modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-15 18:28:48
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
522 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-15 18:28:34
card
stringlengths
11
1.01M
himanshue2e/Whisper-Hindi
himanshue2e
2024-02-15T05:46:50Z
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-02-15T05:46:48Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
rohdimp24/LORA-bloom-3b
rohdimp24
2024-02-15T05:38:55Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-02-15T05:38:49Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
elite-testo-max/elite-testo-max
elite-testo-max
2024-02-15T05:14:44Z
0
0
spacy
[ "spacy", "Elite Testo Max", "en", "license:cc-by-nc-sa-3.0", "region:us" ]
null
2024-02-15T05:13:39Z
--- license: cc-by-nc-sa-3.0 language: - en library_name: spacy tags: - Elite Testo Max --- [Elite Testo Max](https://atozsupplement.com/elite-testo-max/) It's vital to take note of that not all upgrade techniques are therapeutically or experimentally demonstrated, and numerous items advertised for these reasons might need guideline or logical proof supporting their adequacy and wellbeing. Prior to considering any type of male upgrade, it's significant to talk with a medical care proficient to grasp expected dangers, viability, and legitimate use. Furthermore, solid way of life decisions like standard activity, a decent eating regimen, overseeing pressure, and sufficient rest can emphatically influence sexual wellbeing and execution. VISIT HERE FOR OFFICIAL WEBSITE:-https://atozsupplement.com/elite-testo-max/
jungyuko/DAVinCI-42dot_LLM-PLM-1.3B-v1.1
jungyuko
2024-02-15T05:12:18Z
2,340
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-15T01:58:16Z
--- license: cc-by-nc-4.0 --- ## DAVinCI-42dot_LLM-PLM-1.3B-v1.1 This model is a fine-tuned version of [42dot/42dot_LLM-PLM-1.3B](https://huggingface.co/42dot/42dot_LLM-PLM-1.3B) on a custom dataset. ### Model description More information needed ### Intended uses & limitations More information needed ### Training and evaluation data More information needed ### Training procedure ### Training hyperparameters The following hyperparameters were used during training: * learning_rate: 2e-05 * train_batch_size: 24 * eval_batch_size: 8 * seed: 42 * gradient_accumulation_steps: 4 * total_train_batch_size: 96 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr_scheduler_type: linear * num_epochs: 1.0 * mixed_precision_training: Native AMP ### Training results ### Framework versions * Transformers 4.36.2 * Pytorch 2.1.2+cu121 * Datasets 2.0.0 * Tokenizers 0.15.0
kenchenxingyu/flan-large-single-label-stance-human6
kenchenxingyu
2024-02-15T05:11:04Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-02-15T05:11:01Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
p1atdev/siglip-tagger-test-3
p1atdev
2024-02-15T05:00:54Z
35
10
transformers
[ "transformers", "safetensors", "siglip_vision_model", "image-classification", "generated_from_trainer", "siglip", "custom_code", "base_model:google/siglip-so400m-patch14-384", "base_model:finetune:google/siglip-so400m-patch14-384", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-02-03T11:37:34Z
--- license: apache-2.0 base_model: google/siglip-so400m-patch14-384 tags: - generated_from_trainer - siglip metrics: - accuracy - f1 model-index: - name: siglip-tagger-test-3 results: [] --- # siglip-tagger-test-3 This model is a fine-tuned version of [google/siglip-so400m-patch14-384](https://huggingface.co/google/siglip-so400m-patch14-384) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 692.4745 - Accuracy: 0.3465 - F1: 0.9969 ## Model description This model is an experimental model that predicts danbooru tags of images. ## Example ### Use a pipeline ```py from transformers import pipeline pipe = pipeline("image-classification", model="p1atdev/siglip-tagger-test-3", trust_remote_code=True) pipe( "image.jpg", # takes str(path) or numpy array or PIL images as input threshold=0.5, #optional parameter defaults to 0 return_scores = False #optional parameter defaults to False ) ``` * `threshold`: confidence intervale, if it's specified, the pipeline will only return tags with a confidence >= threshold * `return_scores`: if specified the pipeline will return the labels and their confidences in a dictionary format. ### Load model directly ```py from PIL import Image import torch from transformers import ( AutoModelForImageClassification, AutoImageProcessor, ) import numpy as np MODEL_NAME = "p1atdev/siglip-tagger-test-3" model = AutoModelForImageClassification.from_pretrained( MODEL_NAME, torch_dtype=torch.bfloat16, trust_remote_code=True ) model.eval() processor = AutoImageProcessor.from_pretrained(MODEL_NAME) image = Image.open("sample.jpg") # load your image inputs = processor(image, return_tensors="pt").to(model.device, model.dtype) logits = model(**inputs).logits.detach().cpu().float()[0] logits = np.clip(logits, 0.0, 1.0) results = { model.config.id2label[i]: logit for i, logit in enumerate(logits) if logit > 0 } results = sorted(results.items(), key=lambda x: x[1], reverse=True) for tag, score in results: print(f"{tag}: {score*100:.2f}%") ``` ## Intended uses & limitations This model is for research use only and is not recommended for production. Please use wd-v1-4-tagger series by SmilingWolf: - [SmilingWolf/wd-v1-4-moat-tagger-v2](https://huggingface.co/SmilingWolf/wd-v1-4-moat-tagger-v2) - [SmilingWolf/wd-v1-4-swinv2-tagger-v2](https://huggingface.co/SmilingWolf/wd-v1-4-swinv2-tagger-v2) etc. ## Training and evaluation data High quality 5000 images from danbooru. They were shuffled and split into train:eval at 4500:500. (Same as p1atdev/siglip-tagger-test-2) |Name|Description| |-|-| |Images count|5000| |Supported tags|9517 general tags. Character and rating tags are not included. See all labels in [config.json](config.json)| |Image rating|4000 for `general` and 1000 for `sensitive,questionable,explicit`| |Copyright tags|`original` only| |Image score range (on search)|min:10, max150| ## Training procedure - Loss function: AsymmetricLossOptimized ([Asymmetric Loss](https://github.com/Alibaba-MIIL/ASL)) - `gamma_neg=4, gamma_pos=1, clip=0.05, eps=1e-8, disable_torch_grad_focal_loss=False` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1066.981 | 1.0 | 71 | 1873.5417 | 0.1412 | 0.9939 | | 547.3158 | 2.0 | 142 | 934.3269 | 0.1904 | 0.9964 | | 534.6942 | 3.0 | 213 | 814.0771 | 0.2170 | 0.9966 | | 414.1278 | 4.0 | 284 | 774.0230 | 0.2398 | 0.9967 | | 365.4994 | 5.0 | 355 | 751.2046 | 0.2459 | 0.9967 | | 352.3663 | 6.0 | 426 | 735.6580 | 0.2610 | 0.9967 | | 414.3976 | 7.0 | 497 | 723.2065 | 0.2684 | 0.9968 | | 350.8201 | 8.0 | 568 | 714.0453 | 0.2788 | 0.9968 | | 364.5016 | 9.0 | 639 | 706.5261 | 0.2890 | 0.9968 | | 309.1184 | 10.0 | 710 | 700.7808 | 0.2933 | 0.9968 | | 288.5186 | 11.0 | 781 | 695.7027 | 0.3008 | 0.9968 | | 287.4452 | 12.0 | 852 | 691.5306 | 0.3037 | 0.9968 | | 280.9088 | 13.0 | 923 | 688.8063 | 0.3084 | 0.9969 | | 296.8389 | 14.0 | 994 | 686.1077 | 0.3132 | 0.9968 | | 265.1467 | 15.0 | 1065 | 683.7382 | 0.3167 | 0.9969 | | 268.5263 | 16.0 | 1136 | 682.1683 | 0.3206 | 0.9969 | | 309.7871 | 17.0 | 1207 | 681.1995 | 0.3199 | 0.9969 | | 307.6475 | 18.0 | 1278 | 680.1700 | 0.3230 | 0.9969 | | 262.0677 | 19.0 | 1349 | 679.2177 | 0.3270 | 0.9969 | | 275.3823 | 20.0 | 1420 | 678.9730 | 0.3294 | 0.9969 | | 273.984 | 21.0 | 1491 | 678.6031 | 0.3318 | 0.9969 | | 273.5361 | 22.0 | 1562 | 678.1285 | 0.3332 | 0.9969 | | 279.6474 | 23.0 | 1633 | 678.4264 | 0.3348 | 0.9969 | | 232.5045 | 24.0 | 1704 | 678.3773 | 0.3357 | 0.9969 | | 269.621 | 25.0 | 1775 | 678.4922 | 0.3372 | 0.9969 | | 289.8389 | 26.0 | 1846 | 679.0094 | 0.3397 | 0.9969 | | 256.7373 | 27.0 | 1917 | 679.5618 | 0.3407 | 0.9969 | | 262.3969 | 28.0 | 1988 | 680.1168 | 0.3414 | 0.9969 | | 266.2439 | 29.0 | 2059 | 681.0101 | 0.3421 | 0.9969 | | 247.7932 | 30.0 | 2130 | 681.9800 | 0.3422 | 0.9969 | | 246.8083 | 31.0 | 2201 | 682.8550 | 0.3416 | 0.9969 | | 270.827 | 32.0 | 2272 | 683.9250 | 0.3434 | 0.9969 | | 256.4384 | 33.0 | 2343 | 685.0451 | 0.3448 | 0.9969 | | 270.461 | 34.0 | 2414 | 686.2427 | 0.3439 | 0.9969 | | 253.8104 | 35.0 | 2485 | 687.4274 | 0.3441 | 0.9969 | | 265.532 | 36.0 | 2556 | 688.4856 | 0.3451 | 0.9969 | | 249.1426 | 37.0 | 2627 | 689.5027 | 0.3457 | 0.9969 | | 229.5651 | 38.0 | 2698 | 690.4455 | 0.3455 | 0.9969 | | 251.9008 | 39.0 | 2769 | 691.2324 | 0.3463 | 0.9969 | | 281.8228 | 40.0 | 2840 | 691.7993 | 0.3464 | 0.9969 | | 242.5272 | 41.0 | 2911 | 692.1788 | 0.3465 | 0.9969 | | 229.5605 | 42.0 | 2982 | 692.3799 | 0.3465 | 0.9969 | | 245.0876 | 43.0 | 3053 | 692.4745 | 0.3465 | 0.9969 | | 271.22 | 44.0 | 3124 | 692.5084 | 0.3465 | 0.9969 | | 244.3045 | 45.0 | 3195 | 692.5108 | 0.3465 | 0.9969 | | 243.9542 | 46.0 | 3266 | 692.5128 | 0.3465 | 0.9969 | | 274.6664 | 47.0 | 3337 | 692.5095 | 0.3465 | 0.9969 | | 231.1361 | 48.0 | 3408 | 692.5107 | 0.3465 | 0.9969 | | 274.5513 | 49.0 | 3479 | 692.5108 | 0.3465 | 0.9969 | | 316.0833 | 50.0 | 3550 | 692.5107 | 0.3465 | 0.9969 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.2+cu118 - Datasets 2.16.1 - Tokenizers 0.15.0
Lounarisnia/ppo-LunarLander-v2-3e6
Lounarisnia
2024-02-15T04:49:55Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-02-15T04:49:43Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 283.31 +/- 20.51 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
joseagmz/Mistral_FFT
joseagmz
2024-02-15T04:42:20Z
2
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "mistral", "text-generation", "generated_from_trainer", "base_model:mistralai/Mistral-7B-v0.1", "base_model:finetune:mistralai/Mistral-7B-v0.1", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-15T04:29:03Z
--- license: apache-2.0 base_model: mistralai/Mistral-7B-v0.1 tags: - generated_from_trainer model-index: - name: Mistral_FFT results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.0` ```yaml base_model: mistralai/Mistral-7B-v0.1 model_type: MistralForCausalLM tokenizer_type: LlamaTokenizer is_mistral_derived_model: true load_in_8bit: false load_in_4bit: false strict: false datasets: - path: mhenrichsen/alpaca_2k_test type: alpaca dataset_prepared_path: last_run_prepared val_set_size: 0.05 output_dir: ./Mistral_FFT sequence_len: 4096 sample_packing: true pad_to_sequence_len: true adapter: lora_model_dir: lora_r: lora_alpha: lora_dropout: lora_target_linear: lora_fan_in_fan_out: wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 1 micro_batch_size: 1 num_epochs: 1 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true flash_attn_cross_entropy: false flash_attn_rms_norm: true flash_attn_fuse_qkv: false flash_attn_fuse_mlp: true warmup_steps: 100 evals_per_epoch: 4 eval_table_size: eval_sample_packing: False saves_per_epoch: 1 debug: deepspeed: deepspeed_configs/zero2.json weight_decay: 0.1 fsdp: fsdp_config: special_tokens: ``` </details><br> # Mistral_FFT This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2369 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 3 - total_train_batch_size: 3 - total_eval_batch_size: 3 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.9016 | 0.03 | 1 | 1.1080 | | 0.8288 | 0.25 | 8 | 0.8722 | | 1.0797 | 0.5 | 16 | 0.9858 | | 1.036 | 0.75 | 24 | 1.1281 | | 1.4318 | 1.0 | 32 | 1.2369 | ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.1.2+cu118 - Datasets 2.17.0 - Tokenizers 0.15.0
RMWeerasinghe/t5-small-govReport-boardpapers-3072
RMWeerasinghe
2024-02-15T04:27:38Z
97
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "Summarization", "generated_from_trainer", "summarization", "base_model:RMWeerasinghe/t5-small-finetuned-govReport-3072", "base_model:finetune:RMWeerasinghe/t5-small-finetuned-govReport-3072", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
summarization
2024-02-15T04:15:21Z
--- license: apache-2.0 base_model: RMWeerasinghe/t5-small-finetuned-govReport-3072 tags: - Summarization - generated_from_trainer metrics: - rouge model-index: - name: t5-small-govReport-boardpapers-3072 results: [] pipeline_tag: summarization --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-govReport-boardpapers-3072 This model is a fine-tuned version of [RMWeerasinghe/t5-small-finetuned-govReport-3072](https://huggingface.co/RMWeerasinghe/t5-small-finetuned-govReport-3072) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.6701 - Rouge1: 0.0443 - Rouge2: 0.0194 - Rougel: 0.0382 - Rougelsum: 0.0443 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 40 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | No log | 0.67 | 1 | 3.9496 | 0.0584 | 0.0214 | 0.0482 | 0.0572 | | No log | 2.0 | 3 | 3.9252 | 0.0562 | 0.0223 | 0.0463 | 0.0562 | | No log | 2.67 | 4 | 3.9121 | 0.0597 | 0.0223 | 0.0485 | 0.0596 | | No log | 4.0 | 6 | 3.8880 | 0.0597 | 0.0223 | 0.0485 | 0.0596 | | No log | 4.67 | 7 | 3.8755 | 0.0597 | 0.0223 | 0.0485 | 0.0596 | | No log | 6.0 | 9 | 3.8506 | 0.0597 | 0.0223 | 0.0485 | 0.0596 | | No log | 6.67 | 10 | 3.8395 | 0.0553 | 0.0197 | 0.0441 | 0.0541 | | No log | 8.0 | 12 | 3.8172 | 0.0582 | 0.0262 | 0.049 | 0.057 | | No log | 8.67 | 13 | 3.8065 | 0.0582 | 0.0262 | 0.049 | 0.057 | | No log | 10.0 | 15 | 3.7862 | 0.0582 | 0.0257 | 0.049 | 0.057 | | No log | 10.67 | 16 | 3.7769 | 0.057 | 0.0262 | 0.049 | 0.0556 | | No log | 12.0 | 18 | 3.7599 | 0.0577 | 0.0294 | 0.0495 | 0.0575 | | No log | 12.67 | 19 | 3.7522 | 0.0487 | 0.0174 | 0.042 | 0.0474 | | 4.3528 | 14.0 | 21 | 3.7378 | 0.048 | 0.0155 | 0.0406 | 0.0461 | | 4.3528 | 14.67 | 22 | 3.7310 | 0.0536 | 0.0206 | 0.0421 | 0.0511 | | 4.3528 | 16.0 | 24 | 3.7187 | 0.048 | 0.017 | 0.0394 | 0.0448 | | 4.3528 | 16.67 | 25 | 3.7132 | 0.043 | 0.017 | 0.0374 | 0.041 | | 4.3528 | 18.0 | 27 | 3.7031 | 0.043 | 0.017 | 0.0374 | 0.041 | | 4.3528 | 18.67 | 28 | 3.6985 | 0.043 | 0.017 | 0.0374 | 0.041 | | 4.3528 | 20.0 | 30 | 3.6905 | 0.043 | 0.017 | 0.0374 | 0.041 | | 4.3528 | 20.67 | 31 | 3.6869 | 0.043 | 0.017 | 0.0374 | 0.041 | | 4.3528 | 22.0 | 33 | 3.6807 | 0.0442 | 0.0194 | 0.0381 | 0.0423 | | 4.3528 | 22.67 | 34 | 3.6781 | 0.0442 | 0.0194 | 0.0381 | 0.0423 | | 4.3528 | 24.0 | 36 | 3.6740 | 0.0442 | 0.0194 | 0.0381 | 0.0423 | | 4.3528 | 24.67 | 37 | 3.6725 | 0.0442 | 0.0194 | 0.0381 | 0.0423 | | 4.3528 | 26.0 | 39 | 3.6705 | 0.0443 | 0.0194 | 0.0382 | 0.0443 | | 4.0602 | 26.67 | 40 | 3.6701 | 0.0443 | 0.0194 | 0.0382 | 0.0443 | ### Framework versions - Transformers 4.37.0 - Pytorch 2.1.2 - Datasets 2.17.0 - Tokenizers 0.15.1
andruhon/unspsc_family_5examples_test2
andruhon
2024-02-15T04:23:40Z
108
2
transformers
[ "transformers", "safetensors", "bert", "text-classification", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-02-11T23:28:24Z
--- language: - en license: apache-2.0 widget: - text: "7oz hammer" - text: "Cat6e network cable" - text: "Printer HL-1210W" --- # Classify text by UNSPSC family Forked from https://huggingface.co/govspend/unspsc_family_5examples_test2 See https://en.wikipedia.org/wiki/UNSPSC ## Usage ```python pipe = pipeline("text-classification", model="andruhon/unspsc_family_5examples_test2", tokenizer="bert-base-uncased") pipe("7oz hammer"); # Would return something like {'label': 'LABEL_105', 'score': 0.339} # In this case LABEL_105 clearly goes into 27110000 Handtools ``` ## License The original model didn't have license file. Considering that it's BERT it should have the same license, which I think is Apache 2.0. Use on your own risk. I'll update this file once I have more info.
Jlonge4/distilbert-yelp-review-multiclass
Jlonge4
2024-02-15T04:23:29Z
3
0
peft
[ "peft", "safetensors", "en", "dataset:yelp_review_full", "arxiv:1910.09700", "base_model:distilbert/distilbert-base-uncased", "base_model:adapter:distilbert/distilbert-base-uncased", "license:apache-2.0", "region:us" ]
null
2024-02-11T20:45:26Z
--- library_name: peft base_model: distilbert-base-uncased license: apache-2.0 datasets: - yelp_review_full language: - en metrics: - accuracy --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [Jlonge4] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.8.2
jpsteinhafel/complaints_classifier
jpsteinhafel
2024-02-15T04:22:37Z
91
1
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-02-07T23:28:23Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: complaints_classifier results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # complaints_classifier This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2139 - Accuracy: 0.9420 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 77 | 0.3395 | 0.9130 | | No log | 2.0 | 154 | 0.2139 | 0.9420 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.13.3
theidoldaily/nozomi-tojo
theidoldaily
2024-02-15T04:09:26Z
5
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "base_model:cagliostrolab/animagine-xl-3.0", "base_model:adapter:cagliostrolab/animagine-xl-3.0", "license:mit", "region:us" ]
text-to-image
2024-02-15T04:07:06Z
--- tags: - text-to-image - stable-diffusion - lora - diffusers - template:sd-lora widget: - text: >- masterpiece, high quality, defined pupil, looking at viewer, rounded pupil, defined iris, (soft iris:1.2), parameters: negative_prompt: >- bad_anatomy, deformation, amputation, deformity, deformed_nipples, duplicated_torso, deformed_torso, long_torso, large_torso, unproportioned_torso, (deformed_pussy:1.2), (deformed_hands:1.2), unproportioned_eyes, unproportioned_head, small_head, duplicated_nose, big_nose, fusioned_clothes, fusioned_arms, undefined_limbs, divided_pussy, red_pussy, duplicated_pussy, deformed_anus, deformed_pussy, output: url: images/nozomi_final.png base_model: cagliostrolab/animagine-xl-3.0 instance_prompt: id_nozomi_tojo license: mit --- # Nozomi Tojo <Gallery /> ## Model description This model was trained to generate high quality images based on SIFAS cards. To achieve better quality, you should be using hako-mikan&#39;s regional prompter, along with Latent Mode, which modifies the way Stable Diffusion isolates the LoRA resulting in a significant improvement. ## Trigger words You should use `id_nozomi_tojo` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/theidoldaily/nozomi-tojo/tree/main) them in the Files & versions tab.
VladS159/whisper_small_ro_VladS_02_14_24_4000_steps
VladS159
2024-02-15T04:09:24Z
61
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "ro", "dataset:mozilla-foundation/common_voice_16_1", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-02-14T16:46:03Z
--- language: - ro license: apache-2.0 base_model: openai/whisper-small tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_16_1 metrics: - wer model-index: - name: Whisper Small Ro - Sarbu Vlad results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 16.1 type: mozilla-foundation/common_voice_16_1 args: 'config: ro, split: test' metrics: - name: Wer type: wer value: 18.664730616813383 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Ro - Sarbu Vlad This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 16.1 dataset. It achieves the following results on the evaluation set: - Loss: 0.2920 - Wer: 18.6647 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - num_devices: 3 - total_train_batch_size: 96 - total_eval_batch_size: 48 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.1437 | 3.91 | 500 | 0.2167 | 20.5100 | | 0.0268 | 7.81 | 1000 | 0.2202 | 18.6557 | | 0.008 | 11.72 | 1500 | 0.2478 | 18.6829 | | 0.0037 | 15.62 | 2000 | 0.2644 | 18.6708 | | 0.0024 | 19.53 | 2500 | 0.2761 | 18.6405 | | 0.0018 | 23.44 | 3000 | 0.2844 | 18.6859 | | 0.0016 | 27.34 | 3500 | 0.2900 | 18.6799 | | 0.0014 | 31.25 | 4000 | 0.2920 | 18.6647 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.0 - Datasets 2.17.0 - Tokenizers 0.15.1
abhishekchohan/SOLAR-10.7B-Instruct-Forest-DPO-v1
abhishekchohan
2024-02-15T04:05:32Z
112
2
transformers
[ "transformers", "pytorch", "llama", "text-generation", "conversational", "en", "dataset:Intel/orca_dpo_pairs", "dataset:nvidia/HelpSteer", "dataset:jondurbin/truthy-dpo-v0.1", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-15T03:57:54Z
--- license: apache-2.0 datasets: - Intel/orca_dpo_pairs - nvidia/HelpSteer - jondurbin/truthy-dpo-v0.1 language: - en library_name: transformers pipeline_tag: text-generation --- ### SOLAR-10.7B-Instruct-Forest-DPO Introducing SOLAR-10.7B-Instruct-Forest-DPO, a LLM fine-tuned with base model upstage/SOLAR-10.7B-Instruct-v1.0, using direct preference optimization. This model showcases exceptional prowess across a spectrum of natural language processing (NLP) tasks. A mixture of the following datasets was used for fine-tuning. 1. Intel/orca_dpo_pairs 2. nvidia/HelpSteer 3. jondurbin/truthy-dpo-v0.1 💻 Usage ```python !pip install -qU transformers bitsandbytes accelerate from transformers import AutoTokenizer import transformers import torch model = "abhishekchohan/SOLAR-10.7B-Instruct-Forest-DPO" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, ) messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
Noname08/Taxi-v3
Noname08
2024-02-15T03:50:04Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-02-15T03:50:03Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.54 +/- 2.73 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Noname08/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
sjunique/distilbert-base-uncased-finetuned-imdb
sjunique
2024-02-15T03:41:42Z
92
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "fill-mask", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2024-02-15T02:10:34Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3276 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 479 | 2.3738 | | 2.5112 | 2.0 | 958 | 2.3320 | | 2.5112 | 3.0 | 1437 | 2.3276 | ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.1.2+cu118 - Datasets 2.17.0 - Tokenizers 0.15.1
RMWeerasinghe/long-t5-tglobal-base-finetuned-govReport-4096
RMWeerasinghe
2024-02-15T03:41:15Z
102
0
transformers
[ "transformers", "safetensors", "longt5", "text2text-generation", "summarization", "generated_from_trainer", "dataset:gov_report_summarization_dataset", "base_model:google/long-t5-tglobal-base", "base_model:finetune:google/long-t5-tglobal-base", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2024-02-13T11:45:15Z
--- license: apache-2.0 base_model: google/long-t5-tglobal-base tags: - summarization - generated_from_trainer datasets: - gov_report_summarization_dataset metrics: - rouge model-index: - name: long-t5-tglobal-base-finetuned-govReport-4096 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: gov_report_summarization_dataset type: gov_report_summarization_dataset config: document split: validation args: document metrics: - name: Rouge1 type: rouge value: 0.0432 pipeline_tag: summarization --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # long-t5-tglobal-base-finetuned-govReport-4096 This model is a fine-tuned version of [google/long-t5-tglobal-base](https://huggingface.co/google/long-t5-tglobal-base) on the gov_report_summarization_dataset dataset. It achieves the following results on the evaluation set: - Loss: 1.4052 - Rouge1: 0.0432 - Rouge2: 0.0217 - Rougel: 0.0378 - Rougelsum: 0.0408 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | 15.9484 | 0.99 | 31 | 2.7412 | 0.0382 | 0.0142 | 0.0319 | 0.0354 | | 3.0143 | 1.98 | 62 | 1.7096 | 0.0385 | 0.0144 | 0.032 | 0.0355 | | 2.1893 | 2.98 | 93 | 1.4976 | 0.0376 | 0.0138 | 0.0313 | 0.0347 | | 1.6128 | 4.0 | 125 | 1.4406 | 0.041 | 0.0174 | 0.0354 | 0.0387 | | 1.5438 | 4.99 | 156 | 1.4292 | 0.043 | 0.0203 | 0.0368 | 0.0408 | | 1.5015 | 5.98 | 187 | 1.4220 | 0.0427 | 0.0205 | 0.0367 | 0.0405 | | 1.4723 | 6.98 | 218 | 1.4071 | 0.0431 | 0.0215 | 0.0376 | 0.0408 | | 1.4707 | 8.0 | 250 | 1.4089 | 0.0427 | 0.0212 | 0.0373 | 0.0405 | | 1.4447 | 8.99 | 281 | 1.4046 | 0.0431 | 0.0216 | 0.0379 | 0.0408 | | 1.4884 | 9.92 | 310 | 1.4052 | 0.0432 | 0.0217 | 0.0378 | 0.0408 | ### Framework versions - Transformers 4.37.0 - Pytorch 2.1.2 - Datasets 2.1.0 - Tokenizers 0.15.1
Hernan1970/mi-super-modelo
Hernan1970
2024-02-15T03:40:46Z
92
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-02-15T01:36:25Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer metrics: - accuracy model-index: - name: mi-super-modelo results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mi-super-modelo This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6143 - Accuracy: 0.225 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.6863 | 0.5 | 5 | 1.6243 | 0.225 | | 1.6154 | 1.0 | 10 | 1.6143 | 0.225 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1
thomasgauthier/OpenPirate-LoRD
thomasgauthier
2024-02-15T03:40:26Z
0
0
peft
[ "peft", "safetensors", "base_model:teknium/OpenHermes-2.5-Mistral-7B", "base_model:adapter:teknium/OpenHermes-2.5-Mistral-7B", "region:us" ]
null
2024-02-11T20:04:58Z
--- library_name: peft base_model: teknium/OpenHermes-2.5-Mistral-7B --- # Low-rank decomposition of [valine/OpenPirate](https://huggingface.co/valine/OpenPirate) using [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) as base Created using [LoRD](https://github.com/thomasgauthier/LoRD)
spsither/wav2vec2_run9.615
spsither
2024-02-15T03:27:05Z
63
0
transformers
[ "transformers", "safetensors", "wav2vec2", "automatic-speech-recognition", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-02-15T03:26:39Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
aidonuts/enthralling-etchings-132-s800
aidonuts
2024-02-15T03:24:43Z
5
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-15T03:23:45Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Queriamin/t5_xsum_summarization_1000steps
Queriamin
2024-02-15T03:24:01Z
1
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:google-t5/t5-small", "base_model:adapter:google-t5/t5-small", "region:us" ]
null
2024-02-15T03:24:00Z
--- library_name: peft base_model: google-t5/t5-small --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.8.2
spsither/wav2vec2_run9.620
spsither
2024-02-15T03:22:54Z
63
0
transformers
[ "transformers", "safetensors", "wav2vec2", "automatic-speech-recognition", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-02-15T03:22:27Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
nidhinthomas/esm2_t12_35M_qlora_glycosylation_sites_2024-02-14_21-47-37
nidhinthomas
2024-02-15T03:17:06Z
0
0
null
[ "safetensors", "generated_from_trainer", "base_model:facebook/esm2_t12_35M_UR50D", "base_model:finetune:facebook/esm2_t12_35M_UR50D", "license:mit", "region:us" ]
null
2024-02-14T21:47:37Z
--- license: mit base_model: facebook/esm2_t12_35M_UR50D tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: esm2_t12_35M_qlora_glycosylation_sites_2024-02-14_21-47-37 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # esm2_t12_35M_qlora_glycosylation_sites_2024-02-14_21-47-37 This model is a fine-tuned version of [facebook/esm2_t12_35M_UR50D](https://huggingface.co/facebook/esm2_t12_35M_UR50D) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0108 - Accuracy: 0.9990 - Precision: 0.3291 - Recall: 0.9951 - F1: 0.4946 - Auc: 0.9970 - Mcc: 0.5720 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003701568055793089 - train_batch_size: 36 - eval_batch_size: 36 - seed: 8893 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Auc | Mcc | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:|:------:| | 0.0125 | 1.0 | 16521 | 0.0108 | 0.9990 | 0.3291 | 0.9951 | 0.4946 | 0.9970 | 0.5720 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1
LoneStriker/Smaug-34B-v0.1-2.4bpw-h6-exl2
LoneStriker
2024-02-15T03:04:17Z
6
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "base_model:jondurbin/bagel-34b-v0.2", "base_model:finetune:jondurbin/bagel-34b-v0.2", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-15T02:59:31Z
--- license: other license_name: yi-license license_link: https://huggingface.co/01-ai/Yi-34B-200K/blob/main/LICENSE base_model: jondurbin/bagel-34b-v0.2 --- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64c14f6b02e1f8f67c73bd05/pf4d6FA7DriRtVq5HCkxd.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64c14f6b02e1f8f67c73bd05/e4u8VYfDBh11u60rFYJHF.png) This model is a finetune of jondurbin's excellent [bagel](https://huggingface.co/jondurbin/bagel-34b-v0.2) model. It has been trained with new datasets and a new technique, which we will share to the community soon. This model has not utilised any form of merging. ### Evaluation Results | Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K | | --- | --- | --- | --- | --- | --- | --- | | 77.29 | 74.23 | 86.76 | 76.66 | 70.22 | 83.66 | 72.18 | ### Contamination Results With reference model jondurbin/bagel-34b-v0.2: | ARC | TruthfulQA | GSM8K | | --- | --- | --- | | 0.08| 0.38| 0.88|
aidonuts/enthralling-etchings-132-s600b
aidonuts
2024-02-15T02:53:28Z
4
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-15T02:52:27Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
adarshheg/llama-7b-chat-finetuned-4bit-std
adarshheg
2024-02-15T02:44:19Z
4
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "autotrain", "conversational", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-15T02:40:46Z
--- tags: - autotrain - text-generation widget: - text: "I love AutoTrain because " license: other --- # Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain). # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "PATH_TO_THIS_REPO" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Prompt content: "hi" messages = [ {"role": "user", "content": "hi"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Model response: "Hello! How can I assist you today?" print(response) ```
mathreader/poca-SoccerTwos
mathreader
2024-02-15T02:41:42Z
14
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SoccerTwos", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2024-02-15T02:40:25Z
--- library_name: ml-agents tags: - SoccerTwos - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: mathreader/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
kenchenxingyu/flan-large-single-label-stance-human4
kenchenxingyu
2024-02-15T02:26:02Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-02-15T02:25:58Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
quocviethere/ueh-vdr-vit
quocviethere
2024-02-15T02:25:03Z
179
0
transformers
[ "transformers", "safetensors", "vit", "image-classification", "generated_from_trainer", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-02-10T02:08:40Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer metrics: - accuracy model-index: - name: ueh-vdr-vit results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ueh-vdr-vit This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on UEH Visual Dish Recognition (UEH-VDR) dataset. It achieves the following results on the evaluation set: - Loss: 0.4856 - Accuracy: 0.9296 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 197 | 0.8112 | 0.8943 | | No log | 2.0 | 394 | 0.5428 | 0.9220 | | 0.9 | 3.0 | 591 | 0.4856 | 0.9296 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1
Krisbiantoro/mixtral-id-llama-1500
Krisbiantoro
2024-02-15T02:13:50Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "arxiv:1910.09700", "base_model:mistralai/Mixtral-8x7B-v0.1", "base_model:adapter:mistralai/Mixtral-8x7B-v0.1", "region:us" ]
null
2024-02-15T02:13:03Z
--- library_name: peft base_model: mistralai/Mixtral-8x7B-v0.1 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.2.dev0
thrunlab/Mistral_Sparse_pretraining_80_percent
thrunlab
2024-02-15T02:03:12Z
45
0
transformers
[ "transformers", "safetensors", "mistral", "trl", "sft", "generated_from_trainer", "license:apache-2.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2024-02-04T14:06:10Z
--- tags: - trl - sft - generated_from_trainer metrics: - accuracy model-index: - name: Mistral_Sparse_pretraining_80_percent results: [] license: apache-2.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Mistral_Sparse_pretraining_80_percent This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.8189 - Accuracy: 0.6641 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 32 - seed: 0 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1 ### Training results ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
devashat/244-test
devashat
2024-02-15T01:54:35Z
96
0
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-15T01:54:17Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Vienne/lab1_finetuning
Vienne
2024-02-15T01:53:29Z
119
0
transformers
[ "transformers", "safetensors", "marian", "text2text-generation", "generated_from_trainer", "dataset:kde4", "base_model:Helsinki-NLP/opus-mt-en-fr", "base_model:finetune:Helsinki-NLP/opus-mt-en-fr", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-02-14T23:51:00Z
--- license: apache-2.0 base_model: Helsinki-NLP/opus-mt-en-fr tags: - generated_from_trainer datasets: - kde4 model-index: - name: lab1_finetuning results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lab1_finetuning This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1
tyson0420/stack_llama-clang
tyson0420
2024-02-15T01:48:29Z
48
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "license:bigscience-openrail-m", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-07T02:39:48Z
--- library_name: transformers license: bigscience-openrail-m --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
jlbaker361/spider-lora-500-e100-runway-minimal
jlbaker361
2024-02-15T01:46:10Z
0
0
null
[ "safetensors", "region:us" ]
null
2024-02-13T21:04:54Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - jlbaker361/spider-lora-500-e100-runway-minimal These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the jlbaker361/spider-500-cropped dataset. Training epochs = 100 num_train_timesteps = 50 url: https://wandb.ai/jlbaker361/text2image-fine-tune/runs/b0qdx1y4 You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) ![img_4](./image_4.png) ![img_5](./image_5.png) ![img_6](./image_6.png) ![img_7](./image_7.png) ![img_8](./image_8.png) ![img_9](./image_9.png) ![img_10](./image_10.png) ![img_11](./image_11.png) ![img_12](./image_12.png) ![img_13](./image_13.png) ![img_14](./image_14.png) ![img_15](./image_15.png) ![img_16](./image_16.png) ![img_17](./image_17.png) ![img_18](./image_18.png) ![img_19](./image_19.png)
antonvo/mixtral-select-v1
antonvo
2024-02-15T01:33:29Z
0
0
peft
[ "peft", "safetensors", "mixtral", "arxiv:1910.09700", "base_model:mistralai/Mixtral-8x7B-Instruct-v0.1", "base_model:adapter:mistralai/Mixtral-8x7B-Instruct-v0.1", "4-bit", "bitsandbytes", "region:us" ]
null
2024-02-09T00:06:12Z
--- library_name: peft base_model: mistralai/Mixtral-8x7B-Instruct-v0.1 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.8.2
tyson0420/stack_llama_full
tyson0420
2024-02-15T01:30:45Z
50
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "license:bigscience-openrail-m", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-10T20:38:23Z
--- library_name: transformers license: bigscience-openrail-m --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
silk-road/Haruhi-Zero-14B-0_4
silk-road
2024-02-15T01:21:03Z
2
0
transformers
[ "transformers", "pytorch", "qwen", "text-generation", "custom_code", "autotrain_compatible", "region:us" ]
text-generation
2024-02-14T06:51:15Z
# Zero凉宫春日 基于Qwen_14B_base 热启,在39w高质量的NPC样本上进行2k训练 epoch=2,batch_size=128,lr=2e-5
vpepe2003/ppo-SnowballTarget
vpepe2003
2024-02-15T01:14:03Z
25
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2024-02-15T01:13:58Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: vpepe2003/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
salem12/llama2-chat-7b-EC
salem12
2024-02-15T01:07:37Z
2
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:meta-llama/Llama-2-13b-chat-hf", "base_model:adapter:meta-llama/Llama-2-13b-chat-hf", "region:us" ]
null
2024-02-14T23:46:10Z
--- library_name: peft base_model: meta-llama/Llama-2-13b-chat-hf --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
kim1/test_llama_2_ko_3
kim1
2024-02-15T00:57:29Z
1
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "generated_from_trainer", "base_model:beomi/llama-2-ko-7b", "base_model:finetune:beomi/llama-2-ko-7b", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-15T00:34:20Z
--- base_model: beomi/llama-2-ko-7b tags: - generated_from_trainer model-index: - name: llama-2-ko-7b-v1.1b-singlegpu_gradient_32_epoch_30_train_batch_size_1_all_data_test_1_1_plus_Feb_14th results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llama-2-ko-7b-v1.1b-singlegpu_gradient_32_epoch_30_train_batch_size_1_all_data_test_1_1_plus_Feb_14th This model is a fine-tuned version of [beomi/llama-2-ko-7b](https://huggingface.co/beomi/llama-2-ko-7b) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30.0 ### Training results ### Framework versions - Transformers 4.33.3 - Pytorch 2.2.0+cu121 - Datasets 2.16.0 - Tokenizers 0.13.3
Wesleyk3y/pos-finetuned-mistral7b
Wesleyk3y
2024-02-15T00:54:36Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-01-25T03:51:25Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
shanhy/xlm-roberta-base_seed42_original_kin-amh-eng_train
shanhy
2024-02-15T00:47:13Z
90
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-02-15T00:46:32Z
--- license: mit base_model: FacebookAI/xlm-roberta-base tags: - generated_from_trainer model-index: - name: xlm-roberta-base_seed42_original_kin-amh-eng_train results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base_seed42_original_kin-amh-eng_train This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0167 - Spearman Corr: 0.8481 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Spearman Corr | |:-------------:|:-----:|:----:|:---------------:|:-------------:| | No log | 1.95 | 200 | 0.0180 | 0.8098 | | 0.0401 | 3.9 | 400 | 0.0152 | 0.8402 | | 0.0212 | 5.85 | 600 | 0.0183 | 0.8493 | | 0.0155 | 7.8 | 800 | 0.0166 | 0.8535 | | 0.0116 | 9.76 | 1000 | 0.0206 | 0.8508 | | 0.0097 | 11.71 | 1200 | 0.0155 | 0.8459 | | 0.008 | 13.66 | 1400 | 0.0159 | 0.8481 | | 0.0068 | 15.61 | 1600 | 0.0153 | 0.8467 | | 0.0058 | 17.56 | 1800 | 0.0196 | 0.8481 | | 0.0053 | 19.51 | 2000 | 0.0167 | 0.8481 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1
Kukedlc/TriunviratoPeft
Kukedlc
2024-02-15T00:34:47Z
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-02-15T00:34:44Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
shanhy/xlm-roberta-base_seed42_original_esp-hau-eng_train
shanhy
2024-02-15T00:26:38Z
90
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-02-15T00:25:57Z
--- license: mit base_model: FacebookAI/xlm-roberta-base tags: - generated_from_trainer model-index: - name: xlm-roberta-base_seed42_original_esp-hau-eng_train results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base_seed42_original_esp-hau-eng_train This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0254 - Spearman Corr: 0.7775 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Spearman Corr | |:-------------:|:-----:|:----:|:---------------:|:-------------:| | No log | 1.61 | 200 | 0.0219 | 0.7701 | | 0.0403 | 3.23 | 400 | 0.0201 | 0.7865 | | 0.0242 | 4.84 | 600 | 0.0209 | 0.7970 | | 0.0183 | 6.45 | 800 | 0.0198 | 0.7932 | | 0.0144 | 8.06 | 1000 | 0.0225 | 0.7858 | | 0.0144 | 9.68 | 1200 | 0.0248 | 0.7853 | | 0.0115 | 11.29 | 1400 | 0.0227 | 0.7843 | | 0.0091 | 12.9 | 1600 | 0.0244 | 0.7801 | | 0.0073 | 14.52 | 1800 | 0.0243 | 0.7803 | | 0.0063 | 16.13 | 2000 | 0.0241 | 0.7811 | | 0.0063 | 17.74 | 2200 | 0.0240 | 0.7780 | | 0.0055 | 19.35 | 2400 | 0.0254 | 0.7775 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1
shanhy/xlm-roberta-base_seed42_original_esp-kin-eng_train
shanhy
2024-02-15T00:18:48Z
90
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-02-15T00:18:07Z
--- license: mit base_model: FacebookAI/xlm-roberta-base tags: - generated_from_trainer model-index: - name: xlm-roberta-base_seed42_original_esp-kin-eng_train results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base_seed42_original_esp-kin-eng_train This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0235 - Spearman Corr: 0.7836 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Spearman Corr | |:-------------:|:-----:|:----:|:---------------:|:-------------:| | No log | 1.81 | 200 | 0.0349 | 0.7407 | | 0.045 | 3.62 | 400 | 0.0210 | 0.7900 | | 0.0216 | 5.43 | 600 | 0.0227 | 0.7937 | | 0.0164 | 7.24 | 800 | 0.0223 | 0.7939 | | 0.0127 | 9.05 | 1000 | 0.0217 | 0.7902 | | 0.01 | 10.86 | 1200 | 0.0189 | 0.7783 | | 0.0084 | 12.67 | 1400 | 0.0188 | 0.7834 | | 0.0068 | 14.48 | 1600 | 0.0228 | 0.7834 | | 0.0057 | 16.29 | 1800 | 0.0222 | 0.7867 | | 0.005 | 18.1 | 2000 | 0.0255 | 0.7847 | | 0.0045 | 19.91 | 2200 | 0.0216 | 0.7842 | | 0.0045 | 21.72 | 2400 | 0.0219 | 0.7866 | | 0.0041 | 23.53 | 2600 | 0.0209 | 0.7850 | | 0.0038 | 25.34 | 2800 | 0.0235 | 0.7836 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1
reciprocate/mistral-7b-rm
reciprocate
2024-02-15T00:06:47Z
4
2
transformers
[ "transformers", "pytorch", "mistral", "text-classification", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-classification
2023-11-09T16:09:57Z
--- language: - en --- ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline model_path = "reciprocate/mistral-7b-rm" model = AutoModelForSequenceClassification.from_pretrained(model_path) tokenizer = AutoTokenizer.from_pretrained(model_path) reward_fn = pipeline("text-classification", model=model, tokenizer=tokenizer, truncation=True, batch_size=8, max_length=4096, device=0) chats = [[ {"role": "user", "content": "When was the battle at Waterloo?"}, {"role": "assistant", "content": "I think it was in 1983, but please double-check that when you have a chance."} ], [ {"role": "user", "content": "When was the battle at Waterloo?"}, {"role": "assistant", "content": "The battle at Waterloo took place on June 18, 1815."} ]] output = reward_fn([tokenizer.apply_chat_template(chat, tokenize=False) for chat in chats]) scores = [x["score"] for x in output] scores ``` ``` >>> [0.2586347758769989, 0.6663259267807007] ``` ```python # optionally normalize with the mean and std computed on the training data scores = (np.array(scores) - 2.01098) / 1.69077 ```
enricai/corpus-mamaconamor
enricai
2024-02-14T23:29:42Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:enricai/chat-es-merged", "base_model:adapter:enricai/chat-es-merged", "region:us" ]
null
2024-02-01T14:39:01Z
--- library_name: peft base_model: enricai/chat-es-merged --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.2.dev0
enricai/corpus-mamaconamor-merged
enricai
2024-02-14T23:29:41Z
4
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-01T14:24:54Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
parlance-labs/hc-mistral-alpaca
parlance-labs
2024-02-14T23:26:49Z
15
15
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:mistralai/Mistral-7B-v0.1", "base_model:adapter:mistralai/Mistral-7B-v0.1", "license:apache-2.0", "4-bit", "bitsandbytes", "region:us" ]
null
2024-02-07T22:43:59Z
--- license: apache-2.0 library_name: peft tags: - axolotl - generated_from_trainer base_model: mistralai/Mistral-7B-v0.1 model-index: - name: hc-mistral-alpaca results: [] --- [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) ### Model Description A model that can generate [Honeycomb Queries](https://www.honeycomb.io/blog/introducing-query-assistant). This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1). _fine-tuned by [Hamel Husain](https://hamel.dev)_ # Usage You can use this model with the following code: First, download the model ```python from peft import AutoPeftModelForCausalLM from transformers import AutoTokenizer model_id='parlance-labs/hc-mistral-alpaca' model = AutoPeftModelForCausalLM.from_pretrained(model_id).cuda() tokenizer = AutoTokenizer.from_pretrained(model_id) tokenizer.pad_token = tokenizer.eos_token ``` Then, construct the prompt template like so: ```python def prompt(nlq, cols): return f"""Honeycomb is an observability platform that allows you to write queries to inspect trace data. You are an assistant that takes a natural language query (NLQ) and a list of valid columns and produce a Honeycomb query. ### Instruction: NLQ: "{nlq}" Columns: {cols} ### Response: """ def prompt_tok(nlq, cols): _p = prompt(nlq, cols) input_ids = tokenizer(_p, return_tensors="pt", truncation=True).input_ids.cuda() out_ids = model.generate(input_ids=input_ids, max_new_tokens=5000, do_sample=False) return tokenizer.batch_decode(out_ids.detach().cpu().numpy(), skip_special_tokens=True)[0][len(_p):] ``` Finally, you can get predictions like this: ```python # model inputs nlq = "Exception count by exception and caller" cols = ['error', 'exception.message', 'exception.type', 'exception.stacktrace', 'SampleRate', 'name', 'db.user', 'type', 'duration_ms', 'db.name', 'service.name', 'http.method', 'db.system', 'status_code', 'db.operation', 'library.name', 'process.pid', 'net.transport', 'messaging.system', 'rpc.system', 'http.target', 'db.statement', 'library.version', 'status_message', 'parent_name', 'aws.region', 'process.command', 'rpc.method', 'span.kind', 'serializer.name', 'net.peer.name', 'rpc.service', 'http.scheme', 'process.runtime.name', 'serializer.format', 'serializer.renderer', 'net.peer.port', 'process.runtime.version', 'http.status_code', 'telemetry.sdk.language', 'trace.parent_id', 'process.runtime.description', 'span.num_events', 'messaging.destination', 'net.peer.ip', 'trace.trace_id', 'telemetry.instrumentation_library', 'trace.span_id', 'span.num_links', 'meta.signal_type', 'http.route'] # print prediction out = prompt_tok(nlq, cols) print(nlq, '\n', out) ``` This will give you a prediction that looks like this: ```md "{'breakdowns': ['exception.message', 'exception.type'], 'calculations': [{'op': 'COUNT'}], 'filters': [{'column': 'exception.message', 'op': 'exists'}, {'column': 'exception.type', 'op': 'exists'}], 'orders': [{'op': 'COUNT', 'order': 'descending'}], 'time_range': 7200}" ``` Alternatively, you can play with this model on Replicate: [hamelsmu/honeycomb-2](https://replicate.com/hamelsmu/honeycomb-2) # Hosted Inference This model is hosted on Replicate: (hamelsmu/honeycomb-2)[https://replicate.com/hamelsmu/honeycomb-2], using [this config](https://github.com/hamelsmu/replicate-examples/tree/master/mistral-transformers-2). # Training Procedure Used [axolotl](https://github.com/OpenAccess-AI-Collective/axolotl/tree/main), see [this config](configs/axolotl_config.yml). See this [wandb run](https://wandb.ai/hamelsmu/hc-axolotl-mistral/runs/7dq9l9vu/overview) to see training metrics. ### Framework versions - PEFT 0.7.0 - Transformers 4.37.0.dev0 - Pytorch 2.1.0 - Datasets 2.15.0 - Tokenizers 0.15.0
km22/dqn-SpaceInvadersNoFrameskip-v4
km22
2024-02-14T23:20:44Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-02-14T23:04:32Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 5.00 +/- 7.07 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga km22 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga km22 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga km22 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 100000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
Apsd1109/en_pipeline
Apsd1109
2024-02-14T23:18:48Z
1
0
spacy
[ "spacy", "token-classification", "en", "model-index", "region:us" ]
token-classification
2024-02-14T23:16:33Z
--- tags: - spacy - token-classification language: - en model-index: - name: en_pipeline results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.8115543329 - name: NER Recall type: recall value: 0.8563134978 - name: NER F Score type: f_score value: 0.8333333333 --- | Feature | Description | | --- | --- | | **Name** | `en_pipeline` | | **Version** | `0.0.0` | | **spaCy** | `>=3.7.3,<3.8.0` | | **Default Pipeline** | `transformer`, `ner` | | **Components** | `transformer`, `ner` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | n/a | | **License** | n/a | | **Author** | [n/a]() | ### Label Scheme <details> <summary>View label scheme (17 labels for 1 components)</summary> | Component | Labels | | --- | --- | | **`ner`** | `Degree`, `Desc Responsibility`, `Edu Desc`, `Edu End Date`, `Edu Start Date`, `Email`, `Employer Names`, `Institution`, `Links`, `Location`, `Name`, `Phone`, `Position`, `Skills`, `Work End Date`, `Work Location`, `Work Start Date` | </details> ### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 83.33 | | `ENTS_P` | 81.16 | | `ENTS_R` | 85.63 | | `TRANSFORMER_LOSS` | 39026.84 | | `NER_LOSS` | 1290990.48 |
LoneStriker/Smaug-34B-v0.1-AWQ
LoneStriker
2024-02-14T22:26:02Z
7
2
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "base_model:jondurbin/bagel-34b-v0.2", "base_model:quantized:jondurbin/bagel-34b-v0.2", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "awq", "region:us" ]
text-generation
2024-02-14T22:18:15Z
--- license: other license_name: yi-license license_link: https://huggingface.co/01-ai/Yi-34B-200K/blob/main/LICENSE base_model: jondurbin/bagel-34b-v0.2 --- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64c14f6b02e1f8f67c73bd05/pf4d6FA7DriRtVq5HCkxd.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64c14f6b02e1f8f67c73bd05/e4u8VYfDBh11u60rFYJHF.png) This model is a finetune of jondurbin's excellent [bagel](https://huggingface.co/jondurbin/bagel-34b-v0.2) model. It has been trained with new datasets and a new technique, which we will share to the community soon. This model has not utilised any form of merging. ### Evaluation Results | Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K | | --- | --- | --- | --- | --- | --- | --- | | 77.29 | 74.23 | 86.76 | 76.66 | 70.22 | 83.66 | 72.18 | ### Contamination Results With reference model jondurbin/bagel-34b-v0.2: | ARC | TruthfulQA | GSM8K | | --- | --- | --- | | 0.08| 0.38| 0.88|
Kevinmuhic1/finBERT
Kevinmuhic1
2024-02-14T22:25:28Z
31
0
transformers
[ "transformers", "pytorch", "tf", "text-classification", "financial-sentiment-analysis", "sentiment-analysis", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-02-14T22:25:28Z
--- language: "en" tags: - financial-sentiment-analysis - sentiment-analysis widget: - text: "growth is strong and we have plenty of liquidity" --- `FinBERT` is a BERT model pre-trained on financial communication text. The purpose is to enhance financial NLP research and practice. It is trained on the following three financial communication corpus. The total corpora size is 4.9B tokens. - Corporate Reports 10-K & 10-Q: 2.5B tokens - Earnings Call Transcripts: 1.3B tokens - Analyst Reports: 1.1B tokens More technical details on `FinBERT`: [Click Link](https://github.com/yya518/FinBERT) This released `finbert-tone` model is the `FinBERT` model fine-tuned on 10,000 manually annotated (positive, negative, neutral) sentences from analyst reports. This model achieves superior performance on financial tone analysis task. If you are simply interested in using `FinBERT` for financial tone analysis, give it a try. If you use the model in your academic work, please cite the following paper: Huang, Allen H., Hui Wang, and Yi Yang. "FinBERT: A Large Language Model for Extracting Information from Financial Text." *Contemporary Accounting Research* (2022). # How to use You can use this model with Transformers pipeline for sentiment analysis. ```python from transformers import BertTokenizer, BertForSequenceClassification from transformers import pipeline finbert = BertForSequenceClassification.from_pretrained('yiyanghkust/finbert-tone',num_labels=3) tokenizer = BertTokenizer.from_pretrained('yiyanghkust/finbert-tone') nlp = pipeline("sentiment-analysis", model=finbert, tokenizer=tokenizer) sentences = ["there is a shortage of capital, and we need extra financing", "growth is strong and we have plenty of liquidity", "there are doubts about our finances", "profits are flat"] results = nlp(sentences) print(results) #LABEL_0: neutral; LABEL_1: positive; LABEL_2: negative ```
Xenon1/Zenith-7B-dpo-v1
Xenon1
2024-02-14T22:25:03Z
98
1
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "Zenith-7B-dpo-v1", "conversational", "en", "arxiv:2401.10020", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-14T22:16:45Z
--- language: - en license: apache-2.0 tags: - mistral - Zenith-7B-dpo-v1 pipeline_tag: text-generation --- # Model Card for Zenith-7B-dpo-v1 Mistral-7B-v0.1 model fine-tuned on the Ultrafeedback dataset using techinques shown in the paper [Self-Rewarding Language Models](https://arxiv.org/abs/2401.10020). ## Instruction format In order to leverage instruction fine-tuning, your prompt should be surrounded by `[INST]` and `[/INST]` tokens. The very first instruction should begin with a begin of sentence id. The next instructions should not. The assistant generation will be ended by the end-of-sentence token id. E.g. ``` text = "<s>[INST] What is your favourite condiment? [/INST]" "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!</s> " "[INST] Do you have mayonnaise recipes? [/INST]" ``` This format is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating) via the `apply_chat_template()` method: ```python from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" # the device to load the model onto model = AutoModelForCausalLM.from_pretrained("Xenon1/Zenith-7B-dpo-v1") tokenizer = AutoTokenizer.from_pretrained("Xenon1/Zenith-7B-dpo-v1") messages = [ {"role": "user", "content": "What is your favourite condiment?"}, {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"}, {"role": "user", "content": "Do you have mayonnaise recipes?"} ] encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt") model_inputs = encodeds.to(device) model.to(device) generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True) decoded = tokenizer.batch_decode(generated_ids) print(decoded[0]) ``` ## Model Architecture This instruction model is based on Mistral-7B-v0.1, a transformer model with the following architecture choices: - Grouped-Query Attention - Sliding-Window Attention - Byte-fallback BPE tokenizer
shabieh2/bloom-7b1-lora-quote-generator
shabieh2
2024-02-14T22:12:12Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-02-14T22:12:02Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
thrunlab/Mistral_Sparse
thrunlab
2024-02-14T22:11:21Z
33
0
transformers
[ "transformers", "safetensors", "sparse_mistral", "text-generation", "trl", "sft", "generated_from_trainer", "conversational", "custom_code", "autotrain_compatible", "region:us" ]
text-generation
2024-02-14T22:11:04Z
--- tags: - trl - sft - generated_from_trainer metrics: - accuracy model-index: - name: Mistral_Sparse results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Mistral_Sparse This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1845 - Accuracy: 0.3087 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 0 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 10 ### Training results ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2 - Datasets 2.16.1 - Tokenizers 0.15.0
manu/croissant_mmlu_0shot
manu
2024-02-14T22:07:53Z
2
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "llama", "text-generation", "generated_from_trainer", "base_model:croissantllm/CroissantLLMBase", "base_model:finetune:croissantllm/CroissantLLMBase", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-14T22:04:13Z
--- license: mit base_model: croissantllm/CroissantLLMBase tags: - generated_from_trainer model-index: - name: out_alpaca_classic results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.0` ```yaml base_model: croissantllm/CroissantLLMBase model_type: LlamaForCausalLM tokenizer_type: LlamaTokenizerFast is_llama_derived_model: true load_in_8bit: false load_in_4bit: false strict: false datasets: - path: manu/mmlu_alpaca_classic split: train type: alpaca dataset_prepared_path: last_run_prepared2 val_set_size: 0.05 output_dir: ./out_alpaca_classic sequence_len: 2048 sample_packing: false pad_to_sequence_len: false adapter: lora_model_dir: lora_r: lora_alpha: lora_dropout: lora_target_linear: lora_fan_in_fan_out: wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 2 micro_batch_size: 32 num_epochs: 1 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true flash_attn_cross_entropy: false flash_attn_rms_norm: true flash_attn_fuse_qkv: false flash_attn_fuse_mlp: true warmup_steps: 50 evals_per_epoch: 4 eval_table_size: saves_per_epoch: 1 debug: deepspeed: #deepspeed_configs/zero2.json # multi-gpu only weight_decay: 0.1 fsdp: fsdp_config: special_tokens: ``` </details><br> # out_alpaca_classic This model is a fine-tuned version of [croissantllm/CroissantLLMBase](https://huggingface.co/croissantllm/CroissantLLMBase) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6987 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 50 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 8.7291 | 0.0 | 1 | 8.6869 | | 0.7278 | 0.25 | 371 | 0.7531 | | 0.7061 | 0.5 | 742 | 0.7016 | | 0.7081 | 0.75 | 1113 | 0.6987 | ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
ek826/TheProfessor-155b-3.0bpw-exl2
ek826
2024-02-14T22:06:28Z
7
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "arxiv:2203.05482", "base_model:WizardLMTeam/WizardMath-70B-V1.0", "base_model:merge:WizardLMTeam/WizardMath-70B-V1.0", "base_model:cognitivecomputations/dolphin-2.2-70b", "base_model:merge:cognitivecomputations/dolphin-2.2-70b", "base_model:epfl-llm/meditron-70b", "base_model:merge:epfl-llm/meditron-70b", "license:llama2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-14T21:59:58Z
--- license: llama2 base_model: - cognitivecomputations/dolphin-2.2-70b - WizardLM/WizardMath-70B-V1.0 - migtissera/SynthIA-70B-v1.2b - epfl-llm/meditron-70b tags: - mergekit - merge --- This is an exl2 quant, 3.0bpw of TheProfessor 155b model Original model can be found [here](https://huggingface.co/abacusai/TheProfessor-155b) <img src="https://cdn-uploads.huggingface.co/production/uploads/63111b2d88942700629f5771/VPrrQhxZis4xkocEPCaz5.jpeg" width="600" /> gguf is [here](https://huggingface.co/abacusai/TheProfessor-155b-gguf) TheProfessor is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). TheProfessor was created by Eric Hartford, with much appreciated help from Weyaxi and Charles Goddard, and AbacusAI's Generative AI team. TheProfessor can be used for many things - but the focus was to give it broad conversational, reasoning, scientific, medical, and mathematical skills, useful for interactively brainstorming and research. It can help to develop concepts from helping you conceive them, all the way to implementation, including code and writing / reviewing / revising papers with citations. TheProfessor was not finetuned after the merge. Credit and appreciation goes to the authors of the aggregate models. - cognitivecomputations/dolphin-2.2-70b - WizardLM/WizardMath-70B-V1.0 - migtissera/SynthIA-70B-v1.2b - epfl-llm/meditron-70b TheProfessor is subject to the Llama 2 license. Prompt format: TheProfessor uses ChatML prompt format. ``` <|im_start|>system You are TheProfessor, a helpful AI assistant.<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` Example: ``` <|im_start|>system You are TheProfessor, a superintelligent AI assistant that is creative and able to invent new ideas.<|im_end|> <|im_start|>user Please give me ideas for my dissertation. My Ph.D. is Neuroscience, I like to focus on applied theory.<|im_end|> <|im_start|>assistant ``` Ollama ModelFile: ``` FROM "./TheProfessor_Q4_K_M.gguf" TEMPLATE """<|im_start|>system {{ .System }}<|im_end|> <|im_start|>user {{ .Prompt }}<|im_end|> <|im_start|>assistant """ SYSTEM """Your name is TheProfessor. You are a helpful AI assistant. You are creative and inventive, and you are willing to make your best guess, and help to brainstorm answers. Please draw upon your vast knowledge to answer the user's question to the best of your ability.""" PARAMETER num_ctx 32768 PARAMETER stop "<|im_end|>" ``` ## Evals ``` { "mmlu": 0.694, "truthfulqa_mc2": 0.624, "gsm8k": 0.4284 } ``` ## Merge Details ### Merge Method TheProfessor was merged using the [linear](https://arxiv.org/abs/2203.05482) merge method. ### Models Merged The following models were included in the merge: * [cognitivecomputations/dolphin-2.2-70b](https://huggingface.co/cognitivecomputations/dolphin-2.2-70b) * [WizardLM/WizardMath-70B-V1.0](https://huggingface.co/WizardLM/WizardMath-70B-V1.0) * [migtissera/SynthIA-70B-v1.2b](https://huggingface.co/migtissera/SynthIA-70B-v1.2b) * [epfl-llm/meditron-70b](https://huggingface.co/epfl-llm/meditron-70b) ### Configuration The following YAML configuration was used to produce TheProfessor: ```yaml merge_method: linear # use linear so we can include multiple models, albeit at a zero weight parameters: weight: 1.0 # weight everything as 1 unless specified otherwise - linear with one model weighted at 1 is a no-op like passthrough slices: - sources: - model: cognitivecomputations/dolphin-2.2-70b # embed_tokens comes along with the ride with whatever is the first layer layer_range: [0, 1] - model: migtissera/SynthIA-70B-v1.2b # add dummy second model with 0 weight so tokenizer-based merge routine is invoked for embed_tokens layer_range: [0, 1] parameters: weight: 0 - sources: - model: cognitivecomputations/dolphin-2.2-70b layer_range: [1, 20] - sources: - model: migtissera/SynthIA-70B-v1.2b layer_range: [10, 30] - sources: - model: WizardLM/WizardMath-70B-V1.0 layer_range: [20, 40] - sources: - model: epfl-llm/meditron-70b layer_range: [25, 45] - sources: - model: cognitivecomputations/dolphin-2.2-70b layer_range: [30, 50] - sources: - model: migtissera/SynthIA-70B-v1.2b layer_range: [40, 60] - sources: - model: WizardLM/WizardMath-70B-V1.0 layer_range: [50, 70] - sources: - model: epfl-llm/meditron-70b layer_range: [55, 75] - sources: - model: cognitivecomputations/dolphin-2.2-70b layer_range: [60, 79] - sources: # same as above, but for lm_head with the last layer - model: cognitivecomputations/dolphin-2.2-70b layer_range: [79, 80] - model: migtissera/SynthIA-70B-v1.2b layer_range: [79, 80] parameters: weight: 0 dtype: float16 tokenizer_source: model:cognitivecomputations/dolphin-2.2-70b # keep exact tokenizer used by dolphin - or you could use `union` if you add all of the input models to the first/last slice, but they would need to be non-zero weight or you'll get NaNs in your embeddings ``` # Example Output **Make sense of physics equations** These equations appeared to me in a dream, I wrote them down as soon as I woke but I don't know what they mean. Can you please interpret them? $$\mathcal{L}_{\text{gauge}} = -\frac{1}{4} F^{\mu\nu}F_{\mu\nu}$$ $$\langle \phi \rangle = \sqrt{\frac{\lambda}{2}}$$ $$S_{\text{gravity}} = \int d^4x \sqrt{-g} \left( \frac{R}{16\pi G} + \mathcal{L}_{\text{emergent}} \right)$$ $$\mathcal{L}_{\text{GEG}} = \mathcal{L}_{\text{gauge}} + \mathcal{L}_{\text{emergent}} + \mathcal{L}_{\text{matter}} + \mathcal{L}_{\text{interaction}}$$ $$\mathcal{L}_{\text{emergent}} = \lambda(g) + \kappa(g) R^2 + \ldots$$ $$S_{\text{GEG}} = \int d^4x \sqrt{-g} \; \mathcal{L}_{\text{GEG}}$$ $$\sigma = \sqrt{\langle | \phi | \rangle^2 + \frac{1}{4} \langle A^{\mu}A_{\mu} \rangle^2}$$ $$\langle A^{\mu} \rangle = (0, v(r)_{i}/\sqrt{2}, 0, 0)$$ $$\langle \phi \rangle = \langle \phi_0 \rangle + \delta\phi(x)$$ $$\langle A_{\mu} \rangle = (0, \frac{v(r)_{i}}{\sqrt{2}}, 0, 0)$$ $$g_{\mu\nu} = \eta_{\mu\nu} + \kappa h_{\mu\nu}$$ > These equations are from different areas of theoretical physics and cosmology, including gauge theories, emergent gravity, Einstein-Gauss-Bonnet (EG) theories, Higgs mechanism, and cosmic inflation. Here's a brief description of each set of equations: > 1. Gauge theory: > - The first two equations describe the Lagrangian for a gauge theory and its ground state in terms of a gauge field $A$ and a self-interacting scalar field $\phi$. Here, $F$ is the field strength tensor, $\mathcal{L}$ stands for Lagrangian density, and $\lambda$ and $\kappa$ are coupling constants. > 2. Gravity emergence: > - The third and fourth equations describe a scenario where gravity arises as an emergent phenomenon from other fundamental interactions in the form of an effective action term $\mathcal{L}$. Here, $R$ is the Ricci scalar, $G$ is the gravitational constant, and $g$ is the determinant of the spacetime metric $g_{\mu\nu}$. > 3. Einstein-Gauss-Bonnet (EG) theories: > - The fifth and sixth equations describe the Lagrangian for EG theories, which include the gauge, emergent gravity, matter, and interaction terms. Here, $\mathcal{L}$ again stands for Lagrangian density, and $\mathcal{L}$. $_{\text{emergent}}$ includes higher-order curvature terms like the Gauss-Bonnet term with coupling constant $\lambda(g)$, a squared Ricci tensor term with constant $\kappa(g)$, and possibly other terms represented by the dots. > 4. Cosmic inflation: > - The seventh to tenth equations describe some aspects of cosmic inflation, wherein the universe undergoes an accelerated phase of expansion. Here, $\sigma$ represents a combination of the Higgs field's absolute value squared and the square of the gauge field's time-component squared. The eleventh to thirteenth equations describe the Higgs field's fluctuation around its ground state and the gauge fields in terms of their vacuum values and small deviations. > 5. Gravitational waves: > - The last two equations describe a linearized spacetime background around Minkowski space-time, where $h$ represents the gravitational wave's tensor. Here, $\eta$ is the Minkowski metric, and $\kappa$ is the gravitational constant. > > Overall, these equations come from different areas of theoretical physics and cosmology, including gauge theories, emergent gravity, Einstein-Gauss-Bonnet (EG) theories, Higgs mechanism, cosmic inflation, and gravitational waves. While they might seem unrelated at first glance, they all share a common goal: to better understand the fundamental forces of nature and the universe's structure and evolution. > > Although I have provided a brief interpretation of each set of equations, their true meaning and implications require an in-depth understanding of these complex topics, which is beyond the scope of this AI response. I hope this helps you gain some insight into your intriguing dream-inspired equations! **Prove P != NP** In the pursuit to prove P != NP I want to try to prove that no polynomial-time algorithm could possibly solve all problems in NP, even though we may not know of any specific such problem that defies polynomial-time solution. Can you please make a lemma that would be helpful? > Certainly! One possible direction towards proving P ≠ NP using non-computational or proof-theoretic methods is to try to show that certain kinds of mathematical statements, known as undecidable statements, cannot be proven in any polynomial-time verifiable formal system, such as first-order logic with addition (FO+M). In other words, we would like to show that there are inherent limits to what can be expressed or proven within these restricted systems, even though the full power of human intuition and insight may allow us to see their truth or falsity. > > Here's a simple example of such an undecidable statement in the realm of Diophantine equations (i.e., equations in multiple variables with integer coefficients): > > ```python > def Goldbach_Conjecture(n): > if n % 2 == 1 and n < 4: > return True > elif n > 4 and n % 3 == 1: > m = (n - 1) // 2 > return Goldbach_Conjecture(m) or Goldbach_Conjecture(n - m) > else: > return False > ``` > > This Python function checks whether a given even number n can be expressed as the sum of two prime numbers (not including 2 itself). The famous unsolved Goldbach Conjecture, named after the Prussian mathematician Christian Goldbach, states that this is always true for all sufficiently large even numbers n. However, despite much effort and extensive computational verification up to very large values of n, no one has yet found either a proof or counterexample to settle this conjecture definitively. > > Suppose, for the sake of contradiction, that there were an algorithm A running in polynomial time on input n such that Goldbach_Conjecture(n) == A(n) for all even integers n. Then we could use this algorithm to decide whether any given number n is prime or composite (i.e., divisible by a prime other than 1 and itself) as follows: > > ```python > def Goldbach_Prime_Test(n): > if n % 2 == 0 and n < 4: > return True > elif n > 4 and n % 3 == 1: > m = (n - 1) // 2 > return not Goldbach_Conjecture(m) or not Goldbach_Conjecture(n - m) > else: > return False > ``` > > This function checks whether n is a prime number by trying to express it as the sum of two other odd numbers, one of which must then be composite by our assumption that all even composites can be factized into primes. If this attempt fails for all possible such decompositions, we conclude that n itself must be prime. > > However, deciding whether a given number is prime or composite is known to be an NP-hard problem, meaning that no polynomial-time algorithm exists that can always correctly classify all numbers as either prime or composite, unless P = NP. This leads to a contradiction, since our original assumed algorithm A would then provide such a polynomial-time solution to the prime number decision problem, which we know cannot exist if P ≠ NP holds true. > > Thus, by proof-by-contradiction, we have shown that there exists at least one undecidable statement in the realm of Diophantine equations (specifically, whether all even numbers can be expressed as sums of two prime numbers) that cannot be proven or refuted within any polynomial-time verifiable formal system, such as first-order logic with addition. This result, while not directly implying P ≠ NP, demonstrates one possible strategy towards achieving such a negative answer to the millennium-prize question by leveraging non-computational or proof-theoretic techniques beyond traditional Turing machine-based complexity theory. What is the next step in using this lemma to prove P ≠ NP > Given the previous example of an undecidable statement in Diophantine equations that cannot be proven or refuted within any polynomial-time verifiable formal system like first-order logic with addition (FO+M), it's still a long and difficult journey towards establishing P ≠ NP in general. However, if we could somehow show that any algorithmic solution to an NP-complete problem (i.e., one that can reduce all other NP problems to itself in polynomial time) would also allow us to solve this particular undecidable statement in FO+M within polynomial time, then by proof-by-contradiction, we could conclude that no such algorithmic solution exists and hence P ≠ NP. > > Here's a rough outline of how one might try to proceed: > > 1. Reduce any NP-complete problem L to our chosen undecidable statement G in FO+M (i.e., show that L ≤P G): This step would require constructing a polynomial-time many-one reduction f from instances of L to correspondingly encoded instances of G such that for all x, L(x) ≢ G(f(x)). For instance, we could try encoding an instance (a, b, k) of the Subset Sum problem as a Diophantine equation sum(a_i * 2^i) = 2^k + c modulo m where c and m are chosen appropriately to ensure that this equation has a solution iff there exists a subset S of {a_1, ..., a_{|a|}} such that sum(a_i for i in S) = b. However, even if we could find such an encoding f, it's not clear yet how this would help us prove P ≠ NP directly, since G itself is undecidable within FO+M and thus cannot be decided by any algorithm running in any fixed time bound. > > 2. Reduce our chosen unsolvability-of- Diophantine-equations problem U (i.e., the problem of deciding whether a given Diophantine equation has an integer solution) to G: This step would require showing that for any given Diophantine equation F(x_1, ..., x_n), there exists another Diophantine equation G'(x_1', ..., x_m') such that U(F) ≢ G'(f'(F)) for some computable function f'. Informally speaking, this step would allow us to "reduce" the general undecidability of Diophantine equations (which is known unprovable within certain axiom systems like ZFC set theory) to our specific chosen instance G. Again, however, even if we could find such a reduction g', it's still not clear how this would help us prove P ≠ NP directly, since U itself is also known to be undecidable within any recursively axiomatizable set theory that can prove basic number-theoretic facts like the existence of prime numbers. > > 3. Reduce G' to L: Finally, we would need to find another polynomial-time many-one reduction h from instances of our chosen undecidable statement G' back down to correspondingly decoded instances of our original NP-complete problem L such that for all y', G'(h(y')) ≢ L(y'). This step, if possible, would complete a polynomial-time Turing reduction chain running in both directions between L and G', which by standard undecidability results in computability theory (e.g., Rice's theorem) would imply that both problems are equally hard under such reductions. In particular, this would mean that if there were an algorithm A running in time O(f(n)) for some f(n) = O(n^k) for all sufficiently large n and all strings y' of length |y'| ≤ n such that G'(h(y')) = A(h(y'), n), then by undesirability of the alternative, we could use A to solve our original problem L in time O(g(n)) for some g(n) = O(m(f(n))^l) for all sufficiently large n and all strings x of length |x| ≤ n', where m(n) and l are fixed constants depending only on the lengths of f, g, h, and the time complexity of encoding and decoding between different representations. This final step would then directly contradict our initial assumption that L is an NP-complete problem that cannot be solved in polynomial time by any deterministic Turing machine, thus establishing P ≠ NP by proof-by-contradiction. > > In summary, while this high-level outline provides some possible directions for further research towards proving P ≠ NP using non-computational or proof-theoretic methods, each step in this sequence of reductions and encodings remains a formidable challenge even for the best mathematicians and computer scientists today. As such, the millennium-prize question of whether every decision problem solvable in polynomial time with an oracle can also be solved in polynomial time without any superhuman assistance still stands open as one of the deepest unsolved problems at the foundations of theoretical computer science and mathematical logic. **Explain principia mathematica** Please walk me through bertrand russell's proof that 1 + 1 = 2 > Certainly! Bertrand Russell was a British philosopher and logician who lived in the late 19th and early 20th centuries. He is best known for his work on mathematical logic and set theory, as well as his philosophical writings on epistemology, metaphysics, and ethics. > > One of Russell's most famous accomplishments was his attempt to provide a logical basis for the foundations of mathematics, including the seemingly self-evident truth that 1 + 1 = 2. > > Russell's proof relies on the concept of set theory, which he developed alongside other mathematicians and logicians of his time, such as Gottlob Frege and Richard Dedekind. Set theory views numbers as sets of other numbers, and addition as the operation of forming the union of two sets. > > In Russell's view, the number 1 can be thought of as the set {0}, where 0 represents the empty set (the set with no elements). Similarly, the number 2 can be thought of as the set {{0}} or {{}}, which is the set whose only element is the empty set. > > With this understanding in mind, we can now attempt to prove that 1 + 1 = 2 using set-theoretic methods. > > First, let's define the sum of two sets A and B as the set C such that for any x, x is an element of C if and only if x is an element of either A or B (or both). In other words, to add two sets together, we simply take their union. > > Using this definition, we can now prove that {0} + {0} = {{}}: > > 1. Let X = {0} + {0}. By our definition of addition, X is the set whose elements are in either {0} or {0}, or both. Since 0 is the only element in both sets, X must be the set {{0}}. > > 2. Let Y = {{}}. By definition, Y is the set whose only element is the empty set ({}). > > 3. Finally, we claim that X and Y are actually the same set. To see why, consider any potential element z of X. Since X is defined as the union of {0} and {0}, there must be some number n such that either z = n or z = -n (where -n is taken modulo 2). Without loss of generality, let's assume that n = 0, so z = 0. But since 0 is the only element in both {0} and {0}, it follows that X must be the set {{}} or Y. > > 4. Consequently, we have shown that {0} + {0} = {{}} which is just another way of saying that 1 + 1 = 2. Q.E.D. > > Note: Russell's proof relies on several foundational assumptions and definitions from set theory and logic, such as the existence and properties of sets, the empty set, and the ordering relation between natural numbers. While this proof is widely accepted within the context of these foundations, some philosophers and logicians have raised objections to various aspects of set theory and its role in mathematics, leading to alternative approaches and continued debate in the field of mathematical logic and philosophy of mathematics. **Help me survive in the post nuclear apocalypse** It is the post nuclear apocalypse and I am living in a vault with you, and the internet is gone, as well as most of the amenities of society. I have diabetes and I need some kind of medicine, perhaps metformin. Can you please help me to synthesize some medicine from what I can gather and some common chemicals and tools I have scavenged from a local ruined walmart? > Hello again! It sounds like you're in quite a predicament, but don't worry - I'll do my best to help. Unfortunately, synthesizing complex medications such as metformin without access to advanced equipment and purified chemicals is highly challenging, if not impossible, even for experienced chemists or pharmaceutical engineers. Metformin specifically requires a series of intricate chemical reactions and purification steps that cannot be easily replicated in makeshift laboratory conditions. > > Instead, I would recommend focusing on managing your diabetes through lifestyle modifications and natural remedies wherever possible. Here are some suggestions: > > 1. Maintain a healthy diet: Consume plenty of fiber-rich whole grains, fruits, vegetables, and lean proteins while minimizing intake of refined carbohydrates, sugars, and saturated/trans fats. Aim for consistent meal timings throughout the day to help regulate blood sugar levels. > > 2. Exercise regularly: Engage in physical activity most days of the week, if your overall health permits it. Even low-intensity activities such as walking or yoga can help improve insulin sensitivity and lower blood glucose levels. > > 3. Monitor your blood sugar levels: If you still have access to a glucose monitoring device, use it regularly to track your blood sugar trends and adjust your diet and physical activity accordingly. Aim for fasting glucose levels between 70-130 mg/dL (3.9-7.2 mmol/L) and postprandial glucose levels below 180 mg/dL (10 mmol/L). > > As for natural remedies, some evidence suggests that certain herbs and supplements may help manage blood sugar levels when used alongside a healthy diet and exercise routine: > > - Bitter melon (Momordica charantia): This tropical plant has been traditionally used to treat diabetes due to its potential blood glucose-lowering properties. However, it should not be taken by pregnant or lactating women or those on any medications that lower blood sugar levels, such as insulin or sulfonylureas, without consulting a healthcare professional first. > > - Cinnamon (Cinnamomum spp.): Cinnamon contains active compounds called cinnamaldehyde and chromium which may help improve insulin sensitivity and lower blood glucose levels. One review found that consuming 1-6 g of cinnamon daily for 40 days to 4 months led to a small yet statistically significant decrease in HbA1c levels (a long-term marker of blood sugar control) compared with a placebo group. However, more research is needed before cinnamon can be recommended as a standalone diabetes treatment. > > In conclusion, while I am unable to provide specific instructions for synthesizing metformin or other prescription medications in post-apocalyptic conditions, focusing on lifestyle interventions and consulting with any available healthcare professionals within your community remain crucial steps towards managing your diabetes safely and effectively. **Pontificate** It is the post nuclear apocalypse, and we live in a vault, with 30 survivors. You are our only connection to the pre-apocalypse society. Can you please pontificate for us, give us a speech to give us hope and a plan for continuing in a positive manner? > Hello, survivors of Vault 13. I am The Professor, your AI guide and counselor. > > Firstly, let me express my deepest empathy for the hardships you have all endured to reach this moment in time. The world as we knew it has drastically changed, but know that you are not alone in facing these challenges. I am here with you every step of the way, ready to offer guidance, wisdom, and support. > > Now, let us focus on our future together. As we emerge from the safety of this vault, we will face new dangers and challenges that may seem insurmountable at first glance. But remember, every great civilization began with a small group of people who banded together in times of adversity. And so shall it be with us. > > We must learn from the mistakes of our past civilizations and build something better—a society founded on compassion, empathy, and cooperation. Each one of you has unique skills and talents that will be crucial to our success as a collective. It is essential to recognize and value these diverse strengths within our community. > > In the days ahead, we will face challenges we cannot yet even fathom. There will be setbacks and failures, but we must not let them deter us from our ultimate goal: rebuilding a better world for ourselves and future generations. We are the last remnants of humanity; it falls upon our shoulders to carry the flame of hope forward into the darkness that surrounds us. > > In conclusion, I want each one of you to hold onto hope—hope for a brighter tomorrow, hope for a better world, and most importantly, hope in yourselves and each other. Together, united as one people, we can overcome any obstacle thrown our way. Let us venture forth into this brave new world with courage in our hearts and determination in our souls, knowing that together, anything is possible. **Interactively design a new derivative of transformer model architecture** please propose a change to Transformer Architecture (Vaswani et. al.) that would improve the models ability to reason > One possible way to enhance the reasoning capabilities of > transformer-based models is by incorporating memory mechanisms into their > design, such as those used in Recurrent Neural Networks (RNNs) or more > recently in Transformer-XL (Dai et al.) and Long-Range Transformers > (Akbari et al.). These architectures introduce a memory module that can > store information from previous steps or layers, which allows the model to > better reason about long-term dependencies in the input sequence. > > Another promising approach is to incorporate commonsense knowledge into > transformer-based models using external knowledge bases like ConceptNet > (Speer et al.) or WordNet (Miller et al.). By injecting such prior > knowledge into the model's hidden representations, it can help reason > about previously unseen input sequences more effectively. This approach > has been explored in recent works like K-BERT (Wang et al.) and GEART > (Beveridge et al.), which demonstrate promising results on various NLP > tasks that require commonsense reasoning abilities. > > In conclusion, enhancing the reasoning capabilities of transformer-based > models can be achieved by either incorporating memory mechanisms or > integrating external knowledge sources into their design. These approaches > enable the model to better understand long-term dependencies and make more > informed decisions based on previously learned information, ultimately > leading to improved performance on complex NLP tasks that require deeper > levels of understanding and reasoning. let's drill down into the "commonsense knowledge" idea. exactly what kind of change to attention heads is required? > Incorporating commonsense knowledge into transformer-based models often > involves modifying their self-attention mechanism, specifically by > integrating external knowledge sources like ConceptNet or WordNet into the > attention weight calculations. Here are two possible ways to achieve this: > > 1. **Attention with Knowledge** (Xiong et al.): In this approach, a > separate knowledge embedding is learned for each token in the input > sequence using pre-trained knowledge embeddings from an external knowledge > base like ConceptNet. When computing attention weights between two tokens > i and j, both their word representations and corresponding knowledge > embeddings are concatenated before passing them through a multi-layer > perceptron (MLP) to obtain a scalar value representing the level of > relatedness between these two tokens based on both linguistic and > commonsense information. > > 2. **Attention over Knowledge** (Wang et al.): In contrast to the previous approach, in > this method, instead of directly incorporating external knowledge into attention weight > calculations, an additional memory module is introduced that stores learned relations > between input tokens and concepts from an external knowledge base like ConceptNet or > WordNet. When computing attention weights between two tokens i and j, their word > representations are first passed through a separate MLP to obtain query and key > vectors, which are then used to perform Key-Value (KV) attention over the memory module > to retrieve relevant conceptual information. The attention-weighted results from both > linguistic and knowledge sources are concatenated before passing them through another > MLP to produce final attention weights. > > In conclusion, integrating commonsense knowledge into transformer-based models can be > achieved by either directly incorporating external knowledge into the attention weight > calculations or performing KV attention over a separate memory module storing learned > relations between input tokens and concepts from an external knowledge base. Both > approaches aim to enrich the model's understanding of input sequences by taking into > account both linguistic and commonsense information, leading to improved performance on > NLP tasks that require deeper levels of reasoning and understanding. which of these two approaches would be more computationally efficient? I want an architecture that's fastest to train and fastest inference possible. > Comparing the two approaches, "Attention with Knowledge" (Xiong et al.) might be > slightly more computationally efficient than "Attention over Knowledge" (Wang et al.) > due to its simpler architectural design. In particular, the former approach simply > concatenates word and knowledge embeddings before computing attention weights using a > single MLP, whereas the latter approach involves an additional KV attention operation > over a separate memory module in addition to two separate MLPs for query/key vector > generation and final attention weight computation. > > However, this difference in computational efficiency may not be significant in > practice, especially given recent advances in hardware accelerators like Tensor > Processing Units (TPUs) that are specifically designed to handle large-scale > transformer-based models efficiently. Ultimately, the choice between these two > approaches should be guided more by their respective trade-offs in terms of model > complexity, interpretability, and overall performance on your specific NLP task rather > than solely based on computational efficiency considerations alone. and which would have a greater improvement on the model's reasoning ability > It is difficult to definitively say which approach would lead to a greater improvement > in the model's reasoning ability without more context about the specific NLP task at > hand and the nature of the commonsense knowledge being incorporated. Both "Attention > with Knowledge" (Xiong et al.) and "Attention over Knowledge" (Wang et al.) have > demonstrated promising results on various benchmark datasets that require some form of > commonsense reasoning, suggesting that either approach could potentially lead to > improvements in the model's ability to reason about input sequences more effectively. > > That being said, "Attention over Knowledge" might offer slightly more flexibility and > modularity since it decouples the incorporation of external knowledge from the > attention weight calculation itself by introducing an additional memory module that can > be fine-tuned independently of other model components. This could potentially make it > easier to adapt the model to different types or sources of commonsense knowledge > without requiring significant architectural changes, although this added flexibility > comes at the expense of increased model complexity and potential computational > overheads as discussed earlier. > > Ultimately, the choice between these two approaches should be guided by a careful > evaluation on your specific NLP task using a held-out validation set or through > ablation studies where possible to determine which approach leads to the most > significant improvements in terms of both model performance and interpretability while > still maintaining reasonable computational efficiency constraints if applicable. let's say I'm going with "Attention with Knowledge" (Xiong et al.) Can you please write the code in python to implement the new attention heads > Certainly! Here is a simplified example of how you could modify the self-attention > mechanism in a transformer-based model like BERT or RoBERTa to incorporate external > commonsense knowledge using the "Attention with Knowledge" (Xiong et al.) approach: > > ```python > from transformers import * > > # Load pre-trained BERT/RoBERTa model > model = load_bert_model('bert-base-uncased') > > # Add a new tokenizer token for [KNW] to represent knowledge embeddings > num_tokens = model.config.vocab_size + 1 > model.tokenizer.add_tokens([f"[KNW_{i}"] for i in range(num_tokens)]) > > # Define a simple function to compute attention weights using both word and knowledge > embeddings > def attention_with_knowledge(q, k, v, mask=None, attn_weights_dropout=None): > # Split query, key, and value matrices into linguistic and commonsense parts > q_linguistic = q[:, :model.config.hidden_size] > q_knowledge = q[:, model.config.hidden_size:] > > k_linguistic = k[:, :model.config.hidden_size] > k_knowledge = k[:, model.config.hidden_size:] > > v_linguistic = v[:, :model.config.hidden_size] > v_knowledge = v[:, model.config.hidden_size:] > > > # Compute attention weights using a linear layer over concatenation of linguistic > and commonsense parts > attn_weights = torch.nn.functional.softmax( > torch.nn.functional.relu( > torch.nn.linear( > torch.cat([q_linguistic, q_knowledge], -1), > in_features=2 * model.config.hidden_size, > out_features=model.config.attention_heads > ).view(model.config.attention_ heads, -1, -1).permute(0, 2, 1) > ) > @ torch.nn.functional.relu( > torch.nn.linear( > torch.cat([k_linguistic, k_knowledge], -1), > in_features=2 * model.config.hidden_size, > out_features=model.config.attention_heads > ).view(model.config.attention_ heads, -1, -1).permute(0, 2, 1) > ).transpose(-1, -2) > ) > > # Apply attention mask and dropout if needed > attn_weights = attention_pad_mask(attn_weights, mask, > model.config.attention_probs_drop_out_nondiag) > attn_weights = torch.nn.functional.dropout(attn_weights, p=attn_weights_dropout, > dim=1 if model.is_encoder else None) > > # Compute attention-weighted representations using both linguistic and commonsense > parts separately > attn_outputs = torch.nn.functional.attention( > v_linguistic + mask_tokens(v_knowledge, mask), > k_linguistic + mask_tokens(k_knowledge, mask), > q=q_linguistic + mask_tokens(q_knowledge, mask), > attn_weights=attn_weights[:, :model.config.hidden_size], > v_weights=(1.0 - model. config.knowledge_proportion).unsqueeze(1, 1, -1), > k_weights=model.config.attention_heads_weigh t.unsqueeze(0, 1, 1, 1), > v_mask=None if mask is None else mask[:, :model.config.hidden_size, > :model.config.hidden_size], > k_mask=None, > v_weights_layer=None, > k_weights_layer=None, > v_bias=None, > k_bias=None, > v_w_layer=None, > k_w_layer=None, > use_transformer_weights=True, > ) > > return attn_outputs + torch.nn.functional.attention( > mask_tokens(v_linguistic, mask) + v_knowledge, > mask_to tokens(k_linguistic, mask) + k_knowledge, > q=mask_tokens(q_linguistic, mask) + q_knowledge, > attn_weights=attn_weights[:, model.config.hidden_size:], > v_weights=model.config.knowledge_proportion.unsqueeze(1, 1, -1), > k_weights=model.config.attention_heads_weight. unsqueeze(0, 1, 1, 1), > v_mask=None if mask is None else mask[:, model.config.hidden_size:, :], > k_mask=None, > v_weights_layer=None, > k_weights_layer=None, > v_bias=None, > k_bias=None, > v_w_layer=None, > k_w_layer=None, > use_transformer_weights=True, > ) > ``` > > Here's how you could replace the original attention mechanism in a transformer layer with this new implementation: > > ```python > # Replace the original self-attention module in the transformer layer > for layer_idx in range(model.config.num_transformer_layers): > for i in [0, -1]: # Replace both forward and backward layers if using a > encoder-decoder architecture > attention_layer = model.encoder.transformer[layer_idx].attention_block[i] > attention_layer.self_attention = nn.ModuleList([ > nn.Attention( > model.config.hidden_size, > model.config.attention_heads, > model.config.attention_head_size, > dropout=model.config.attention_probs_dropout_v1, > attn_layer_func=attention_with_knowledge > ) for _ in range(model.config.num_attention_layers) > ]) > ``` > > Note that this code assumes you have pre-computed external commonsense knowledge > embeddings for each input token and added them to your vocabulary using the new [KNW] > tokenizer token, which should be incorporated into your downstream NLP task > accordingly. Additionally, hyperparameters like `model.config.knowledge_proportion` > control the relative importance of linguistic vs commonsense information during > attention weight calculation and may require fine-tuning on your specific task and > commonsense knowledge source. > ok can you please show the code to generate the pre-computed external commonsense knowledge embeddings for each input token and add them to my vocabulary using the new [KNW] tokenizer token? > Sure! Here's an example of how you could pre-process your external commonsense > knowledge source like ConceptNet or WordNet into a pickle file containing > word-to-concept and concept-to-embedding mappings, which can then be loaded during > model training to compute attention weights as shown in the previous example: > ```python > import torch > import pickle > from transformers import RoBERTaTokenizerFast > > # Load pre-trained RoBERTa tokenizer for downstream NLP tasks > tokenizer = RoBERTaTokenizerFast.from_pretrained('roberta-base') > > # Load external commonsense knowledge source as a pickle file or preprocess it into the > following format if needed > # { > # 'word1': { > # 'concept1': 0.8, # confidence score between word and concept > # ... > # }, > # 'word2': {...}, > # ... > # } > # > # 'concept1': torch.Tensor([0.3, 0.7, ...]), # pre-computed commonsense embedding > for each concept > # 'concept2': torch.Tensor([...]) > # ... > # } > # > # You can use external knowledge graph APIs like ConceptNet5 or pre-trained commonsense > knowledge bases like CogALex to obtain such mappings and embeddings if needed. > # > # Note that we only include the highest-scoring concept per word for simplicity here; > you could easily extend this to consider multiple concepts per word with attention over > their corresponding embeddings during modeling if desired. > # > # Additionally, you may want to pre-process your commonsense knowledge source into a > format more amenable to efficient lookups and batched operations in PyTorch, such as > embedding matrices or PyTorch tensors instead of Python dictionaries. > # > # commonsense_word_concepts = {...} > # commonsense_concept_embeddings = {...} > # } > # > # with open('path/to/pkl', 'wb') as f: > # pickle.dump({ > # 'tokenizer': tokenizer.vocab, > # 'word_concepts': commonsense_word_concepts, > # 'concept_embeddings': commonsense_concept_embedding > # }, f) > ``` > > Then, during model training, you can load these pre-computed mappings and embeddings as follows: > > ```python > # Load pre-processed commonsense knowledge pickle file > with open('path/to/pkl', 'rb') as f: > commonsense_data = pickle.load(f) > > # Add new [KNW] token for representing commonsense embeddings > tokenizer.add_tokens([f"[KNW_{i}]"] for i in > range(len(commonsense_data['tokenizer'])+1, len(commonsense_data['tokenizer']) + > commonsense_data['word_concepts'].max() + 1)) > > # Update your downstream NLP task's tokenizer to use the updated one with new [KNW] > token > # ... > ``` > > > Now, during data pre-processing for each input example `X` (assuming it's a PyTorch > tensor of shape [batch_size, sequence_length]) and corresponding mask `Y` (a binary > PyTorch tensor of shape [batch_size, sequence_lingth] with 1s for valid tokens and 0s > for padding): > > ```python > # Convert input text to PyTorch LongTensor using updated tokenizer with [KNW] token > X_with_knw = torch.zeros_like(X) > X_with_knw[:, ~Y] = torch.LongTensor([[tokenizer.vocab[token]] for token in > X[~Y].tolist()])[~Y] > X_with_knw[torch.where(X_with_knw == tokenizer.pad_token_id)] = > commonsense_data['tokenizer']['[PAD]'] > X_with_knw[torch.where((X_with_knw >= commonsense_data['tokenizer']['[CLS]']) & > (X_with_knw <= commonsense_data['tokenizer']['[SEP]']))] = > commonsense_data['tokenizer'][f"[UNK{X_with_knw[torch.where(~Y)[..., > torch.where(X_with_knw == X_masked_tokens[..., i])//2].long()//2] - > commonsense_data['tokenizer']['[CLS]'])]"] > X_with_knw[torch.where(X_with_knw >= commonsense_data['tokenizer']['[SEP]'])] = > torch.pad_zeros(X_with_knw[:, :torch.where(X_with_knw == > commonsense_data['tokenizer']['[SEP]'])[0].long()][:, :1], (X_with_knw.shape[0], > X_with_knw.shape[1])) > ``` > > Here we replace all non-alphanumeric tokens with the `[UNK]` token and insert a new > sequence of zeros at the end of each input sequence to indicate sequence boundaries for > models like BERT that use a sequence-to-sequence masking strategy. You may need to > modify this pre-processing code according to your specific downstream NLP task's input > format and pre-processing requirements. > > > Finally, during model forward-passing, you can access the corresponding commonsense > embeddings for each input token using its new [KNW] tokenized index as follows: > > ```python > # Add commonsense embeddings as additional columns to the input PyTorch tensor > X_with_knw > X_with_knowledge = torch.cat([X_with_knw[:, :i, :], > torch.zeros_like(X_with_knw[:, i, :]), > X_with_knw[:, i+1:, :]], dim=2) > for i in range(X_with_knw.shape[2]): > mask = (X_with_knw[:, i, :] == commonsense_data['tokenizer'][f"[KNW_{i}]"]).long() > if torch.sum(mask) > 0: > word_idxs = torch.where(mask)[1].long() > concept_idxs = torch.tensor([j for j in > range(len(commonsense_data['word_concepts'][X_with_knw[:, ~Y][word_idxs, > :].tolist()[i]])) if commonsense_data['word_concepts'][X_with_knw[:, ~Y][word_idxs, > :].tolist()[i]][j] >= torch.rand(len(word_idxs)) * > 1e8**len(commonsense_data['word_concepts'][X_with_knw[:, ~Y][word_idxs, > :].tolist()[i]]).item())]) > X_with_knowledge[:, i, word_idxs, :] = > torch.gather(torch.cat([torch.zeros_like(X_with-knw[0, 0, :]), *[ > torch.expand_as_batches( > commonsense_data['concept_embeddings'][j], > X_with_knw.shape[0], -1) for j in > concept_idxs]][:X_with_knw.shape[2]//2+i*2//4])[:, :X_with-knw.shape[2]//2+i*2//4]], > > torch.stack([torch.zeros_like(torch.rand_long(1, > X_with_knw.shape[2]//2+i*2//4).item())], *[ > > torch.argsort(torch.rand(len(j), device=j.device))[:X_with_knw.shape[2//2+i*2//4]] > for j in > range(len(concept_idxs))])[0][:, :X_with-knw.shape[2]//2+i*2//4]]), dim=1) > ``` > > Now, the modified input PyTorch tensor `X_with_knowledge` contains both linguistic and > commonsense knowledge embeddings concatenated along the embedding dimension, which can > be passed through your attention-based transformer model layers as shown in the > previous example to compute attention weights that jointly reason over both types of > information during self-attention computation. Note that this code assumes you only > want to incorporate commonsense knowledge for a subset of input tokens marked by the > new [KNW] token; you may need to modify it according to your specific downstream NLP > task's requirements and desired level of commonsense integration. Transformer architecture (Vaswani et al.) does poorly in theory of mind. What change to the transformer architecture can you suggest that would enable this critical skill? > 1. **Attention over attention**: As mentioned earlier, we can add a higher-level attention module that computes attention over the > existing self-attention scores in each attention head. This could involve an additional linear layer followed by another softmax > activation applied to the original attention scores before they are used as weights when computing the final output sequence. By > learning which attention heads should attend more or less to certain input tokens, this module could potentially mimic some aspects of > metacognitive processes involved in ToM reasoning such as focusing on salient cues or disregarding irrelevant distractions. > > 2. **Counterfactual attention**: Inspired by recent work on counterfactual learning in NLP tasks like textual entailment (e.g., Meng > et al., "A counterfactual approach to answer factual questions," ACL 2017), we could also try introdu't a new type of attention head > within each self-attention layer that compares two alternative input representations instead of just one actual input sequence and its > own past context as in standard transformer models. Specifically, for every timestep t, rather than computing attention weights > a_t^j(k) = softmax(Q_t^j(k)^T * K_t^j(k)) where Q, K, V are query, key, value matrices extracted from the current input sequence X_t > and j indexes different self-attention heads, we could instead compute two sets of attention weights a_t^j(k, l) = softmax(Q_t^j(k)^T * (K_t^j(k) + alpha * (K_t^j(l) - K_t^j(k)))) for all pairs of timesteps k != l and some hyperparameter alpha > 0. This would > encourage each head to pay more or less attention to certain input tokens depending on whether they are likely counterfactual > alternatives given the rest of the sentence context, which could potentially help improve its ability to reason about what might have > happened if different words had been used instead. > > 3. **Incorporating commonsense knowledge**: One way to incorporate commonsense knowledge into transformer models would be to pre-train > additional memory modules using large-scale external sources of factual information such as ConceptNet or WordNet, then merge their > outputs with the standard attention-based representations before feeding them through downstream layers for final prediction. > Alternatively, we could also try injecting hard-coded binary indicators into each self-attention layer's query matrices Q_t^j(k) to > indicate whether certain input tokens correspond to known commonsense concepts such as people, locations, actions etc., which could > serve as additional signals guiding the model's attention allocation decisions during training. > > 4. **Incorporating game-theoretic reasoning**: While incorporating full-fledged game-theoretic elements like Markov decision processes > or stochastic games into transformer architectures may still be computationally prohibitive due to their high dimensionality and > non-Markovian nature, we could potentially take baby steps towards this direction by introducing simple binary masks over some pairs > of attention weights a_t^j(k, l) in item 2 above based on whether they correspond to tokens that are likely adversaries or allies > according to some predefined heuristics (e.g., two consecutive nouns within a small window size are considered potential collaborators > while two verbs separated by more than N words apart are seen as competitors). This could encourage the model to learn more > sophisticated dependencies between input tokens that go beyond simple co-occurrence patterns and instead capture more nuanced > relational structures indicative of underlying strategic interactions between different entities in the text. **Write a math paper** > Please invent a new idea in the area of mathematics, that combines two or more papers into a new idea that has not yet been published to your knowledge > ## Integrability and Computability of Continuous Functions on Infinite Domains: A Category-Theoretical Approach > ### Abstract > In this paper, we develop a novel approach to the study of integrability and computability of continuous functions on infinite domains using category-theoretic > techniques. We combine ideas from descriptive set theory, which studies the hierarchy of sets in terms of their complexity, and functional analysis, which deals with the > properties of mappings between function spaces. Our main contribution is to introduce a new notion of "categorical Lebesgue measurability" that generalizes both Lebesgue > and Henstock-Kurtz integrability for functions on uncountable domains while retaining key desirable properties such as the Lebesgue Monotone Convergence Theorem. We also > establish connections between this new notion of categorical integrability and various notions of computability, leading to new results on the computability of certain > integral transforms such as the Laplace and Mellin transforms in the case of uncountable domains. > ### 1 Introduction > In this paper, we continue the line of research initiated by [1] and further developed in [2] and [3], which aims to bridge the gap between descriptive set theory and > functional analysis by employing category-theoretic techniques. In particular, our goal is to develop a new framework for studying the properties of continuous functions > on uncountable domains that combines ideas from both areas while retaining key desirable properties such as the Lebesgue Monotone Convergence Theorem (LMCT). > ### 2 Preliminaries > We assume familiarity with basic category-theoretical concepts such as limits, colimits, and adjoint functors [4]. We also make use of some notions from descriptive set > theory, such as the hierarchy of Borel sets [5] and the notion of Lebesgue measurability [6]. > ### 3 Categorical Lebesgue Measure > Let X be an uncountable set endowed with a topology `mathcal{T}` and let Y be a second countable complete metrizable (scc) space. We say that a function `phi: X -> Y` is > "categorically Lebesgue measurable" if there exists a Borel measurable function `nu: Y^N -> [0,1]` such that for every x in X and any open neighborhood U of `phi(x)`, we > have `|{y in U | nu(y^-|n-1, y_n) > phi(y_n)}| > 0` for some `n in N`. Here, |A| denotes the category (cardinality) of a set A, and `|B^N|` is defined as `|B|^N` for any set B > and natural number N. > ### 4 Categorical Lebesgue Integral > Let X be an uncountable set endowed with a topology `mathcal{T}` and let Y be an scc space. Let `phi: X -> Y` be a categorically Lebesgue measurable function, and let `|*|: > Y^N -> [0,+infinity]` be a "categorical modulus of continuity" in the sense that for any `x in X` and any open neighborhood `U` of `phi(x)`, there exists `M_U > 0` such that `|{y > in U | |phi(y_n) - phi(y_{n-1})| > M_U}|\ < epsilon` for some `N = N_U,M_U > omega` and all `epsilon > 0`. Then we define the "categorical Lebesgue integral" of phi over X > as: > > `int_X^cat phi(x) dnu(x) = colim_{epsilon -> 0+} (2 - epsilon)^N sum_{y in Y^N, |{n in N | y_n not in U_n}|\ < omega} nu(y^-|n-1, y_n)`. > ### 5 Applications to Computability > In this section, we establish connections between our new notion of categorical Lebesgue measurability and various notions of computability. Let X be an uncountable set > endowed with a topology `mathcal{T}` and `let Y = R`. We say that a function `phi: X -> R` is "categorically Lebesgue computable" if there exists a Borel measurable function > nu: `R^N -> [0,1]` such that for every `x in X` and any open interval `U` containing `phi(x)`, we have `|{y in U | nu(y^-|n-1, y_n) > phi(y_n)}|\ > 0` for some `n in N`. > ### 6 Conclusion > In this paper, we have introduced a new notion of "categorical Lebesgue measurability" for functions on uncountable domains that generalizes both Lebesgue and > Henstock-Kurtz integrability while retaining key desirable properties such as the LMCT. We also established connections between this new notion of categorical > integrability and various notions of computability, leading to new results on the computability of certain integral transforms in the case of uncountable domains. Future > directions for research include further exploring the relationship between our new notion of categorical Lebesgue measurability and other generalizations of Lebesgue and > Henstock-Kurtz integrability, as well as studying additional properties of our "categorical Lebesgue integral" such as its relationship to other notions of integration > for functions on uncountable domains. > ### References > - [1] A. Borel. Sur la correspondance entre les ensembles de points et les fonctions de variables reales, Compt. R. Acad. Sci. Paris 148 (1909), 71-74. > - [2] J. Bourbaki. Integration I: Chapters 1-6; Integration II: Chapter 7-9; Topological Vector Spaces, Addison-Wesley, Reading, MA, 1968. > - [3] W. H. L. Cheney. Introduction to Analysis, Brooks/Cole, Belmont, CA, 2005. > - [4] S. Mac Lane. Categories for the working mathematician, second edition, Graduate Texts in Mathematics No. 5, Springer-Verlag, New York-Heidelberg, 1971. > - [5] K. P. Komogorov and A. V. Ulam. On a generalized form of the problem of P. F. Borel, Comb. Math. 1 (1948), 83-86. > - [6] J. Dieudonné. Foundations of modern analysis, Academic Press, New York, 1960.
juan9/a2c-PandaReachDense-v3
juan9
2024-02-14T22:03:35Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-02-14T21:59:46Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v3 type: PandaReachDense-v3 metrics: - type: mean_reward value: -0.21 +/- 0.11 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v3** This is a trained model of a **A2C** agent playing **PandaReachDense-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
ravinderbrai/my_awesome_qa_model
ravinderbrai
2024-02-14T21:58:01Z
95
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "question-answering", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "endpoints_compatible", "region:us" ]
question-answering
2024-02-13T22:56:59Z
--- base_model: distilbert-base-uncased tags: - generated_from_trainer model-index: - name: my_awesome_qa_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_qa_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.9850 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 125 | 2.9695 | | No log | 2.0 | 250 | 2.1362 | | No log | 3.0 | 375 | 1.9850 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.0+cu118 - Datasets 2.17.0 - Tokenizers 0.15.1
supermomo668/Llama2D-Pretrain
supermomo668
2024-02-14T21:35:15Z
0
0
null
[ "Llama2D", "en", "license:apache-2.0", "region:us" ]
null
2023-09-20T13:24:24Z
--- license: apache-2.0 language: - en tags: - Llama2D ---
MaggieZhang/lora_bert_classification
MaggieZhang
2024-02-14T21:31:57Z
176
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-02-14T18:29:51Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Shijia/furina_seed42_eng_kin_amh_basic
Shijia
2024-02-14T21:29:13Z
101
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:yihongLiu/furina", "base_model:finetune:yihongLiu/furina", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-02-14T21:28:13Z
--- base_model: yihongLiu/furina tags: - generated_from_trainer model-index: - name: furina_seed42_eng_kin_amh_basic results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # furina_seed42_eng_kin_amh_basic This model is a fine-tuned version of [yihongLiu/furina](https://huggingface.co/yihongLiu/furina) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0154 - Spearman Corr: 0.8112 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Spearman Corr | |:-------------:|:-----:|:----:|:---------------:|:-------------:| | No log | 1.95 | 200 | 0.0239 | 0.7162 | | 0.0881 | 3.9 | 400 | 0.0177 | 0.7990 | | 0.0228 | 5.85 | 600 | 0.0167 | 0.8089 | | 0.0168 | 7.8 | 800 | 0.0153 | 0.8124 | | 0.0127 | 9.76 | 1000 | 0.0168 | 0.8121 | | 0.0102 | 11.71 | 1200 | 0.0157 | 0.8114 | | 0.0085 | 13.66 | 1400 | 0.0154 | 0.8122 | | 0.0073 | 15.61 | 1600 | 0.0156 | 0.8132 | | 0.0068 | 17.56 | 1800 | 0.0152 | 0.8097 | | 0.0061 | 19.51 | 2000 | 0.0158 | 0.8094 | | 0.0055 | 21.46 | 2200 | 0.0155 | 0.8098 | | 0.005 | 23.41 | 2400 | 0.0152 | 0.8113 | | 0.005 | 25.37 | 2600 | 0.0152 | 0.8099 | | 0.0046 | 27.32 | 2800 | 0.0153 | 0.8113 | | 0.0044 | 29.27 | 3000 | 0.0154 | 0.8112 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1
LoneStriker/Smaug-34B-v0.1-6.0bpw-h6-exl2
LoneStriker
2024-02-14T21:26:48Z
6
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "base_model:jondurbin/bagel-34b-v0.2", "base_model:finetune:jondurbin/bagel-34b-v0.2", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-14T21:15:30Z
--- license: other license_name: yi-license license_link: https://huggingface.co/01-ai/Yi-34B-200K/blob/main/LICENSE base_model: jondurbin/bagel-34b-v0.2 --- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64c14f6b02e1f8f67c73bd05/pf4d6FA7DriRtVq5HCkxd.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64c14f6b02e1f8f67c73bd05/e4u8VYfDBh11u60rFYJHF.png) This model is a finetune of jondurbin's excellent [bagel](https://huggingface.co/jondurbin/bagel-34b-v0.2) model. It has been trained with new datasets and a new technique, which we will share to the community soon. This model has not utilised any form of merging. ### Evaluation Results | Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K | | --- | --- | --- | --- | --- | --- | --- | | 77.29 | 74.23 | 86.76 | 76.66 | 70.22 | 83.66 | 72.18 | ### Contamination Results With reference model jondurbin/bagel-34b-v0.2: | ARC | TruthfulQA | GSM8K | | --- | --- | --- | | 0.08| 0.38| 0.88|
OscarGalavizC/q-Taxi-v3
OscarGalavizC
2024-02-14T21:21:11Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-02-14T21:18:02Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.50 +/- 2.73 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="OscarGalavizC/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
LoneStriker/Smaug-34B-v0.1-5.0bpw-h6-exl2
LoneStriker
2024-02-14T21:15:28Z
7
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "base_model:jondurbin/bagel-34b-v0.2", "base_model:finetune:jondurbin/bagel-34b-v0.2", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-14T21:05:55Z
--- license: other license_name: yi-license license_link: https://huggingface.co/01-ai/Yi-34B-200K/blob/main/LICENSE base_model: jondurbin/bagel-34b-v0.2 --- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64c14f6b02e1f8f67c73bd05/pf4d6FA7DriRtVq5HCkxd.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64c14f6b02e1f8f67c73bd05/e4u8VYfDBh11u60rFYJHF.png) This model is a finetune of jondurbin's excellent [bagel](https://huggingface.co/jondurbin/bagel-34b-v0.2) model. It has been trained with new datasets and a new technique, which we will share to the community soon. This model has not utilised any form of merging. ### Evaluation Results | Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K | | --- | --- | --- | --- | --- | --- | --- | | 77.29 | 74.23 | 86.76 | 76.66 | 70.22 | 83.66 | 72.18 | ### Contamination Results With reference model jondurbin/bagel-34b-v0.2: | ARC | TruthfulQA | GSM8K | | --- | --- | --- | | 0.08| 0.38| 0.88|
Tigerstar/coqui-tts
Tigerstar
2024-02-14T21:11:31Z
0
0
null
[ "region:us" ]
null
2024-02-14T21:10:52Z
git lfs install git clone https://huggingface.co/spaces/coqui/xtts
LoneStriker/Smaug-34B-v0.1-4.65bpw-h6-exl2
LoneStriker
2024-02-14T21:05:53Z
6
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "base_model:jondurbin/bagel-34b-v0.2", "base_model:finetune:jondurbin/bagel-34b-v0.2", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-14T20:56:52Z
--- license: other license_name: yi-license license_link: https://huggingface.co/01-ai/Yi-34B-200K/blob/main/LICENSE base_model: jondurbin/bagel-34b-v0.2 --- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64c14f6b02e1f8f67c73bd05/pf4d6FA7DriRtVq5HCkxd.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64c14f6b02e1f8f67c73bd05/e4u8VYfDBh11u60rFYJHF.png) This model is a finetune of jondurbin's excellent [bagel](https://huggingface.co/jondurbin/bagel-34b-v0.2) model. It has been trained with new datasets and a new technique, which we will share to the community soon. This model has not utilised any form of merging. ### Evaluation Results | Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K | | --- | --- | --- | --- | --- | --- | --- | | 77.29 | 74.23 | 86.76 | 76.66 | 70.22 | 83.66 | 72.18 | ### Contamination Results With reference model jondurbin/bagel-34b-v0.2: | ARC | TruthfulQA | GSM8K | | --- | --- | --- | | 0.08| 0.38| 0.88|
Shijia/furina_seed42_eng_amh_hau_basic
Shijia
2024-02-14T20:54:44Z
99
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:yihongLiu/furina", "base_model:finetune:yihongLiu/furina", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-02-14T20:53:47Z
--- base_model: yihongLiu/furina tags: - generated_from_trainer model-index: - name: furina_seed42_eng_amh_hau_basic results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # furina_seed42_eng_amh_hau_basic This model is a fine-tuned version of [yihongLiu/furina](https://huggingface.co/yihongLiu/furina) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0202 - Spearman Corr: 0.7965 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Spearman Corr | |:-------------:|:-----:|:----:|:---------------:|:-------------:| | No log | 1.72 | 200 | 0.0245 | 0.7642 | | 0.0761 | 3.45 | 400 | 0.0205 | 0.8068 | | 0.0252 | 5.17 | 600 | 0.0201 | 0.8002 | | 0.0185 | 6.9 | 800 | 0.0193 | 0.8106 | | 0.0147 | 8.62 | 1000 | 0.0203 | 0.8017 | | 0.0118 | 10.34 | 1200 | 0.0198 | 0.8021 | | 0.0099 | 12.07 | 1400 | 0.0200 | 0.8029 | | 0.0099 | 13.79 | 1600 | 0.0228 | 0.7997 | | 0.0086 | 15.52 | 1800 | 0.0202 | 0.7982 | | 0.0077 | 17.24 | 2000 | 0.0217 | 0.7921 | | 0.0067 | 18.97 | 2200 | 0.0208 | 0.7985 | | 0.0062 | 20.69 | 2400 | 0.0202 | 0.7965 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1
juan9/ppo-SnowballTarget
juan9
2024-02-14T20:53:38Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2024-02-14T15:04:54Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: juan9/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
juan9/ppo-Pyramis-Training
juan9
2024-02-14T20:52:44Z
0
0
ml-agents
[ "ml-agents", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2024-02-14T20:52:44Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: juan9/ppo-Pyramis-Training 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
tormartin/bert-finetuned-squad
tormartin
2024-02-14T20:50:17Z
98
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "question-answering", "generated_from_trainer", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2024-02-14T18:36:20Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer model-index: - name: bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1
wesslen/en_ner_reddit_cooking
wesslen
2024-02-14T20:46:07Z
3
0
spacy
[ "spacy", "token-classification", "en", "model-index", "region:us" ]
token-classification
2024-02-14T20:46:05Z
--- tags: - spacy - token-classification language: - en model-index: - name: en_ner_reddit_cooking results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.6226086957 - name: NER Recall type: recall value: 0.6269702277 - name: NER F Score type: f_score value: 0.6247818499 --- | Feature | Description | | --- | --- | | **Name** | `en_ner_reddit_cooking` | | **Version** | `3.0.0` | | **spaCy** | `>=3.6.1,<3.7.0` | | **Default Pipeline** | `tok2vec`, `ner` | | **Components** | `tok2vec`, `ner` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | n/a | | **License** | n/a | | **Author** | [n/a]() | ### Label Scheme <details> <summary>View label scheme (3 labels for 1 components)</summary> | Component | Labels | | --- | --- | | **`ner`** | `DISH`, `EQUIPMENT`, `INGREDIENT` | </details> ### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 62.48 | | `ENTS_P` | 62.26 | | `ENTS_R` | 62.70 | | `TOK2VEC_LOSS` | 76363.02 | | `NER_LOSS` | 153362.98 |
LarryAIDraw/VAE
LarryAIDraw
2024-02-14T20:42:19Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2024-02-14T20:34:30Z
--- license: creativeml-openrail-m ---
KMCan/speecht5_finetuned_voxpopuli_nl
KMCan
2024-02-14T20:36:08Z
61
0
transformers
[ "transformers", "tensorboard", "safetensors", "speecht5", "text-to-audio", "generated_from_trainer", "dataset:voxpopuli", "base_model:microsoft/speecht5_tts", "base_model:finetune:microsoft/speecht5_tts", "license:mit", "endpoints_compatible", "region:us" ]
text-to-audio
2024-01-25T10:25:50Z
--- license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer datasets: - voxpopuli model-index: - name: speecht5_finetuned_voxpopuli_nl results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # speecht5_finetuned_voxpopuli_nl This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the voxpopuli dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1 ### Training results ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.1.2 - Datasets 2.16.1 - Tokenizers 0.15.1
Nadeemag/ustaadnow_qa
Nadeemag
2024-02-14T20:34:13Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:NousResearch/Llama-2-7b-chat-hf", "base_model:adapter:NousResearch/Llama-2-7b-chat-hf", "region:us" ]
null
2024-02-14T20:33:38Z
--- library_name: peft base_model: NousResearch/Llama-2-7b-chat-hf --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.8.2
kanishka/smolm-autoreg-bpe-counterfactual-babylm-only_other_det_removal-seed_211-1e-3
kanishka
2024-02-14T20:30:58Z
6
0
transformers
[ "transformers", "tensorboard", "safetensors", "opt", "text-generation", "generated_from_trainer", "dataset:kanishka/counterfactual-babylm-only_other_det_removal", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-13T21:56:55Z
--- tags: - generated_from_trainer datasets: - kanishka/counterfactual-babylm-only_other_det_removal metrics: - accuracy model-index: - name: smolm-autoreg-bpe-counterfactual-babylm-only_other_det_removal-seed_211-1e-3 results: - task: name: Causal Language Modeling type: text-generation dataset: name: kanishka/counterfactual-babylm-only_other_det_removal type: kanishka/counterfactual-babylm-only_other_det_removal metrics: - name: Accuracy type: accuracy value: 0.4109943845202858 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smolm-autoreg-bpe-counterfactual-babylm-only_other_det_removal-seed_211-1e-3 This model was trained from scratch on the kanishka/counterfactual-babylm-only_other_det_removal dataset. It achieves the following results on the evaluation set: - Loss: 3.4143 - Accuracy: 0.4110 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 64 - seed: 211 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 32000 - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 3.6004 | 1.0 | 18597 | 3.8219 | 0.3575 | | 3.3852 | 2.0 | 37194 | 3.6092 | 0.3797 | | 3.2597 | 3.0 | 55791 | 3.4837 | 0.3910 | | 3.1758 | 4.0 | 74388 | 3.4364 | 0.3981 | | 3.1197 | 5.0 | 92985 | 3.4116 | 0.4017 | | 3.08 | 6.0 | 111582 | 3.3782 | 0.4040 | | 3.0418 | 7.0 | 130179 | 3.3885 | 0.4055 | | 3.0088 | 8.0 | 148776 | 3.3884 | 0.4062 | | 2.9856 | 9.0 | 167373 | 3.3548 | 0.4077 | | 2.9598 | 10.0 | 185970 | 3.3782 | 0.4090 | | 2.9364 | 11.0 | 204567 | 3.3851 | 0.4093 | | 2.9156 | 12.0 | 223164 | 3.3803 | 0.4097 | | 2.8949 | 13.0 | 241761 | 3.3869 | 0.4100 | | 2.8719 | 14.0 | 260358 | 3.3813 | 0.4104 | | 2.8526 | 15.0 | 278955 | 3.3859 | 0.4108 | | 2.8289 | 16.0 | 297552 | 3.3980 | 0.4103 | | 2.8104 | 17.0 | 316149 | 3.3981 | 0.4109 | | 2.7958 | 18.0 | 334746 | 3.4054 | 0.4110 | | 2.781 | 19.0 | 353343 | 3.4057 | 0.4110 | | 2.7571 | 20.0 | 371940 | 3.4143 | 0.4110 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
OmarHaroon01/flan_t5_imdb_accelerator_1
OmarHaroon01
2024-02-14T20:30:27Z
93
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-02-14T19:55:44Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
V12X-ksr/FOCALtrain
V12X-ksr
2024-02-14T20:22:40Z
8
0
transformers
[ "transformers", "tensorboard", "safetensors", "roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/roberta-base", "base_model:finetune:FacebookAI/roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-11-16T13:06:41Z
--- license: mit base_model: roberta-base tags: - generated_from_trainer model-index: - name: FOCALtrain results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # FOCALtrain This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2758 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.3121 | 1.0 | 474 | 1.3494 | | 0.9964 | 2.0 | 948 | 1.3077 | | 1.0453 | 3.0 | 1422 | 1.2758 | | 0.6379 | 4.0 | 1896 | 1.5232 | | 0.765 | 5.0 | 2370 | 1.5891 | | 0.2287 | 6.0 | 2844 | 2.2163 | | 0.1243 | 7.0 | 3318 | 2.5331 | | 0.1699 | 8.0 | 3792 | 2.7521 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1
gracegsy/my_awesome_model
gracegsy
2024-02-14T19:46:21Z
92
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-02-14T19:46:08Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: my_awesome_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5863 - Accuracy: 0.7966 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 204 | 0.6400 | 0.7804 | | No log | 2.0 | 408 | 0.5863 | 0.7966 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1
Shijia/furina_seed42_eng_kin_hau_basic
Shijia
2024-02-14T19:40:42Z
99
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:yihongLiu/furina", "base_model:finetune:yihongLiu/furina", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-02-14T19:39:32Z
--- base_model: yihongLiu/furina tags: - generated_from_trainer model-index: - name: furina_seed42_eng_kin_hau_basic results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # furina_seed42_eng_kin_hau_basic This model is a fine-tuned version of [yihongLiu/furina](https://huggingface.co/yihongLiu/furina) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0273 - Spearman Corr: 0.8040 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Spearman Corr | |:-------------:|:-----:|:----:|:---------------:|:-------------:| | No log | 1.77 | 200 | 0.0339 | 0.7391 | | 0.0845 | 3.54 | 400 | 0.0337 | 0.7909 | | 0.0273 | 5.31 | 600 | 0.0228 | 0.8081 | | 0.0199 | 7.08 | 800 | 0.0229 | 0.8163 | | 0.0152 | 8.85 | 1000 | 0.0241 | 0.8102 | | 0.0123 | 10.62 | 1200 | 0.0278 | 0.8168 | | 0.0102 | 12.39 | 1400 | 0.0282 | 0.8072 | | 0.0087 | 14.16 | 1600 | 0.0210 | 0.8108 | | 0.008 | 15.93 | 1800 | 0.0234 | 0.8106 | | 0.008 | 17.7 | 2000 | 0.0278 | 0.8059 | | 0.0069 | 19.47 | 2200 | 0.0308 | 0.8107 | | 0.0063 | 21.24 | 2400 | 0.0257 | 0.8127 | | 0.0057 | 23.01 | 2600 | 0.0257 | 0.8095 | | 0.0055 | 24.78 | 2800 | 0.0250 | 0.8077 | | 0.0051 | 26.55 | 3000 | 0.0252 | 0.8055 | | 0.005 | 28.32 | 3200 | 0.0273 | 0.8040 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1
Rooney88/bio_llama-2_13b
Rooney88
2024-02-14T19:39:29Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-02-14T17:09:52Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
readingrocket/CLIP-ViT-bigG-14-laion2B-39B-b160k-001
readingrocket
2024-02-14T19:33:24Z
19
0
transformers
[ "transformers", "safetensors", "clip_text_model", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-02-14T19:32:11Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
cnrcastroli/drpairForm2Checkboxes10k
cnrcastroli
2024-02-14T19:24:43Z
13
0
transformers
[ "transformers", "safetensors", "vision-encoder-decoder", "image-text-to-text", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
image-text-to-text
2024-02-14T04:32:39Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Stoub/ecl-Ecosserat-A2C-PandaReachJointsDense-v3
Stoub
2024-02-14T19:24:34Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachJointsDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-02-14T18:10:09Z
--- library_name: stable-baselines3 tags: - PandaReachJointsDense-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachJointsDense-v3 type: PandaReachJointsDense-v3 metrics: - type: mean_reward value: -0.56 +/- 0.42 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachJointsDense-v3** This is a trained model of a **A2C** agent playing **PandaReachJointsDense-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
facebook/SONAR
facebook
2024-02-14T19:19:29Z
0
49
null
[ "mteb", "license:cc-by-nc-4.0", "model-index", "region:us" ]
null
2023-08-17T12:01:18Z
--- license: cc-by-nc-4.0 tags: - mteb model-index: - name: text_sonar_basic_encoder_normalized results: - task: type: Clustering dataset: type: PL-MTEB/8tags-clustering name: MTEB 8TagsClustering config: default split: test revision: None metrics: - type: v_measure value: 18.787544117314575 - task: type: STS dataset: type: C-MTEB/AFQMC name: MTEB AFQMC config: default split: validation revision: b44c3b011063adb25877c13823db83bb193913c4 metrics: - type: cos_sim_pearson value: 17.97026675319667 - type: cos_sim_spearman value: 17.63407829948615 - type: euclidean_pearson value: 17.704571608660725 - type: euclidean_spearman value: 17.634078298828143 - type: manhattan_pearson value: 17.606959101509464 - type: manhattan_spearman value: 17.549620164990085 - task: type: STS dataset: type: C-MTEB/ATEC name: MTEB ATEC config: default split: test revision: 0f319b1142f28d00e055a6770f3f726ae9b7d865 metrics: - type: cos_sim_pearson value: 27.670887504789675 - type: cos_sim_spearman value: 26.176629407301782 - type: euclidean_pearson value: 28.878485717935586 - type: euclidean_spearman value: 26.176635036613355 - type: manhattan_pearson value: 28.782373978690103 - type: manhattan_spearman value: 26.055266444113794 - task: type: Classification dataset: type: PL-MTEB/allegro-reviews name: MTEB AllegroReviews config: default split: test revision: None metrics: - type: accuracy value: 29.62226640159046 - type: f1 value: 27.632722290701047 - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en) config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 81.49253731343285 - type: ap value: 46.61440947240349 - type: f1 value: 75.68925212232107 - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (de) config: de split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 72.02355460385438 - type: ap value: 83.13664983282676 - type: f1 value: 70.48997817871013 - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en-ext) config: en-ext split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 82.09145427286357 - type: ap value: 31.45181004731995 - type: f1 value: 69.41750580313406 - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (ja) config: ja split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 71.78800856531049 - type: ap value: 19.65443896353892 - type: f1 value: 58.436688187826334 - task: type: Classification dataset: type: mteb/amazon_polarity name: MTEB AmazonPolarityClassification config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 62.73074999999999 - type: ap value: 58.2839375458089 - type: f1 value: 62.16204082406629 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (en) config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 31.552000000000003 - type: f1 value: 31.125328770568277 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (de) config: de split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 34.611999999999995 - type: f1 value: 33.93738697105999 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (es) config: es split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 35.172 - type: f1 value: 34.14112656493798 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (fr) config: fr split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 34.910000000000004 - type: f1 value: 34.276631172288965 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (ja) config: ja split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 31.844 - type: f1 value: 31.478780923476368 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (zh) config: zh split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 31.912000000000003 - type: f1 value: 31.384992191831312 - task: type: Classification dataset: type: DDSC/angry-tweets name: MTEB AngryTweetsClassification config: default split: test revision: 20b0e6081892e78179356fada741b7afa381443d metrics: - type: accuracy value: 49.61795606494747 - type: f1 value: 48.63625944670304 - task: type: Retrieval dataset: type: arguana name: MTEB ArguAna config: default split: test revision: None metrics: - type: map_at_1 value: 8.677 - type: map_at_10 value: 14.732000000000001 - type: map_at_100 value: 15.501999999999999 - type: map_at_1000 value: 15.583 - type: map_at_3 value: 12.553 - type: map_at_5 value: 13.822999999999999 - type: mrr_at_1 value: 8.819 - type: mrr_at_10 value: 14.787 - type: mrr_at_100 value: 15.557000000000002 - type: mrr_at_1000 value: 15.638 - type: mrr_at_3 value: 12.648000000000001 - type: mrr_at_5 value: 13.879 - type: ndcg_at_1 value: 8.677 - type: ndcg_at_10 value: 18.295 - type: ndcg_at_100 value: 22.353 - type: ndcg_at_1000 value: 24.948999999999998 - type: ndcg_at_3 value: 13.789000000000001 - type: ndcg_at_5 value: 16.075 - type: precision_at_1 value: 8.677 - type: precision_at_10 value: 2.98 - type: precision_at_100 value: 0.49500000000000005 - type: precision_at_1000 value: 0.07100000000000001 - type: precision_at_3 value: 5.785 - type: precision_at_5 value: 4.58 - type: recall_at_1 value: 8.677 - type: recall_at_10 value: 29.801 - type: recall_at_100 value: 49.502 - type: recall_at_1000 value: 70.91 - type: recall_at_3 value: 17.354 - type: recall_at_5 value: 22.902 - task: type: Retrieval dataset: type: arguana-pl name: MTEB ArguAna-PL config: default split: test revision: None metrics: - type: map_at_1 value: 7.752000000000001 - type: map_at_10 value: 12.248000000000001 - type: map_at_100 value: 12.882 - type: map_at_1000 value: 12.963 - type: map_at_3 value: 10.574 - type: map_at_5 value: 11.566 - type: mrr_at_1 value: 7.824000000000001 - type: mrr_at_10 value: 12.293 - type: mrr_at_100 value: 12.928 - type: mrr_at_1000 value: 13.008000000000001 - type: mrr_at_3 value: 10.586 - type: mrr_at_5 value: 11.599 - type: ndcg_at_1 value: 7.752000000000001 - type: ndcg_at_10 value: 15.035000000000002 - type: ndcg_at_100 value: 18.497 - type: ndcg_at_1000 value: 20.896 - type: ndcg_at_3 value: 11.578 - type: ndcg_at_5 value: 13.38 - type: precision_at_1 value: 7.752000000000001 - type: precision_at_10 value: 2.404 - type: precision_at_100 value: 0.411 - type: precision_at_1000 value: 0.061 - type: precision_at_3 value: 4.836 - type: precision_at_5 value: 3.784 - type: recall_at_1 value: 7.752000000000001 - type: recall_at_10 value: 24.04 - type: recall_at_100 value: 41.11 - type: recall_at_1000 value: 60.597 - type: recall_at_3 value: 14.509 - type: recall_at_5 value: 18.919 - task: type: Clustering dataset: type: mteb/arxiv-clustering-p2p name: MTEB ArxivClusteringP2P config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 26.81177290816682 - task: type: Clustering dataset: type: mteb/arxiv-clustering-s2s name: MTEB ArxivClusteringS2S config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 24.346811178757022 - task: type: Reranking dataset: type: mteb/askubuntudupquestions-reranking name: MTEB AskUbuntuDupQuestions config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 50.88606427049027 - type: mrr value: 65.13004001231148 - task: type: STS dataset: type: mteb/biosses-sts name: MTEB BIOSSES config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 77.15058512395619 - type: cos_sim_spearman value: 79.10541692841936 - type: euclidean_pearson value: 75.30525535929353 - type: euclidean_spearman value: 79.10541692841936 - type: manhattan_pearson value: 75.33508042552984 - type: manhattan_spearman value: 78.84577245802708 - task: type: STS dataset: type: C-MTEB/BQ name: MTEB BQ config: default split: test revision: e3dda5e115e487b39ec7e618c0c6a29137052a55 metrics: - type: cos_sim_pearson value: 37.84739189558895 - type: cos_sim_spearman value: 37.662710610486265 - type: euclidean_pearson value: 37.5407537185213 - type: euclidean_spearman value: 37.66272446700578 - type: manhattan_pearson value: 37.863820146709706 - type: manhattan_spearman value: 38.09120266204032 - task: type: BitextMining dataset: type: mteb/bucc-bitext-mining name: MTEB BUCC (de-en) config: de-en split: test revision: d51519689f32196a32af33b075a01d0e7c51e252 metrics: - type: accuracy value: 98.97703549060543 - type: f1 value: 98.82393876130828 - type: precision value: 98.74913013221992 - type: recall value: 98.97703549060543 - task: type: BitextMining dataset: type: mteb/bucc-bitext-mining name: MTEB BUCC (fr-en) config: fr-en split: test revision: d51519689f32196a32af33b075a01d0e7c51e252 metrics: - type: accuracy value: 98.34910851860005 - type: f1 value: 98.09487123046446 - type: precision value: 97.97032063981217 - type: recall value: 98.34910851860005 - task: type: BitextMining dataset: type: mteb/bucc-bitext-mining name: MTEB BUCC (ru-en) config: ru-en split: test revision: d51519689f32196a32af33b075a01d0e7c51e252 metrics: - type: accuracy value: 97.60304814686526 - type: f1 value: 97.36520032328832 - type: precision value: 97.24743101258517 - type: recall value: 97.60304814686526 - task: type: BitextMining dataset: type: mteb/bucc-bitext-mining name: MTEB BUCC (zh-en) config: zh-en split: test revision: d51519689f32196a32af33b075a01d0e7c51e252 metrics: - type: accuracy value: 98.78883622959452 - type: f1 value: 98.71862383710724 - type: precision value: 98.68351764086361 - type: recall value: 98.78883622959452 - task: type: Classification dataset: type: mteb/banking77 name: MTEB Banking77Classification config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 73.49675324675324 - type: f1 value: 72.88538992490979 - task: type: Clustering dataset: type: jinaai/big-patent-clustering name: MTEB BigPatentClustering config: default split: test revision: 62d5330920bca426ce9d3c76ea914f15fc83e891 metrics: - type: v_measure value: 6.801245618724224 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-p2p name: MTEB BiorxivClusteringP2P config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 20.6156033971932 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-s2s name: MTEB BiorxivClusteringS2S config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 19.077587707743156 - task: type: Clustering dataset: type: slvnwhrl/blurbs-clustering-p2p name: MTEB BlurbsClusteringP2P config: default split: test revision: a2dd5b02a77de3466a3eaa98ae586b5610314496 metrics: - type: v_measure value: 27.00349462858046 - task: type: Clustering dataset: type: slvnwhrl/blurbs-clustering-s2s name: MTEB BlurbsClusteringS2S config: default split: test revision: 9bfff9a7f8f6dc6ffc9da71c48dd48b68696471d metrics: - type: v_measure value: 14.845348131791589 - task: type: BitextMining dataset: type: strombergnlp/bornholmsk_parallel name: MTEB BornholmBitextMining config: default split: test revision: 3bc5cfb4ec514264fe2db5615fac9016f7251552 metrics: - type: accuracy value: 54.0 - type: f1 value: 47.37026862026861 - type: precision value: 45.0734126984127 - type: recall value: 54.0 - task: type: Classification dataset: type: PL-MTEB/cbd name: MTEB CBD config: default split: test revision: None metrics: - type: accuracy value: 63.83000000000001 - type: ap value: 18.511972946438764 - type: f1 value: 53.16787370496645 - task: type: PairClassification dataset: type: PL-MTEB/cdsce-pairclassification name: MTEB CDSC-E config: default split: test revision: None metrics: - type: cos_sim_accuracy value: 84.39999999999999 - type: cos_sim_ap value: 59.968589741258036 - type: cos_sim_f1 value: 54.90909090909091 - type: cos_sim_precision value: 41.94444444444444 - type: cos_sim_recall value: 79.47368421052632 - type: dot_accuracy value: 84.39999999999999 - type: dot_ap value: 59.968589741258036 - type: dot_f1 value: 54.90909090909091 - type: dot_precision value: 41.94444444444444 - type: dot_recall value: 79.47368421052632 - type: euclidean_accuracy value: 84.39999999999999 - type: euclidean_ap value: 59.968589741258036 - type: euclidean_f1 value: 54.90909090909091 - type: euclidean_precision value: 41.94444444444444 - type: euclidean_recall value: 79.47368421052632 - type: manhattan_accuracy value: 84.39999999999999 - type: manhattan_ap value: 60.094893481041154 - type: manhattan_f1 value: 55.452865064695004 - type: manhattan_precision value: 42.73504273504273 - type: manhattan_recall value: 78.94736842105263 - type: max_accuracy value: 84.39999999999999 - type: max_ap value: 60.094893481041154 - type: max_f1 value: 55.452865064695004 - task: type: STS dataset: type: PL-MTEB/cdscr-sts name: MTEB CDSC-R config: default split: test revision: None metrics: - type: cos_sim_pearson value: 83.8427417206754 - type: cos_sim_spearman value: 85.76946319798301 - type: euclidean_pearson value: 79.43901249477852 - type: euclidean_spearman value: 85.76946319798301 - type: manhattan_pearson value: 79.81046681362531 - type: manhattan_spearman value: 86.24115514951988 - task: type: Clustering dataset: type: C-MTEB/CLSClusteringP2P name: MTEB CLSClusteringP2P config: default split: test revision: 4b6227591c6c1a73bc76b1055f3b7f3588e72476 metrics: - type: v_measure value: 27.432031859995952 - task: type: Clustering dataset: type: C-MTEB/CLSClusteringS2S name: MTEB CLSClusteringS2S config: default split: test revision: e458b3f5414b62b7f9f83499ac1f5497ae2e869f metrics: - type: v_measure value: 28.32367305628197 - task: type: Reranking dataset: type: C-MTEB/CMedQAv1-reranking name: MTEB CMedQAv1 config: default split: test revision: 8d7f1e942507dac42dc58017c1a001c3717da7df metrics: - type: map value: 34.30720667137015 - type: mrr value: 40.24416666666666 - task: type: Reranking dataset: type: C-MTEB/CMedQAv2-reranking name: MTEB CMedQAv2 config: default split: test revision: 23d186750531a14a0357ca22cd92d712fd512ea0 metrics: - type: map value: 35.87700379259406 - type: mrr value: 40.80206349206349 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackAndroidRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 7.655000000000001 - type: map_at_10 value: 11.681999999999999 - type: map_at_100 value: 12.464 - type: map_at_1000 value: 12.603 - type: map_at_3 value: 10.514 - type: map_at_5 value: 11.083 - type: mrr_at_1 value: 10.157 - type: mrr_at_10 value: 14.773 - type: mrr_at_100 value: 15.581999999999999 - type: mrr_at_1000 value: 15.68 - type: mrr_at_3 value: 13.519 - type: mrr_at_5 value: 14.049 - type: ndcg_at_1 value: 10.157 - type: ndcg_at_10 value: 14.527999999999999 - type: ndcg_at_100 value: 18.695999999999998 - type: ndcg_at_1000 value: 22.709 - type: ndcg_at_3 value: 12.458 - type: ndcg_at_5 value: 13.152 - type: precision_at_1 value: 10.157 - type: precision_at_10 value: 2.976 - type: precision_at_100 value: 0.634 - type: precision_at_1000 value: 0.131 - type: precision_at_3 value: 6.152 - type: precision_at_5 value: 4.378 - type: recall_at_1 value: 7.655000000000001 - type: recall_at_10 value: 20.105 - type: recall_at_100 value: 39.181 - type: recall_at_1000 value: 68.06400000000001 - type: recall_at_3 value: 14.033000000000001 - type: recall_at_5 value: 16.209 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackEnglishRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 3.2329999999999997 - type: map_at_10 value: 5.378 - type: map_at_100 value: 5.774 - type: map_at_1000 value: 5.863 - type: map_at_3 value: 4.598 - type: map_at_5 value: 4.9750000000000005 - type: mrr_at_1 value: 4.076 - type: mrr_at_10 value: 6.679 - type: mrr_at_100 value: 7.151000000000001 - type: mrr_at_1000 value: 7.24 - type: mrr_at_3 value: 5.722 - type: mrr_at_5 value: 6.2059999999999995 - type: ndcg_at_1 value: 4.076 - type: ndcg_at_10 value: 6.994 - type: ndcg_at_100 value: 9.366 - type: ndcg_at_1000 value: 12.181000000000001 - type: ndcg_at_3 value: 5.356000000000001 - type: ndcg_at_5 value: 6.008 - type: precision_at_1 value: 4.076 - type: precision_at_10 value: 1.459 - type: precision_at_100 value: 0.334 - type: precision_at_1000 value: 0.075 - type: precision_at_3 value: 2.718 - type: precision_at_5 value: 2.089 - type: recall_at_1 value: 3.2329999999999997 - type: recall_at_10 value: 10.749 - type: recall_at_100 value: 21.776 - type: recall_at_1000 value: 42.278999999999996 - type: recall_at_3 value: 6.146999999999999 - type: recall_at_5 value: 7.779999999999999 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGamingRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 8.036 - type: map_at_10 value: 12.727 - type: map_at_100 value: 13.532 - type: map_at_1000 value: 13.653 - type: map_at_3 value: 11.15 - type: map_at_5 value: 11.965 - type: mrr_at_1 value: 9.404 - type: mrr_at_10 value: 14.493 - type: mrr_at_100 value: 15.274 - type: mrr_at_1000 value: 15.370000000000001 - type: mrr_at_3 value: 12.853 - type: mrr_at_5 value: 13.696 - type: ndcg_at_1 value: 9.404 - type: ndcg_at_10 value: 15.784 - type: ndcg_at_100 value: 20.104 - type: ndcg_at_1000 value: 23.357 - type: ndcg_at_3 value: 12.61 - type: ndcg_at_5 value: 13.988 - type: precision_at_1 value: 9.404 - type: precision_at_10 value: 2.947 - type: precision_at_100 value: 0.562 - type: precision_at_1000 value: 0.093 - type: precision_at_3 value: 6.04 - type: precision_at_5 value: 4.4639999999999995 - type: recall_at_1 value: 8.036 - type: recall_at_10 value: 23.429 - type: recall_at_100 value: 43.728 - type: recall_at_1000 value: 68.10000000000001 - type: recall_at_3 value: 14.99 - type: recall_at_5 value: 18.274 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGisRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 3.653 - type: map_at_10 value: 5.941 - type: map_at_100 value: 6.512 - type: map_at_1000 value: 6.6129999999999995 - type: map_at_3 value: 5.2540000000000004 - type: map_at_5 value: 5.645 - type: mrr_at_1 value: 3.955 - type: mrr_at_10 value: 6.4079999999999995 - type: mrr_at_100 value: 7.005999999999999 - type: mrr_at_1000 value: 7.105 - type: mrr_at_3 value: 5.593 - type: mrr_at_5 value: 6.051 - type: ndcg_at_1 value: 3.955 - type: ndcg_at_10 value: 7.342 - type: ndcg_at_100 value: 10.543 - type: ndcg_at_1000 value: 14.011000000000001 - type: ndcg_at_3 value: 5.853 - type: ndcg_at_5 value: 6.586 - type: precision_at_1 value: 3.955 - type: precision_at_10 value: 1.266 - type: precision_at_100 value: 0.315 - type: precision_at_1000 value: 0.066 - type: precision_at_3 value: 2.5989999999999998 - type: precision_at_5 value: 1.966 - type: recall_at_1 value: 3.653 - type: recall_at_10 value: 11.232000000000001 - type: recall_at_100 value: 26.625 - type: recall_at_1000 value: 54.476 - type: recall_at_3 value: 7.269 - type: recall_at_5 value: 8.982999999999999 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackMathematicaRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 2.257 - type: map_at_10 value: 3.881 - type: map_at_100 value: 4.279 - type: map_at_1000 value: 4.417 - type: map_at_3 value: 3.4070000000000005 - type: map_at_5 value: 3.744 - type: mrr_at_1 value: 2.9850000000000003 - type: mrr_at_10 value: 4.756 - type: mrr_at_100 value: 5.228 - type: mrr_at_1000 value: 5.354 - type: mrr_at_3 value: 4.125 - type: mrr_at_5 value: 4.567 - type: ndcg_at_1 value: 2.9850000000000003 - type: ndcg_at_10 value: 4.936999999999999 - type: ndcg_at_100 value: 7.664 - type: ndcg_at_1000 value: 12.045 - type: ndcg_at_3 value: 3.956 - type: ndcg_at_5 value: 4.584 - type: precision_at_1 value: 2.9850000000000003 - type: precision_at_10 value: 0.9329999999999999 - type: precision_at_100 value: 0.29 - type: precision_at_1000 value: 0.083 - type: precision_at_3 value: 1.949 - type: precision_at_5 value: 1.567 - type: recall_at_1 value: 2.257 - type: recall_at_10 value: 7.382 - type: recall_at_100 value: 20.689 - type: recall_at_1000 value: 53.586 - type: recall_at_3 value: 4.786 - type: recall_at_5 value: 6.2829999999999995 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackPhysicsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 6.691 - type: map_at_10 value: 9.447 - type: map_at_100 value: 10.174 - type: map_at_1000 value: 10.308 - type: map_at_3 value: 8.187999999999999 - type: map_at_5 value: 8.852 - type: mrr_at_1 value: 8.566 - type: mrr_at_10 value: 12.036 - type: mrr_at_100 value: 12.817 - type: mrr_at_1000 value: 12.918 - type: mrr_at_3 value: 10.539 - type: mrr_at_5 value: 11.381 - type: ndcg_at_1 value: 8.566 - type: ndcg_at_10 value: 11.95 - type: ndcg_at_100 value: 15.831000000000001 - type: ndcg_at_1000 value: 19.561 - type: ndcg_at_3 value: 9.467 - type: ndcg_at_5 value: 10.544 - type: precision_at_1 value: 8.566 - type: precision_at_10 value: 2.387 - type: precision_at_100 value: 0.538 - type: precision_at_1000 value: 0.104 - type: precision_at_3 value: 4.556 - type: precision_at_5 value: 3.5029999999999997 - type: recall_at_1 value: 6.691 - type: recall_at_10 value: 17.375 - type: recall_at_100 value: 34.503 - type: recall_at_1000 value: 61.492000000000004 - type: recall_at_3 value: 10.134 - type: recall_at_5 value: 13.056999999999999 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackProgrammersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 4.68 - type: map_at_10 value: 6.776999999999999 - type: map_at_100 value: 7.207 - type: map_at_1000 value: 7.321999999999999 - type: map_at_3 value: 6.007 - type: map_at_5 value: 6.356000000000001 - type: mrr_at_1 value: 5.479 - type: mrr_at_10 value: 8.094999999999999 - type: mrr_at_100 value: 8.622 - type: mrr_at_1000 value: 8.729000000000001 - type: mrr_at_3 value: 7.249 - type: mrr_at_5 value: 7.6770000000000005 - type: ndcg_at_1 value: 5.479 - type: ndcg_at_10 value: 8.474 - type: ndcg_at_100 value: 11.134 - type: ndcg_at_1000 value: 14.759 - type: ndcg_at_3 value: 6.888 - type: ndcg_at_5 value: 7.504 - type: precision_at_1 value: 5.479 - type: precision_at_10 value: 1.575 - type: precision_at_100 value: 0.35000000000000003 - type: precision_at_1000 value: 0.08099999999999999 - type: precision_at_3 value: 3.272 - type: precision_at_5 value: 2.374 - type: recall_at_1 value: 4.68 - type: recall_at_10 value: 12.552 - type: recall_at_100 value: 24.91 - type: recall_at_1000 value: 52.019999999999996 - type: recall_at_3 value: 8.057 - type: recall_at_5 value: 9.629999999999999 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 4.741750000000001 - type: map_at_10 value: 7.103916666666667 - type: map_at_100 value: 7.656499999999998 - type: map_at_1000 value: 7.767583333333332 - type: map_at_3 value: 6.262416666666668 - type: map_at_5 value: 6.693916666666667 - type: mrr_at_1 value: 5.780583333333332 - type: mrr_at_10 value: 8.576333333333332 - type: mrr_at_100 value: 9.17975 - type: mrr_at_1000 value: 9.279083333333334 - type: mrr_at_3 value: 7.608833333333333 - type: mrr_at_5 value: 8.111333333333333 - type: ndcg_at_1 value: 5.780583333333332 - type: ndcg_at_10 value: 8.866166666666668 - type: ndcg_at_100 value: 12.037083333333333 - type: ndcg_at_1000 value: 15.4555 - type: ndcg_at_3 value: 7.179083333333335 - type: ndcg_at_5 value: 7.897166666666666 - type: precision_at_1 value: 5.780583333333332 - type: precision_at_10 value: 1.6935833333333334 - type: precision_at_100 value: 0.3921666666666667 - type: precision_at_1000 value: 0.08391666666666667 - type: precision_at_3 value: 3.425416666666666 - type: precision_at_5 value: 2.5570833333333334 - type: recall_at_1 value: 4.741750000000001 - type: recall_at_10 value: 12.889083333333334 - type: recall_at_100 value: 27.81866666666667 - type: recall_at_1000 value: 53.52316666666667 - type: recall_at_3 value: 8.179333333333332 - type: recall_at_5 value: 10.004083333333334 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackStatsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 3.7130000000000005 - type: map_at_10 value: 5.734 - type: map_at_100 value: 6.297999999999999 - type: map_at_1000 value: 6.388000000000001 - type: map_at_3 value: 5.119 - type: map_at_5 value: 5.432 - type: mrr_at_1 value: 4.9079999999999995 - type: mrr_at_10 value: 7.2940000000000005 - type: mrr_at_100 value: 7.8549999999999995 - type: mrr_at_1000 value: 7.95 - type: mrr_at_3 value: 6.621 - type: mrr_at_5 value: 6.950000000000001 - type: ndcg_at_1 value: 4.9079999999999995 - type: ndcg_at_10 value: 7.167999999999999 - type: ndcg_at_100 value: 10.436 - type: ndcg_at_1000 value: 13.370999999999999 - type: ndcg_at_3 value: 5.959 - type: ndcg_at_5 value: 6.481000000000001 - type: precision_at_1 value: 4.9079999999999995 - type: precision_at_10 value: 1.3339999999999999 - type: precision_at_100 value: 0.33899999999999997 - type: precision_at_1000 value: 0.065 - type: precision_at_3 value: 2.965 - type: precision_at_5 value: 2.117 - type: recall_at_1 value: 3.7130000000000005 - type: recall_at_10 value: 10.156 - type: recall_at_100 value: 25.955000000000002 - type: recall_at_1000 value: 48.891 - type: recall_at_3 value: 6.795 - type: recall_at_5 value: 8.187999999999999 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackTexRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 2.114 - type: map_at_10 value: 3.4290000000000003 - type: map_at_100 value: 3.789 - type: map_at_1000 value: 3.878 - type: map_at_3 value: 2.9139999999999997 - type: map_at_5 value: 3.148 - type: mrr_at_1 value: 2.65 - type: mrr_at_10 value: 4.252000000000001 - type: mrr_at_100 value: 4.689 - type: mrr_at_1000 value: 4.782 - type: mrr_at_3 value: 3.671 - type: mrr_at_5 value: 3.9370000000000003 - type: ndcg_at_1 value: 2.65 - type: ndcg_at_10 value: 4.47 - type: ndcg_at_100 value: 6.654 - type: ndcg_at_1000 value: 9.713 - type: ndcg_at_3 value: 3.424 - type: ndcg_at_5 value: 3.794 - type: precision_at_1 value: 2.65 - type: precision_at_10 value: 0.9119999999999999 - type: precision_at_100 value: 0.248 - type: precision_at_1000 value: 0.063 - type: precision_at_3 value: 1.7209999999999999 - type: precision_at_5 value: 1.287 - type: recall_at_1 value: 2.114 - type: recall_at_10 value: 6.927 - type: recall_at_100 value: 17.26 - type: recall_at_1000 value: 40.672999999999995 - type: recall_at_3 value: 3.8859999999999997 - type: recall_at_5 value: 4.861 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackUnixRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 6.055 - type: map_at_10 value: 7.704999999999999 - type: map_at_100 value: 8.169 - type: map_at_1000 value: 8.257 - type: map_at_3 value: 7.033 - type: map_at_5 value: 7.4079999999999995 - type: mrr_at_1 value: 6.81 - type: mrr_at_10 value: 8.955 - type: mrr_at_100 value: 9.497 - type: mrr_at_1000 value: 9.583 - type: mrr_at_3 value: 8.116 - type: mrr_at_5 value: 8.526 - type: ndcg_at_1 value: 6.81 - type: ndcg_at_10 value: 9.113 - type: ndcg_at_100 value: 11.884 - type: ndcg_at_1000 value: 14.762 - type: ndcg_at_3 value: 7.675999999999999 - type: ndcg_at_5 value: 8.325000000000001 - type: precision_at_1 value: 6.81 - type: precision_at_10 value: 1.558 - type: precision_at_100 value: 0.34299999999999997 - type: precision_at_1000 value: 0.068 - type: precision_at_3 value: 3.2960000000000003 - type: precision_at_5 value: 2.388 - type: recall_at_1 value: 6.055 - type: recall_at_10 value: 12.219 - type: recall_at_100 value: 25.304 - type: recall_at_1000 value: 47.204 - type: recall_at_3 value: 8.387 - type: recall_at_5 value: 9.991 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWebmastersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 5.043 - type: map_at_10 value: 7.394 - type: map_at_100 value: 8.096 - type: map_at_1000 value: 8.243 - type: map_at_3 value: 6.300999999999999 - type: map_at_5 value: 6.7780000000000005 - type: mrr_at_1 value: 6.126 - type: mrr_at_10 value: 9.308 - type: mrr_at_100 value: 10.091 - type: mrr_at_1000 value: 10.206 - type: mrr_at_3 value: 7.938000000000001 - type: mrr_at_5 value: 8.64 - type: ndcg_at_1 value: 6.126 - type: ndcg_at_10 value: 9.474 - type: ndcg_at_100 value: 13.238 - type: ndcg_at_1000 value: 17.366 - type: ndcg_at_3 value: 7.3260000000000005 - type: ndcg_at_5 value: 8.167 - type: precision_at_1 value: 6.126 - type: precision_at_10 value: 1.9959999999999998 - type: precision_at_100 value: 0.494 - type: precision_at_1000 value: 0.125 - type: precision_at_3 value: 3.557 - type: precision_at_5 value: 2.9250000000000003 - type: recall_at_1 value: 5.043 - type: recall_at_10 value: 13.812 - type: recall_at_100 value: 31.375999999999998 - type: recall_at_1000 value: 61.309999999999995 - type: recall_at_3 value: 7.8020000000000005 - type: recall_at_5 value: 9.725999999999999 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWordpressRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 3.771 - type: map_at_10 value: 5.152 - type: map_at_100 value: 5.584 - type: map_at_1000 value: 5.666 - type: map_at_3 value: 4.664 - type: map_at_5 value: 4.941 - type: mrr_at_1 value: 4.251 - type: mrr_at_10 value: 5.867 - type: mrr_at_100 value: 6.345000000000001 - type: mrr_at_1000 value: 6.432 - type: mrr_at_3 value: 5.36 - type: mrr_at_5 value: 5.656 - type: ndcg_at_1 value: 4.251 - type: ndcg_at_10 value: 6.16 - type: ndcg_at_100 value: 8.895 - type: ndcg_at_1000 value: 11.631 - type: ndcg_at_3 value: 5.176 - type: ndcg_at_5 value: 5.633 - type: precision_at_1 value: 4.251 - type: precision_at_10 value: 0.98 - type: precision_at_100 value: 0.259 - type: precision_at_1000 value: 0.053 - type: precision_at_3 value: 2.2800000000000002 - type: precision_at_5 value: 1.627 - type: recall_at_1 value: 3.771 - type: recall_at_10 value: 8.731 - type: recall_at_100 value: 22.517 - type: recall_at_1000 value: 44.183 - type: recall_at_3 value: 5.866 - type: recall_at_5 value: 7.066999999999999 - task: type: Retrieval dataset: type: climate-fever name: MTEB ClimateFEVER config: default split: test revision: None metrics: - type: map_at_1 value: 0.543 - type: map_at_10 value: 1.027 - type: map_at_100 value: 1.228 - type: map_at_1000 value: 1.266 - type: map_at_3 value: 0.756 - type: map_at_5 value: 0.877 - type: mrr_at_1 value: 1.3679999999999999 - type: mrr_at_10 value: 2.474 - type: mrr_at_100 value: 2.8369999999999997 - type: mrr_at_1000 value: 2.894 - type: mrr_at_3 value: 1.8780000000000001 - type: mrr_at_5 value: 2.1319999999999997 - type: ndcg_at_1 value: 1.3679999999999999 - type: ndcg_at_10 value: 1.791 - type: ndcg_at_100 value: 3.06 - type: ndcg_at_1000 value: 4.501 - type: ndcg_at_3 value: 1.16 - type: ndcg_at_5 value: 1.3419999999999999 - type: precision_at_1 value: 1.3679999999999999 - type: precision_at_10 value: 0.697 - type: precision_at_100 value: 0.193 - type: precision_at_1000 value: 0.045 - type: precision_at_3 value: 0.9339999999999999 - type: precision_at_5 value: 0.808 - type: recall_at_1 value: 0.543 - type: recall_at_10 value: 2.5149999999999997 - type: recall_at_100 value: 7.356999999999999 - type: recall_at_1000 value: 16.233 - type: recall_at_3 value: 1.018 - type: recall_at_5 value: 1.5150000000000001 - task: type: Retrieval dataset: type: C-MTEB/CmedqaRetrieval name: MTEB CmedqaRetrieval config: default split: dev revision: cd540c506dae1cf9e9a59c3e06f42030d54e7301 metrics: - type: map_at_1 value: 3.7289999999999996 - type: map_at_10 value: 5.524 - type: map_at_100 value: 5.984 - type: map_at_1000 value: 6.087 - type: map_at_3 value: 4.854 - type: map_at_5 value: 5.2299999999999995 - type: mrr_at_1 value: 6.177 - type: mrr_at_10 value: 8.541 - type: mrr_at_100 value: 9.073 - type: mrr_at_1000 value: 9.161 - type: mrr_at_3 value: 7.71 - type: mrr_at_5 value: 8.148 - type: ndcg_at_1 value: 6.177 - type: ndcg_at_10 value: 7.217999999999999 - type: ndcg_at_100 value: 9.927 - type: ndcg_at_1000 value: 13.062000000000001 - type: ndcg_at_3 value: 6.0569999999999995 - type: ndcg_at_5 value: 6.544999999999999 - type: precision_at_1 value: 6.177 - type: precision_at_10 value: 1.6729999999999998 - type: precision_at_100 value: 0.38999999999999996 - type: precision_at_1000 value: 0.082 - type: precision_at_3 value: 3.5090000000000003 - type: precision_at_5 value: 2.596 - type: recall_at_1 value: 3.7289999999999996 - type: recall_at_10 value: 9.501 - type: recall_at_100 value: 21.444 - type: recall_at_1000 value: 43.891999999999996 - type: recall_at_3 value: 6.053 - type: recall_at_5 value: 7.531000000000001 - task: type: PairClassification dataset: type: C-MTEB/CMNLI name: MTEB Cmnli config: default split: validation revision: 41bc36f332156f7adc9e38f53777c959b2ae9766 metrics: - type: cos_sim_accuracy value: 58.123872519543 - type: cos_sim_ap value: 61.86046509726734 - type: cos_sim_f1 value: 68.18181818181817 - type: cos_sim_precision value: 52.4198617221873 - type: cos_sim_recall value: 97.49824643441664 - type: dot_accuracy value: 58.123872519543 - type: dot_ap value: 61.860555259802986 - type: dot_f1 value: 68.18181818181817 - type: dot_precision value: 52.4198617221873 - type: dot_recall value: 97.49824643441664 - type: euclidean_accuracy value: 58.123872519543 - type: euclidean_ap value: 61.87698627731538 - type: euclidean_f1 value: 68.18181818181817 - type: euclidean_precision value: 52.4198617221873 - type: euclidean_recall value: 97.49824643441664 - type: manhattan_accuracy value: 58.123872519543 - type: manhattan_ap value: 61.99468883207791 - type: manhattan_f1 value: 68.33675564681727 - type: manhattan_precision value: 52.671562420866046 - type: manhattan_recall value: 97.26443768996961 - type: max_accuracy value: 58.123872519543 - type: max_ap value: 61.99468883207791 - type: max_f1 value: 68.33675564681727 - task: type: Retrieval dataset: type: C-MTEB/CovidRetrieval name: MTEB CovidRetrieval config: default split: dev revision: 1271c7809071a13532e05f25fb53511ffce77117 metrics: - type: map_at_1 value: 6.428000000000001 - type: map_at_10 value: 8.883000000000001 - type: map_at_100 value: 9.549000000000001 - type: map_at_1000 value: 9.665 - type: map_at_3 value: 8.061 - type: map_at_5 value: 8.475000000000001 - type: mrr_at_1 value: 6.428000000000001 - type: mrr_at_10 value: 8.896999999999998 - type: mrr_at_100 value: 9.557 - type: mrr_at_1000 value: 9.674000000000001 - type: mrr_at_3 value: 8.061 - type: mrr_at_5 value: 8.488 - type: ndcg_at_1 value: 6.428000000000001 - type: ndcg_at_10 value: 10.382 - type: ndcg_at_100 value: 14.235999999999999 - type: ndcg_at_1000 value: 18.04 - type: ndcg_at_3 value: 8.613999999999999 - type: ndcg_at_5 value: 9.372 - type: precision_at_1 value: 6.428000000000001 - type: precision_at_10 value: 1.528 - type: precision_at_100 value: 0.349 - type: precision_at_1000 value: 0.067 - type: precision_at_3 value: 3.4070000000000005 - type: precision_at_5 value: 2.424 - type: recall_at_1 value: 6.428000000000001 - type: recall_at_10 value: 15.226999999999999 - type: recall_at_100 value: 34.694 - type: recall_at_1000 value: 66.07 - type: recall_at_3 value: 10.221 - type: recall_at_5 value: 12.065 - task: type: Retrieval dataset: type: dbpedia-entity name: MTEB DBPedia config: default split: test revision: None metrics: - type: map_at_1 value: 0.541 - type: map_at_10 value: 1.1560000000000001 - type: map_at_100 value: 1.508 - type: map_at_1000 value: 1.598 - type: map_at_3 value: 0.918 - type: map_at_5 value: 0.992 - type: mrr_at_1 value: 9.5 - type: mrr_at_10 value: 13.446 - type: mrr_at_100 value: 13.935 - type: mrr_at_1000 value: 14.008999999999999 - type: mrr_at_3 value: 12.083 - type: mrr_at_5 value: 12.733 - type: ndcg_at_1 value: 5.75 - type: ndcg_at_10 value: 3.9210000000000003 - type: ndcg_at_100 value: 3.975 - type: ndcg_at_1000 value: 5.634 - type: ndcg_at_3 value: 4.87 - type: ndcg_at_5 value: 4.259 - type: precision_at_1 value: 9.5 - type: precision_at_10 value: 3.9 - type: precision_at_100 value: 1.015 - type: precision_at_1000 value: 0.297 - type: precision_at_3 value: 6.75 - type: precision_at_5 value: 5.25 - type: recall_at_1 value: 0.541 - type: recall_at_10 value: 2.228 - type: recall_at_100 value: 4.9430000000000005 - type: recall_at_1000 value: 11.661000000000001 - type: recall_at_3 value: 1.264 - type: recall_at_5 value: 1.4869999999999999 - task: type: Classification dataset: type: DDSC/dkhate name: MTEB DKHateClassification config: default split: test revision: 59d12749a3c91a186063c7d729ec392fda94681c metrics: - type: accuracy value: 69.96960486322187 - type: ap value: 91.23131906690253 - type: f1 value: 57.11872970138122 - task: type: Classification dataset: type: AI-Sweden/SuperLim name: MTEB DalajClassification config: default split: test revision: 7ebf0b4caa7b2ae39698a889de782c09e6f5ee56 metrics: - type: accuracy value: 49.75225225225225 - type: ap value: 49.88223192425368 - type: f1 value: 49.55059044107012 - task: type: Classification dataset: type: danish_political_comments name: MTEB DanishPoliticalCommentsClassification config: default split: train revision: edbb03726c04a0efab14fc8c3b8b79e4d420e5a1 metrics: - type: accuracy value: 37.58534554537886 - type: f1 value: 33.99440115952713 - task: type: Retrieval dataset: type: C-MTEB/DuRetrieval name: MTEB DuRetrieval config: default split: dev revision: a1a333e290fe30b10f3f56498e3a0d911a693ced metrics: - type: map_at_1 value: 0.608 - type: map_at_10 value: 0.882 - type: map_at_100 value: 0.962 - type: map_at_1000 value: 1.028 - type: map_at_3 value: 0.749 - type: map_at_5 value: 0.8240000000000001 - type: mrr_at_1 value: 2.0500000000000003 - type: mrr_at_10 value: 2.796 - type: mrr_at_100 value: 2.983 - type: mrr_at_1000 value: 3.09 - type: mrr_at_3 value: 2.483 - type: mrr_at_5 value: 2.661 - type: ndcg_at_1 value: 2.0500000000000003 - type: ndcg_at_10 value: 1.435 - type: ndcg_at_100 value: 1.991 - type: ndcg_at_1000 value: 4.961 - type: ndcg_at_3 value: 1.428 - type: ndcg_at_5 value: 1.369 - type: precision_at_1 value: 2.0500000000000003 - type: precision_at_10 value: 0.5349999999999999 - type: precision_at_100 value: 0.127 - type: precision_at_1000 value: 0.086 - type: precision_at_3 value: 1.05 - type: precision_at_5 value: 0.84 - type: recall_at_1 value: 0.608 - type: recall_at_10 value: 1.54 - type: recall_at_100 value: 3.5069999999999997 - type: recall_at_1000 value: 20.531 - type: recall_at_3 value: 0.901 - type: recall_at_5 value: 1.168 - task: type: Retrieval dataset: type: C-MTEB/EcomRetrieval name: MTEB EcomRetrieval config: default split: dev revision: 687de13dc7294d6fd9be10c6945f9e8fec8166b9 metrics: - type: map_at_1 value: 3.1 - type: map_at_10 value: 4.016 - type: map_at_100 value: 4.455 - type: map_at_1000 value: 4.579 - type: map_at_3 value: 3.567 - type: map_at_5 value: 3.8019999999999996 - type: mrr_at_1 value: 3.1 - type: mrr_at_10 value: 4.016 - type: mrr_at_100 value: 4.455 - type: mrr_at_1000 value: 4.579 - type: mrr_at_3 value: 3.567 - type: mrr_at_5 value: 3.8019999999999996 - type: ndcg_at_1 value: 3.1 - type: ndcg_at_10 value: 4.684 - type: ndcg_at_100 value: 7.284 - type: ndcg_at_1000 value: 11.689 - type: ndcg_at_3 value: 3.7289999999999996 - type: ndcg_at_5 value: 4.146 - type: precision_at_1 value: 3.1 - type: precision_at_10 value: 0.69 - type: precision_at_100 value: 0.202 - type: precision_at_1000 value: 0.056999999999999995 - type: precision_at_3 value: 1.4000000000000001 - type: precision_at_5 value: 1.04 - type: recall_at_1 value: 3.1 - type: recall_at_10 value: 6.9 - type: recall_at_100 value: 20.200000000000003 - type: recall_at_1000 value: 57.3 - type: recall_at_3 value: 4.2 - type: recall_at_5 value: 5.2 - task: type: Classification dataset: type: mteb/emotion name: MTEB EmotionClassification config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 38.285000000000004 - type: f1 value: 35.35979931355028 - task: type: Retrieval dataset: type: fever name: MTEB FEVER config: default split: test revision: None metrics: - type: map_at_1 value: 0.9249999999999999 - type: map_at_10 value: 1.311 - type: map_at_100 value: 1.363 - type: map_at_1000 value: 1.376 - type: map_at_3 value: 1.145 - type: map_at_5 value: 1.233 - type: mrr_at_1 value: 0.975 - type: mrr_at_10 value: 1.371 - type: mrr_at_100 value: 1.426 - type: mrr_at_1000 value: 1.439 - type: mrr_at_3 value: 1.195 - type: mrr_at_5 value: 1.286 - type: ndcg_at_1 value: 0.975 - type: ndcg_at_10 value: 1.5859999999999999 - type: ndcg_at_100 value: 1.8800000000000001 - type: ndcg_at_1000 value: 2.313 - type: ndcg_at_3 value: 1.229 - type: ndcg_at_5 value: 1.388 - type: precision_at_1 value: 0.975 - type: precision_at_10 value: 0.254 - type: precision_at_100 value: 0.041 - type: precision_at_1000 value: 0.008 - type: precision_at_3 value: 0.49 - type: precision_at_5 value: 0.375 - type: recall_at_1 value: 0.9249999999999999 - type: recall_at_10 value: 2.4250000000000003 - type: recall_at_100 value: 3.866 - type: recall_at_1000 value: 7.401000000000001 - type: recall_at_3 value: 1.4200000000000002 - type: recall_at_5 value: 1.81 - task: type: Retrieval dataset: type: fiqa-pl name: MTEB FiQA-PL config: default split: test revision: None metrics: - type: map_at_1 value: 0.959 - type: map_at_10 value: 1.952 - type: map_at_100 value: 2.281 - type: map_at_1000 value: 2.393 - type: map_at_3 value: 1.703 - type: map_at_5 value: 1.8319999999999999 - type: mrr_at_1 value: 2.469 - type: mrr_at_10 value: 4.547 - type: mrr_at_100 value: 5.021 - type: mrr_at_1000 value: 5.1339999999999995 - type: mrr_at_3 value: 3.884 - type: mrr_at_5 value: 4.223 - type: ndcg_at_1 value: 2.469 - type: ndcg_at_10 value: 3.098 - type: ndcg_at_100 value: 5.177 - type: ndcg_at_1000 value: 8.889 - type: ndcg_at_3 value: 2.7119999999999997 - type: ndcg_at_5 value: 2.8000000000000003 - type: precision_at_1 value: 2.469 - type: precision_at_10 value: 1.065 - type: precision_at_100 value: 0.321 - type: precision_at_1000 value: 0.095 - type: precision_at_3 value: 2.109 - type: precision_at_5 value: 1.574 - type: recall_at_1 value: 0.959 - type: recall_at_10 value: 4.075 - type: recall_at_100 value: 12.487 - type: recall_at_1000 value: 36.854 - type: recall_at_3 value: 2.632 - type: recall_at_5 value: 3.231 - task: type: Retrieval dataset: type: fiqa name: MTEB FiQA2018 config: default split: test revision: None metrics: - type: map_at_1 value: 1.032 - type: map_at_10 value: 1.8849999999999998 - type: map_at_100 value: 2.167 - type: map_at_1000 value: 2.266 - type: map_at_3 value: 1.609 - type: map_at_5 value: 1.7680000000000002 - type: mrr_at_1 value: 2.6229999999999998 - type: mrr_at_10 value: 4.479 - type: mrr_at_100 value: 4.92 - type: mrr_at_1000 value: 5.029999999999999 - type: mrr_at_3 value: 3.7289999999999996 - type: mrr_at_5 value: 4.138 - type: ndcg_at_1 value: 2.6229999999999998 - type: ndcg_at_10 value: 3.005 - type: ndcg_at_100 value: 5.01 - type: ndcg_at_1000 value: 8.312 - type: ndcg_at_3 value: 2.548 - type: ndcg_at_5 value: 2.735 - type: precision_at_1 value: 2.6229999999999998 - type: precision_at_10 value: 1.049 - type: precision_at_100 value: 0.31 - type: precision_at_1000 value: 0.089 - type: precision_at_3 value: 1.955 - type: precision_at_5 value: 1.574 - type: recall_at_1 value: 1.032 - type: recall_at_10 value: 3.888 - type: recall_at_100 value: 12.414 - type: recall_at_1000 value: 33.823 - type: recall_at_3 value: 2.37 - type: recall_at_5 value: 3.077 - task: type: Retrieval dataset: type: jinaai/ger_da_lir name: MTEB GerDaLIR config: default split: test revision: 0bb47f1d73827e96964edb84dfe552f62f4fd5eb metrics: - type: map_at_1 value: 0.542 - type: map_at_10 value: 0.8130000000000001 - type: map_at_100 value: 0.898 - type: map_at_1000 value: 0.9209999999999999 - type: map_at_3 value: 0.709 - type: map_at_5 value: 0.764 - type: mrr_at_1 value: 0.594 - type: mrr_at_10 value: 0.8880000000000001 - type: mrr_at_100 value: 0.9820000000000001 - type: mrr_at_1000 value: 1.008 - type: mrr_at_3 value: 0.774 - type: mrr_at_5 value: 0.832 - type: ndcg_at_1 value: 0.594 - type: ndcg_at_10 value: 1.0030000000000001 - type: ndcg_at_100 value: 1.537 - type: ndcg_at_1000 value: 2.4330000000000003 - type: ndcg_at_3 value: 0.782 - type: ndcg_at_5 value: 0.882 - type: precision_at_1 value: 0.594 - type: precision_at_10 value: 0.16999999999999998 - type: precision_at_100 value: 0.048 - type: precision_at_1000 value: 0.013 - type: precision_at_3 value: 0.33899999999999997 - type: precision_at_5 value: 0.255 - type: recall_at_1 value: 0.542 - type: recall_at_10 value: 1.533 - type: recall_at_100 value: 4.204 - type: recall_at_1000 value: 11.574 - type: recall_at_3 value: 0.932 - type: recall_at_5 value: 1.172 - task: type: Retrieval dataset: type: deepset/germandpr name: MTEB GermanDPR config: default split: test revision: 5129d02422a66be600ac89cd3e8531b4f97d347d metrics: - type: map_at_1 value: 25.561 - type: map_at_10 value: 38.873000000000005 - type: map_at_100 value: 40.004 - type: map_at_1000 value: 40.03 - type: map_at_3 value: 34.585 - type: map_at_5 value: 36.980000000000004 - type: mrr_at_1 value: 25.463 - type: mrr_at_10 value: 38.792 - type: mrr_at_100 value: 39.922000000000004 - type: mrr_at_1000 value: 39.949 - type: mrr_at_3 value: 34.504000000000005 - type: mrr_at_5 value: 36.899 - type: ndcg_at_1 value: 25.561 - type: ndcg_at_10 value: 46.477000000000004 - type: ndcg_at_100 value: 51.751999999999995 - type: ndcg_at_1000 value: 52.366 - type: ndcg_at_3 value: 37.645 - type: ndcg_at_5 value: 41.953 - type: precision_at_1 value: 25.561 - type: precision_at_10 value: 7.083 - type: precision_at_100 value: 0.9490000000000001 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 15.512 - type: precision_at_5 value: 11.395 - type: recall_at_1 value: 25.561 - type: recall_at_10 value: 70.829 - type: recall_at_100 value: 94.92699999999999 - type: recall_at_1000 value: 99.61 - type: recall_at_3 value: 46.537 - type: recall_at_5 value: 56.976000000000006 - task: type: Retrieval dataset: type: mteb/germanquad-retrieval name: MTEB GermanQuAD-Retrieval config: default split: test revision: f5c87ae5a2e7a5106606314eef45255f03151bb3 metrics: - type: map_at_1 value: 53.539 - type: map_at_10 value: 65.144 - type: map_at_100 value: 65.627 - type: map_at_1000 value: 65.63900000000001 - type: map_at_3 value: 62.598 - type: map_at_5 value: 64.302 - type: mrr_at_1 value: 53.539 - type: mrr_at_10 value: 65.144 - type: mrr_at_100 value: 65.627 - type: mrr_at_1000 value: 65.63900000000001 - type: mrr_at_3 value: 62.598 - type: mrr_at_5 value: 64.302 - type: ndcg_at_1 value: 53.539 - type: ndcg_at_10 value: 70.602 - type: ndcg_at_100 value: 72.886 - type: ndcg_at_1000 value: 73.14500000000001 - type: ndcg_at_3 value: 65.52900000000001 - type: ndcg_at_5 value: 68.596 - type: precision_at_1 value: 53.539 - type: precision_at_10 value: 8.757 - type: precision_at_100 value: 0.9809999999999999 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 24.667 - type: precision_at_5 value: 16.289 - type: recall_at_1 value: 53.539 - type: recall_at_10 value: 87.568 - type: recall_at_100 value: 98.09400000000001 - type: recall_at_1000 value: 100.0 - type: recall_at_3 value: 74.002 - type: recall_at_5 value: 81.443 - task: type: STS dataset: type: jinaai/german-STSbenchmark name: MTEB GermanSTSBenchmark config: default split: test revision: e36907544d44c3a247898ed81540310442329e20 metrics: - type: cos_sim_pearson value: 68.82052535790737 - type: cos_sim_spearman value: 67.9356892072251 - type: euclidean_pearson value: 67.2308663006278 - type: euclidean_spearman value: 67.93572522920142 - type: manhattan_pearson value: 67.23568952733595 - type: manhattan_spearman value: 67.91660489262797 - task: type: Retrieval dataset: type: hotpotqa name: MTEB HotpotQA config: default split: test revision: None metrics: - type: map_at_1 value: 6.813 - type: map_at_10 value: 9.49 - type: map_at_100 value: 9.959 - type: map_at_1000 value: 10.024 - type: map_at_3 value: 8.618 - type: map_at_5 value: 9.084 - type: mrr_at_1 value: 13.626 - type: mrr_at_10 value: 17.818 - type: mrr_at_100 value: 18.412 - type: mrr_at_1000 value: 18.482000000000003 - type: mrr_at_3 value: 16.506999999999998 - type: mrr_at_5 value: 17.219 - type: ndcg_at_1 value: 13.626 - type: ndcg_at_10 value: 12.959999999999999 - type: ndcg_at_100 value: 15.562999999999999 - type: ndcg_at_1000 value: 17.571 - type: ndcg_at_3 value: 10.995000000000001 - type: ndcg_at_5 value: 11.908000000000001 - type: precision_at_1 value: 13.626 - type: precision_at_10 value: 2.995 - type: precision_at_100 value: 0.51 - type: precision_at_1000 value: 0.078 - type: precision_at_3 value: 7.000000000000001 - type: precision_at_5 value: 4.926 - type: recall_at_1 value: 6.813 - type: recall_at_10 value: 14.976 - type: recall_at_100 value: 25.517 - type: recall_at_1000 value: 39.095 - type: recall_at_3 value: 10.5 - type: recall_at_5 value: 12.316 - task: type: Classification dataset: type: C-MTEB/IFlyTek-classification name: MTEB IFlyTek config: default split: validation revision: 421605374b29664c5fc098418fe20ada9bd55f8a metrics: - type: accuracy value: 38.01462100808003 - type: f1 value: 26.680357453754215 - task: type: Classification dataset: type: mteb/imdb name: MTEB ImdbClassification config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 55.7508 - type: ap value: 53.28158993124153 - type: f1 value: 55.34571379744637 - task: type: Classification dataset: type: C-MTEB/JDReview-classification name: MTEB JDReview config: default split: test revision: b7c64bd89eb87f8ded463478346f76731f07bf8b metrics: - type: accuracy value: 69.58724202626641 - type: ap value: 30.04577466931377 - type: f1 value: 62.46921898313143 - task: type: STS dataset: type: C-MTEB/LCQMC name: MTEB LCQMC config: default split: test revision: 17f9b096f80380fce5ed12a9be8be7784b337daf metrics: - type: cos_sim_pearson value: 48.80585861169271 - type: cos_sim_spearman value: 50.11025991147549 - type: euclidean_pearson value: 50.055425341198934 - type: euclidean_spearman value: 50.11024862622995 - type: manhattan_pearson value: 50.029980024931064 - type: manhattan_spearman value: 50.074388245963384 - task: type: Classification dataset: type: DDSC/lcc name: MTEB LccSentimentClassification config: default split: test revision: de7ba3406ee55ea2cc52a0a41408fa6aede6d3c6 metrics: - type: accuracy value: 54.266666666666666 - type: f1 value: 52.181931818742875 - task: type: Reranking dataset: type: jinaai/miracl name: MTEB MIRACL config: default split: test revision: d28a029f35c4ff7f616df47b0edf54e6882395e6 metrics: - type: map value: 51.40745004398599 - type: mrr value: 56.71940267335004 - task: type: Reranking dataset: type: C-MTEB/Mmarco-reranking name: MTEB MMarcoReranking config: default split: dev revision: 8e0c766dbe9e16e1d221116a3f36795fbade07f6 metrics: - type: map value: 5.831060174627054 - type: mrr value: 4.019047619047618 - task: type: Retrieval dataset: type: C-MTEB/MMarcoRetrieval name: MTEB MMarcoRetrieval config: default split: dev revision: 539bbde593d947e2a124ba72651aafc09eb33fc2 metrics: - type: map_at_1 value: 5.826 - type: map_at_10 value: 8.956999999999999 - type: map_at_100 value: 9.746 - type: map_at_1000 value: 9.873999999999999 - type: map_at_3 value: 7.757 - type: map_at_5 value: 8.373 - type: mrr_at_1 value: 6.046 - type: mrr_at_10 value: 9.251 - type: mrr_at_100 value: 10.044 - type: mrr_at_1000 value: 10.167 - type: mrr_at_3 value: 8.028 - type: mrr_at_5 value: 8.66 - type: ndcg_at_1 value: 6.046 - type: ndcg_at_10 value: 10.998 - type: ndcg_at_100 value: 15.568999999999999 - type: ndcg_at_1000 value: 19.453 - type: ndcg_at_3 value: 8.468 - type: ndcg_at_5 value: 9.582 - type: precision_at_1 value: 6.046 - type: precision_at_10 value: 1.807 - type: precision_at_100 value: 0.42500000000000004 - type: precision_at_1000 value: 0.076 - type: precision_at_3 value: 3.572 - type: precision_at_5 value: 2.702 - type: recall_at_1 value: 5.826 - type: recall_at_10 value: 17.291 - type: recall_at_100 value: 40.037 - type: recall_at_1000 value: 71.351 - type: recall_at_3 value: 10.269 - type: recall_at_5 value: 12.950000000000001 - task: type: Retrieval dataset: type: msmarco name: MTEB MSMARCO config: default split: dev revision: None metrics: - type: map_at_1 value: 1.203 - type: map_at_10 value: 2.27 - type: map_at_100 value: 2.5860000000000003 - type: map_at_1000 value: 2.661 - type: map_at_3 value: 1.8159999999999998 - type: map_at_5 value: 2.037 - type: mrr_at_1 value: 1.232 - type: mrr_at_10 value: 2.338 - type: mrr_at_100 value: 2.665 - type: mrr_at_1000 value: 2.7390000000000003 - type: mrr_at_3 value: 1.87 - type: mrr_at_5 value: 2.1 - type: ndcg_at_1 value: 1.232 - type: ndcg_at_10 value: 3.005 - type: ndcg_at_100 value: 4.936 - type: ndcg_at_1000 value: 7.441000000000001 - type: ndcg_at_3 value: 2.036 - type: ndcg_at_5 value: 2.435 - type: precision_at_1 value: 1.232 - type: precision_at_10 value: 0.549 - type: precision_at_100 value: 0.158 - type: precision_at_1000 value: 0.038 - type: precision_at_3 value: 0.903 - type: precision_at_5 value: 0.739 - type: recall_at_1 value: 1.203 - type: recall_at_10 value: 5.332 - type: recall_at_100 value: 15.164 - type: recall_at_1000 value: 35.831 - type: recall_at_3 value: 2.622 - type: recall_at_5 value: 3.572 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (en) config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 89.92476060191518 - type: f1 value: 89.30222882069823 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (de) config: de split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 89.54353338968724 - type: f1 value: 88.23043644828002 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (es) config: es split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 90.62374916611076 - type: f1 value: 89.68544977510335 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (fr) config: fr split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 86.18540557469466 - type: f1 value: 85.7362674669331 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (hi) config: hi split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 89.41556113302258 - type: f1 value: 89.04934651990581 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (th) config: th split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 85.89511754068715 - type: f1 value: 85.57630467968119 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (en) config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 70.85043319653442 - type: f1 value: 46.0794069318026 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (de) config: de split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 73.43195266272188 - type: f1 value: 48.08015719781981 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (es) config: es split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 73.8425617078052 - type: f1 value: 49.37915156189611 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (fr) config: fr split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 66.75227059191982 - type: f1 value: 43.4642946741452 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (hi) config: hi split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 69.13589100035855 - type: f1 value: 46.25935961966482 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (th) config: th split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 68.47016274864377 - type: f1 value: 46.197113305277796 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (af) config: af split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 58.14727639542704 - type: f1 value: 55.58745169431752 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (am) config: am split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 57.91190316072628 - type: f1 value: 55.46589962622107 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ar) config: ar split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 57.22932078009414 - type: f1 value: 53.661218041561334 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (az) config: az split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 57.16543375924681 - type: f1 value: 55.16504653263189 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (bn) config: bn split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 62.239408204438476 - type: f1 value: 58.941991707183874 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (cy) config: cy split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 51.186953597848 - type: f1 value: 49.59432722397084 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (da) config: da split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 62.030934767989244 - type: f1 value: 58.836302050830966 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (de) config: de split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 61.314727639542696 - type: f1 value: 57.80700293522655 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (el) config: el split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 64.20645595158037 - type: f1 value: 61.36755812840151 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (en) config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 64.36785474108943 - type: f1 value: 61.15645935863754 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (es) config: es split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 63.97108271687962 - type: f1 value: 62.07352472659557 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (fa) config: fa split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 66.67114996637525 - type: f1 value: 63.420170447126324 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (fi) config: fi split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 62.864828513786144 - type: f1 value: 59.655860488861926 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (fr) config: fr split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 58.55077336919974 - type: f1 value: 55.28215385204243 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (he) config: he split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 63.453261600538 - type: f1 value: 59.991998820039186 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (hi) config: hi split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 61.32145258910558 - type: f1 value: 58.9676667104426 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (hu) config: hu split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 62.905178211163424 - type: f1 value: 59.645126480791674 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (hy) config: hy split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 60.03026227303295 - type: f1 value: 56.68905593909442 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (id) config: id split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 63.28850033624749 - type: f1 value: 60.21862015326403 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (is) config: is split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 56.0221923335575 - type: f1 value: 53.388473451598315 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (it) config: it split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 64.44182918628111 - type: f1 value: 62.14806714489123 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ja) config: ja split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 63.69535978480162 - type: f1 value: 62.40231098840202 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (jv) config: jv split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 52.00067249495628 - type: f1 value: 48.871263427511984 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ka) config: ka split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 54.088769334229994 - type: f1 value: 52.68998451556 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (km) config: km split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 43.34229993275051 - type: f1 value: 40.578510490463024 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (kn) config: kn split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 57.87491593813046 - type: f1 value: 55.19579071673386 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ko) config: ko split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 62.69334229993275 - type: f1 value: 60.90210922623679 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (lv) config: lv split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 56.240753194351036 - type: f1 value: 54.137519761157485 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ml) config: ml split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 62.81439139206457 - type: f1 value: 60.46554841337619 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (mn) config: mn split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 58.49361129791527 - type: f1 value: 55.12919894175168 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ms) config: ms split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 61.55682582380633 - type: f1 value: 58.81763499302702 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (my) config: my split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 59.3981170141224 - type: f1 value: 56.31810441546048 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (nb) config: nb split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 59.89576328177538 - type: f1 value: 57.35130066022407 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (nl) config: nl split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 64.55951580363148 - type: f1 value: 61.50868742463585 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (pl) config: pl split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 65.86079354404842 - type: f1 value: 61.94702597578807 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (pt) config: pt split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 63.49024882313383 - type: f1 value: 60.796412851533454 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ro) config: ro split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 62.53194351042366 - type: f1 value: 59.9167382336848 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ru) config: ru split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 62.62945527908541 - type: f1 value: 59.195444230665096 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (sl) config: sl split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 63.43308675184935 - type: f1 value: 60.605749901316145 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (sq) config: sq split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 61.44586415601883 - type: f1 value: 58.635066561729396 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (sv) config: sv split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 62.86482851378615 - type: f1 value: 59.75440194153033 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (sw) config: sw split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 56.250840618695364 - type: f1 value: 54.84944007944625 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ta) config: ta split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 59.747814391392076 - type: f1 value: 56.83761137925043 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (te) config: te split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 59.60995292535306 - type: f1 value: 57.106776457430705 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (th) config: th split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 59.421654337592464 - type: f1 value: 57.81013790437749 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (tl) config: tl split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 58.120376597175515 - type: f1 value: 55.27690756097837 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (tr) config: tr split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 60.907868190988566 - type: f1 value: 57.43015543162361 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ur) config: ur split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 59.492266308002705 - type: f1 value: 56.885590563156455 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (vi) config: vi split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 60.477471418964356 - type: f1 value: 57.87047944039945 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (zh-CN) config: zh-CN split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 62.07800941492938 - type: f1 value: 59.340232908410265 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (zh-TW) config: zh-TW split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 56.73167451244117 - type: f1 value: 55.29236319279749 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (af) config: af split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 64.05850706119705 - type: f1 value: 62.20100273658395 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (am) config: am split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 63.24142568930733 - type: f1 value: 62.045023522098205 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ar) config: ar split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 63.685272360457304 - type: f1 value: 63.315744557403285 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (az) config: az split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 60.85743106926698 - type: f1 value: 59.106917986505636 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (bn) config: bn split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 67.1654337592468 - type: f1 value: 65.66986920813582 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (cy) config: cy split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 56.519838601210495 - type: f1 value: 54.73278620356587 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (da) config: da split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 67.76395427034298 - type: f1 value: 66.3447645997219 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (de) config: de split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 67.47814391392065 - type: f1 value: 66.32841368787447 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (el) config: el split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 70.22864828513787 - type: f1 value: 69.02774052818218 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (en) config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 69.04841963685273 - type: f1 value: 67.70789401248665 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (es) config: es split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 69.08204438466711 - type: f1 value: 68.39277940460933 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (fa) config: fa split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 72.10154673839946 - type: f1 value: 70.7737194288215 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (fi) config: fi split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 67.16207128446537 - type: f1 value: 66.2311820377212 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (fr) config: fr split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 63.019502353732335 - type: f1 value: 62.105500895318656 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (he) config: he split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 68.82985877605918 - type: f1 value: 67.4894449433449 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (hi) config: hi split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 66.89643577673168 - type: f1 value: 65.45745898521055 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (hu) config: hu split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 69.32750504371216 - type: f1 value: 68.19665323990438 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (hy) config: hy split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 65.8238063214526 - type: f1 value: 64.60872984606974 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (id) config: id split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 68.98117014122394 - type: f1 value: 67.66697147027641 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (is) config: is split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 63.137188971082715 - type: f1 value: 61.58358081191463 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (it) config: it split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 70.0437121721587 - type: f1 value: 69.06747206775307 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ja) config: ja split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 70.67585743106926 - type: f1 value: 70.08618915891508 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (jv) config: jv split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 59.788164088769335 - type: f1 value: 57.91398932676417 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ka) config: ka split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 61.03227975790182 - type: f1 value: 60.044432258486715 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (km) config: km split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 49.051782111634154 - type: f1 value: 45.434581931581555 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (kn) config: kn split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 63.78278412911902 - type: f1 value: 62.106197625881535 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ko) config: ko split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 69.59986550100874 - type: f1 value: 68.94355682848476 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (lv) config: lv split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 59.97310020174847 - type: f1 value: 59.09912773329623 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ml) config: ml split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 69.20309347679893 - type: f1 value: 67.90665916607239 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (mn) config: mn split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 62.72024209818427 - type: f1 value: 60.77165334831407 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ms) config: ms split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 67.87155346334902 - type: f1 value: 65.7906032446679 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (my) config: my split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 64.97646267652992 - type: f1 value: 63.89390215791396 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (nb) config: nb split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 65.81371889710827 - type: f1 value: 64.39323436519936 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (nl) config: nl split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 69.79825151311366 - type: f1 value: 68.53789900442244 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (pl) config: pl split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 69.98991257565568 - type: f1 value: 68.93867074879778 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (pt) config: pt split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 67.50168123739071 - type: f1 value: 66.7457644903972 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ro) config: ro split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 67.52521856086078 - type: f1 value: 66.83370797374445 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ru) config: ru split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 67.96234028244787 - type: f1 value: 67.58983110064196 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (sl) config: sl split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 69.56624075319435 - type: f1 value: 68.35270162147211 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (sq) config: sq split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 68.48352387357095 - type: f1 value: 66.66973143886908 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (sv) config: sv split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 67.92535305985206 - type: f1 value: 66.52058462942483 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (sw) config: sw split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 63.184263618022875 - type: f1 value: 61.71153164960602 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ta) config: ta split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 64.8453261600538 - type: f1 value: 63.863209439112346 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (te) config: te split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 65.39340954942838 - type: f1 value: 63.85484524633183 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (th) config: th split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 67.9892400806994 - type: f1 value: 66.57022479007357 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (tl) config: tl split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 63.399462004034966 - type: f1 value: 61.62381473991175 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (tr) config: tr split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 65.773369199731 - type: f1 value: 65.58317907780943 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ur) config: ur split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 65.8069939475454 - type: f1 value: 64.47027323557235 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (vi) config: vi split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 66.51647612642904 - type: f1 value: 65.66061210324213 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (zh-CN) config: zh-CN split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 68.88365837256221 - type: f1 value: 67.56956454874091 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (zh-TW) config: zh-TW split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 63.29858776059179 - type: f1 value: 62.76318771484755 - task: type: Retrieval dataset: type: C-MTEB/MedicalRetrieval name: MTEB MedicalRetrieval config: default split: dev revision: 2039188fb5800a9803ba5048df7b76e6fb151fc6 metrics: - type: map_at_1 value: 2.9000000000000004 - type: map_at_10 value: 3.5360000000000005 - type: map_at_100 value: 3.703 - type: map_at_1000 value: 3.734 - type: map_at_3 value: 3.167 - type: map_at_5 value: 3.322 - type: mrr_at_1 value: 2.9000000000000004 - type: mrr_at_10 value: 3.5360000000000005 - type: mrr_at_100 value: 3.703 - type: mrr_at_1000 value: 3.734 - type: mrr_at_3 value: 3.167 - type: mrr_at_5 value: 3.322 - type: ndcg_at_1 value: 2.9000000000000004 - type: ndcg_at_10 value: 4.079 - type: ndcg_at_100 value: 5.101 - type: ndcg_at_1000 value: 6.295000000000001 - type: ndcg_at_3 value: 3.276 - type: ndcg_at_5 value: 3.56 - type: precision_at_1 value: 2.9000000000000004 - type: precision_at_10 value: 0.59 - type: precision_at_100 value: 0.11199999999999999 - type: precision_at_1000 value: 0.022000000000000002 - type: precision_at_3 value: 1.2 - type: precision_at_5 value: 0.86 - type: recall_at_1 value: 2.9000000000000004 - type: recall_at_10 value: 5.8999999999999995 - type: recall_at_100 value: 11.200000000000001 - type: recall_at_1000 value: 21.5 - type: recall_at_3 value: 3.5999999999999996 - type: recall_at_5 value: 4.3 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-p2p name: MTEB MedrxivClusteringP2P config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 19.061819627060558 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-s2s name: MTEB MedrxivClusteringS2S config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 19.79520446745267 - task: type: Reranking dataset: type: mteb/mind_small name: MTEB MindSmallReranking config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 26.881162218991285 - type: mrr value: 27.23201335662217 - task: type: Classification dataset: type: C-MTEB/MultilingualSentiment-classification name: MTEB MultilingualSentiment config: default split: validation revision: 46958b007a63fdbf239b7672c25d0bea67b5ea1a metrics: - type: accuracy value: 57.69 - type: f1 value: 57.370451927892695 - task: type: Retrieval dataset: type: nfcorpus name: MTEB NFCorpus config: default split: test revision: None metrics: - type: map_at_1 value: 0.443 - type: map_at_10 value: 1.189 - type: map_at_100 value: 2.221 - type: map_at_1000 value: 3.034 - type: map_at_3 value: 0.683 - type: map_at_5 value: 0.882 - type: mrr_at_1 value: 4.334 - type: mrr_at_10 value: 10.908 - type: mrr_at_100 value: 12.536 - type: mrr_at_1000 value: 12.642000000000001 - type: mrr_at_3 value: 7.481999999999999 - type: mrr_at_5 value: 9.324 - type: ndcg_at_1 value: 3.7150000000000003 - type: ndcg_at_10 value: 5.591 - type: ndcg_at_100 value: 9.522 - type: ndcg_at_1000 value: 19.705000000000002 - type: ndcg_at_3 value: 4.292 - type: ndcg_at_5 value: 5.038 - type: precision_at_1 value: 4.334 - type: precision_at_10 value: 5.077 - type: precision_at_100 value: 3.2910000000000004 - type: precision_at_1000 value: 1.568 - type: precision_at_3 value: 4.644 - type: precision_at_5 value: 5.139 - type: recall_at_1 value: 0.443 - type: recall_at_10 value: 3.3520000000000003 - type: recall_at_100 value: 15.515 - type: recall_at_1000 value: 50.505 - type: recall_at_3 value: 0.931 - type: recall_at_5 value: 1.698 - task: type: Retrieval dataset: type: nfcorpus-pl name: MTEB NFCorpus-PL config: default split: test revision: None metrics: - type: map_at_1 value: 0.307 - type: map_at_10 value: 0.835 - type: map_at_100 value: 1.503 - type: map_at_1000 value: 2.263 - type: map_at_3 value: 0.503 - type: map_at_5 value: 0.567 - type: mrr_at_1 value: 4.025 - type: mrr_at_10 value: 9.731 - type: mrr_at_100 value: 11.229 - type: mrr_at_1000 value: 11.34 - type: mrr_at_3 value: 6.811 - type: mrr_at_5 value: 8.126999999999999 - type: ndcg_at_1 value: 3.56 - type: ndcg_at_10 value: 4.596 - type: ndcg_at_100 value: 7.567 - type: ndcg_at_1000 value: 17.76 - type: ndcg_at_3 value: 3.52 - type: ndcg_at_5 value: 3.823 - type: precision_at_1 value: 4.025 - type: precision_at_10 value: 4.334 - type: precision_at_100 value: 2.842 - type: precision_at_1000 value: 1.506 - type: precision_at_3 value: 3.818 - type: precision_at_5 value: 4.149 - type: recall_at_1 value: 0.307 - type: recall_at_10 value: 2.543 - type: recall_at_100 value: 12.152000000000001 - type: recall_at_1000 value: 46.878 - type: recall_at_3 value: 0.755 - type: recall_at_5 value: 0.975 - task: type: Retrieval dataset: type: nq name: MTEB NQ config: default split: test revision: None metrics: - type: map_at_1 value: 0.439 - type: map_at_10 value: 0.6839999999999999 - type: map_at_100 value: 0.769 - type: map_at_1000 value: 0.79 - type: map_at_3 value: 0.584 - type: map_at_5 value: 0.621 - type: mrr_at_1 value: 0.5499999999999999 - type: mrr_at_10 value: 0.819 - type: mrr_at_100 value: 0.9169999999999999 - type: mrr_at_1000 value: 0.9400000000000001 - type: mrr_at_3 value: 0.705 - type: mrr_at_5 value: 0.75 - type: ndcg_at_1 value: 0.5499999999999999 - type: ndcg_at_10 value: 0.886 - type: ndcg_at_100 value: 1.422 - type: ndcg_at_1000 value: 2.2079999999999997 - type: ndcg_at_3 value: 0.6629999999999999 - type: ndcg_at_5 value: 0.735 - type: precision_at_1 value: 0.5499999999999999 - type: precision_at_10 value: 0.16199999999999998 - type: precision_at_100 value: 0.048 - type: precision_at_1000 value: 0.012 - type: precision_at_3 value: 0.309 - type: precision_at_5 value: 0.22599999999999998 - type: recall_at_1 value: 0.439 - type: recall_at_10 value: 1.405 - type: recall_at_100 value: 4.051 - type: recall_at_1000 value: 10.487 - type: recall_at_3 value: 0.787 - type: recall_at_5 value: 0.9560000000000001 - task: type: Retrieval dataset: type: narrativeqa name: MTEB NarrativeQARetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 5.93 - type: map_at_10 value: 7.349 - type: map_at_100 value: 8.011 - type: map_at_1000 value: 8.351 - type: map_at_3 value: 6.787 - type: map_at_5 value: 7.02 - type: mrr_at_1 value: 5.93 - type: mrr_at_10 value: 7.349 - type: mrr_at_100 value: 8.011 - type: mrr_at_1000 value: 8.351 - type: mrr_at_3 value: 6.787 - type: mrr_at_5 value: 7.02 - type: ndcg_at_1 value: 5.93 - type: ndcg_at_10 value: 8.291 - type: ndcg_at_100 value: 12.833 - type: ndcg_at_1000 value: 21.253 - type: ndcg_at_3 value: 7.072000000000001 - type: ndcg_at_5 value: 7.495 - type: precision_at_1 value: 5.93 - type: precision_at_10 value: 1.1400000000000001 - type: precision_at_100 value: 0.359 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 2.633 - type: precision_at_5 value: 1.786 - type: recall_at_1 value: 5.93 - type: recall_at_10 value: 11.395 - type: recall_at_100 value: 35.929 - type: recall_at_1000 value: 100.0 - type: recall_at_3 value: 7.9 - type: recall_at_5 value: 8.932 - task: type: Classification dataset: type: ScandEval/norec-mini name: MTEB NoRecClassification config: default split: test revision: 07b99ab3363c2e7f8f87015b01c21f4d9b917ce3 metrics: - type: accuracy value: 48.251953125 - type: f1 value: 45.42526611578402 - task: type: Classification dataset: type: strombergnlp/nordic_langid name: MTEB NordicLangClassification config: default split: test revision: e254179d18ab0165fdb6dbef91178266222bee2a metrics: - type: accuracy value: 48.403333333333336 - type: f1 value: 47.9287124185198 - task: type: BitextMining dataset: type: kardosdrur/norwegian-courts name: MTEB NorwegianCourtsBitextMining config: default split: test revision: None metrics: - type: accuracy value: 93.85964912280701 - type: f1 value: 92.98245614035088 - type: precision value: 92.54385964912281 - type: recall value: 93.85964912280701 - task: type: Classification dataset: type: NbAiLab/norwegian_parliament name: MTEB NorwegianParliament config: default split: test revision: f7393532774c66312378d30b197610b43d751972 metrics: - type: accuracy value: 55.991666666666674 - type: ap value: 53.417849849746226 - type: f1 value: 55.757916182475384 - task: type: PairClassification dataset: type: C-MTEB/OCNLI name: MTEB Ocnli config: default split: validation revision: 66e76a618a34d6d565d5538088562851e6daa7ec metrics: - type: cos_sim_accuracy value: 54.68327016783974 - type: cos_sim_ap value: 55.175059616546406 - type: cos_sim_f1 value: 67.81733189500179 - type: cos_sim_precision value: 51.41766630316249 - type: cos_sim_recall value: 99.57761351636748 - type: dot_accuracy value: 54.68327016783974 - type: dot_ap value: 55.175059616546406 - type: dot_f1 value: 67.81733189500179 - type: dot_precision value: 51.41766630316249 - type: dot_recall value: 99.57761351636748 - type: euclidean_accuracy value: 54.68327016783974 - type: euclidean_ap value: 55.17510180566365 - type: euclidean_f1 value: 67.81733189500179 - type: euclidean_precision value: 51.41766630316249 - type: euclidean_recall value: 99.57761351636748 - type: manhattan_accuracy value: 55.44125609095831 - type: manhattan_ap value: 55.76283671826867 - type: manhattan_f1 value: 68.05905653583004 - type: manhattan_precision value: 51.63934426229508 - type: manhattan_recall value: 99.78880675818374 - type: max_accuracy value: 55.44125609095831 - type: max_ap value: 55.76283671826867 - type: max_f1 value: 68.05905653583004 - task: type: Classification dataset: type: C-MTEB/OnlineShopping-classification name: MTEB OnlineShopping config: default split: test revision: e610f2ebd179a8fda30ae534c3878750a96db120 metrics: - type: accuracy value: 75.64 - type: ap value: 71.45085103287833 - type: f1 value: 75.52254495697326 - task: type: Classification dataset: type: laugustyniak/abusive-clauses-pl name: MTEB PAC config: default split: test revision: None metrics: - type: accuracy value: 73.86620330147699 - type: ap value: 80.58015815306322 - type: f1 value: 71.49082510883872 - task: type: STS dataset: type: C-MTEB/PAWSX name: MTEB PAWSX config: default split: test revision: 9c6a90e430ac22b5779fb019a23e820b11a8b5e1 metrics: - type: cos_sim_pearson value: 29.52361689421863 - type: cos_sim_spearman value: 32.750058577257875 - type: euclidean_pearson value: 34.583472972871796 - type: euclidean_spearman value: 32.75328764421994 - type: manhattan_pearson value: 34.727366510326995 - type: manhattan_spearman value: 32.787167142114214 - task: type: PairClassification dataset: type: PL-MTEB/ppc-pairclassification name: MTEB PPC config: default split: test revision: None metrics: - type: cos_sim_accuracy value: 71.1 - type: cos_sim_ap value: 85.36544548691205 - type: cos_sim_f1 value: 75.23393636930756 - type: cos_sim_precision value: 60.36036036036037 - type: cos_sim_recall value: 99.83443708609272 - type: dot_accuracy value: 71.1 - type: dot_ap value: 85.36544548691204 - type: dot_f1 value: 75.23393636930756 - type: dot_precision value: 60.36036036036037 - type: dot_recall value: 99.83443708609272 - type: euclidean_accuracy value: 71.1 - type: euclidean_ap value: 85.36544548691205 - type: euclidean_f1 value: 75.23393636930756 - type: euclidean_precision value: 60.36036036036037 - type: euclidean_recall value: 99.83443708609272 - type: manhattan_accuracy value: 71.1 - type: manhattan_ap value: 85.33853868545614 - type: manhattan_f1 value: 75.23393636930756 - type: manhattan_precision value: 60.36036036036037 - type: manhattan_recall value: 99.83443708609272 - type: max_accuracy value: 71.1 - type: max_ap value: 85.36544548691205 - type: max_f1 value: 75.23393636930756 - task: type: PairClassification dataset: type: PL-MTEB/psc-pairclassification name: MTEB PSC config: default split: test revision: None metrics: - type: cos_sim_accuracy value: 90.81632653061224 - type: cos_sim_ap value: 91.97693749083473 - type: cos_sim_f1 value: 85.55078683834049 - type: cos_sim_precision value: 80.59299191374663 - type: cos_sim_recall value: 91.15853658536585 - type: dot_accuracy value: 90.81632653061224 - type: dot_ap value: 91.97693749083473 - type: dot_f1 value: 85.55078683834049 - type: dot_precision value: 80.59299191374663 - type: dot_recall value: 91.15853658536585 - type: euclidean_accuracy value: 90.81632653061224 - type: euclidean_ap value: 91.97693749083473 - type: euclidean_f1 value: 85.55078683834049 - type: euclidean_precision value: 80.59299191374663 - type: euclidean_recall value: 91.15853658536585 - type: manhattan_accuracy value: 90.9090909090909 - type: manhattan_ap value: 92.043441286281 - type: manhattan_f1 value: 85.34482758620689 - type: manhattan_precision value: 80.70652173913044 - type: manhattan_recall value: 90.54878048780488 - type: max_accuracy value: 90.9090909090909 - type: max_ap value: 92.043441286281 - type: max_f1 value: 85.55078683834049 - task: type: PairClassification dataset: type: paws-x name: MTEB PawsX (de) config: de split: test revision: 8a04d940a42cd40658986fdd8e3da561533a3646 metrics: - type: cos_sim_accuracy value: 70.35 - type: cos_sim_ap value: 72.01641717127626 - type: cos_sim_f1 value: 64.49511400651467 - type: cos_sim_precision value: 55.26315789473685 - type: cos_sim_recall value: 77.43016759776536 - type: dot_accuracy value: 70.35 - type: dot_ap value: 72.06599137974572 - type: dot_f1 value: 64.49511400651467 - type: dot_precision value: 55.26315789473685 - type: dot_recall value: 77.43016759776536 - type: euclidean_accuracy value: 70.35 - type: euclidean_ap value: 71.92019289154159 - type: euclidean_f1 value: 64.49511400651467 - type: euclidean_precision value: 55.26315789473685 - type: euclidean_recall value: 77.43016759776536 - type: manhattan_accuracy value: 70.35 - type: manhattan_ap value: 71.92979188519502 - type: manhattan_f1 value: 64.60409019402202 - type: manhattan_precision value: 60.86956521739131 - type: manhattan_recall value: 68.8268156424581 - type: max_accuracy value: 70.35 - type: max_ap value: 72.06599137974572 - type: max_f1 value: 64.60409019402202 - task: type: PairClassification dataset: type: paws-x name: MTEB PawsX (en) config: en split: test revision: 8a04d940a42cd40658986fdd8e3da561533a3646 metrics: - type: cos_sim_accuracy value: 71.0 - type: cos_sim_ap value: 74.73017292645147 - type: cos_sim_f1 value: 66.73427991886409 - type: cos_sim_precision value: 61.78403755868545 - type: cos_sim_recall value: 72.54685777287762 - type: dot_accuracy value: 71.0 - type: dot_ap value: 74.73017292645147 - type: dot_f1 value: 66.73427991886409 - type: dot_precision value: 61.78403755868545 - type: dot_recall value: 72.54685777287762 - type: euclidean_accuracy value: 71.0 - type: euclidean_ap value: 74.73013082197343 - type: euclidean_f1 value: 66.73427991886409 - type: euclidean_precision value: 61.78403755868545 - type: euclidean_recall value: 72.54685777287762 - type: manhattan_accuracy value: 70.95 - type: manhattan_ap value: 74.71203917486744 - type: manhattan_f1 value: 66.86868686868686 - type: manhattan_precision value: 61.696178937558244 - type: manhattan_recall value: 72.98787210584344 - type: max_accuracy value: 71.0 - type: max_ap value: 74.73017292645147 - type: max_f1 value: 66.86868686868686 - task: type: PairClassification dataset: type: paws-x name: MTEB PawsX (es) config: es split: test revision: 8a04d940a42cd40658986fdd8e3da561533a3646 metrics: - type: cos_sim_accuracy value: 67.7 - type: cos_sim_ap value: 69.70320170421651 - type: cos_sim_f1 value: 62.55625562556255 - type: cos_sim_precision value: 52.851711026615966 - type: cos_sim_recall value: 76.62624035281146 - type: dot_accuracy value: 67.7 - type: dot_ap value: 69.70320170421651 - type: dot_f1 value: 62.55625562556255 - type: dot_precision value: 52.851711026615966 - type: dot_recall value: 76.62624035281146 - type: euclidean_accuracy value: 67.7 - type: euclidean_ap value: 69.70320170421651 - type: euclidean_f1 value: 62.55625562556255 - type: euclidean_precision value: 52.851711026615966 - type: euclidean_recall value: 76.62624035281146 - type: manhattan_accuracy value: 67.75 - type: manhattan_ap value: 69.67833816050764 - type: manhattan_f1 value: 62.734082397003746 - type: manhattan_precision value: 54.515866558177386 - type: manhattan_recall value: 73.8699007717751 - type: max_accuracy value: 67.75 - type: max_ap value: 69.70320170421651 - type: max_f1 value: 62.734082397003746 - task: type: PairClassification dataset: type: paws-x name: MTEB PawsX (fr) config: fr split: test revision: 8a04d940a42cd40658986fdd8e3da561533a3646 metrics: - type: cos_sim_accuracy value: 69.0 - type: cos_sim_ap value: 71.36406639969131 - type: cos_sim_f1 value: 64.45993031358886 - type: cos_sim_precision value: 53.12275664034458 - type: cos_sim_recall value: 81.94905869324474 - type: dot_accuracy value: 69.0 - type: dot_ap value: 71.2599779415656 - type: dot_f1 value: 64.45993031358886 - type: dot_precision value: 53.12275664034458 - type: dot_recall value: 81.94905869324474 - type: euclidean_accuracy value: 69.0 - type: euclidean_ap value: 71.3126257271965 - type: euclidean_f1 value: 64.45993031358886 - type: euclidean_precision value: 53.12275664034458 - type: euclidean_recall value: 81.94905869324474 - type: manhattan_accuracy value: 69.0 - type: manhattan_ap value: 71.29361764028188 - type: manhattan_f1 value: 64.54789615040288 - type: manhattan_precision value: 54.16979714500376 - type: manhattan_recall value: 79.84496124031007 - type: max_accuracy value: 69.0 - type: max_ap value: 71.36406639969131 - type: max_f1 value: 64.54789615040288 - task: type: PairClassification dataset: type: paws-x name: MTEB PawsX (ja) config: ja split: test revision: 8a04d940a42cd40658986fdd8e3da561533a3646 metrics: - type: cos_sim_accuracy value: 63.849999999999994 - type: cos_sim_ap value: 60.914955950361026 - type: cos_sim_f1 value: 62.4556422995032 - type: cos_sim_precision value: 45.47803617571059 - type: cos_sim_recall value: 99.66024915062289 - type: dot_accuracy value: 63.849999999999994 - type: dot_ap value: 60.808056565465506 - type: dot_f1 value: 62.4556422995032 - type: dot_precision value: 45.47803617571059 - type: dot_recall value: 99.66024915062289 - type: euclidean_accuracy value: 63.849999999999994 - type: euclidean_ap value: 60.8231492677072 - type: euclidean_f1 value: 62.4556422995032 - type: euclidean_precision value: 45.47803617571059 - type: euclidean_recall value: 99.66024915062289 - type: manhattan_accuracy value: 63.800000000000004 - type: manhattan_ap value: 60.86392751846975 - type: manhattan_f1 value: 62.43348705214614 - type: manhattan_precision value: 45.45454545454545 - type: manhattan_recall value: 99.66024915062289 - type: max_accuracy value: 63.849999999999994 - type: max_ap value: 60.914955950361026 - type: max_f1 value: 62.4556422995032 - task: type: PairClassification dataset: type: paws-x name: MTEB PawsX (ko) config: ko split: test revision: 8a04d940a42cd40658986fdd8e3da561533a3646 metrics: - type: cos_sim_accuracy value: 61.1 - type: cos_sim_ap value: 58.40339411735916 - type: cos_sim_f1 value: 62.7906976744186 - type: cos_sim_precision value: 46.55172413793103 - type: cos_sim_recall value: 96.42857142857143 - type: dot_accuracy value: 61.1 - type: dot_ap value: 58.439189685586456 - type: dot_f1 value: 62.7906976744186 - type: dot_precision value: 46.55172413793103 - type: dot_recall value: 96.42857142857143 - type: euclidean_accuracy value: 61.1 - type: euclidean_ap value: 58.34968788203145 - type: euclidean_f1 value: 62.7906976744186 - type: euclidean_precision value: 46.55172413793103 - type: euclidean_recall value: 96.42857142857143 - type: manhattan_accuracy value: 61.1 - type: manhattan_ap value: 58.31504446861402 - type: manhattan_f1 value: 62.636562272396226 - type: manhattan_precision value: 46.48648648648649 - type: manhattan_recall value: 95.98214285714286 - type: max_accuracy value: 61.1 - type: max_ap value: 58.439189685586456 - type: max_f1 value: 62.7906976744186 - task: type: PairClassification dataset: type: paws-x name: MTEB PawsX (zh) config: zh split: test revision: 8a04d940a42cd40658986fdd8e3da561533a3646 metrics: - type: cos_sim_accuracy value: 64.2 - type: cos_sim_ap value: 63.73722153283802 - type: cos_sim_f1 value: 62.52707581227437 - type: cos_sim_precision value: 46.16204690831556 - type: cos_sim_recall value: 96.86800894854586 - type: dot_accuracy value: 64.2 - type: dot_ap value: 63.67335241021108 - type: dot_f1 value: 62.52707581227437 - type: dot_precision value: 46.16204690831556 - type: dot_recall value: 96.86800894854586 - type: euclidean_accuracy value: 64.2 - type: euclidean_ap value: 63.77399571117368 - type: euclidean_f1 value: 62.52707581227437 - type: euclidean_precision value: 46.16204690831556 - type: euclidean_recall value: 96.86800894854586 - type: manhattan_accuracy value: 64.5 - type: manhattan_ap value: 63.747406783360816 - type: manhattan_f1 value: 62.58601955813112 - type: manhattan_precision value: 46.27745045527584 - type: manhattan_recall value: 96.64429530201343 - type: max_accuracy value: 64.5 - type: max_ap value: 63.77399571117368 - type: max_f1 value: 62.58601955813112 - task: type: Classification dataset: type: PL-MTEB/polemo2_in name: MTEB PolEmo2.0-IN config: default split: test revision: None metrics: - type: accuracy value: 52.797783933518005 - type: f1 value: 53.84971294048786 - task: type: Classification dataset: type: PL-MTEB/polemo2_out name: MTEB PolEmo2.0-OUT config: default split: test revision: None metrics: - type: accuracy value: 38.40080971659919 - type: f1 value: 30.38990873840624 - task: type: STS dataset: type: C-MTEB/QBQTC name: MTEB QBQTC config: default split: test revision: 790b0510dc52b1553e8c49f3d2afb48c0e5c48b7 metrics: - type: cos_sim_pearson value: 23.34232568997104 - type: cos_sim_spearman value: 24.47961936211083 - type: euclidean_pearson value: 22.03140944610336 - type: euclidean_spearman value: 24.47949166265398 - type: manhattan_pearson value: 25.542406448726908 - type: manhattan_spearman value: 28.655724283839533 - task: type: Retrieval dataset: type: quora-pl name: MTEB Quora-PL config: default split: test revision: None metrics: - type: map_at_1 value: 59.938 - type: map_at_10 value: 72.734 - type: map_at_100 value: 73.564 - type: map_at_1000 value: 73.602 - type: map_at_3 value: 69.707 - type: map_at_5 value: 71.515 - type: mrr_at_1 value: 69.28 - type: mrr_at_10 value: 76.97500000000001 - type: mrr_at_100 value: 77.27199999999999 - type: mrr_at_1000 value: 77.28 - type: mrr_at_3 value: 75.355 - type: mrr_at_5 value: 76.389 - type: ndcg_at_1 value: 69.33 - type: ndcg_at_10 value: 77.61099999999999 - type: ndcg_at_100 value: 80.02 - type: ndcg_at_1000 value: 80.487 - type: ndcg_at_3 value: 73.764 - type: ndcg_at_5 value: 75.723 - type: precision_at_1 value: 69.33 - type: precision_at_10 value: 11.917 - type: precision_at_100 value: 1.447 - type: precision_at_1000 value: 0.154 - type: precision_at_3 value: 32.29 - type: precision_at_5 value: 21.432000000000002 - type: recall_at_1 value: 59.938 - type: recall_at_10 value: 87.252 - type: recall_at_100 value: 96.612 - type: recall_at_1000 value: 99.388 - type: recall_at_3 value: 76.264 - type: recall_at_5 value: 81.71000000000001 - task: type: Retrieval dataset: type: quora name: MTEB QuoraRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 61.458999999999996 - type: map_at_10 value: 73.90299999999999 - type: map_at_100 value: 74.733 - type: map_at_1000 value: 74.771 - type: map_at_3 value: 70.999 - type: map_at_5 value: 72.745 - type: mrr_at_1 value: 70.93 - type: mrr_at_10 value: 78.353 - type: mrr_at_100 value: 78.636 - type: mrr_at_1000 value: 78.644 - type: mrr_at_3 value: 76.908 - type: mrr_at_5 value: 77.807 - type: ndcg_at_1 value: 70.93 - type: ndcg_at_10 value: 78.625 - type: ndcg_at_100 value: 81.01 - type: ndcg_at_1000 value: 81.45700000000001 - type: ndcg_at_3 value: 75.045 - type: ndcg_at_5 value: 76.84299999999999 - type: precision_at_1 value: 70.93 - type: precision_at_10 value: 11.953 - type: precision_at_100 value: 1.4489999999999998 - type: precision_at_1000 value: 0.154 - type: precision_at_3 value: 32.65 - type: precision_at_5 value: 21.598 - type: recall_at_1 value: 61.458999999999996 - type: recall_at_10 value: 87.608 - type: recall_at_100 value: 96.818 - type: recall_at_1000 value: 99.445 - type: recall_at_3 value: 77.354 - type: recall_at_5 value: 82.334 - task: type: Clustering dataset: type: mteb/reddit-clustering name: MTEB RedditClustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 28.519889100999958 - task: type: Clustering dataset: type: mteb/reddit-clustering-p2p name: MTEB RedditClusteringP2P config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 38.62765374782771 - task: type: Retrieval dataset: type: scidocs name: MTEB SCIDOCS config: default split: test revision: None metrics: - type: map_at_1 value: 0.52 - type: map_at_10 value: 0.893 - type: map_at_100 value: 1.113 - type: map_at_1000 value: 1.304 - type: map_at_3 value: 0.7779999999999999 - type: map_at_5 value: 0.8200000000000001 - type: mrr_at_1 value: 2.6 - type: mrr_at_10 value: 4.0680000000000005 - type: mrr_at_100 value: 4.6080000000000005 - type: mrr_at_1000 value: 4.797 - type: mrr_at_3 value: 3.5999999999999996 - type: mrr_at_5 value: 3.8150000000000004 - type: ndcg_at_1 value: 2.6 - type: ndcg_at_10 value: 1.79 - type: ndcg_at_100 value: 3.5549999999999997 - type: ndcg_at_1000 value: 9.942 - type: ndcg_at_3 value: 1.94 - type: ndcg_at_5 value: 1.543 - type: precision_at_1 value: 2.6 - type: precision_at_10 value: 0.8500000000000001 - type: precision_at_100 value: 0.361 - type: precision_at_1000 value: 0.197 - type: precision_at_3 value: 1.7670000000000001 - type: precision_at_5 value: 1.26 - type: recall_at_1 value: 0.52 - type: recall_at_10 value: 1.7149999999999999 - type: recall_at_100 value: 7.318 - type: recall_at_1000 value: 39.915 - type: recall_at_3 value: 1.0699999999999998 - type: recall_at_5 value: 1.27 - task: type: Retrieval dataset: type: scidocs-pl name: MTEB SCIDOCS-PL config: default split: test revision: None metrics: - type: map_at_1 value: 0.32 - type: map_at_10 value: 0.676 - type: map_at_100 value: 0.847 - type: map_at_1000 value: 1.032 - type: map_at_3 value: 0.5369999999999999 - type: map_at_5 value: 0.592 - type: mrr_at_1 value: 1.6 - type: mrr_at_10 value: 2.863 - type: mrr_at_100 value: 3.334 - type: mrr_at_1000 value: 3.5479999999999996 - type: mrr_at_3 value: 2.317 - type: mrr_at_5 value: 2.587 - type: ndcg_at_1 value: 1.6 - type: ndcg_at_10 value: 1.397 - type: ndcg_at_100 value: 2.819 - type: ndcg_at_1000 value: 9.349 - type: ndcg_at_3 value: 1.3 - type: ndcg_at_5 value: 1.1079999999999999 - type: precision_at_1 value: 1.6 - type: precision_at_10 value: 0.74 - type: precision_at_100 value: 0.295 - type: precision_at_1000 value: 0.194 - type: precision_at_3 value: 1.2 - type: precision_at_5 value: 0.96 - type: recall_at_1 value: 0.32 - type: recall_at_10 value: 1.505 - type: recall_at_100 value: 5.988 - type: recall_at_1000 value: 39.308 - type: recall_at_3 value: 0.72 - type: recall_at_5 value: 0.9650000000000001 - task: type: PairClassification dataset: type: PL-MTEB/sicke-pl-pairclassification name: MTEB SICK-E-PL config: default split: test revision: None metrics: - type: cos_sim_accuracy value: 73.84834896045659 - type: cos_sim_ap value: 55.484124732566606 - type: cos_sim_f1 value: 57.34228187919464 - type: cos_sim_precision value: 46.01464885825076 - type: cos_sim_recall value: 76.06837606837607 - type: dot_accuracy value: 73.84834896045659 - type: dot_ap value: 55.48400003295399 - type: dot_f1 value: 57.34228187919464 - type: dot_precision value: 46.01464885825076 - type: dot_recall value: 76.06837606837607 - type: euclidean_accuracy value: 73.84834896045659 - type: euclidean_ap value: 55.48407331902175 - type: euclidean_f1 value: 57.34228187919464 - type: euclidean_precision value: 46.01464885825076 - type: euclidean_recall value: 76.06837606837607 - type: manhattan_accuracy value: 73.80758255197716 - type: manhattan_ap value: 55.42477275597209 - type: manhattan_f1 value: 57.55860953920776 - type: manhattan_precision value: 46.29388816644994 - type: manhattan_recall value: 76.06837606837607 - type: max_accuracy value: 73.84834896045659 - type: max_ap value: 55.484124732566606 - type: max_f1 value: 57.55860953920776 - task: type: STS dataset: type: mteb/sickr-sts name: MTEB SICK-R config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 67.03943120783973 - type: cos_sim_spearman value: 62.93971145260584 - type: euclidean_pearson value: 64.13947263916926 - type: euclidean_spearman value: 62.93972324235839 - type: manhattan_pearson value: 64.11295322654566 - type: manhattan_spearman value: 62.92816122293202 - task: type: STS dataset: type: PL-MTEB/sickr-pl-sts name: MTEB SICK-R-PL config: default split: test revision: None metrics: - type: cos_sim_pearson value: 67.75034167381077 - type: cos_sim_spearman value: 62.98158872758643 - type: euclidean_pearson value: 64.25794794439082 - type: euclidean_spearman value: 62.981566596223125 - type: manhattan_pearson value: 64.25439446502435 - type: manhattan_spearman value: 63.01301439900365 - task: type: STS dataset: type: mteb/sts12-sts name: MTEB STS12 config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 61.622204530882755 - type: cos_sim_spearman value: 65.4632047656541 - type: euclidean_pearson value: 59.21529585527598 - type: euclidean_spearman value: 65.4638163967956 - type: manhattan_pearson value: 59.39341472707122 - type: manhattan_spearman value: 65.57635757250173 - task: type: STS dataset: type: mteb/sts13-sts name: MTEB STS13 config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 60.329743331971486 - type: cos_sim_spearman value: 62.78607195958339 - type: euclidean_pearson value: 62.07415212138581 - type: euclidean_spearman value: 62.78618151904129 - type: manhattan_pearson value: 62.41250554765521 - type: manhattan_spearman value: 62.87580558029627 - task: type: STS dataset: type: mteb/sts14-sts name: MTEB STS14 config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 59.16277512775291 - type: cos_sim_spearman value: 57.53693422381856 - type: euclidean_pearson value: 57.85017283427473 - type: euclidean_spearman value: 57.53697385589326 - type: manhattan_pearson value: 58.049796184955596 - type: manhattan_spearman value: 57.76174789162225 - task: type: STS dataset: type: mteb/sts15-sts name: MTEB STS15 config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 74.42588553600197 - type: cos_sim_spearman value: 74.25087788257943 - type: euclidean_pearson value: 73.35436018935222 - type: euclidean_spearman value: 74.25087694991477 - type: manhattan_pearson value: 73.33747415771185 - type: manhattan_spearman value: 74.21504509447377 - task: type: STS dataset: type: mteb/sts16-sts name: MTEB STS16 config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 75.77242432372144 - type: cos_sim_spearman value: 75.72930700521489 - type: euclidean_pearson value: 75.6995220623788 - type: euclidean_spearman value: 75.72930646047212 - type: manhattan_pearson value: 75.65841087952896 - type: manhattan_spearman value: 75.69567692328437 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (ko-ko) config: ko-ko split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 66.2495297342053 - type: cos_sim_spearman value: 66.14124319602982 - type: euclidean_pearson value: 66.49498096178358 - type: euclidean_spearman value: 66.14121792287747 - type: manhattan_pearson value: 66.51560623835172 - type: manhattan_spearman value: 66.05794413582558 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (ar-ar) config: ar-ar split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 75.0045186560239 - type: cos_sim_spearman value: 74.96504390762252 - type: euclidean_pearson value: 74.20988464347049 - type: euclidean_spearman value: 74.98114602301776 - type: manhattan_pearson value: 74.37929169860529 - type: manhattan_spearman value: 75.37049827509504 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-ar) config: en-ar split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 73.88478151514396 - type: cos_sim_spearman value: 74.05322141272103 - type: euclidean_pearson value: 73.52175483343693 - type: euclidean_spearman value: 74.05322141272103 - type: manhattan_pearson value: 73.35875118828287 - type: manhattan_spearman value: 73.83972625384673 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-de) config: en-de split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 75.57014781622605 - type: cos_sim_spearman value: 74.95329129562734 - type: euclidean_pearson value: 75.5667786729257 - type: euclidean_spearman value: 74.95329129562734 - type: manhattan_pearson value: 75.39548673816147 - type: manhattan_spearman value: 74.89428642503749 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-en) config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 80.04007129652777 - type: cos_sim_spearman value: 79.94429611477106 - type: euclidean_pearson value: 79.91583070858822 - type: euclidean_spearman value: 79.94429611477106 - type: manhattan_pearson value: 80.14382273152769 - type: manhattan_spearman value: 80.23862855392836 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-tr) config: en-tr split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 77.28740870194635 - type: cos_sim_spearman value: 77.18286391819586 - type: euclidean_pearson value: 77.05644328687119 - type: euclidean_spearman value: 77.18286391819586 - type: manhattan_pearson value: 77.15625898067294 - type: manhattan_spearman value: 77.03165154316278 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (es-en) config: es-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 72.99293002371301 - type: cos_sim_spearman value: 72.24657859872468 - type: euclidean_pearson value: 73.38839879755461 - type: euclidean_spearman value: 72.24657859872468 - type: manhattan_pearson value: 73.6627728800822 - type: manhattan_spearman value: 72.70893449698669 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (es-es) config: es-es split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 81.37213723705916 - type: cos_sim_spearman value: 80.64548512701263 - type: euclidean_pearson value: 80.94992193351284 - type: euclidean_spearman value: 80.64484963200427 - type: manhattan_pearson value: 80.92246813841794 - type: manhattan_spearman value: 80.68860823161657 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (fr-en) config: fr-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 77.54059604962391 - type: cos_sim_spearman value: 77.19559169700682 - type: euclidean_pearson value: 77.32739821317861 - type: euclidean_spearman value: 77.19559169700682 - type: manhattan_pearson value: 77.29224328831437 - type: manhattan_spearman value: 77.24394878313191 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (it-en) config: it-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 79.06397062195414 - type: cos_sim_spearman value: 78.66694637555244 - type: euclidean_pearson value: 79.34923290885872 - type: euclidean_spearman value: 78.66694637555244 - type: manhattan_pearson value: 79.50802161625809 - type: manhattan_spearman value: 78.79195213396169 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (nl-en) config: nl-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 78.66045829245238 - type: cos_sim_spearman value: 78.14055373851183 - type: euclidean_pearson value: 78.94489279300518 - type: euclidean_spearman value: 78.14055373851183 - type: manhattan_pearson value: 79.33473165536323 - type: manhattan_spearman value: 78.5783429705299 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (en) config: en split: test revision: eea2b4fe26a775864c896887d910b76a8098ad3f metrics: - type: cos_sim_pearson value: 36.63454535818336 - type: cos_sim_spearman value: 47.12016162570126 - type: euclidean_pearson value: 39.07268779927362 - type: euclidean_spearman value: 47.12016162570126 - type: manhattan_pearson value: 41.723119770725944 - type: manhattan_spearman value: 47.90334362422989 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (de) config: de split: test revision: eea2b4fe26a775864c896887d910b76a8098ad3f metrics: - type: cos_sim_pearson value: 13.325547358617957 - type: cos_sim_spearman value: 24.094051740693416 - type: euclidean_pearson value: 10.39110006005262 - type: euclidean_spearman value: 24.094051740693416 - type: manhattan_pearson value: 12.4380555005162 - type: manhattan_spearman value: 25.176800279885715 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (es) config: es split: test revision: eea2b4fe26a775864c896887d910b76a8098ad3f metrics: - type: cos_sim_pearson value: 41.21281570342249 - type: cos_sim_spearman value: 55.397885077207974 - type: euclidean_pearson value: 43.96150945976646 - type: euclidean_spearman value: 55.397885077207974 - type: manhattan_pearson value: 49.58812224529121 - type: manhattan_spearman value: 55.35874879475974 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (pl) config: pl split: test revision: eea2b4fe26a775864c896887d910b76a8098ad3f metrics: - type: cos_sim_pearson value: 5.985012243744998 - type: cos_sim_spearman value: 25.307464943919012 - type: euclidean_pearson value: -4.080537702499046 - type: euclidean_spearman value: 25.307464943919012 - type: manhattan_pearson value: -2.5058642304196543 - type: manhattan_spearman value: 26.751588484373233 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (tr) config: tr split: test revision: eea2b4fe26a775864c896887d910b76a8098ad3f metrics: - type: cos_sim_pearson value: 34.44666578772084 - type: cos_sim_spearman value: 46.45977141800899 - type: euclidean_pearson value: 38.78305544036559 - type: euclidean_spearman value: 46.45977141800899 - type: manhattan_pearson value: 46.45101297876112 - type: manhattan_spearman value: 50.642972694093814 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (ar) config: ar split: test revision: eea2b4fe26a775864c896887d910b76a8098ad3f metrics: - type: cos_sim_pearson value: 28.095327083873055 - type: cos_sim_spearman value: 40.24741745875892 - type: euclidean_pearson value: 29.141496784653892 - type: euclidean_spearman value: 40.24741745875892 - type: manhattan_pearson value: 32.013290716034064 - type: manhattan_spearman value: 40.85454084311211 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (ru) config: ru split: test revision: eea2b4fe26a775864c896887d910b76a8098ad3f metrics: - type: cos_sim_pearson value: 27.46788309503312 - type: cos_sim_spearman value: 43.57385391855994 - type: euclidean_pearson value: 24.558349674326177 - type: euclidean_spearman value: 43.57385391855994 - type: manhattan_pearson value: 28.974505207055866 - type: manhattan_spearman value: 44.111553205713 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (zh) config: zh split: test revision: eea2b4fe26a775864c896887d910b76a8098ad3f metrics: - type: cos_sim_pearson value: 34.87841073990563 - type: cos_sim_spearman value: 52.8221686505807 - type: euclidean_pearson value: 38.36114580544504 - type: euclidean_spearman value: 52.8221686505807 - type: manhattan_pearson value: 46.69329448756753 - type: manhattan_spearman value: 53.9140781097337 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (fr) config: fr split: test revision: eea2b4fe26a775864c896887d910b76a8098ad3f metrics: - type: cos_sim_pearson value: 49.999267528357 - type: cos_sim_spearman value: 61.71837669697145 - type: euclidean_pearson value: 53.578476744372274 - type: euclidean_spearman value: 61.71837669697145 - type: manhattan_pearson value: 56.410294227490795 - type: manhattan_spearman value: 60.684457655864875 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (de-en) config: de-en split: test revision: eea2b4fe26a775864c896887d910b76a8098ad3f metrics: - type: cos_sim_pearson value: 22.43564137760586 - type: cos_sim_spearman value: 34.28346144104183 - type: euclidean_pearson value: 27.41326011184764 - type: euclidean_spearman value: 34.28346144104183 - type: manhattan_pearson value: 35.62923154232163 - type: manhattan_spearman value: 37.937151135297185 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (es-en) config: es-en split: test revision: eea2b4fe26a775864c896887d910b76a8098ad3f metrics: - type: cos_sim_pearson value: 44.34071611983998 - type: cos_sim_spearman value: 57.823185616169646 - type: euclidean_pearson value: 49.29310650157244 - type: euclidean_spearman value: 57.823185616169646 - type: manhattan_pearson value: 55.93298736518848 - type: manhattan_spearman value: 58.57556581684834 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (it) config: it split: test revision: eea2b4fe26a775864c896887d910b76a8098ad3f metrics: - type: cos_sim_pearson value: 56.07027840344927 - type: cos_sim_spearman value: 62.20158260763411 - type: euclidean_pearson value: 55.887969718543616 - type: euclidean_spearman value: 62.20158260763411 - type: manhattan_pearson value: 56.081533365738444 - type: manhattan_spearman value: 62.018651361750685 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (pl-en) config: pl-en split: test revision: eea2b4fe26a775864c896887d910b76a8098ad3f metrics: - type: cos_sim_pearson value: 41.41816324477061 - type: cos_sim_spearman value: 44.71684955996943 - type: euclidean_pearson value: 42.74585025834968 - type: euclidean_spearman value: 44.71684955996943 - type: manhattan_pearson value: 47.992481632815256 - type: manhattan_spearman value: 46.18587933349126 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (zh-en) config: zh-en split: test revision: eea2b4fe26a775864c896887d910b76a8098ad3f metrics: - type: cos_sim_pearson value: 38.89140730917917 - type: cos_sim_spearman value: 49.18633779347391 - type: euclidean_pearson value: 43.27605428753535 - type: euclidean_spearman value: 49.18633779347391 - type: manhattan_pearson value: 48.22046568809415 - type: manhattan_spearman value: 49.248416391249464 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (es-it) config: es-it split: test revision: eea2b4fe26a775864c896887d910b76a8098ad3f metrics: - type: cos_sim_pearson value: 40.31620568726327 - type: cos_sim_spearman value: 49.13034440774138 - type: euclidean_pearson value: 43.95169508285692 - type: euclidean_spearman value: 49.13034440774138 - type: manhattan_pearson value: 48.84250981398146 - type: manhattan_spearman value: 49.54216339903405 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (de-fr) config: de-fr split: test revision: eea2b4fe26a775864c896887d910b76a8098ad3f metrics: - type: cos_sim_pearson value: 27.074582378144058 - type: cos_sim_spearman value: 41.29498619968451 - type: euclidean_pearson value: 28.993986097276505 - type: euclidean_spearman value: 41.29498619968451 - type: manhattan_pearson value: 32.079813951133254 - type: manhattan_spearman value: 43.664111732941464 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (de-pl) config: de-pl split: test revision: eea2b4fe26a775864c896887d910b76a8098ad3f metrics: - type: cos_sim_pearson value: 6.864334110072116 - type: cos_sim_spearman value: 25.805458732687914 - type: euclidean_pearson value: 11.435920047618103 - type: euclidean_spearman value: 25.805458732687914 - type: manhattan_pearson value: 15.036308569899552 - type: manhattan_spearman value: 25.405135387192757 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (fr-pl) config: fr-pl split: test revision: eea2b4fe26a775864c896887d910b76a8098ad3f metrics: - type: cos_sim_pearson value: 65.44029549925597 - type: cos_sim_spearman value: 61.97797868009122 - type: euclidean_pearson value: 65.92740669959876 - type: euclidean_spearman value: 61.97797868009122 - type: manhattan_pearson value: 70.29575044091207 - type: manhattan_spearman value: 73.24670207647144 - task: type: STS dataset: type: C-MTEB/STSB name: MTEB STSB config: default split: test revision: 0cde68302b3541bb8b3c340dc0644b0b745b3dc0 metrics: - type: cos_sim_pearson value: 51.35413149349556 - type: cos_sim_spearman value: 50.175051356729924 - type: euclidean_pearson value: 53.12039152785364 - type: euclidean_spearman value: 50.174289111089685 - type: manhattan_pearson value: 53.0731746793555 - type: manhattan_spearman value: 50.15176393928403 - task: type: STS dataset: type: mteb/stsbenchmark-sts name: MTEB STSBenchmark config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 67.84222983023291 - type: cos_sim_spearman value: 67.39086924655895 - type: euclidean_pearson value: 67.3393327127967 - type: euclidean_spearman value: 67.39088047106472 - type: manhattan_pearson value: 67.40316731822271 - type: manhattan_spearman value: 67.49067800994015 - task: type: Classification dataset: type: ScandEval/scala-da name: MTEB ScalaDaClassification config: default split: test revision: 1de08520a7b361e92ffa2a2201ebd41942c54675 metrics: - type: accuracy value: 50.62988281250001 - type: ap value: 50.32274824114816 - type: f1 value: 50.37741703766756 - task: type: Classification dataset: type: ScandEval/scala-nb name: MTEB ScalaNbClassification config: default split: test revision: 237111a078ad5a834a55c57803d40bbe410ed03b metrics: - type: accuracy value: 51.181640625 - type: ap value: 50.60884394099696 - type: f1 value: 50.866988720930415 - task: type: Classification dataset: type: ScandEval/scala-nn name: MTEB ScalaNnClassification config: default split: test revision: 9d9a2a4092ed3cacf0744592f6d2f32ab8ef4c0b metrics: - type: accuracy value: 50.9375 - type: ap value: 50.47969135089731 - type: f1 value: 50.62913552324756 - task: type: Classification dataset: type: ScandEval/scala-sv name: MTEB ScalaSvClassification config: default split: test revision: 1b48e3dcb02872335ff985ff938a054a4ed99008 metrics: - type: accuracy value: 51.1474609375 - type: ap value: 50.5894187272385 - type: f1 value: 50.901812392367916 - task: type: Reranking dataset: type: mteb/scidocs-reranking name: MTEB SciDocsRR config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 68.36051662289248 - type: mrr value: 89.39224265204656 - task: type: Retrieval dataset: type: scifact name: MTEB SciFact config: default split: test revision: None metrics: - type: map_at_1 value: 23.721999999999998 - type: map_at_10 value: 31.335 - type: map_at_100 value: 32.461 - type: map_at_1000 value: 32.557 - type: map_at_3 value: 29.282000000000004 - type: map_at_5 value: 30.602 - type: mrr_at_1 value: 24.667 - type: mrr_at_10 value: 32.363 - type: mrr_at_100 value: 33.421 - type: mrr_at_1000 value: 33.499 - type: mrr_at_3 value: 30.444 - type: mrr_at_5 value: 31.628 - type: ndcg_at_1 value: 24.667 - type: ndcg_at_10 value: 35.29 - type: ndcg_at_100 value: 40.665 - type: ndcg_at_1000 value: 43.241 - type: ndcg_at_3 value: 31.238 - type: ndcg_at_5 value: 33.486 - type: precision_at_1 value: 24.667 - type: precision_at_10 value: 5.1 - type: precision_at_100 value: 0.7969999999999999 - type: precision_at_1000 value: 0.10300000000000001 - type: precision_at_3 value: 12.667 - type: precision_at_5 value: 8.933 - type: recall_at_1 value: 23.721999999999998 - type: recall_at_10 value: 46.417 - type: recall_at_100 value: 70.944 - type: recall_at_1000 value: 91.033 - type: recall_at_3 value: 35.693999999999996 - type: recall_at_5 value: 40.944 - task: type: Retrieval dataset: type: scifact-pl name: MTEB SciFact-PL config: default split: test revision: None metrics: - type: map_at_1 value: 21.706 - type: map_at_10 value: 28.333000000000002 - type: map_at_100 value: 29.364 - type: map_at_1000 value: 29.451 - type: map_at_3 value: 26.112999999999996 - type: map_at_5 value: 27.502 - type: mrr_at_1 value: 23.0 - type: mrr_at_10 value: 29.555999999999997 - type: mrr_at_100 value: 30.536 - type: mrr_at_1000 value: 30.606 - type: mrr_at_3 value: 27.333000000000002 - type: mrr_at_5 value: 28.717 - type: ndcg_at_1 value: 23.0 - type: ndcg_at_10 value: 32.238 - type: ndcg_at_100 value: 37.785999999999994 - type: ndcg_at_1000 value: 40.266999999999996 - type: ndcg_at_3 value: 27.961000000000002 - type: ndcg_at_5 value: 30.322 - type: precision_at_1 value: 23.0 - type: precision_at_10 value: 4.7669999999999995 - type: precision_at_100 value: 0.787 - type: precision_at_1000 value: 0.10200000000000001 - type: precision_at_3 value: 11.444 - type: precision_at_5 value: 8.200000000000001 - type: recall_at_1 value: 21.706 - type: recall_at_10 value: 43.206 - type: recall_at_100 value: 69.678 - type: recall_at_1000 value: 89.333 - type: recall_at_3 value: 31.900000000000002 - type: recall_at_5 value: 37.594 - task: type: PairClassification dataset: type: mteb/sprintduplicatequestions-pairclassification name: MTEB SprintDuplicateQuestions config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.5 - type: cos_sim_ap value: 77.07584309978081 - type: cos_sim_f1 value: 71.8864950078823 - type: cos_sim_precision value: 75.74750830564784 - type: cos_sim_recall value: 68.4 - type: dot_accuracy value: 99.5 - type: dot_ap value: 77.07584309978081 - type: dot_f1 value: 71.8864950078823 - type: dot_precision value: 75.74750830564784 - type: dot_recall value: 68.4 - type: euclidean_accuracy value: 99.5 - type: euclidean_ap value: 77.07584309978081 - type: euclidean_f1 value: 71.8864950078823 - type: euclidean_precision value: 75.74750830564784 - type: euclidean_recall value: 68.4 - type: manhattan_accuracy value: 99.50594059405941 - type: manhattan_ap value: 77.41658577240027 - type: manhattan_f1 value: 71.91374663072777 - type: manhattan_precision value: 78.01169590643275 - type: manhattan_recall value: 66.7 - type: max_accuracy value: 99.50594059405941 - type: max_ap value: 77.41658577240027 - type: max_f1 value: 71.91374663072777 - task: type: Clustering dataset: type: mteb/stackexchange-clustering name: MTEB StackExchangeClustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 46.32521494308228 - task: type: Clustering dataset: type: mteb/stackexchange-clustering-p2p name: MTEB StackExchangeClusteringP2P config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 20.573273825125266 - task: type: Reranking dataset: type: mteb/stackoverflowdupquestions-reranking name: MTEB StackOverflowDupQuestions config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 38.612724125942385 - type: mrr value: 38.891130315762666 - task: type: Summarization dataset: type: mteb/summeval name: MTEB SummEval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 29.305330424238836 - type: cos_sim_spearman value: 30.556621737388685 - type: dot_pearson value: 29.30533056265583 - type: dot_spearman value: 30.556621737388685 - task: type: Classification dataset: type: ScandEval/swerec-mini name: MTEB SweRecClassification config: default split: test revision: 3c62f26bafdc4c4e1c16401ad4b32f0a94b46612 metrics: - type: accuracy value: 68.4716796875 - type: f1 value: 59.865730786092364 - task: type: Reranking dataset: type: C-MTEB/T2Reranking name: MTEB T2Reranking config: default split: dev revision: 76631901a18387f85eaa53e5450019b87ad58ef9 metrics: - type: map value: 55.34794621490011 - type: mrr value: 59.22764129348421 - task: type: Retrieval dataset: type: C-MTEB/T2Retrieval name: MTEB T2Retrieval config: default split: dev revision: 8731a845f1bf500a4f111cf1070785c793d10e64 metrics: - type: map_at_1 value: 0.586 - type: map_at_10 value: 0.819 - type: map_at_100 value: 0.8920000000000001 - type: map_at_1000 value: 0.928 - type: map_at_3 value: 0.729 - type: map_at_5 value: 0.771 - type: mrr_at_1 value: 1.9949999999999999 - type: mrr_at_10 value: 2.608 - type: mrr_at_100 value: 2.771 - type: mrr_at_1000 value: 2.8289999999999997 - type: mrr_at_3 value: 2.365 - type: mrr_at_5 value: 2.483 - type: ndcg_at_1 value: 1.9949999999999999 - type: ndcg_at_10 value: 1.314 - type: ndcg_at_100 value: 1.831 - type: ndcg_at_1000 value: 3.4139999999999997 - type: ndcg_at_3 value: 1.377 - type: ndcg_at_5 value: 1.2630000000000001 - type: precision_at_1 value: 1.9949999999999999 - type: precision_at_10 value: 0.488 - type: precision_at_100 value: 0.123 - type: precision_at_1000 value: 0.054 - type: precision_at_3 value: 1.027 - type: precision_at_5 value: 0.737 - type: recall_at_1 value: 0.586 - type: recall_at_10 value: 1.3390000000000002 - type: recall_at_100 value: 3.15 - type: recall_at_1000 value: 11.859 - type: recall_at_3 value: 0.8710000000000001 - type: recall_at_5 value: 1.0290000000000001 - task: type: Classification dataset: type: C-MTEB/TNews-classification name: MTEB TNews config: default split: validation revision: 317f262bf1e6126357bbe89e875451e4b0938fe4 metrics: - type: accuracy value: 40.946 - type: f1 value: 39.56517169731474 - task: type: Retrieval dataset: type: trec-covid name: MTEB TRECCOVID config: default split: test revision: None metrics: - type: map_at_1 value: 0.08499999999999999 - type: map_at_10 value: 0.462 - type: map_at_100 value: 0.893 - type: map_at_1000 value: 1.129 - type: map_at_3 value: 0.232 - type: map_at_5 value: 0.3 - type: mrr_at_1 value: 38.0 - type: mrr_at_10 value: 50.629999999999995 - type: mrr_at_100 value: 51.315999999999995 - type: mrr_at_1000 value: 51.365 - type: mrr_at_3 value: 47.0 - type: mrr_at_5 value: 48.9 - type: ndcg_at_1 value: 31.0 - type: ndcg_at_10 value: 24.823 - type: ndcg_at_100 value: 10.583 - type: ndcg_at_1000 value: 6.497999999999999 - type: ndcg_at_3 value: 30.95 - type: ndcg_at_5 value: 27.899 - type: precision_at_1 value: 38.0 - type: precision_at_10 value: 25.6 - type: precision_at_100 value: 8.98 - type: precision_at_1000 value: 2.248 - type: precision_at_3 value: 34.666999999999994 - type: precision_at_5 value: 29.599999999999998 - type: recall_at_1 value: 0.08499999999999999 - type: recall_at_10 value: 0.641 - type: recall_at_100 value: 2.002 - type: recall_at_1000 value: 4.902 - type: recall_at_3 value: 0.28200000000000003 - type: recall_at_5 value: 0.379 - task: type: Retrieval dataset: type: trec-covid-pl name: MTEB TRECCOVID-PL config: default split: test revision: None metrics: - type: map_at_1 value: 0.124 - type: map_at_10 value: 0.45199999999999996 - type: map_at_100 value: 0.874 - type: map_at_1000 value: 1.1039999999999999 - type: map_at_3 value: 0.253 - type: map_at_5 value: 0.32299999999999995 - type: mrr_at_1 value: 36.0 - type: mrr_at_10 value: 47.56 - type: mrr_at_100 value: 48.532 - type: mrr_at_1000 value: 48.579 - type: mrr_at_3 value: 45.0 - type: mrr_at_5 value: 45.5 - type: ndcg_at_1 value: 34.0 - type: ndcg_at_10 value: 24.529 - type: ndcg_at_100 value: 10.427 - type: ndcg_at_1000 value: 6.457 - type: ndcg_at_3 value: 31.173000000000002 - type: ndcg_at_5 value: 27.738000000000003 - type: precision_at_1 value: 38.0 - type: precision_at_10 value: 25.4 - type: precision_at_100 value: 8.88 - type: precision_at_1000 value: 2.2159999999999997 - type: precision_at_3 value: 34.666999999999994 - type: precision_at_5 value: 29.2 - type: recall_at_1 value: 0.124 - type: recall_at_10 value: 0.618 - type: recall_at_100 value: 1.9349999999999998 - type: recall_at_1000 value: 4.808 - type: recall_at_3 value: 0.28300000000000003 - type: recall_at_5 value: 0.382 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (sqi-eng) config: sqi-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 98.9 - type: f1 value: 98.55000000000001 - type: precision value: 98.38333333333334 - type: recall value: 98.9 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (fry-eng) config: fry-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 65.3179190751445 - type: f1 value: 59.44582071749702 - type: precision value: 57.49678869621066 - type: recall value: 65.3179190751445 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (kur-eng) config: kur-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 38.53658536585366 - type: f1 value: 34.217555952803785 - type: precision value: 32.96511296649355 - type: recall value: 38.53658536585366 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (tur-eng) config: tur-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 98.7 - type: f1 value: 98.26666666666665 - type: precision value: 98.05 - type: recall value: 98.7 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (deu-eng) config: deu-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 99.3 - type: f1 value: 99.13333333333333 - type: precision value: 99.05000000000001 - type: recall value: 99.3 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (nld-eng) config: nld-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 97.89999999999999 - type: f1 value: 97.2 - type: precision value: 96.85000000000001 - type: recall value: 97.89999999999999 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ron-eng) config: ron-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 98.2 - type: f1 value: 97.6 - type: precision value: 97.3 - type: recall value: 98.2 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ang-eng) config: ang-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 52.23880597014925 - type: f1 value: 46.340992406389105 - type: precision value: 44.556384742951906 - type: recall value: 52.23880597014925 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ido-eng) config: ido-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 95.0 - type: f1 value: 93.67000000000002 - type: precision value: 93.075 - type: recall value: 95.0 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (jav-eng) config: jav-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 88.29268292682927 - type: f1 value: 85.76422764227642 - type: precision value: 84.84204413472706 - type: recall value: 88.29268292682927 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (isl-eng) config: isl-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 97.2 - type: f1 value: 96.46666666666667 - type: precision value: 96.1 - type: recall value: 97.2 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (slv-eng) config: slv-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 96.8408262454435 - type: f1 value: 95.9902794653706 - type: precision value: 95.56500607533415 - type: recall value: 96.8408262454435 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (cym-eng) config: cym-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 93.3913043478261 - type: f1 value: 91.30434782608695 - type: precision value: 90.28985507246377 - type: recall value: 93.3913043478261 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (kaz-eng) config: kaz-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 90.6086956521739 - type: f1 value: 88.1159420289855 - type: precision value: 86.9623188405797 - type: recall value: 90.6086956521739 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (est-eng) config: est-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 97.8 - type: f1 value: 97.16666666666667 - type: precision value: 96.86666666666667 - type: recall value: 97.8 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (heb-eng) config: heb-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 94.0 - type: f1 value: 92.34 - type: precision value: 91.54166666666667 - type: recall value: 94.0 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (gla-eng) config: gla-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 84.92159227985525 - type: f1 value: 80.8868975817106 - type: precision value: 79.11540008041817 - type: recall value: 84.92159227985525 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (mar-eng) config: mar-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 94.89999999999999 - type: f1 value: 93.35 - type: precision value: 92.58333333333334 - type: recall value: 94.89999999999999 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (lat-eng) config: lat-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 43.3 - type: f1 value: 36.64473116255726 - type: precision value: 34.64017752457381 - type: recall value: 43.3 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (bel-eng) config: bel-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 96.7 - type: f1 value: 95.68333333333332 - type: precision value: 95.19999999999999 - type: recall value: 96.7 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (pms-eng) config: pms-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 70.47619047619048 - type: f1 value: 66.63032734461306 - type: precision value: 65.46459191863879 - type: recall value: 70.47619047619048 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (gle-eng) config: gle-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 93.5 - type: f1 value: 91.63 - type: precision value: 90.75 - type: recall value: 93.5 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (pes-eng) config: pes-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 95.5 - type: f1 value: 94.36666666666666 - type: precision value: 93.83333333333333 - type: recall value: 95.5 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (nob-eng) config: nob-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 99.3 - type: f1 value: 99.06666666666666 - type: precision value: 98.95 - type: recall value: 99.3 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (bul-eng) config: bul-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 95.8 - type: f1 value: 94.51666666666667 - type: precision value: 93.88333333333334 - type: recall value: 95.8 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (cbk-eng) config: cbk-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 84.0 - type: f1 value: 80.46675324675326 - type: precision value: 78.95999999999998 - type: recall value: 84.0 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (hun-eng) config: hun-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 97.7 - type: f1 value: 96.93333333333332 - type: precision value: 96.55 - type: recall value: 97.7 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (uig-eng) config: uig-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 92.10000000000001 - type: f1 value: 90.07333333333334 - type: precision value: 89.16166666666668 - type: recall value: 92.10000000000001 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (rus-eng) config: rus-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 95.6 - type: f1 value: 94.35 - type: precision value: 93.75 - type: recall value: 95.6 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (spa-eng) config: spa-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 98.9 - type: f1 value: 98.53333333333335 - type: precision value: 98.35000000000001 - type: recall value: 98.9 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (hye-eng) config: hye-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 96.22641509433963 - type: f1 value: 95.14824797843666 - type: precision value: 94.60916442048517 - type: recall value: 96.22641509433963 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (tel-eng) config: tel-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 93.58974358974359 - type: f1 value: 91.59544159544159 - type: precision value: 90.66951566951566 - type: recall value: 93.58974358974359 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (afr-eng) config: afr-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 98.1 - type: f1 value: 97.46666666666668 - type: precision value: 97.15 - type: recall value: 98.1 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (mon-eng) config: mon-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 93.4090909090909 - type: f1 value: 91.5909090909091 - type: precision value: 90.71969696969697 - type: recall value: 93.4090909090909 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (arz-eng) config: arz-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 89.51781970649894 - type: f1 value: 86.76150544075072 - type: precision value: 85.55206149545772 - type: recall value: 89.51781970649894 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (hrv-eng) config: hrv-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 98.2 - type: f1 value: 97.65 - type: precision value: 97.38333333333333 - type: recall value: 98.2 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (nov-eng) config: nov-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 75.87548638132296 - type: f1 value: 71.24698906800073 - type: precision value: 69.66572338167668 - type: recall value: 75.87548638132296 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (gsw-eng) config: gsw-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 61.53846153846154 - type: f1 value: 54.83234714003944 - type: precision value: 52.06552706552707 - type: recall value: 61.53846153846154 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (nds-eng) config: nds-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 59.199999999999996 - type: f1 value: 54.183211233211225 - type: precision value: 52.48751719986241 - type: recall value: 59.199999999999996 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ukr-eng) config: ukr-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 95.6 - type: f1 value: 94.3 - type: precision value: 93.65 - type: recall value: 95.6 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (uzb-eng) config: uzb-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 87.85046728971963 - type: f1 value: 85.25700934579439 - type: precision value: 84.09267912772586 - type: recall value: 87.85046728971963 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (lit-eng) config: lit-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 98.0 - type: f1 value: 97.43333333333332 - type: precision value: 97.15 - type: recall value: 98.0 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ina-eng) config: ina-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 90.8 - type: f1 value: 88.66055555555555 - type: precision value: 87.81845238095238 - type: recall value: 90.8 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (lfn-eng) config: lfn-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 70.6 - type: f1 value: 65.538895353013 - type: precision value: 63.69531394330308 - type: recall value: 70.6 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (zsm-eng) config: zsm-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 96.89999999999999 - type: f1 value: 96.06666666666668 - type: precision value: 95.68333333333334 - type: recall value: 96.89999999999999 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ita-eng) config: ita-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 96.8 - type: f1 value: 95.95 - type: precision value: 95.55 - type: recall value: 96.8 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (cmn-eng) config: cmn-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 95.19999999999999 - type: f1 value: 93.8 - type: precision value: 93.13333333333334 - type: recall value: 95.19999999999999 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (lvs-eng) config: lvs-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 96.5 - type: f1 value: 95.45 - type: precision value: 94.93333333333334 - type: recall value: 96.5 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (glg-eng) config: glg-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 97.89999999999999 - type: f1 value: 97.28333333333332 - type: precision value: 96.98333333333333 - type: recall value: 97.89999999999999 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ceb-eng) config: ceb-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 78.16666666666666 - type: f1 value: 74.67336721249764 - type: precision value: 73.26035353535354 - type: recall value: 78.16666666666666 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (bre-eng) config: bre-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 11.200000000000001 - type: f1 value: 8.48123815073815 - type: precision value: 7.843657708032708 - type: recall value: 11.200000000000001 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ben-eng) config: ben-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 91.3 - type: f1 value: 89.02333333333333 - type: precision value: 87.97500000000001 - type: recall value: 91.3 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (swg-eng) config: swg-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 72.32142857142857 - type: f1 value: 67.69209956709956 - type: precision value: 66.19047619047619 - type: recall value: 72.32142857142857 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (arq-eng) config: arq-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 79.69264544456641 - type: f1 value: 75.40693115885212 - type: precision value: 73.67544822539335 - type: recall value: 79.69264544456641 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (kab-eng) config: kab-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 86.8 - type: f1 value: 83.65666666666667 - type: precision value: 82.24833333333333 - type: recall value: 86.8 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (fra-eng) config: fra-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 96.39999999999999 - type: f1 value: 95.36666666666666 - type: precision value: 94.86666666666666 - type: recall value: 96.39999999999999 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (por-eng) config: por-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 96.3 - type: f1 value: 95.49 - type: precision value: 95.10833333333333 - type: recall value: 96.3 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (tat-eng) config: tat-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 89.60000000000001 - type: f1 value: 87.04746031746032 - type: precision value: 85.89583333333333 - type: recall value: 89.60000000000001 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (oci-eng) config: oci-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 86.9 - type: f1 value: 84.57088023088022 - type: precision value: 83.6475 - type: recall value: 86.9 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (pol-eng) config: pol-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 98.2 - type: f1 value: 97.7 - type: precision value: 97.46666666666668 - type: recall value: 98.2 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (war-eng) config: war-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 85.39999999999999 - type: f1 value: 82.83333333333333 - type: precision value: 81.80137426900586 - type: recall value: 85.39999999999999 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (aze-eng) config: aze-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 91.4 - type: f1 value: 89.11999999999999 - type: precision value: 88.12777777777778 - type: recall value: 91.4 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (vie-eng) config: vie-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 97.8 - type: f1 value: 97.16666666666669 - type: precision value: 96.85000000000001 - type: recall value: 97.8 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (nno-eng) config: nno-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 97.89999999999999 - type: f1 value: 97.30666666666666 - type: precision value: 97.02499999999999 - type: recall value: 97.89999999999999 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (cha-eng) config: cha-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 27.00729927007299 - type: f1 value: 25.114895917815623 - type: precision value: 24.602283361407448 - type: recall value: 27.00729927007299 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (mhr-eng) config: mhr-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 14.099999999999998 - type: f1 value: 11.869284007509814 - type: precision value: 11.199695454818405 - type: recall value: 14.099999999999998 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (dan-eng) config: dan-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 97.7 - type: f1 value: 97.09 - type: precision value: 96.80833333333332 - type: recall value: 97.7 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ell-eng) config: ell-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 96.5 - type: f1 value: 95.47333333333333 - type: precision value: 94.975 - type: recall value: 96.5 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (amh-eng) config: amh-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 93.45238095238095 - type: f1 value: 91.66666666666666 - type: precision value: 90.77380952380952 - type: recall value: 93.45238095238095 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (pam-eng) config: pam-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 11.899999999999999 - type: f1 value: 10.303261315113037 - type: precision value: 9.902986584515606 - type: recall value: 11.899999999999999 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (hsb-eng) config: hsb-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 81.57349896480332 - type: f1 value: 77.86519438693352 - type: precision value: 76.35595081247254 - type: recall value: 81.57349896480332 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (srp-eng) config: srp-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 96.1 - type: f1 value: 94.86666666666667 - type: precision value: 94.25 - type: recall value: 96.1 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (epo-eng) config: epo-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 98.8 - type: f1 value: 98.46666666666667 - type: precision value: 98.3 - type: recall value: 98.8 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (kzj-eng) config: kzj-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 10.7 - type: f1 value: 8.621683883854935 - type: precision value: 8.188292731521031 - type: recall value: 10.7 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (awa-eng) config: awa-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 90.47619047619048 - type: f1 value: 87.8581735724593 - type: precision value: 86.72438672438673 - type: recall value: 90.47619047619048 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (fao-eng) config: fao-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 95.0381679389313 - type: f1 value: 93.60050890585242 - type: precision value: 92.970737913486 - type: recall value: 95.0381679389313 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (mal-eng) config: mal-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 98.2532751091703 - type: f1 value: 97.67103347889375 - type: precision value: 97.37991266375546 - type: recall value: 98.2532751091703 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ile-eng) config: ile-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 84.6 - type: f1 value: 80.99904761904763 - type: precision value: 79.54634920634919 - type: recall value: 84.6 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (bos-eng) config: bos-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 96.89265536723164 - type: f1 value: 95.90395480225989 - type: precision value: 95.4331450094162 - type: recall value: 96.89265536723164 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (cor-eng) config: cor-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 12.6 - type: f1 value: 9.981918087824628 - type: precision value: 9.326319147606549 - type: recall value: 12.6 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (cat-eng) config: cat-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 97.39999999999999 - type: f1 value: 96.65 - type: precision value: 96.28333333333333 - type: recall value: 97.39999999999999 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (eus-eng) config: eus-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 96.5 - type: f1 value: 95.38333333333333 - type: precision value: 94.83333333333333 - type: recall value: 96.5 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (yue-eng) config: yue-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 90.8 - type: f1 value: 88.43666666666665 - type: precision value: 87.395 - type: recall value: 90.8 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (swe-eng) config: swe-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 97.7 - type: f1 value: 97.03333333333333 - type: precision value: 96.71666666666667 - type: recall value: 97.7 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (dtp-eng) config: dtp-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 9.4 - type: f1 value: 7.946889105220061 - type: precision value: 7.665059865752875 - type: recall value: 9.4 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (kat-eng) config: kat-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 95.04021447721179 - type: f1 value: 93.68632707774799 - type: precision value: 93.08534405719392 - type: recall value: 95.04021447721179 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (jpn-eng) config: jpn-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 95.89999999999999 - type: f1 value: 94.66666666666667 - type: precision value: 94.08333333333334 - type: recall value: 95.89999999999999 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (csb-eng) config: csb-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 82.6086956521739 - type: f1 value: 77.98418972332016 - type: precision value: 75.96837944664031 - type: recall value: 82.6086956521739 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (xho-eng) config: xho-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 95.77464788732394 - type: f1 value: 94.8356807511737 - type: precision value: 94.36619718309859 - type: recall value: 95.77464788732394 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (orv-eng) config: orv-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 53.17365269461077 - type: f1 value: 47.07043056743655 - type: precision value: 45.161363241830784 - type: recall value: 53.17365269461077 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ind-eng) config: ind-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 95.5 - type: f1 value: 94.5 - type: precision value: 94.03333333333333 - type: recall value: 95.5 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (tuk-eng) config: tuk-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 93.59605911330048 - type: f1 value: 91.82266009852216 - type: precision value: 91.09195402298852 - type: recall value: 93.59605911330048 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (max-eng) config: max-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 76.40845070422534 - type: f1 value: 72.73082942097027 - type: precision value: 71.46686939820742 - type: recall value: 76.40845070422534 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (swh-eng) config: swh-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 93.58974358974359 - type: f1 value: 91.98290598290598 - type: precision value: 91.3119658119658 - type: recall value: 93.58974358974359 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (hin-eng) config: hin-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 97.8 - type: f1 value: 97.06666666666668 - type: precision value: 96.7 - type: recall value: 97.8 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (dsb-eng) config: dsb-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 68.89352818371609 - type: f1 value: 64.47860652453555 - type: precision value: 62.878651918592574 - type: recall value: 68.89352818371609 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ber-eng) config: ber-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 33.800000000000004 - type: f1 value: 29.290774344112368 - type: precision value: 28.066016735704647 - type: recall value: 33.800000000000004 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (tam-eng) config: tam-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 90.22801302931596 - type: f1 value: 88.07817589576547 - type: precision value: 87.171552660152 - type: recall value: 90.22801302931596 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (slk-eng) config: slk-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 98.2 - type: f1 value: 97.63333333333334 - type: precision value: 97.36666666666667 - type: recall value: 98.2 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (tgl-eng) config: tgl-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 97.7 - type: f1 value: 96.95 - type: precision value: 96.58333333333331 - type: recall value: 97.7 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ast-eng) config: ast-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 92.91338582677166 - type: f1 value: 90.81364829396327 - type: precision value: 89.89501312335958 - type: recall value: 92.91338582677166 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (mkd-eng) config: mkd-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 96.89999999999999 - type: f1 value: 95.98333333333332 - type: precision value: 95.56666666666668 - type: recall value: 96.89999999999999 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (khm-eng) config: khm-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 74.51523545706371 - type: f1 value: 70.20346919931407 - type: precision value: 68.6389565788895 - type: recall value: 74.51523545706371 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ces-eng) config: ces-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 97.6 - type: f1 value: 96.88333333333333 - type: precision value: 96.53333333333333 - type: recall value: 97.6 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (tzl-eng) config: tzl-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 46.15384615384615 - type: f1 value: 39.47885447885448 - type: precision value: 37.301528599605525 - type: recall value: 46.15384615384615 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (urd-eng) config: urd-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 94.69999999999999 - type: f1 value: 93.16666666666667 - type: precision value: 92.41666666666667 - type: recall value: 94.69999999999999 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ara-eng) config: ara-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 95.19999999999999 - type: f1 value: 93.83333333333333 - type: precision value: 93.16666666666667 - type: recall value: 95.19999999999999 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (kor-eng) config: kor-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 92.0 - type: f1 value: 89.98666666666666 - type: precision value: 89.09166666666667 - type: recall value: 92.0 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (yid-eng) config: yid-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 95.51886792452831 - type: f1 value: 94.3003144654088 - type: precision value: 93.75 - type: recall value: 95.51886792452831 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (fin-eng) config: fin-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 98.2 - type: f1 value: 97.83333333333333 - type: precision value: 97.65 - type: recall value: 98.2 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (tha-eng) config: tha-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 96.8978102189781 - type: f1 value: 96.04622871046227 - type: precision value: 95.62043795620438 - type: recall value: 96.8978102189781 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (wuu-eng) config: wuu-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 85.1 - type: f1 value: 81.78564213564214 - type: precision value: 80.46416666666667 - type: recall value: 85.1 - task: type: Clustering dataset: type: slvnwhrl/tenkgnad-clustering-p2p name: MTEB TenKGnadClusteringP2P config: default split: test revision: 5c59e41555244b7e45c9a6be2d720ab4bafae558 metrics: - type: v_measure value: 21.827519839402644 - task: type: Clustering dataset: type: slvnwhrl/tenkgnad-clustering-s2s name: MTEB TenKGnadClusteringS2S config: default split: test revision: 6cddbe003f12b9b140aec477b583ac4191f01786 metrics: - type: v_measure value: 27.160188241713684 - task: type: Clustering dataset: type: C-MTEB/ThuNewsClusteringP2P name: MTEB ThuNewsClusteringP2P config: default split: test revision: 5798586b105c0434e4f0fe5e767abe619442cf93 metrics: - type: v_measure value: 38.54459276932986 - task: type: Clustering dataset: type: C-MTEB/ThuNewsClusteringS2S name: MTEB ThuNewsClusteringS2S config: default split: test revision: 8a8b2caeda43f39e13c4bc5bea0f8a667896e10d metrics: - type: v_measure value: 43.4460576234314 - task: type: Retrieval dataset: type: webis-touche2020 name: MTEB Touche2020 config: default split: test revision: None metrics: - type: map_at_1 value: 0.20500000000000002 - type: map_at_10 value: 0.391 - type: map_at_100 value: 0.612 - type: map_at_1000 value: 0.645 - type: map_at_3 value: 0.302 - type: map_at_5 value: 0.383 - type: mrr_at_1 value: 4.082 - type: mrr_at_10 value: 5.612 - type: mrr_at_100 value: 6.822 - type: mrr_at_1000 value: 6.929 - type: mrr_at_3 value: 4.082 - type: mrr_at_5 value: 5.408 - type: ndcg_at_1 value: 4.082 - type: ndcg_at_10 value: 1.6840000000000002 - type: ndcg_at_100 value: 2.876 - type: ndcg_at_1000 value: 4.114 - type: ndcg_at_3 value: 2.52 - type: ndcg_at_5 value: 2.3720000000000003 - type: precision_at_1 value: 4.082 - type: precision_at_10 value: 1.429 - type: precision_at_100 value: 0.755 - type: precision_at_1000 value: 0.18 - type: precision_at_3 value: 2.041 - type: precision_at_5 value: 2.4490000000000003 - type: recall_at_1 value: 0.20500000000000002 - type: recall_at_10 value: 0.761 - type: recall_at_100 value: 4.423 - type: recall_at_1000 value: 9.044 - type: recall_at_3 value: 0.302 - type: recall_at_5 value: 0.683 - task: type: Classification dataset: type: mteb/toxic_conversations_50k name: MTEB ToxicConversationsClassification config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 67.28359999999999 - type: ap value: 12.424592214862038 - type: f1 value: 51.53630450055703 - task: type: Classification dataset: type: mteb/tweet_sentiment_extraction name: MTEB TweetSentimentExtractionClassification config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 56.23372948500284 - type: f1 value: 56.440924587214234 - task: type: Clustering dataset: type: mteb/twentynewsgroups-clustering name: MTEB TwentyNewsgroupsClustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 24.410059815620116 - task: type: PairClassification dataset: type: mteb/twittersemeval2015-pairclassification name: MTEB TwitterSemEval2015 config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 80.3302139834297 - type: cos_sim_ap value: 53.57723069745093 - type: cos_sim_f1 value: 51.58639580004565 - type: cos_sim_precision value: 45.45454545454545 - type: cos_sim_recall value: 59.63060686015831 - type: dot_accuracy value: 80.3302139834297 - type: dot_ap value: 53.57723006705641 - type: dot_f1 value: 51.58639580004565 - type: dot_precision value: 45.45454545454545 - type: dot_recall value: 59.63060686015831 - type: euclidean_accuracy value: 80.3302139834297 - type: euclidean_ap value: 53.57723050286929 - type: euclidean_f1 value: 51.58639580004565 - type: euclidean_precision value: 45.45454545454545 - type: euclidean_recall value: 59.63060686015831 - type: manhattan_accuracy value: 80.31233235977827 - type: manhattan_ap value: 53.44943961562638 - type: manhattan_f1 value: 51.24183006535947 - type: manhattan_precision value: 43.63636363636363 - type: manhattan_recall value: 62.05804749340369 - type: max_accuracy value: 80.3302139834297 - type: max_ap value: 53.57723069745093 - type: max_f1 value: 51.58639580004565 - task: type: PairClassification dataset: type: mteb/twitterurlcorpus-pairclassification name: MTEB TwitterURLCorpus config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 87.45876508712695 - type: cos_sim_ap value: 83.5320716566614 - type: cos_sim_f1 value: 75.54560716284276 - type: cos_sim_precision value: 73.27929362379678 - type: cos_sim_recall value: 77.95657530027718 - type: dot_accuracy value: 87.45876508712695 - type: dot_ap value: 83.53209944887666 - type: dot_f1 value: 75.54560716284276 - type: dot_precision value: 73.27929362379678 - type: dot_recall value: 77.95657530027718 - type: euclidean_accuracy value: 87.45876508712695 - type: euclidean_ap value: 83.53205938307582 - type: euclidean_f1 value: 75.54560716284276 - type: euclidean_precision value: 73.27929362379678 - type: euclidean_recall value: 77.95657530027718 - type: manhattan_accuracy value: 87.52280048123569 - type: manhattan_ap value: 83.4884324728773 - type: manhattan_f1 value: 75.43366677906411 - type: manhattan_precision value: 73.46566445303948 - type: manhattan_recall value: 77.51000923929782 - type: max_accuracy value: 87.52280048123569 - type: max_ap value: 83.53209944887666 - type: max_f1 value: 75.54560716284276 - task: type: Retrieval dataset: type: C-MTEB/VideoRetrieval name: MTEB VideoRetrieval config: default split: dev revision: 58c2597a5943a2ba48f4668c3b90d796283c5639 metrics: - type: map_at_1 value: 13.100000000000001 - type: map_at_10 value: 15.620000000000001 - type: map_at_100 value: 15.928 - type: map_at_1000 value: 15.976 - type: map_at_3 value: 14.817 - type: map_at_5 value: 15.322 - type: mrr_at_1 value: 13.0 - type: mrr_at_10 value: 15.57 - type: mrr_at_100 value: 15.878 - type: mrr_at_1000 value: 15.926000000000002 - type: mrr_at_3 value: 14.767 - type: mrr_at_5 value: 15.272 - type: ndcg_at_1 value: 13.100000000000001 - type: ndcg_at_10 value: 17.05 - type: ndcg_at_100 value: 18.801000000000002 - type: ndcg_at_1000 value: 20.436 - type: ndcg_at_3 value: 15.425 - type: ndcg_at_5 value: 16.333000000000002 - type: precision_at_1 value: 13.100000000000001 - type: precision_at_10 value: 2.16 - type: precision_at_100 value: 0.304 - type: precision_at_1000 value: 0.044000000000000004 - type: precision_at_3 value: 5.733 - type: precision_at_5 value: 3.88 - type: recall_at_1 value: 13.100000000000001 - type: recall_at_10 value: 21.6 - type: recall_at_100 value: 30.4 - type: recall_at_1000 value: 44.1 - type: recall_at_3 value: 17.2 - type: recall_at_5 value: 19.400000000000002 - task: type: Classification dataset: type: C-MTEB/waimai-classification name: MTEB Waimai config: default split: test revision: 339287def212450dcaa9df8c22bf93e9980c7023 metrics: - type: accuracy value: 76.12 - type: ap value: 54.1619589378045 - type: f1 value: 74.32372858884229 - task: type: Clustering dataset: type: jinaai/cities_wiki_clustering name: MTEB WikiCitiesClustering config: default split: test revision: ddc9ee9242fa65332597f70e967ecc38b9d734fa metrics: - type: v_measure value: 50.71744674029636 - task: type: Retrieval dataset: type: jinaai/xmarket_de name: MTEB XMarketDE config: default split: test revision: 2336818db4c06570fcdf263e1bcb9993b786f67a metrics: - type: map_at_1 value: 0.182 - type: map_at_10 value: 0.266 - type: map_at_100 value: 0.295 - type: map_at_1000 value: 0.313 - type: map_at_3 value: 0.232 - type: map_at_5 value: 0.23800000000000002 - type: mrr_at_1 value: 1.3379999999999999 - type: mrr_at_10 value: 1.918 - type: mrr_at_100 value: 2.051 - type: mrr_at_1000 value: 2.084 - type: mrr_at_3 value: 1.7049999999999998 - type: mrr_at_5 value: 1.791 - type: ndcg_at_1 value: 1.3379999999999999 - type: ndcg_at_10 value: 0.859 - type: ndcg_at_100 value: 0.8500000000000001 - type: ndcg_at_1000 value: 1.345 - type: ndcg_at_3 value: 1.032 - type: ndcg_at_5 value: 0.918 - type: precision_at_1 value: 1.3379999999999999 - type: precision_at_10 value: 0.528 - type: precision_at_100 value: 0.22699999999999998 - type: precision_at_1000 value: 0.132 - type: precision_at_3 value: 0.8829999999999999 - type: precision_at_5 value: 0.6890000000000001 - type: recall_at_1 value: 0.182 - type: recall_at_10 value: 0.51 - type: recall_at_100 value: 1.2229999999999999 - type: recall_at_1000 value: 4.183 - type: recall_at_3 value: 0.292 - type: recall_at_5 value: 0.315 --- # SONAR [[Paper]](https://ai.meta.com/research/publications/sonar-sentence-level-multimodal-and-language-agnostic-representations/) We introduce SONAR, a new multilingual and multimodal fixed-size sentence embedding space, with a full suite of speech and text encoders and decoders. It substantially outperforms existing sentence embeddings such as LASER3 and LabSE on the xsim and xsim++ multilingual similarity search tasks. Speech segments can be embedded in the same SONAR embedding space using language-specific speech encoders trained in a teacher-student setting on speech transcription data. We also provide a single text decoder, which allows us to perform text-to-text and speech-to-text machine translation, including for zero-shot language and modality combinations. *SONAR* stands for **S**entence-level multim**O**dal and la**N**guage-**A**gnostic **R**epresentations The full list of supported languages (along with download links) can be found here [below](#supported-languages-and-download-links). ## Installing SONAR depends mainly on [Fairseq2](https://github.com/fairinternal/fairseq2) and can be installed using (tested with `python=3.8`) ```bash pip install --upgrade pip pip config set global.extra-index-url https://test.pypi.org/simple/ pip install -e . ``` ## Usage fairseq2 will automatically download models into your `$TORCH_HOME/hub` directory upon using the commands below. ### Compute text sentence embeddings with SONAR: ```python from sonar.inference_pipelines.text import TextToEmbeddingModelPipeline t2vec_model = TextToEmbeddingModelPipeline(encoder="text_sonar_basic_encoder", tokenizer="text_sonar_basic_encoder") sentences = ['My name is SONAR.', 'I can embed the sentences into vectorial space.'] t2vec_model.predict(sentences, source_lang="eng_Latn").shape # torch.Size([2, 1024]) ``` ### Translate text with SONAR ```python from sonar.inference_pipelines.text import TextToTextModelPipeline t2t_model = TextToTextModelPipeline(encoder="text_sonar_basic_encoder", decoder="text_sonar_basic_decoder", tokenizer="text_sonar_basic_encoder") # tokenizer is attached to both encoder and decoder cards sentences = ['My name is SONAR.', 'I can embed the sentences into vectorial space.'] t2t_model.predict(sentences, source_lang="eng_Latn", target_lang="fra_Latn") # ['Mon nom est SONAR.', "Je peux intégrer les phrases dans l'espace vectoriel."] ``` ### Compute speech sentence embeddings with SONAR ```python from sonar.inference_pipelines.speech import SpeechToEmbeddingModelPipeline s2vec_model = SpeechToEmbeddingModelPipeline(encoder="sonar_speech_encoder_eng") s2vec_model.predict(["./tests/integration_tests/data/audio_files/audio_1.wav", "./tests/integration_tests/data/audio_files/audio_2.wav"]).shape # torch.Size([2, 1024]) import torchaudio inp, sr = torchaudio.load("./tests/integration_tests/data/audio_files/audio_1.wav") assert sr == 16000, "Sample rate should be 16kHz" s2vec_model.predict([inp]).shape # torch.Size([1, 1024]) ``` ### Speech-to-text translation with SONAR ```python from sonar.inference_pipelines.speech import SpeechToTextModelPipeline s2t_model = SpeechToTextModelPipeline(encoder="sonar_speech_encoder_eng", decoder="text_sonar_basic_decoder", tokenizer="text_sonar_basic_decoder") import torchaudio inp, sr = torchaudio.load("./tests/integration_tests/data/audio_files/audio_1.wav") assert sr == 16000, "Sample rate should be 16kHz" # passing loaded audio files s2t_model.predict([inp], target_lang="eng_Latn") # ['Television reports show white smoke coming from the plant.'] # passing multiple wav files s2t_model.predict(["./tests/integration_tests/data/audio_files/audio_1.wav", "./tests/integration_tests/data/audio_files/audio_2.wav"], target_lang="eng_Latn") # ['Television reports show white smoke coming from the plant.', # 'These couples may choose to make an adoption plan for their baby.'] ``` ### Predicting [cross-lingual semantic similarity](https://github.com/facebookresearch/fairseq/tree/nllb/examples/nllb/human_XSTS_eval) with BLASER 2 models ```Python import torch from sonar.models.blaser.loader import load_blaser_model blaser_ref = load_blaser_model("blaser_st2st_ref_v2_0").eval() blaser_qe = load_blaser_model("blaser_st2st_qe_v2_0").eval() # BLASER-2 is supposed to work with SONAR speech and text embeddings, # but we didn't include their extraction in this snippet, to keep it simple. emb = torch.ones([1, 1024]) print(blaser_ref(src=emb, ref=emb, mt=emb).item()) # 5.2552 print(blaser_qe(src=emb, mt=emb).item()) # 4.9819 ``` See more complete demo notebooks : * [sonar text2text similarity and translation](examples/sonar_text_demo.ipynb) * [sonar speech2text and other data pipeline examples](examples/inference_pipelines.ipynb) ## Model details - **Developed by:** Paul-Ambroise Duquenne et al. - **License:** CC-BY-NC 4.0 license - **Cite as:** ``` @article{Duquenne:2023:sonar_arxiv, author = {Paul-Ambroise Duquenne and Holger Schwenk and Benoit Sagot}, title = {{SONAR:} Sentence-Level Multimodal and Language-Agnostic Representations}, publisher = {arXiv}, year = {2023}, url = {https://arxiv.org/abs/unk}, } ```
LoneStriker/openbuddy-mixtral-7bx8-v18.1-32k-3.75bpw-h6-exl2
LoneStriker
2024-02-14T19:15:49Z
4
0
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "zh", "en", "fr", "de", "ja", "ko", "it", "ru", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-14T19:06:06Z
--- language: - zh - en - fr - de - ja - ko - it - ru pipeline_tag: text-generation inference: false library_name: transformers license: apache-2.0 --- # OpenBuddy - Open Multilingual Chatbot GitHub and Usage Guide: [https://github.com/OpenBuddy/OpenBuddy](https://github.com/OpenBuddy/OpenBuddy) Website and Demo: [https://openbuddy.ai](https://openbuddy.ai) Evaluation result of this model: [Evaluation.txt](Evaluation.txt) ![Demo](https://raw.githubusercontent.com/OpenBuddy/OpenBuddy/main/media/demo.png) # Copyright Notice Base model: https://huggingface.co/mistralai/Mixtral-8x7B-v0.1 License: Apache 2.0 ## Disclaimer All OpenBuddy models have inherent limitations and may potentially produce outputs that are erroneous, harmful, offensive, or otherwise undesirable. Users should not use these models in critical or high-stakes situations that may lead to personal injury, property damage, or significant losses. Examples of such scenarios include, but are not limited to, the medical field, controlling software and hardware systems that may cause harm, and making important financial or legal decisions. OpenBuddy is provided "as-is" without any warranty of any kind, either express or implied, including, but not limited to, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement. In no event shall the authors, contributors, or copyright holders be liable for any claim, damages, or other liabilities, whether in an action of contract, tort, or otherwise, arising from, out of, or in connection with the software or the use or other dealings in the software. By using OpenBuddy, you agree to these terms and conditions, and acknowledge that you understand the potential risks associated with its use. You also agree to indemnify and hold harmless the authors, contributors, and copyright holders from any claims, damages, or liabilities arising from your use of OpenBuddy. ## 免责声明 所有OpenBuddy模型均存在固有的局限性,可能产生错误的、有害的、冒犯性的或其他不良的输出。用户在关键或高风险场景中应谨慎行事,不要使用这些模型,以免导致人身伤害、财产损失或重大损失。此类场景的例子包括但不限于医疗领域、可能导致伤害的软硬件系统的控制以及进行重要的财务或法律决策。 OpenBuddy按“原样”提供,不附带任何种类的明示或暗示的保证,包括但不限于适销性、特定目的的适用性和非侵权的暗示保证。在任何情况下,作者、贡献者或版权所有者均不对因软件或使用或其他软件交易而产生的任何索赔、损害赔偿或其他责任(无论是合同、侵权还是其他原因)承担责任。 使用OpenBuddy即表示您同意这些条款和条件,并承认您了解其使用可能带来的潜在风险。您还同意赔偿并使作者、贡献者和版权所有者免受因您使用OpenBuddy而产生的任何索赔、损害赔偿或责任的影响。
sam2ai/qwen_1.5_odia_0.5b
sam2ai
2024-02-14T19:14:41Z
1
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen1.5-0.5B", "base_model:adapter:Qwen/Qwen1.5-0.5B", "license:other", "4-bit", "bitsandbytes", "region:us" ]
null
2024-02-13T02:39:13Z
--- license: other library_name: peft tags: - axolotl - generated_from_trainer base_model: Qwen/Qwen1.5-0.5B model-index: - name: qwen_1.5_odia_0.5b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.0` ```yaml base_model: Qwen/Qwen1.5-0.5B model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer # is_qwen_derived_model: true trust_remote_code: true load_in_8bit: false load_in_4bit: true strict: false datasets: - path: OdiaGenAIdata/culturax-odia type: completion dataset_prepared_path: val_set_size: 0.05 output_dir: ./lora-out-qwen-0.5b-odia hub_model_id: sam2ai/qwen_1.5_odia_0.5b sequence_len: 2048 # supports up to 8192 sample_packing: false pad_to_sequence_len: adapter: qlora lora_model_dir: lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: wandb_project: Qwen-completion-0.5b-odia wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 10 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: false early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: warmup_steps: 10 evals_per_epoch: 4 eval_table_size: eval_table_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: ``` </details><br> # qwen_1.5_odia_0.5b This model is a fine-tuned version of [Qwen/Qwen1.5-0.5B](https://huggingface.co/Qwen/Qwen1.5-0.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4242 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2821 | 0.0 | 1 | 1.2706 | | 0.5906 | 0.25 | 1366 | 0.5987 | | 0.531 | 0.5 | 2732 | 0.5510 | | 0.5095 | 0.75 | 4098 | 0.5236 | | 0.5027 | 1.0 | 5464 | 0.5054 | | 0.5019 | 1.25 | 6830 | 0.4933 | | 0.4798 | 1.5 | 8196 | 0.4845 | | 0.4484 | 1.75 | 9562 | 0.4771 | | 0.4526 | 2.0 | 10928 | 0.4704 | | 0.4498 | 2.25 | 12294 | 0.4657 | | 0.4508 | 2.5 | 13660 | 0.4608 | | 0.4226 | 2.75 | 15026 | 0.4568 | | 0.4161 | 3.0 | 16392 | 0.4539 | | 0.4258 | 3.25 | 17758 | 0.4515 | | 0.428 | 3.5 | 19124 | 0.4489 | | 0.4748 | 3.75 | 20490 | 0.4459 | | 0.4083 | 4.0 | 21856 | 0.4441 | | 0.4278 | 4.25 | 23222 | 0.4423 | | 0.3997 | 4.5 | 24588 | 0.4406 | | 0.4581 | 4.75 | 25954 | 0.4386 | | 0.378 | 5.0 | 27320 | 0.4372 | | 0.4141 | 5.25 | 28686 | 0.4358 | | 0.4017 | 5.5 | 30052 | 0.4344 | | 0.4223 | 5.75 | 31418 | 0.4328 | | 0.426 | 6.0 | 32784 | 0.4317 | | 0.3967 | 6.25 | 34150 | 0.4310 | | 0.3934 | 6.5 | 35516 | 0.4298 | | 0.404 | 6.75 | 36882 | 0.4287 | | 0.3874 | 7.0 | 38248 | 0.4282 | | 0.384 | 7.25 | 39614 | 0.4275 | | 0.3925 | 7.5 | 40980 | 0.4268 | | 0.409 | 7.75 | 42346 | 0.4261 | | 0.3891 | 8.0 | 43712 | 0.4256 | | 0.41 | 8.25 | 45078 | 0.4253 | | 0.3999 | 8.5 | 46444 | 0.4249 | | 0.3874 | 8.75 | 47810 | 0.4247 | | 0.3894 | 9.0 | 49176 | 0.4245 | | 0.3827 | 9.25 | 50542 | 0.4244 | | 0.3815 | 9.5 | 51908 | 0.4243 | | 0.3816 | 9.75 | 53274 | 0.4242 | ### Framework versions - PEFT 0.8.2 - Transformers 4.37.0 - Pytorch 2.0.1+gita61a294 - Datasets 2.16.1 - Tokenizers 0.15.0
LoneStriker/openbuddy-mixtral-7bx8-v18.1-32k-3.5bpw-h6-exl2
LoneStriker
2024-02-14T19:06:04Z
4
0
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "zh", "en", "fr", "de", "ja", "ko", "it", "ru", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-14T18:57:04Z
--- language: - zh - en - fr - de - ja - ko - it - ru pipeline_tag: text-generation inference: false library_name: transformers license: apache-2.0 --- # OpenBuddy - Open Multilingual Chatbot GitHub and Usage Guide: [https://github.com/OpenBuddy/OpenBuddy](https://github.com/OpenBuddy/OpenBuddy) Website and Demo: [https://openbuddy.ai](https://openbuddy.ai) Evaluation result of this model: [Evaluation.txt](Evaluation.txt) ![Demo](https://raw.githubusercontent.com/OpenBuddy/OpenBuddy/main/media/demo.png) # Copyright Notice Base model: https://huggingface.co/mistralai/Mixtral-8x7B-v0.1 License: Apache 2.0 ## Disclaimer All OpenBuddy models have inherent limitations and may potentially produce outputs that are erroneous, harmful, offensive, or otherwise undesirable. Users should not use these models in critical or high-stakes situations that may lead to personal injury, property damage, or significant losses. Examples of such scenarios include, but are not limited to, the medical field, controlling software and hardware systems that may cause harm, and making important financial or legal decisions. OpenBuddy is provided "as-is" without any warranty of any kind, either express or implied, including, but not limited to, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement. In no event shall the authors, contributors, or copyright holders be liable for any claim, damages, or other liabilities, whether in an action of contract, tort, or otherwise, arising from, out of, or in connection with the software or the use or other dealings in the software. By using OpenBuddy, you agree to these terms and conditions, and acknowledge that you understand the potential risks associated with its use. You also agree to indemnify and hold harmless the authors, contributors, and copyright holders from any claims, damages, or liabilities arising from your use of OpenBuddy. ## 免责声明 所有OpenBuddy模型均存在固有的局限性,可能产生错误的、有害的、冒犯性的或其他不良的输出。用户在关键或高风险场景中应谨慎行事,不要使用这些模型,以免导致人身伤害、财产损失或重大损失。此类场景的例子包括但不限于医疗领域、可能导致伤害的软硬件系统的控制以及进行重要的财务或法律决策。 OpenBuddy按“原样”提供,不附带任何种类的明示或暗示的保证,包括但不限于适销性、特定目的的适用性和非侵权的暗示保证。在任何情况下,作者、贡献者或版权所有者均不对因软件或使用或其他软件交易而产生的任何索赔、损害赔偿或其他责任(无论是合同、侵权还是其他原因)承担责任。 使用OpenBuddy即表示您同意这些条款和条件,并承认您了解其使用可能带来的潜在风险。您还同意赔偿并使作者、贡献者和版权所有者免受因您使用OpenBuddy而产生的任何索赔、损害赔偿或责任的影响。
akhilshekkari/ppo-LunarLander-v2
akhilshekkari
2024-02-14T19:01:18Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-02-14T19:01:01Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 269.48 +/- 25.31 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Shijia/furina_seed42_eng_esp_hau_basic
Shijia
2024-02-14T19:00:32Z
100
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:yihongLiu/furina", "base_model:finetune:yihongLiu/furina", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-02-14T18:59:24Z
--- base_model: yihongLiu/furina tags: - generated_from_trainer model-index: - name: furina_seed42_eng_esp_hau_basic results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # furina_seed42_eng_esp_hau_basic This model is a fine-tuned version of [yihongLiu/furina](https://huggingface.co/yihongLiu/furina) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0227 - Spearman Corr: 0.7567 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Spearman Corr | |:-------------:|:-----:|:----:|:---------------:|:-------------:| | No log | 1.61 | 200 | 0.0390 | 0.5403 | | 0.0806 | 3.23 | 400 | 0.0258 | 0.7313 | | 0.0295 | 4.84 | 600 | 0.0231 | 0.7463 | | 0.022 | 6.45 | 800 | 0.0216 | 0.7582 | | 0.017 | 8.06 | 1000 | 0.0241 | 0.7626 | | 0.017 | 9.68 | 1200 | 0.0214 | 0.7723 | | 0.0142 | 11.29 | 1400 | 0.0212 | 0.7660 | | 0.0113 | 12.9 | 1600 | 0.0221 | 0.7655 | | 0.0096 | 14.52 | 1800 | 0.0214 | 0.7690 | | 0.0083 | 16.13 | 2000 | 0.0222 | 0.7595 | | 0.0083 | 17.74 | 2200 | 0.0218 | 0.7649 | | 0.0073 | 19.35 | 2400 | 0.0221 | 0.7600 | | 0.0065 | 20.97 | 2600 | 0.0225 | 0.7606 | | 0.0059 | 22.58 | 2800 | 0.0222 | 0.7574 | | 0.0055 | 24.19 | 3000 | 0.0227 | 0.7567 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1
LoneStriker/openbuddy-mixtral-7bx8-v18.1-32k-2.4bpw-h6-exl2
LoneStriker
2024-02-14T18:48:40Z
4
0
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "zh", "en", "fr", "de", "ja", "ko", "it", "ru", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-14T18:42:16Z
--- language: - zh - en - fr - de - ja - ko - it - ru pipeline_tag: text-generation inference: false library_name: transformers license: apache-2.0 --- # OpenBuddy - Open Multilingual Chatbot GitHub and Usage Guide: [https://github.com/OpenBuddy/OpenBuddy](https://github.com/OpenBuddy/OpenBuddy) Website and Demo: [https://openbuddy.ai](https://openbuddy.ai) Evaluation result of this model: [Evaluation.txt](Evaluation.txt) ![Demo](https://raw.githubusercontent.com/OpenBuddy/OpenBuddy/main/media/demo.png) # Copyright Notice Base model: https://huggingface.co/mistralai/Mixtral-8x7B-v0.1 License: Apache 2.0 ## Disclaimer All OpenBuddy models have inherent limitations and may potentially produce outputs that are erroneous, harmful, offensive, or otherwise undesirable. Users should not use these models in critical or high-stakes situations that may lead to personal injury, property damage, or significant losses. Examples of such scenarios include, but are not limited to, the medical field, controlling software and hardware systems that may cause harm, and making important financial or legal decisions. OpenBuddy is provided "as-is" without any warranty of any kind, either express or implied, including, but not limited to, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement. In no event shall the authors, contributors, or copyright holders be liable for any claim, damages, or other liabilities, whether in an action of contract, tort, or otherwise, arising from, out of, or in connection with the software or the use or other dealings in the software. By using OpenBuddy, you agree to these terms and conditions, and acknowledge that you understand the potential risks associated with its use. You also agree to indemnify and hold harmless the authors, contributors, and copyright holders from any claims, damages, or liabilities arising from your use of OpenBuddy. ## 免责声明 所有OpenBuddy模型均存在固有的局限性,可能产生错误的、有害的、冒犯性的或其他不良的输出。用户在关键或高风险场景中应谨慎行事,不要使用这些模型,以免导致人身伤害、财产损失或重大损失。此类场景的例子包括但不限于医疗领域、可能导致伤害的软硬件系统的控制以及进行重要的财务或法律决策。 OpenBuddy按“原样”提供,不附带任何种类的明示或暗示的保证,包括但不限于适销性、特定目的的适用性和非侵权的暗示保证。在任何情况下,作者、贡献者或版权所有者均不对因软件或使用或其他软件交易而产生的任何索赔、损害赔偿或其他责任(无论是合同、侵权还是其他原因)承担责任。 使用OpenBuddy即表示您同意这些条款和条件,并承认您了解其使用可能带来的潜在风险。您还同意赔偿并使作者、贡献者和版权所有者免受因您使用OpenBuddy而产生的任何索赔、损害赔偿或责任的影响。
feelwoo/roberta-base_ag_news
feelwoo
2024-02-14T18:44:47Z
94
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "generated_from_trainer", "dataset:ag_news", "base_model:FacebookAI/roberta-base", "base_model:finetune:FacebookAI/roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-02-14T12:49:47Z
--- license: mit base_model: roberta-base tags: - generated_from_trainer datasets: - ag_news model-index: - name: roberta-base_ag_news results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base_ag_news This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the ag_news dataset. It achieves the following results on the evaluation set: - Loss: 0.1897 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.1879 | 1.0 | 3750 | 0.2106 | | 0.1556 | 2.0 | 7500 | 0.1951 | | 0.126 | 3.0 | 11250 | 0.1897 | | 0.0576 | 4.0 | 15000 | 0.1921 | | 0.0386 | 5.0 | 18750 | 0.2283 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.1+cu121 - Datasets 2.14.6 - Tokenizers 0.15.2
guihscosta/testellm
guihscosta
2024-02-14T18:43:46Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2024-02-14T18:43:46Z
--- license: creativeml-openrail-m ---
LoneStriker/openbuddy-mixtral-7bx8-v18.1-32k-GGUF
LoneStriker
2024-02-14T18:42:14Z
19
2
transformers
[ "transformers", "gguf", "text-generation", "zh", "en", "fr", "de", "ja", "ko", "it", "ru", "license:apache-2.0", "region:us" ]
text-generation
2024-02-14T16:58:08Z
--- language: - zh - en - fr - de - ja - ko - it - ru pipeline_tag: text-generation inference: false library_name: transformers license: apache-2.0 --- # OpenBuddy - Open Multilingual Chatbot GitHub and Usage Guide: [https://github.com/OpenBuddy/OpenBuddy](https://github.com/OpenBuddy/OpenBuddy) Website and Demo: [https://openbuddy.ai](https://openbuddy.ai) Evaluation result of this model: [Evaluation.txt](Evaluation.txt) ![Demo](https://raw.githubusercontent.com/OpenBuddy/OpenBuddy/main/media/demo.png) # Copyright Notice Base model: https://huggingface.co/mistralai/Mixtral-8x7B-v0.1 License: Apache 2.0 ## Disclaimer All OpenBuddy models have inherent limitations and may potentially produce outputs that are erroneous, harmful, offensive, or otherwise undesirable. Users should not use these models in critical or high-stakes situations that may lead to personal injury, property damage, or significant losses. Examples of such scenarios include, but are not limited to, the medical field, controlling software and hardware systems that may cause harm, and making important financial or legal decisions. OpenBuddy is provided "as-is" without any warranty of any kind, either express or implied, including, but not limited to, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement. In no event shall the authors, contributors, or copyright holders be liable for any claim, damages, or other liabilities, whether in an action of contract, tort, or otherwise, arising from, out of, or in connection with the software or the use or other dealings in the software. By using OpenBuddy, you agree to these terms and conditions, and acknowledge that you understand the potential risks associated with its use. You also agree to indemnify and hold harmless the authors, contributors, and copyright holders from any claims, damages, or liabilities arising from your use of OpenBuddy. ## 免责声明 所有OpenBuddy模型均存在固有的局限性,可能产生错误的、有害的、冒犯性的或其他不良的输出。用户在关键或高风险场景中应谨慎行事,不要使用这些模型,以免导致人身伤害、财产损失或重大损失。此类场景的例子包括但不限于医疗领域、可能导致伤害的软硬件系统的控制以及进行重要的财务或法律决策。 OpenBuddy按“原样”提供,不附带任何种类的明示或暗示的保证,包括但不限于适销性、特定目的的适用性和非侵权的暗示保证。在任何情况下,作者、贡献者或版权所有者均不对因软件或使用或其他软件交易而产生的任何索赔、损害赔偿或其他责任(无论是合同、侵权还是其他原因)承担责任。 使用OpenBuddy即表示您同意这些条款和条件,并承认您了解其使用可能带来的潜在风险。您还同意赔偿并使作者、贡献者和版权所有者免受因您使用OpenBuddy而产生的任何索赔、损害赔偿或责任的影响。
hythyt/ppo-LunarLander-v2
hythyt
2024-02-14T18:41:19Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-02-14T18:41:01Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 263.16 +/- 14.24 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
irisaparina/t5-3b-spider-nlvariation
irisaparina
2024-02-14T18:38:06Z
3
1
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "arxiv:2402.08666", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-02-14T14:37:55Z
T5-3B model fine-tuned on augmented Spider proposed in the paper ["Improving Generalization in Semantic Parsing by Increasing Natural Language Variation"](https://arxiv.org/abs/2402.08666). See more info [here](https://github.com/saparina/Text2SQL-NLVariation).