31T16:52:09Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec_asr_swbd results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec_asr_swbd This model is a fine-tuned version of [facebook/wav2vec2-large-robust-ft-swbd-300h](https://huggingface.co/facebook/wav2vec2-large-robust-ft-swbd-300h) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3052 - Wer: 0.5302 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0004 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 20 - total_train_batch_size: 80 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.5445 | 0.29 | 500 | 0.9114 | 0.6197 | | 0.9397 | 0.58 | 1000 | 0.5057 | 0.5902 | | 0.8557 | 0.86 | 1500 | 0.4465 | 0.6264 | | 0.7716 | 1.15 | 2000 | 0.4182 | 0.5594 | | 0.7659 | 1.44 | 2500 | 0.4111 | 0.7048 | | 0.7406 | 1.73 | 3000 | 0.3927 | 0.5944 | | 0.6857 | 2.02 | 3500 | 0.3852 | 0.7118 | | 0.7113 | 2.31 | 4000 | 0.3775 | 0.5608 | | 0.6804 | 2.59 | 4500 | 0.3885 | 0.5759 | | 0.6654 | 2.88 | 5000 | 0.3703 | 0.7226 | | 0.6569 | 3.17 | 5500 | 0.3688 | 0.5972 | | 0.6335 | 3.46 | 6000 | 0.3661 | 0.7278 | | 0.6309 | 3.75 | 6500 | 0.3579 | 0.6324 | | 0.6231 | 4.03 | 7000 | 0.3620 | 0.5770 | | 0.6171 | 4.32 | 7500 | 0.3640 | 0.5772 | | 0.6191 | 4.61 | 8000 | 0.3553 | 0.6075 | | 0.6142 | 4.9 | 8500 | 0.3543 | 0.6126 | | 0.5905 | 5.19 | 9000 | 0.3601 | 0.6319 | | 0.5846 | 5.48 | 9500 | 0.3429 | 0.7343 | | 0.5874 | 5.76 | 10000 | 0.3429 | 0.5962 | | 0.5768 | 6.05 | 10500 | 0.3381 | 0.7410 | | 0.5783 | 6.34 | 11000 | 0.3391 | 0.5823 | | 0.5835 | 6.63 | 11500 | 0.3447 | 0.5821 | | 0.5817 | 6.92 | 12000 | 0.3314 | 0.6890 | | 0.5459 | 7.2 | 12500 | 0.3363 | 0.5727 | | 0.5575 | 7.49 | 13000 | 0.3363 | 0.7387 | | 0.5505 | 7.78 | 13500 | 0.3368 | 0.5685 | | 0.55 | 8.07 | 14000 | 0.3330 | 0.5587 | | 0.5523 | 8.36 | 14500 | 0.3338 | 0.5484 | | 0.5116 | 8.65 | 15000 | 0.3350 | 0.4351 | | 0.5263 | 8.93 | 15500 | 0.3254 | 0.6235 | | 0.5265 | 9.22 | 16000 | 0.3297 | 0.6207 | | 0.5265 | 9.51 | 16500 | 0.3279 | 0.6143 | | 0.5172 | 9.8 | 17000 | 0.3260 | 0.5800 | | 0.5028 | 10.09 | 17500 | 0.3259 | 0.5774 | | 0.5062 | 10.37 | 18000 | 0.3259 | 0.5552 | | 0.5112 | 10.66 | 18500 | 0.3201 | 0.6625 | | 0.5149 | 10.95 | 19000 | 0.3184 | 0.6865 | | 0.4939 | 11.24 | 19500 | 0.3152 | 0.6116 | | 0.5065 | 11.53 | 20000 | 0.3172 | 0.5246 | | 0.5129 | 11.82 | 20500 | 0.3129 | 0.5908 | | 0.4909 | 12.1 | 21000 | 0.3152 | 0.6075 | | 0.4865 | 12.39 | 21500 | 0.3160 | 0.5037 | | 0.4805 | 12.68 | 22000 | 0.3139 | 0.5458 | | 0.4691 | 12.97 | 22500 | 0.3225 | 0.5815 | | 0.4534 | 13.26 | 23000 | 0.3168 | 0.5614 | | 0.4661 | 13.54 | 23500 | 0.3135 | 0.6053 | | 0.4636 | 13.83 | 24000 | 0.3120 | 0.5142 | | 0.4554 | 14.12 | 24500 | 0.3127 | 0.5552 | | 0.4602 | 14.41 | 25000 | 0.3117 | 0.5562 | | 0.4521 | 14.7 | 25500 | 0.3106 | 0.4995 | | 0.4369 | 14.99 | 26000 | 0.3100 | 0.5663 | | 0.4249 | 15.27 | 26500 | 0.3110 | 0.5262 | | 0.4321 | 15.56 | 27000 | 0.3106 | 0.5183 | | 0.4293 | 15.85 | 27500 | 0.3091 | 0.5311 | | 0.4537 | 16.14 | 28000 | 0.3134 | 0.4986 | | 0.4258 | 16.43 | 28500 | 0.3138 | 0.4487 | | 0.4347 | 16.71 | 29000 | 0.3091 | 0.5011 | | 0.4615 | 17.0 | 29500 | 0.3068 | 0.5616 | | 0.4163 | 17.29 | 30000 | 0.3115 | 0.5426 | | 0.4074 | 17.58 | 30500 | 0.3079 | 0.5341 | | 0.4121 | 17.87 | 31000 | 0.3047 | 0.5619 | | 0.4219 | 18.16 | 31500 | 0.3085 | 0.5051 | | 0.4049 | 18.44 | 32000 | 0.3084 | 0.5116 | | 0.4119 | 18.73 | 32500 | 0.3071 | 0.5028 | | 0.4129 | 19.02 | 33000 | 0.3064 | 0.5030 | | 0.4143 | 19.31 | 33500 | 0.3040 | 0.5086 | | 0.4013 | 19.6 | 34000 | 0.3057 | 0.5271 | | 0.4162 | 19.88 | 34500 | 0.3052 | 0.5302 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 1.18.4 - Tokenizers 0.11.6
subhasisj/ar-adapter-32
subhasisj
2022-05-21T20:22:40Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
question-answering
2022-05-21T18:21:11Z
--- tags: - generated_from_trainer model-index: - name: ar-adapter-32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ar-adapter-32 This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 5.3886 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 352 | 5.6861 | | 5.7356 | 2.0 | 704 | 5.5388 | | 5.5308 | 3.0 | 1056 | 5.4493 | | 5.5308 | 4.0 | 1408 | 5.4030 | | 5.4304 | 5.0 | 1760 | 5.3886 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
turhancan97/q-FrozenLake-v1
turhancan97
2022-05-21T19:43:25Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-21T19:43:18Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1 results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="turhancan97/q-FrozenLake-v1", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
Ambiwlans/qtab-FrozenLake-v1-4x4-nslippery
Ambiwlans
2022-05-21T18:41:17Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-21T18:41:10Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: qtab-FrozenLake-v1-4x4-nslippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Ambiwlans/qtab-FrozenLake-v1-4x4-nslippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
huggingtweets/morrowind_rtf
huggingtweets
2022-05-21T18:30:32Z
6
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-21T18:29:56Z
--- language: en thumbnail: http://www.huggingtweets.com/morrowind_rtf/1653157827665/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1260443885102411779/DMPXS0hi_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">morrowind.rtf</div> <div style="text-align: center; font-size: 14px;">@morrowind_rtf</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from morrowind.rtf. | Data | morrowind.rtf | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 0 | | Short tweets | 26 | | Tweets kept | 3224 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3sgyg1y6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @morrowind_rtf's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3hz9ik0o) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3hz9ik0o/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/morrowind_rtf') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Astronomy88/LunarLander-v2-ppo_mlppolicy
Astronomy88
2022-05-21T18:20:54Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-21T18:20:22Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: ppo_mlppolicy results: - metrics: - type: mean_reward value: 218.67 +/- 66.35 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **ppo_mlppolicy** Agent playing **LunarLander-v2** This is a trained model of a **ppo_mlppolicy** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
sanjay-m1/informal-to-formal
sanjay-m1
2022-05-21T16:57:38Z
3
1
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-21T16:35:57Z
## This model belongs to the Styleformer project [Please refer to github page](https://github.com/PrithivirajDamodaran/Styleformer)
rajistics/q-FrozenLake-v1-8x8-slippery
rajistics
2022-05-21T16:16:12Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-21T16:16:06Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-8x8-slippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="rshah/q-FrozenLake-v1-8x8-slippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
amrahmed/q-FrozenLake-v1-4x4-non-slippery
amrahmed
2022-05-21T16:01:45Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-21T16:01:35Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-non-slippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="amrahmed/q-FrozenLake-v1-4x4-non-slippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
wooihen/TEST2ppo-LunarLander-v2
wooihen
2022-05-21T15:06:47Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-21T15:06:07Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 218.95 +/- 19.46 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
smc/electric_2
smc
2022-05-21T14:38:26Z
61
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-05-15T00:56:43Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: electric pole classification results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 1.0 --- Find whether an electric pole has a transformer or not
GKPro/PPO-LunarLander-v2
GKPro
2022-05-21T14:38:06Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-21T14:03:57Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 242.71 +/- 13.55 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
KrusHan/DQN-LunarLander-v2
KrusHan
2022-05-21T14:30:50Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-15T15:57:14Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 225.63 +/- 80.78 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **DQN** Agent playing **LunarLander-v2** This is a trained model of a **DQN** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
forsc/unit12ppo-LunarLander-v2
forsc
2022-05-21T14:09:17Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-21T14:08:46Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 278.19 +/- 17.91 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Photons/q-FrozenLake-v1-8x8-slippery
Photons
2022-05-21T14:00:32Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-21T14:00:26Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-8x8-slippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Photons/q-FrozenLake-v1-8x8-slippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
Akshat/distilbert-base-uncased-finetuned-emotion
Akshat
2022-05-21T13:37:58Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-21T13:11:34Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.922 - name: F1 type: f1 value: 0.9216312760504648 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2246 - Accuracy: 0.922 - F1: 0.9216 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8424 | 1.0 | 250 | 0.3246 | 0.9025 | 0.8989 | | 0.2533 | 2.0 | 500 | 0.2246 | 0.922 | 0.9216 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
DBusAI/q-Taxi-v3-v2
DBusAI
2022-05-21T13:32:59Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-21T13:32:41Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3-v2 results: - metrics: - type: mean_reward value: 9.12 +/- 2.89 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="DBusAI/q-Taxi-v3-v2", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
DBusAI/q-Taxi-v3-v1
DBusAI
2022-05-21T13:30:58Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-21T13:30:51Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3-v1 results: - metrics: - type: mean_reward value: 7.80 +/- 2.82 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="DBusAI/q-Taxi-v3-v1", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
Dani-91/bert-finetuned-ner
Dani-91
2022-05-21T13:25:58Z
4
1
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-05-21T12:47:18Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9325062034739454 - name: Recall type: recall value: 0.9486704813194211 - name: F1 type: f1 value: 0.9405188954700927 - name: Accuracy type: accuracy value: 0.9859745687878966 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0618 - Precision: 0.9325 - Recall: 0.9487 - F1: 0.9405 - Accuracy: 0.9860 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0874 | 1.0 | 1756 | 0.0645 | 0.9194 | 0.9382 | 0.9287 | 0.9835 | | 0.0384 | 2.0 | 3512 | 0.0614 | 0.9297 | 0.9463 | 0.9379 | 0.9845 | | 0.0186 | 3.0 | 5268 | 0.0618 | 0.9325 | 0.9487 | 0.9405 | 0.9860 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
DBusAI/q-FrozenLake-v1-8x8-slippery-v3
DBusAI
2022-05-21T12:45:08Z
0
0
null
[ "FrozenLake-v1-8x8", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-21T12:45:01Z
--- tags: - FrozenLake-v1-8x8 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-8x8-slippery-v3 results: - metrics: - type: mean_reward value: 0.93 +/- 0.25 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-8x8 type: FrozenLake-v1-8x8 --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="DBusAI/q-FrozenLake-v1-8x8-slippery-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
DBusAI/q-FrozenLake-v1-4x4-slippery
DBusAI
2022-05-21T12:29:11Z
0
0
null
[ "FrozenLake-v1-4x4", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-21T12:29:04Z
--- tags: - FrozenLake-v1-4x4 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-slippery results: - metrics: - type: mean_reward value: 0.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4 type: FrozenLake-v1-4x4 --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="DBusAI/q-FrozenLake-v1-4x4-slippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
ruselkomp/deep-pavlov-framebank-hidesize-1
ruselkomp
2022-05-21T12:19:16Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
question-answering
2022-05-21T08:04:30Z
--- tags: - generated_from_trainer model-index: - name: deep-pavlov-framebank-hidesize-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deep-pavlov-framebank-hidesize-1 This model is a fine-tuned version of [DeepPavlov/rubert-base-cased](https://huggingface.co/DeepPavlov/rubert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0967 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.073 | 1.0 | 2827 | 1.0101 | | 0.7856 | 2.0 | 5654 | 1.0367 | | 0.5993 | 3.0 | 8481 | 1.0967 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.2.3.dev0 - Tokenizers 0.12.1
DBusAI/q-FrozenLake-v1-8x8
DBusAI
2022-05-21T12:15:51Z
0
0
null
[ "FrozenLake-v1-8x8", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-21T12:15:44Z
--- tags: - FrozenLake-v1-8x8 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-8x8 results: - metrics: - type: mean_reward value: 0.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-8x8 type: FrozenLake-v1-8x8 --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="DBusAI/q-FrozenLake-v1-8x8", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
imamnurby/rob2rand_chen_w_prefix_tc
imamnurby
2022-05-21T12:14:38Z
5
0
transformers
[ "transformers", "pytorch", "encoder-decoder", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-21T12:11:26Z
--- tags: - generated_from_trainer metrics: - bleu model-index: - name: rob2rand_chen_w_prefix_tc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rob2rand_chen_w_prefix_tc This model is a fine-tuned version of [imamnurby/rob2rand_chen_w_prefix](https://huggingface.co/imamnurby/rob2rand_chen_w_prefix) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2749 - Bleu: 83.9120 - Em: 86.2159 - Bleu Em: 85.0639 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Em | Bleu Em | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:| | 0.6922 | 0.71 | 500 | 0.2425 | 68.5819 | 79.7927 | 74.1873 | | 0.086 | 1.42 | 1000 | 0.2480 | 70.9791 | 79.5855 | 75.2823 | | 0.0865 | 2.13 | 1500 | 0.2567 | 68.7037 | 78.8256 | 73.7646 | | 0.0758 | 2.84 | 2000 | 0.2483 | 69.4605 | 80.2418 | 74.8512 | | 0.0683 | 3.55 | 2500 | 0.2662 | 68.3732 | 78.4456 | 73.4094 | | 0.0643 | 4.26 | 3000 | 0.2700 | 66.5413 | 78.3765 | 72.4589 | | 0.0596 | 4.97 | 3500 | 0.2611 | 67.4313 | 78.9637 | 73.1975 | | 0.0519 | 5.68 | 4000 | 0.2697 | 68.3717 | 79.1019 | 73.7368 | | 0.0478 | 6.39 | 4500 | 0.2914 | 69.7507 | 77.7202 | 73.7354 | | 0.0461 | 7.1 | 5000 | 0.2776 | 68.5387 | 79.1019 | 73.8203 | | 0.04 | 7.81 | 5500 | 0.2975 | 67.6316 | 78.1693 | 72.9004 | | 0.0373 | 8.52 | 6000 | 0.2922 | 68.0161 | 79.4473 | 73.7317 | | 0.0345 | 9.23 | 6500 | 0.3032 | 69.4580 | 79.2401 | 74.3490 | | 0.032 | 9.94 | 7000 | 0.3104 | 67.2595 | 79.0328 | 73.1462 | | 0.0294 | 10.65 | 7500 | 0.3077 | 65.8142 | 78.4801 | 72.1472 | | 0.0269 | 11.36 | 8000 | 0.3092 | 70.2072 | 78.8601 | 74.5337 | | 0.026 | 12.07 | 8500 | 0.3117 | 70.4504 | 79.4473 | 74.9489 | | 0.0229 | 12.78 | 9000 | 0.3114 | 69.4635 | 79.2401 | 74.3518 | | 0.0215 | 13.49 | 9500 | 0.3143 | 67.3601 | 79.3092 | 73.3346 | | 0.0205 | 14.2 | 10000 | 0.3176 | 68.4031 | 78.9983 | 73.7007 | | 0.0195 | 14.91 | 10500 | 0.3253 | 66.5673 | 78.9637 | 72.7655 | | 0.0173 | 15.62 | 11000 | 0.3377 | 68.7553 | 78.7219 | 73.7386 | | 0.0164 | 16.34 | 11500 | 0.3377 | 69.2474 | 79.1364 | 74.1919 | | 0.0161 | 17.05 | 12000 | 0.3371 | 69.0846 | 79.6200 | 74.3523 | | 0.0148 | 17.76 | 12500 | 0.3457 | 70.8330 | 79.3782 | 75.1056 | | 0.0137 | 18.47 | 13000 | 0.3516 | 69.5576 | 79.2401 | 74.3988 | | 0.0135 | 19.18 | 13500 | 0.3573 | 70.3232 | 79.1364 | 74.7298 | | 0.0127 | 19.89 | 14000 | 0.3574 | 70.2481 | 79.1019 | 74.6750 | | 0.0115 | 20.6 | 14500 | 0.3694 | 65.7587 | 78.3765 | 72.0676 | | 0.0107 | 21.31 | 15000 | 0.3696 | 68.7923 | 78.5838 | 73.6880 | | 0.0107 | 22.02 | 15500 | 0.3607 | 69.4452 | 78.8256 | 74.1354 | | 0.0101 | 22.73 | 16000 | 0.3770 | 68.6731 | 78.5492 | 73.6112 | | 0.0095 | 23.44 | 16500 | 0.3648 | 69.8402 | 79.7237 | 74.7819 | | 0.0088 | 24.15 | 17000 | 0.3822 | 69.6238 | 79.0328 | 74.3283 | | 0.0088 | 24.86 | 17500 | 0.3816 | 68.5422 | 79.1364 | 73.8393 | | 0.0079 | 25.57 | 18000 | 0.3822 | 69.1359 | 79.2401 | 74.1880 | | 0.0073 | 26.28 | 18500 | 0.3742 | 69.8331 | 79.6891 | 74.7611 | | 0.007 | 26.99 | 19000 | 0.3849 | 69.5048 | 79.2746 | 74.3897 | | 0.0072 | 27.7 | 19500 | 0.3881 | 69.6135 | 79.2055 | 74.4095 | | 0.0059 | 28.41 | 20000 | 0.3922 | 70.2656 | 79.2746 | 74.7701 | | 0.0069 | 29.12 | 20500 | 0.3936 | 68.2044 | 78.7910 | 73.4977 | | 0.0059 | 29.83 | 21000 | 0.3983 | 69.6257 | 79.4473 | 74.5365 | | 0.0055 | 30.54 | 21500 | 0.3973 | 70.4039 | 79.5509 | 74.9774 | | 0.0057 | 31.25 | 22000 | 0.3960 | 70.3015 | 79.6546 | 74.9780 | | 0.0056 | 31.96 | 22500 | 0.3945 | 69.9785 | 79.5855 | 74.7820 | | 0.0049 | 32.67 | 23000 | 0.3947 | 70.1822 | 79.6546 | 74.9184 | | 0.0049 | 33.38 | 23500 | 0.3957 | 69.1207 | 79.3437 | 74.2322 | | 0.0048 | 34.09 | 24000 | 0.4097 | 68.8815 | 78.9292 | 73.9053 | | 0.0043 | 34.8 | 24500 | 0.4039 | 70.0982 | 79.4473 | 74.7727 | | 0.0044 | 35.51 | 25000 | 0.4080 | 69.3472 | 79.5164 | 74.4318 | | 0.0042 | 36.22 | 25500 | 0.4066 | 69.0213 | 79.0674 | 74.0443 | | 0.0038 | 36.93 | 26000 | 0.4128 | 69.1452 | 79.3092 | 74.2272 | | 0.0037 | 37.64 | 26500 | 0.4134 | 69.2672 | 79.5164 | 74.3918 | | 0.0034 | 38.35 | 27000 | 0.4161 | 69.7751 | 79.5509 | 74.6630 | | 0.0038 | 39.06 | 27500 | 0.4037 | 69.4092 | 79.6546 | 74.5319 | | 0.0031 | 39.77 | 28000 | 0.4041 | 69.3912 | 79.6546 | 74.5229 | | 0.0032 | 40.48 | 28500 | 0.4185 | 69.1159 | 79.4473 | 74.2816 | | 0.0031 | 41.19 | 29000 | 0.4245 | 68.6867 | 78.9983 | 73.8425 | | 0.003 | 41.9 | 29500 | 0.4202 | 69.4091 | 79.3092 | 74.3591 | | 0.0027 | 42.61 | 30000 | 0.4249 | 68.7400 | 79.0328 | 73.8864 | | 0.0026 | 43.32 | 30500 | 0.4175 | 69.9729 | 79.8273 | 74.9001 | | 0.0027 | 44.03 | 31000 | 0.4189 | 69.6688 | 79.5855 | 74.6271 | | 0.0027 | 44.74 | 31500 | 0.4203 | 69.4071 | 79.5855 | 74.4963 | | 0.0025 | 45.45 | 32000 | 0.4265 | 69.3197 | 79.1019 | 74.2108 | | 0.0023 | 46.16 | 32500 | 0.4255 | 69.7513 | 79.3437 | 74.5475 | | 0.0023 | 46.88 | 33000 | 0.4227 | 69.2893 | 79.5509 | 74.4201 | | 0.0023 | 47.59 | 33500 | 0.4233 | 69.6060 | 79.5509 | 74.5785 | | 0.002 | 48.3 | 34000 | 0.4239 | 69.0113 | 79.4819 | 74.2466 | | 0.0024 | 49.01 | 34500 | 0.4239 | 68.9754 | 79.4128 | 74.1941 | | 0.0019 | 49.72 | 35000 | 0.4228 | 68.9220 | 79.3782 | 74.1501 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.7.1 - Datasets 2.1.0 - Tokenizers 0.12.1
Tobias/bert-base-uncased_German_MultiLable_classification
Tobias
2022-05-21T12:05:42Z
7
1
transformers
[ "transformers", "tf", "bert", "text-classification", "de", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-21T12:00:43Z
--- language: de tags: - bert license: apache-2.0 widget: - text: "Das Frühstück ist sehr gut, es gibt auch Laktosefreie Produkte." example_title: "Example 1" - text: "Das Personal ist sehr kompetent und sehr freundlich." example_title: "Example 2" - text: "Die Zimmer sind wie beschrieben sehr klein, vergleichbar mit einer Kreuzfahrtschiffkabine. " example_title: "Example 3" - text: "Scheinwerfer vor dem Zimmer ganze Nacht an und zu hell" example_title: "Example 4" --- # German Hotel Review Sentiment Classification A model trained on German Hotel Reviews from Switzerland. The base model is the [bert-base-german-cased](https://huggingface.co/bert-base-german-cased). The last hidden layer of the base model was extracted and a classification layer was added. The entire model was then trained for 5 epochs on our dataset. # Model Performance | Classes | Precision | Recall | F1 Score | | :--- | :---: | :---: |:---: | | Room | 84.62% | 88.00% | 86.27% | | Food | 79.17% | 82.61% | 80.85% | | Staff | 63.64% | 70.00% | 66.67% | | Location | 83.33% | 62.50% | 71.43% | | GeneralUtilitys | 76.92% | 76.92% | 76.92% | | HotelOrganisation | 26.67% | 30.77% | 28.57% | | Unknown | 25.00% | 16.67% | 20.00% | | ReasonForStay | 100.00% | 50.00% | 66.67% | | Accuracy | | | 69.00% | | Macro Average | 67.42% | 59.68% | 62.17% | | Weighted Average | 69.36% | 69.00% | 68.79% | ## Confusion Matrix ![Confusion Matrix](bert-base-german-cased_German_classification.jpg)
DBusAI/q-Taxi-v3
DBusAI
2022-05-21T11:57:31Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-21T11:57:25Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="DBusAI/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
CWhy/q-FrozenLake-v1-8x8-slippery
CWhy
2022-05-21T11:44:52Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-21T11:44:44Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-8x8-slippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="CWhy/q-FrozenLake-v1-8x8-slippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
questgen/msmarco-distilbert-base-v4-feature-extraction-pipeline
questgen
2022-05-21T11:15:42Z
11
0
sentence-transformers
[ "sentence-transformers", "pytorch", "distilbert", "feature-extraction", "sentence-similarity", "transformers", "arxiv:1908.10084", "license:apache-2.0", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-05-21T11:11:17Z
--- pipeline_tag: feature-extraction license: apache-2.0 tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # sentence-transformers/msmarco-distilbert-base-v4 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/msmarco-distilbert-base-v4') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/msmarco-distilbert-base-v4') model = AutoModel.from_pretrained('sentence-transformers/msmarco-distilbert-base-v4') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/msmarco-distilbert-base-v4) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors This model was trained by [sentence-transformers](https://www.sbert.net/). If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
Riverdayspa/bodymassagechennai
Riverdayspa
2022-05-21T10:53:24Z
0
0
null
[ "region:us" ]
null
2022-05-21T10:53:01Z
Riverdayspa™ is one of the Top Luxury Massage Center in Chennai. We offer Quality massage therapy all over the bustling city of Chennai. https://www.riverdayspa.com/
amareelez/ppo-LunarLander-v2
amareelez
2022-05-21T09:30:43Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-21T09:01:03Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 280.46 +/- 18.03 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
linker81/q-learning-Taxi-v3
linker81
2022-05-21T09:20:26Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-21T09:20:18Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-learning-Taxi-v3 results: - metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="linker81/q-learning-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
linker81/q-learning-FrozenLake-v1-4x4-no-slippery
linker81
2022-05-21T09:16:57Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-21T09:15:44Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-learning-FrozenLake-v1-4x4-no-slippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1-4x4-no-slippery** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1-4x4-no-slippery** . ## Usage ```python model = load_from_hub(repo_id="linker81/q-learning-FrozenLake-v1-4x4-no-slippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
linker81/QLearning-FrozenLake-v1
linker81
2022-05-21T09:09:08Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-21T09:09:00Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: QLearning-FrozenLake-v1 results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="linker81/QLearning-FrozenLake-v1", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
anas-awadalla/bert-tiny-finetuned-squad
anas-awadalla
2022-05-21T08:11:40Z
60
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: bert-tiny-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-tiny-finetuned-squad This model is a fine-tuned version of [prajjwal1/bert-tiny](https://huggingface.co/prajjwal1/bert-tiny) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
anas-awadalla/albert-xxl-v2-finetuned-squad
anas-awadalla
2022-05-21T08:02:10Z
3
1
transformers
[ "transformers", "pytorch", "albert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-05-20T23:34:11Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: albert-xxl-v2-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-xxl-v2-finetuned-squad This model is a fine-tuned version of [albert-xxlarge-v2](https://huggingface.co/albert-xxlarge-v2) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
kabelomalapane/en_nso_ukuxhumana_model
kabelomalapane
2022-05-21T01:17:17Z
69
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "translation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-05-20T00:42:35Z
--- license: apache-2.0 tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: en_nso_ukuxhumana_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # en_nso_ukuxhumana_model This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-nso](https://huggingface.co/Helsinki-NLP/opus-mt-en-nso) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.8482 - Bleu (before training): 12.2324 - Bleu: 18.9287 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.0
kabelomalapane/nso_en_ukuxhumana_model
kabelomalapane
2022-05-21T01:15:15Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "translation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-05-20T11:20:16Z
--- license: apache-2.0 tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: nso_en_ukuxhumana_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nso_en_ukuxhumana_model This model is a fine-tuned version of [Helsinki-NLP/opus-mt-nso-en](https://huggingface.co/Helsinki-NLP/opus-mt-nso-en) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.9349 - Bleu (before training): 9.3297 - Bleu: 18.1161 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.0
huggingtweets/annebottz
huggingtweets
2022-05-21T00:49:07Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-21T00:48:35Z
--- language: en thumbnail: http://www.huggingtweets.com/annebottz/1653094143094/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1526210961031548935/59jbyuut_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Anne Bot</div> <div style="text-align: center; font-size: 14px;">@annebottz</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Anne Bot. | Data | Anne Bot | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 0 | | Short tweets | 590 | | Tweets kept | 2660 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/263xyaa3/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @annebottz's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/edyr41r2) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/edyr41r2/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/annebottz') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/darcywubot
huggingtweets
2022-05-21T00:27:43Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-21T00:27:13Z
--- language: en thumbnail: http://www.huggingtweets.com/darcywubot/1653092857463/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1520965807374835712/oz5XZFva_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Darcy Bot</div> <div style="text-align: center; font-size: 14px;">@darcywubot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Darcy Bot. | Data | Darcy Bot | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 6 | | Short tweets | 413 | | Tweets kept | 2831 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3ou05gm6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @darcywubot's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3p4xvqb6) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3p4xvqb6/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/darcywubot') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
anas-awadalla/albert-xl-v2-finetuned-squad
anas-awadalla
2022-05-20T23:29:59Z
3
0
transformers
[ "transformers", "pytorch", "albert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-05-20T18:16:26Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: albert-xl-v2-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-xl-v2-finetuned-squad This model is a fine-tuned version of [albert-xlarge-v2](https://huggingface.co/albert-xlarge-v2) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
fmcurti/q-FrozenLake-v1-8x8-non-slippery
fmcurti
2022-05-20T23:14:25Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-20T23:14:19Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-8x8-non-slippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="fmcurti/q-FrozenLake-v1-8x8-non-slippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
btsas/q-Taxi-v3
btsas
2022-05-20T21:47:36Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-20T21:47:30Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="btsas/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
ericklerouge123/distilbert-base-uncased-finetuned-emotion
ericklerouge123
2022-05-20T20:35:39Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-20T14:23:40Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion model-index: - name: distilbert-base-uncased-finetuned-emotion results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
dmitry-np/q-FrozenLake-v1-4x4-non-slippery
dmitry-np
2022-05-20T20:27:12Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-20T20:26:38Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-non-slippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="dmitry-np/q-FrozenLake-v1-4x4-non-slippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
Ukhushn/distilbert-base-uncased-finetuned-homedepot-SBERT
Ukhushn
2022-05-20T20:07:14Z
18
0
sentence-transformers
[ "sentence-transformers", "pytorch", "distilbert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-05-20T20:07:06Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # Ukhushn/distilbert-base-uncased-finetuned-homedepot-SBERT This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('Ukhushn/distilbert-base-uncased-finetuned-homedepot-SBERT') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('Ukhushn/distilbert-base-uncased-finetuned-homedepot-SBERT') model = AutoModel.from_pretrained('Ukhushn/distilbert-base-uncased-finetuned-homedepot-SBERT') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=Ukhushn/distilbert-base-uncased-finetuned-homedepot-SBERT) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 6661 with parameters: ``` {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 4, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 2665, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
subhasisj/xlm-roberta-base-squad-32
subhasisj
2022-05-20T19:13:21Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-05-20T14:05:13Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: xlm-roberta-base-squad-32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-squad-32 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.0083 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 350 | 1.2339 | | 2.3864 | 2.0 | 700 | 1.0571 | | 1.0541 | 3.0 | 1050 | 1.0246 | | 1.0541 | 4.0 | 1400 | 0.9947 | | 0.9214 | 5.0 | 1750 | 1.0083 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
Battu007/V3_PPO_LunarLander_v2
Battu007
2022-05-20T18:05:48Z
2
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-20T18:05:31Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 216.14 +/- 67.68 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Photons/TEST2ppo-LunarLander-v2
Photons
2022-05-20T17:58:36Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-20T17:57:42Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 12.57 +/- 37.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
umangchaudhry/bert-emotion
umangchaudhry
2022-05-20T16:56:12Z
15
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:tweet_eval", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-20T15:59:37Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - precision - recall model-index: - name: bert-emotion results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval args: emotion metrics: - name: Precision type: precision value: 0.7081377380103309 - name: Recall type: recall value: 0.709386945441909 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-emotion This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 1.2350 - Precision: 0.7081 - Recall: 0.7094 - Fscore: 0.7082 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Fscore | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:| | 0.8442 | 1.0 | 815 | 0.8653 | 0.7642 | 0.6192 | 0.6363 | | 0.5488 | 2.0 | 1630 | 0.9330 | 0.7116 | 0.6838 | 0.6912 | | 0.2713 | 3.0 | 2445 | 1.2350 | 0.7081 | 0.7094 | 0.7082 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
pm390/q-Taxi-v3
pm390
2022-05-20T16:35:48Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-20T16:35:43Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="pm390/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
HueyNemud/das22-42-camembert_finetuned_ref
HueyNemud
2022-05-20T16:25:01Z
3
0
transformers
[ "transformers", "pytorch", "camembert", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-05-20T16:22:44Z
--- tags: - generated_from_trainer model-index: - name: CamemBERT pretrained on french trade directories from the XIXth century results: [] --- # CamemBERT trained for NER on french trade directories from the XIXth century [GOLD training set] This mdoel is part of the material of the paper > Abadie, N., Carlinet, E., Chazalon, J., Duménieu, B. (2022). A > Benchmark of Named Entity Recognition Approaches in Historical > Documents Application to 19𝑡ℎ Century French Directories. In: Uchida, > S., Barney, E., Eglin, V. (eds) Document Analysis Systems. DAS 2022. > Lecture Notes in Computer Science, vol 13237. Springer, Cham. > https://doi.org/10.1007/978-3-031-06555-2_30 The source code to train this model is available on the [GitHub repository](https://github.com/soduco/paper-ner-bench-das22) of the paper as a Jupyter notebook in `src/ner/40_experiment_2.ipynb`. ## Model description This model adapts the model [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) for NER on 6004 manually annotated directory entries referred as the "reference dataset" in the paper. Trade directory entries are short and strongly structured texts that giving the name, activity and location of a person or business, e.g: ``` Peynaud, R. de la Vieille Bouclerie, 18. Richard, Joullain et comp., (commission- —Phéâtre Français. naire, (entrepôt), au port de la Rapée- ``` ## Intended uses & limitations This model is intended for reproducibility of the NER evaluation published in the DAS2022 paper. Several derived models trained for NER on trade directories are available on HuggingFace, each trained on a different dataset : - [das22-10-camembert_pretrained_finetuned_ref](): trained for NER on ~6000 directory entries manually corrected. - [das22-10-camembert_pretrained_finetuned_pero](): trained for NER on ~6000 directory entries extracted with PERO-OCR. - [das22-10-camembert_pretrained_finetuned_tess](): trained for NER on ~6000 directory entries extracted with Tesseract. ### Training hyperparameters ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
pm390/q-FrozenLake-v1-4x4-no_slippery
pm390
2022-05-20T16:08:40Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-20T16:08:34Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-no_slippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="pm390/q-FrozenLake-v1-4x4-no_slippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
MaryaAI/opus-mt-ar-en-finetunedQAdata-v1-ar-to-en
MaryaAI
2022-05-20T15:50:42Z
5
0
transformers
[ "transformers", "tf", "tensorboard", "marian", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-20T14:36:45Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: MaryaAI/opus-mt-ar-en-finetunedQAdata-v1-ar-to-en results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # MaryaAI/opus-mt-ar-en-finetunedQAdata-v1-ar-to-en This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ar-en](https://huggingface.co/Helsinki-NLP/opus-mt-ar-en) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0053 - Validation Loss: 8.2764 - Epoch: 14 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.0090 | 12.3530 | 0 | | 0.0134 | 11.3018 | 1 | | 0.0110 | 10.5958 | 2 | | 0.0083 | 9.7381 | 3 | | 0.0068 | 8.9434 | 4 | | 0.0080 | 12.7723 | 5 | | 0.0071 | 11.5191 | 6 | | 0.0077 | 10.6246 | 7 | | 0.0101 | 10.3368 | 8 | | 0.0092 | 8.7824 | 9 | | 0.0070 | 7.7344 | 10 | | 0.0070 | 8.2180 | 11 | | 0.0079 | 7.8572 | 12 | | 0.0070 | 9.3053 | 13 | | 0.0053 | 8.2764 | 14 | ### Framework versions - Transformers 4.19.2 - TensorFlow 2.8.0 - Datasets 2.2.1 - Tokenizers 0.12.1
ruselkomp/deep-pavlov-framebank-5epochs-2
ruselkomp
2022-05-20T15:09:32Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
question-answering
2022-05-20T11:12:22Z
--- tags: - generated_from_trainer model-index: - name: deep-pavlov-framebank-5epochs-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deep-pavlov-framebank-5epochs-2 This model is a fine-tuned version of [DeepPavlov/rubert-base-cased](https://huggingface.co/DeepPavlov/rubert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.4205 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.4667 | 1.0 | 2827 | 1.3508 | | 0.3114 | 2.0 | 5654 | 1.5341 | | 0.1941 | 3.0 | 8481 | 1.8772 | | 0.1185 | 4.0 | 11308 | 2.1496 | | 0.0795 | 5.0 | 14135 | 2.4205 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.2.2.dev0 - Tokenizers 0.12.1
tiana-organics/natural-and-organic-skincare
tiana-organics
2022-05-20T14:02:50Z
0
2
null
[ "region:us" ]
null
2022-05-20T13:43:56Z
TIANA Fairtrade Organics gets over 16 years' experience growing elite execution, veggie lover, normal and natural excellence items to convey every one of the advantages in an extraordinary plant improved equation for more youthful looking and solid skin. TIANA Organic Clean Ethical Skincare just holds back clean <a href="https://tiana-organics.com/organic-beauty">organic beauty products</a> that are non-poisonous and ok for skin. A total all-natural and organic skincare that is liberated from possibly hurtful fixings. No engineered fixings or hurtful poisons. Our perfect natural magnificence items just incorporate morally obtained and harmless to the ecosystem fixings.
gulteng/distilbert-base-uncased-finetuned-squad
gulteng
2022-05-20T13:44:24Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-05-20T11:58:43Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.2131 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.2672 | 1.0 | 5533 | 1.2131 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
Tanapon/TEST2ppo-LunarLander-v2-03
Tanapon
2022-05-20T12:58:52Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-20T12:58:24Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 270.09 +/- 20.88 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Sixtch/distilbert-base-uncased-finetuned-cola
Sixtch
2022-05-20T12:10:43Z
3
0
transformers
[ "transformers", "tf", "tensorboard", "distilbert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-20T11:05:03Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Sixtch/distilbert-base-uncased-finetuned-cola results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Sixtch/distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1766 - Validation Loss: 0.5678 - Train Matthews Correlation: 0.5127 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2670, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Matthews Correlation | Epoch | |:----------:|:---------------:|:--------------------------:|:-----:| | 0.5183 | 0.4703 | 0.4722 | 0 | | 0.3174 | 0.4709 | 0.5227 | 1 | | 0.1766 | 0.5678 | 0.5127 | 2 | ### Framework versions - Transformers 4.19.2 - TensorFlow 2.8.0 - Datasets 2.2.1 - Tokenizers 0.12.1
ThomasSimonini/q-Taxi-v3
ThomasSimonini
2022-05-20T11:44:47Z
0
2
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-19T07:24:26Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ``` pickle_model = load_from_hub(repo_id="ThomasSimonini/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
laurens88/finetuning-crypto-tweet-sentiment-test
laurens88
2022-05-20T11:14:25Z
11
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-10T15:18:58Z
--- tags: - generated_from_trainer model-index: - name: finetuning-crypto-tweet-sentiment-test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-crypto-tweet-sentiment-test This model is a fine-tuned version of [finiteautomata/bertweet-base-sentiment-analysis](https://huggingface.co/finiteautomata/bertweet-base-sentiment-analysis) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Tokenizers 0.12.1
familiesportrait/portraitzeichnenlassen
familiesportrait
2022-05-20T10:35:24Z
0
0
null
[ "region:us" ]
null
2022-05-20T10:34:07Z
Und wenn Sie es jemals satt haben, Ihr eigenes Bild zu zeichnen, können Sie sich jederzeit mit einem Freund treffen und üben, Porträts voneinander zu zeichnen. [https://familiesportrait.de/products/portrait-zeichnen-lassen](https://familiesportrait.de/products/portrait-zeichnen-lassen)
ejembere/opus-mt-en-ro-finetuned-en-to-ro
ejembere
2022-05-20T10:32:09Z
3
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "generated_from_trainer", "dataset:wmt16", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-20T10:26:27Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 model-index: - name: opus-mt-en-ro-finetuned-en-to-ro results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-ro-finetuned-en-to-ro This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ro](https://huggingface.co/Helsinki-NLP/opus-mt-en-ro) on the wmt16 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
PontifexMaximus/opus-mt-tr-en-finetuned-az-to-en
PontifexMaximus
2022-05-20T08:13:37Z
4
1
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "generated_from_trainer", "dataset:turkic_xwmt", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-20T05:44:09Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - turkic_xwmt metrics: - bleu model-index: - name: opus-mt-tr-en-finetuned-az-to-en results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: turkic_xwmt type: turkic_xwmt args: az-en metrics: - name: Bleu type: bleu value: 0.0002 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-tr-en-finetuned-az-to-en This model is a fine-tuned version of [Helsinki-NLP/opus-mt-tr-en](https://huggingface.co/Helsinki-NLP/opus-mt-tr-en) on the turkic_xwmt dataset. It achieves the following results on the evaluation set: - Loss: nan - Bleu: 0.0002 - Gen Len: 511.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.2 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | No log | 1.0 | 38 | nan | 0.0002 | 511.0 | | No log | 2.0 | 76 | nan | 0.0002 | 511.0 | | No log | 3.0 | 114 | nan | 0.0002 | 511.0 | | No log | 4.0 | 152 | nan | 0.0002 | 511.0 | | No log | 5.0 | 190 | nan | 0.0002 | 511.0 | | No log | 6.0 | 228 | nan | 0.0002 | 511.0 | | No log | 7.0 | 266 | nan | 0.0002 | 511.0 | | No log | 8.0 | 304 | nan | 0.0002 | 511.0 | | No log | 9.0 | 342 | nan | 0.0002 | 511.0 | | No log | 10.0 | 380 | nan | 0.0002 | 511.0 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
imamnurby/rob2rand_chen_w_prefix
imamnurby
2022-05-20T08:11:12Z
5
0
transformers
[ "transformers", "pytorch", "encoder-decoder", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-20T08:06:21Z
--- tags: - generated_from_trainer model-index: - name: rob2rand_chen_w_prefix results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rob2rand_chen_w_prefix This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 0.0686 - eval_bleu: 84.3905 - eval_em: 50.0650 - eval_bleu_em: 67.2278 - eval_runtime: 20.8187 - eval_samples_per_second: 36.938 - eval_steps_per_second: 0.624 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 50 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.18.0 - Pytorch 1.7.1 - Datasets 2.1.0 - Tokenizers 0.12.1
aricibo/swin-tiny-patch4-window7-224-finetuned-eurosat
aricibo
2022-05-20T07:48:24Z
73
0
transformers
[ "transformers", "pytorch", "tensorboard", "swin", "image-classification", "generated_from_trainer", "dataset:image_folder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-05-20T06:38:49Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - image_folder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: image_folder type: image_folder args: default metrics: - name: Accuracy type: accuracy value: 0.9725925925925926 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.0657 - Accuracy: 0.9726 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.18 | 1.0 | 190 | 0.0844 | 0.9689 | | 0.1347 | 2.0 | 380 | 0.0657 | 0.9726 | | 0.1459 | 3.0 | 570 | 0.0657 | 0.9726 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
himanshusrtekbox/distilbert-base-uncased-finetuned-cola
himanshusrtekbox
2022-05-20T06:48:20Z
5
0
transformers
[ "transformers", "tf", "tensorboard", "distilbert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-20T05:52:20Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: himanshusrtekbox/distilbert-base-uncased-finetuned-cola results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # himanshusrtekbox/distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1911 - Validation Loss: 0.5605 - Train Matthews Correlation: 0.5106 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2670, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Matthews Correlation | Epoch | |:----------:|:---------------:|:--------------------------:|:-----:| | 0.5185 | 0.4556 | 0.4728 | 0 | | 0.3247 | 0.4570 | 0.5093 | 1 | | 0.1911 | 0.5605 | 0.5106 | 2 | ### Framework versions - Transformers 4.19.2 - TensorFlow 2.8.0 - Datasets 2.2.1 - Tokenizers 0.12.1
ShreyaR/finetuned-roberta-depression
ShreyaR
2022-05-20T04:38:42Z
300
7
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer widget: - text: "I feel so low and numb, don't feel like doing anything. Just passing my days" - text: "Sleep is my greatest and most comforting escape whenever I wake up these days. The literal very first emotion I feel is just misery and reminding myself of all my problems." - text: "I went to a movie today. It was below my expectations but the day was fine." - text: "The first day of work was a little hectic but met pretty good colleagues, we went for a team dinner party at the end of the day." metrics: - accuracy model-index: - name: finetuned-roberta-depression results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-roberta-depression This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1385 - Accuracy: 0.9745 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0238 | 1.0 | 625 | 0.1385 | 0.9745 | | 0.0333 | 2.0 | 1250 | 0.1385 | 0.9745 | | 0.0263 | 3.0 | 1875 | 0.1385 | 0.9745 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
huggingtweets/connorhvnsen
huggingtweets
2022-05-20T03:52:28Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-20T03:51:49Z
--- language: en thumbnail: http://www.huggingtweets.com/connorhvnsen/1653018744349/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1524595130031915009/JbJeqNFJ_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">HɅNSΞN ™</div> <div style="text-align: center; font-size: 14px;">@connorhvnsen</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from HɅNSΞN ™. | Data | HɅNSΞN ™ | | --- | --- | | Tweets downloaded | 1253 | | Retweets | 317 | | Short tweets | 309 | | Tweets kept | 627 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/qz1rz5ej/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @connorhvnsen's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/aeaa7tfg) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/aeaa7tfg/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/connorhvnsen') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
mindwrapped/ppo-FrozenLake-v1
mindwrapped
2022-05-20T01:02:42Z
3
0
stable-baselines3
[ "stable-baselines3", "FrozenLake-v1", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-20T00:57:19Z
--- library_name: stable-baselines3 tags: - FrozenLake-v1 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 0.78 +/- 0.42 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1 type: FrozenLake-v1 --- # **PPO** Agent playing **FrozenLake-v1** This is a trained model of a **PPO** agent playing **FrozenLake-v1** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
Remicm/sentiment-analysis-model-for-socialmedia
Remicm
2022-05-19T22:46:09Z
15
5
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-19T21:58:14Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: sentiment-analysis-model-for-socialmedia results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.9297083333333334 - name: F1 type: f1 value: 0.9298923658729169 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sentiment-analysis-model-for-socialmedia This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2368 - Accuracy: 0.9297 - F1: 0.9299 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
Dizzykong/gpt2-medium-commands
Dizzykong
2022-05-19T22:45:13Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-17T19:05:55Z
--- tags: - generated_from_trainer model-index: - name: gpt2-medium-commands results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-medium-commands This model is a fine-tuned version of [gpt2-medium](https://huggingface.co/gpt2-medium) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
osanseviero/q-FrozenLake-v1-noSlippery1
osanseviero
2022-05-19T21:12:11Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-19T20:40:31Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-noSlippery1 results: - metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python pickle_model = load_from_hub(repo_id="osanseviero/q-FrozenLake-v1-noSlippery1", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
fangyuan/lfqa_role_classification
fangyuan
2022-05-19T20:21:02Z
3
1
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-02T23:40:39Z
--- license: cc-by-nc-sa-4.0 ---
fabiochiu/ppo-CartPole-v1
fabiochiu
2022-05-19T18:51:09Z
5
0
stable-baselines3
[ "stable-baselines3", "CartPole-v1", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-19T18:47:30Z
--- library_name: stable-baselines3 tags: - CartPole-v1 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 --- # **PPO** Agent playing **CartPole-v1** This is a trained model of a **PPO** agent playing **CartPole-v1** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
Aymene/Burnout-Danger-Prediction
Aymene
2022-05-19T18:48:59Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-05-19T18:13:28Z
--- title: Burnout Danger Prediction emoji: ⚡ colorFrom: gray colorTo: green sdk: gradio sdk_version: 3.0.2 app_file: app.py pinned: false license: mit --- Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
withU/Koelectra-five-sentiment-classification
withU
2022-05-19T16:08:31Z
0
0
null
[ "region:us" ]
null
2022-05-12T05:44:01Z
# Koelectra-five-sentiment-classification Koelectra on hugging face Transformers for Psychological Counseling - [full project link](https://github.com/jiminAn/Capstone_2022) ## how to use ``` from transformers import ElectraModel, ElectraTokenizer model = ElectraModel.from_pretrained("withU/Koelectra-five-sentiment-classification") tokenizer = ElectraTokenizer.from_pretrained("withU/Koelectra-five-sentiment-classification") categories = "withU/Koelectra-five-sentiment-classification" # 카테고리, index 파일 sentence = "나는 방금 밥을 먹었다." inputs = tokenizer.encode(sentence, return_tensors="pt") outputs = model(**inputs) softmax_logit = nn.Softmax(outputs).dim softmax_logit = softmax_logit[0].squeeze() max_index = torch.argmax(softmax_logit).item() prediction = max_index print(sentence, categories[prediction]) ``` ## dataset finetuned on - [wellness dataset](https://aihub.or.kr/opendata/keti-data/recognition-laguage/KETI-02-006) - [chatbot data](https://jeongukjae.github.io/tfds-korean/datasets/korean_chatbot_qa_data.html) - [korean-hate-speech](https://github.com/kocohub/korean-hate-speech) ## references - [WelllnessConversation-LanguageModel](https://github.com/nawnoes/WellnessConversation-LanguageModel) - [KoELECTRA](https://github.com/monologg/KoELECTRA)
linker81/PPO-LunarLander-v2
linker81
2022-05-19T15:34:39Z
24
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-08T06:37:39Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 279.25 +/- 16.69 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) model = PPO( policy = 'MlpPolicy', env = env, n_steps = 1024, batch_size = 64, n_epochs = 10, gamma = 0.999, gae_lambda = 0.98, ent_coef = 0.01, verbose=1)
AndyGo/speechbrain-asr-crdnn-rnnlm-buriy-audiobooks-2-val
AndyGo
2022-05-19T14:53:31Z
40
0
speechbrain
[ "speechbrain", "automatic-speech-recognition", "CTC", "Attention", "pytorch", "ru", "dataset:buriy-audiobooks-2-val", "arxiv:2106.04624", "license:apache-2.0", "region:us" ]
automatic-speech-recognition
2022-05-11T11:08:46Z
--- language: "ru" thumbnail: tags: - automatic-speech-recognition - CTC - Attention - pytorch - speechbrain license: "apache-2.0" datasets: - buriy-audiobooks-2-val metrics: - wer - cer --- | Release | Test WER | GPUs | |:-------------:|:--------------:| :--------:| | 22-05-11 | - | 1xK80 24GB | after 9 epochs training - valid %WER: 4.09e+02 after 12 epochs training - valid %WER: 2.07e+02, test WER: 1.78e+02 ## Pipeline description (by SpeechBrain text) This ASR system is composed with 3 different but linked blocks: - Tokenizer (unigram) that transforms words into subword units and trained with the train transcriptions of LibriSpeech. - Neural language model (RNNLM) trained on the full (380K) words dataset. - Acoustic model (CRDNN + CTC/Attention). The CRDNN architecture is made of N blocks of convolutional neural networks with normalisation and pooling on the frequency domain. Then, a bidirectional LSTM is connected to a final DNN to obtain the final acoustic representation that is given to the CTC and attention decoders. The system is trained with recordings sampled at 16kHz (single channel). The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *transcribe_file* if needed. ## Install SpeechBrain First of all, please install SpeechBrain with the following command: ``` pip install speechbrain ``` Please notice that SpeechBrain encourage you to read tutorials and learn more about [SpeechBrain](https://speechbrain.github.io). ### Transcribing your own audio files (in Russian) ```python from speechbrain.pretrained import EncoderDecoderASR asr_model = EncoderDecoderASR.from_hparams(source="AndyGo/speechbrain-asr-crdnn-rnnlm-buriy-audiobooks-2-val", savedir="pretrained_models/speech-brain-asr-crdnn-rnnlm-buriy-audiobooks-2-val") asr_model.transcribe_file('speechbrain-asr-crdnn-rnnlm-buriy-audiobooks-2-val/example.wav') ``` ### Inference on GPU To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method. ### Russian Speech Datasets Russian Speech Datasets are provided by Microsoft Corporation with CC BY-NC license. Instructions by downloading - https://github.com/snakers4/open_stt The CC BY-NC license requires that the original copyright owner be listed as the author and the work be used only for non-commercial purposes We used buriy-audiobooks-2-val dataset ## About SpeechBrain Website: https://speechbrain.github.io/ Code: https://github.com/speechbrain/speechbrain/ HuggingFace: https://huggingface.co/speechbrain/ ## Citing SpeechBrain Please, cite SpeechBrain if you use it for your research or business. @misc{speechbrain, title={{SpeechBrain}: A General-Purpose Speech Toolkit}, author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and François Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio}, year={2021}, eprint={2106.04624}, archivePrefix={arXiv}, primaryClass={eess.AS}, note={arXiv:2106.04624} }
tugrulhkarabulut/rl-course
tugrulhkarabulut
2022-05-19T13:51:25Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-19T13:22:49Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 265.29 +/- 18.80 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
HueyNemud/das22-10-camembert_pretrained
HueyNemud
2022-05-19T12:05:12Z
9
0
transformers
[ "transformers", "pytorch", "camembert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- tags: - generated_from_trainer model-index: - name: CamemBERT pretrained on french trade directories from the XIXth century results: [] --- # CamemBERT pretrained on french trade directories from the XIXth century This mdoel is part of the material of the paper > Abadie, N., Carlinet, E., Chazalon, J., Duménieu, B. (2022). A > Benchmark of Named Entity Recognition Approaches in Historical > Documents Application to 19𝑡ℎ Century French Directories. In: Uchida, > S., Barney, E., Eglin, V. (eds) Document Analysis Systems. DAS 2022. > Lecture Notes in Computer Science, vol 13237. Springer, Cham. > https://doi.org/10.1007/978-3-031-06555-2_30 The source code to train this model is available on the [GitHub repository](https://github.com/soduco/paper-ner-bench-das22) of the paper as a Jupyter notebook in `src/ner/10-camembert_pretraining.ipynb`. ## Model description This model pre-train the model [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) on a set of ~845k entries from Paris trade directories from the XIXth century extracted with OCR. Trade directory entries are short and strongly structured texts that giving the name, activity and location of a person or business, e.g: ``` Peynaud, R. de la Vieille Bouclerie, 18. Richard, Joullain et comp., (commission- —Phéâtre Français. naire, (entrepôt), au port de la Rapée- ``` ## Intended uses & limitations This model is intended for reproducibility of the NER evaluation published in the DAS2022 paper. Several derived models trained for NER on trade directories are available on HuggingFace, each trained on a different dataset : - [das22-10-camembert_pretrained_finetuned_ref](): trained for NER on ~6000 directory entries manually corrected. - [das22-10-camembert_pretrained_finetuned_pero](): trained for NER on ~6000 directory entries extracted with PERO-OCR. - [das22-10-camembert_pretrained_finetuned_tess](): trained for NER on ~6000 directory entries extracted with Tesseract. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 1.9603 | 1.0 | 100346 | 1.8005 | | 1.7032 | 2.0 | 200692 | 1.6460 | | 1.5879 | 3.0 | 301038 | 1.5570 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
Yozh2/ppo-LunarLander-v2
Yozh2
2022-05-19T10:52:04Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-19T10:51:09Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: -8.17 +/- 59.21 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
proseph/ctrlv-speechrecognition-model
proseph
2022-05-19T09:59:57Z
5
1
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-04-22T04:30:16Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: ctrlv-speechrecognition-model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ctrlv-speechrecognition-model This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the TIMIT dataset. It achieves the following results on the evaluation set: - Loss: 0.4730 - Wer: 0.3031 ## Test WER in TIMIT dataset - Wer: 0.189 [Google Colab Notebook](https://colab.research.google.com/drive/1M9ZbqvoRqshEccIlpTQGsgptpiGVgauH) ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 60 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.53 | 3.45 | 500 | 1.4021 | 0.9307 | | 0.6077 | 6.9 | 1000 | 0.4255 | 0.4353 | | 0.2331 | 10.34 | 1500 | 0.3887 | 0.3650 | | 0.1436 | 13.79 | 2000 | 0.3579 | 0.3393 | | 0.1021 | 17.24 | 2500 | 0.4447 | 0.3440 | | 0.0797 | 20.69 | 3000 | 0.4041 | 0.3291 | | 0.0657 | 24.14 | 3500 | 0.4262 | 0.3368 | | 0.0525 | 27.59 | 4000 | 0.4937 | 0.3429 | | 0.0454 | 31.03 | 4500 | 0.4449 | 0.3244 | | 0.0373 | 34.48 | 5000 | 0.4363 | 0.3288 | | 0.0321 | 37.93 | 5500 | 0.4519 | 0.3204 | | 0.0288 | 41.38 | 6000 | 0.4440 | 0.3145 | | 0.0259 | 44.83 | 6500 | 0.4691 | 0.3182 | | 0.0203 | 48.28 | 7000 | 0.5062 | 0.3162 | | 0.0171 | 51.72 | 7500 | 0.4762 | 0.3129 | | 0.0166 | 55.17 | 8000 | 0.4772 | 0.3090 | | 0.0147 | 58.62 | 8500 | 0.4730 | 0.3031 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
Amloii/gpt2-reviewspanish
Amloii
2022-05-19T08:28:35Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "GPT-2", "Spanish", "review", "fake", "es", "dataset:amazon_reviews_multi", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-04-26T15:11:07Z
--- language: es tags: - GPT-2 - Spanish - review - fake datasets: - amazon_reviews_multi widget: - text: "Me ha gustado su" example_title: "Positive review" - text: "No quiero" example_title: "Negative review" license: mit --- # GPT-2 - reviewspanish ## Model description GPT-2 is a transformers model pretrained on a very large corpus of text data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was trained to guess the next word in sentences. In our case, we created a fined-tunned model of [Spanish GTP-2](https://huggingface.co/DeepESP/gpt2-spanish) combined with the spanish reviews of Amazon from the HG dataset [Amazon-reviews-multi](https://huggingface.co/datasets/amazon_reviews_multi). With this strategy, we obtain a model for text generation able to create realistic product reviews, useful for bot detection in fake reviews. ### How to use You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, we set a seed for reproducibility: ```python from transformers import pipeline, set_seed generator = pipeline('text-generation', model='Amloii/gpt2-reviewspanish', tokenizer='Amloii/gpt2-reviewspanish') set_seed(42) generator("Me ha gustado su", max_length=30, num_return_sequences=5) [{'generated_text': 'Me ha gustado su tamaño y la flexibilidad de las correas, al ser de plastico las hebillas que lleva para sujetar las cadenas me han quitado el'}, {'generated_text': 'Me ha gustado su color y calidad. Lo peor de todo, es que las gafas no se pegan nada. La parte de fuera es finita'}, {'generated_text': 'Me ha gustado su rapidez y los ajustes de la correa, lo único que para mí, es poco manejable. Además en el bolso tiene una goma'}, {'generated_text': 'Me ha gustado su diseño y las dimensiones, pero el material es demasiado duro. Se nota bastante el uso pero me parece un poco caro para lo que'}, {'generated_text': 'Me ha gustado su aspecto aunque para lo que yo lo quería no me ha impresionado mucho. Las hojas tienen un tacto muy agradable que hace que puedas'}] ```
CherylTSW/bert-finetuned-squad
CherylTSW
2022-05-19T08:23:55Z
4
0
transformers
[ "transformers", "tf", "bert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-05-19T07:35:46Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: CherylTSW/bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # CherylTSW/bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.6669 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1902, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 1.9561 | 0 | | 0.9586 | 1 | | 0.6669 | 2 | ### Framework versions - Transformers 4.19.2 - TensorFlow 2.8.0 - Datasets 2.2.1 - Tokenizers 0.12.1
lightonai/RITA_l
lightonai
2022-05-19T08:23:12Z
24
0
transformers
[ "transformers", "pytorch", "rita", "text-generation", "protein", "custom_code", "dataset:uniref-100", "arxiv:2205.05789", "autotrain_compatible", "region:us" ]
text-generation
2022-04-25T23:12:25Z
--- language: protein tags: - protein datasets: - uniref-100 --- # RITA-L RITA is a family of autoregressive protein models, developed by a collaboration of [Lighton](https://lighton.ai/), the [OATML group](https://oatml.cs.ox.ac.uk/) at Oxford, and the [Debbie Marks Lab](https://www.deboramarkslab.com/) at Harvard. Model | #Params | d_model | layers | lm loss uniref-100 --- | --- | --- | --- | --- | [Small](https://huggingface.co/lightonai/RITA_s) | 85M | 768 | 12 | 2.31 [Medium](https://huggingface.co/lightonai/RITA_m) | 300M | 1024 | 24 | 2.01 [**Large**](https://huggingface.co/lightonai/RITA_l)| 680M | 1536 | 24 | 1.82 [XLarge](https://huggingface.co/lightonai/RITA_xl)| 1.2B | 2048 | 24 | 1.70 For full results see our preprint: https://arxiv.org/abs/2205.05789 ## Usage Instantiate a model like so: ``` python from transformers import AutoModel, AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained("lightonai/RITA_l, trust_remote_code=True") tokenizer = AutoTokenizer.from_pretrained("lightonai/RITA_l") ``` for generation we support pipelines: ``` python from transformers import pipeline rita_gen = pipeline('text-generation', model=model, tokenizer=tokenizer) sequences = rita_gen("MAB", max_length=20, do_sample=True, top_k=950, repetition_penalty=1.2, num_return_sequences=2, eos_token_id=2) for seq in sequences: print(f"seq: {seq['generated_text'].replace(' ', '')}") ``` ## How to cite @article{hesslow2022rita, title={RITA: a Study on Scaling Up Generative Protein Sequence Models}, author={Hesslow, Daniel and Zanichelli, Niccol{\'o} and Notin, Pascal and Poli, Iacopo and Marks, Debora}, journal={arXiv preprint arXiv:2205.05789}, year={2022} }
jesperjmb/CompundedIntros
jesperjmb
2022-05-19T08:08:29Z
4
0
transformers
[ "transformers", "pytorch", "bert", "next-sentence-prediction", "endpoints_compatible", "region:us" ]
null
2022-05-19T08:05:17Z
Fine-tuned KB BERT for identifying compounded introductions in the Riksdagen corpus
swayam01/hindi-clsril-100
swayam01
2022-05-19T07:45:46Z
6
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "hi", "license:cc", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-04-07T16:08:35Z
--- language: hi metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: cc model-index: - name: Wav2Vec2 Hindi Model by Swayam Mittal results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice hi type: common_voice args: hi metrics: - name: Test WER type: wer value: 24.17 --- # hindi-clsril-100 Fine-tuned [Harveenchadha/wav2vec2-pretrained-clsril-23-10k](https://huggingface.co/Harveenchadha/wav2vec2-pretrained-clsril-23-10k) on Hindi using the [Common Voice](https://huggingface.co/datasets/common_voice), included [openSLR](http://www.openslr.org/103/) Hindi dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Evaluation The model can be used directly (with or without a language model) as follows: ```python #!pip install datasets==1.4.1 #!pip install transformers==4.4.0 #!pip install torchaudio #!pip install jiwer import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2ProcessorWithLM processor_with_lm = Wav2Vec2ProcessorWithLM.from_pretrained("swayam01/hindi-clsril-100") model = Wav2Vec2ForCTC.from_pretrained("swayam01/hindi-clsril-100") test_dataset = load_dataset("common_voice", "hi", split="test") wer = load_metric("wer") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\�\।\']' resampler = torchaudio.transforms.Resample(48_000, 16_000) # We need to read the audio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) def evaluate(batch): inputs = processor_with_lm(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits batch["pred_strings"] = transcription = processor_with_lm.batch_decode(logits.numpy()).text return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 24.17 % ## Training The Common Voice hi `train`, `validation` were used for training, as well as openSLR hi `train`, `validation` and `test` datasets. The script used for training can be found here [colab](https://colab.research.google.com/drive/1YL_csb3LRjqWybeyvQhZ-Hem2dtpvq_x?usp=sharing)