modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-06-23 12:29:03
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
492 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-06-23 12:24:08
card
stringlengths
11
1.01M
pere/nb-roberta-base-scandinavian-long
pere
2021-11-25T18:21:53Z
5
0
transformers
[ "transformers", "pytorch", "jax", "tensorboard", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
# This is just a Test Model. Do NOT use for anything! Continued pretrained from the nb-roberta-base. The domain specific pretraining is done on the 102GB (Scandinavian corpus)[https://huggingface.co/datasets/NbAiLab/scandinavian]. ## Train for 180k steps for 128 sequences: ```bash ./run_mlm_flax_stream.py \ --output_dir="./" \ --model_type="roberta" \ --config_name="./" \ --tokenizer_name="./" \ --model_name_or_path="./" \ --dataset_name="NbAiLab/scandinavian" \ --max_seq_length="128" \ --weight_decay="0.01" \ --per_device_train_batch_size="128" \ --per_device_eval_batch_size="128" \ --learning_rate="6e-5" \ --warmup_steps="5000" \ --overwrite_output_dir \ --cache_dir /mnt/disks/flaxdisk/cache/ \ --num_train_steps="180000" \ --adam_beta1="0.9" \ --adam_beta2="0.98" \ --logging_steps="10000" \ --save_steps="10000" \ --eval_steps="10000" \ --preprocessing_num_workers 96 \ --auth_token True \ --adafactor \ --push_to_hub ``` ## Train for 20k steps for 512 sequences: ```bash ./run_mlm_flax_stream.py \ --output_dir="./" \ --model_type="roberta" \ --config_name="./" \ --tokenizer_name="./" \ --model_name_or_path="./" \ --dataset_name="NbAiLab/scandinavian" \ --max_seq_length="512" \ --weight_decay="0.01" \ --per_device_train_batch_size="48" \ --per_device_eval_batch_size="48" \ --learning_rate="3e-5" \ --warmup_steps="5000" \ --overwrite_output_dir \ --cache_dir /mnt/disks/flaxdisk/cache/ \ --num_train_steps="20000" \ --adam_beta1="0.9" \ --adam_beta2="0.98" \ --logging_steps="20000" \ --save_steps="10000" \ --eval_steps="10000" \ --preprocessing_num_workers 96 \ --auth_token True \ --adafactor \ --push_to_hub ``` Approximate additional training time: 1 week.
pere/norwegian-roberta-base-highlr-512
pere
2021-11-25T17:54:31Z
3
0
transformers
[ "transformers", "pytorch", "jax", "tensorboard", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
Same as norwegian-roberta-base but with higher learning rate and batch size
abdouaziiz/bert-base-wolof
abdouaziiz
2021-11-25T16:35:19Z
16
1
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "language-model", "wo", "wolof", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: wo tags: - bert - language-model - wo - wolof --- # Soraberta: Unsupervised Language Model Pre-training for Wolof **bert-base-wolof** is pretrained bert-base model on wolof language . ## Soraberta models | Model name | Number of layers | Attention Heads | Embedding Dimension | Total Parameters | | :------: | :---: | :---: | :---: | :---: | | `bert-base` | 6 | 12 | 514 | 56931622 M | ## Using Soraberta with Hugging Face's Transformers ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='abdouaziiz/bert-base-wolof') >>> unmasker("kuy yoot du [MASK].") [{'sequence': '[CLS] kuy yoot du seqet. [SEP]', 'score': 0.09505125880241394, 'token': 13578}, {'sequence': '[CLS] kuy yoot du daw. [SEP]', 'score': 0.08882280439138412, 'token': 679}, {'sequence': '[CLS] kuy yoot du yoot. [SEP]', 'score': 0.057790059596300125, 'token': 5117}, {'sequence': '[CLS] kuy yoot du seqat. [SEP]', 'score': 0.05671025067567825, 'token': 4992}, {'sequence': '[CLS] kuy yoot du yaqu. [SEP]', 'score': 0.0469999685883522, 'token': 1735}] ``` ## Training data The data sources are [Bible OT](http://biblewolof.com/) , [WOLOF-ONLINE](http://www.wolof-online.com/) [ALFFA_PUBLIC](https://github.com/getalp/ALFFA_PUBLIC/tree/master/ASR/WOLOF) ## Contact Please contact [email protected] for any question, feedback or request.
huggingtweets/profdemirtas
huggingtweets
2021-11-25T12:37:19Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/profdemirtas/1637843815628/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1374615485573165057/-AzXW69D_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">๐Ÿค– AI BOT ๐Ÿค–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">ร–zgรผr DemirtaลŸ</div> <div style="text-align: center; font-size: 14px;">@profdemirtas</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ร–zgรผr DemirtaลŸ. | Data | ร–zgรผr DemirtaลŸ | | --- | --- | | Tweets downloaded | 3205 | | Retweets | 930 | | Short tweets | 526 | | Tweets kept | 1749 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1ijpxe11/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @profdemirtas's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1pvxmqhr) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1pvxmqhr/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/profdemirtas') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
espnet/kan-bayashi_csj_asr_train_asr_conformer
espnet
2021-11-25T09:30:10Z
5
1
espnet
[ "espnet", "audio", "automatic-speech-recognition", "jp", "dataset:csj", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- tags: - espnet - audio - automatic-speech-recognition language: jp datasets: - csj license: cc-by-4.0 --- ## ESPnet2 ASR model ### `espnet/kan-bayashi_csj_asr_train_asr_conformer` This model was trained by Nelson Yalta using csj recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout 0d8cd47dd3572248b502bc831cd305e648170233 pip install -e . cd egs2/csj/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/kan-bayashi_csj_asr_train_asr_conformer ``` ## ASR config <details><summary>expand</summary> ``` config: conf/tuning/train_asr_conformer.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_conformer_raw_char_sp ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: 4 dist_rank: 0 local_rank: 0 dist_master_addr: localhost dist_master_port: 47308 dist_launcher: null multiprocessing_distributed: true cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 100 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 10 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 6 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null pretrain_path: [] pretrain_key: [] num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 15000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_sp/train/speech_shape - exp/asr_stats_raw_sp/train/text_shape.char valid_shape_file: - exp/asr_stats_raw_sp/valid/speech_shape - exp/asr_stats_raw_sp/valid/text_shape.char batch_type: numel valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train_nodup_sp/wav.scp - speech - sound - - dump/raw/train_nodup_sp/text - text - text valid_data_path_and_name_and_type: - - dump/raw/train_dev/wav.scp - speech - sound - - dump/raw/train_dev/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 valid_max_cache_size: null optim: adam optim_conf: lr: 0.002 scheduler: warmuplr scheduler_conf: warmup_steps: 25000 token_list: - <blank> - <unk> - "\u306E" - "\u3044" - "\u3067" - "\u3068" - "\u30FC" - "\u3066" - "\u3046" - "\u307E" - "\u3059" - "\u3057" - "\u306B" - "\u3063" - "\u306A" - "\u3048" - "\u305F" - "\u3053" - "\u304C" - "\u304B" - "\u306F" - "\u308B" - "\u3042" - "\u3093" - "\u308C" - "\u3082" - "\u3092" - "\u305D" - "\u308A" - "\u3089" - "\u3051" - "\u304F" - "\u3069" - "\u3088" - "\u304D" - "\u3060" - "\u304A" - "\u30F3" - "\u306D" - "\u4E00" - "\u3055" - "\u30B9" - "\u8A00" - "\u3061" - "\u3064" - "\u5206" - "\u30C8" - "\u3084" - "\u4EBA" - "\u30EB" - "\u601D" - "\u308F" - "\u6642" - "\u65B9" - "\u3058" - "\u30A4" - "\u884C" - "\u4F55" - "\u307F" - "\u5341" - "\u30E9" - "\u4E8C" - "\u672C" - "\u8A9E" - "\u5927" - "\u7684" - "\u30AF" - "\u30BF" - "\u308D" - "\u3070" - "\u3087" - "\u3083" - "\u97F3" - "\u51FA" - "\u305B" - "\u30C3" - "\u5408" - "\u65E5" - "\u4E2D" - "\u751F" - "\u4ECA" - "\u898B" - "\u30EA" - "\u9593" - "\u8A71" - "\u3081" - "\u30A2" - "\u5F8C" - "\u81EA" - "\u305A" - "\u79C1" - "\u30C6" - "\u4E0A" - "\u5E74" - "\u5B66" - "\u4E09" - "\u30B7" - "\u5834" - "\u30C7" - "\u5B9F" - "\u5B50" - "\u4F53" - "\u8003" - "\u5BFE" - "\u7528" - "\u6587" - "\u30D1" - "\u5F53" - "\u7D50" - "\u5EA6" - "\u5165" - "\u8A33" - "\u30D5" - "\u98A8" - "\u30E0" - "\u30D7" - "\u6700" - "\u30C9" - "\u30EC" - "\u30ED" - "\u4F5C" - "\u6570" - "\u76EE" - "\u30B8" - "\u95A2" - "\u30B0" - "\u767A" - "\u8005" - "\u5B9A" - "\u3005" - "\u3050" - "\u30B3" - "\u4E8B" - "\u624B" - "\u5168" - "\u5909" - "\u30DE" - "\u6027" - "\u8868" - "\u4F8B" - "\u52D5" - "\u8981" - "\u5148" - "\u524D" - "\u610F" - "\u90E8" - "\u4F1A" - "\u6301" - "\u30E1" - "\u5316" - "\u9054" - "\u4ED8" - "\u5F62" - "\u73FE" - "\u4E94" - "\u30AB" - "\u3079" - "\u53D6" - "\u56DE" - "\u5E38" - "\u4F7F" - "\u611F" - "\u66F8" - "\u6C17" - "\u6CD5" - "\u7A0B" - "\u3071" - "\u56DB" - "\u591A" - "\u8272" - "\u30BB" - "\u7406" - "\u975E" - "\u30D0" - "\u58F0" - "\u5358" - "\u756A" - "\uFF21" - "\u6210" - "\u540C" - "\u901A" - "\u30A3" - "\u679C" - "\u30AD" - "\u554F" - "\u984C" - "\u69CB" - "\u56FD" - "\u6765" - "\u9AD8" - "\u6B21" - "\u9A13" - "\u3052" - "\u30C1" - "\u4EE5" - "\u3054" - "\u4EE3" - "\u30E2" - "\u30AA" - "\u51C4" - "\u7279" - "\u77E5" - "\u30E5" - "\u7269" - "\u660E" - "\u70B9" - "\u5473" - "\u767E" - "\u89E3" - "\u8FD1" - "\u8B58" - "\u5730" - "\u540D" - "\u805E" - "\u4E0B" - "\u5C0F" - "\u6559" - "\u30B5" - "\u70BA" - "\u4E5D" - "\u30D6" - "\u5BB6" - "\u30CB" - "\u521D" - "\u30D9" - "\u30E7" - "\u5C11" - "\u8A8D" - "\u8AD6" - "\u529B" - "\u516D" - "\u30D3" - "\u60C5" - "\u7FD2" - "\u30A6" - "\u7ACB" - "\u5FC3" - "\u8ABF" - "\u5831" - "\u30A8" - "\uFF24" - "\uFF2E" - "\u793A" - "\u793E" - "\u9055" - "\u969B" - "\u3056" - "\u8AAC" - "\u5FDC" - "\u98DF" - "\u72B6" - "\u9577" - "\u7814" - "\u6821" - "\u5185" - "\u639B" - "\u30DF" - "\u5916" - "\u5411" - "\u80FD" - "\u516B" - "\u9762" - "\u7A76" - "\u7136" - "\u3073" - "\u30D4" - "\u4E3B" - "\u4FC2" - "\u5024" - "\u91CD" - "\u8A5E" - "\u4F9B" - "\u5F97" - "\u5FC5" - "\u5973" - "\u78BA" - "\u7D42" - "\u30BA" - "\u6BCD" - "\u696D" - "\u7387" - "\u65B0" - "\u6D3B" - "\u697D" - "\u8449" - "\u8A08" - "\u30CA" - "\u3080" - "\u6240" - "\u4E16" - "\u6B63" - "\u30E3" - "\u8A18" - "\u671F" - "\u5207" - "\u3078" - "\u6A5F" - "\u30DA" - "\u5343" - "\u985E" - "\u5143" - "\u614B" - "\u826F" - "\u5728" - "\u6709" - "\u30C0" - "\u4E03" - "\uFF23" - "\u5225" - "\u30EF" - "\u691C" - "\u7D9A" - "\u9078" - "\u57FA" - "\u76F8" - "\u6708" - "\u4FA1" - "\u7D20" - "\u4ED6" - "\u6BD4" - "\u9023" - "\u96C6" - "\u30A7" - "\u307B" - "\u4F4D" - "\u597D" - "\uFF2D" - "\u5F37" - "\u4E0D" - "\u5FA1" - "\u6790" - "\u30DD" - "\u7121" - "\u89AA" - "\u53D7" - "\u3086" - "\u7F6E" - "\u8C61" - "\u4ED5" - "\u5F0F" - "\u30CD" - "\u6307" - "\u8AAD" - "\u6C7A" - "\u8ECA" - "\u96FB" - "\u904E" - "\u30B1" - "\u8A55" - "\u5229" - "\u6B8B" - "\u8D77" - "\u30CE" - "\u7D4C" - "\u56F3" - "\u4F1D" - "\u500B" - "\u30C4" - "\u7BC0" - "\u9053" - "\u5E73" - "\u91D1" - "\u899A" - "\uFF34" - "\u4F4F" - "\u59CB" - "\u63D0" - "\u5B58" - "\u5171" - "\u30DB" - "\u7B2C" - "\u7D44" - "\u89B3" - "\u80B2" - "\u6771" - "\u305E" - "\u958B" - "\u52A0" - "\u5F15" - "\uFF33" - "\u53E3" - "\u6C34" - "\u5BB9" - "\u5468" - "\u5B87" - "\u7D04" - "\u5B57" - "\u3076" - "\u9803" - "\u3072" - "\u5B99" - "\u6BB5" - "\u30BD" - "\u97FF" - "\u30DC" - "\u53CB" - "\u91CF" - "\u6599" - "\u3085" - "\u5CF6" - "\u8EAB" - "\u76F4" - "\u753B" - "\u7DDA" - "\u54C1" - "\u5DEE" - "\u4EF6" - "\u9069" - "\u5F35" - "\u8FBA" - "\u8FBC" - "\u91CE" - "\u69D8" - "\u578B" - "\u4E88" - "\u7A2E" - "\u5074" - "\u8FF0" - "\u5C71" - "\u5C4B" - "\u5E30" - "\u30CF" - "\u4E57" - "\u539F" - "\u683C" - "\u8CEA" - "\u666E" - "\uFF30" - "\u9020" - "\u753A" - "\u30B4" - "\u82F1" - "\u63A5" - "\u304E" - "\u6E2C" - "\u3075" - "\u7FA9" - "\u4EAC" - "\u5272" - "\u5236" - "\u7B54" - "\u5404" - "\u4FE1" - "\u754C" - "\u6211" - "\u7A7A" - "\uFF0E" - "\u7740" - "\u53EF" - "\u66F4" - "\u6D77" - "\u4E0E" - "\u9032" - "\u52B9" - "\u5F7C" - "\u771F" - "\u7530" - "\u5FB4" - "\u6D41" - "\u5177" - "\uFF32" - "\u5E02" - "\u67FB" - "\u5B89" - "\uFF22" - "\u5E83" - "\u50D5" - "\u6CE2" - "\u5C40" - "\u8A2D" - "\u7537" - "\u767D" - "\u30B6" - "\u53CD" - "\u6226" - "\u533A" - "\u6C42" - "\u96D1" - "\uFF29" - "\u6B69" - "\u8CB7" - "\u982D" - "\u7B97" - "\u534A" - "\u4FDD" - "\u5E03" - "\u96E3" - "\uFF2C" - "\u5224" - "\u843D" - "\u8DB3" - "\u5E97" - "\u7533" - "\u8FD4" - "\u30AE" - "\u4E07" - "\u6728" - "\u6614" - "\u8F03" - "\u7D22" - "\uFF26" - "\u30B2" - "\u6B86" - "\u60AA" - "\u5883" - "\u548C" - "\u907A" - "\u57DF" - "\u968E" - "\u542B" - "\u305C" - "\u30BC" - "\u65AD" - "\u9650" - "\u63A8" - "\u4F4E" - "\u5F71" - "\u898F" - "\u6319" - "\u90FD" - "\u307C" - "\u6848" - "\u4EEE" - "\u88AB" - "\u547C" - "\u30A1" - "\u96E2" - "\u7CFB" - "\u79FB" - "\u30AC" - "\u5DDD" - "\u6E96" - "\u904B" - "\u6761" - "\u5FF5" - "\u6C11" - "\uFF27" - "\u7236" - "\u75C5" - "\u79D1" - "\u4E21" - "\u7531" - "\u8A66" - "\u56E0" - "\u547D" - "\u795E" - "\uFF28" - "\u7570" - "\u7C21" - "\u53E4" - "\u6F14" - "\u5897" - "\u51E6" - "\u8B70" - "\u7DD2" - "\u7CBE" - "\u6613" - "\u53F7" - "\u65CF" - "\u52FF" - "\u60F3" - "\u5217" - "\u5C0E" - "\u8EE2" - "\u54E1" - "\u30E6" - "\u6BCE" - "\u8996" - "\u4E26" - "\u98DB" - "\u4F3C" - "\u6620" - "\u7D71" - "\u4EA4" - "\u30D2" - "\u6B4C" - "\u5F85" - "\u8CC7" - "\u8907" - "\u8AA4" - "\u63DB" - "\u6A19" - "\u6CC1" - "\u914D" - "\u62BD" - "\u822C" - "\u7403" - "\u9006" - "\u65C5" - "\u6628" - "\u9662" - "\u99C5" - "\u74B0" - "\u5BDF" - "\u516C" - "\u6B73" - "\u5C5E" - "\u8F9E" - "\u5947" - "\u6CBB" - "\u5E7E" - "\u82E5" - "\u58F2" - "\u632F" - "\u7686" - "\u6CE8" - "\u6B74" - "\u9805" - "\u5F93" - "\u5747" - "\u5F79" - "\u9806" - "\u53BB" - "\u56E3" - "\u8853" - "\u7DF4" - "\u6FC0" - "\u6982" - "\u66FF" - "\u7B49" - "\u98F2" - "\u53F2" - "\u88DC" - "\u901F" - "\u53C2" - "\u65E9" - "\u53CE" - "\u9332" - "\u671D" - "\u5186" - "\u5370" - "\u5668" - "\u63A2" - "\u7D00" - "\u9001" - "\u6E1B" - "\u571F" - "\u5929" - "\uFF2F" - "\u50BE" - "\u72AC" - "\u9060" - "\u5E2F" - "\u52A9" - "\u6A2A" - "\u591C" - "\u7523" - "\u8AB2" - "\u5BA2" - "\u629E" - "\u5712" - "\u4E38" - "\u50CF" - "\u50CD" - "\u6750" - "\u5DE5" - "\u904A" - "\u544A" - "\u523A" - "\u6539" - "\u8D64" - "\u8074" - "\u4ECB" - "\u8077" - "\u53F0" - "\u77ED" - "\u8AB0" - "\u7D30" - "\u672A" - "\u770C" - "\u9928" - "\u6B62" - "\u53F3" - "\u306C" - "\u3065" - "\u56F2" - "\u8A0E" - "\u6B7B" - "\u5EFA" - "\u592B" - "\u7AE0" - "\u964D" - "\u666F" - "\u706B" - "\u30A9" - "\u9E97" - "\u8B1B" - "\u72EC" - "\u5DE6" - "\u5C64" - "\uFF25" - "\u5C55" - "\u653F" - "\u5099" - "\u4F59" - "\u7D76" - "\u5065" - "\u518D" - "\u9580" - "\u5546" - "\u52DD" - "\u52C9" - "\u82B1" - "\u30E4" - "\u8EF8" - "\u97FB" - "\u66F2" - "\u6574" - "\u652F" - "\u6271" - "\u53E5" - "\u6280" - "\u5317" - "\u30D8" - "\u897F" - "\u5247" - "\u4FEE" - "\u6388" - "\u9031" - "\u5BA4" - "\u52D9" - "\u9664" - "\u533B" - "\u6563" - "\u56FA" - "\u7AEF" - "\u653E" - "\u99AC" - "\u7A4D" - "\u8208" - "\u592A" - "\u5ACC" - "\u9F62" - "\u672B" - "\u7D05" - "\u6E90" - "\u6E80" - "\u5931" - "\u5BDD" - "\u6D88" - "\u6E08" - "\u4FBF" - "\u983C" - "\u4F01" - "\u5B8C" - "\u4F11" - "\u9752" - "\u7591" - "\u8D70" - "\u6975" - "\u767B" - "\u8AC7" - "\u6839" - "\u6025" - "\u512A" - "\u7D75" - "\u623B" - "\u5E2B" - "\u5F59" - "\u6DF7" - "\u8DEF" - "\u7E70" - "\uFF2B" - "\u8A3C" - "\u713C" - "\u6562" - "\u5BB3" - "\u96F6" - "\u6253" - "\u82E6" - "\u7701" - "\u7D19" - "\u5C02" - "\u8DDD" - "\u9854" - "\u8D8A" - "\u4E89" - "\u56F0" - "\u5BC4" - "\u5199" - "\u4E92" - "\u6DF1" - "\u5A5A" - "\u7DCF" - "\u89A7" - "\u80CC" - "\u7BC9" - "\u6E29" - "\u8336" - "\u62EC" - "\u8CA0" - "\u590F" - "\u89E6" - "\u7D14" - "\u9045" - "\u58EB" - "\u96A3" - "\u6050" - "\u91C8" - "\u967A" - "\u5150" - "\u5BBF" - "\u6A21" - "\u77F3" - "\u983B" - "\u5B09" - "\u5EA7" - "\u7642" - "\u7E4B" - "\uFF38" - "\u5C06" - "\u8FFD" - "\u5EAD" - "\u6238" - "\u5371" - "\u5BC6" - "\u5DF1" - "\u9014" - "\u7BC4" - "\u99C4" - "\u7D39" - "\u4EFB" - "\u968F" - "\u5357" - "\uFF11" - "\u5EB7" - "\u9818" - "\u5FD8" - "\u3045" - "\u59FF" - "\u7F8E" - "\u55B6" - "\u6349" - "\u65E2" - "\u7167" - "\uFF2A" - "\u4EF2" - "\u9152" - "\u52E2" - "\u9ED2" - "\u5149" - "\u6E21" - "\u75DB" - "\u62C5" - "\u5F31" - "\u307D" - "\uFF36" - "\u7D0D" - "\u629C" - "\u5E45" - "\u6D17" - "\u7A81" - "\u671B" - "\u5373" - "\u9858" - "\u7565" - "\uFF12" - "\u9811" - "\u5FD7" - "\u5B85" - "\u7247" - "\u656C" - "\u6751" - "\u60B2" - "\u81A8" - "\u89D2" - "\u30E8" - "\u4F9D" - "\u8A73" - "\u5F8B" - "\u9B5A" - "\u52B4" - "\u5A66" - "\u6163" - "\u732B" - "\u5019" - "\u8001" - "\u558B" - "\u79F0" - "\u796D" - "\u7FA4" - "\u7E2E" - "\u6C38" - "\u616E" - "\u5EF6" - "\u7A3F" - "\u611B" - "\u8089" - "\u9589" - "\u8CBB" - "\u6295" - "\u6D3E" - "\u81F4" - "\u7BA1" - "\u7C73" - "\u5E95" - "\u7D99" - "\u6C0F" - "\u690D" - "\u501F" - "\u5727" - "\u52E4" - "\u6F22" - "\u66AE" - "\u5F27" - "\u88C5" - "\u57CE" - "\u5287" - "\u76DB" - "\u63F4" - "\u9244" - "\u8C37" - "\u5E72" - "\u7E26" - "\u8A31" - "\u6016" - "\u9A5A" - "\u8A8C" - "\uFF35" - "\u8B77" - "\u5B88" - "\u8033" - "\u6B32" - "\u8239" - "\uFF10" - "\u5178" - "\u67D3" - "\u7D1A" - "\u98FE" - "\u5144" - "\u71B1" - "\u8F09" - "\u88FD" - "\u5BFA" - "\u662D" - "\u7FFB" - "\u5426" - "\u5584" - "\u62BC" - "\u53CA" - "\u6A29" - "\u559C" - "\u670D" - "\u8CB0" - "\u8EFD" - "\u677F" - "\u61B6" - "\u98FC" - "\u5C3E" - "\u5FA9" - "\u5E78" - "\u7389" - "\u5354" - "\u679A" - "\u90CE" - "\u8840" - "\u524A" - "\u5922" - "\u63A1" - "\u6674" - "\u6B20" - "\u602A" - "\u65BD" - "\u7DE8" - "\u98EF" - "\u7B56" - "\u9000" - "\uFF39" - "\u8349" - "\u61F8" - "\u6458" - "\u58CA" - "\u4F38" - "\u85AC" - "\u9996" - "\u5BFF" - "\u53B3" - "\u606F" - "\u5C45" - "\u643A" - "\u9F3B" - "\u9280" - "\u4EA1" - "\u6CCA" - "\u8857" - "\u9759" - "\u9CE5" - "\u677E" - "\u5F92" - "\u969C" - "\u7B4B" - "\u7559" - "\u51B7" - "\u5C24" - "\u68EE" - "\u5438" - "\u5012" - "\u68B0" - "\u6D0B" - "\u821E" - "\u6A4B" - "\u500D" - "\u6255" - "\u5352" - "\u7E04" - "\u6C5A" - "\u53F8" - "\u6625" - "\u793C" - "\u66DC" - "\u6545" - "\u526F" - "\u5F01" - "\u5439" - "\u85E4" - "\u8DE1" - "\u962A" - "\u4E86" - "\u91E3" - "\u9632" - "\u7834" - "\u6012" - "\u662F" - "\u30A5" - "\u7AF6" - "\u8179" - "\u4E95" - "\u4E08" - "\u64AE" - "\u72ED" - "\u5BD2" - "\u7B46" - "\u5965" - "\u8C4A" - "\u732E" - "\u5C31" - "\u5A18" - "\u79D2" - "\u6C5F" - "\u8E0F" - "\u8A13" - "\u7372" - "\u96E8" - "\u6BBA" - "\u57CB" - "\u64CD" - "\u9AA8" - "\u8D85" - "\u6D5C" - "\u8B66" - "\u7DD1" - "\u7D61" - "\u8133" - "\u7B11" - "\u6D6E" - "\u7D66" - "\u7126" - "\u8A70" - "\u878D" - "\u738B" - "\u5C3A" - "\u5E7C" - "\u820C" - "\u663C" - "\u88CF" - "\u6CE3" - "\u67C4" - "\u9396" - "\u62E1" - "\u8A3A" - "\u7DE0" - "\u5B98" - "\u6697" - "\u820E" - "\u6298" - "\u5264" - "\u4E73" - "\u6B6F" - "\u7248" - "\u5C04" - "\u8108" - "\u9707" - "\u7802" - "\u4F34" - "\u72AF" - "\u4F50" - "\u5DDE" - "\u8FB2" - "\u8DA3" - "\u990A" - "\u675F" - "\u6E2F" - "\u8FEB" - "\u5F3E" - "\u798F" - "\u51AC" - "\u541B" - "\u6B66" - "\u77AC" - "\u67A0" - "\u6CA2" - "\u661F" - "\u5BCC" - "\u6557" - "\u5D0E" - "\u6355" - "\u8377" - "\u5F1F" - "\u95BE" - "\u7E54" - "\u7C89" - "\u725B" - "\u8DF5" - "\u9999" - "\u6797" - "\u83DC" - "\u62CD" - "\u63CF" - "\u888B" - "\u6607" - "\u91DD" - "\u8FCE" - "\u585A" - "\u5A46" - "\uFF49" - "\u8ECD" - "\uFF13" - "\uFF37" - "\u5BC2" - "\u8F29" - "\u3074" - "\u5DFB" - "\u4E01" - "\u504F" - "\u79CB" - "\u5E9C" - "\u6CC9" - "\u81F3" - "\u6368" - "\u7956" - "\u8584" - "\u5B97" - "\u5FB9" - "\u93E1" - "\u75C7" - "\u6CB9" - "\u8131" - "\u9CF4" - "\u7AE5" - "\u6BDB" - "\u9077" - "\u84CB" - "\u58C1" - "\u5915" - "\u5589" - "\u907F" - "\u984D" - "\u6EA2" - "\u96F0" - "\u4EE4" - "\u59C9" - "\u63E1" - "\u3077" - "\u523B" - "\u62E0" - "\u8CA1" - "\u8FF7" - "\u9063" - "\u82B8" - "\u5E8F" - "\u76E3" - "\u8457" - "\u5869" - "\u5009" - "\u7F6A" - "\u6F5C" - "\u7D5E" - "\u764C" - "\u5BAE" - "\u5E2D" - "\u8F2A" - "\u594F" - "\u846C" - "\u6C60" - "\u6CBF" - "\u5FAE" - "\u5305" - "\u76CA" - "\u76AE" - "\u4FC3" - "\u6297" - "\u5FEB" - "\u66AB" - "\u52E7" - "\u8CA9" - "\u8C46" - "\u5B63" - "\u529F" - "\u9A12" - "\uFF54" - "\u97D3" - "\u6ED1" - "\u75B2" - "\u9003" - "\u9061" - "\u5E79" - "\u60A9" - "\u83D3" - "\u672D" - "\u6804" - "\u9177" - "\u8B1D" - "\u6C96" - "\u96EA" - "\u5360" - "\u60D1" - "\u63FA" - "\u866B" - "\u62B1" - "\uFF4B" - "\u5CA1" - "\u6E9C" - "\u8535" - "\u7763" - "\u6838" - "\u4E71" - "\u4E45" - "\u9EC4" - "\u9670" - "\u7720" - "\u7B26" - "\u6B8A" - "\u628A" - "\u6291" - "\u5E0C" - "\u63C3" - "\u6483" - "\u5EAB" - "\u5409" - "\u6E6F" - "\u65CB" - "\u640D" - "\u52AA" - "\u64E6" - "\u9769" - "\u6E0B" - "\u773C" - "\u592E" - "\u8CDE" - "\u5374" - "\u5948" - "\u539A" - "\u59D4" - "\u83EF" - "\u96A0" - "\uFF4E" - "\u30CC" - "\u9BAE" - "\u515A" - "\u5C65" - "\u8A98" - "\u6469" - "\u6162" - "\u5442" - "\u7206" - "\u7BB1" - "\u6075" - "\u9678" - "\u7DCA" - "\u7E3E" - "\u5742" - "\u7B52" - "\u7532" - "\u5348" - "\u5230" - "\u8CAC" - "\u5C0A" - "\u6CF3" - "\u6279" - "\u7518" - "\u5B6B" - "\u7159" - "\u8A2A" - "\u50B7" - "\u6E05" - "\u716E" - "\u88C1" - "\u9694" - "\u8ED2" - "\uFF31" - "\u7FBD" - "\u5D29" - "\u7A74" - "\u7CD6" - "\u707D" - "\u5275" - "\u6F70" - "\u6691" - "\u87BA" - "\u653B" - "\u6577" - "\u6575" - "\u76E4" - "\u9732" - "\u7A93" - "\u63B2" - "\u81E8" - "\u53E9" - "\u5145" - "\u4FFA" - "\u8F38" - "\u967D" - "\u6B27" - "\u6687" - "\u6B6A" - "\u6DFB" - "\u60A3" - "\u5FD9" - "\u70AD" - "\u829D" - "\u8EDF" - "\u88D5" - "\u7E01" - "\u6F2B" - "\u7A1A" - "\u7968" - "\u8A69" - "\u5CB8" - "\u7687" - "\uFF4A" - "\u6627" - "\u5100" - "\u5857" - "\u8E0A" - "\u8AF8" - "\u6D74" - "\u904D" - "\u66D6" - "\u5BE7" - "\u99B4" - "\u5339" - "\u03B1" - "\u627F" - "\u30BE" - "\u6383" - "\u5375" - "\u5999" - "\u3043" - "\u66B4" - "\u62B5" - "\u604B" - "\u8863" - "\u6EB6" - "\u7DAD" - "\u514D" - "\u6392" - "\u685C" - "\u7573" - "\u7B87" - "\u6398" - "\u535A" - "\u6FC3" - "\u7FCC" - "\u8056" - "\u7DB2" - "\u885B" - "\u64EC" - "\u5E8A" - "\u9178" - "\u6669" - "\u4E7E" - "\u90AA" - "\u7551" - "\u6EDE" - "\u5802" - "\u7E41" - "\u4ECF" - "\u5FB3" - "\u7DE9" - "\u6A39" - "\u6551" - "\u633F" - "\u68D2" - "\u906D" - "\u676F" - "\u6065" - "\u6E56" - "\u6E09" - "\u81D3" - "\u8CB4" - "\u723A" - "\u7981" - "\u4F75" - "\u5263" - "\u786C" - "\u58C7" - "\u80A9" - "\u6D78" - "\u4F0A" - "\u5B9D" - "\u6094" - "\u8E8D" - "\u6DB2" - "\u99C6" - "\u6D25" - "\u307A" - "\u6D45" - "\u8B72" - "\u5CA9" - "\u9B45" - "\u587E" - "\u03B8" - "\u6696" - "\u6CB3" - "\u8A95" - "\u7F36" - "\u5507" - "\u80A2" - "\u6328" - "\u62F6" - "\u7A0E" - "\u50AC" - "\u8A34" - "\uFF58" - "\u968A" - "\u659C" - "\u770B" - "\uFF50" - "\u6D66" - "\u8352" - "\uFF41" - "\u71C3" - "\u52A3" - "\u5BA3" - "\u8FBF" - "\u790E" - "\u62FE" - "\u5C4A" - "\u6905" - "\u5EC3" - "\u6749" - "\u9AEA" - "\u77E2" - "\u67D4" - "\u55AB" - "\u73CD" - "\u57FC" - "\u88C2" - "\u63B4" - "\u59BB" - "\u8CA7" - "\u934B" - "\u59A5" - "\u59B9" - "\u5175" - "\uFF14" - "\u623F" - "\u5951" - "\u65E8" - "\uFF44" - "\u0394" - "\u5DE1" - "\u8A02" - "\u5F90" - "\u8CC0" - "\u7BED" - "\u9810" - "\u84C4" - "\u8846" - "\u5DE8" - "\u5506" - "\u65E6" - "\u5531" - "\u9047" - "\u6E67" - "\u8010" - "\u96C4" - "\u6D99" - "\u8CB8" - "\u822A" - "\u5104" - "\u5618" - "\u6C37" - "\u78C1" - "\u679D" - "\u8CAB" - "\u61D0" - "\u52DF" - "\u8155" - "\u65E7" - "\u7AF9" - "\u99D0" - "\u8A72" - "\uFF52" - "\u5893" - "\u518A" - "\u80F8" - "\u758E" - "\u773A" - "\uFF45" - "\u9855" - "\u631F" - "\u55A7" - "\u520A" - "\u68C4" - "\u990C" - "\u67F1" - "\u5800" - "\u8ACB" - "\u79D8" - "\u6717" - "\u96F2" - "\u8170" - "\u7A32" - "\u828B" - "\u8C9D" - "\u5C48" - "\u91CC" - "\u508D" - "\u8102" - "\u6FC1" - "\u54B2" - "\u6BD2" - "\u6EC5" - "\u5629" - "\u6442" - "\u6E7E" - "\u83CC" - "\u8150" - "\u5211" - "\u5F25" - "\u5AC1" - "\u61A7" - "\u4E18" - "\u5C90" - "\u52B1" - "\u8CA2" - "\u6C41" - "\u96C7" - "\u5076" - "\u9774" - "\u72D9" - "\u719F" - "\u900F" - "\uFF59" - "\u8CFC" - "\u5319" - "\uFF46" - "\uFF15" - "\u92AD" - "\u6D12" - "\u8A17" - "\u809D" - "\u963F" - "\u80C3" - "\uFF53" - "\u885D" - "\u621A" - "\uFF4D" - "\u84B8" - "\u4FF3" - "\u8972" - "\u5265" - "\u5BE9" - "\u6817" - "\u8A87" - "\u5237" - "\u7CF8" - "\u90F7" - "\u5049" - "\u6C57" - "\u53CC" - "\u98FD" - "\u77DB" - "\u984E" - "\u552F" - "\u6590" - "\u7DB4" - "\u5B64" - "\u90F5" - "\u76D7" - "\u9E7F" - "\u8CC3" - "\u76FE" - "\u682A" - "\u9ED9" - "\u7C8B" - "\u63DA" - "\u9808" - "\u7092" - "\u9285" - "\u5E81" - "\u9B54" - "\u75E9" - "\u9802" - "\u76BF" - "\u970A" - "\u5E55" - "\u570F" - "\u574A" - "\u72C2" - "\u8912" - "\u9451" - "\u50B5" - "\u77AD" - "\u565B" - "\u5E33" - "\u5782" - "\u8870" - "\u4ED9" - "\u9EA6" - "\u8CA8" - "\u7AAA" - "\u6F6E" - "\u6FEF" - "\u5238" - "\u7D1B" - "\u7384" - "\u7C4D" - "\uFF43" - "\u74F6" - "\u5DE3" - "\u5192" - "\u6CBC" - "\u99D2" - "\u5C3D" - "\u517C" - "\u7C97" - "\u63BB" - "\u80BA" - "\u9154" - "\uFF4C" - "\u702C" - "\u505C" - "\u6F20" - "\u673A" - "\u916C" - "\u4FD7" - "\u8986" - "\u5C3B" - "\u9375" - "\u5805" - "\u6F2C" - "\u2212" - "\u79C0" - "\u6885" - "\u9042" - "\u57F9" - "\u871C" - "\uFF42" - "\u30FB" - "\u52C7" - "\u8ECC" - "\u7F85" - "\uFF3A" - "\u5BB4" - "\u8C5A" - "\u7A3C" - "\u62AB" - "\u8CAF" - "\u9EBB" - "\u6C4E" - "\u51DD" - "\u5FE0" - "\uFF55" - "\u5F80" - "\u8AE6" - "\u8B19" - "\u6F0F" - "\u5410" - "\u3047" - "\u7652" - "\u9663" - "\u6D6A" - "\u52D8" - "\u53D9" - "\u5200" - "\u67B6" - "\u57F7" - "\u5674" - "\u5197" - "\u4E4F" - "\u837B" - "\u81ED" - "\u708A" - "\u598A" - "\u808C" - "\u8CDB" - "\u5C0B" - "\u9175" - "\u757F" - "\u5270" - "\u706F" - "\u8C6A" - "\u9685" - "\u9905" - "\u7949" - "\u80AF" - "\u62DB" - "\u7A3D" - "\u5F6B" - "\u5F69" - "\u03B2" - "\u6B04" - "\u718A" - "\u68CB" - "\u6CB8" - "\u6C88" - "\u8339" - "\u7ABA" - "\u5B9C" - "\u8217" - "\u7CA7" - "\u683D" - "\u80AA" - "\u9665" - "\u6CE1" - "\u95D8" - "\u8F3F" - "\u5353" - "\u7070" - "\u8F9B" - "\u6F01" - "\u9F13" - "\u585E" - "\u8CD1" - "\u76C6" - "\u68FA" - "\u6311" - "\u54F2" - "\u9867" - "\u8B21" - "\u8302" - "\u90A3" - "\u80DE" - "\u4F3A" - "\u5A92" - "\u708E" - "\u67D0" - "\u564C" - "\u5203" - "\u6F5F" - "\u7656" - "\u4E80" - "\u63EE" - "\u511F" - "\u4E39" - "\u7DEF" - "\u9DB4" - "\u4E4B" - "\u6BB4" - "\u4EF0" - "\u5949" - "\u7E2B" - "\u75F4" - "\u8650" - "\u61B2" - "\u71E5" - "\u6DC0" - "\uFF57" - "\u88F8" - "\u82BD" - "\u63A7" - "\u95A3" - "\u7587" - "\u925B" - "\u8178" - "\u5642" - "\u935B" - "\u654F" - "\u9162" - "\u938C" - "\u81E3" - "\u8E74" - "\u5A01" - "\u6D44" - "\u7965" - "\u795D" - "\u86C7" - "\u811A" - "\u4F0F" - "\u6F54" - "\u5510" - "\u6955" - "\u57A3" - "\u932F" - "\u514B" - "\u614C" - "\u6BBF" - "\u819C" - "\u61A9" - "\u9065" - "\u82DB" - "\u9676" - "\u8997" - "\u78E8" - "\u624D" - "\u5E1D" - "\u642C" - "\u722A" - "\u90CA" - "\u80A5" - "\u819D" - "\u62D2" - "\u868A" - "\u5208" - "\u5132" - "\uFF48" - "\u596E" - "\u7761" - "\u5BEE" - "\uFF17" - "\u4FB5" - "\u9B31" - "\u635C" - "\u6DBC" - "\u5A20" - "\u7363" - "\u7C92" - "\u963B" - "\u6CE5" - "\u7ADC" - "\u91A4" - "\u92ED" - "\u6606" - "\u9234" - "\u7DBF" - "\u830E" - "\u8107" - "\u7948" - "\u8A60" - "\u6B53" - "\u7F70" - "\u68DA" - "\u83CA" - "\u6069" - "\u7267" - "\u540A" - "\u8DF3" - "\u6DE1" - "\u7F72" - "\u596A" - "\u9038" - "\u6170" - "\u5EB6" - "\u9262" - "\u8B5C" - "\u5ECA" - "\u5606" - "\u62ED" - "\u8CED" - "\u99C1" - "\u7F8A" - "\u5384" - "\u7D10" - "\u9673" - "\u816B" - "\u6841" - "\u9298" - "\u96CC" - "\u636E" - "\u62DD" - "\u60E8" - "\u96DB" - "\u845B" - "\u7FA8" - "\u609F" - "\u76DF" - "\u7E4A" - "\u9192" - "\u65EC" - "\u6DAF" - "\u8CC4" - "\u6E7F" - "\u6F02" - "\u7D2B" - "\u30F4" - "\u4E9C" - "\u8AA0" - "\u5854" - "\u5E4C" - "\u80C6" - "\u64A5" - "\u865A" - "\u6F64" - "\u9699" - "\u5F84" - "\u6C72" - "\u8CE2" - "\u5BF8" - "\u8888" - "\u88DF" - "\u8266" - "\uFF19" - "\u62D8" - "\uFF47" - "\u5841" - "\u5BDB" - "\u51A0" - "\u614E" - "\u971E" - "\u731B" - "\u67CF" - "\u733F" - "\u9084" - "\u50E7" - "\u53EB" - "\u53F1" - "\u72E9" - "\u63C9" - "\u7D2F" - "\u5982" - "\u7897" - "\u6BBB" - "\u906E" - "\u5FCD" - "\u6EF4" - "\u6B96" - "\u8D08" - "\u74A7" - "\u6F38" - "\u6589" - "\u03BC" - "\u9686" - "\u6176" - "\u72A0" - "\u7272" - "\u5146" - "\u576A" - "\u6284" - "\u65D7" - "\u50DA" - "\u5C3F" - "\u51CD" - "\u902E" - "\u7B39" - "\u8F1D" - "\u5C1A" - "\u8015" - "\u51CC" - "\u632B" - "\u4F10" - "\u7BB8" - "\u4E91" - "\u5968" - "\u819A" - "\u9010" - "\u03B3" - "\u5F26" - "\u9700" - "\u5C01" - "\u5E3D" - "\u6F31" - "\u9283" - "\u507D" - "\u5875" - "\u7E1B" - "\u58A8" - "\u6020" - "\u96F7" - "\u5766" - "\u68A8" - "\u90ED" - "\u7A4F" - "\u67FF" - "\u7AFF" - "\u5E61" - "\u5F81" - "\u99B3" - "\u9EBA" - "\u03C4" - "\u8154" - "\u7C98" - "\u7409" - "\u731F" - "\u4EC1" - "\u8358" - "\u6492" - "\u7C3F" - "\u90E1" - "\u7B4C" - "\u5D8B" - "\u6FE1" - "\u618E" - "\u5446" - "\u6F15" - "\u5A29" - "\u68DF" - "\u6052" - "\uFF18" - "\u5553" - "\u5B5D" - "\u67F3" - "\u64A4" - "\u85CD" - "\u95C7" - "\u5B22" - "\u67F4" - "\u6734" - "\u6D1E" - "\u5CB3" - "\u9B3C" - "\u8DE8" - "\u3049" - "\u70C8" - "\u559A" - "\u6F84" - "\u6FEB" - "\u82A6" - "\u62D3" - "\u51FD" - "\u6843" - "\u76F2" - "\u6CA1" - "\u7A6B" - "\u6212" - "\u99FF" - "\u8D05" - "\u67AF" - "\u6C70" - "\u53F6" - "\u90A6" - "\u66C7" - "\u9A30" - "\u711A" - "\u51F6" - "\u5CF0" - "\u69FD" - "\u67DA" - "\u5320" - "\u9A19" - "\u502B" - "\u84EE" - "\u634C" - "\u61F2" - "\u8B0E" - "\u91B8" - "\u56DA" - "\u7344" - "\u6EDD" - "\u6795" - "\u60DC" - "\u7DB1" - "\u8B33" - "\u7089" - "\u5DFE" - "\u91DC" - "\u9BAB" - "\u6E58" - "\u92F3" - "\u5351" - "\uFF51" - "\u7DBB" - "\u5EF7" - "\u85A6" - "\u667A" - "\u6C99" - "\u8CBF" - "\u8098" - "\uFF16" - "\u5F0A" - "\u66F0" - "\u7881" - "\u9DFA" - "\u6676" - "\u8D74" - "\u8513" - "\u75D2" - "\u79E9" - "\u5DE7" - "\u9418" - "\u7B1B" - "\u638C" - "\u53EC" - "\u5347" - "\u6249" - "\u5A2F" - "\u8A1F" - "\u8247" - "\u64B2" - "\uFF56" - "\u6182" - "\u90B8" - "\u5098" - "\u7CDE" - "\u03BB" - "\u5C16" - "\u723D" - "\u7832" - "\u55A9" - "\u80CE" - "\u84B2" - "\u9DF9" - "\u755C" - "\u6897" - "\uFF4F" - "\u5023" - "\u6247" - "\u7DFB" - "\u6756" - "\u622F" - "\u5D50" - "\u6A3D" - "\u6F06" - "\u9CE9" - "\u039B" - "\u5FAA" - "\u8896" - "\u9784" - "\u6851" - "\u5D16" - "\u59A8" - "\u66A6" - "\u59D3" - "\u7A00" - "\u3041" - "\u920D" - "\u9727" - "\u9837" - "\u8105" - "\u7B20" - "\u86CD" - "\u8328" - "\u69CD" - "\u3062" - "\u59EB" - "\u6ABB" - "\u8463" - "\u6C7D" - "\u541F" - "\u807E" - "\u73E0" - "\u62B9" - "\u9D28" - "\u64AB" - "\u8607" - "\u7AC3" - "\u864E" - "\u78EF" - "\u77E9" - "\u7CCA" - "\u55AA" - "\u8A6E" - "\u82D1" - "\u98F4" - "\u6089" - "\u674F" - "\u9B42" - "\u914C" - "\u9BC9" - "\u8A50" - "\u03A3" - "\u7815" - "\u55DC" - "\u7FFC" - "\u4F0E" - "\u751A" - "\u5F66" - "\u961C" - "\u8706" - "\u6109" - "\u80F4" - "\u8776" - "\u8B00" - "\u9271" - "\u75E2" - "\u73ED" - "\u9438" - "\u92F8" - "\u62D9" - "\u6068" - "\u4EAD" - "\u4EAB" - "\u75AB" - "\u5F13" - "\u74E6" - "\u7D46" - "\u814E" - "\u62F3" - "\u9A0E" - "\u58B3" - "\u83F1" - "\u6813" - "\u5256" - "\u6D2A" - "\u5484" - "\u9591" - "\u58EE" - "\u9945" - "\u65ED" - "\u8987" - "\u80A1" - "\u86D9" - "\u724C" - "\u965B" - "\u714E" - "\u63AC" - "\u9AED" - "\u9019" - "\u5E7B" - "\u54B3" - "\u6E26" - "\u55C5" - "\u7A42" - "\u7434" - "\u5FCC" - "\u70CF" - "\u5448" - "\u91D8" - "\u611A" - "\u6C3E" - "\u8AFE" - "\u6E9D" - "\u7336" - "\u7AAF" - "\u8ACF" - "\u8CC2" - "\u57C3" - "\u51F8" - "\u7D0B" - "\u6ADB" - "\u525B" - "\u98E2" - "\u4FCA" - "\u54C0" - "\u5BB0" - "\u93AE" - "\u7435" - "\u7436" - "\u96C5" - "\u8494" - "\u85AA" - "\u8A93" - "\u59EA" - "\u62D7" - "\u8778" - "\u7169" - "\u7B51" - "\u690E" - "\u4FB6" - "\u553E" - "\u7BAA" - "\u5075" - "\u8861" - "\u03C3" - "\u88FE" - "\u95B2" - "\u805A" - "\u4E3C" - "\u633D" - "\u7E4D" - "\u82D7" - "\u9E93" - "\u03C6" - "\u03B4" - "\u4E32" - "\u51E1" - "\u5F18" - "\u85FB" - "\u61C7" - "\u817F" - "\u7A9F" - "\u6803" - "\u6652" - "\u5E84" - "\u7891" - "\u7B4F" - "\u7B25" - "\u5E06" - "\u96B7" - "\u8FB0" - "\u75BE" - "\u8FE6" - "\u8A6B" - "\u5617" - "\u582A" - "\u6842" - "\u5B9B" - "\u58F7" - "\u8AED" - "\u97AD" - "\u9310" - "\u6DF5" - "\u79E4" - "\u7525" - "\u4F8D" - "\u66FD" - "\u6572" - "\u63AA" - "\u6168" - "\u83E9" - "\u5CE0" - "\u901D" - "\u5F70" - "\u67F5" - "\u82AF" - "\u7C50" - "\u57A2" - "\u03BE" - "\u77EF" - "\u8C8C" - "\u8F44" - "\u8A89" - "\u9813" - "\u7D79" - "\u9E78" - "\u5E7D" - "\u6881" - "\u642D" - "\u54BD" - "\u82B3" - "\u7729" - "\u0393" - "\u61A4" - "\u7985" - "\u6063" - "\u5840" - "\u7149" - "\u75FA" - "\uFF06" - "\u7A40" - "\u545F" - "\u918D" - "\u9190" - "\u7901" - "\u51F9" - "\u86EE" - "\u5974" - "\u64AD" - "\u7E79" - "\u8499" - "\u8A63" - "\u4E5F" - "\u5420" - "\u4E59" - "\u8E8A" - "\u8E87" - "\u9D2C" - "\u7A92" - "\u59E5" - "\u9326" - "\u694A" - "\u8017" - "\u6F09" - "\u60E7" - "\u4FE3" - "\u6876" - "\u5CFB" - "\u905C" - "\u65FA" - "\u75D5" - "\u03A6" - "\u6234" - "\u658E" - "\u8CD3" - "\u7BC7" - "\u8429" - "\u85E9" - "\u7950" - "\u8B83" - "\u83AB" - "\u9C39" - "\u85A9" - "\u5378" - "\u4E9B" - "\u75B9" - "\u8E44" - "\u4E56" - "\uFF5A" - "\u92FC" - "\u6A3A" - "\u5B8F" - "\u7BE4" - "\u8258" - "\u81B3" - "\u7A83" - "\u7E82" - "\u5598" - "\u786B" - "\u99D5" - "\u7261" - "\u732A" - "\u62D0" - "\u60DA" - "\u60A0" - "\u7CE7" - "\u95A5" - "\u03C0" - "\u853D" - "\u6850" - "\u981A" - "\u9214" - "\u697C" - "\u8C9E" - "\u602F" - "\u817A" - "\u8305" - "\u6CF0" - "\u9913" - "\u5C51" - "\u9BDB" - "\u929B" - "\u9AB8" - "\u9C57" - "\u5824" - "\u9675" - "\u6DD8" - "\u64C1" - "\u81FC" - "\u6D32" - "\u8FBB" - "\u8A23" - "\u5C4F" - "\u9BE8" - "\u895F" - "\u5CE1" - "\u660C" - "\u982C" - "\u5806" - "\u865C" - "\u840E" - "\u9EB9" - "\u7CE0" - "\u68B1" - "\u8AFA" - "\u5403" - "\u66A2" - "\u5B54" - "\u5EB8" - "\u5DF3" - "\u589C" - "\u85AE" - "\u6101" - "\u664B" - "\u8236" - "\u8FC5" - "\u6B3A" - "\u9640" - "\u7709" - "\u6CC4" - "\u59FB" - "\u9688" - "\u58CC" - "\u69D9" - "\u5E87" - "\u52D2" - "\u6E07" - "\u91E7" - "\u4E43" - "\u82D4" - "\u9306" - "\u58D5" - "\u78D0" - "\u6962" - "\u65A7" - "\u5E63" - "\u03B7" - "\u7E55" - "\u83C5" - "\u7109" - "\u5112" - "\u5D07" - "\u8276" - "\u5449" - "\u7984" - "\u54C9" - "\u68AF" - "\u5937" - "\u546A" - "\u56C3" - "\u84BC" - "\u9A28" - "\u9D3B" - "\u862D" - "\u7CA5" - "\u7D3A" - "\u7D17" - "\u7164" - "\u03C9" - "\u52FE" - "\u97A0" - "\u4F3D" - "\u7AAE" - "\u6E15" - "\u0392" - "\u8D66" - "\u6597" - "\u66F9" - "\u8CE0" - "\u5CAC" - "\u847A" - "\u7D33" - "\u5B8D" - "\u6191" - "\u6357" - "\u7C9B" - "\u8CCA" - "\u9F8D" - "\u81C6" - "\u6C8C" - "\u52C5" - "\u8096" - "\u559D" - "\u8CAA" - "\u82AD" - "\u8549" - "\u919C" - "\u64B9" - "\u5740" - "\u7BE0" - "\u7D2C" - "\u75B1" - "\u52F2" - "\u86FE" - "\u88B4" - "\u8749" - "\u685F" - "\u4FF5" - "\u818F" - "\u5DF7" - "\u5072" - "\u6148" - "\u754F" - "\u96BB" - "\u606D" - "\u64B0" - "\u9D0E" - "\u52AB" - "\u63C6" - "\u914E" - "\u8106" - "\u6241" - "\u9761" - "\u8511" - "\u95CA" - "\u96BC" - "\u6CCC" - "\u5996" - "\u65A1" - "\u52C3" - "\u637B" - "\u6E13" - "\u937E" - "\u5954" - "\u6155" - "\u5984" - "\u6A0B" - "\u936C" - "\u502D" - "\u8679" - "\u03BD" - "\u60A6" - "\u8151" - "\u62EE" - "\u51E0" - "\u80E1" - "\u8FC2" - "\u8EAF" - "\u50ED" - "\u6ECB" - "\u7B8B" - "\u75F0" - "\u65AC" - "\u85AB" - "\u673D" - "\u82A5" - "\u9756" - "\u907C" - "\u6591" - "\u7953" - "\u5B95" - "\u976D" - "\u72D7" - "\u81BF" - "\u59AC" - "\u5A7F" - "\u7554" - "\u7AEA" - "\u9D5C" - "\u8CE6" - "\u7E1E" - "\u6731" - "\u7C95" - "\u69FB" - "\u6D69" - "\u511A" - "\u8CDC" - "\u8B39" - "\u68B5" - "\u5A9B" - "\u7947" - "\u5516" - "\u03C8" - "\u03C1" - "\u5A9A" - "\u540E" - "\u6FB1" - "\u7DBE" - "\u6372" - "\u67E9" - "\u6DF3" - "\u74DC" - "\u5631" - "\u51B4" - "\u6115" - "\u9211" - "\u51B6" - "\u67A2" - "\u03A9" - "\u77B0" - "\u6775" - "\u5EB5" - "\u4F2F" - "\u840C" - "\u5609" - "\u4FC4" - "\u7D06" - "\u81A0" - "\u7252" - "\u8EB0" - "\u543E" - "\u50FB" - "\u704C" - "\u646F" - "\u5091" - "\u929A" - "\u8B90" - "\u8910" - "\u8FB1" - "\u7345" - "\u7B94" - "\u73A9" - "\u4F43" - "\u583A" - "\u5504" - "\u515C" - "\u62CC" - "\u5751" - "\u75D8" - "\u69CC" - "\u77B3" - "\u79BF" - "\u66D9" - "\u5DF2" - "\u7FC1" - "\u5C3C" - "\u60BC" - "\u7F77" - "\u699C" - "\u5451" - "\u79E6" - "\u533F" - "\u03BA" - "\u7259" - "\u4F46" - "\u572D" - "\u548E" - "\u745E" - "\u7A1C" - "\u785D" - "\u6BC5" - "\u7015" - "\u8702" - "\u978D" - "\u6A2B" - "\u7566" - "\u660F" - "\u755D" - "\u4FAE" - "\u548B" - "\u6367" - "\u7F9E" - "\u803D" - "\u60B8" - "\u51E7" - "\u4EAE" - "\u9AC4" - "\u54FA" - "\u4FEF" - "\u567A" - "\u8058" - "\u8654" - "\u5B8B" - "\u93A7" - "\u968B" - "\u51B3" - "\u59D1" - "\u7078" - "\u927E" - "\u8F5F" - "\u60F0" - "\u03C7" - "\u643E" - "\u6854" - "\u7F6B" - "\u8E4A" - "\u68B6" - "\u6893" - "\u7F75" - "\u65A5" - "\u6276" - "\u6147" - "\u61C3" - "\u9949" - "\u6E25" - "\u6AD3" - "\u80E4" - "\u56A2" - "\u9CF3" - "\u6A84" - "\u8C79" - "\u50B2" - "\u50D1" - "\u7586" - "\u6134" - "\u53A8" - "\u6FB9" - "\u9320" - "\u64E2" - "\u6EBA" - "\u7624" - "\u73CA" - "\u5BC5" - "\u6977" - "\u9583" - "\u9CF6" - "\u7119" - "\u6912" - "\u9B4F" - "\u9798" - "\u68A2" - "\u6900" - "\u8ACC" - "\u696B" - "\u5F14" - "\u65D2" - "\u5957" - "\u9F5F" - "\u9F6C" - "\u7D18" - "\u810A" - "\u536F" - "\u727D" - "\u6BD8" - "\u6714" - "\u514E" - "\u721B" - "\u6D9C" - "\u5851" - "\u5F04" - "\u676D" - "\u63A0" - "\u80B4" - "\u626E" - "\u51F1" - "\u798D" - "\u8036" - "\u808B" - "\u7235" - "\u61AB" - "\u57D3" - "\u5983" - "\u9910" - "\u7C7E" - "\u7262" - "\u6816" - "\u9017" - "\u7058" - "\u5E5F" - "\u68F2" - "\u5687" - "\u7827" - "\u6E1A" - "\u7C9F" - "\u7A7F" - "\u7F60" - "\u68F9" - "\u8594" - "\u8587" - "\u526A" - "\u7B48" - "\u936E" - "\u892A" - "\u7AA9" - "\u58F1" - "\u30F2" - "\u7460" - "\u7483" - "\u61BE" - "\u5E16" - "\u6960" - "\u03B5" - "\u5480" - "\u56BC" - "\u56A5" - "\u6D29" - "\u6A58" - "\u6867" - "\u6A9C" - "\u63F6" - "\u63C4" - "\u88E1" - "\u6A80" - "\u900D" - "\u9081" - "\u6028" - "\u73B2" - "\u90C1" - "\u5815" - "\u8AB9" - "\u8B17" - "\u8956" - "\u51F0" - "\u9B41" - "\u5B75" - "\u7766" - "\u71FB" - "\u5243" - "\u53A9" - "\u71D7" - "\u84D1" - "\u5EFB" - "\u75D4" - "\u837C" - "\u6190" - "\u6070" - "\u8F9F" - "\u5F98" - "\u5F8A" - "\u4FA0" - "\u5830" - "\u971C" - "\u809B" - "\u76E7" - "\u5835" - "\u72DB" - "\u9D8F" - "\u9119" - "\u4F73" - "\u916A" - "\u8AE7" - "\u6973" - "\u7826" - "\u5AC9" - "\u5DEB" - "\u53E1" - "\u9716" - "\u6E23" - "\u5544" - "\u798E" - "\u6CAB" - "\u821F" - "\u6C5D" - "\u5302" - "\u99F1" - "\u6C08" - "\u308E" - "\u714C" - "\u7DAC" - "\u5F1B" - "\u586B" - "\u84C1" - "\u5039" - "\u7CFE" - "\u51A5" - "\u674E" - "\u966A" - "\u8877" - "\u59E6" - "\u5962" - "\u75BC" - "\u8A54" - "\u8599" - "\u8B5A" - "\u5CEF" - "\u684E" - "\u688F" - "\u9B92" - "\u8A1B" - "\u55B0" - "\u7960" - "\u67A1" - "\u6681" - "\u4E5E" - "\u91C7" - "\u9739" - "\u9742" - "\u687F" - "\u929C" - "\u4F51" - "\u79BE" - "\u5944" - "\u6930" - "\u87F9" - "\u8061" - "\u98AF" - "\u30C2" - "\u8E81" - "\u8E42" - "\u8E99" - "\u8695" - "\u693F" - "\u62F7" - "\u9257" - "\u8882" - "\u78CB" - "\u7422" - "\u6B3D" - "\u60B6" - "\u53C9" - "\u7E37" - "\u8A36" - "\u50C5" - "\u5C6F" - "\u5EEC" - "\u5C41" - "\u99A8" - "\u6E20" - "\u8568" - "\u699B" - "\u675C" - "\u7791" - "\u6A8E" - "\u8ECB" - "\u8F62" - "\u8700" - "\u8235" - "\u82B9" - "\u6B3E" - "\u639F" - "\u8E2A" - "\u745A" - "\u71E6" - "\u7D21" - "\u584A" - "\u8171" - "\u6753" - "\u65A4" - "\u786F" - "\u55AC" - "\u8B04" - "\u79DF" - "\u8180" - "\u80F1" - "\u6EC4" - "\u9C10" - "\u8475" - "\u8471" - "\u8461" - "\u5A49" - "\u88D4" - "\u9F0E" - "\u9187" - "\u67EF" - "\u991E" - "\u96C1" - "\u8AA6" - "\u8A62" - "\u633A" - "\u7AFA" - "\u8A82" - "\u5191" - "\u8718" - "\u86DB" - "\u70B8" - "\u932B" - "\u58C5" - "\u8087" - "\u54AC" - "\u9B8E" - "\u67D1" - "\u7D9C" - "\u5BE1" - "\u7977" - "\u522E" - "\u8CCE" - "\u9B18" - "\u884D" - "\u5FD6" - "\u685D" - "\u0398" - "\u039A" - "\u03A8" - "\u53E2" - "\u4FCE" - "\u7396" - "\u78A7" - "\u8766" - "\u8521" - "\u649A" - "\u7A14" - "\u752B" - "\u6D35" - "\u7893" - "\u9ECE" - "\u5AE1" - "\u8755" - "\u725F" - "\u6B89" - "\u6C83" - "\u7B50" - "\u619A" - "\u6E24" - "\u9B4D" - "\u9B4E" - "\u71ED" - "\u7940" - "\u6D1B" - "\u88F3" - "\u4E11" - "\u9846" - "\u9952" - "\u5EC9" - "\u689F" - "\u848B" - "\u6DD1" - "\u8737" - "\u9644" - "\u695A" - "\u9F20" - "\u5154" - "\u61AC" - "\u5F57" - "\u66FC" - "\u5D11" - "\u57DC" - "\u5F77" - "\u5F7F" - "\u5DF4" - "\u831C" - "\u6D9B" - "\u57E0" - "\u945A" - "\u92D2" - "\u5C09" - "\u53AD" - "\u7B75" - "\u7AE3" - "\u7E8F" - "\u6194" - "\u60B4" - "\u8E5F" - "\u675E" - "\u7825" - "\u8F14" - "\u9C52" - "\u4FAF" - "\u7D62" - "\u5475" - "\u698E" - "\u53EA" - "\u71D5" - "\u5C60" - "\u5614" - "\u74E2" - "\u9291" - "\u880D" - "\u932C" - "\u608C" - "\u8A1D" - "\u7DB8" - "\u530D" - "\u5310" - "\u637A" - "\u6A59" - "\u5BB5" - "\u9D60" - "\u57F4" - "\u7690" - "\u9021" - "\u4FF8" - "\u7A63" - "\u54A4" - "\u8309" - "\u8389" - "\u6643" - "\u6EF8" - "\u5289" - "\u5026" - "\u8944" - "\u7B4D" - "\u5239" - "\u83BD" - "\u9041" - "\u66F5" - "\u79BD" - "\u7B67" - "\u7E0A" - "\u7FD4" - "\u5BF5" - "\u834F" - "\u758B" - "\u84EC" - "\u83B1" - "\u8EAC" - "\u696E" - "\u76C8" - "\u5C13" - "\u72FC" - "\u85C9" - "\u965F" - "\u620E" - "\u4E8E" - "\u6F58" - "\u8012" - "\u5F82" - "\u5FA0" - "\u99AE" - "\u5F6D" - "\u5E47" - "\u9087" - "\u6CD3" - "\u80B1" - "\u65BC" - "\u6602" - "\u8E64" - "\u7463" - "\u9A65" - "\u4EA8" - "\u8AEE" - "\u77EE" - "\u8569" - "\u6566" - "\u30EE" - "\u6208" - "\u8229" - "\u9B6F" - "\u65E0" - "\u6159" - "\u6127" - "\u8340" - "\u6309" - "\u914B" - "\u59F6" - "\u723E" - "\u8602" - "\u986B" - "\u593E" - "\u59DA" - "\u701D" - "\u6FD8" - "\u964B" - "\u777E" - "\u5B30" - "\u5DBA" - "\u821B" - "\u7B65" - "\u95A4" - "\u68D8" - "\u9812" - "\u59BE" - "\u8B2C" - "\u4F0D" - "\u537F" - "\u8FEA" - "\u5686" - "\u60F9" - "\u80DA" - "\u6C6A" - "\u543B" - "\u9B51" - "\u8F3B" - "\u59C6" - "\u84FC" - "\u6AC2" - "\u5315" - "\u4F70" - "\u7246" - "\u5CD9" - "\u725D" - "\u9DF2" - "\u7DCB" - "\u7BAD" - "\u82EB" - "\u5366" - "\u5B5F" - "\u5323" - "\u4ED4" - "\u5D19" - "\u6787" - "\u6777" - "\u81C0" - "\u681E" - "\u9E1E" - "\u61FA" - "\u55DA" - "\u6DB8" - "\u30C5" - "\u8D16" - "\u5E9A" - "\u93D1" - "\u9149" - "\u670B" - "\u70F9" - "\u53C8" - "\u7337" - "\u7C00" - "\u5B2C" - "\u88B7" - "\u6BB7" - "\u51DB" - "\u4EC0" - "\u71FF" - "\u5556" - "\u7BC6" - "\u7DD8" - "\u5036" - "\u6AC3" - "\u8A03" - "\u540F" - "\u5CB1" - "\u8A25" - "\u958F" - "\u5DBD" - "\u722C" - "\u618A" - "\u7511" - "\u6144" - "\u5E25" - "\u7704" - "\u5A11" - "\u50E5" - "\u5016" - "\u800C" - "\u8F4D" - "\u5583" - "\u81BE" - "\u7099" - "\u85AF" - "\u97EE" - "\u4E99" - "\u8B14" - "\u86CE" - "\u7425" - "\u73C0" - "\u698A" - "\u7C3E" - "\u8D6D" - "\u8823" - "\u8299" - "\u8B01" - "\u9022" - "\u8466" - "\u6670" - "\u5398" - "\u707C" - "\u903C" - "\u9328" - "\u700B" - "\u5FF8" - "\u6029" - "\u7165" - "\u7B0F" - "\u5FFD" - "\u7708" - "\u7DEC" - "\u5C4D" - "\u75BD" - "\u6E5B" - "\u788D" - "\u8AE4" - <sos/eos> init: xavier_uniform input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true model_conf: ctc_weight: 0.3 lsm_weight: 0.1 length_normalized_loss: false use_preprocessor: true token_type: char bpemodel: null non_linguistic_symbols: null cleaner: null g2p: null frontend: default frontend_conf: fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 30 num_freq_mask: 2 apply_time_mask: true time_mask_width_range: - 0 - 40 num_time_mask: 2 normalize: global_mvn normalize_conf: stats_file: exp/asr_stats_raw_sp/train/feats_stats.npz encoder: conformer encoder_conf: output_size: 512 attention_heads: 8 linear_units: 2048 num_blocks: 12 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.1 input_layer: conv2d6 normalize_before: true macaron_style: false pos_enc_layer_type: rel_pos selfattention_layer_type: rel_selfattn activation_type: swish use_cnn_module: true cnn_module_kernel: 31 decoder: transformer decoder_conf: attention_heads: 8 linear_units: 2048 num_blocks: 6 dropout_rate: 0.1 positional_dropout_rate: 0.1 self_attention_dropout_rate: 0.1 src_attention_dropout_rate: 0.1 required: - output_dir - token_list distributed: true ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
mbeukman/xlm-roberta-base-finetuned-yoruba-finetuned-ner-yoruba
mbeukman
2021-11-25T09:05:18Z
14
1
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "NER", "yo", "dataset:masakhaner", "arxiv:2103.11811", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - yo tags: - NER datasets: - masakhaner metrics: - f1 - precision - recall widget: - text: "Kรฒ sรญ แบนฬ€rรญ tรญ รณ fi แบนsแบนฬ€ rinlแบนฬ€ ." --- # xlm-roberta-base-finetuned-yoruba-finetuned-ner-yoruba This is a token classification (specifically NER) model that fine-tuned [xlm-roberta-base-finetuned-yoruba](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-yoruba) on the [MasakhaNER](https://arxiv.org/abs/2103.11811) dataset, specifically the Yoruba part. More information, and other similar models can be found in the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). ## About This model is transformer based and was fine-tuned on the MasakhaNER dataset. It is a named entity recognition dataset, containing mostly news articles in 10 different African languages. The model was fine-tuned for 50 epochs, with a maximum sequence length of 200, 32 batch size, 5e-5 learning rate. This process was repeated 5 times (with different random seeds), and this uploaded model performed the best out of those 5 seeds (aggregate F1 on test set). This model was fine-tuned by me, Michael Beukman while doing a project at the University of the Witwatersrand, Johannesburg. This is version 1, as of 20 November 2021. This model is licensed under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0). ### Contact & More information For more information about the models, including training scripts, detailed results and further resources, you can visit the the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). You can contact me by filing an issue on this repository. ### Training Resources In the interest of openness, and reporting resources used, we list here how long the training process took, as well as what the minimum resources would be to reproduce this. Fine-tuning each model on the NER dataset took between 10 and 30 minutes, and was performed on a NVIDIA RTX3090 GPU. To use a batch size of 32, at least 14GB of GPU memory was required, although it was just possible to fit these models in around 6.5GB's of VRAM when using a batch size of 1. ## Data The train, evaluation and test datasets were taken directly from the MasakhaNER [Github](https://github.com/masakhane-io/masakhane-ner) repository, with minimal to no preprocessing, as the original dataset is already of high quality. The motivation for the use of this data is that it is the "first large, publicly available, highยญ quality dataset for named entity recognition (NER) in ten African languages" ([source](https://arxiv.org/pdf/2103.11811.pdf)). The high-quality data, as well as the groundwork laid by the paper introducing it are some more reasons why this dataset was used. For evaluation, the dedicated test split was used, which is from the same distribution as the training data, so this model may not generalise to other distributions, and further testing would need to be done to investigate this. The exact distribution of the data is covered in detail [here](https://arxiv.org/abs/2103.11811). ## Intended Use This model are intended to be used for NLP research into e.g. interpretability or transfer learning. Using this model in production is not supported, as generalisability and downright performance is limited. In particular, this is not designed to be used in any important downstream task that could affect people, as harm could be caused by the limitations of the model, described next. ## Limitations This model was only trained on one (relatively small) dataset, covering one task (NER) in one domain (news articles) and in a set span of time. The results may not generalise, and the model may perform badly, or in an unfair / biased way if used on other tasks. Although the purpose of this project was to investigate transfer learning, the performance on languages that the model was not trained for does suffer. Because this model used xlm-roberta-base as its starting point (potentially with domain adaptive fine-tuning on specific languages), this model's limitations can also apply here. These can include being biased towards the hegemonic viewpoint of most of its training data, being ungrounded and having subpar results on other languages (possibly due to unbalanced training data). As [Adelani et al. (2021)](https://arxiv.org/abs/2103.11811) showed, the models in general struggled with entities that were either longer than 3 words and entities that were not contained in the training data. This could bias the models towards not finding, e.g. names of people that have many words, possibly leading to a misrepresentation in the results. Similarly, names that are uncommon, and may not have been found in the training data (due to e.g. different languages) would also be predicted less often. Additionally, this model has not been verified in practice, and other, more subtle problems may become prevalent if used without any verification that it does what it is supposed to. ### Privacy & Ethical Considerations The data comes from only publicly available news sources, the only available data should cover public figures and those that agreed to be reported on. See the original MasakhaNER paper for more details. No explicit ethical considerations or adjustments were made during fine-tuning of this model. ## Metrics The language adaptive models achieve (mostly) superior performance over starting with xlm-roberta-base. Our main metric was the aggregate F1 score for all NER categories. These metrics are on the test set for MasakhaNER, so the data distribution is similar to the training set, so these results do not directly indicate how well these models generalise. We do find large variation in transfer results when starting from different seeds (5 different seeds were tested), indicating that the fine-tuning process for transfer might be unstable. The metrics used were chosen to be consistent with previous work, and to facilitate research. Other metrics may be more appropriate for other purposes. ## Caveats and Recommendations In general, this model performed worse on the 'date' category compared to others, so if dates are a critical factor, then that might need to be taken into account and addressed, by for example collecting and annotating more data. ## Model Structure Here are some performance details on this specific model, compared to others we trained. All of these metrics were calculated on the test set, and the seed was chosen that gave the best overall F1 score. The first three result columns are averaged over all categories, and the latter 4 provide performance broken down by category. This model can predict the following label for a token ([source](https://huggingface.co/Davlan/xlm-roberta-large-masakhaner)): Abbreviation|Description -|- O|Outside of a named entity B-DATE |Beginning of a DATE entity right after another DATE entity I-DATE |DATE entity B-PER |Beginning of a personโ€™s name right after another personโ€™s name I-PER |Personโ€™s name B-ORG |Beginning of an organisation right after another organisation I-ORG |Organisation B-LOC |Beginning of a location right after another location I-LOC |Location | Model Name | Staring point | Evaluation / Fine-tune Language | F1 | Precision | Recall | F1 (DATE) | F1 (LOC) | F1 (ORG) | F1 (PER) | | -------------------------------------------------- | -------------------- | -------------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | | [xlm-roberta-base-finetuned-yoruba-finetuned-ner-yoruba](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-yoruba-finetuned-ner-yoruba) (This model) | [yor](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-yoruba) | yor | 83.68 | 79.92 | 87.82 | 78.00 | 86.00 | 74.00 | 92.00 | | [xlm-roberta-base-finetuned-swahili-finetuned-ner-yoruba](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-yoruba) | [swa](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-swahili) | yor | 80.29 | 78.34 | 82.35 | 77.00 | 82.00 | 73.00 | 86.00 | | [xlm-roberta-base-finetuned-ner-yoruba](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-ner-yoruba) | [base](https://huggingface.co/xlm-roberta-base) | yor | 78.22 | 77.21 | 79.26 | 77.00 | 80.00 | 71.00 | 82.00 | ## Usage To use this model (or others), you can do the following, just changing the model name ([source](https://huggingface.co/dslim/bert-base-NER)): ``` from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline model_name = 'mbeukman/xlm-roberta-base-finetuned-yoruba-finetuned-ner-yoruba' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForTokenClassification.from_pretrained(model_name) nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Kรฒ sรญ แบนฬ€rรญ tรญ รณ fi แบนsแบนฬ€ rinlแบนฬ€ ." ner_results = nlp(example) print(ner_results) ```
mbeukman/xlm-roberta-base-finetuned-yoruba-finetuned-ner-swahili
mbeukman
2021-11-25T09:05:15Z
5
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "NER", "sw", "dataset:masakhaner", "arxiv:2103.11811", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - sw tags: - NER datasets: - masakhaner metrics: - f1 - precision - recall widget: - text: "Wizara ya afya ya Tanzania imeripoti Jumatatu kuwa , watu takriban 14 zaidi wamepata maambukizi ya Covid - 19 ." --- # xlm-roberta-base-finetuned-yoruba-finetuned-ner-swahili This is a token classification (specifically NER) model that fine-tuned [xlm-roberta-base-finetuned-yoruba](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-yoruba) on the [MasakhaNER](https://arxiv.org/abs/2103.11811) dataset, specifically the Swahili part. More information, and other similar models can be found in the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). ## About This model is transformer based and was fine-tuned on the MasakhaNER dataset. It is a named entity recognition dataset, containing mostly news articles in 10 different African languages. The model was fine-tuned for 50 epochs, with a maximum sequence length of 200, 32 batch size, 5e-5 learning rate. This process was repeated 5 times (with different random seeds), and this uploaded model performed the best out of those 5 seeds (aggregate F1 on test set). This model was fine-tuned by me, Michael Beukman while doing a project at the University of the Witwatersrand, Johannesburg. This is version 1, as of 20 November 2021. This model is licensed under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0). ### Contact & More information For more information about the models, including training scripts, detailed results and further resources, you can visit the the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). You can contact me by filing an issue on this repository. ### Training Resources In the interest of openness, and reporting resources used, we list here how long the training process took, as well as what the minimum resources would be to reproduce this. Fine-tuning each model on the NER dataset took between 10 and 30 minutes, and was performed on a NVIDIA RTX3090 GPU. To use a batch size of 32, at least 14GB of GPU memory was required, although it was just possible to fit these models in around 6.5GB's of VRAM when using a batch size of 1. ## Data The train, evaluation and test datasets were taken directly from the MasakhaNER [Github](https://github.com/masakhane-io/masakhane-ner) repository, with minimal to no preprocessing, as the original dataset is already of high quality. The motivation for the use of this data is that it is the "first large, publicly available, highยญ quality dataset for named entity recognition (NER) in ten African languages" ([source](https://arxiv.org/pdf/2103.11811.pdf)). The high-quality data, as well as the groundwork laid by the paper introducing it are some more reasons why this dataset was used. For evaluation, the dedicated test split was used, which is from the same distribution as the training data, so this model may not generalise to other distributions, and further testing would need to be done to investigate this. The exact distribution of the data is covered in detail [here](https://arxiv.org/abs/2103.11811). ## Intended Use This model are intended to be used for NLP research into e.g. interpretability or transfer learning. Using this model in production is not supported, as generalisability and downright performance is limited. In particular, this is not designed to be used in any important downstream task that could affect people, as harm could be caused by the limitations of the model, described next. ## Limitations This model was only trained on one (relatively small) dataset, covering one task (NER) in one domain (news articles) and in a set span of time. The results may not generalise, and the model may perform badly, or in an unfair / biased way if used on other tasks. Although the purpose of this project was to investigate transfer learning, the performance on languages that the model was not trained for does suffer. Because this model used xlm-roberta-base as its starting point (potentially with domain adaptive fine-tuning on specific languages), this model's limitations can also apply here. These can include being biased towards the hegemonic viewpoint of most of its training data, being ungrounded and having subpar results on other languages (possibly due to unbalanced training data). As [Adelani et al. (2021)](https://arxiv.org/abs/2103.11811) showed, the models in general struggled with entities that were either longer than 3 words and entities that were not contained in the training data. This could bias the models towards not finding, e.g. names of people that have many words, possibly leading to a misrepresentation in the results. Similarly, names that are uncommon, and may not have been found in the training data (due to e.g. different languages) would also be predicted less often. Additionally, this model has not been verified in practice, and other, more subtle problems may become prevalent if used without any verification that it does what it is supposed to. ### Privacy & Ethical Considerations The data comes from only publicly available news sources, the only available data should cover public figures and those that agreed to be reported on. See the original MasakhaNER paper for more details. No explicit ethical considerations or adjustments were made during fine-tuning of this model. ## Metrics The language adaptive models achieve (mostly) superior performance over starting with xlm-roberta-base. Our main metric was the aggregate F1 score for all NER categories. These metrics are on the test set for MasakhaNER, so the data distribution is similar to the training set, so these results do not directly indicate how well these models generalise. We do find large variation in transfer results when starting from different seeds (5 different seeds were tested), indicating that the fine-tuning process for transfer might be unstable. The metrics used were chosen to be consistent with previous work, and to facilitate research. Other metrics may be more appropriate for other purposes. ## Caveats and Recommendations In general, this model performed worse on the 'date' category compared to others, so if dates are a critical factor, then that might need to be taken into account and addressed, by for example collecting and annotating more data. ## Model Structure Here are some performance details on this specific model, compared to others we trained. All of these metrics were calculated on the test set, and the seed was chosen that gave the best overall F1 score. The first three result columns are averaged over all categories, and the latter 4 provide performance broken down by category. This model can predict the following label for a token ([source](https://huggingface.co/Davlan/xlm-roberta-large-masakhaner)): Abbreviation|Description -|- O|Outside of a named entity B-DATE |Beginning of a DATE entity right after another DATE entity I-DATE |DATE entity B-PER |Beginning of a personโ€™s name right after another personโ€™s name I-PER |Personโ€™s name B-ORG |Beginning of an organisation right after another organisation I-ORG |Organisation B-LOC |Beginning of a location right after another location I-LOC |Location | Model Name | Staring point | Evaluation / Fine-tune Language | F1 | Precision | Recall | F1 (DATE) | F1 (LOC) | F1 (ORG) | F1 (PER) | | -------------------------------------------------- | -------------------- | -------------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | | [xlm-roberta-base-finetuned-yoruba-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-yoruba-finetuned-ner-swahili) (This model) | [yor](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-yoruba) | swa | 87.73 | 86.67 | 88.80 | 85.00 | 91.00 | 75.00 | 93.00 | | [xlm-roberta-base-finetuned-hausa-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-hausa-finetuned-ner-swahili) | [hau](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-hausa) | swa | 88.36 | 86.95 | 89.82 | 86.00 | 91.00 | 77.00 | 94.00 | | [xlm-roberta-base-finetuned-igbo-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-igbo-finetuned-ner-swahili) | [ibo](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-igbo) | swa | 87.75 | 86.55 | 88.97 | 85.00 | 92.00 | 77.00 | 91.00 | | [xlm-roberta-base-finetuned-kinyarwanda-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-kinyarwanda-finetuned-ner-swahili) | [kin](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-kinyarwanda) | swa | 87.26 | 85.15 | 89.48 | 83.00 | 91.00 | 75.00 | 93.00 | | [xlm-roberta-base-finetuned-luganda-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-luganda-finetuned-ner-swahili) | [lug](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-luganda) | swa | 88.93 | 87.64 | 90.25 | 83.00 | 92.00 | 79.00 | 95.00 | | [xlm-roberta-base-finetuned-luo-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-luo-finetuned-ner-swahili) | [luo](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-luo) | swa | 87.93 | 86.91 | 88.97 | 83.00 | 91.00 | 76.00 | 94.00 | | [xlm-roberta-base-finetuned-naija-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-naija-finetuned-ner-swahili) | [pcm](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-naija) | swa | 87.26 | 85.15 | 89.48 | 83.00 | 91.00 | 75.00 | 93.00 | | [xlm-roberta-base-finetuned-swahili-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-swahili) | [swa](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-swahili) | swa | 90.36 | 88.59 | 92.20 | 86.00 | 93.00 | 79.00 | 96.00 | | [xlm-roberta-base-finetuned-wolof-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-wolof-finetuned-ner-swahili) | [wol](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-wolof) | swa | 87.80 | 86.50 | 89.14 | 86.00 | 90.00 | 78.00 | 93.00 | | [xlm-roberta-base-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-ner-swahili) | [base](https://huggingface.co/xlm-roberta-base) | swa | 88.71 | 86.84 | 90.67 | 83.00 | 91.00 | 79.00 | 95.00 | ## Usage To use this model (or others), you can do the following, just changing the model name ([source](https://huggingface.co/dslim/bert-base-NER)): ``` from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline model_name = 'mbeukman/xlm-roberta-base-finetuned-yoruba-finetuned-ner-swahili' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForTokenClassification.from_pretrained(model_name) nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Wizara ya afya ya Tanzania imeripoti Jumatatu kuwa , watu takriban 14 zaidi wamepata maambukizi ya Covid - 19 ." ner_results = nlp(example) print(ner_results) ```
mbeukman/xlm-roberta-base-finetuned-wolof-finetuned-ner-wolof
mbeukman
2021-11-25T09:05:13Z
4
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "NER", "wo", "dataset:masakhaner", "arxiv:2103.11811", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - wo tags: - NER datasets: - masakhaner metrics: - f1 - precision - recall widget: - text: "SAFIYETU Bร‰EY Cรฉy Koronaa !" --- # xlm-roberta-base-finetuned-wolof-finetuned-ner-wolof This is a token classification (specifically NER) model that fine-tuned [xlm-roberta-base-finetuned-wolof](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-wolof) on the [MasakhaNER](https://arxiv.org/abs/2103.11811) dataset, specifically the Wolof part. More information, and other similar models can be found in the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). ## About This model is transformer based and was fine-tuned on the MasakhaNER dataset. It is a named entity recognition dataset, containing mostly news articles in 10 different African languages. The model was fine-tuned for 50 epochs, with a maximum sequence length of 200, 32 batch size, 5e-5 learning rate. This process was repeated 5 times (with different random seeds), and this uploaded model performed the best out of those 5 seeds (aggregate F1 on test set). This model was fine-tuned by me, Michael Beukman while doing a project at the University of the Witwatersrand, Johannesburg. This is version 1, as of 20 November 2021. This model is licensed under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0). ### Contact & More information For more information about the models, including training scripts, detailed results and further resources, you can visit the the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). You can contact me by filing an issue on this repository. ### Training Resources In the interest of openness, and reporting resources used, we list here how long the training process took, as well as what the minimum resources would be to reproduce this. Fine-tuning each model on the NER dataset took between 10 and 30 minutes, and was performed on a NVIDIA RTX3090 GPU. To use a batch size of 32, at least 14GB of GPU memory was required, although it was just possible to fit these models in around 6.5GB's of VRAM when using a batch size of 1. ## Data The train, evaluation and test datasets were taken directly from the MasakhaNER [Github](https://github.com/masakhane-io/masakhane-ner) repository, with minimal to no preprocessing, as the original dataset is already of high quality. The motivation for the use of this data is that it is the "first large, publicly available, highยญ quality dataset for named entity recognition (NER) in ten African languages" ([source](https://arxiv.org/pdf/2103.11811.pdf)). The high-quality data, as well as the groundwork laid by the paper introducing it are some more reasons why this dataset was used. For evaluation, the dedicated test split was used, which is from the same distribution as the training data, so this model may not generalise to other distributions, and further testing would need to be done to investigate this. The exact distribution of the data is covered in detail [here](https://arxiv.org/abs/2103.11811). ## Intended Use This model are intended to be used for NLP research into e.g. interpretability or transfer learning. Using this model in production is not supported, as generalisability and downright performance is limited. In particular, this is not designed to be used in any important downstream task that could affect people, as harm could be caused by the limitations of the model, described next. ## Limitations This model was only trained on one (relatively small) dataset, covering one task (NER) in one domain (news articles) and in a set span of time. The results may not generalise, and the model may perform badly, or in an unfair / biased way if used on other tasks. Although the purpose of this project was to investigate transfer learning, the performance on languages that the model was not trained for does suffer. Because this model used xlm-roberta-base as its starting point (potentially with domain adaptive fine-tuning on specific languages), this model's limitations can also apply here. These can include being biased towards the hegemonic viewpoint of most of its training data, being ungrounded and having subpar results on other languages (possibly due to unbalanced training data). As [Adelani et al. (2021)](https://arxiv.org/abs/2103.11811) showed, the models in general struggled with entities that were either longer than 3 words and entities that were not contained in the training data. This could bias the models towards not finding, e.g. names of people that have many words, possibly leading to a misrepresentation in the results. Similarly, names that are uncommon, and may not have been found in the training data (due to e.g. different languages) would also be predicted less often. Additionally, this model has not been verified in practice, and other, more subtle problems may become prevalent if used without any verification that it does what it is supposed to. ### Privacy & Ethical Considerations The data comes from only publicly available news sources, the only available data should cover public figures and those that agreed to be reported on. See the original MasakhaNER paper for more details. No explicit ethical considerations or adjustments were made during fine-tuning of this model. ## Metrics The language adaptive models achieve (mostly) superior performance over starting with xlm-roberta-base. Our main metric was the aggregate F1 score for all NER categories. These metrics are on the test set for MasakhaNER, so the data distribution is similar to the training set, so these results do not directly indicate how well these models generalise. We do find large variation in transfer results when starting from different seeds (5 different seeds were tested), indicating that the fine-tuning process for transfer might be unstable. The metrics used were chosen to be consistent with previous work, and to facilitate research. Other metrics may be more appropriate for other purposes. ## Caveats and Recommendations In general, this model performed worse on the 'date' category compared to others, so if dates are a critical factor, then that might need to be taken into account and addressed, by for example collecting and annotating more data. ## Model Structure Here are some performance details on this specific model, compared to others we trained. All of these metrics were calculated on the test set, and the seed was chosen that gave the best overall F1 score. The first three result columns are averaged over all categories, and the latter 4 provide performance broken down by category. This model can predict the following label for a token ([source](https://huggingface.co/Davlan/xlm-roberta-large-masakhaner)): Abbreviation|Description -|- O|Outside of a named entity B-DATE |Beginning of a DATE entity right after another DATE entity I-DATE |DATE entity B-PER |Beginning of a personโ€™s name right after another personโ€™s name I-PER |Personโ€™s name B-ORG |Beginning of an organisation right after another organisation I-ORG |Organisation B-LOC |Beginning of a location right after another location I-LOC |Location | Model Name | Staring point | Evaluation / Fine-tune Language | F1 | Precision | Recall | F1 (DATE) | F1 (LOC) | F1 (ORG) | F1 (PER) | | -------------------------------------------------- | -------------------- | -------------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | | [xlm-roberta-base-finetuned-wolof-finetuned-ner-wolof](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-wolof-finetuned-ner-wolof) (This model) | [wol](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-wolof) | wol | 69.02 | 67.60 | 70.51 | 30.00 | 84.00 | 44.00 | 71.00 | | [xlm-roberta-base-finetuned-swahili-finetuned-ner-wolof](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-wolof) | [swa](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-swahili) | wol | 69.01 | 73.25 | 65.23 | 27.00 | 85.00 | 52.00 | 67.00 | | [xlm-roberta-base-finetuned-ner-wolof](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-ner-wolof) | [base](https://huggingface.co/xlm-roberta-base) | wol | 66.12 | 69.46 | 63.09 | 30.00 | 84.00 | 54.00 | 59.00 | ## Usage To use this model (or others), you can do the following, just changing the model name ([source](https://huggingface.co/dslim/bert-base-NER)): ``` from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline model_name = 'mbeukman/xlm-roberta-base-finetuned-wolof-finetuned-ner-wolof' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForTokenClassification.from_pretrained(model_name) nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "SAFIYETU Bร‰EY Cรฉy Koronaa !" ner_results = nlp(example) print(ner_results) ```
mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-yoruba
mbeukman
2021-11-25T09:05:08Z
8
1
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "NER", "yo", "dataset:masakhaner", "arxiv:2103.11811", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - yo tags: - NER datasets: - masakhaner metrics: - f1 - precision - recall widget: - text: "Kรฒ sรญ แบนฬ€rรญ tรญ รณ fi แบนsแบนฬ€ rinlแบนฬ€ ." --- # xlm-roberta-base-finetuned-swahili-finetuned-ner-yoruba This is a token classification (specifically NER) model that fine-tuned [xlm-roberta-base-finetuned-swahili](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-swahili) on the [MasakhaNER](https://arxiv.org/abs/2103.11811) dataset, specifically the Yoruba part. More information, and other similar models can be found in the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). ## About This model is transformer based and was fine-tuned on the MasakhaNER dataset. It is a named entity recognition dataset, containing mostly news articles in 10 different African languages. The model was fine-tuned for 50 epochs, with a maximum sequence length of 200, 32 batch size, 5e-5 learning rate. This process was repeated 5 times (with different random seeds), and this uploaded model performed the best out of those 5 seeds (aggregate F1 on test set). This model was fine-tuned by me, Michael Beukman while doing a project at the University of the Witwatersrand, Johannesburg. This is version 1, as of 20 November 2021. This model is licensed under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0). ### Contact & More information For more information about the models, including training scripts, detailed results and further resources, you can visit the the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). You can contact me by filing an issue on this repository. ### Training Resources In the interest of openness, and reporting resources used, we list here how long the training process took, as well as what the minimum resources would be to reproduce this. Fine-tuning each model on the NER dataset took between 10 and 30 minutes, and was performed on a NVIDIA RTX3090 GPU. To use a batch size of 32, at least 14GB of GPU memory was required, although it was just possible to fit these models in around 6.5GB's of VRAM when using a batch size of 1. ## Data The train, evaluation and test datasets were taken directly from the MasakhaNER [Github](https://github.com/masakhane-io/masakhane-ner) repository, with minimal to no preprocessing, as the original dataset is already of high quality. The motivation for the use of this data is that it is the "first large, publicly available, highยญ quality dataset for named entity recognition (NER) in ten African languages" ([source](https://arxiv.org/pdf/2103.11811.pdf)). The high-quality data, as well as the groundwork laid by the paper introducing it are some more reasons why this dataset was used. For evaluation, the dedicated test split was used, which is from the same distribution as the training data, so this model may not generalise to other distributions, and further testing would need to be done to investigate this. The exact distribution of the data is covered in detail [here](https://arxiv.org/abs/2103.11811). ## Intended Use This model are intended to be used for NLP research into e.g. interpretability or transfer learning. Using this model in production is not supported, as generalisability and downright performance is limited. In particular, this is not designed to be used in any important downstream task that could affect people, as harm could be caused by the limitations of the model, described next. ## Limitations This model was only trained on one (relatively small) dataset, covering one task (NER) in one domain (news articles) and in a set span of time. The results may not generalise, and the model may perform badly, or in an unfair / biased way if used on other tasks. Although the purpose of this project was to investigate transfer learning, the performance on languages that the model was not trained for does suffer. Because this model used xlm-roberta-base as its starting point (potentially with domain adaptive fine-tuning on specific languages), this model's limitations can also apply here. These can include being biased towards the hegemonic viewpoint of most of its training data, being ungrounded and having subpar results on other languages (possibly due to unbalanced training data). As [Adelani et al. (2021)](https://arxiv.org/abs/2103.11811) showed, the models in general struggled with entities that were either longer than 3 words and entities that were not contained in the training data. This could bias the models towards not finding, e.g. names of people that have many words, possibly leading to a misrepresentation in the results. Similarly, names that are uncommon, and may not have been found in the training data (due to e.g. different languages) would also be predicted less often. Additionally, this model has not been verified in practice, and other, more subtle problems may become prevalent if used without any verification that it does what it is supposed to. ### Privacy & Ethical Considerations The data comes from only publicly available news sources, the only available data should cover public figures and those that agreed to be reported on. See the original MasakhaNER paper for more details. No explicit ethical considerations or adjustments were made during fine-tuning of this model. ## Metrics The language adaptive models achieve (mostly) superior performance over starting with xlm-roberta-base. Our main metric was the aggregate F1 score for all NER categories. These metrics are on the test set for MasakhaNER, so the data distribution is similar to the training set, so these results do not directly indicate how well these models generalise. We do find large variation in transfer results when starting from different seeds (5 different seeds were tested), indicating that the fine-tuning process for transfer might be unstable. The metrics used were chosen to be consistent with previous work, and to facilitate research. Other metrics may be more appropriate for other purposes. ## Caveats and Recommendations In general, this model performed worse on the 'date' category compared to others, so if dates are a critical factor, then that might need to be taken into account and addressed, by for example collecting and annotating more data. ## Model Structure Here are some performance details on this specific model, compared to others we trained. All of these metrics were calculated on the test set, and the seed was chosen that gave the best overall F1 score. The first three result columns are averaged over all categories, and the latter 4 provide performance broken down by category. This model can predict the following label for a token ([source](https://huggingface.co/Davlan/xlm-roberta-large-masakhaner)): Abbreviation|Description -|- O|Outside of a named entity B-DATE |Beginning of a DATE entity right after another DATE entity I-DATE |DATE entity B-PER |Beginning of a personโ€™s name right after another personโ€™s name I-PER |Personโ€™s name B-ORG |Beginning of an organisation right after another organisation I-ORG |Organisation B-LOC |Beginning of a location right after another location I-LOC |Location | Model Name | Staring point | Evaluation / Fine-tune Language | F1 | Precision | Recall | F1 (DATE) | F1 (LOC) | F1 (ORG) | F1 (PER) | | -------------------------------------------------- | -------------------- | -------------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | | [xlm-roberta-base-finetuned-swahili-finetuned-ner-yoruba](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-yoruba) (This model) | [swa](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-swahili) | yor | 80.29 | 78.34 | 82.35 | 77.00 | 82.00 | 73.00 | 86.00 | | [xlm-roberta-base-finetuned-yoruba-finetuned-ner-yoruba](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-yoruba-finetuned-ner-yoruba) | [yor](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-yoruba) | yor | 83.68 | 79.92 | 87.82 | 78.00 | 86.00 | 74.00 | 92.00 | | [xlm-roberta-base-finetuned-ner-yoruba](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-ner-yoruba) | [base](https://huggingface.co/xlm-roberta-base) | yor | 78.22 | 77.21 | 79.26 | 77.00 | 80.00 | 71.00 | 82.00 | ## Usage To use this model (or others), you can do the following, just changing the model name ([source](https://huggingface.co/dslim/bert-base-NER)): ``` from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline model_name = 'mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-yoruba' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForTokenClassification.from_pretrained(model_name) nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Kรฒ sรญ แบนฬ€rรญ tรญ รณ fi แบนsแบนฬ€ rinlแบนฬ€ ." ner_results = nlp(example) print(ner_results) ```
mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-swahili
mbeukman
2021-11-25T09:05:03Z
33
1
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "NER", "sw", "dataset:masakhaner", "arxiv:2103.11811", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - sw tags: - NER datasets: - masakhaner metrics: - f1 - precision - recall widget: - text: "Wizara ya afya ya Tanzania imeripoti Jumatatu kuwa , watu takriban 14 zaidi wamepata maambukizi ya Covid - 19 ." --- # xlm-roberta-base-finetuned-swahili-finetuned-ner-swahili This is a token classification (specifically NER) model that fine-tuned [xlm-roberta-base-finetuned-swahili](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-swahili) on the [MasakhaNER](https://arxiv.org/abs/2103.11811) dataset, specifically the Swahili part. More information, and other similar models can be found in the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). ## About This model is transformer based and was fine-tuned on the MasakhaNER dataset. It is a named entity recognition dataset, containing mostly news articles in 10 different African languages. The model was fine-tuned for 50 epochs, with a maximum sequence length of 200, 32 batch size, 5e-5 learning rate. This process was repeated 5 times (with different random seeds), and this uploaded model performed the best out of those 5 seeds (aggregate F1 on test set). This model was fine-tuned by me, Michael Beukman while doing a project at the University of the Witwatersrand, Johannesburg. This is version 1, as of 20 November 2021. This model is licensed under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0). ### Contact & More information For more information about the models, including training scripts, detailed results and further resources, you can visit the the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). You can contact me by filing an issue on this repository. ### Training Resources In the interest of openness, and reporting resources used, we list here how long the training process took, as well as what the minimum resources would be to reproduce this. Fine-tuning each model on the NER dataset took between 10 and 30 minutes, and was performed on a NVIDIA RTX3090 GPU. To use a batch size of 32, at least 14GB of GPU memory was required, although it was just possible to fit these models in around 6.5GB's of VRAM when using a batch size of 1. ## Data The train, evaluation and test datasets were taken directly from the MasakhaNER [Github](https://github.com/masakhane-io/masakhane-ner) repository, with minimal to no preprocessing, as the original dataset is already of high quality. The motivation for the use of this data is that it is the "first large, publicly available, highยญ quality dataset for named entity recognition (NER) in ten African languages" ([source](https://arxiv.org/pdf/2103.11811.pdf)). The high-quality data, as well as the groundwork laid by the paper introducing it are some more reasons why this dataset was used. For evaluation, the dedicated test split was used, which is from the same distribution as the training data, so this model may not generalise to other distributions, and further testing would need to be done to investigate this. The exact distribution of the data is covered in detail [here](https://arxiv.org/abs/2103.11811). ## Intended Use This model are intended to be used for NLP research into e.g. interpretability or transfer learning. Using this model in production is not supported, as generalisability and downright performance is limited. In particular, this is not designed to be used in any important downstream task that could affect people, as harm could be caused by the limitations of the model, described next. ## Limitations This model was only trained on one (relatively small) dataset, covering one task (NER) in one domain (news articles) and in a set span of time. The results may not generalise, and the model may perform badly, or in an unfair / biased way if used on other tasks. Although the purpose of this project was to investigate transfer learning, the performance on languages that the model was not trained for does suffer. Because this model used xlm-roberta-base as its starting point (potentially with domain adaptive fine-tuning on specific languages), this model's limitations can also apply here. These can include being biased towards the hegemonic viewpoint of most of its training data, being ungrounded and having subpar results on other languages (possibly due to unbalanced training data). As [Adelani et al. (2021)](https://arxiv.org/abs/2103.11811) showed, the models in general struggled with entities that were either longer than 3 words and entities that were not contained in the training data. This could bias the models towards not finding, e.g. names of people that have many words, possibly leading to a misrepresentation in the results. Similarly, names that are uncommon, and may not have been found in the training data (due to e.g. different languages) would also be predicted less often. Additionally, this model has not been verified in practice, and other, more subtle problems may become prevalent if used without any verification that it does what it is supposed to. ### Privacy & Ethical Considerations The data comes from only publicly available news sources, the only available data should cover public figures and those that agreed to be reported on. See the original MasakhaNER paper for more details. No explicit ethical considerations or adjustments were made during fine-tuning of this model. ## Metrics The language adaptive models achieve (mostly) superior performance over starting with xlm-roberta-base. Our main metric was the aggregate F1 score for all NER categories. These metrics are on the test set for MasakhaNER, so the data distribution is similar to the training set, so these results do not directly indicate how well these models generalise. We do find large variation in transfer results when starting from different seeds (5 different seeds were tested), indicating that the fine-tuning process for transfer might be unstable. The metrics used were chosen to be consistent with previous work, and to facilitate research. Other metrics may be more appropriate for other purposes. ## Caveats and Recommendations In general, this model performed worse on the 'date' category compared to others, so if dates are a critical factor, then that might need to be taken into account and addressed, by for example collecting and annotating more data. ## Model Structure Here are some performance details on this specific model, compared to others we trained. All of these metrics were calculated on the test set, and the seed was chosen that gave the best overall F1 score. The first three result columns are averaged over all categories, and the latter 4 provide performance broken down by category. This model can predict the following label for a token ([source](https://huggingface.co/Davlan/xlm-roberta-large-masakhaner)): Abbreviation|Description -|- O|Outside of a named entity B-DATE |Beginning of a DATE entity right after another DATE entity I-DATE |DATE entity B-PER |Beginning of a personโ€™s name right after another personโ€™s name I-PER |Personโ€™s name B-ORG |Beginning of an organisation right after another organisation I-ORG |Organisation B-LOC |Beginning of a location right after another location I-LOC |Location | Model Name | Staring point | Evaluation / Fine-tune Language | F1 | Precision | Recall | F1 (DATE) | F1 (LOC) | F1 (ORG) | F1 (PER) | | -------------------------------------------------- | -------------------- | -------------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | | [xlm-roberta-base-finetuned-swahili-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-swahili) (This model) | [swa](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-swahili) | swa | 90.36 | 88.59 | 92.20 | 86.00 | 93.00 | 79.00 | 96.00 | | [xlm-roberta-base-finetuned-hausa-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-hausa-finetuned-ner-swahili) | [hau](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-hausa) | swa | 88.36 | 86.95 | 89.82 | 86.00 | 91.00 | 77.00 | 94.00 | | [xlm-roberta-base-finetuned-igbo-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-igbo-finetuned-ner-swahili) | [ibo](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-igbo) | swa | 87.75 | 86.55 | 88.97 | 85.00 | 92.00 | 77.00 | 91.00 | | [xlm-roberta-base-finetuned-kinyarwanda-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-kinyarwanda-finetuned-ner-swahili) | [kin](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-kinyarwanda) | swa | 87.26 | 85.15 | 89.48 | 83.00 | 91.00 | 75.00 | 93.00 | | [xlm-roberta-base-finetuned-luganda-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-luganda-finetuned-ner-swahili) | [lug](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-luganda) | swa | 88.93 | 87.64 | 90.25 | 83.00 | 92.00 | 79.00 | 95.00 | | [xlm-roberta-base-finetuned-luo-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-luo-finetuned-ner-swahili) | [luo](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-luo) | swa | 87.93 | 86.91 | 88.97 | 83.00 | 91.00 | 76.00 | 94.00 | | [xlm-roberta-base-finetuned-naija-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-naija-finetuned-ner-swahili) | [pcm](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-naija) | swa | 87.26 | 85.15 | 89.48 | 83.00 | 91.00 | 75.00 | 93.00 | | [xlm-roberta-base-finetuned-wolof-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-wolof-finetuned-ner-swahili) | [wol](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-wolof) | swa | 87.80 | 86.50 | 89.14 | 86.00 | 90.00 | 78.00 | 93.00 | | [xlm-roberta-base-finetuned-yoruba-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-yoruba-finetuned-ner-swahili) | [yor](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-yoruba) | swa | 87.73 | 86.67 | 88.80 | 85.00 | 91.00 | 75.00 | 93.00 | | [xlm-roberta-base-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-ner-swahili) | [base](https://huggingface.co/xlm-roberta-base) | swa | 88.71 | 86.84 | 90.67 | 83.00 | 91.00 | 79.00 | 95.00 | ## Usage To use this model (or others), you can do the following, just changing the model name ([source](https://huggingface.co/dslim/bert-base-NER)): ``` from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline model_name = 'mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-swahili' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForTokenClassification.from_pretrained(model_name) nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Wizara ya afya ya Tanzania imeripoti Jumatatu kuwa , watu takriban 14 zaidi wamepata maambukizi ya Covid - 19 ." ner_results = nlp(example) print(ner_results) ```
mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-naija
mbeukman
2021-11-25T09:05:00Z
9
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "NER", "pcm", "dataset:masakhaner", "arxiv:2103.11811", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - pcm tags: - NER datasets: - masakhaner metrics: - f1 - precision - recall widget: - text: "Mixed Martial Arts joinbodi , Ultimate Fighting Championship , UFC don decide say dem go enta back di octagon on Saturday , 9 May , for Jacksonville , Florida ." --- # xlm-roberta-base-finetuned-swahili-finetuned-ner-naija This is a token classification (specifically NER) model that fine-tuned [xlm-roberta-base-finetuned-swahili](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-swahili) on the [MasakhaNER](https://arxiv.org/abs/2103.11811) dataset, specifically the Nigerian Pidgin part. More information, and other similar models can be found in the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). ## About This model is transformer based and was fine-tuned on the MasakhaNER dataset. It is a named entity recognition dataset, containing mostly news articles in 10 different African languages. The model was fine-tuned for 50 epochs, with a maximum sequence length of 200, 32 batch size, 5e-5 learning rate. This process was repeated 5 times (with different random seeds), and this uploaded model performed the best out of those 5 seeds (aggregate F1 on test set). This model was fine-tuned by me, Michael Beukman while doing a project at the University of the Witwatersrand, Johannesburg. This is version 1, as of 20 November 2021. This model is licensed under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0). ### Contact & More information For more information about the models, including training scripts, detailed results and further resources, you can visit the the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). You can contact me by filing an issue on this repository. ### Training Resources In the interest of openness, and reporting resources used, we list here how long the training process took, as well as what the minimum resources would be to reproduce this. Fine-tuning each model on the NER dataset took between 10 and 30 minutes, and was performed on a NVIDIA RTX3090 GPU. To use a batch size of 32, at least 14GB of GPU memory was required, although it was just possible to fit these models in around 6.5GB's of VRAM when using a batch size of 1. ## Data The train, evaluation and test datasets were taken directly from the MasakhaNER [Github](https://github.com/masakhane-io/masakhane-ner) repository, with minimal to no preprocessing, as the original dataset is already of high quality. The motivation for the use of this data is that it is the "first large, publicly available, highยญ quality dataset for named entity recognition (NER) in ten African languages" ([source](https://arxiv.org/pdf/2103.11811.pdf)). The high-quality data, as well as the groundwork laid by the paper introducing it are some more reasons why this dataset was used. For evaluation, the dedicated test split was used, which is from the same distribution as the training data, so this model may not generalise to other distributions, and further testing would need to be done to investigate this. The exact distribution of the data is covered in detail [here](https://arxiv.org/abs/2103.11811). ## Intended Use This model are intended to be used for NLP research into e.g. interpretability or transfer learning. Using this model in production is not supported, as generalisability and downright performance is limited. In particular, this is not designed to be used in any important downstream task that could affect people, as harm could be caused by the limitations of the model, described next. ## Limitations This model was only trained on one (relatively small) dataset, covering one task (NER) in one domain (news articles) and in a set span of time. The results may not generalise, and the model may perform badly, or in an unfair / biased way if used on other tasks. Although the purpose of this project was to investigate transfer learning, the performance on languages that the model was not trained for does suffer. Because this model used xlm-roberta-base as its starting point (potentially with domain adaptive fine-tuning on specific languages), this model's limitations can also apply here. These can include being biased towards the hegemonic viewpoint of most of its training data, being ungrounded and having subpar results on other languages (possibly due to unbalanced training data). As [Adelani et al. (2021)](https://arxiv.org/abs/2103.11811) showed, the models in general struggled with entities that were either longer than 3 words and entities that were not contained in the training data. This could bias the models towards not finding, e.g. names of people that have many words, possibly leading to a misrepresentation in the results. Similarly, names that are uncommon, and may not have been found in the training data (due to e.g. different languages) would also be predicted less often. Additionally, this model has not been verified in practice, and other, more subtle problems may become prevalent if used without any verification that it does what it is supposed to. ### Privacy & Ethical Considerations The data comes from only publicly available news sources, the only available data should cover public figures and those that agreed to be reported on. See the original MasakhaNER paper for more details. No explicit ethical considerations or adjustments were made during fine-tuning of this model. ## Metrics The language adaptive models achieve (mostly) superior performance over starting with xlm-roberta-base. Our main metric was the aggregate F1 score for all NER categories. These metrics are on the test set for MasakhaNER, so the data distribution is similar to the training set, so these results do not directly indicate how well these models generalise. We do find large variation in transfer results when starting from different seeds (5 different seeds were tested), indicating that the fine-tuning process for transfer might be unstable. The metrics used were chosen to be consistent with previous work, and to facilitate research. Other metrics may be more appropriate for other purposes. ## Caveats and Recommendations In general, this model performed worse on the 'date' category compared to others, so if dates are a critical factor, then that might need to be taken into account and addressed, by for example collecting and annotating more data. ## Model Structure Here are some performance details on this specific model, compared to others we trained. All of these metrics were calculated on the test set, and the seed was chosen that gave the best overall F1 score. The first three result columns are averaged over all categories, and the latter 4 provide performance broken down by category. This model can predict the following label for a token ([source](https://huggingface.co/Davlan/xlm-roberta-large-masakhaner)): Abbreviation|Description -|- O|Outside of a named entity B-DATE |Beginning of a DATE entity right after another DATE entity I-DATE |DATE entity B-PER |Beginning of a personโ€™s name right after another personโ€™s name I-PER |Personโ€™s name B-ORG |Beginning of an organisation right after another organisation I-ORG |Organisation B-LOC |Beginning of a location right after another location I-LOC |Location | Model Name | Staring point | Evaluation / Fine-tune Language | F1 | Precision | Recall | F1 (DATE) | F1 (LOC) | F1 (ORG) | F1 (PER) | | -------------------------------------------------- | -------------------- | -------------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | | [xlm-roberta-base-finetuned-swahili-finetuned-ner-naija](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-naija) (This model) | [swa](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-swahili) | pcm | 89.12 | 87.84 | 90.42 | 90.00 | 89.00 | 82.00 | 94.00 | | [xlm-roberta-base-finetuned-naija-finetuned-ner-naija](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-naija-finetuned-ner-naija) | [pcm](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-naija) | pcm | 88.06 | 87.04 | 89.12 | 90.00 | 88.00 | 81.00 | 92.00 | | [xlm-roberta-base-finetuned-ner-naija](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-ner-naija) | [base](https://huggingface.co/xlm-roberta-base) | pcm | 88.89 | 88.13 | 89.66 | 92.00 | 87.00 | 82.00 | 94.00 | ## Usage To use this model (or others), you can do the following, just changing the model name ([source](https://huggingface.co/dslim/bert-base-NER)): ``` from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline model_name = 'mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-naija' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForTokenClassification.from_pretrained(model_name) nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Mixed Martial Arts joinbodi , Ultimate Fighting Championship , UFC don decide say dem go enta back di octagon on Saturday , 9 May , for Jacksonville , Florida ." ner_results = nlp(example) print(ner_results) ```
mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-luo
mbeukman
2021-11-25T09:04:58Z
14
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "NER", "luo", "dataset:masakhaner", "arxiv:2103.11811", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - luo tags: - NER datasets: - masakhaner metrics: - f1 - precision - recall widget: - text: "๏ปฟJii 2 moko jowito ngimagi ka machielo 1 to ohinyore marach mokalo e masira makoch mar apaya mane otimore e apaya mawuok Oyugis kochimo Chabera e sub county ma Rachuonyo East e County ma Homa Bay ewii odhiambo makawuononi" --- # xlm-roberta-base-finetuned-swahili-finetuned-ner-luo This is a token classification (specifically NER) model that fine-tuned [xlm-roberta-base-finetuned-swahili](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-swahili) on the [MasakhaNER](https://arxiv.org/abs/2103.11811) dataset, specifically the Luo part. More information, and other similar models can be found in the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). ## About This model is transformer based and was fine-tuned on the MasakhaNER dataset. It is a named entity recognition dataset, containing mostly news articles in 10 different African languages. The model was fine-tuned for 50 epochs, with a maximum sequence length of 200, 32 batch size, 5e-5 learning rate. This process was repeated 5 times (with different random seeds), and this uploaded model performed the best out of those 5 seeds (aggregate F1 on test set). This model was fine-tuned by me, Michael Beukman while doing a project at the University of the Witwatersrand, Johannesburg. This is version 1, as of 20 November 2021. This model is licensed under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0). ### Contact & More information For more information about the models, including training scripts, detailed results and further resources, you can visit the the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). You can contact me by filing an issue on this repository. ### Training Resources In the interest of openness, and reporting resources used, we list here how long the training process took, as well as what the minimum resources would be to reproduce this. Fine-tuning each model on the NER dataset took between 10 and 30 minutes, and was performed on a NVIDIA RTX3090 GPU. To use a batch size of 32, at least 14GB of GPU memory was required, although it was just possible to fit these models in around 6.5GB's of VRAM when using a batch size of 1. ## Data The train, evaluation and test datasets were taken directly from the MasakhaNER [Github](https://github.com/masakhane-io/masakhane-ner) repository, with minimal to no preprocessing, as the original dataset is already of high quality. The motivation for the use of this data is that it is the "first large, publicly available, highยญ quality dataset for named entity recognition (NER) in ten African languages" ([source](https://arxiv.org/pdf/2103.11811.pdf)). The high-quality data, as well as the groundwork laid by the paper introducing it are some more reasons why this dataset was used. For evaluation, the dedicated test split was used, which is from the same distribution as the training data, so this model may not generalise to other distributions, and further testing would need to be done to investigate this. The exact distribution of the data is covered in detail [here](https://arxiv.org/abs/2103.11811). ## Intended Use This model are intended to be used for NLP research into e.g. interpretability or transfer learning. Using this model in production is not supported, as generalisability and downright performance is limited. In particular, this is not designed to be used in any important downstream task that could affect people, as harm could be caused by the limitations of the model, described next. ## Limitations This model was only trained on one (relatively small) dataset, covering one task (NER) in one domain (news articles) and in a set span of time. The results may not generalise, and the model may perform badly, or in an unfair / biased way if used on other tasks. Although the purpose of this project was to investigate transfer learning, the performance on languages that the model was not trained for does suffer. Because this model used xlm-roberta-base as its starting point (potentially with domain adaptive fine-tuning on specific languages), this model's limitations can also apply here. These can include being biased towards the hegemonic viewpoint of most of its training data, being ungrounded and having subpar results on other languages (possibly due to unbalanced training data). As [Adelani et al. (2021)](https://arxiv.org/abs/2103.11811) showed, the models in general struggled with entities that were either longer than 3 words and entities that were not contained in the training data. This could bias the models towards not finding, e.g. names of people that have many words, possibly leading to a misrepresentation in the results. Similarly, names that are uncommon, and may not have been found in the training data (due to e.g. different languages) would also be predicted less often. Additionally, this model has not been verified in practice, and other, more subtle problems may become prevalent if used without any verification that it does what it is supposed to. ### Privacy & Ethical Considerations The data comes from only publicly available news sources, the only available data should cover public figures and those that agreed to be reported on. See the original MasakhaNER paper for more details. No explicit ethical considerations or adjustments were made during fine-tuning of this model. ## Metrics The language adaptive models achieve (mostly) superior performance over starting with xlm-roberta-base. Our main metric was the aggregate F1 score for all NER categories. These metrics are on the test set for MasakhaNER, so the data distribution is similar to the training set, so these results do not directly indicate how well these models generalise. We do find large variation in transfer results when starting from different seeds (5 different seeds were tested), indicating that the fine-tuning process for transfer might be unstable. The metrics used were chosen to be consistent with previous work, and to facilitate research. Other metrics may be more appropriate for other purposes. ## Caveats and Recommendations In general, this model performed worse on the 'date' category compared to others, so if dates are a critical factor, then that might need to be taken into account and addressed, by for example collecting and annotating more data. ## Model Structure Here are some performance details on this specific model, compared to others we trained. All of these metrics were calculated on the test set, and the seed was chosen that gave the best overall F1 score. The first three result columns are averaged over all categories, and the latter 4 provide performance broken down by category. This model can predict the following label for a token ([source](https://huggingface.co/Davlan/xlm-roberta-large-masakhaner)): Abbreviation|Description -|- O|Outside of a named entity B-DATE |Beginning of a DATE entity right after another DATE entity I-DATE |DATE entity B-PER |Beginning of a personโ€™s name right after another personโ€™s name I-PER |Personโ€™s name B-ORG |Beginning of an organisation right after another organisation I-ORG |Organisation B-LOC |Beginning of a location right after another location I-LOC |Location | Model Name | Staring point | Evaluation / Fine-tune Language | F1 | Precision | Recall | F1 (DATE) | F1 (LOC) | F1 (ORG) | F1 (PER) | | -------------------------------------------------- | -------------------- | -------------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | | [xlm-roberta-base-finetuned-swahili-finetuned-ner-luo](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-luo) (This model) | [swa](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-swahili) | luo | 78.13 | 77.75 | 78.52 | 65.00 | 82.00 | 61.00 | 89.00 | | [xlm-roberta-base-finetuned-luo-finetuned-ner-luo](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-luo-finetuned-ner-luo) | [luo](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-luo) | luo | 78.71 | 78.91 | 78.52 | 72.00 | 84.00 | 59.00 | 87.00 | | [xlm-roberta-base-finetuned-ner-luo](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-ner-luo) | [base](https://huggingface.co/xlm-roberta-base) | luo | 75.99 | 76.18 | 75.80 | 71.00 | 76.00 | 62.00 | 85.00 | ## Usage To use this model (or others), you can do the following, just changing the model name ([source](https://huggingface.co/dslim/bert-base-NER)): ``` from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline model_name = 'mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-luo' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForTokenClassification.from_pretrained(model_name) nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "๏ปฟJii 2 moko jowito ngimagi ka machielo 1 to ohinyore marach mokalo e masira makoch mar apaya mane otimore e apaya mawuok Oyugis kochimo Chabera e sub county ma Rachuonyo East e County ma Homa Bay ewii odhiambo makawuononi" ner_results = nlp(example) print(ner_results) ```
mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-igbo
mbeukman
2021-11-25T09:04:50Z
5
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "NER", "ig", "dataset:masakhaner", "arxiv:2103.11811", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - ig tags: - NER datasets: - masakhaner metrics: - f1 - precision - recall widget: - text: "Ike แป‹da jแปฅแปฅ otแปฅ nkeji banyere oke ogbugbu na - eme n'ala Naijiria agwแปฅla Ekweremmadแปฅ" --- # xlm-roberta-base-finetuned-swahili-finetuned-ner-igbo This is a token classification (specifically NER) model that fine-tuned [xlm-roberta-base-finetuned-swahili](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-swahili) on the [MasakhaNER](https://arxiv.org/abs/2103.11811) dataset, specifically the Igbo part. More information, and other similar models can be found in the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). ## About This model is transformer based and was fine-tuned on the MasakhaNER dataset. It is a named entity recognition dataset, containing mostly news articles in 10 different African languages. The model was fine-tuned for 50 epochs, with a maximum sequence length of 200, 32 batch size, 5e-5 learning rate. This process was repeated 5 times (with different random seeds), and this uploaded model performed the best out of those 5 seeds (aggregate F1 on test set). This model was fine-tuned by me, Michael Beukman while doing a project at the University of the Witwatersrand, Johannesburg. This is version 1, as of 20 November 2021. This model is licensed under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0). ### Contact & More information For more information about the models, including training scripts, detailed results and further resources, you can visit the the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). You can contact me by filing an issue on this repository. ### Training Resources In the interest of openness, and reporting resources used, we list here how long the training process took, as well as what the minimum resources would be to reproduce this. Fine-tuning each model on the NER dataset took between 10 and 30 minutes, and was performed on a NVIDIA RTX3090 GPU. To use a batch size of 32, at least 14GB of GPU memory was required, although it was just possible to fit these models in around 6.5GB's of VRAM when using a batch size of 1. ## Data The train, evaluation and test datasets were taken directly from the MasakhaNER [Github](https://github.com/masakhane-io/masakhane-ner) repository, with minimal to no preprocessing, as the original dataset is already of high quality. The motivation for the use of this data is that it is the "first large, publicly available, highยญ quality dataset for named entity recognition (NER) in ten African languages" ([source](https://arxiv.org/pdf/2103.11811.pdf)). The high-quality data, as well as the groundwork laid by the paper introducing it are some more reasons why this dataset was used. For evaluation, the dedicated test split was used, which is from the same distribution as the training data, so this model may not generalise to other distributions, and further testing would need to be done to investigate this. The exact distribution of the data is covered in detail [here](https://arxiv.org/abs/2103.11811). ## Intended Use This model are intended to be used for NLP research into e.g. interpretability or transfer learning. Using this model in production is not supported, as generalisability and downright performance is limited. In particular, this is not designed to be used in any important downstream task that could affect people, as harm could be caused by the limitations of the model, described next. ## Limitations This model was only trained on one (relatively small) dataset, covering one task (NER) in one domain (news articles) and in a set span of time. The results may not generalise, and the model may perform badly, or in an unfair / biased way if used on other tasks. Although the purpose of this project was to investigate transfer learning, the performance on languages that the model was not trained for does suffer. Because this model used xlm-roberta-base as its starting point (potentially with domain adaptive fine-tuning on specific languages), this model's limitations can also apply here. These can include being biased towards the hegemonic viewpoint of most of its training data, being ungrounded and having subpar results on other languages (possibly due to unbalanced training data). As [Adelani et al. (2021)](https://arxiv.org/abs/2103.11811) showed, the models in general struggled with entities that were either longer than 3 words and entities that were not contained in the training data. This could bias the models towards not finding, e.g. names of people that have many words, possibly leading to a misrepresentation in the results. Similarly, names that are uncommon, and may not have been found in the training data (due to e.g. different languages) would also be predicted less often. Additionally, this model has not been verified in practice, and other, more subtle problems may become prevalent if used without any verification that it does what it is supposed to. ### Privacy & Ethical Considerations The data comes from only publicly available news sources, the only available data should cover public figures and those that agreed to be reported on. See the original MasakhaNER paper for more details. No explicit ethical considerations or adjustments were made during fine-tuning of this model. ## Metrics The language adaptive models achieve (mostly) superior performance over starting with xlm-roberta-base. Our main metric was the aggregate F1 score for all NER categories. These metrics are on the test set for MasakhaNER, so the data distribution is similar to the training set, so these results do not directly indicate how well these models generalise. We do find large variation in transfer results when starting from different seeds (5 different seeds were tested), indicating that the fine-tuning process for transfer might be unstable. The metrics used were chosen to be consistent with previous work, and to facilitate research. Other metrics may be more appropriate for other purposes. ## Caveats and Recommendations In general, this model performed worse on the 'date' category compared to others, so if dates are a critical factor, then that might need to be taken into account and addressed, by for example collecting and annotating more data. ## Model Structure Here are some performance details on this specific model, compared to others we trained. All of these metrics were calculated on the test set, and the seed was chosen that gave the best overall F1 score. The first three result columns are averaged over all categories, and the latter 4 provide performance broken down by category. This model can predict the following label for a token ([source](https://huggingface.co/Davlan/xlm-roberta-large-masakhaner)): Abbreviation|Description -|- O|Outside of a named entity B-DATE |Beginning of a DATE entity right after another DATE entity I-DATE |DATE entity B-PER |Beginning of a personโ€™s name right after another personโ€™s name I-PER |Personโ€™s name B-ORG |Beginning of an organisation right after another organisation I-ORG |Organisation B-LOC |Beginning of a location right after another location I-LOC |Location | Model Name | Staring point | Evaluation / Fine-tune Language | F1 | Precision | Recall | F1 (DATE) | F1 (LOC) | F1 (ORG) | F1 (PER) | | -------------------------------------------------- | -------------------- | -------------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | | [xlm-roberta-base-finetuned-swahili-finetuned-ner-igbo](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-igbo) (This model) | [swa](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-swahili) | ibo | 84.93 | 83.63 | 86.26 | 70.00 | 88.00 | 89.00 | 84.00 | | [xlm-roberta-base-finetuned-igbo-finetuned-ner-igbo](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-igbo-finetuned-ner-igbo) | [ibo](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-igbo) | ibo | 88.39 | 87.08 | 89.74 | 74.00 | 91.00 | 90.00 | 91.00 | | [xlm-roberta-base-finetuned-ner-igbo](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-ner-igbo) | [base](https://huggingface.co/xlm-roberta-base) | ibo | 86.06 | 85.20 | 86.94 | 76.00 | 86.00 | 90.00 | 87.00 | ## Usage To use this model (or others), you can do the following, just changing the model name ([source](https://huggingface.co/dslim/bert-base-NER)): ``` from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline model_name = 'mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-igbo' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForTokenClassification.from_pretrained(model_name) nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Ike แป‹da jแปฅแปฅ otแปฅ nkeji banyere oke ogbugbu na - eme n'ala Naijiria agwแปฅla Ekweremmadแปฅ" ner_results = nlp(example) print(ner_results) ```
mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-hausa
mbeukman
2021-11-25T09:04:48Z
5
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "NER", "ha", "dataset:masakhaner", "arxiv:2103.11811", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - ha tags: - NER datasets: - masakhaner metrics: - f1 - precision - recall widget: - text: "A saurari cikakken rahoton wakilin Muryar Amurka Ibrahim Abdul'aziz" --- # xlm-roberta-base-finetuned-swahili-finetuned-ner-hausa This is a token classification (specifically NER) model that fine-tuned [xlm-roberta-base-finetuned-swahili](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-swahili) on the [MasakhaNER](https://arxiv.org/abs/2103.11811) dataset, specifically the Hausa part. More information, and other similar models can be found in the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). ## About This model is transformer based and was fine-tuned on the MasakhaNER dataset. It is a named entity recognition dataset, containing mostly news articles in 10 different African languages. The model was fine-tuned for 50 epochs, with a maximum sequence length of 200, 32 batch size, 5e-5 learning rate. This process was repeated 5 times (with different random seeds), and this uploaded model performed the best out of those 5 seeds (aggregate F1 on test set). This model was fine-tuned by me, Michael Beukman while doing a project at the University of the Witwatersrand, Johannesburg. This is version 1, as of 20 November 2021. This model is licensed under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0). ### Contact & More information For more information about the models, including training scripts, detailed results and further resources, you can visit the the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). You can contact me by filing an issue on this repository. ### Training Resources In the interest of openness, and reporting resources used, we list here how long the training process took, as well as what the minimum resources would be to reproduce this. Fine-tuning each model on the NER dataset took between 10 and 30 minutes, and was performed on a NVIDIA RTX3090 GPU. To use a batch size of 32, at least 14GB of GPU memory was required, although it was just possible to fit these models in around 6.5GB's of VRAM when using a batch size of 1. ## Data The train, evaluation and test datasets were taken directly from the MasakhaNER [Github](https://github.com/masakhane-io/masakhane-ner) repository, with minimal to no preprocessing, as the original dataset is already of high quality. The motivation for the use of this data is that it is the "first large, publicly available, highยญ quality dataset for named entity recognition (NER) in ten African languages" ([source](https://arxiv.org/pdf/2103.11811.pdf)). The high-quality data, as well as the groundwork laid by the paper introducing it are some more reasons why this dataset was used. For evaluation, the dedicated test split was used, which is from the same distribution as the training data, so this model may not generalise to other distributions, and further testing would need to be done to investigate this. The exact distribution of the data is covered in detail [here](https://arxiv.org/abs/2103.11811). ## Intended Use This model are intended to be used for NLP research into e.g. interpretability or transfer learning. Using this model in production is not supported, as generalisability and downright performance is limited. In particular, this is not designed to be used in any important downstream task that could affect people, as harm could be caused by the limitations of the model, described next. ## Limitations This model was only trained on one (relatively small) dataset, covering one task (NER) in one domain (news articles) and in a set span of time. The results may not generalise, and the model may perform badly, or in an unfair / biased way if used on other tasks. Although the purpose of this project was to investigate transfer learning, the performance on languages that the model was not trained for does suffer. Because this model used xlm-roberta-base as its starting point (potentially with domain adaptive fine-tuning on specific languages), this model's limitations can also apply here. These can include being biased towards the hegemonic viewpoint of most of its training data, being ungrounded and having subpar results on other languages (possibly due to unbalanced training data). As [Adelani et al. (2021)](https://arxiv.org/abs/2103.11811) showed, the models in general struggled with entities that were either longer than 3 words and entities that were not contained in the training data. This could bias the models towards not finding, e.g. names of people that have many words, possibly leading to a misrepresentation in the results. Similarly, names that are uncommon, and may not have been found in the training data (due to e.g. different languages) would also be predicted less often. Additionally, this model has not been verified in practice, and other, more subtle problems may become prevalent if used without any verification that it does what it is supposed to. ### Privacy & Ethical Considerations The data comes from only publicly available news sources, the only available data should cover public figures and those that agreed to be reported on. See the original MasakhaNER paper for more details. No explicit ethical considerations or adjustments were made during fine-tuning of this model. ## Metrics The language adaptive models achieve (mostly) superior performance over starting with xlm-roberta-base. Our main metric was the aggregate F1 score for all NER categories. These metrics are on the test set for MasakhaNER, so the data distribution is similar to the training set, so these results do not directly indicate how well these models generalise. We do find large variation in transfer results when starting from different seeds (5 different seeds were tested), indicating that the fine-tuning process for transfer might be unstable. The metrics used were chosen to be consistent with previous work, and to facilitate research. Other metrics may be more appropriate for other purposes. ## Caveats and Recommendations In general, this model performed worse on the 'date' category compared to others, so if dates are a critical factor, then that might need to be taken into account and addressed, by for example collecting and annotating more data. ## Model Structure Here are some performance details on this specific model, compared to others we trained. All of these metrics were calculated on the test set, and the seed was chosen that gave the best overall F1 score. The first three result columns are averaged over all categories, and the latter 4 provide performance broken down by category. This model can predict the following label for a token ([source](https://huggingface.co/Davlan/xlm-roberta-large-masakhaner)): Abbreviation|Description -|- O|Outside of a named entity B-DATE |Beginning of a DATE entity right after another DATE entity I-DATE |DATE entity B-PER |Beginning of a personโ€™s name right after another personโ€™s name I-PER |Personโ€™s name B-ORG |Beginning of an organisation right after another organisation I-ORG |Organisation B-LOC |Beginning of a location right after another location I-LOC |Location | Model Name | Staring point | Evaluation / Fine-tune Language | F1 | Precision | Recall | F1 (DATE) | F1 (LOC) | F1 (ORG) | F1 (PER) | | -------------------------------------------------- | -------------------- | -------------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | | [xlm-roberta-base-finetuned-swahili-finetuned-ner-hausa](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-hausa) (This model) | [swa](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-swahili) | hau | 89.14 | 87.18 | 91.20 | 82.00 | 93.00 | 76.00 | 93.00 | | [xlm-roberta-base-finetuned-hausa-finetuned-ner-hausa](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-hausa-finetuned-ner-hausa) | [hau](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-hausa) | hau | 92.27 | 90.46 | 94.16 | 85.00 | 95.00 | 80.00 | 97.00 | | [xlm-roberta-base-finetuned-ner-hausa](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-ner-hausa) | [base](https://huggingface.co/xlm-roberta-base) | hau | 89.94 | 87.74 | 92.25 | 84.00 | 94.00 | 74.00 | 93.00 | ## Usage To use this model (or others), you can do the following, just changing the model name ([source](https://huggingface.co/dslim/bert-base-NER)): ``` from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline model_name = 'mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-hausa' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForTokenClassification.from_pretrained(model_name) nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "A saurari cikakken rahoton wakilin Muryar Amurka Ibrahim Abdul'aziz" ner_results = nlp(example) print(ner_results) ```
mbeukman/xlm-roberta-base-finetuned-ner-yoruba
mbeukman
2021-11-25T09:04:45Z
4
2
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "NER", "yo", "dataset:masakhaner", "arxiv:2103.11811", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - yo tags: - NER datasets: - masakhaner metrics: - f1 - precision - recall widget: - text: "Kรฒ sรญ แบนฬ€rรญ tรญ รณ fi แบนsแบนฬ€ rinlแบนฬ€ ." --- # xlm-roberta-base-finetuned-ner-yoruba This is a token classification (specifically NER) model that fine-tuned [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the [MasakhaNER](https://arxiv.org/abs/2103.11811) dataset, specifically the Yoruba part. More information, and other similar models can be found in the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). ## About This model is transformer based and was fine-tuned on the MasakhaNER dataset. It is a named entity recognition dataset, containing mostly news articles in 10 different African languages. The model was fine-tuned for 50 epochs, with a maximum sequence length of 200, 32 batch size, 5e-5 learning rate. This process was repeated 5 times (with different random seeds), and this uploaded model performed the best out of those 5 seeds (aggregate F1 on test set). This model was fine-tuned by me, Michael Beukman while doing a project at the University of the Witwatersrand, Johannesburg. This is version 1, as of 20 November 2021. This model is licensed under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0). ### Contact & More information For more information about the models, including training scripts, detailed results and further resources, you can visit the the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). You can contact me by filing an issue on this repository. ### Training Resources In the interest of openness, and reporting resources used, we list here how long the training process took, as well as what the minimum resources would be to reproduce this. Fine-tuning each model on the NER dataset took between 10 and 30 minutes, and was performed on a NVIDIA RTX3090 GPU. To use a batch size of 32, at least 14GB of GPU memory was required, although it was just possible to fit these models in around 6.5GB's of VRAM when using a batch size of 1. ## Data The train, evaluation and test datasets were taken directly from the MasakhaNER [Github](https://github.com/masakhane-io/masakhane-ner) repository, with minimal to no preprocessing, as the original dataset is already of high quality. The motivation for the use of this data is that it is the "first large, publicly available, highยญ quality dataset for named entity recognition (NER) in ten African languages" ([source](https://arxiv.org/pdf/2103.11811.pdf)). The high-quality data, as well as the groundwork laid by the paper introducing it are some more reasons why this dataset was used. For evaluation, the dedicated test split was used, which is from the same distribution as the training data, so this model may not generalise to other distributions, and further testing would need to be done to investigate this. The exact distribution of the data is covered in detail [here](https://arxiv.org/abs/2103.11811). ## Intended Use This model are intended to be used for NLP research into e.g. interpretability or transfer learning. Using this model in production is not supported, as generalisability and downright performance is limited. In particular, this is not designed to be used in any important downstream task that could affect people, as harm could be caused by the limitations of the model, described next. ## Limitations This model was only trained on one (relatively small) dataset, covering one task (NER) in one domain (news articles) and in a set span of time. The results may not generalise, and the model may perform badly, or in an unfair / biased way if used on other tasks. Although the purpose of this project was to investigate transfer learning, the performance on languages that the model was not trained for does suffer. Because this model used xlm-roberta-base as its starting point (potentially with domain adaptive fine-tuning on specific languages), this model's limitations can also apply here. These can include being biased towards the hegemonic viewpoint of most of its training data, being ungrounded and having subpar results on other languages (possibly due to unbalanced training data). As [Adelani et al. (2021)](https://arxiv.org/abs/2103.11811) showed, the models in general struggled with entities that were either longer than 3 words and entities that were not contained in the training data. This could bias the models towards not finding, e.g. names of people that have many words, possibly leading to a misrepresentation in the results. Similarly, names that are uncommon, and may not have been found in the training data (due to e.g. different languages) would also be predicted less often. Additionally, this model has not been verified in practice, and other, more subtle problems may become prevalent if used without any verification that it does what it is supposed to. ### Privacy & Ethical Considerations The data comes from only publicly available news sources, the only available data should cover public figures and those that agreed to be reported on. See the original MasakhaNER paper for more details. No explicit ethical considerations or adjustments were made during fine-tuning of this model. ## Metrics The language adaptive models achieve (mostly) superior performance over starting with xlm-roberta-base. Our main metric was the aggregate F1 score for all NER categories. These metrics are on the test set for MasakhaNER, so the data distribution is similar to the training set, so these results do not directly indicate how well these models generalise. We do find large variation in transfer results when starting from different seeds (5 different seeds were tested), indicating that the fine-tuning process for transfer might be unstable. The metrics used were chosen to be consistent with previous work, and to facilitate research. Other metrics may be more appropriate for other purposes. ## Caveats and Recommendations In general, this model performed worse on the 'date' category compared to others, so if dates are a critical factor, then that might need to be taken into account and addressed, by for example collecting and annotating more data. ## Model Structure Here are some performance details on this specific model, compared to others we trained. All of these metrics were calculated on the test set, and the seed was chosen that gave the best overall F1 score. The first three result columns are averaged over all categories, and the latter 4 provide performance broken down by category. This model can predict the following label for a token ([source](https://huggingface.co/Davlan/xlm-roberta-large-masakhaner)): Abbreviation|Description -|- O|Outside of a named entity B-DATE |Beginning of a DATE entity right after another DATE entity I-DATE |DATE entity B-PER |Beginning of a personโ€™s name right after another personโ€™s name I-PER |Personโ€™s name B-ORG |Beginning of an organisation right after another organisation I-ORG |Organisation B-LOC |Beginning of a location right after another location I-LOC |Location | Model Name | Staring point | Evaluation / Fine-tune Language | F1 | Precision | Recall | F1 (DATE) | F1 (LOC) | F1 (ORG) | F1 (PER) | | -------------------------------------------------- | -------------------- | -------------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | | [xlm-roberta-base-finetuned-ner-yoruba](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-ner-yoruba) (This model) | [base](https://huggingface.co/xlm-roberta-base) | yor | 78.22 | 77.21 | 79.26 | 77.00 | 80.00 | 71.00 | 82.00 | | [xlm-roberta-base-finetuned-swahili-finetuned-ner-yoruba](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-yoruba) | [swa](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-swahili) | yor | 80.29 | 78.34 | 82.35 | 77.00 | 82.00 | 73.00 | 86.00 | | [xlm-roberta-base-finetuned-yoruba-finetuned-ner-yoruba](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-yoruba-finetuned-ner-yoruba) | [yor](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-yoruba) | yor | 83.68 | 79.92 | 87.82 | 78.00 | 86.00 | 74.00 | 92.00 | ## Usage To use this model (or others), you can do the following, just changing the model name ([source](https://huggingface.co/dslim/bert-base-NER)): ``` from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline model_name = 'mbeukman/xlm-roberta-base-finetuned-ner-yoruba' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForTokenClassification.from_pretrained(model_name) nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Kรฒ sรญ แบนฬ€rรญ tรญ รณ fi แบนsแบนฬ€ rinlแบนฬ€ ." ner_results = nlp(example) print(ner_results) ```
mbeukman/xlm-roberta-base-finetuned-ner-wolof
mbeukman
2021-11-25T09:04:43Z
7
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "NER", "wo", "dataset:masakhaner", "arxiv:2103.11811", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - wo tags: - NER datasets: - masakhaner metrics: - f1 - precision - recall widget: - text: "SAFIYETU Bร‰EY Cรฉy Koronaa !" --- # xlm-roberta-base-finetuned-ner-wolof This is a token classification (specifically NER) model that fine-tuned [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the [MasakhaNER](https://arxiv.org/abs/2103.11811) dataset, specifically the Wolof part. More information, and other similar models can be found in the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). ## About This model is transformer based and was fine-tuned on the MasakhaNER dataset. It is a named entity recognition dataset, containing mostly news articles in 10 different African languages. The model was fine-tuned for 50 epochs, with a maximum sequence length of 200, 32 batch size, 5e-5 learning rate. This process was repeated 5 times (with different random seeds), and this uploaded model performed the best out of those 5 seeds (aggregate F1 on test set). This model was fine-tuned by me, Michael Beukman while doing a project at the University of the Witwatersrand, Johannesburg. This is version 1, as of 20 November 2021. This model is licensed under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0). ### Contact & More information For more information about the models, including training scripts, detailed results and further resources, you can visit the the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). You can contact me by filing an issue on this repository. ### Training Resources In the interest of openness, and reporting resources used, we list here how long the training process took, as well as what the minimum resources would be to reproduce this. Fine-tuning each model on the NER dataset took between 10 and 30 minutes, and was performed on a NVIDIA RTX3090 GPU. To use a batch size of 32, at least 14GB of GPU memory was required, although it was just possible to fit these models in around 6.5GB's of VRAM when using a batch size of 1. ## Data The train, evaluation and test datasets were taken directly from the MasakhaNER [Github](https://github.com/masakhane-io/masakhane-ner) repository, with minimal to no preprocessing, as the original dataset is already of high quality. The motivation for the use of this data is that it is the "first large, publicly available, highยญ quality dataset for named entity recognition (NER) in ten African languages" ([source](https://arxiv.org/pdf/2103.11811.pdf)). The high-quality data, as well as the groundwork laid by the paper introducing it are some more reasons why this dataset was used. For evaluation, the dedicated test split was used, which is from the same distribution as the training data, so this model may not generalise to other distributions, and further testing would need to be done to investigate this. The exact distribution of the data is covered in detail [here](https://arxiv.org/abs/2103.11811). ## Intended Use This model are intended to be used for NLP research into e.g. interpretability or transfer learning. Using this model in production is not supported, as generalisability and downright performance is limited. In particular, this is not designed to be used in any important downstream task that could affect people, as harm could be caused by the limitations of the model, described next. ## Limitations This model was only trained on one (relatively small) dataset, covering one task (NER) in one domain (news articles) and in a set span of time. The results may not generalise, and the model may perform badly, or in an unfair / biased way if used on other tasks. Although the purpose of this project was to investigate transfer learning, the performance on languages that the model was not trained for does suffer. Because this model used xlm-roberta-base as its starting point (potentially with domain adaptive fine-tuning on specific languages), this model's limitations can also apply here. These can include being biased towards the hegemonic viewpoint of most of its training data, being ungrounded and having subpar results on other languages (possibly due to unbalanced training data). As [Adelani et al. (2021)](https://arxiv.org/abs/2103.11811) showed, the models in general struggled with entities that were either longer than 3 words and entities that were not contained in the training data. This could bias the models towards not finding, e.g. names of people that have many words, possibly leading to a misrepresentation in the results. Similarly, names that are uncommon, and may not have been found in the training data (due to e.g. different languages) would also be predicted less often. Additionally, this model has not been verified in practice, and other, more subtle problems may become prevalent if used without any verification that it does what it is supposed to. ### Privacy & Ethical Considerations The data comes from only publicly available news sources, the only available data should cover public figures and those that agreed to be reported on. See the original MasakhaNER paper for more details. No explicit ethical considerations or adjustments were made during fine-tuning of this model. ## Metrics The language adaptive models achieve (mostly) superior performance over starting with xlm-roberta-base. Our main metric was the aggregate F1 score for all NER categories. These metrics are on the test set for MasakhaNER, so the data distribution is similar to the training set, so these results do not directly indicate how well these models generalise. We do find large variation in transfer results when starting from different seeds (5 different seeds were tested), indicating that the fine-tuning process for transfer might be unstable. The metrics used were chosen to be consistent with previous work, and to facilitate research. Other metrics may be more appropriate for other purposes. ## Caveats and Recommendations In general, this model performed worse on the 'date' category compared to others, so if dates are a critical factor, then that might need to be taken into account and addressed, by for example collecting and annotating more data. ## Model Structure Here are some performance details on this specific model, compared to others we trained. All of these metrics were calculated on the test set, and the seed was chosen that gave the best overall F1 score. The first three result columns are averaged over all categories, and the latter 4 provide performance broken down by category. This model can predict the following label for a token ([source](https://huggingface.co/Davlan/xlm-roberta-large-masakhaner)): Abbreviation|Description -|- O|Outside of a named entity B-DATE |Beginning of a DATE entity right after another DATE entity I-DATE |DATE entity B-PER |Beginning of a personโ€™s name right after another personโ€™s name I-PER |Personโ€™s name B-ORG |Beginning of an organisation right after another organisation I-ORG |Organisation B-LOC |Beginning of a location right after another location I-LOC |Location | Model Name | Staring point | Evaluation / Fine-tune Language | F1 | Precision | Recall | F1 (DATE) | F1 (LOC) | F1 (ORG) | F1 (PER) | | -------------------------------------------------- | -------------------- | -------------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | | [xlm-roberta-base-finetuned-ner-wolof](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-ner-wolof) (This model) | [base](https://huggingface.co/xlm-roberta-base) | wol | 66.12 | 69.46 | 63.09 | 30.00 | 84.00 | 54.00 | 59.00 | | [xlm-roberta-base-finetuned-swahili-finetuned-ner-wolof](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-wolof) | [swa](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-swahili) | wol | 69.01 | 73.25 | 65.23 | 27.00 | 85.00 | 52.00 | 67.00 | | [xlm-roberta-base-finetuned-wolof-finetuned-ner-wolof](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-wolof-finetuned-ner-wolof) | [wol](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-wolof) | wol | 69.02 | 67.60 | 70.51 | 30.00 | 84.00 | 44.00 | 71.00 | ## Usage To use this model (or others), you can do the following, just changing the model name ([source](https://huggingface.co/dslim/bert-base-NER)): ``` from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline model_name = 'mbeukman/xlm-roberta-base-finetuned-ner-wolof' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForTokenClassification.from_pretrained(model_name) nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "SAFIYETU Bร‰EY Cรฉy Koronaa !" ner_results = nlp(example) print(ner_results) ```
mbeukman/xlm-roberta-base-finetuned-ner-swahili
mbeukman
2021-11-25T09:04:40Z
7
1
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "NER", "sw", "dataset:masakhaner", "arxiv:2103.11811", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - sw tags: - NER datasets: - masakhaner metrics: - f1 - precision - recall widget: - text: "Wizara ya afya ya Tanzania imeripoti Jumatatu kuwa , watu takriban 14 zaidi wamepata maambukizi ya Covid - 19 ." --- # xlm-roberta-base-finetuned-ner-swahili This is a token classification (specifically NER) model that fine-tuned [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the [MasakhaNER](https://arxiv.org/abs/2103.11811) dataset, specifically the Swahili part. More information, and other similar models can be found in the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). ## About This model is transformer based and was fine-tuned on the MasakhaNER dataset. It is a named entity recognition dataset, containing mostly news articles in 10 different African languages. The model was fine-tuned for 50 epochs, with a maximum sequence length of 200, 32 batch size, 5e-5 learning rate. This process was repeated 5 times (with different random seeds), and this uploaded model performed the best out of those 5 seeds (aggregate F1 on test set). This model was fine-tuned by me, Michael Beukman while doing a project at the University of the Witwatersrand, Johannesburg. This is version 1, as of 20 November 2021. This model is licensed under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0). ### Contact & More information For more information about the models, including training scripts, detailed results and further resources, you can visit the the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). You can contact me by filing an issue on this repository. ### Training Resources In the interest of openness, and reporting resources used, we list here how long the training process took, as well as what the minimum resources would be to reproduce this. Fine-tuning each model on the NER dataset took between 10 and 30 minutes, and was performed on a NVIDIA RTX3090 GPU. To use a batch size of 32, at least 14GB of GPU memory was required, although it was just possible to fit these models in around 6.5GB's of VRAM when using a batch size of 1. ## Data The train, evaluation and test datasets were taken directly from the MasakhaNER [Github](https://github.com/masakhane-io/masakhane-ner) repository, with minimal to no preprocessing, as the original dataset is already of high quality. The motivation for the use of this data is that it is the "first large, publicly available, highยญ quality dataset for named entity recognition (NER) in ten African languages" ([source](https://arxiv.org/pdf/2103.11811.pdf)). The high-quality data, as well as the groundwork laid by the paper introducing it are some more reasons why this dataset was used. For evaluation, the dedicated test split was used, which is from the same distribution as the training data, so this model may not generalise to other distributions, and further testing would need to be done to investigate this. The exact distribution of the data is covered in detail [here](https://arxiv.org/abs/2103.11811). ## Intended Use This model are intended to be used for NLP research into e.g. interpretability or transfer learning. Using this model in production is not supported, as generalisability and downright performance is limited. In particular, this is not designed to be used in any important downstream task that could affect people, as harm could be caused by the limitations of the model, described next. ## Limitations This model was only trained on one (relatively small) dataset, covering one task (NER) in one domain (news articles) and in a set span of time. The results may not generalise, and the model may perform badly, or in an unfair / biased way if used on other tasks. Although the purpose of this project was to investigate transfer learning, the performance on languages that the model was not trained for does suffer. Because this model used xlm-roberta-base as its starting point (potentially with domain adaptive fine-tuning on specific languages), this model's limitations can also apply here. These can include being biased towards the hegemonic viewpoint of most of its training data, being ungrounded and having subpar results on other languages (possibly due to unbalanced training data). As [Adelani et al. (2021)](https://arxiv.org/abs/2103.11811) showed, the models in general struggled with entities that were either longer than 3 words and entities that were not contained in the training data. This could bias the models towards not finding, e.g. names of people that have many words, possibly leading to a misrepresentation in the results. Similarly, names that are uncommon, and may not have been found in the training data (due to e.g. different languages) would also be predicted less often. Additionally, this model has not been verified in practice, and other, more subtle problems may become prevalent if used without any verification that it does what it is supposed to. ### Privacy & Ethical Considerations The data comes from only publicly available news sources, the only available data should cover public figures and those that agreed to be reported on. See the original MasakhaNER paper for more details. No explicit ethical considerations or adjustments were made during fine-tuning of this model. ## Metrics The language adaptive models achieve (mostly) superior performance over starting with xlm-roberta-base. Our main metric was the aggregate F1 score for all NER categories. These metrics are on the test set for MasakhaNER, so the data distribution is similar to the training set, so these results do not directly indicate how well these models generalise. We do find large variation in transfer results when starting from different seeds (5 different seeds were tested), indicating that the fine-tuning process for transfer might be unstable. The metrics used were chosen to be consistent with previous work, and to facilitate research. Other metrics may be more appropriate for other purposes. ## Caveats and Recommendations In general, this model performed worse on the 'date' category compared to others, so if dates are a critical factor, then that might need to be taken into account and addressed, by for example collecting and annotating more data. ## Model Structure Here are some performance details on this specific model, compared to others we trained. All of these metrics were calculated on the test set, and the seed was chosen that gave the best overall F1 score. The first three result columns are averaged over all categories, and the latter 4 provide performance broken down by category. This model can predict the following label for a token ([source](https://huggingface.co/Davlan/xlm-roberta-large-masakhaner)): Abbreviation|Description -|- O|Outside of a named entity B-DATE |Beginning of a DATE entity right after another DATE entity I-DATE |DATE entity B-PER |Beginning of a personโ€™s name right after another personโ€™s name I-PER |Personโ€™s name B-ORG |Beginning of an organisation right after another organisation I-ORG |Organisation B-LOC |Beginning of a location right after another location I-LOC |Location | Model Name | Staring point | Evaluation / Fine-tune Language | F1 | Precision | Recall | F1 (DATE) | F1 (LOC) | F1 (ORG) | F1 (PER) | | -------------------------------------------------- | -------------------- | -------------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | | [xlm-roberta-base-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-ner-swahili) (This model) | [base](https://huggingface.co/xlm-roberta-base) | swa | 88.71 | 86.84 | 90.67 | 83.00 | 91.00 | 79.00 | 95.00 | | [xlm-roberta-base-finetuned-hausa-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-hausa-finetuned-ner-swahili) | [hau](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-hausa) | swa | 88.36 | 86.95 | 89.82 | 86.00 | 91.00 | 77.00 | 94.00 | | [xlm-roberta-base-finetuned-igbo-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-igbo-finetuned-ner-swahili) | [ibo](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-igbo) | swa | 87.75 | 86.55 | 88.97 | 85.00 | 92.00 | 77.00 | 91.00 | | [xlm-roberta-base-finetuned-kinyarwanda-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-kinyarwanda-finetuned-ner-swahili) | [kin](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-kinyarwanda) | swa | 87.26 | 85.15 | 89.48 | 83.00 | 91.00 | 75.00 | 93.00 | | [xlm-roberta-base-finetuned-luganda-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-luganda-finetuned-ner-swahili) | [lug](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-luganda) | swa | 88.93 | 87.64 | 90.25 | 83.00 | 92.00 | 79.00 | 95.00 | | [xlm-roberta-base-finetuned-luo-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-luo-finetuned-ner-swahili) | [luo](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-luo) | swa | 87.93 | 86.91 | 88.97 | 83.00 | 91.00 | 76.00 | 94.00 | | [xlm-roberta-base-finetuned-naija-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-naija-finetuned-ner-swahili) | [pcm](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-naija) | swa | 87.26 | 85.15 | 89.48 | 83.00 | 91.00 | 75.00 | 93.00 | | [xlm-roberta-base-finetuned-swahili-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-swahili) | [swa](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-swahili) | swa | 90.36 | 88.59 | 92.20 | 86.00 | 93.00 | 79.00 | 96.00 | | [xlm-roberta-base-finetuned-wolof-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-wolof-finetuned-ner-swahili) | [wol](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-wolof) | swa | 87.80 | 86.50 | 89.14 | 86.00 | 90.00 | 78.00 | 93.00 | | [xlm-roberta-base-finetuned-yoruba-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-yoruba-finetuned-ner-swahili) | [yor](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-yoruba) | swa | 87.73 | 86.67 | 88.80 | 85.00 | 91.00 | 75.00 | 93.00 | ## Usage To use this model (or others), you can do the following, just changing the model name ([source](https://huggingface.co/dslim/bert-base-NER)): ``` from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline model_name = 'mbeukman/xlm-roberta-base-finetuned-ner-swahili' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForTokenClassification.from_pretrained(model_name) nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Wizara ya afya ya Tanzania imeripoti Jumatatu kuwa , watu takriban 14 zaidi wamepata maambukizi ya Covid - 19 ." ner_results = nlp(example) print(ner_results) ```
mbeukman/xlm-roberta-base-finetuned-ner-luo
mbeukman
2021-11-25T09:04:35Z
7
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "NER", "luo", "dataset:masakhaner", "arxiv:2103.11811", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - luo tags: - NER datasets: - masakhaner metrics: - f1 - precision - recall widget: - text: "๏ปฟJii 2 moko jowito ngimagi ka machielo 1 to ohinyore marach mokalo e masira makoch mar apaya mane otimore e apaya mawuok Oyugis kochimo Chabera e sub county ma Rachuonyo East e County ma Homa Bay ewii odhiambo makawuononi" --- # xlm-roberta-base-finetuned-ner-luo This is a token classification (specifically NER) model that fine-tuned [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the [MasakhaNER](https://arxiv.org/abs/2103.11811) dataset, specifically the Luo part. More information, and other similar models can be found in the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). ## About This model is transformer based and was fine-tuned on the MasakhaNER dataset. It is a named entity recognition dataset, containing mostly news articles in 10 different African languages. The model was fine-tuned for 50 epochs, with a maximum sequence length of 200, 32 batch size, 5e-5 learning rate. This process was repeated 5 times (with different random seeds), and this uploaded model performed the best out of those 5 seeds (aggregate F1 on test set). This model was fine-tuned by me, Michael Beukman while doing a project at the University of the Witwatersrand, Johannesburg. This is version 1, as of 20 November 2021. This model is licensed under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0). ### Contact & More information For more information about the models, including training scripts, detailed results and further resources, you can visit the the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). You can contact me by filing an issue on this repository. ### Training Resources In the interest of openness, and reporting resources used, we list here how long the training process took, as well as what the minimum resources would be to reproduce this. Fine-tuning each model on the NER dataset took between 10 and 30 minutes, and was performed on a NVIDIA RTX3090 GPU. To use a batch size of 32, at least 14GB of GPU memory was required, although it was just possible to fit these models in around 6.5GB's of VRAM when using a batch size of 1. ## Data The train, evaluation and test datasets were taken directly from the MasakhaNER [Github](https://github.com/masakhane-io/masakhane-ner) repository, with minimal to no preprocessing, as the original dataset is already of high quality. The motivation for the use of this data is that it is the "first large, publicly available, highยญ quality dataset for named entity recognition (NER) in ten African languages" ([source](https://arxiv.org/pdf/2103.11811.pdf)). The high-quality data, as well as the groundwork laid by the paper introducing it are some more reasons why this dataset was used. For evaluation, the dedicated test split was used, which is from the same distribution as the training data, so this model may not generalise to other distributions, and further testing would need to be done to investigate this. The exact distribution of the data is covered in detail [here](https://arxiv.org/abs/2103.11811). ## Intended Use This model are intended to be used for NLP research into e.g. interpretability or transfer learning. Using this model in production is not supported, as generalisability and downright performance is limited. In particular, this is not designed to be used in any important downstream task that could affect people, as harm could be caused by the limitations of the model, described next. ## Limitations This model was only trained on one (relatively small) dataset, covering one task (NER) in one domain (news articles) and in a set span of time. The results may not generalise, and the model may perform badly, or in an unfair / biased way if used on other tasks. Although the purpose of this project was to investigate transfer learning, the performance on languages that the model was not trained for does suffer. Because this model used xlm-roberta-base as its starting point (potentially with domain adaptive fine-tuning on specific languages), this model's limitations can also apply here. These can include being biased towards the hegemonic viewpoint of most of its training data, being ungrounded and having subpar results on other languages (possibly due to unbalanced training data). As [Adelani et al. (2021)](https://arxiv.org/abs/2103.11811) showed, the models in general struggled with entities that were either longer than 3 words and entities that were not contained in the training data. This could bias the models towards not finding, e.g. names of people that have many words, possibly leading to a misrepresentation in the results. Similarly, names that are uncommon, and may not have been found in the training data (due to e.g. different languages) would also be predicted less often. Additionally, this model has not been verified in practice, and other, more subtle problems may become prevalent if used without any verification that it does what it is supposed to. ### Privacy & Ethical Considerations The data comes from only publicly available news sources, the only available data should cover public figures and those that agreed to be reported on. See the original MasakhaNER paper for more details. No explicit ethical considerations or adjustments were made during fine-tuning of this model. ## Metrics The language adaptive models achieve (mostly) superior performance over starting with xlm-roberta-base. Our main metric was the aggregate F1 score for all NER categories. These metrics are on the test set for MasakhaNER, so the data distribution is similar to the training set, so these results do not directly indicate how well these models generalise. We do find large variation in transfer results when starting from different seeds (5 different seeds were tested), indicating that the fine-tuning process for transfer might be unstable. The metrics used were chosen to be consistent with previous work, and to facilitate research. Other metrics may be more appropriate for other purposes. ## Caveats and Recommendations In general, this model performed worse on the 'date' category compared to others, so if dates are a critical factor, then that might need to be taken into account and addressed, by for example collecting and annotating more data. ## Model Structure Here are some performance details on this specific model, compared to others we trained. All of these metrics were calculated on the test set, and the seed was chosen that gave the best overall F1 score. The first three result columns are averaged over all categories, and the latter 4 provide performance broken down by category. This model can predict the following label for a token ([source](https://huggingface.co/Davlan/xlm-roberta-large-masakhaner)): Abbreviation|Description -|- O|Outside of a named entity B-DATE |Beginning of a DATE entity right after another DATE entity I-DATE |DATE entity B-PER |Beginning of a personโ€™s name right after another personโ€™s name I-PER |Personโ€™s name B-ORG |Beginning of an organisation right after another organisation I-ORG |Organisation B-LOC |Beginning of a location right after another location I-LOC |Location | Model Name | Staring point | Evaluation / Fine-tune Language | F1 | Precision | Recall | F1 (DATE) | F1 (LOC) | F1 (ORG) | F1 (PER) | | -------------------------------------------------- | -------------------- | -------------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | | [xlm-roberta-base-finetuned-ner-luo](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-ner-luo) (This model) | [base](https://huggingface.co/xlm-roberta-base) | luo | 75.99 | 76.18 | 75.80 | 71.00 | 76.00 | 62.00 | 85.00 | | [xlm-roberta-base-finetuned-luo-finetuned-ner-luo](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-luo-finetuned-ner-luo) | [luo](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-luo) | luo | 78.71 | 78.91 | 78.52 | 72.00 | 84.00 | 59.00 | 87.00 | | [xlm-roberta-base-finetuned-swahili-finetuned-ner-luo](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-luo) | [swa](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-swahili) | luo | 78.13 | 77.75 | 78.52 | 65.00 | 82.00 | 61.00 | 89.00 | ## Usage To use this model (or others), you can do the following, just changing the model name ([source](https://huggingface.co/dslim/bert-base-NER)): ``` from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline model_name = 'mbeukman/xlm-roberta-base-finetuned-ner-luo' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForTokenClassification.from_pretrained(model_name) nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "๏ปฟJii 2 moko jowito ngimagi ka machielo 1 to ohinyore marach mokalo e masira makoch mar apaya mane otimore e apaya mawuok Oyugis kochimo Chabera e sub county ma Rachuonyo East e County ma Homa Bay ewii odhiambo makawuononi" ner_results = nlp(example) print(ner_results) ```
mbeukman/xlm-roberta-base-finetuned-ner-luganda
mbeukman
2021-11-25T09:04:33Z
7
1
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "NER", "lug", "dataset:masakhaner", "arxiv:2103.11811", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - lug tags: - NER datasets: - masakhaner metrics: - f1 - precision - recall widget: - text: "Empaka zaakubeera mu kibuga Liverpool e Bungereza , okutandika nga July 12 ." --- # xlm-roberta-base-finetuned-ner-luganda This is a token classification (specifically NER) model that fine-tuned [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the [MasakhaNER](https://arxiv.org/abs/2103.11811) dataset, specifically the luganda part. More information, and other similar models can be found in the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). ## About This model is transformer based and was fine-tuned on the MasakhaNER dataset. It is a named entity recognition dataset, containing mostly news articles in 10 different African languages. The model was fine-tuned for 50 epochs, with a maximum sequence length of 200, 32 batch size, 5e-5 learning rate. This process was repeated 5 times (with different random seeds), and this uploaded model performed the best out of those 5 seeds (aggregate F1 on test set). This model was fine-tuned by me, Michael Beukman while doing a project at the University of the Witwatersrand, Johannesburg. This is version 1, as of 20 November 2021. This model is licensed under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0). ### Contact & More information For more information about the models, including training scripts, detailed results and further resources, you can visit the the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). You can contact me by filing an issue on this repository. ### Training Resources In the interest of openness, and reporting resources used, we list here how long the training process took, as well as what the minimum resources would be to reproduce this. Fine-tuning each model on the NER dataset took between 10 and 30 minutes, and was performed on a NVIDIA RTX3090 GPU. To use a batch size of 32, at least 14GB of GPU memory was required, although it was just possible to fit these models in around 6.5GB's of VRAM when using a batch size of 1. ## Data The train, evaluation and test datasets were taken directly from the MasakhaNER [Github](https://github.com/masakhane-io/masakhane-ner) repository, with minimal to no preprocessing, as the original dataset is already of high quality. The motivation for the use of this data is that it is the "first large, publicly available, highยญ quality dataset for named entity recognition (NER) in ten African languages" ([source](https://arxiv.org/pdf/2103.11811.pdf)). The high-quality data, as well as the groundwork laid by the paper introducing it are some more reasons why this dataset was used. For evaluation, the dedicated test split was used, which is from the same distribution as the training data, so this model may not generalise to other distributions, and further testing would need to be done to investigate this. The exact distribution of the data is covered in detail [here](https://arxiv.org/abs/2103.11811). ## Intended Use This model are intended to be used for NLP research into e.g. interpretability or transfer learning. Using this model in production is not supported, as generalisability and downright performance is limited. In particular, this is not designed to be used in any important downstream task that could affect people, as harm could be caused by the limitations of the model, described next. ## Limitations This model was only trained on one (relatively small) dataset, covering one task (NER) in one domain (news articles) and in a set span of time. The results may not generalise, and the model may perform badly, or in an unfair / biased way if used on other tasks. Although the purpose of this project was to investigate transfer learning, the performance on languages that the model was not trained for does suffer. Because this model used xlm-roberta-base as its starting point (potentially with domain adaptive fine-tuning on specific languages), this model's limitations can also apply here. These can include being biased towards the hegemonic viewpoint of most of its training data, being ungrounded and having subpar results on other languages (possibly due to unbalanced training data). As [Adelani et al. (2021)](https://arxiv.org/abs/2103.11811) showed, the models in general struggled with entities that were either longer than 3 words and entities that were not contained in the training data. This could bias the models towards not finding, e.g. names of people that have many words, possibly leading to a misrepresentation in the results. Similarly, names that are uncommon, and may not have been found in the training data (due to e.g. different languages) would also be predicted less often. Additionally, this model has not been verified in practice, and other, more subtle problems may become prevalent if used without any verification that it does what it is supposed to. ### Privacy & Ethical Considerations The data comes from only publicly available news sources, the only available data should cover public figures and those that agreed to be reported on. See the original MasakhaNER paper for more details. No explicit ethical considerations or adjustments were made during fine-tuning of this model. ## Metrics The language adaptive models achieve (mostly) superior performance over starting with xlm-roberta-base. Our main metric was the aggregate F1 score for all NER categories. These metrics are on the test set for MasakhaNER, so the data distribution is similar to the training set, so these results do not directly indicate how well these models generalise. We do find large variation in transfer results when starting from different seeds (5 different seeds were tested), indicating that the fine-tuning process for transfer might be unstable. The metrics used were chosen to be consistent with previous work, and to facilitate research. Other metrics may be more appropriate for other purposes. ## Caveats and Recommendations In general, this model performed worse on the 'date' category compared to others, so if dates are a critical factor, then that might need to be taken into account and addressed, by for example collecting and annotating more data. ## Model Structure Here are some performance details on this specific model, compared to others we trained. All of these metrics were calculated on the test set, and the seed was chosen that gave the best overall F1 score. The first three result columns are averaged over all categories, and the latter 4 provide performance broken down by category. This model can predict the following label for a token ([source](https://huggingface.co/Davlan/xlm-roberta-large-masakhaner)): Abbreviation|Description -|- O|Outside of a named entity B-DATE |Beginning of a DATE entity right after another DATE entity I-DATE |DATE entity B-PER |Beginning of a personโ€™s name right after another personโ€™s name I-PER |Personโ€™s name B-ORG |Beginning of an organisation right after another organisation I-ORG |Organisation B-LOC |Beginning of a location right after another location I-LOC |Location | Model Name | Staring point | Evaluation / Fine-tune Language | F1 | Precision | Recall | F1 (DATE) | F1 (LOC) | F1 (ORG) | F1 (PER) | | -------------------------------------------------- | -------------------- | -------------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | | [xlm-roberta-base-finetuned-ner-luganda](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-ner-luganda) (This model) | [base](https://huggingface.co/xlm-roberta-base) | lug | 80.91 | 78.59 | 83.37 | 73.00 | 78.00 | 77.00 | 86.00 | | [xlm-roberta-base-finetuned-luganda-finetuned-ner-luganda](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-luganda-finetuned-ner-luganda) | [lug](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-luganda) | lug | 85.37 | 82.75 | 88.17 | 78.00 | 82.00 | 80.00 | 92.00 | | [xlm-roberta-base-finetuned-swahili-finetuned-ner-luganda](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-luganda) | [swa](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-swahili) | lug | 82.57 | 80.38 | 84.89 | 75.00 | 80.00 | 82.00 | 87.00 | ## Usage To use this model (or others), you can do the following, just changing the model name ([source](https://huggingface.co/dslim/bert-base-NER)): ``` from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline model_name = 'mbeukman/xlm-roberta-base-finetuned-ner-luganda' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForTokenClassification.from_pretrained(model_name) nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Empaka zaakubeera mu kibuga Liverpool e Bungereza , okutandika nga July 12 ." ner_results = nlp(example) print(ner_results) ```
mbeukman/xlm-roberta-base-finetuned-ner-kinyarwanda
mbeukman
2021-11-25T09:04:30Z
8
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "NER", "rw", "dataset:masakhaner", "arxiv:2103.11811", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - rw tags: - NER datasets: - masakhaner metrics: - f1 - precision - recall widget: - text: "Ambasaderi wa EU mu Rwanda , Nicola Bellomo yagize ati โ€œ Inkunga yacu ni imwe mu nkunga yagutse yiswe # TeamEurope ." --- # xlm-roberta-base-finetuned-ner-kinyarwanda This is a token classification (specifically NER) model that fine-tuned [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the [MasakhaNER](https://arxiv.org/abs/2103.11811) dataset, specifically the Kinyarwanda part. More information, and other similar models can be found in the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). ## About This model is transformer based and was fine-tuned on the MasakhaNER dataset. It is a named entity recognition dataset, containing mostly news articles in 10 different African languages. The model was fine-tuned for 50 epochs, with a maximum sequence length of 200, 32 batch size, 5e-5 learning rate. This process was repeated 5 times (with different random seeds), and this uploaded model performed the best out of those 5 seeds (aggregate F1 on test set). This model was fine-tuned by me, Michael Beukman while doing a project at the University of the Witwatersrand, Johannesburg. This is version 1, as of 20 November 2021. This model is licensed under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0). ### Contact & More information For more information about the models, including training scripts, detailed results and further resources, you can visit the the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). You can contact me by filing an issue on this repository. ### Training Resources In the interest of openness, and reporting resources used, we list here how long the training process took, as well as what the minimum resources would be to reproduce this. Fine-tuning each model on the NER dataset took between 10 and 30 minutes, and was performed on a NVIDIA RTX3090 GPU. To use a batch size of 32, at least 14GB of GPU memory was required, although it was just possible to fit these models in around 6.5GB's of VRAM when using a batch size of 1. ## Data The train, evaluation and test datasets were taken directly from the MasakhaNER [Github](https://github.com/masakhane-io/masakhane-ner) repository, with minimal to no preprocessing, as the original dataset is already of high quality. The motivation for the use of this data is that it is the "first large, publicly available, highยญ quality dataset for named entity recognition (NER) in ten African languages" ([source](https://arxiv.org/pdf/2103.11811.pdf)). The high-quality data, as well as the groundwork laid by the paper introducing it are some more reasons why this dataset was used. For evaluation, the dedicated test split was used, which is from the same distribution as the training data, so this model may not generalise to other distributions, and further testing would need to be done to investigate this. The exact distribution of the data is covered in detail [here](https://arxiv.org/abs/2103.11811). ## Intended Use This model are intended to be used for NLP research into e.g. interpretability or transfer learning. Using this model in production is not supported, as generalisability and downright performance is limited. In particular, this is not designed to be used in any important downstream task that could affect people, as harm could be caused by the limitations of the model, described next. ## Limitations This model was only trained on one (relatively small) dataset, covering one task (NER) in one domain (news articles) and in a set span of time. The results may not generalise, and the model may perform badly, or in an unfair / biased way if used on other tasks. Although the purpose of this project was to investigate transfer learning, the performance on languages that the model was not trained for does suffer. Because this model used xlm-roberta-base as its starting point (potentially with domain adaptive fine-tuning on specific languages), this model's limitations can also apply here. These can include being biased towards the hegemonic viewpoint of most of its training data, being ungrounded and having subpar results on other languages (possibly due to unbalanced training data). As [Adelani et al. (2021)](https://arxiv.org/abs/2103.11811) showed, the models in general struggled with entities that were either longer than 3 words and entities that were not contained in the training data. This could bias the models towards not finding, e.g. names of people that have many words, possibly leading to a misrepresentation in the results. Similarly, names that are uncommon, and may not have been found in the training data (due to e.g. different languages) would also be predicted less often. Additionally, this model has not been verified in practice, and other, more subtle problems may become prevalent if used without any verification that it does what it is supposed to. ### Privacy & Ethical Considerations The data comes from only publicly available news sources, the only available data should cover public figures and those that agreed to be reported on. See the original MasakhaNER paper for more details. No explicit ethical considerations or adjustments were made during fine-tuning of this model. ## Metrics The language adaptive models achieve (mostly) superior performance over starting with xlm-roberta-base. Our main metric was the aggregate F1 score for all NER categories. These metrics are on the test set for MasakhaNER, so the data distribution is similar to the training set, so these results do not directly indicate how well these models generalise. We do find large variation in transfer results when starting from different seeds (5 different seeds were tested), indicating that the fine-tuning process for transfer might be unstable. The metrics used were chosen to be consistent with previous work, and to facilitate research. Other metrics may be more appropriate for other purposes. ## Caveats and Recommendations In general, this model performed worse on the 'date' category compared to others, so if dates are a critical factor, then that might need to be taken into account and addressed, by for example collecting and annotating more data. ## Model Structure Here are some performance details on this specific model, compared to others we trained. All of these metrics were calculated on the test set, and the seed was chosen that gave the best overall F1 score. The first three result columns are averaged over all categories, and the latter 4 provide performance broken down by category. This model can predict the following label for a token ([source](https://huggingface.co/Davlan/xlm-roberta-large-masakhaner)): Abbreviation|Description -|- O|Outside of a named entity B-DATE |Beginning of a DATE entity right after another DATE entity I-DATE |DATE entity B-PER |Beginning of a personโ€™s name right after another personโ€™s name I-PER |Personโ€™s name B-ORG |Beginning of an organisation right after another organisation I-ORG |Organisation B-LOC |Beginning of a location right after another location I-LOC |Location | Model Name | Staring point | Evaluation / Fine-tune Language | F1 | Precision | Recall | F1 (DATE) | F1 (LOC) | F1 (ORG) | F1 (PER) | | -------------------------------------------------- | -------------------- | -------------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | | [xlm-roberta-base-finetuned-ner-kinyarwanda](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-ner-kinyarwanda) (This model) | [base](https://huggingface.co/xlm-roberta-base) | kin | 74.59 | 72.17 | 77.17 | 70.00 | 75.00 | 70.00 | 82.00 | | [xlm-roberta-base-finetuned-kinyarwanda-finetuned-ner-kinyarwanda](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-kinyarwanda-finetuned-ner-kinyarwanda) | [kin](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-kinyarwanda) | kin | 79.55 | 75.56 | 83.99 | 69.00 | 79.00 | 77.00 | 90.00 | | [xlm-roberta-base-finetuned-swahili-finetuned-ner-kinyarwanda](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-kinyarwanda) | [swa](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-swahili) | kin | 76.31 | 72.64 | 80.37 | 70.00 | 76.00 | 75.00 | 84.00 | ## Usage To use this model (or others), you can do the following, just changing the model name ([source](https://huggingface.co/dslim/bert-base-NER)): ``` from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline model_name = 'mbeukman/xlm-roberta-base-finetuned-ner-kinyarwanda' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForTokenClassification.from_pretrained(model_name) nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Ambasaderi wa EU mu Rwanda , Nicola Bellomo yagize ati โ€œ Inkunga yacu ni imwe mu nkunga yagutse yiswe # TeamEurope ." ner_results = nlp(example) print(ner_results) ```
mbeukman/xlm-roberta-base-finetuned-ner-igbo
mbeukman
2021-11-25T09:04:28Z
7
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "NER", "ig", "dataset:masakhaner", "arxiv:2103.11811", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - ig tags: - NER datasets: - masakhaner metrics: - f1 - precision - recall widget: - text: "Ike แป‹da jแปฅแปฅ otแปฅ nkeji banyere oke ogbugbu na - eme n'ala Naijiria agwแปฅla Ekweremmadแปฅ" --- # xlm-roberta-base-finetuned-ner-igbo This is a token classification (specifically NER) model that fine-tuned [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the [MasakhaNER](https://arxiv.org/abs/2103.11811) dataset, specifically the Igbo part. More information, and other similar models can be found in the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). ## About This model is transformer based and was fine-tuned on the MasakhaNER dataset. It is a named entity recognition dataset, containing mostly news articles in 10 different African languages. The model was fine-tuned for 50 epochs, with a maximum sequence length of 200, 32 batch size, 5e-5 learning rate. This process was repeated 5 times (with different random seeds), and this uploaded model performed the best out of those 5 seeds (aggregate F1 on test set). This model was fine-tuned by me, Michael Beukman while doing a project at the University of the Witwatersrand, Johannesburg. This is version 1, as of 20 November 2021. This model is licensed under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0). ### Contact & More information For more information about the models, including training scripts, detailed results and further resources, you can visit the the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). You can contact me by filing an issue on this repository. ### Training Resources In the interest of openness, and reporting resources used, we list here how long the training process took, as well as what the minimum resources would be to reproduce this. Fine-tuning each model on the NER dataset took between 10 and 30 minutes, and was performed on a NVIDIA RTX3090 GPU. To use a batch size of 32, at least 14GB of GPU memory was required, although it was just possible to fit these models in around 6.5GB's of VRAM when using a batch size of 1. ## Data The train, evaluation and test datasets were taken directly from the MasakhaNER [Github](https://github.com/masakhane-io/masakhane-ner) repository, with minimal to no preprocessing, as the original dataset is already of high quality. The motivation for the use of this data is that it is the "first large, publicly available, highยญ quality dataset for named entity recognition (NER) in ten African languages" ([source](https://arxiv.org/pdf/2103.11811.pdf)). The high-quality data, as well as the groundwork laid by the paper introducing it are some more reasons why this dataset was used. For evaluation, the dedicated test split was used, which is from the same distribution as the training data, so this model may not generalise to other distributions, and further testing would need to be done to investigate this. The exact distribution of the data is covered in detail [here](https://arxiv.org/abs/2103.11811). ## Intended Use This model are intended to be used for NLP research into e.g. interpretability or transfer learning. Using this model in production is not supported, as generalisability and downright performance is limited. In particular, this is not designed to be used in any important downstream task that could affect people, as harm could be caused by the limitations of the model, described next. ## Limitations This model was only trained on one (relatively small) dataset, covering one task (NER) in one domain (news articles) and in a set span of time. The results may not generalise, and the model may perform badly, or in an unfair / biased way if used on other tasks. Although the purpose of this project was to investigate transfer learning, the performance on languages that the model was not trained for does suffer. Because this model used xlm-roberta-base as its starting point (potentially with domain adaptive fine-tuning on specific languages), this model's limitations can also apply here. These can include being biased towards the hegemonic viewpoint of most of its training data, being ungrounded and having subpar results on other languages (possibly due to unbalanced training data). As [Adelani et al. (2021)](https://arxiv.org/abs/2103.11811) showed, the models in general struggled with entities that were either longer than 3 words and entities that were not contained in the training data. This could bias the models towards not finding, e.g. names of people that have many words, possibly leading to a misrepresentation in the results. Similarly, names that are uncommon, and may not have been found in the training data (due to e.g. different languages) would also be predicted less often. Additionally, this model has not been verified in practice, and other, more subtle problems may become prevalent if used without any verification that it does what it is supposed to. ### Privacy & Ethical Considerations The data comes from only publicly available news sources, the only available data should cover public figures and those that agreed to be reported on. See the original MasakhaNER paper for more details. No explicit ethical considerations or adjustments were made during fine-tuning of this model. ## Metrics The language adaptive models achieve (mostly) superior performance over starting with xlm-roberta-base. Our main metric was the aggregate F1 score for all NER categories. These metrics are on the test set for MasakhaNER, so the data distribution is similar to the training set, so these results do not directly indicate how well these models generalise. We do find large variation in transfer results when starting from different seeds (5 different seeds were tested), indicating that the fine-tuning process for transfer might be unstable. The metrics used were chosen to be consistent with previous work, and to facilitate research. Other metrics may be more appropriate for other purposes. ## Caveats and Recommendations In general, this model performed worse on the 'date' category compared to others, so if dates are a critical factor, then that might need to be taken into account and addressed, by for example collecting and annotating more data. ## Model Structure Here are some performance details on this specific model, compared to others we trained. All of these metrics were calculated on the test set, and the seed was chosen that gave the best overall F1 score. The first three result columns are averaged over all categories, and the latter 4 provide performance broken down by category. This model can predict the following label for a token ([source](https://huggingface.co/Davlan/xlm-roberta-large-masakhaner)): Abbreviation|Description -|- O|Outside of a named entity B-DATE |Beginning of a DATE entity right after another DATE entity I-DATE |DATE entity B-PER |Beginning of a personโ€™s name right after another personโ€™s name I-PER |Personโ€™s name B-ORG |Beginning of an organisation right after another organisation I-ORG |Organisation B-LOC |Beginning of a location right after another location I-LOC |Location | Model Name | Staring point | Evaluation / Fine-tune Language | F1 | Precision | Recall | F1 (DATE) | F1 (LOC) | F1 (ORG) | F1 (PER) | | -------------------------------------------------- | -------------------- | -------------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | | [xlm-roberta-base-finetuned-ner-igbo](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-ner-igbo) (This model) | [base](https://huggingface.co/xlm-roberta-base) | ibo | 86.06 | 85.20 | 86.94 | 76.00 | 86.00 | 90.00 | 87.00 | | [xlm-roberta-base-finetuned-igbo-finetuned-ner-igbo](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-igbo-finetuned-ner-igbo) | [ibo](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-igbo) | ibo | 88.39 | 87.08 | 89.74 | 74.00 | 91.00 | 90.00 | 91.00 | | [xlm-roberta-base-finetuned-swahili-finetuned-ner-igbo](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-igbo) | [swa](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-swahili) | ibo | 84.93 | 83.63 | 86.26 | 70.00 | 88.00 | 89.00 | 84.00 | ## Usage To use this model (or others), you can do the following, just changing the model name ([source](https://huggingface.co/dslim/bert-base-NER)): ``` from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline model_name = 'mbeukman/xlm-roberta-base-finetuned-ner-igbo' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForTokenClassification.from_pretrained(model_name) nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Ike แป‹da jแปฅแปฅ otแปฅ nkeji banyere oke ogbugbu na - eme n'ala Naijiria agwแปฅla Ekweremmadแปฅ" ner_results = nlp(example) print(ner_results) ```
mbeukman/xlm-roberta-base-finetuned-ner-hausa
mbeukman
2021-11-25T09:04:25Z
7
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "NER", "ha", "dataset:masakhaner", "arxiv:2103.11811", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - ha tags: - NER datasets: - masakhaner metrics: - f1 - precision - recall widget: - text: "A saurari cikakken rahoton wakilin Muryar Amurka Ibrahim Abdul'aziz" --- # xlm-roberta-base-finetuned-ner-hausa This is a token classification (specifically NER) model that fine-tuned [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the [MasakhaNER](https://arxiv.org/abs/2103.11811) dataset, specifically the Hausa part. More information, and other similar models can be found in the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). ## About This model is transformer based and was fine-tuned on the MasakhaNER dataset. It is a named entity recognition dataset, containing mostly news articles in 10 different African languages. The model was fine-tuned for 50 epochs, with a maximum sequence length of 200, 32 batch size, 5e-5 learning rate. This process was repeated 5 times (with different random seeds), and this uploaded model performed the best out of those 5 seeds (aggregate F1 on test set). This model was fine-tuned by me, Michael Beukman while doing a project at the University of the Witwatersrand, Johannesburg. This is version 1, as of 20 November 2021. This model is licensed under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0). ### Contact & More information For more information about the models, including training scripts, detailed results and further resources, you can visit the the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). You can contact me by filing an issue on this repository. ### Training Resources In the interest of openness, and reporting resources used, we list here how long the training process took, as well as what the minimum resources would be to reproduce this. Fine-tuning each model on the NER dataset took between 10 and 30 minutes, and was performed on a NVIDIA RTX3090 GPU. To use a batch size of 32, at least 14GB of GPU memory was required, although it was just possible to fit these models in around 6.5GB's of VRAM when using a batch size of 1. ## Data The train, evaluation and test datasets were taken directly from the MasakhaNER [Github](https://github.com/masakhane-io/masakhane-ner) repository, with minimal to no preprocessing, as the original dataset is already of high quality. The motivation for the use of this data is that it is the "first large, publicly available, highยญ quality dataset for named entity recognition (NER) in ten African languages" ([source](https://arxiv.org/pdf/2103.11811.pdf)). The high-quality data, as well as the groundwork laid by the paper introducing it are some more reasons why this dataset was used. For evaluation, the dedicated test split was used, which is from the same distribution as the training data, so this model may not generalise to other distributions, and further testing would need to be done to investigate this. The exact distribution of the data is covered in detail [here](https://arxiv.org/abs/2103.11811). ## Intended Use This model are intended to be used for NLP research into e.g. interpretability or transfer learning. Using this model in production is not supported, as generalisability and downright performance is limited. In particular, this is not designed to be used in any important downstream task that could affect people, as harm could be caused by the limitations of the model, described next. ## Limitations This model was only trained on one (relatively small) dataset, covering one task (NER) in one domain (news articles) and in a set span of time. The results may not generalise, and the model may perform badly, or in an unfair / biased way if used on other tasks. Although the purpose of this project was to investigate transfer learning, the performance on languages that the model was not trained for does suffer. Because this model used xlm-roberta-base as its starting point (potentially with domain adaptive fine-tuning on specific languages), this model's limitations can also apply here. These can include being biased towards the hegemonic viewpoint of most of its training data, being ungrounded and having subpar results on other languages (possibly due to unbalanced training data). As [Adelani et al. (2021)](https://arxiv.org/abs/2103.11811) showed, the models in general struggled with entities that were either longer than 3 words and entities that were not contained in the training data. This could bias the models towards not finding, e.g. names of people that have many words, possibly leading to a misrepresentation in the results. Similarly, names that are uncommon, and may not have been found in the training data (due to e.g. different languages) would also be predicted less often. Additionally, this model has not been verified in practice, and other, more subtle problems may become prevalent if used without any verification that it does what it is supposed to. ### Privacy & Ethical Considerations The data comes from only publicly available news sources, the only available data should cover public figures and those that agreed to be reported on. See the original MasakhaNER paper for more details. No explicit ethical considerations or adjustments were made during fine-tuning of this model. ## Metrics The language adaptive models achieve (mostly) superior performance over starting with xlm-roberta-base. Our main metric was the aggregate F1 score for all NER categories. These metrics are on the test set for MasakhaNER, so the data distribution is similar to the training set, so these results do not directly indicate how well these models generalise. We do find large variation in transfer results when starting from different seeds (5 different seeds were tested), indicating that the fine-tuning process for transfer might be unstable. The metrics used were chosen to be consistent with previous work, and to facilitate research. Other metrics may be more appropriate for other purposes. ## Caveats and Recommendations In general, this model performed worse on the 'date' category compared to others, so if dates are a critical factor, then that might need to be taken into account and addressed, by for example collecting and annotating more data. ## Model Structure Here are some performance details on this specific model, compared to others we trained. All of these metrics were calculated on the test set, and the seed was chosen that gave the best overall F1 score. The first three result columns are averaged over all categories, and the latter 4 provide performance broken down by category. This model can predict the following label for a token ([source](https://huggingface.co/Davlan/xlm-roberta-large-masakhaner)): Abbreviation|Description -|- O|Outside of a named entity B-DATE |Beginning of a DATE entity right after another DATE entity I-DATE |DATE entity B-PER |Beginning of a personโ€™s name right after another personโ€™s name I-PER |Personโ€™s name B-ORG |Beginning of an organisation right after another organisation I-ORG |Organisation B-LOC |Beginning of a location right after another location I-LOC |Location | Model Name | Staring point | Evaluation / Fine-tune Language | F1 | Precision | Recall | F1 (DATE) | F1 (LOC) | F1 (ORG) | F1 (PER) | | -------------------------------------------------- | -------------------- | -------------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | | [xlm-roberta-base-finetuned-ner-hausa](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-ner-hausa) (This model) | [base](https://huggingface.co/xlm-roberta-base) | hau | 89.94 | 87.74 | 92.25 | 84.00 | 94.00 | 74.00 | 93.00 | | [xlm-roberta-base-finetuned-hausa-finetuned-ner-hausa](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-hausa-finetuned-ner-hausa) | [hau](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-hausa) | hau | 92.27 | 90.46 | 94.16 | 85.00 | 95.00 | 80.00 | 97.00 | | [xlm-roberta-base-finetuned-swahili-finetuned-ner-hausa](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-hausa) | [swa](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-swahili) | hau | 89.14 | 87.18 | 91.20 | 82.00 | 93.00 | 76.00 | 93.00 | ## Usage To use this model (or others), you can do the following, just changing the model name ([source](https://huggingface.co/dslim/bert-base-NER)): ``` from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline model_name = 'mbeukman/xlm-roberta-base-finetuned-ner-hausa' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForTokenClassification.from_pretrained(model_name) nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "A saurari cikakken rahoton wakilin Muryar Amurka Ibrahim Abdul'aziz" ner_results = nlp(example) print(ner_results) ```
mbeukman/xlm-roberta-base-finetuned-kinyarwanda-finetuned-ner-swahili
mbeukman
2021-11-25T09:04:07Z
4
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "NER", "sw", "dataset:masakhaner", "arxiv:2103.11811", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - sw tags: - NER datasets: - masakhaner metrics: - f1 - precision - recall widget: - text: "Wizara ya afya ya Tanzania imeripoti Jumatatu kuwa , watu takriban 14 zaidi wamepata maambukizi ya Covid - 19 ." --- # xlm-roberta-base-finetuned-kinyarwanda-finetuned-ner-swahili This is a token classification (specifically NER) model that fine-tuned [xlm-roberta-base-finetuned-kinyarwanda](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-kinyarwanda) on the [MasakhaNER](https://arxiv.org/abs/2103.11811) dataset, specifically the Swahili part. More information, and other similar models can be found in the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). ## About This model is transformer based and was fine-tuned on the MasakhaNER dataset. It is a named entity recognition dataset, containing mostly news articles in 10 different African languages. The model was fine-tuned for 50 epochs, with a maximum sequence length of 200, 32 batch size, 5e-5 learning rate. This process was repeated 5 times (with different random seeds), and this uploaded model performed the best out of those 5 seeds (aggregate F1 on test set). This model was fine-tuned by me, Michael Beukman while doing a project at the University of the Witwatersrand, Johannesburg. This is version 1, as of 20 November 2021. This model is licensed under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0). ### Contact & More information For more information about the models, including training scripts, detailed results and further resources, you can visit the the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). You can contact me by filing an issue on this repository. ### Training Resources In the interest of openness, and reporting resources used, we list here how long the training process took, as well as what the minimum resources would be to reproduce this. Fine-tuning each model on the NER dataset took between 10 and 30 minutes, and was performed on a NVIDIA RTX3090 GPU. To use a batch size of 32, at least 14GB of GPU memory was required, although it was just possible to fit these models in around 6.5GB's of VRAM when using a batch size of 1. ## Data The train, evaluation and test datasets were taken directly from the MasakhaNER [Github](https://github.com/masakhane-io/masakhane-ner) repository, with minimal to no preprocessing, as the original dataset is already of high quality. The motivation for the use of this data is that it is the "first large, publicly available, highยญ quality dataset for named entity recognition (NER) in ten African languages" ([source](https://arxiv.org/pdf/2103.11811.pdf)). The high-quality data, as well as the groundwork laid by the paper introducing it are some more reasons why this dataset was used. For evaluation, the dedicated test split was used, which is from the same distribution as the training data, so this model may not generalise to other distributions, and further testing would need to be done to investigate this. The exact distribution of the data is covered in detail [here](https://arxiv.org/abs/2103.11811). ## Intended Use This model are intended to be used for NLP research into e.g. interpretability or transfer learning. Using this model in production is not supported, as generalisability and downright performance is limited. In particular, this is not designed to be used in any important downstream task that could affect people, as harm could be caused by the limitations of the model, described next. ## Limitations This model was only trained on one (relatively small) dataset, covering one task (NER) in one domain (news articles) and in a set span of time. The results may not generalise, and the model may perform badly, or in an unfair / biased way if used on other tasks. Although the purpose of this project was to investigate transfer learning, the performance on languages that the model was not trained for does suffer. Because this model used xlm-roberta-base as its starting point (potentially with domain adaptive fine-tuning on specific languages), this model's limitations can also apply here. These can include being biased towards the hegemonic viewpoint of most of its training data, being ungrounded and having subpar results on other languages (possibly due to unbalanced training data). As [Adelani et al. (2021)](https://arxiv.org/abs/2103.11811) showed, the models in general struggled with entities that were either longer than 3 words and entities that were not contained in the training data. This could bias the models towards not finding, e.g. names of people that have many words, possibly leading to a misrepresentation in the results. Similarly, names that are uncommon, and may not have been found in the training data (due to e.g. different languages) would also be predicted less often. Additionally, this model has not been verified in practice, and other, more subtle problems may become prevalent if used without any verification that it does what it is supposed to. ### Privacy & Ethical Considerations The data comes from only publicly available news sources, the only available data should cover public figures and those that agreed to be reported on. See the original MasakhaNER paper for more details. No explicit ethical considerations or adjustments were made during fine-tuning of this model. ## Metrics The language adaptive models achieve (mostly) superior performance over starting with xlm-roberta-base. Our main metric was the aggregate F1 score for all NER categories. These metrics are on the test set for MasakhaNER, so the data distribution is similar to the training set, so these results do not directly indicate how well these models generalise. We do find large variation in transfer results when starting from different seeds (5 different seeds were tested), indicating that the fine-tuning process for transfer might be unstable. The metrics used were chosen to be consistent with previous work, and to facilitate research. Other metrics may be more appropriate for other purposes. ## Caveats and Recommendations In general, this model performed worse on the 'date' category compared to others, so if dates are a critical factor, then that might need to be taken into account and addressed, by for example collecting and annotating more data. ## Model Structure Here are some performance details on this specific model, compared to others we trained. All of these metrics were calculated on the test set, and the seed was chosen that gave the best overall F1 score. The first three result columns are averaged over all categories, and the latter 4 provide performance broken down by category. This model can predict the following label for a token ([source](https://huggingface.co/Davlan/xlm-roberta-large-masakhaner)): Abbreviation|Description -|- O|Outside of a named entity B-DATE |Beginning of a DATE entity right after another DATE entity I-DATE |DATE entity B-PER |Beginning of a personโ€™s name right after another personโ€™s name I-PER |Personโ€™s name B-ORG |Beginning of an organisation right after another organisation I-ORG |Organisation B-LOC |Beginning of a location right after another location I-LOC |Location | Model Name | Staring point | Evaluation / Fine-tune Language | F1 | Precision | Recall | F1 (DATE) | F1 (LOC) | F1 (ORG) | F1 (PER) | | -------------------------------------------------- | -------------------- | -------------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | | [xlm-roberta-base-finetuned-kinyarwanda-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-kinyarwanda-finetuned-ner-swahili) (This model) | [kin](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-kinyarwanda) | swa | 87.26 | 85.15 | 89.48 | 83.00 | 91.00 | 75.00 | 93.00 | | [xlm-roberta-base-finetuned-hausa-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-hausa-finetuned-ner-swahili) | [hau](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-hausa) | swa | 88.36 | 86.95 | 89.82 | 86.00 | 91.00 | 77.00 | 94.00 | | [xlm-roberta-base-finetuned-igbo-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-igbo-finetuned-ner-swahili) | [ibo](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-igbo) | swa | 87.75 | 86.55 | 88.97 | 85.00 | 92.00 | 77.00 | 91.00 | | [xlm-roberta-base-finetuned-luganda-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-luganda-finetuned-ner-swahili) | [lug](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-luganda) | swa | 88.93 | 87.64 | 90.25 | 83.00 | 92.00 | 79.00 | 95.00 | | [xlm-roberta-base-finetuned-luo-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-luo-finetuned-ner-swahili) | [luo](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-luo) | swa | 87.93 | 86.91 | 88.97 | 83.00 | 91.00 | 76.00 | 94.00 | | [xlm-roberta-base-finetuned-naija-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-naija-finetuned-ner-swahili) | [pcm](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-naija) | swa | 87.26 | 85.15 | 89.48 | 83.00 | 91.00 | 75.00 | 93.00 | | [xlm-roberta-base-finetuned-swahili-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-swahili) | [swa](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-swahili) | swa | 90.36 | 88.59 | 92.20 | 86.00 | 93.00 | 79.00 | 96.00 | | [xlm-roberta-base-finetuned-wolof-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-wolof-finetuned-ner-swahili) | [wol](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-wolof) | swa | 87.80 | 86.50 | 89.14 | 86.00 | 90.00 | 78.00 | 93.00 | | [xlm-roberta-base-finetuned-yoruba-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-yoruba-finetuned-ner-swahili) | [yor](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-yoruba) | swa | 87.73 | 86.67 | 88.80 | 85.00 | 91.00 | 75.00 | 93.00 | | [xlm-roberta-base-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-ner-swahili) | [base](https://huggingface.co/xlm-roberta-base) | swa | 88.71 | 86.84 | 90.67 | 83.00 | 91.00 | 79.00 | 95.00 | ## Usage To use this model (or others), you can do the following, just changing the model name ([source](https://huggingface.co/dslim/bert-base-NER)): ``` from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline model_name = 'mbeukman/xlm-roberta-base-finetuned-kinyarwanda-finetuned-ner-swahili' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForTokenClassification.from_pretrained(model_name) nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Wizara ya afya ya Tanzania imeripoti Jumatatu kuwa , watu takriban 14 zaidi wamepata maambukizi ya Covid - 19 ." ner_results = nlp(example) print(ner_results) ```
mbeukman/xlm-roberta-base-finetuned-igbo-finetuned-ner-swahili
mbeukman
2021-11-25T09:04:02Z
6
1
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "NER", "sw", "dataset:masakhaner", "arxiv:2103.11811", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - sw tags: - NER datasets: - masakhaner metrics: - f1 - precision - recall widget: - text: "Wizara ya afya ya Tanzania imeripoti Jumatatu kuwa , watu takriban 14 zaidi wamepata maambukizi ya Covid - 19 ." --- # xlm-roberta-base-finetuned-igbo-finetuned-ner-swahili This is a token classification (specifically NER) model that fine-tuned [xlm-roberta-base-finetuned-igbo](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-igbo) on the [MasakhaNER](https://arxiv.org/abs/2103.11811) dataset, specifically the Swahili part. More information, and other similar models can be found in the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). ## About This model is transformer based and was fine-tuned on the MasakhaNER dataset. It is a named entity recognition dataset, containing mostly news articles in 10 different African languages. The model was fine-tuned for 50 epochs, with a maximum sequence length of 200, 32 batch size, 5e-5 learning rate. This process was repeated 5 times (with different random seeds), and this uploaded model performed the best out of those 5 seeds (aggregate F1 on test set). This model was fine-tuned by me, Michael Beukman while doing a project at the University of the Witwatersrand, Johannesburg. This is version 1, as of 20 November 2021. This model is licensed under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0). ### Contact & More information For more information about the models, including training scripts, detailed results and further resources, you can visit the the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). You can contact me by filing an issue on this repository. ### Training Resources In the interest of openness, and reporting resources used, we list here how long the training process took, as well as what the minimum resources would be to reproduce this. Fine-tuning each model on the NER dataset took between 10 and 30 minutes, and was performed on a NVIDIA RTX3090 GPU. To use a batch size of 32, at least 14GB of GPU memory was required, although it was just possible to fit these models in around 6.5GB's of VRAM when using a batch size of 1. ## Data The train, evaluation and test datasets were taken directly from the MasakhaNER [Github](https://github.com/masakhane-io/masakhane-ner) repository, with minimal to no preprocessing, as the original dataset is already of high quality. The motivation for the use of this data is that it is the "first large, publicly available, highยญ quality dataset for named entity recognition (NER) in ten African languages" ([source](https://arxiv.org/pdf/2103.11811.pdf)). The high-quality data, as well as the groundwork laid by the paper introducing it are some more reasons why this dataset was used. For evaluation, the dedicated test split was used, which is from the same distribution as the training data, so this model may not generalise to other distributions, and further testing would need to be done to investigate this. The exact distribution of the data is covered in detail [here](https://arxiv.org/abs/2103.11811). ## Intended Use This model are intended to be used for NLP research into e.g. interpretability or transfer learning. Using this model in production is not supported, as generalisability and downright performance is limited. In particular, this is not designed to be used in any important downstream task that could affect people, as harm could be caused by the limitations of the model, described next. ## Limitations This model was only trained on one (relatively small) dataset, covering one task (NER) in one domain (news articles) and in a set span of time. The results may not generalise, and the model may perform badly, or in an unfair / biased way if used on other tasks. Although the purpose of this project was to investigate transfer learning, the performance on languages that the model was not trained for does suffer. Because this model used xlm-roberta-base as its starting point (potentially with domain adaptive fine-tuning on specific languages), this model's limitations can also apply here. These can include being biased towards the hegemonic viewpoint of most of its training data, being ungrounded and having subpar results on other languages (possibly due to unbalanced training data). As [Adelani et al. (2021)](https://arxiv.org/abs/2103.11811) showed, the models in general struggled with entities that were either longer than 3 words and entities that were not contained in the training data. This could bias the models towards not finding, e.g. names of people that have many words, possibly leading to a misrepresentation in the results. Similarly, names that are uncommon, and may not have been found in the training data (due to e.g. different languages) would also be predicted less often. Additionally, this model has not been verified in practice, and other, more subtle problems may become prevalent if used without any verification that it does what it is supposed to. ### Privacy & Ethical Considerations The data comes from only publicly available news sources, the only available data should cover public figures and those that agreed to be reported on. See the original MasakhaNER paper for more details. No explicit ethical considerations or adjustments were made during fine-tuning of this model. ## Metrics The language adaptive models achieve (mostly) superior performance over starting with xlm-roberta-base. Our main metric was the aggregate F1 score for all NER categories. These metrics are on the test set for MasakhaNER, so the data distribution is similar to the training set, so these results do not directly indicate how well these models generalise. We do find large variation in transfer results when starting from different seeds (5 different seeds were tested), indicating that the fine-tuning process for transfer might be unstable. The metrics used were chosen to be consistent with previous work, and to facilitate research. Other metrics may be more appropriate for other purposes. ## Caveats and Recommendations In general, this model performed worse on the 'date' category compared to others, so if dates are a critical factor, then that might need to be taken into account and addressed, by for example collecting and annotating more data. ## Model Structure Here are some performance details on this specific model, compared to others we trained. All of these metrics were calculated on the test set, and the seed was chosen that gave the best overall F1 score. The first three result columns are averaged over all categories, and the latter 4 provide performance broken down by category. This model can predict the following label for a token ([source](https://huggingface.co/Davlan/xlm-roberta-large-masakhaner)): Abbreviation|Description -|- O|Outside of a named entity B-DATE |Beginning of a DATE entity right after another DATE entity I-DATE |DATE entity B-PER |Beginning of a personโ€™s name right after another personโ€™s name I-PER |Personโ€™s name B-ORG |Beginning of an organisation right after another organisation I-ORG |Organisation B-LOC |Beginning of a location right after another location I-LOC |Location | Model Name | Staring point | Evaluation / Fine-tune Language | F1 | Precision | Recall | F1 (DATE) | F1 (LOC) | F1 (ORG) | F1 (PER) | | -------------------------------------------------- | -------------------- | -------------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | | [xlm-roberta-base-finetuned-igbo-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-igbo-finetuned-ner-swahili) (This model) | [ibo](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-igbo) | swa | 87.75 | 86.55 | 88.97 | 85.00 | 92.00 | 77.00 | 91.00 | | [xlm-roberta-base-finetuned-hausa-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-hausa-finetuned-ner-swahili) | [hau](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-hausa) | swa | 88.36 | 86.95 | 89.82 | 86.00 | 91.00 | 77.00 | 94.00 | | [xlm-roberta-base-finetuned-kinyarwanda-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-kinyarwanda-finetuned-ner-swahili) | [kin](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-kinyarwanda) | swa | 87.26 | 85.15 | 89.48 | 83.00 | 91.00 | 75.00 | 93.00 | | [xlm-roberta-base-finetuned-luganda-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-luganda-finetuned-ner-swahili) | [lug](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-luganda) | swa | 88.93 | 87.64 | 90.25 | 83.00 | 92.00 | 79.00 | 95.00 | | [xlm-roberta-base-finetuned-luo-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-luo-finetuned-ner-swahili) | [luo](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-luo) | swa | 87.93 | 86.91 | 88.97 | 83.00 | 91.00 | 76.00 | 94.00 | | [xlm-roberta-base-finetuned-naija-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-naija-finetuned-ner-swahili) | [pcm](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-naija) | swa | 87.26 | 85.15 | 89.48 | 83.00 | 91.00 | 75.00 | 93.00 | | [xlm-roberta-base-finetuned-swahili-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-swahili) | [swa](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-swahili) | swa | 90.36 | 88.59 | 92.20 | 86.00 | 93.00 | 79.00 | 96.00 | | [xlm-roberta-base-finetuned-wolof-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-wolof-finetuned-ner-swahili) | [wol](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-wolof) | swa | 87.80 | 86.50 | 89.14 | 86.00 | 90.00 | 78.00 | 93.00 | | [xlm-roberta-base-finetuned-yoruba-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-yoruba-finetuned-ner-swahili) | [yor](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-yoruba) | swa | 87.73 | 86.67 | 88.80 | 85.00 | 91.00 | 75.00 | 93.00 | | [xlm-roberta-base-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-ner-swahili) | [base](https://huggingface.co/xlm-roberta-base) | swa | 88.71 | 86.84 | 90.67 | 83.00 | 91.00 | 79.00 | 95.00 | ## Usage To use this model (or others), you can do the following, just changing the model name ([source](https://huggingface.co/dslim/bert-base-NER)): ``` from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline model_name = 'mbeukman/xlm-roberta-base-finetuned-igbo-finetuned-ner-swahili' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForTokenClassification.from_pretrained(model_name) nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Wizara ya afya ya Tanzania imeripoti Jumatatu kuwa , watu takriban 14 zaidi wamepata maambukizi ya Covid - 19 ." ner_results = nlp(example) print(ner_results) ```
mbeukman/xlm-roberta-base-finetuned-igbo-finetuned-ner-igbo
mbeukman
2021-11-25T09:04:00Z
4
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "NER", "ig", "dataset:masakhaner", "arxiv:2103.11811", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - ig tags: - NER datasets: - masakhaner metrics: - f1 - precision - recall widget: - text: "Ike แป‹da jแปฅแปฅ otแปฅ nkeji banyere oke ogbugbu na - eme n'ala Naijiria agwแปฅla Ekweremmadแปฅ" --- # xlm-roberta-base-finetuned-igbo-finetuned-ner-igbo This is a token classification (specifically NER) model that fine-tuned [xlm-roberta-base-finetuned-igbo](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-igbo) on the [MasakhaNER](https://arxiv.org/abs/2103.11811) dataset, specifically the Igbo part. More information, and other similar models can be found in the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). ## About This model is transformer based and was fine-tuned on the MasakhaNER dataset. It is a named entity recognition dataset, containing mostly news articles in 10 different African languages. The model was fine-tuned for 50 epochs, with a maximum sequence length of 200, 32 batch size, 5e-5 learning rate. This process was repeated 5 times (with different random seeds), and this uploaded model performed the best out of those 5 seeds (aggregate F1 on test set). This model was fine-tuned by me, Michael Beukman while doing a project at the University of the Witwatersrand, Johannesburg. This is version 1, as of 20 November 2021. This model is licensed under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0). ### Contact & More information For more information about the models, including training scripts, detailed results and further resources, you can visit the the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). You can contact me by filing an issue on this repository. ### Training Resources In the interest of openness, and reporting resources used, we list here how long the training process took, as well as what the minimum resources would be to reproduce this. Fine-tuning each model on the NER dataset took between 10 and 30 minutes, and was performed on a NVIDIA RTX3090 GPU. To use a batch size of 32, at least 14GB of GPU memory was required, although it was just possible to fit these models in around 6.5GB's of VRAM when using a batch size of 1. ## Data The train, evaluation and test datasets were taken directly from the MasakhaNER [Github](https://github.com/masakhane-io/masakhane-ner) repository, with minimal to no preprocessing, as the original dataset is already of high quality. The motivation for the use of this data is that it is the "first large, publicly available, highยญ quality dataset for named entity recognition (NER) in ten African languages" ([source](https://arxiv.org/pdf/2103.11811.pdf)). The high-quality data, as well as the groundwork laid by the paper introducing it are some more reasons why this dataset was used. For evaluation, the dedicated test split was used, which is from the same distribution as the training data, so this model may not generalise to other distributions, and further testing would need to be done to investigate this. The exact distribution of the data is covered in detail [here](https://arxiv.org/abs/2103.11811). ## Intended Use This model are intended to be used for NLP research into e.g. interpretability or transfer learning. Using this model in production is not supported, as generalisability and downright performance is limited. In particular, this is not designed to be used in any important downstream task that could affect people, as harm could be caused by the limitations of the model, described next. ## Limitations This model was only trained on one (relatively small) dataset, covering one task (NER) in one domain (news articles) and in a set span of time. The results may not generalise, and the model may perform badly, or in an unfair / biased way if used on other tasks. Although the purpose of this project was to investigate transfer learning, the performance on languages that the model was not trained for does suffer. Because this model used xlm-roberta-base as its starting point (potentially with domain adaptive fine-tuning on specific languages), this model's limitations can also apply here. These can include being biased towards the hegemonic viewpoint of most of its training data, being ungrounded and having subpar results on other languages (possibly due to unbalanced training data). As [Adelani et al. (2021)](https://arxiv.org/abs/2103.11811) showed, the models in general struggled with entities that were either longer than 3 words and entities that were not contained in the training data. This could bias the models towards not finding, e.g. names of people that have many words, possibly leading to a misrepresentation in the results. Similarly, names that are uncommon, and may not have been found in the training data (due to e.g. different languages) would also be predicted less often. Additionally, this model has not been verified in practice, and other, more subtle problems may become prevalent if used without any verification that it does what it is supposed to. ### Privacy & Ethical Considerations The data comes from only publicly available news sources, the only available data should cover public figures and those that agreed to be reported on. See the original MasakhaNER paper for more details. No explicit ethical considerations or adjustments were made during fine-tuning of this model. ## Metrics The language adaptive models achieve (mostly) superior performance over starting with xlm-roberta-base. Our main metric was the aggregate F1 score for all NER categories. These metrics are on the test set for MasakhaNER, so the data distribution is similar to the training set, so these results do not directly indicate how well these models generalise. We do find large variation in transfer results when starting from different seeds (5 different seeds were tested), indicating that the fine-tuning process for transfer might be unstable. The metrics used were chosen to be consistent with previous work, and to facilitate research. Other metrics may be more appropriate for other purposes. ## Caveats and Recommendations In general, this model performed worse on the 'date' category compared to others, so if dates are a critical factor, then that might need to be taken into account and addressed, by for example collecting and annotating more data. ## Model Structure Here are some performance details on this specific model, compared to others we trained. All of these metrics were calculated on the test set, and the seed was chosen that gave the best overall F1 score. The first three result columns are averaged over all categories, and the latter 4 provide performance broken down by category. This model can predict the following label for a token ([source](https://huggingface.co/Davlan/xlm-roberta-large-masakhaner)): Abbreviation|Description -|- O|Outside of a named entity B-DATE |Beginning of a DATE entity right after another DATE entity I-DATE |DATE entity B-PER |Beginning of a personโ€™s name right after another personโ€™s name I-PER |Personโ€™s name B-ORG |Beginning of an organisation right after another organisation I-ORG |Organisation B-LOC |Beginning of a location right after another location I-LOC |Location | Model Name | Staring point | Evaluation / Fine-tune Language | F1 | Precision | Recall | F1 (DATE) | F1 (LOC) | F1 (ORG) | F1 (PER) | | -------------------------------------------------- | -------------------- | -------------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | | [xlm-roberta-base-finetuned-igbo-finetuned-ner-igbo](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-igbo-finetuned-ner-igbo) (This model) | [ibo](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-igbo) | ibo | 88.39 | 87.08 | 89.74 | 74.00 | 91.00 | 90.00 | 91.00 | | [xlm-roberta-base-finetuned-swahili-finetuned-ner-igbo](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-igbo) | [swa](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-swahili) | ibo | 84.93 | 83.63 | 86.26 | 70.00 | 88.00 | 89.00 | 84.00 | | [xlm-roberta-base-finetuned-ner-igbo](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-ner-igbo) | [base](https://huggingface.co/xlm-roberta-base) | ibo | 86.06 | 85.20 | 86.94 | 76.00 | 86.00 | 90.00 | 87.00 | ## Usage To use this model (or others), you can do the following, just changing the model name ([source](https://huggingface.co/dslim/bert-base-NER)): ``` from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline model_name = 'mbeukman/xlm-roberta-base-finetuned-igbo-finetuned-ner-igbo' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForTokenClassification.from_pretrained(model_name) nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Ike แป‹da jแปฅแปฅ otแปฅ nkeji banyere oke ogbugbu na - eme n'ala Naijiria agwแปฅla Ekweremmadแปฅ" ner_results = nlp(example) print(ner_results) ```
mbeukman/xlm-roberta-base-finetuned-hausa-finetuned-ner-swahili
mbeukman
2021-11-25T09:03:58Z
6
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "NER", "sw", "dataset:masakhaner", "arxiv:2103.11811", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - sw tags: - NER datasets: - masakhaner metrics: - f1 - precision - recall widget: - text: "Wizara ya afya ya Tanzania imeripoti Jumatatu kuwa , watu takriban 14 zaidi wamepata maambukizi ya Covid - 19 ." --- # xlm-roberta-base-finetuned-hausa-finetuned-ner-swahili This is a token classification (specifically NER) model that fine-tuned [xlm-roberta-base-finetuned-hausa](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-hausa) on the [MasakhaNER](https://arxiv.org/abs/2103.11811) dataset, specifically the Swahili part. More information, and other similar models can be found in the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). ## About This model is transformer based and was fine-tuned on the MasakhaNER dataset. It is a named entity recognition dataset, containing mostly news articles in 10 different African languages. The model was fine-tuned for 50 epochs, with a maximum sequence length of 200, 32 batch size, 5e-5 learning rate. This process was repeated 5 times (with different random seeds), and this uploaded model performed the best out of those 5 seeds (aggregate F1 on test set). This model was fine-tuned by me, Michael Beukman while doing a project at the University of the Witwatersrand, Johannesburg. This is version 1, as of 20 November 2021. This model is licensed under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0). ### Contact & More information For more information about the models, including training scripts, detailed results and further resources, you can visit the the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). You can contact me by filing an issue on this repository. ### Training Resources In the interest of openness, and reporting resources used, we list here how long the training process took, as well as what the minimum resources would be to reproduce this. Fine-tuning each model on the NER dataset took between 10 and 30 minutes, and was performed on a NVIDIA RTX3090 GPU. To use a batch size of 32, at least 14GB of GPU memory was required, although it was just possible to fit these models in around 6.5GB's of VRAM when using a batch size of 1. ## Data The train, evaluation and test datasets were taken directly from the MasakhaNER [Github](https://github.com/masakhane-io/masakhane-ner) repository, with minimal to no preprocessing, as the original dataset is already of high quality. The motivation for the use of this data is that it is the "first large, publicly available, highยญ quality dataset for named entity recognition (NER) in ten African languages" ([source](https://arxiv.org/pdf/2103.11811.pdf)). The high-quality data, as well as the groundwork laid by the paper introducing it are some more reasons why this dataset was used. For evaluation, the dedicated test split was used, which is from the same distribution as the training data, so this model may not generalise to other distributions, and further testing would need to be done to investigate this. The exact distribution of the data is covered in detail [here](https://arxiv.org/abs/2103.11811). ## Intended Use This model are intended to be used for NLP research into e.g. interpretability or transfer learning. Using this model in production is not supported, as generalisability and downright performance is limited. In particular, this is not designed to be used in any important downstream task that could affect people, as harm could be caused by the limitations of the model, described next. ## Limitations This model was only trained on one (relatively small) dataset, covering one task (NER) in one domain (news articles) and in a set span of time. The results may not generalise, and the model may perform badly, or in an unfair / biased way if used on other tasks. Although the purpose of this project was to investigate transfer learning, the performance on languages that the model was not trained for does suffer. Because this model used xlm-roberta-base as its starting point (potentially with domain adaptive fine-tuning on specific languages), this model's limitations can also apply here. These can include being biased towards the hegemonic viewpoint of most of its training data, being ungrounded and having subpar results on other languages (possibly due to unbalanced training data). As [Adelani et al. (2021)](https://arxiv.org/abs/2103.11811) showed, the models in general struggled with entities that were either longer than 3 words and entities that were not contained in the training data. This could bias the models towards not finding, e.g. names of people that have many words, possibly leading to a misrepresentation in the results. Similarly, names that are uncommon, and may not have been found in the training data (due to e.g. different languages) would also be predicted less often. Additionally, this model has not been verified in practice, and other, more subtle problems may become prevalent if used without any verification that it does what it is supposed to. ### Privacy & Ethical Considerations The data comes from only publicly available news sources, the only available data should cover public figures and those that agreed to be reported on. See the original MasakhaNER paper for more details. No explicit ethical considerations or adjustments were made during fine-tuning of this model. ## Metrics The language adaptive models achieve (mostly) superior performance over starting with xlm-roberta-base. Our main metric was the aggregate F1 score for all NER categories. These metrics are on the test set for MasakhaNER, so the data distribution is similar to the training set, so these results do not directly indicate how well these models generalise. We do find large variation in transfer results when starting from different seeds (5 different seeds were tested), indicating that the fine-tuning process for transfer might be unstable. The metrics used were chosen to be consistent with previous work, and to facilitate research. Other metrics may be more appropriate for other purposes. ## Caveats and Recommendations In general, this model performed worse on the 'date' category compared to others, so if dates are a critical factor, then that might need to be taken into account and addressed, by for example collecting and annotating more data. ## Model Structure Here are some performance details on this specific model, compared to others we trained. All of these metrics were calculated on the test set, and the seed was chosen that gave the best overall F1 score. The first three result columns are averaged over all categories, and the latter 4 provide performance broken down by category. This model can predict the following label for a token ([source](https://huggingface.co/Davlan/xlm-roberta-large-masakhaner)): Abbreviation|Description -|- O|Outside of a named entity B-DATE |Beginning of a DATE entity right after another DATE entity I-DATE |DATE entity B-PER |Beginning of a personโ€™s name right after another personโ€™s name I-PER |Personโ€™s name B-ORG |Beginning of an organisation right after another organisation I-ORG |Organisation B-LOC |Beginning of a location right after another location I-LOC |Location | Model Name | Staring point | Evaluation / Fine-tune Language | F1 | Precision | Recall | F1 (DATE) | F1 (LOC) | F1 (ORG) | F1 (PER) | | -------------------------------------------------- | -------------------- | -------------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | | [xlm-roberta-base-finetuned-hausa-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-hausa-finetuned-ner-swahili) (This model) | [hau](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-hausa) | swa | 88.36 | 86.95 | 89.82 | 86.00 | 91.00 | 77.00 | 94.00 | | [xlm-roberta-base-finetuned-igbo-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-igbo-finetuned-ner-swahili) | [ibo](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-igbo) | swa | 87.75 | 86.55 | 88.97 | 85.00 | 92.00 | 77.00 | 91.00 | | [xlm-roberta-base-finetuned-kinyarwanda-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-kinyarwanda-finetuned-ner-swahili) | [kin](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-kinyarwanda) | swa | 87.26 | 85.15 | 89.48 | 83.00 | 91.00 | 75.00 | 93.00 | | [xlm-roberta-base-finetuned-luganda-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-luganda-finetuned-ner-swahili) | [lug](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-luganda) | swa | 88.93 | 87.64 | 90.25 | 83.00 | 92.00 | 79.00 | 95.00 | | [xlm-roberta-base-finetuned-luo-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-luo-finetuned-ner-swahili) | [luo](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-luo) | swa | 87.93 | 86.91 | 88.97 | 83.00 | 91.00 | 76.00 | 94.00 | | [xlm-roberta-base-finetuned-naija-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-naija-finetuned-ner-swahili) | [pcm](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-naija) | swa | 87.26 | 85.15 | 89.48 | 83.00 | 91.00 | 75.00 | 93.00 | | [xlm-roberta-base-finetuned-swahili-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-swahili) | [swa](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-swahili) | swa | 90.36 | 88.59 | 92.20 | 86.00 | 93.00 | 79.00 | 96.00 | | [xlm-roberta-base-finetuned-wolof-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-wolof-finetuned-ner-swahili) | [wol](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-wolof) | swa | 87.80 | 86.50 | 89.14 | 86.00 | 90.00 | 78.00 | 93.00 | | [xlm-roberta-base-finetuned-yoruba-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-yoruba-finetuned-ner-swahili) | [yor](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-yoruba) | swa | 87.73 | 86.67 | 88.80 | 85.00 | 91.00 | 75.00 | 93.00 | | [xlm-roberta-base-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-ner-swahili) | [base](https://huggingface.co/xlm-roberta-base) | swa | 88.71 | 86.84 | 90.67 | 83.00 | 91.00 | 79.00 | 95.00 | ## Usage To use this model (or others), you can do the following, just changing the model name ([source](https://huggingface.co/dslim/bert-base-NER)): ``` from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline model_name = 'mbeukman/xlm-roberta-base-finetuned-hausa-finetuned-ner-swahili' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForTokenClassification.from_pretrained(model_name) nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Wizara ya afya ya Tanzania imeripoti Jumatatu kuwa , watu takriban 14 zaidi wamepata maambukizi ya Covid - 19 ." ner_results = nlp(example) print(ner_results) ```
jpabbuehl/distilbert-base-uncased-finetuned-cola
jpabbuehl
2021-11-25T08:49:51Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5229586822934302 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7588 - Matthews Correlation: 0.5230 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5261 | 1.0 | 535 | 0.5125 | 0.4124 | | 0.3502 | 2.0 | 1070 | 0.5439 | 0.5076 | | 0.2378 | 3.0 | 1605 | 0.6629 | 0.4946 | | 0.1809 | 4.0 | 2140 | 0.7588 | 0.5230 | | 0.1309 | 5.0 | 2675 | 0.8901 | 0.5056 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
DiegoAlysson/opus-mt-en-ro-finetuned-en-to-ro
DiegoAlysson
2021-11-25T03:08:55Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "generated_from_trainer", "dataset:wmt16", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: opus-mt-en-ro-finetuned-en-to-ro results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wmt16 type: wmt16 args: ro-en metrics: - name: Bleu type: bleu value: 27.9273 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-ro-finetuned-en-to-ro This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ro](https://huggingface.co/Helsinki-NLP/opus-mt-en-ro) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 1.2915 - Bleu: 27.9273 - Gen Len: 34.0935 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 0.7448 | 1.0 | 38145 | 1.2915 | 27.9273 | 34.0935 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
arnolfokam/bert-base-uncased-pcm
arnolfokam
2021-11-24T21:14:03Z
7
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "NER", "pcm", "dataset:masakhaner", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - pcm tags: - NER datasets: - masakhaner metrics: - f1 - precision - recall license: apache-2.0 widget: - text: "Mixed Martial Arts joinbodi, Ultimate Fighting Championship, UFC don decide say dem go enta back di octagon on Saturday, 9 May, for Jacksonville, Florida." --- # Model description **bert-base-uncased-pcm** is a model based on the fine-tuned BERT base uncased model. It has been trained to recognize four types of entities: - dates & time (DATE) - Location (LOC) - Organizations (ORG) - Person (PER) # Intended Use - Intended to be used for research purposes concerning Named Entity Recognition for African Languages. - Not intended for practical purposes. # Training Data This model was fine-tuned on the Nigerian Pidgin corpus **(pcm)** of the [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) dataset. However, we thresholded the number of entity groups per sentence in this dataset to 10 entity groups. # Training procedure This model was trained on a single NVIDIA P5000 from [Paperspace](https://www.paperspace.com) #### Hyperparameters - **Learning Rate:** 5e-5 - **Batch Size:** 32 - **Maximum Sequence Length:** 164 - **Epochs:** 30 # Evaluation Data We evaluated this model on the test split of the Swahili corpus **(pcm)** present in the [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) with no thresholding. # Metrics - Precision - Recall - F1-score # Limitations - The size of the pre-trained language model prevents its usage in anything other than research. - Lack of analysis concerning the bias and fairness in these models may make them dangerous if deployed into production system. - The train data is a less populated version of the original dataset in terms of entity groups per sentence. Therefore, this can negatively impact the performance. # Caveats and Recommendations - The topics in the dataset corpus are centered around **News**. Future training could be done with a more diverse corpus. # Results Model Name| Precision | Recall | F1-score -|-|-|- **bert-base-uncased-pcm**| 88.61 | 84.17 | 86.33 # Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("arnolfokam/bert-base-uncased-pcm") model = AutoModelForTokenClassification.from_pretrained("arnolfokam/bert-base-uncased-pcm") nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Mixed Martial Arts joinbodi, Ultimate Fighting Championship, UFC don decide say dem go enta back di octagon on Saturday, 9 May, for Jacksonville, Florida." ner_results = nlp(example) print(ner_results) ```
huggingtweets/emirtarik
huggingtweets
2021-11-24T20:31:24Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/emirtarik/1637785880110/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1435194184294707207/s3hAS9Pv_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">๐Ÿค– AI BOT ๐Ÿค–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Emir</div> <div style="text-align: center; font-size: 14px;">@emirtarik</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Emir. | Data | Emir | | --- | --- | | Tweets downloaded | 1917 | | Retweets | 421 | | Short tweets | 368 | | Tweets kept | 1128 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2bk4sb83/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @emirtarik's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3abibhtt) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3abibhtt/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/emirtarik') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
bgoel4132/twitter-sentiment
bgoel4132
2021-11-24T19:39:02Z
6
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autonlp", "en", "dataset:bgoel4132/autonlp-data-twitter-sentiment", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- tags: autonlp language: en widget: - text: "I love AutoNLP ๐Ÿค—" datasets: - bgoel4132/autonlp-data-twitter-sentiment co2_eq_emissions: 186.8637425115097 --- # Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 35868888 - CO2 Emissions (in grams): 186.8637425115097 ## Validation Metrics - Loss: 0.2020547091960907 - Accuracy: 0.9233253193796257 - Macro F1: 0.9240407542958707 - Micro F1: 0.9233253193796257 - Weighted F1: 0.921800586774046 - Macro Precision: 0.9432284179846658 - Micro Precision: 0.9233253193796257 - Weighted Precision: 0.9247263361914827 - Macro Recall: 0.9139437626409382 - Micro Recall: 0.9233253193796257 - Weighted Recall: 0.9233253193796257 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/bgoel4132/autonlp-twitter-sentiment-35868888 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("bgoel4132/autonlp-twitter-sentiment-35868888", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("bgoel4132/autonlp-twitter-sentiment-35868888", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
castorini/monot5-large-msmarco-10k
castorini
2021-11-24T19:15:14Z
149
1
transformers
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
This model is a T5-large reranker fine-tuned on the MS MARCO passage dataset for 10k steps (or 1 epoch). This model usually has a better zero-shot performance than `monot5-large-msmarco`, i.e., it performs better on datasets different from MS MARCO. For more details on how to use it, check the following links: - [A simple reranking example](https://github.com/castorini/pygaggle#a-simple-reranking-example) - [Rerank MS MARCO passages](https://github.com/castorini/pygaggle/blob/master/docs/experiments-msmarco-passage-subset.md) - [Rerank Robust04 documents](https://github.com/castorini/pygaggle/blob/master/docs/experiments-robust04-monot5-gpu.md) Paper describing the model: [Document Ranking with a Pretrained Sequence-to-Sequence Model](https://www.aclweb.org/anthology/2020.findings-emnlp.63/)
castorini/monot5-base-msmarco
castorini
2021-11-24T17:59:19Z
23,090
10
transformers
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
This model is a T5-base reranker fine-tuned on the MS MARCO passage dataset for 100k steps (or 10 epochs). For better zero-shot performance (i.e., inference on other datasets), we recommend using `castorini/monot5-base-msmarco-10k`. For more details on how to use it, check the following links: - [A simple reranking example](https://github.com/castorini/pygaggle#a-simple-reranking-example) - [Rerank MS MARCO passages](https://github.com/castorini/pygaggle/blob/master/docs/experiments-msmarco-passage-subset.md) - [Rerank Robust04 documents](https://github.com/castorini/pygaggle/blob/master/docs/experiments-robust04-monot5-gpu.md) Paper describing the model: [Document Ranking with a Pretrained Sequence-to-Sequence Model](https://www.aclweb.org/anthology/2020.findings-emnlp.63/)
AdapterHub/roberta-base-pf-yelp_polarity
AdapterHub
2021-11-24T16:33:21Z
1
0
adapter-transformers
[ "adapter-transformers", "text-classification", "roberta", "en", "dataset:yelp_polarity", "arxiv:2104.08247", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- tags: - text-classification - roberta - adapter-transformers datasets: - yelp_polarity language: - en --- # Adapter `AdapterHub/roberta-base-pf-yelp_polarity` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [yelp_polarity](https://huggingface.co/datasets/yelp_polarity/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-yelp_polarity", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
AdapterHub/roberta-base-pf-wnut_17
AdapterHub
2021-11-24T16:33:15Z
5
0
adapter-transformers
[ "adapter-transformers", "token-classification", "roberta", "en", "dataset:wnut_17", "arxiv:2104.08247", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- tags: - token-classification - roberta - adapter-transformers datasets: - wnut_17 language: - en --- # Adapter `AdapterHub/roberta-base-pf-wnut_17` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [wnut_17](https://huggingface.co/datasets/wnut_17/) dataset and includes a prediction head for tagging. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-wnut_17", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
AdapterHub/roberta-base-pf-ud_pos
AdapterHub
2021-11-24T16:32:48Z
4
0
adapter-transformers
[ "adapter-transformers", "token-classification", "roberta", "adapterhub:pos/ud_ewt", "en", "dataset:universal_dependencies", "arxiv:2104.08247", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- tags: - token-classification - roberta - adapterhub:pos/ud_ewt - adapter-transformers datasets: - universal_dependencies language: - en --- # Adapter `AdapterHub/roberta-base-pf-ud_pos` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [pos/ud_ewt](https://adapterhub.ml/explore/pos/ud_ewt/) dataset and includes a prediction head for tagging. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-ud_pos", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
AdapterHub/roberta-base-pf-trec
AdapterHub
2021-11-24T16:32:34Z
0
0
adapter-transformers
[ "adapter-transformers", "text-classification", "roberta", "en", "dataset:trec", "arxiv:2104.08247", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- tags: - text-classification - roberta - adapter-transformers datasets: - trec language: - en --- # Adapter `AdapterHub/roberta-base-pf-trec` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [trec](https://huggingface.co/datasets/trec/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-trec", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
AdapterHub/roberta-base-pf-snli
AdapterHub
2021-11-24T16:31:56Z
2
0
adapter-transformers
[ "adapter-transformers", "text-classification", "roberta", "en", "dataset:snli", "arxiv:2104.08247", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- tags: - text-classification - roberta - adapter-transformers datasets: - snli language: - en --- # Adapter `AdapterHub/roberta-base-pf-snli` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [snli](https://huggingface.co/datasets/snli/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-snli", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
AdapterHub/roberta-base-pf-rotten_tomatoes
AdapterHub
2021-11-24T16:31:26Z
2
0
adapter-transformers
[ "adapter-transformers", "text-classification", "roberta", "adapterhub:sentiment/rotten_tomatoes", "en", "dataset:rotten_tomatoes", "arxiv:2104.08247", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- tags: - text-classification - roberta - adapterhub:sentiment/rotten_tomatoes - adapter-transformers datasets: - rotten_tomatoes language: - en --- # Adapter `AdapterHub/roberta-base-pf-rotten_tomatoes` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [sentiment/rotten_tomatoes](https://adapterhub.ml/explore/sentiment/rotten_tomatoes/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-rotten_tomatoes", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
AdapterHub/roberta-base-pf-race
AdapterHub
2021-11-24T16:31:15Z
6
0
adapter-transformers
[ "adapter-transformers", "adapterhub:rc/race", "roberta", "en", "dataset:race", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04Z
--- tags: - adapterhub:rc/race - roberta - adapter-transformers datasets: - race language: - en --- # Adapter `AdapterHub/roberta-base-pf-race` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [rc/race](https://adapterhub.ml/explore/rc/race/) dataset and includes a prediction head for multiple choice. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-race", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-what-to-pre-train-on, title={What to Pre-Train on? Efficient Intermediate Task Selection}, author={Clifton Poth and Jonas Pfeiffer and Andreas Rรผcklรฉ and Iryna Gurevych}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/2104.08247", pages = "to appear", } ```
AdapterHub/roberta-base-pf-mrpc
AdapterHub
2021-11-24T16:30:24Z
2
0
adapter-transformers
[ "adapter-transformers", "text-classification", "roberta", "adapterhub:sts/mrpc", "en", "arxiv:2104.08247", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- tags: - text-classification - roberta - adapterhub:sts/mrpc - adapter-transformers language: - en --- # Adapter `AdapterHub/roberta-base-pf-mrpc` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [sts/mrpc](https://adapterhub.ml/explore/sts/mrpc/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-mrpc", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
AdapterHub/roberta-base-pf-imdb
AdapterHub
2021-11-24T16:30:07Z
49
0
adapter-transformers
[ "adapter-transformers", "text-classification", "roberta", "adapterhub:sentiment/imdb", "en", "dataset:imdb", "arxiv:2104.08247", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- tags: - text-classification - roberta - adapterhub:sentiment/imdb - adapter-transformers datasets: - imdb language: - en --- # Adapter `AdapterHub/roberta-base-pf-imdb` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [sentiment/imdb](https://adapterhub.ml/explore/sentiment/imdb/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-imdb", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
AdapterHub/roberta-base-pf-hellaswag
AdapterHub
2021-11-24T16:29:56Z
3
0
adapter-transformers
[ "adapter-transformers", "roberta", "adapterhub:comsense/hellaswag", "en", "dataset:hellaswag", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04Z
--- tags: - roberta - adapterhub:comsense/hellaswag - adapter-transformers datasets: - hellaswag language: - en --- # Adapter `AdapterHub/roberta-base-pf-hellaswag` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [comsense/hellaswag](https://adapterhub.ml/explore/comsense/hellaswag/) dataset and includes a prediction head for multiple choice. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-hellaswag", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-what-to-pre-train-on, title={What to Pre-Train on? Efficient Intermediate Task Selection}, author={Clifton Poth and Jonas Pfeiffer and Andreas Rรผcklรฉ and Iryna Gurevych}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/2104.08247", pages = "to appear", } ```
AdapterHub/roberta-base-pf-cosmos_qa
AdapterHub
2021-11-24T16:29:17Z
2
0
adapter-transformers
[ "adapter-transformers", "roberta", "adapterhub:comsense/cosmosqa", "en", "dataset:cosmos_qa", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04Z
--- tags: - roberta - adapterhub:comsense/cosmosqa - adapter-transformers datasets: - cosmos_qa language: - en --- # Adapter `AdapterHub/roberta-base-pf-cosmos_qa` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [comsense/cosmosqa](https://adapterhub.ml/explore/comsense/cosmosqa/) dataset and includes a prediction head for multiple choice. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-cosmos_qa", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-what-to-pre-train-on, title={What to Pre-Train on? Efficient Intermediate Task Selection}, author={Clifton Poth and Jonas Pfeiffer and Andreas Rรผcklรฉ and Iryna Gurevych}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/2104.08247", pages = "to appear", } ```
AdapterHub/roberta-base-pf-conll2000
AdapterHub
2021-11-24T16:28:49Z
5
0
adapter-transformers
[ "adapter-transformers", "token-classification", "roberta", "adapterhub:chunk/conll2000", "en", "dataset:conll2000", "arxiv:2104.08247", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- tags: - token-classification - roberta - adapterhub:chunk/conll2000 - adapter-transformers datasets: - conll2000 language: - en --- # Adapter `AdapterHub/roberta-base-pf-conll2000` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [chunk/conll2000](https://adapterhub.ml/explore/chunk/conll2000/) dataset and includes a prediction head for tagging. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-conll2000", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
AdapterHub/roberta-base-pf-cola
AdapterHub
2021-11-24T16:27:49Z
11
1
adapter-transformers
[ "adapter-transformers", "text-classification", "roberta", "adapterhub:lingaccept/cola", "en", "arxiv:2104.08247", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- tags: - text-classification - roberta - adapterhub:lingaccept/cola - adapter-transformers language: - en --- # Adapter `AdapterHub/roberta-base-pf-cola` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [lingaccept/cola](https://adapterhub.ml/explore/lingaccept/cola/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-cola", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
AdapterHub/roberta-base-pf-art
AdapterHub
2021-11-24T16:27:34Z
1
0
adapter-transformers
[ "adapter-transformers", "roberta", "en", "dataset:art", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04Z
--- tags: - roberta - adapter-transformers datasets: - art language: - en --- # Adapter `AdapterHub/roberta-base-pf-art` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [art](https://huggingface.co/datasets/art/) dataset and includes a prediction head for multiple choice. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-art", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-what-to-pre-train-on, title={What to Pre-Train on? Efficient Intermediate Task Selection}, author={Clifton Poth and Jonas Pfeiffer and Andreas Rรผcklรฉ and Iryna Gurevych}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/2104.08247", pages = "to appear", } ```
AdapterHub/bert-base-uncased-pf-yelp_polarity
AdapterHub
2021-11-24T16:27:20Z
4
0
adapter-transformers
[ "adapter-transformers", "text-classification", "bert", "en", "dataset:yelp_polarity", "arxiv:2104.08247", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- tags: - text-classification - bert - adapter-transformers datasets: - yelp_polarity language: - en --- # Adapter `AdapterHub/bert-base-uncased-pf-yelp_polarity` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [yelp_polarity](https://huggingface.co/datasets/yelp_polarity/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-yelp_polarity", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
AdapterHub/bert-base-uncased-pf-wnut_17
AdapterHub
2021-11-24T16:27:13Z
3
0
adapter-transformers
[ "adapter-transformers", "token-classification", "bert", "en", "dataset:wnut_17", "arxiv:2104.08247", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- tags: - token-classification - bert - adapter-transformers datasets: - wnut_17 language: - en --- # Adapter `AdapterHub/bert-base-uncased-pf-wnut_17` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [wnut_17](https://huggingface.co/datasets/wnut_17/) dataset and includes a prediction head for tagging. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-wnut_17", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
AdapterHub/bert-base-uncased-pf-winogrande
AdapterHub
2021-11-24T16:27:05Z
0
0
adapter-transformers
[ "adapter-transformers", "bert", "adapterhub:comsense/winogrande", "en", "dataset:winogrande", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04Z
--- tags: - bert - adapterhub:comsense/winogrande - adapter-transformers datasets: - winogrande language: - en --- # Adapter `AdapterHub/bert-base-uncased-pf-winogrande` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [comsense/winogrande](https://adapterhub.ml/explore/comsense/winogrande/) dataset and includes a prediction head for multiple choice. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-winogrande", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-what-to-pre-train-on, title={What to Pre-Train on? Efficient Intermediate Task Selection}, author={Clifton Poth and Jonas Pfeiffer and Andreas Rรผcklรฉ and Iryna Gurevych}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/2104.08247", pages = "to appear", } ```
AdapterHub/bert-base-uncased-pf-wic
AdapterHub
2021-11-24T16:26:54Z
1
0
adapter-transformers
[ "adapter-transformers", "text-classification", "bert", "adapterhub:wordsence/wic", "en", "arxiv:2104.08247", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- tags: - text-classification - bert - adapterhub:wordsence/wic - adapter-transformers language: - en --- # Adapter `AdapterHub/bert-base-uncased-pf-wic` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [wordsence/wic](https://adapterhub.ml/explore/wordsence/wic/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-wic", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
AdapterHub/bert-base-uncased-pf-ud_pos
AdapterHub
2021-11-24T16:26:47Z
11
0
adapter-transformers
[ "adapter-transformers", "token-classification", "bert", "adapterhub:pos/ud_ewt", "en", "dataset:universal_dependencies", "arxiv:2104.08247", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- tags: - token-classification - bert - adapterhub:pos/ud_ewt - adapter-transformers datasets: - universal_dependencies language: - en --- # Adapter `AdapterHub/bert-base-uncased-pf-ud_pos` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [pos/ud_ewt](https://adapterhub.ml/explore/pos/ud_ewt/) dataset and includes a prediction head for tagging. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-ud_pos", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
AdapterHub/bert-base-uncased-pf-social_i_qa
AdapterHub
2021-11-24T16:26:06Z
4
0
adapter-transformers
[ "adapter-transformers", "bert", "en", "dataset:social_i_qa", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04Z
--- tags: - bert - adapter-transformers datasets: - social_i_qa language: - en --- # Adapter `AdapterHub/bert-base-uncased-pf-social_i_qa` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [social_i_qa](https://huggingface.co/datasets/social_i_qa/) dataset and includes a prediction head for multiple choice. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-social_i_qa", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-what-to-pre-train-on, title={What to Pre-Train on? Efficient Intermediate Task Selection}, author={Clifton Poth and Jonas Pfeiffer and Andreas Rรผcklรฉ and Iryna Gurevych}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/2104.08247", pages = "to appear", } ```
AdapterHub/bert-base-uncased-pf-scicite
AdapterHub
2021-11-24T16:25:39Z
2
0
adapter-transformers
[ "adapter-transformers", "text-classification", "bert", "en", "dataset:scicite", "arxiv:2104.08247", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- tags: - text-classification - bert - adapter-transformers datasets: - scicite language: - en --- # Adapter `AdapterHub/bert-base-uncased-pf-scicite` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [scicite](https://huggingface.co/datasets/scicite/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-scicite", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
AdapterHub/bert-base-uncased-pf-race
AdapterHub
2021-11-24T16:25:17Z
4
0
adapter-transformers
[ "adapter-transformers", "adapterhub:rc/race", "bert", "en", "dataset:race", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04Z
--- tags: - adapterhub:rc/race - bert - adapter-transformers datasets: - race language: - en --- # Adapter `AdapterHub/bert-base-uncased-pf-race` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [rc/race](https://adapterhub.ml/explore/rc/race/) dataset and includes a prediction head for multiple choice. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-race", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-what-to-pre-train-on, title={What to Pre-Train on? Efficient Intermediate Task Selection}, author={Clifton Poth and Jonas Pfeiffer and Andreas Rรผcklรฉ and Iryna Gurevych}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/2104.08247", pages = "to appear", } ```
AdapterHub/bert-base-uncased-pf-quail
AdapterHub
2021-11-24T16:24:59Z
1
0
adapter-transformers
[ "adapter-transformers", "bert", "en", "dataset:quail", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04Z
--- tags: - bert - adapter-transformers datasets: - quail language: - en --- # Adapter `AdapterHub/bert-base-uncased-pf-quail` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [quail](https://huggingface.co/datasets/quail/) dataset and includes a prediction head for multiple choice. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-quail", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-what-to-pre-train-on, title={What to Pre-Train on? Efficient Intermediate Task Selection}, author={Clifton Poth and Jonas Pfeiffer and Andreas Rรผcklรฉ and Iryna Gurevych}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/2104.08247", pages = "to appear", } ```
AdapterHub/bert-base-uncased-pf-mnli
AdapterHub
2021-11-24T16:24:19Z
4
0
adapter-transformers
[ "adapter-transformers", "text-classification", "bert", "adapterhub:nli/multinli", "en", "dataset:multi_nli", "arxiv:2104.08247", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- tags: - text-classification - bert - adapterhub:nli/multinli - adapter-transformers datasets: - multi_nli language: - en --- # Adapter `AdapterHub/bert-base-uncased-pf-mnli` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [nli/multinli](https://adapterhub.ml/explore/nli/multinli/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-mnli", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
AdapterHub/bert-base-uncased-pf-imdb
AdapterHub
2021-11-24T16:24:07Z
6
0
adapter-transformers
[ "adapter-transformers", "text-classification", "bert", "adapterhub:sentiment/imdb", "en", "dataset:imdb", "arxiv:2104.08247", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- tags: - text-classification - bert - adapterhub:sentiment/imdb - adapter-transformers datasets: - imdb language: - en --- # Adapter `AdapterHub/bert-base-uncased-pf-imdb` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [sentiment/imdb](https://adapterhub.ml/explore/sentiment/imdb/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-imdb", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
AdapterHub/bert-base-uncased-pf-hellaswag
AdapterHub
2021-11-24T16:23:47Z
0
0
adapter-transformers
[ "adapter-transformers", "bert", "adapterhub:comsense/hellaswag", "en", "dataset:hellaswag", "arxiv:2104.08247", "region:us" ]
null
2022-03-02T23:29:04Z
--- tags: - bert - adapterhub:comsense/hellaswag - adapter-transformers datasets: - hellaswag language: - en --- # Adapter `AdapterHub/bert-base-uncased-pf-hellaswag` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [comsense/hellaswag](https://adapterhub.ml/explore/comsense/hellaswag/) dataset and includes a prediction head for multiple choice. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-hellaswag", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-what-to-pre-train-on, title={What to Pre-Train on? Efficient Intermediate Task Selection}, author={Clifton Poth and Jonas Pfeiffer and Andreas Rรผcklรฉ and Iryna Gurevych}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/2104.08247", pages = "to appear", } ```
AdapterHub/bert-base-uncased-pf-emo
AdapterHub
2021-11-24T16:23:01Z
4
0
adapter-transformers
[ "adapter-transformers", "text-classification", "bert", "en", "dataset:emo", "arxiv:2104.08247", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- tags: - text-classification - bert - adapter-transformers datasets: - emo language: - en --- # Adapter `AdapterHub/bert-base-uncased-pf-emo` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [emo](https://huggingface.co/datasets/emo/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-emo", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
AdapterHub/bert-base-uncased-pf-conll2003_pos
AdapterHub
2021-11-24T16:22:26Z
12
0
adapter-transformers
[ "adapter-transformers", "token-classification", "bert", "adapterhub:pos/conll2003", "en", "dataset:conll2003", "arxiv:2104.08247", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- tags: - token-classification - bert - adapterhub:pos/conll2003 - adapter-transformers datasets: - conll2003 language: - en --- # Adapter `AdapterHub/bert-base-uncased-pf-conll2003_pos` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [pos/conll2003](https://adapterhub.ml/explore/pos/conll2003/) dataset and includes a prediction head for tagging. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-conll2003_pos", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
AdapterHub/bert-base-uncased-pf-conll2003
AdapterHub
2021-11-24T16:22:18Z
5
1
adapter-transformers
[ "adapter-transformers", "token-classification", "bert", "adapterhub:ner/conll2003", "en", "dataset:conll2003", "arxiv:2104.08247", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- tags: - token-classification - bert - adapterhub:ner/conll2003 - adapter-transformers datasets: - conll2003 language: - en --- # Adapter `AdapterHub/bert-base-uncased-pf-conll2003` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [ner/conll2003](https://adapterhub.ml/explore/ner/conll2003/) dataset and includes a prediction head for tagging. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-conll2003", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
AdapterHub/bert-base-uncased-pf-conll2000
AdapterHub
2021-11-24T16:22:12Z
2
0
adapter-transformers
[ "adapter-transformers", "token-classification", "bert", "adapterhub:chunk/conll2000", "en", "dataset:conll2000", "arxiv:2104.08247", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- tags: - token-classification - bert - adapterhub:chunk/conll2000 - adapter-transformers datasets: - conll2000 language: - en --- # Adapter `AdapterHub/bert-base-uncased-pf-conll2000` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [chunk/conll2000](https://adapterhub.ml/explore/chunk/conll2000/) dataset and includes a prediction head for tagging. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-conll2000", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
Lowin/chinese-bigbird-mini-1024
Lowin
2021-11-24T16:05:17Z
127
1
transformers
[ "transformers", "pytorch", "big_bird", "fill-mask", "zh", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: - zh license: - apache-2.0 --- ```python import jieba_fast from transformers import BertTokenizer from transformers import BigBirdModel class JiebaTokenizer(BertTokenizer): def __init__( self, pre_tokenizer=lambda x: jieba_fast.cut(x, HMM=False), *args, **kwargs ): super().__init__(*args, **kwargs) self.pre_tokenizer = pre_tokenizer def _tokenize(self, text, *arg, **kwargs): split_tokens = [] for text in self.pre_tokenizer(text): if text in self.vocab: split_tokens.append(text) else: split_tokens.extend(super()._tokenize(text)) return split_tokens model = BigBirdModel.from_pretrained('Lowin/chinese-bigbird-mini-1024') tokenizer = JiebaTokenizer.from_pretrained('Lowin/chinese-bigbird-mini-1024') ``` https://github.com/LowinLi/chinese-bigbird
Lowin/chinese-bigbird-tiny-1024
Lowin
2021-11-24T16:03:15Z
52
2
transformers
[ "transformers", "pytorch", "big_bird", "feature-extraction", "zh", "license:apache-2.0", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:04Z
--- language: - zh license: - apache-2.0 --- ```python import jieba_fast from transformers import BertTokenizer from transformers import BigBirdModel class JiebaTokenizer(BertTokenizer): def __init__( self, pre_tokenizer=lambda x: jieba_fast.cut(x, HMM=False), *args, **kwargs ): super().__init__(*args, **kwargs) self.pre_tokenizer = pre_tokenizer def _tokenize(self, text, *arg, **kwargs): split_tokens = [] for text in self.pre_tokenizer(text): if text in self.vocab: split_tokens.append(text) else: split_tokens.extend(super()._tokenize(text)) return split_tokens model = BigBirdModel.from_pretrained('Lowin/chinese-bigbird-tiny-1024') tokenizer = JiebaTokenizer.from_pretrained('Lowin/chinese-bigbird-tiny-1024') ``` https://github.com/LowinLi/chinese-bigbird
arnolfokam/bert-base-uncased-swa
arnolfokam
2021-11-24T11:55:34Z
10
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "NER", "swa", "dataset:masakhaner", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - swa tags: - NER datasets: - masakhaner metrics: - f1 - precision - recall license: apache-2.0 widget: - text: "Wizara ya afya ya Tanzania imeripoti Jumatatu kuwa, watu takriban 14 zaidi wamepata maambukizi ya Covid-19." --- # Model description **bert-base-uncased-swa** is a model based on the fine-tuned BERT base uncased model. It has been trained to recognize four types of entities: - dates & time (DATE) - Location (LOC) - Organizations (ORG) - Person (PER) # Intended Use - Intended to be used for research purposes concerning Named Entity Recognition for African Languages. - Not intended for practical purposes. # Training Data This model was fine-tuned on the Swahili corpus **(swa)** of the [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) dataset. However, we thresholded the number of entity groups per sentence in this dataset to 10 entity groups. # Training procedure This model was trained on a single NVIDIA P5000 from [Paperspace](https://www.paperspace.com) #### Hyperparameters - **Learning Rate:** 5e-5 - **Batch Size:** 32 - **Maximum Sequence Length:** 164 - **Epochs:** 30 # Evaluation Data We evaluated this model on the test split of the Swahili corpus **(swa)** present in the [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) with no thresholding. # Metrics - Precision - Recall - F1-score # Limitations - The size of the pre-trained language model prevents its usage in anything other than research. - Lack of analysis concerning the bias and fairness in these models may make them dangerous if deployed into production system. - The train data is a less populated version of the original dataset in terms of entity groups per sentence. Therefore, this can negatively impact the performance. # Caveats and Recommendations - The topics in the dataset corpus are centered around **News**. Future training could be done with a more diverse corpus. # Results Model Name| Precision | Recall | F1-score -|-|-|- **bert-base-uncased-swa**| 83.38 | 89.32 | 86.26 # Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("arnolfokam/bert-base-uncased-swa") model = AutoModelForTokenClassification.from_pretrained("bert-base-uncased-swa") nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Wizara ya afya ya Tanzania imeripoti Jumatatu kuwa, watu takriban 14 zaidi wamepata maambukizi ya Covid-19." ner_results = nlp(example) print(ner_results) ```
arnolfokam/roberta-base-kin
arnolfokam
2021-11-24T11:46:30Z
6
0
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "NER", "kin", "dataset:masakhaner", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - kin tags: - NER datasets: - masakhaner metrics: - f1 - precision - recall license: apache-2.0 widget: - text: "Ambasaderi Bellomo yavuze ko bishimira ubufatanye burambye hagati ya EU nโ€™u Rwanda, bushingiye nanone ku bufatanye hagati yโ€™imigabane ya Afurika nโ€™u Burayi." --- # Model description **roberta-base-kin** is a model based on the fine-tuned RoBERTa base model. It has been trained to recognize four types of entities: - dates & time (DATE) - Location (LOC) - Organizations (ORG) - Person (PER) # Intended Use - Intended to be used for research purposes concerning Named Entity Recognition for African Languages. - Not intended for practical purposes. # Training Data This model was fine-tuned on the Kinyarwanda corpus **(kin)** of the [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) dataset. However, we thresholded the number of entity groups per sentence in this dataset to 10 entity groups. # Training procedure This model was trained on a single NVIDIA P5000 from [Paperspace](https://www.paperspace.com) #### Hyperparameters - **Learning Rate:** 5e-5 - **Batch Size:** 32 - **Maximum Sequence Length:** 164 - **Epochs:** 30 # Evaluation Data We evaluated this model on the test split of the Kinyarwandan corpus **(kin)** present in the [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) with no thresholding. # Metrics - Precision - Recall - F1-score # Limitations - The size of the pre-trained language model prevents its usage in anything other than research. - Lack of analysis concerning the bias and fairness in these models may make them dangerous if deployed into production system. - The train data is a less populated version of the original dataset in terms of entity groups per sentence. Therefore, this can negatively impact the performance. # Caveats and Recommendations - The topics in the dataset corpus are centered around **News**. Future training could be done with a more diverse corpus. # Results Model Name| Precision | Recall | F1-score -|-|-|- **roberta-base-kin**| 76.26 | 80.58 |78.36 # Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("arnolfokam/roberta-base-kin") model = AutoModelForTokenClassification.from_pretrained("arnolfokam/roberta-base-kin") nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Rayon Sports yasinyishije rutahizamu wโ€™Umurundi" ner_results = nlp(example) print(ner_results) ```
arnolfokam/roberta-base-swa
arnolfokam
2021-11-24T11:41:03Z
13
0
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "NER", "swa", "dataset:masakhaner", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - swa tags: - NER datasets: - masakhaner metrics: - f1 - precision - recall license: apache-2.0 widget: - text: "Wizara ya afya ya Tanzania imeripoti Jumatatu kuwa, watu takriban 14 zaidi wamepata maambukizi ya Covid-19." --- # Model description **roberta-base-swa** is a model based on the fine-tuned RoBERTa base model. It has been trained to recognize four types of entities: - dates & time (DATE) - Location (LOC) - Organizations (ORG) - Person (PER) # Intended Use - Intended to be used for research purposes concerning Named Entity Recognition for African Languages. - Not intended for practical purposes. # Training Data This model was fine-tuned on the Swahili corpus **(swa)** of the [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) dataset. However, we thresholded the number of entity groups per sentence in this dataset to 10 entity groups. # Training procedure This model was trained on a single NVIDIA P5000 from [Paperspace](https://www.paperspace.com) #### Hyperparameters - **Learning Rate:** 5e-5 - **Batch Size:** 32 - **Maximum Sequence Length:** 164 - **Epochs:** 30 # Evaluation Data We evaluated this model on the test split of the Swahili corpus **(swa)** present in the [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) with no thresholding. # Metrics - Precision - Recall - F1-score # Limitations - The size of the pre-trained language model prevents its usage in anything other than research. - Lack of analysis concerning the bias and fairness in these models may make them dangerous if deployed into production system. - The train data is a less populated version of the original dataset in terms of entity groups per sentence. Therefore, this can negatively impact the performance. # Caveats and Recommendations - The topics in the dataset corpus are centered around **News**. Future training could be done with a more diverse corpus. # Results Model Name| Precision | Recall | F1-score -|-|-|- **roberta-base-swa**| 80.58 | 86.79 | 83.57 # Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("arnolfokam/roberta-base-swa") model = AutoModelForTokenClassification.from_pretrained("arnolfokam/roberta-base-swa") nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Wizara ya afya ya Tanzania imeripoti Jumatatu kuwa, watu takriban 14 zaidi wamepata maambukizi ya Covid-19." ner_results = nlp(example) print(ner_results) ```
arnolfokam/mbert-base-uncased-ner-swa
arnolfokam
2021-11-24T11:31:30Z
11
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "NER", "swa", "dataset:masakhaner", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - swa tags: - NER datasets: - masakhaner metrics: - f1 - precision - recall license: apache-2.0 widget: - text: "Wizara ya afya ya Tanzania imeripoti Jumatatu kuwa, watu takriban 14 zaidi wamepata maambukizi ya Covid-19." --- # Model description **mbert-base-uncased-ner-swa** is a model based on the fine-tuned Multilingual BERT base uncased model, previously fine-tuned for Named Entity Recognition using 10 high-resourced languages. It has been trained to recognize four types of entities: - dates & time (DATE) - Location (LOC) - Organizations (ORG) - Person (PER) # Intended Use - Intended to be used for research purposes concerning Named Entity Recognition for African Languages. - Not intended for practical purposes. # Training Data This model was fine-tuned on the Swahili corpus **(swa)** of the [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) dataset. However, we thresholded the number of entity groups per sentence in this dataset to 10 entity groups. # Training procedure This model was trained on a single NVIDIA P5000 from [Paperspace](https://www.paperspace.com) #### Hyperparameters - **Learning Rate:** 5e-5 - **Batch Size:** 32 - **Maximum Sequence Length:** 164 - **Epochs:** 30 # Evaluation Data We evaluated this model on the test split of the Swahili corpus **(swa)** present in the [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) with no thresholding. # Metrics - Precision - Recall - F1-score # Limitations - The size of the pre-trained language model prevents its usage in anything other than research. - Lack of analysis concerning the bias and fairness in these models may make them dangerous if deployed into production system. - The train data is a less populated version of the original dataset in terms of entity groups per sentence. Therefore, this can negatively impact the performance. # Caveats and Recommendations - The topics in the dataset corpus are centered around **News**. Future training could be done with a more diverse corpus. # Results Model Name| Precision | Recall | F1-score -|-|-|- **mbert-base-uncased-ner-swa**| 82.85 | 88.13 | 85.41 # Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("arnolfokam/mbert-base-uncased-ner-swa") model = AutoModelForTokenClassification.from_pretrained("arnolfokam/mbert-base-uncased-ner-swa") nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Wizara ya afya ya Tanzania imeripoti Jumatatu kuwa, watu takriban 14 zaidi wamepata maambukizi ya Covid-19." ner_results = nlp(example) print(ner_results) ```
arnolfokam/mbert-base-uncased-kin
arnolfokam
2021-11-24T11:13:53Z
10
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "NER", "kin", "dataset:masakhaner", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - kin tags: - NER datasets: - masakhaner metrics: - f1 - precision - recall license: apache-2.0 widget: - text: "Ambasaderi Bellomo yavuze ko bishimira ubufatanye burambye hagati ya EU nโ€™u Rwanda, bushingiye nanone ku bufatanye hagati yโ€™imigabane ya Afurika nโ€™u Burayi." --- # Model description **mbert-base-uncased-kin** is a model based on the fine-tuned multilingual BERT base uncased model. It has been trained to recognize four types of entities: - dates & time (DATE) - Location (LOC) - Organizations (ORG) - Person (PER) # Intended Use - Intended to be used for research purposes concerning Named Entity Recognition for African Languages. - Not intended for practical purposes. # Training Data This model was fine-tuned on the Kinyarwanda corpus **(kin)** of the [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) dataset. However, we thresholded the number of entity groups per sentence in this dataset to 10 entity groups. # Training procedure This model was trained on a single NVIDIA P5000 from [Paperspace](https://www.paperspace.com) #### Hyperparameters - **Learning Rate:** 5e-5 - **Batch Size:** 32 - **Maximum Sequence Length:** 164 - **Epochs:** 30 # Evaluation Data We evaluated this model on the test split of the Kinyarwandan corpus **(kin)** present in the [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) with no thresholding. # Metrics - Precision - Recall - F1-score # Limitations - The size of the pre-trained language model prevents its usage in anything other than research. - Lack of analysis concerning the bias and fairness in these models may make them dangerous if deployed into production system. - The train data is a less populated version of the original dataset in terms of entity groups per sentence. Therefore, this can negatively impact the performance. # Caveats and Recommendations - The topics in the dataset corpus are centered around **News**. Future training could be done with a more diverse corpus. # Results Model Name| Precision | Recall | F1-score -|-|-|- **mbert-base-uncased-kin**| 81.35 | 83.98 | 82.64 # Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("arnolfokam/mbert-base-uncased-kin") model = AutoModelForTokenClassification.from_pretrained("arnolfokam/mbert-base-uncased-kin") nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Rayon Sports yasinyishije rutahizamu wโ€™Umurundi" ner_results = nlp(example) print(ner_results) ```
Peterard/distilbert_feature_classifier
Peterard
2021-11-24T03:59:16Z
5
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- language: - en tags: - text-classification widget: - text: "Please add a like button!" example_title: "Likely feature request" - text: "The app crashed when I opened it this morning. Can you fix this please?" example_title: "Unlikely feature request" --- How to use this classifier: ``` from transformers import pipeline pipe = pipeline("text-classification", model="Peterard/distilbert_feature_classifier") pipe("Please add a like button!") # [{'label': 'feature_request', 'score': 0.8930749893188477}] pipe("The app crashed when I opened it this morning. Can you fix this please?") #[{'label': 'no_feature_request', 'score': 0.9971746206283569}] ``` N.B. The label will change depending on which is the likelier class
ueb1/IceBERT-finetuned-grouped
ueb1
2021-11-24T00:18:29Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "license:gpl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: gpl-3.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: IceBERT-finetuned-grouped results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # IceBERT-finetuned-grouped This model is a fine-tuned version of [vesteinn/IceBERT](https://huggingface.co/vesteinn/IceBERT) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.5660 - Accuracy: 0.2259 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 269 | 4.1727 | 0.1172 | | 4.3535 | 2.0 | 538 | 3.8406 | 0.1632 | | 4.3535 | 3.0 | 807 | 3.6718 | 0.2113 | | 3.6711 | 4.0 | 1076 | 3.5660 | 0.2259 | | 3.6711 | 5.0 | 1345 | 3.5332 | 0.2176 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
Hellisotherpeople/debate2vec
Hellisotherpeople
2021-11-23T18:45:27Z
34
7
fasttext
[ "fasttext", "text-classification", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- tags: - text-classification library_name: fasttext widget: - text: "dialectics" example_title: "dialectics" - text: "schizoanalysis" example_title: "schizoanalysis" - text: "praxis" example_title: "praxis" - text: "topicality" example_title: "topicality" --- # debate2vec Word-vectors created from a large corpus of competitive debate evidence, and data extraction / processing scripts #usage ``` import fasttext.util ft = fasttext.load_model('debate2vec.bin') ft.get_word_vector('dialectics') ``` # Download Link Github won't let me store large files in their repos. * [FastText Vectors Here](https://drive.google.com/file/d/1m-CwPcaIUun4qvg69Hx2gom9dMScuQwS/view?usp=sharing) (~260mb) # About Created from all publically available Cross Examination Competitive debate evidence posted by the community on [Open Evidence](https://openev.debatecoaches.org/) (From 2013-2020) Search through the original evidence by going to [debate.cards](http://debate.cards/) Stats about this corpus: * 222485 unique documents larger than 200 words (DebateSum plus some additional debate docs that weren't well-formed enough for inclusion into DebateSum) * 107555 unique words (showing up more than 10 times in the corpus) * 101 million total words Stats about debate2vec vectors: * 300 dimensions, minimum number of appearances of a word was 10, trained for 100 epochs with lr set to 0.10 using FastText * lowercased (will release cased) * No subword information The corpus includes the following topics * 2013-2014 Cuba/Mexico/Venezuela Economic Engagement * 2014-2015 Oceans * 2015-2016 Domestic Surveillance * 2016-2017 China * 2017-2018 Education * 2018-2019 Immigration * 2019-2020 Reducing Arms Sales Other topics that this word vector model will handle extremely well * Philosophy (Especially Left-Wing / Post-modernist) * Law * Government * Politics Initial release is of fasttext vectors without subword information. Future releases will include fine-tuned GPT-2 and other high end models as my GPU compute allows. # Screenshots ![](https://github.com/Hellisotherpeople/debate2vec/blob/master/debate2vec.jpg) ![](https://github.com/Hellisotherpeople/debate2vec/blob/master/debate2vec2.jpg) ![](https://github.com/Hellisotherpeople/debate2vec/blob/master/debate2vec3.jpg)
AryanLala/autonlp-Scientific_Title_Generator-34558227
AryanLala
2021-11-23T16:51:34Z
8
19
transformers
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autonlp", "en", "dataset:AryanLala/autonlp-data-Scientific_Title_Generator", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- tags: autonlp language: en widget: - text: "The scale, variety, and quantity of publicly-available NLP datasets has grown rapidly as researchers propose new tasks, larger models, and novel benchmarks. Datasets is a community library for contemporary NLP designed to support this ecosystem. Datasets aims to standardize end-user interfaces, versioning, and documentation, while providing a lightweight front-end that behaves similarly for small datasets as for internet-scale corpora. The design of the library incorporates a distributed, community-driven approach to adding datasets and documenting usage. After a year of development, the library now includes more than 650 unique datasets, has more than 250 contributors, and has helped support a variety of novel cross-dataset research projects and shared tasks. The library is available at https://github.com/huggingface/datasets." datasets: - AryanLala/autonlp-data-Scientific_Title_Generator co2_eq_emissions: 137.60574081887984 --- # Model Trained Using AutoNLP - Model: Google's Pegasus (https://huggingface.co/google/pegasus-xsum) - Problem type: Summarization - Model ID: 34558227 - CO2 Emissions (in grams): 137.60574081887984 - Spaces: https://huggingface.co/spaces/TitleGenerators/ArxivTitleGenerator - Dataset: arXiv Dataset (https://www.kaggle.com/Cornell-University/arxiv) - Data subset used: https://huggingface.co/datasets/AryanLala/autonlp-data-Scientific_Title_Generator ## Validation Metrics - Loss: 2.578599214553833 - Rouge1: 44.8482 - Rouge2: 24.4052 - RougeL: 40.1716 - RougeLsum: 40.1396 - Gen Len: 11.4675 ## Social - LinkedIn: https://www.linkedin.com/in/aryanlala/ - Twitter: https://twitter.com/AryanLala20 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/AryanLala/autonlp-Scientific_Title_Generator-34558227 ```
Bharathdamu/wav2vec2-large-xls-r-300m-hindi-colab
Bharathdamu
2021-11-23T09:32:23Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-hindi-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-hindi-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
Aimendo/autonlp-triage-35248482
Aimendo
2021-11-23T08:03:14Z
8
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autonlp", "en", "dataset:Aimendo/autonlp-data-triage", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- tags: autonlp language: en widget: - text: "I love AutoNLP ๐Ÿค—" datasets: - Aimendo/autonlp-data-triage co2_eq_emissions: 7.989144645413398 --- # Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 35248482 - CO2 Emissions (in grams): 7.989144645413398 ## Validation Metrics - Loss: 0.13783401250839233 - Accuracy: 0.9728654124457308 - Macro F1: 0.949537871674076 - Micro F1: 0.9728654124457308 - Weighted F1: 0.9732422812610365 - Macro Precision: 0.9380372699332605 - Micro Precision: 0.9728654124457308 - Weighted Precision: 0.974548513256663 - Macro Recall: 0.9689346153591594 - Micro Recall: 0.9728654124457308 - Weighted Recall: 0.9728654124457308 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/Aimendo/autonlp-triage-35248482 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Aimendo/autonlp-triage-35248482", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Aimendo/autonlp-triage-35248482", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
DeepPavlov/rubert-base-cased
DeepPavlov
2021-11-23T08:03:04Z
205,575
95
transformers
[ "transformers", "pytorch", "jax", "bert", "feature-extraction", "ru", "arxiv:1905.07213", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:04Z
--- language: - ru --- # rubert-base-cased RuBERT \(Russian, cased, 12โ€‘layer, 768โ€‘hidden, 12โ€‘heads, 180M parameters\) was trained on the Russian part of Wikipedia and news data. We used this training data to build a vocabulary of Russian subtokens and took a multilingual version of BERTโ€‘base as an initialization for RuBERT\[1\]. 08.11.2021: upload model with MLM and NSP heads \[1\]: Kuratov, Y., Arkhipov, M. \(2019\). Adaptation of Deep Bidirectional Multilingual Transformers for Russian Language. arXiv preprint [arXiv:1905.07213](https://arxiv.org/abs/1905.07213).
Maltehb/aelaectra-danish-electra-small-uncased
Maltehb
2021-11-23T06:39:20Z
16
0
transformers
[ "transformers", "pytorch", "electra", "pretraining", "รฆlรฆctra", "danish", "ELECTRA-Small", "replaced token detection", "da", "dataset:DAGW", "arxiv:2003.10555", "arxiv:1810.04805", "arxiv:2005.03521", "license:mit", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04Z
--- language: "da" co2_eq_emissions: 4009.5 tags: - รฆlรฆctra - pytorch - danish - ELECTRA-Small - replaced token detection license: "mit" datasets: - DAGW metrics: - f1 --- # ร†lรฆctra - A Step Towards More Efficient Danish Natural Language Processing **ร†lรฆctra** is a Danish Transformer-based language model created to enhance the variety of Danish NLP resources with a more efficient model compared to previous state-of-the-art (SOTA) models. Initially a cased and an uncased model are released. It was created as part of a Cognitive Science bachelor's thesis. ร†lรฆctra was pretrained with the ELECTRA-Small (Clark et al., 2020) pretraining approach by using the Danish Gigaword Corpus (Strรธmberg-Derczynski et al., 2020) and evaluated on Named Entity Recognition (NER) tasks. Since NER only presents a limited picture of ร†lรฆctra's capabilities I am very interested in further evaluations. Therefore, if you employ it for any task, feel free to hit me up your findings! ร†lรฆctra was, as mentioned, created to enhance the Danish NLP capabilties and please do note how this GitHub still does not support the Danish characters "*ร†, ร˜ and ร…*" as the title of this repository becomes "*-l-ctra*". How ironic.๐Ÿ™‚ Here is an example on how to load both the cased and the uncased ร†lรฆctra model in [PyTorch](https://pytorch.org/) using the [๐Ÿค—Transformers](https://github.com/huggingface/transformers) library: ```python from transformers import AutoTokenizer, AutoModelForPreTraining tokenizer = AutoTokenizer.from_pretrained("Maltehb/-l-ctra-cased") model = AutoModelForPreTraining.from_pretrained("Maltehb/-l-ctra-cased") ``` ```python from transformers import AutoTokenizer, AutoModelForPreTraining tokenizer = AutoTokenizer.from_pretrained("Maltehb/-l-ctra-uncased") model = AutoModelForPreTraining.from_pretrained("Maltehb/-l-ctra-uncased") ``` ### Evaluation of current Danish Language Models ร†lรฆctra, Danish BERT (DaBERT) and multilingual BERT (mBERT) were evaluated: | Model | Layers | Hidden Size | Params | AVG NER micro-f1 (DaNE-testset) | Average Inference Time (Sec/Epoch) | Download | | --- | --- | --- | --- | --- | --- | --- | | ร†lรฆctra Uncased | 12 | 256 | 13.7M | 78.03 (SD = 1.28) | 10.91 | [Link for model](https://www.dropbox.com/s/cag7prs1nvdchqs/%C3%86l%C3%A6ctra.zip?dl=0) | | ร†lรฆctra Cased | 12 | 256 | 14.7M | 80.08 (SD = 0.26) | 10.92 | [Link for model](https://www.dropbox.com/s/cag7prs1nvdchqs/%C3%86l%C3%A6ctra.zip?dl=0) | | DaBERT | 12 | 768 | 110M | 84.89 (SD = 0.64) | 43.03 | [Link for model](https://www.dropbox.com/s/19cjaoqvv2jicq9/danish_bert_uncased_v2.zip?dl=1) | | mBERT Uncased | 12 | 768 | 167M | 80.44 (SD = 0.82) | 72.10 | [Link for model](https://storage.googleapis.com/bert_models/2018_11_03/multilingual_L-12_H-768_A-12.zip) | | mBERT Cased | 12 | 768 | 177M | 83.79 (SD = 0.91) | 70.56 | [Link for model](https://storage.googleapis.com/bert_models/2018_11_23/multi_cased_L-12_H-768_A-12.zip) | On [DaNE](https://danlp.alexandra.dk/304bd159d5de/datasets/ddt.zip) (Hvingelby et al., 2020), ร†lรฆctra scores slightly worse than both cased and uncased Multilingual BERT (Devlin et al., 2019) and Danish BERT (Danish BERT, 2019/2020), however, ร†lรฆctra is less than one third the size, and uses significantly fewer computational resources to pretrain and instantiate. For a full description of the evaluation and specification of the model read the thesis: 'ร†lรฆctra - A Step Towards More Efficient Danish Natural Language Processing'. ### Pretraining To pretrain ร†lรฆctra it is recommended to build a Docker Container from the [Dockerfile](https://github.com/MalteHB/ร†lรฆctra/tree/master/notebooks/fine-tuning/). Next, simply follow the [pretraining notebooks](https://github.com/MalteHB/ร†lรฆctra/tree/master/infrastructure/Dockerfile/) The pretraining was done by utilizing a single NVIDIA Tesla V100 GPU with 16 GiB, endowed by the Danish data company [KMD](https://www.kmd.dk/). The pretraining took approximately 4 days and 9.5 hours for both the cased and uncased model ### Fine-tuning To fine-tune any ร†lรฆctra model follow the [fine-tuning notebooks](https://github.com/MalteHB/ร†lรฆctra/tree/master/notebooks/fine-tuning/) ### References Clark, K., Luong, M.-T., Le, Q. V., & Manning, C. D. (2020). ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators. ArXiv:2003.10555 [Cs]. http://arxiv.org/abs/2003.10555 Danish BERT. (2020). BotXO. https://github.com/botxo/nordic_bert (Original work published 2019) Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. ArXiv:1810.04805 [Cs]. http://arxiv.org/abs/1810.04805 Hvingelby, R., Pauli, A. B., Barrett, M., Rosted, C., Lidegaard, L. M., & Sรธgaard, A. (2020). DaNE: A Named Entity Resource for Danish. Proceedings of the 12th Language Resources and Evaluation Conference, 4597โ€“4604. https://www.aclweb.org/anthology/2020.lrec-1.565 Strรธmberg-Derczynski, L., Baglini, R., Christiansen, M. H., Ciosici, M. R., Dalsgaard, J. A., Fusaroli, R., Henrichsen, P. J., Hvingelby, R., Kirkedal, A., Kjeldsen, A. S., Ladefoged, C., Nielsen, F. ร…., Petersen, M. L., Rystrรธm, J. H., & Varab, D. (2020). The Danish Gigaword Project. ArXiv:2005.03521 [Cs]. http://arxiv.org/abs/2005.03521 #### Acknowledgements As the majority of this repository is build upon [the works](https://github.com/google-research/electra) by the team at Google who created ELECTRA, a HUGE thanks to them is in order. A Giga thanks also goes out to the incredible people who collected The Danish Gigaword Corpus (Strรธmberg-Derczynski et al., 2020). Furthermore, I would like to thank my supervisor [Riccardo Fusaroli](https://github.com/fusaroli) for the support with the thesis, and a special thanks goes out to [Kenneth Enevoldsen](https://github.com/KennethEnevoldsen) for his continuous feedback. Lastly, i would like to thank KMD, my colleagues from KMD, and my peers and co-students from Cognitive Science for encouriging me to keep on working hard and holding my head up high! #### Contact For help or further information feel free to connect with the author Malte Hรธjmark-Bertelsen on [[email protected]](mailto:[email protected]?subject=[GitHub]%20ร†lรฆctra) or any of the following platforms: [<img align="left" alt="MalteHB | Twitter" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/twitter.svg" />][twitter] [<img align="left" alt="MalteHB | LinkedIn" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/linkedin.svg" />][linkedin] [<img align="left" alt="MalteHB | Instagram" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/instagram.svg" />][instagram] <br /> </details> [twitter]: https://twitter.com/malteH_B [instagram]: https://www.instagram.com/maltemusen/ [linkedin]: https://www.linkedin.com/in/malte-h%C3%B8jmark-bertelsen-9a618017b/
artursz/wav2vec2-large-xls-r-300m-lv-v05
artursz
2021-11-23T02:47:04Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-lv-v05 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-lv-v05 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.3862 - Wer: 0.2588 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.8836 | 2.81 | 400 | 0.8722 | 0.7244 | | 0.5365 | 5.63 | 800 | 0.4622 | 0.4812 | | 0.277 | 8.45 | 1200 | 0.4348 | 0.4056 | | 0.1947 | 11.27 | 1600 | 0.4223 | 0.3636 | | 0.1655 | 14.08 | 2000 | 0.4084 | 0.3465 | | 0.1441 | 16.9 | 2400 | 0.4329 | 0.3497 | | 0.121 | 19.72 | 2800 | 0.4371 | 0.3324 | | 0.1062 | 22.53 | 3200 | 0.4202 | 0.3198 | | 0.0937 | 25.35 | 3600 | 0.4063 | 0.3265 | | 0.0871 | 28.17 | 4000 | 0.4253 | 0.3255 | | 0.0755 | 30.98 | 4400 | 0.4368 | 0.3194 | | 0.0627 | 33.8 | 4800 | 0.4067 | 0.2908 | | 0.0595 | 36.62 | 5200 | 0.3929 | 0.2973 | | 0.0523 | 39.44 | 5600 | 0.3748 | 0.2817 | | 0.0434 | 42.25 | 6000 | 0.3769 | 0.2711 | | 0.0391 | 45.07 | 6400 | 0.3901 | 0.2653 | | 0.0319 | 47.88 | 6800 | 0.3862 | 0.2588 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
huggingtweets/kylelchong
huggingtweets
2021-11-23T01:12:59Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/kylelchong/1637629975064/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1363977743021584394/17Z8FHm2_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">๐Ÿค– AI BOT ๐Ÿค–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Kyle L. Chong (he.him.his)</div> <div style="text-align: center; font-size: 14px;">@kylelchong</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Kyle L. Chong (he.him.his). | Data | Kyle L. Chong (he.him.his) | | --- | --- | | Tweets downloaded | 1072 | | Retweets | 213 | | Short tweets | 76 | | Tweets kept | 783 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2xlb7d6c/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @kylelchong's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/5bvgy2zz) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/5bvgy2zz/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/kylelchong') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
gayanin/t5-small-mlm-pubmed-35
gayanin
2021-11-22T22:24:30Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5-small-mlm-pubmed-35 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-mlm-pubmed-35 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1101 - Rouge2 Precision: 0.4758 - Rouge2 Recall: 0.3498 - Rouge2 Fmeasure: 0.3927 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:-----:|:---------------:|:----------------:|:-------------:|:---------------:| | 1.8404 | 0.75 | 500 | 1.5005 | 0.4265 | 0.2786 | 0.3273 | | 1.6858 | 1.51 | 1000 | 1.4216 | 0.4318 | 0.2946 | 0.3404 | | 1.6071 | 2.26 | 1500 | 1.3777 | 0.4472 | 0.3148 | 0.3598 | | 1.5551 | 3.02 | 2000 | 1.3360 | 0.4406 | 0.3168 | 0.3586 | | 1.5116 | 3.77 | 2500 | 1.3128 | 0.4523 | 0.3234 | 0.3671 | | 1.4837 | 4.52 | 3000 | 1.2937 | 0.4477 | 0.3215 | 0.3645 | | 1.4513 | 5.28 | 3500 | 1.2766 | 0.4511 | 0.3262 | 0.3689 | | 1.4336 | 6.03 | 4000 | 1.2626 | 0.4548 | 0.3283 | 0.3718 | | 1.4149 | 6.79 | 4500 | 1.2449 | 0.4495 | 0.3274 | 0.3687 | | 1.3977 | 7.54 | 5000 | 1.2349 | 0.4507 | 0.3305 | 0.3712 | | 1.3763 | 8.3 | 5500 | 1.2239 | 0.4519 | 0.3266 | 0.3688 | | 1.371 | 9.05 | 6000 | 1.2171 | 0.4546 | 0.3305 | 0.3727 | | 1.3501 | 9.8 | 6500 | 1.2080 | 0.4575 | 0.3329 | 0.3755 | | 1.3443 | 10.56 | 7000 | 1.2017 | 0.4576 | 0.3314 | 0.3742 | | 1.326 | 11.31 | 7500 | 1.1926 | 0.4578 | 0.333 | 0.3757 | | 1.3231 | 12.07 | 8000 | 1.1866 | 0.4606 | 0.3357 | 0.3782 | | 1.3089 | 12.82 | 8500 | 1.1816 | 0.4591 | 0.3338 | 0.3765 | | 1.3007 | 13.57 | 9000 | 1.1764 | 0.4589 | 0.3361 | 0.3777 | | 1.2943 | 14.33 | 9500 | 1.1717 | 0.4641 | 0.3382 | 0.3811 | | 1.2854 | 15.08 | 10000 | 1.1655 | 0.4617 | 0.3378 | 0.38 | | 1.2777 | 15.84 | 10500 | 1.1612 | 0.464 | 0.3401 | 0.3823 | | 1.2684 | 16.59 | 11000 | 1.1581 | 0.4608 | 0.3367 | 0.3789 | | 1.2612 | 17.35 | 11500 | 1.1554 | 0.4623 | 0.3402 | 0.3818 | | 1.2625 | 18.1 | 12000 | 1.1497 | 0.4613 | 0.3381 | 0.3802 | | 1.2529 | 18.85 | 12500 | 1.1465 | 0.4671 | 0.3419 | 0.3848 | | 1.2461 | 19.61 | 13000 | 1.1431 | 0.4646 | 0.3399 | 0.3824 | | 1.2415 | 20.36 | 13500 | 1.1419 | 0.4659 | 0.341 | 0.3835 | | 1.2375 | 21.12 | 14000 | 1.1377 | 0.4693 | 0.3447 | 0.3873 | | 1.2315 | 21.87 | 14500 | 1.1353 | 0.4672 | 0.3433 | 0.3855 | | 1.2263 | 22.62 | 15000 | 1.1333 | 0.467 | 0.3433 | 0.3854 | | 1.2214 | 23.38 | 15500 | 1.1305 | 0.4682 | 0.3446 | 0.3869 | | 1.2202 | 24.13 | 16000 | 1.1291 | 0.4703 | 0.3465 | 0.3888 | | 1.2155 | 24.89 | 16500 | 1.1270 | 0.472 | 0.348 | 0.3903 | | 1.2064 | 25.64 | 17000 | 1.1261 | 0.4724 | 0.3479 | 0.3905 | | 1.2173 | 26.4 | 17500 | 1.1236 | 0.4734 | 0.3485 | 0.3912 | | 1.1994 | 27.15 | 18000 | 1.1220 | 0.4739 | 0.3486 | 0.3915 | | 1.2018 | 27.9 | 18500 | 1.1217 | 0.4747 | 0.3489 | 0.3921 | | 1.2045 | 28.66 | 19000 | 1.1194 | 0.4735 | 0.3488 | 0.3916 | | 1.1949 | 29.41 | 19500 | 1.1182 | 0.4732 | 0.3484 | 0.3911 | | 1.19 | 30.17 | 20000 | 1.1166 | 0.4724 | 0.3479 | 0.3904 | | 1.1932 | 30.92 | 20500 | 1.1164 | 0.4753 | 0.3494 | 0.3924 | | 1.1952 | 31.67 | 21000 | 1.1147 | 0.4733 | 0.3485 | 0.3911 | | 1.1922 | 32.43 | 21500 | 1.1146 | 0.475 | 0.3494 | 0.3923 | | 1.1889 | 33.18 | 22000 | 1.1132 | 0.4765 | 0.3499 | 0.3933 | | 1.1836 | 33.94 | 22500 | 1.1131 | 0.4768 | 0.351 | 0.3939 | | 1.191 | 34.69 | 23000 | 1.1127 | 0.4755 | 0.3495 | 0.3926 | | 1.1811 | 35.44 | 23500 | 1.1113 | 0.4748 | 0.349 | 0.3919 | | 1.1864 | 36.2 | 24000 | 1.1107 | 0.4751 | 0.3494 | 0.3921 | | 1.1789 | 36.95 | 24500 | 1.1103 | 0.4756 | 0.3499 | 0.3927 | | 1.1819 | 37.71 | 25000 | 1.1101 | 0.4758 | 0.35 | 0.3932 | | 1.1862 | 38.46 | 25500 | 1.1099 | 0.4755 | 0.3497 | 0.3926 | | 1.1764 | 39.22 | 26000 | 1.1101 | 0.4759 | 0.3498 | 0.3928 | | 1.1819 | 39.97 | 26500 | 1.1101 | 0.4758 | 0.3498 | 0.3927 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
gayanin/bart-mlm-pubmed-35
gayanin
2021-11-22T21:16:10Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bart-mlm-pubmed-35 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-mlm-pubmed-35 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9359 - Rouge2 Precision: 0.5451 - Rouge2 Recall: 0.4232 - Rouge2 Fmeasure: 0.4666 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:----:|:---------------:|:----------------:|:-------------:|:---------------:| | 1.4156 | 1.0 | 663 | 1.0366 | 0.5165 | 0.3967 | 0.4394 | | 1.1773 | 2.0 | 1326 | 0.9841 | 0.5354 | 0.4168 | 0.4589 | | 1.0894 | 3.0 | 1989 | 0.9554 | 0.5346 | 0.4133 | 0.4563 | | 0.9359 | 4.0 | 2652 | 0.9440 | 0.5357 | 0.4163 | 0.4587 | | 0.8758 | 5.0 | 3315 | 0.9340 | 0.5428 | 0.4226 | 0.465 | | 0.8549 | 6.0 | 3978 | 0.9337 | 0.5385 | 0.422 | 0.4634 | | 0.7743 | 7.0 | 4641 | 0.9330 | 0.542 | 0.422 | 0.4647 | | 0.7465 | 8.0 | 5304 | 0.9315 | 0.5428 | 0.4231 | 0.4654 | | 0.7348 | 9.0 | 5967 | 0.9344 | 0.5462 | 0.4244 | 0.4674 | | 0.7062 | 10.0 | 6630 | 0.9359 | 0.5451 | 0.4232 | 0.4666 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
gayanin/bart-mlm-pubmed-15
gayanin
2021-11-22T20:33:06Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bart-mlm-pubmed-15 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-mlm-pubmed-15 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4822 - Rouge2 Precision: 0.7578 - Rouge2 Recall: 0.5933 - Rouge2 Fmeasure: 0.6511 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:----:|:---------------:|:----------------:|:-------------:|:---------------:| | 0.7006 | 1.0 | 663 | 0.5062 | 0.7492 | 0.5855 | 0.6434 | | 0.5709 | 2.0 | 1326 | 0.4811 | 0.7487 | 0.5879 | 0.6447 | | 0.5011 | 3.0 | 1989 | 0.4734 | 0.7541 | 0.5906 | 0.6483 | | 0.4164 | 4.0 | 2652 | 0.4705 | 0.7515 | 0.5876 | 0.6452 | | 0.3888 | 5.0 | 3315 | 0.4703 | 0.7555 | 0.5946 | 0.6515 | | 0.3655 | 6.0 | 3978 | 0.4725 | 0.7572 | 0.5943 | 0.6516 | | 0.319 | 7.0 | 4641 | 0.4733 | 0.7557 | 0.5911 | 0.6491 | | 0.3089 | 8.0 | 5304 | 0.4792 | 0.7577 | 0.5936 | 0.6513 | | 0.2907 | 9.0 | 5967 | 0.4799 | 0.7577 | 0.5931 | 0.6509 | | 0.275 | 10.0 | 6630 | 0.4822 | 0.7578 | 0.5933 | 0.6511 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
samantharhay/wav2vec2-base-myst-demo-colab
samantharhay
2021-11-22T18:15:21Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: name: wav2vec2-base-myst-demo-colab --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-myst-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 1.3125 - eval_wer: 0.3139 - eval_runtime: 57.3226 - eval_samples_per_second: 9.996 - eval_steps_per_second: 1.256 - epoch: 18.68 - step: 17000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
JorisCos/VAD_Net
JorisCos
2021-11-22T17:17:23Z
7
0
asteroid
[ "asteroid", "pytorch", "audio", "VADNet", "VAD", "Voice Activity Detection", "dataset:LibriVAD", "license:cc-by-sa-4.0", "region:us" ]
null
2022-03-02T23:29:04Z
--- tags: - asteroid - audio - VADNet - VAD - Voice Activity Detection datasets: - LibriVAD license: cc-by-sa-4.0 --- ## Asteroid model `JorisCos/VAD_Net` Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `enh_single` task of the Libri1Mix dataset. Training config: ```yml data: segment: 3 train_dir: /home/jcosentino/VAD_dataset/metadata/sets/train.json valid_dir: /home/jcosentino/VAD_dataset/metadata/sets/dev.json filterbank: kernel_size: 16 n_filters: 512 stride: 8 main_args: exp_dir: exp/full_not_causal_f1/ help: null masknet: bn_chan: 128 causal: false hid_chan: 512 mask_act: relu n_blocks: 3 n_repeats: 5 skip_chan: 128 optim: lr: 0.001 optimizer: adam weight_decay: 0.0 positional arguments: {} training: batch_size: 8 early_stop: true epochs: 200 half_lr: true num_workers: 4 ``` Results: On LibriVAD min test set : ```yml accuracy: 0.8196149023502931, precision: 0.8305009048356607, recall: 0.8869202491310206, f1_score: 0.8426184545700124 ``` License notice: This work "VAD_Net" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/); of The [DNS challenge](https://github.com/microsoft/DNS-Challenge) noises, [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/). "VAD_Net" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Joris Cosentino
huggingtweets/ctrlcreep
huggingtweets
2021-11-22T09:35:47Z
4
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/ctrlcreep/1637573720314/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/855460243152801793/cxX82P3V_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">๐Ÿค– AI BOT ๐Ÿค–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">infineot</div> <div style="text-align: center; font-size: 14px;">@ctrlcreep</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from infineot. | Data | infineot | | --- | --- | | Tweets downloaded | 3241 | | Retweets | 171 | | Short tweets | 51 | | Tweets kept | 3019 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/26459hr9/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ctrlcreep's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1prcdcpn) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1prcdcpn/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ctrlcreep') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
khalidalt/DeBERTa-v3-large-mnli
khalidalt
2021-11-22T08:38:23Z
54
5
transformers
[ "transformers", "pytorch", "deberta-v2", "text-classification", "zero-shot-classification", "en", "arxiv:2006.03654", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: - en tags: - text-classification - zero-shot-classification metrics: - accuracy widget: - text: "The Movie have been criticized for the story. However, I think it is a great movie. [SEP] I liked the movie." --- # DeBERTa-v3-large-mnli ## Model description This model was trained on the Multi-Genre Natural Language Inference ( MultiNLI ) dataset, which consists of 433k sentence pairs textual entailment information. The model used is [DeBERTa-v3-large from Microsoft](https://huggingface.co/microsoft/deberta-large). The v3 DeBERTa outperforms the result of Bert and RoBERTa in majority of NLU benchmarks by using disentangled attention and enhanced mask decoder. More information about the orginal model is on [official repository](https://github.com/microsoft/DeBERTa) and the [paper](https://arxiv.org/abs/2006.03654) ## Intended uses & limitations #### How to use the model ```python premise = "The Movie have been criticized for the story. However, I think it is a great movie." hypothesis = "I liked the movie." input = tokenizer(premise, hypothesis, truncation=True, return_tensors="pt") output = model(input["input_ids"].to(device)) # device = "cuda:0" or "cpu" prediction = torch.softmax(output["logits"][0], -1) label_names = ["entailment", "neutral", "contradiction"] print(label_names[prediction.argmax(0).tolist()]) ``` ### Training data This model was trained on the MultiNLI dataset, which consists of 392K sentence textual entitlement. ### Training procedure DeBERTa-v3-large-mnli was trained using the Hugging Face trainer with the following hyperparameters. ``` train_args = TrainingArguments( learning_rate=2e-5, per_device_train_batch_size=8, per_device_eval_batch_size=8, num_train_epochs=3, warmup_ratio=0.06, weight_decay=0.1, fp16=True, seed=42, ) ``` ### BibTeX entry and citation info Please cite the [DeBERTa paper](https://arxiv.org/abs/2006.03654) and [MultiNLI Dataset](https://cims.nyu.edu/~sbowman/multinli/paper.pdf) if you use this model and include this Huggingface hub.
jsylee/scibert_scivocab_uncased-finetuned-ner
jsylee
2021-11-22T03:52:41Z
6,334
14
transformers
[ "transformers", "pytorch", "bert", "token-classification", "Named Entity Recognition", "SciBERT", "Adverse Effect", "Drug", "Medical", "en", "dataset:ade_corpus_v2", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - en tags: - Named Entity Recognition - SciBERT - Adverse Effect - Drug - Medical datasets: - ade_corpus_v2 widget: - text: "Abortion, miscarriage or uterine hemorrhage associated with misoprostol (Cytotec), a labor-inducing drug." example_title: "Abortion, miscarriage, ..." - text: "Addiction to many sedatives and analgesics, such as diazepam, morphine, etc." example_title: "Addiction to many..." - text: "Birth defects associated with thalidomide" example_title: "Birth defects associated..." - text: "Bleeding of the intestine associated with aspirin therapy" example_title: "Bleeding of the intestine..." - text: "Cardiovascular disease associated with COX-2 inhibitors (i.e. Vioxx)" example_title: "Cardiovascular disease..." --- This is a SciBERT-based model fine-tuned to perform Named Entity Recognition for drug names and adverse drug effects. ![model image](https://raw.githubusercontent.com/jsylee/personal-projects/master/Hugging%20Face%20ADR%20Fine-Tuning/hf_adr.png) This model classifies input tokens into one of five classes: - `B-DRUG`: beginning of a drug entity - `I-DRUG`: within a drug entity - `B-EFFECT`: beginning of an AE entity - `I-EFFECT`: within an AE entity - `O`: outside either of the above entities To get started using this model for inference, simply set up an NER `pipeline` like below: ```python from transformers import (AutoModelForTokenClassification, AutoTokenizer, pipeline, ) model_checkpoint = "jsylee/scibert_scivocab_uncased-finetuned-ner" model = AutoModelForTokenClassification.from_pretrained(model_checkpoint, num_labels=5, id2label={0: 'O', 1: 'B-DRUG', 2: 'I-DRUG', 3: 'B-EFFECT', 4: 'I-EFFECT'} ) tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) model_pipeline = pipeline(task="ner", model=model, tokenizer=tokenizer) print( model_pipeline ("Abortion, miscarriage or uterine hemorrhage associated with misoprostol (Cytotec), a labor-inducing drug.")) ``` SciBERT: https://huggingface.co/allenai/scibert_scivocab_uncased Dataset: https://huggingface.co/datasets/ade_corpus_v2
teven/roberta_kelm_tekgen
teven
2021-11-22T01:04:55Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # teven/roberta_kelm_tekgen This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('teven/roberta_kelm_tekgen') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('teven/roberta_kelm_tekgen') model = AutoModel.from_pretrained('teven/roberta_kelm_tekgen') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=teven/roberta_kelm_tekgen) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 976035 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 394379 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` [ { "epochs": 1, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ] ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 300, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Ulto/pythonCoPilot2
Ulto
2021-11-22T00:24:53Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer model-index: - name: pythonCoPilot2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pythonCoPilot2 This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 4.0479 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 427 | 4.3782 | | 4.6698 | 2.0 | 854 | 4.0718 | | 3.3953 | 3.0 | 1281 | 4.0479 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
Ulto/pythonCoPilot
Ulto
2021-11-21T23:49:37Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer model-index: - name: pythonCoPilot results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pythonCoPilot This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
KrishParikh/gpt2_imdb_movie_plots
KrishParikh
2021-11-21T20:11:06Z
5
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
--- tags: - generated_from_trainer model-index: - name: gpt2-plot results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-plot This model is a fine-tuned version of [gpt2-medium](https://huggingface.co/gpt2-medium) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.8856 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.9.0 - Datasets 1.15.1 - Tokenizers 0.10.3
Abirate/bert_fine_tuned_cola
Abirate
2021-11-21T16:41:00Z
10
1
transformers
[ "transformers", "tf", "bert", "text-classification", "arxiv:1810.04805", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
## Petrained Model BERT: base model (cased) BERT base model (cased) is a pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in this [paper](https://arxiv.org/abs/1810.04805) and first released in this [repository](https://github.com/google-research/bert). This model is case-sensitive: it makes a difference between english and English. ## Pretained Model Description BERT is an auto-encoder transformer model pretrained on a large corpus of English data (English Wikipedia + Books Corpus) in a self-supervised fashion. This means the targets are computed from the inputs themselves, and humans are not needed to label the data. It was pretrained with two objectives: - Masked language modeling (MLM) - Next sentence prediction (NSP) ## Fine-tuned Model Description: BERT fine-tuned Cola The pretrained model could be fine-tuned on other NLP tasks. The BERT model has been fine-tuned on a cola dataset from the GLUE BENCHAMRK, which is an academic benchmark that aims to measure the performance of ML models. Cola is one of the 11 datasets in this GLUE BENCHMARK.ย  By fine-tuning BERT on cola dataset, the model is now able to classify a given setence gramatically and semantically as acceptable or not acceptable ## How to use ? ###### Directly with a pipeline for a text-classification NLP task ```python from transformers import pipeline cola = pipeline('text-classification', model='Abirate/bert_fine_tuned_cola') cola("Tunisia is a beautiful country") [{'label': 'acceptable', 'score': 0.989352285861969}] ``` ###### Breaking down all the steps (Tokenization, Modeling, Postprocessing) ```python from transformers import AutoTokenizer, TFAutoModelForSequenceClassification import tensorflow as tf import numpy as np tokenizer = AutoTokenizer.from_pretrained('Abirate/bert_fine_tuned_cola') model = TFAutoModelForSequenceClassification.from_pretrained("Abirate/bert_fine_tuned_cola") text = "Tunisia is a beautiful country." encoded_input = tokenizer(text, return_tensors='tf') #The logits output = model(encoded_input) #Postprocessing probas_output = tf.math.softmax(tf.squeeze(output['logits']), axis = -1) class_preds = np.argmax(probas_output, axis = -1) #Predicting the class acceptable or not acceptable model.config.id2label[class_preds] #Result 'acceptable' ```
abhibisht89/spanbert-large-cased-finetuned-ade_corpus_v2
abhibisht89
2021-11-21T15:23:59Z
79
1
transformers
[ "transformers", "pytorch", "bert", "token-classification", "spanbert", "en", "dataset:ade_corpus_v2", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: en tags: - spanbert datasets: - ade_corpus_v2 widget: - text: "Having fever after taking paracetamol." example_title: "NER" - text: "Birth defects associated with thalidomide." example_title: "NER" - text: "Deafness and kidney failure associated with gentamicin (an antibiotic)." example_title: "NER" - text: "Bleeding of the intestine associated with aspirin therapy." example_title: "NER" --- spanbert-large-cased fine-tuned for <b>"Adverse drug reaction"</b> and <b>"Drug"</b> span Extraction. <b>Details of spanbert-large-cased:</b> https://huggingface.co/SpanBERT/spanbert-large-cased <b>Details of the downstream task (Adverse drug reaction and Drug Extraction) - Dataset</b> https://huggingface.co/datasets/ade_corpus_v2
huggingtweets/prathkum
huggingtweets
2021-11-21T09:58:13Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/prathkum/1637488688526/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1418652395119153153/dvMUbHmM_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">๐Ÿค– AI BOT ๐Ÿค–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Pratham</div> <div style="text-align: center; font-size: 14px;">@prathkum</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Pratham. | Data | Pratham | | --- | --- | | Tweets downloaded | 3246 | | Retweets | 455 | | Short tweets | 318 | | Tweets kept | 2473 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2lnm0sab/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @prathkum's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2w7zt05t) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2w7zt05t/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/prathkum') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
emeraldgoose/bert-base-v1-sports
emeraldgoose
2021-11-21T05:45:05Z
13
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "ko", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: ko mask_token: "[MASK]" widget: - text: ์‚ฐ์•… ์ž์ „๊ฑฐ ๊ฒฝ๊ธฐ๋Š” ์ƒ๋Œ€์ ์œผ๋กœ ์ƒˆ๋กœ์šด [MASK] 1990๋…„๋Œ€์— ํ™œ์„ฑํ™” ๋˜์—ˆ๋‹ค. --- ## Data-annotation-nlp-10 (BoostCamp AI) ์œ„ํ‚คํ”ผ๋””์•„(์Šคํฌ์ธ ) dataset ๊ตฌ์ถ•์„ ์ง„ํ–‰ํ•˜๋ฉด์„œ ์–ป์€ ๋ฌธ์žฅ์„ ํ†ตํ•ด bert ์‚ฌ์ „ํ•™์Šต์„ ์ง„ํ–‰ ## How to use ```python from transformers import AutoTokenizer, BertForMaskedLM model = BertForMaskedLM.from_pretrained("emeraldgoose/bert-base-v1-sports") tokenizer = AutoTokenizer.from_pretrained("emeraldgoose/bert-base-v1-sports") text = "์‚ฐ์•… ์ž์ „๊ฑฐ ๊ฒฝ๊ธฐ๋Š” ์ƒ๋Œ€์ ์œผ๋กœ ์ƒˆ๋กœ์šด [MASK] 1990๋…„๋Œ€์— ํ™œ์„ฑํ™” ๋˜์—ˆ๋‹ค." inputs = tokenizer.encode(text, return_tensors='pt') model.eval() outputs = model(inputs)['logits'] predict = outputs.argmax(-1)[0] print(tokenizer.decode(predict)) ```
Leisa/marian-finetuned-kde4-en-to-fr
Leisa
2021-11-21T05:25:45Z
4
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "translation", "generated_from_trainer", "dataset:kde4", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - translation - generated_from_trainer datasets: - kde4 metrics: - bleu model-index: - name: marian-finetuned-kde4-en-to-fr results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: kde4 type: kde4 args: en-fr metrics: - name: Bleu type: bleu value: 52.94538305859332 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marian-finetuned-kde4-en-to-fr This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset. It achieves the following results on the evaluation set: - Loss: 0.8558 - Bleu: 52.9454 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0 - Datasets 1.15.1 - Tokenizers 0.10.3
Xibanya/AestheticCities
Xibanya
2021-11-21T03:05:15Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
A VQGAN-compatible model trained on screenshots of cityscapes from 90s anime. To use, direct vqgan to the model as you would vqgan_imagenet_f16_1024, faceshq, etc.
Ulto/avengers2
Ulto
2021-11-21T01:13:26Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - null model-index: - name: avengers2 results: - task: name: Causal Language Modeling type: text-generation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # avengers2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.0131 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 56 | 3.9588 | | No log | 2.0 | 112 | 3.9996 | | No log | 3.0 | 168 | 4.0131 | ### Framework versions - Transformers 4.10.0 - Pytorch 1.9.0 - Datasets 1.2.1 - Tokenizers 0.10.1
arvalinno/distilbert-base-uncased-finetuned-squad
arvalinno
2021-11-20T17:31:23Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4232 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.7604 | 1.0 | 6366 | 1.5329 | | 1.4784 | 2.0 | 12732 | 1.3930 | | 1.3082 | 3.0 | 19098 | 1.4232 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3