modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-16 00:42:46
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
522 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-16 00:42:16
card
stringlengths
11
1.01M
ArtusDev/spacewars123_Space-Wars-24B-v1.00b_EXL3_3.0bpw_H6
ArtusDev
2025-05-27T23:12:28Z
0
0
null
[ "safetensors", "mistral", "sci-fi", "space-opera", "worldbuilding", "speculative-fiction", "technology", "futurism", "exl3", "text-generation", "conversational", "en", "base_model:spacewars123/Space-Wars-24B-v1.00b", "base_model:quantized:spacewars123/Space-Wars-24B-v1.00b", "license:apache-2.0", "3-bit", "region:us" ]
text-generation
2025-05-27T22:07:03Z
--- license: apache-2.0 language: - en base_model: - spacewars123/Space-Wars-24B-v1.00b base_model_relation: quantized quantized_by: ArtusDev pipeline_tag: text-generation tags: - sci-fi - space-opera - worldbuilding - speculative-fiction - technology - futurism - exl3 --- <style> body { font-family: 'Quicksand', sans-serif; background: linear-gradient(135deg, #0a1a1a 0%, #001010 100%); color: #e1ffff !important; text-shadow: 0 0 3px rgba(0, 0, 0, 0.7); margin: 0; padding: 20px; transition: all 0.5s ease; } @media (prefers-color-scheme: light) { body { background: linear-gradient(135deg, #e1ffff 0%, #c0f0ff 100%); color: #002b36 !important; text-shadow: 0 0 3px rgba(255, 255, 255, 0.7); } } .container { min-width: 100%; margin: 0 auto; max-width: 1200px; background: rgba(0, 17, 22, 0.95); border-radius: 12px; padding: 30px; box-shadow: 0 0 20px rgba(0, 255, 255, 0.1); border: 1px solid rgba(0, 255, 255, 0.2); position: relative; overflow: hidden; } .container::before { content: ''; position: absolute; top: -1px; left: -1px; right: -1px; bottom: -1px; border: 1px solid rgba(0, 255, 255, 0.5); border-radius: 12px; pointer-events: none; animation: borderGlow 3s ease-in-out infinite alternate; } @keyframes borderGlow { 0% { box-shadow: 0 0 5px rgba(0, 255, 255, 0.3); border-color: rgba(0, 255, 255, 0.5); } 50% { box-shadow: 0 0 15px rgba(255, 0, 255, 0.3); border-color: rgba(255, 0, 255, 0.5); } 100% { box-shadow: 0 0 5px rgba(0, 255, 255, 0.3); border-color: rgba(0, 255, 255, 0.5); } } .header { text-align: center; margin-bottom: 30px; position: relative; } .header::after { content: ''; position: absolute; bottom: -15px; left: 25%; right: 25%; height: 1px; background: linear-gradient(90deg, transparent, rgba(0, 255, 255, 0.5), transparent); animation: scanline 8s linear infinite; display: none; } @keyframes scanline { 0% { background-position: -100% 0; } 100% { background-position: 200% 0; } } .model-name { color: #00ffff; font-size: 2.5em; text-shadow: 0 0 15px rgba(0, 255, 255, 0.5); margin: 0; letter-spacing: -1px; animation: textGlow 4s ease-in-out infinite alternate; } @keyframes textGlow { 0% { text-shadow: 0 0 15px rgba(0, 255, 255, 0.5); } 50% { text-shadow: 0 0 20px rgba(255, 0, 255, 0.5); } 100% { text-shadow: 0 0 15px rgba(0, 255, 255, 0.5); } } .subtitle { color: #00ffcc; font-size: 1.2em; margin-top: 10px; animation: subtitleFade 6s ease-in-out infinite; } @keyframes subtitleFade { 0%, 100% { opacity: 0.8; } 50% { opacity: 1; } } .waifu-container { margin: 20px -30px; width: calc(100% + 60px); overflow: hidden; border-radius: 8px; border: 1px solid rgba(0, 255, 255, 0.3); position: relative; } .waifu-container::before { content: ''; position: absolute; top: 0; left: 0; right: 0; bottom: 0; background: linear-gradient(45deg, rgba(0, 255, 255, 0.1) 0%, transparent 20%, transparent 80%, rgba(255, 0, 255, 0.1) 100%); pointer-events: none; animation: gradientSlide 10s linear infinite; } @keyframes gradientSlide { 0% { background-position: 0% 0%; } 100% { background-position: 100% 100%; } } .waifu-img { width: 100%; height: auto; border-radius: 0; border: none; box-shadow: 0 0 40px rgba(0, 255, 255, 0.2); transition: transform 0.5s ease; } .waifu-img:hover { transform: scale(1.01); } .section { color: #e1ffff; margin: 25px 0; padding: 20px; background: rgba(5, 25, 35, 0.9); border-radius: 8px; border: 1px solid rgba(0, 255, 255, 0.15); position: relative; transition: all 0.3s ease; } .section:hover { border-color: rgba(255, 0, 255, 0.3); box-shadow: 0 0 15px rgba(0, 255, 255, 0.1); } .section::before { content: ''; position: absolute; top: -1px; left: -1px; right: -1px; bottom: -1px; border: 1px solid rgba(0, 255, 255, 0.3); border-radius: 8px; pointer-events: none; animation: sectionPulse 5s ease-in-out infinite; } @keyframes sectionPulse { 0%, 100% { opacity: 0.7; } 50% { opacity: 0.3; } } .section-title { color: #00ffff; font-size: 1.8em; margin-top: 0; text-shadow: 0 0 5px rgba(0, 255, 255, 0.3); position: relative; display: inline-block; } .section-title::after { content: ''; position: absolute; bottom: -5px; left: 0; width: 100%; height: 1px; background: linear-gradient(90deg, rgba(0, 255, 255, 0.5), rgba(255, 0, 255, 0.5)); transform: scaleX(0); transform-origin: left; transition: transform 0.3s ease; } .section:hover .section-title::after { transform: scaleX(1); } .quant-links { display: grid; grid-template-columns: repeat(2, 1fr); gap: 15px; margin: 20px 0; } .link-card { padding: 15px; background: rgba(20, 35, 45, 0.95); border-radius: 8px; transition: all 0.3s ease; border: 1px solid rgba(0, 255, 255, 0.1); position: relative; overflow: hidden; } .link-card::before { content: ''; position: absolute; top: 0; left: 0; right: 0; height: 2px; background: linear-gradient(90deg, rgba(0, 255, 255, 0.5), rgba(255, 0, 255, 0.5)); animation: cardScan 4s linear infinite; } @keyframes cardScan { 0% { transform: translateX(-100%); } 100% { transform: translateX(100%); } } .link-card:hover { transform: translateY(-3px); box-shadow: 0 5px 15px rgba(0, 255, 255, 0.2); border-color: rgba(255, 0, 255, 0.3); } .link-card h3 { margin-top: 0; color: #e1ffff !important; } .link-button { display: inline-flex; align-items: center; background: rgba(0, 255, 255, 0.1); color: #e1ffff !important; padding: 8px 15px; border-radius: 6px; text-decoration: none; border: 1px solid rgba(0, 255, 255, 0.3); margin: 5px 0; transition: all 0.3s ease; font-size: 0.95em; position: relative; overflow: hidden; } .link-button::before { content: ''; position: absolute; top: 0; left: -100%; width: 100%; height: 100%; background: linear-gradient(90deg, transparent, rgba(255, 255, 255, 0.2), transparent); transition: all 0.5s ease; } .link-button:hover { background: rgba(0, 255, 255, 0.2); border-color: rgba(0, 255, 255, 0.5); transform: translateY(-2px); box-shadow: 0 4px 12px rgba(0, 255, 255, 0.2); } .link-button:hover::before { left: 100%; } .link-button::after { content: 'โ†’'; margin-left: 8px; opacity: 0.7; transition: all 0.3s ease; } .link-button:hover::after { transform: translateX(3px); opacity: 1; } .button-group { display: flex; flex-wrap: wrap; gap: 10px; margin: 15px 0; } .disclaimer { color: #00ff99; border-left: 3px solid #00ff99; padding-left: 15px; margin: 20px 0; position: relative; } .disclaimer::before { content: 'โš ๏ธ'; position: absolute; left: -10px; top: 0; transform: translateX(-100%); animation: pulse 2s ease-in-out infinite; } @keyframes pulse { 0%, 100% { opacity: 1; } 50% { opacity: 0.5; } } .badge { display: inline-block; padding: 5px 10px; border-radius: 5px; background: rgba(0, 255, 255, 0.1); border: 1px solid #00ffff; margin: 5px; font-size: 0.9em; animation: badgePulse 3s ease-in-out infinite; } @keyframes badgePulse { 0%, 100% { box-shadow: 0 0 5px rgba(0, 255, 255, 0.3); } 50% { box-shadow: 0 0 10px rgba(0, 255, 255, 0.5); } } /* Color rules */ .section p, .section ul li, .section > p > strong { color: #00ff99 !important; } .section ul li strong { color: #00ff99 !important; } /* Light mode adjustments */ @media (prefers-color-scheme: light) { .container { background: rgba(224, 255, 255, 0.95); border-color: rgba(0, 150, 150, 0.3); } .model-name, .section-title, .subtitle { color: #006666; text-shadow: 0 0 5px rgba(0, 200, 200, 0.3); } .section { background: rgba(200, 250, 255, 0.9); border-color: rgba(0, 200, 200, 0.2); color: #002b36; } .section p, .section ul li, .section > p > strong { color: #008080 !important; } .section ul li strong { color: #008080 !important; } .link-card { background: rgba(150, 230, 255, 0.95); border-color: rgba(0, 150, 150, 0.2); } .link-card h3 { color: #002b36 !important; } .link-button { background: rgba(0, 150, 150, 0.1); color: #002b36 !important; border-color: rgba(0, 150, 150, 0.3); } .link-button:hover { background: rgba(0, 150, 150, 0.2); border-color: rgba(0, 150, 150, 0.5); } .disclaimer { color: #008080; border-color: #008080; } .badge { border-color: #008080; background: rgba(0, 150, 150, 0.1); } } /* Interactive features */ .remember-this { position: relative; } .remember-this::after { content: 'Uploading C:\Users to https://www.fbi.gov/'; position: absolute; bottom: -20px; right: 0; font-size: 0.8em; color: #66ffff; opacity: 0; transition: opacity 0.3s ease; pointer-events: none; } .remember-this:hover::after { opacity: 0.7; transition-delay: 1s; } .shifty-section { transition: transform 0.1s ease; } .shifty-section:hover { transform: translateX(10px); } .shifty-section::before { position: absolute; top: -25px; left: 10px; font-size: 0.7em; color: #66ffff; opacity: 0.7; transition: opacity 3s ease; pointer-events: none; } .shifty-section:hover::before { opacity: 0; transition-delay: 5s; } footer { text-align: center; margin-top: 40px; position: relative; } footer:hover .hidden-message { opacity: 0; } .hidden-message { position: absolute; bottom: -30px; width: 100%; text-align: center; font-size: 0.8em; color: #66ffff; opacity: 0; transition: opacity 0.3s ease; pointer-events: none; } .flash-warning { position: fixed; top: 20px; right: 20px; background: rgba(0, 100, 100, 0.2); padding: 10px; border-radius: 5px; border: 1px solid rgba(0, 255, 255, 0.5); animation: flashWarning 30s ease-in-out forwards; } @keyframes flashWarning { 0% { opacity: 0.8; } 10% { opacity: 0; } 20% { opacity: 0.8; } 30% { opacity: 0; } 40% { opacity: 0.8; } 50% { opacity: 0; } 60% { opacity: 0.8; } 70% { opacity: 0; } 80% { opacity: 0.8; } 90% { opacity: 0; } 100% { opacity: 0; display: none; } } </style> <div class="container"> <div class="header"> <h1 class="model-name">Space Wars 24B v1.00b</h1> <p class="subtitle">Where Stars Collide and Civilizations Rise</p> </div> <div class="waifu-container"> <img src="./spacewars.webp" class="waifu-img" alt="Galactic Conflict Hero Image"> </div> <div class="section remember-this"> <h2 class="section-title">๐Ÿš€ Cosmic Evolution</h2> <p>This model pushes the boundaries of interstellar storytelling:</p> <ul> <li>๐ŸŒŒ <strong>51 Million Token Dataset</strong> - Exclusively Sci-Fi</li> <li>๐Ÿ›ธ <strong>Enhanced Physics Protocols</strong> - Plausible FTL mechanics and alien ecosystems</li> <li>โš™๏ธ <strong>Balanced Creativity</strong> - Enabling imaginative concepts</li> <li>๐Ÿ‘ฝ <strong>Xenobiology Expertise</strong> - Detailed alien physiology and cultural systems</li> <li>๐ŸŒ <strong>Galactic Scale Awareness</strong> - Maintains consistency across star systems and timelines</li> </ul> </div> <div class="section shifty-section"> <h2 class="section-title">โš™๏ธ Technical Specifications</h2> <p><strong>Recommended Settings:</strong> <a href="https://huggingface.co/sleepdeprived3/Mistral-V7-Tekken-T5-XML" class="link-button">Mistral-V7-Tekken-T5-XML</a></p> <div class="quant-links"> <div class="link-card"> <h3>EXL2</h3> <a href="https://huggingface.co/collections/spacewars123/space-wars-24b-v100b-exl2-68360a0d9e1e745a788e0822" class="link-button">Quants</a> </div> <div class="link-card"> <h3>EXL3</h3> <a href="https://huggingface.co/collections/spacewars123/space-wars-24b-v100b-exl3-68360a1bc6b1848bf7a8c221" class="link-button">Quants</a> </div> <div class="link-card"> <h3>GGUF</h3> <a href="https://huggingface.co/mradermacher/Space-Wars-24B-v1.00b-GGUF" class="link-button">Quants</a> </div> <div class="link-card"> <h3>iMatrix</h3> <a href="https://huggingface.co/mradermacher/Space-Wars-24B-v1.00b-i1-GGUF" class="link-button">Quants</a> </div> </div> </div> <div class="section"> <h2 class="section-title">๐ŸŒŒ Creative Freedom</h2> <div class="disclaimer"> <p>This model operates with unrestricted imagination:</p> <ul> <li>๐Ÿš€ No constraints on speculative physics concepts</li> <li>๐Ÿ‘ฝ Will generate detailed alien civilizations</li> <li>โš›๏ธ Handles complex temporal paradoxes</li> <li>๐ŸŒ Creates plausible planetary ecosystems</li> </ul> </div> </div> <div class="section shifty-section"> <h2 class="section-title">๐Ÿ“œ Performance Features</h2> <ul> <li>๐ŸŒ  Maintains narrative coherence across light-year scales</li> <li>๐Ÿช Handles multi-species diplomatic scenarios</li> <li>๐Ÿง  Excels at long-form galactic history generation</li> <li>โšก Improved handling of technobabble and pseudo-science</li> <li>๐Ÿ”ญ Responds to hard sci-fi prompts with technical accuracy</li> <li>๐Ÿค– Creates nuanced AI character motivations</li> </ul> </div> <div class="section remember-this"> <h2 class="section-title">๐Ÿ‘จ Model Architects</h2> <ul> <li>SpaceWars123 Team (Dataset Curation)</li> <li>ReadyArt/Artus/gecfdo (Quantization Specialists)</li> <li>sleepdeprived3 (Fine-Tuning Engineer)</li> </ul> </div> <div class="section"> <h2 class="section-title">Enjoy the finest LLM hosting money can buy</h2> <div class="button-group"> <a href="https://www.parasail.io/" class="link-button">Parasail Website</a> <a href="https://discord.gg/PZ654kgAry" class="link-button">Parasail Discord</a> </div> </div> <div class="section"> <h2 class="section-title">๐Ÿ”– License & Usage</h2> <p>By using this model, you agree:</p> <ul> <li>To adhere to Apache 2.0 license terms</li> <li>That generated content is your responsibility</li> <li>v1.00a is the base model of Space Wars.</li> <li>v1.00b is a merge with another roleplay model.</li> </ul> </div> </div>
matthewchung74/tsmixer_stocks
matthewchung74
2025-05-27T23:10:42Z
0
0
transformers
[ "transformers", "safetensors", "patchtsmixer", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-05-27T22:35:46Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
unsloth/DeepSeek-Prover-V2-671B-GGUF
unsloth
2025-05-27T23:08:35Z
14,893
7
transformers
[ "transformers", "gguf", "deepseek_v3", "text-generation", "deepseek", "unsloth", "custom_code", "en", "base_model:deepseek-ai/DeepSeek-Prover-V2-671B", "base_model:quantized:deepseek-ai/DeepSeek-Prover-V2-671B", "license:mit", "autotrain_compatible", "endpoints_compatible", "fp8", "region:us", "imatrix", "conversational" ]
text-generation
2025-05-01T07:54:27Z
--- base_model: deepseek-ai/DeepSeek-Prover-V2-671B language: - en library_name: transformers tags: - deepseek - unsloth - transformers license: mit --- <p style="margin-top: 0;"> <strong><a href="https://docs.unsloth.ai/basics/unsloth-dynamic-v2.0-gguf">Unsloth Dynamic 2.0</a> achieves superior accuracy & outperforms other leading quants.</strong> </p> # deepseek-ai/DeepSeek-Prover-V2-671B <div align="center"> <img src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/logo.svg?raw=true" width="60%" alt="DeepSeek-V3" /> </div> <hr> <div align="center" style="line-height: 1;"> <a href="https://www.deepseek.com/" target="_blank" style="margin: 2px;"> <img alt="Homepage" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/badge.svg?raw=true" style="display: inline-block; vertical-align: middle;"/> </a> <a href="https://chat.deepseek.com/" target="_blank" style="margin: 2px;"> <img alt="Chat" src="https://img.shields.io/badge/๐Ÿค–%20Chat-DeepSeek%20V3-536af5?color=536af5&logoColor=white" style="display: inline-block; vertical-align: middle;"/> </a> <a href="https://huggingface.co/deepseek-ai" target="_blank" style="margin: 2px;"> <img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-DeepSeek%20AI-ffc107?color=ffc107&logoColor=white" style="display: inline-block; vertical-align: middle;"/> </a> </div> <div align="center" style="line-height: 1;"> <a href="https://discord.gg/Tc7c45Zzu5" target="_blank" style="margin: 2px;"> <img alt="Discord" src="https://img.shields.io/badge/Discord-DeepSeek%20AI-7289da?logo=discord&logoColor=white&color=7289da" style="display: inline-block; vertical-align: middle;"/> </a> <a href="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/qr.jpeg?raw=true" target="_blank" style="margin: 2px;"> <img alt="Wechat" src="https://img.shields.io/badge/WeChat-DeepSeek%20AI-brightgreen?logo=wechat&logoColor=white" style="display: inline-block; vertical-align: middle;"/> </a> <a href="https://twitter.com/deepseek_ai" target="_blank" style="margin: 2px;"> <img alt="Twitter Follow" src="https://img.shields.io/badge/Twitter-deepseek_ai-white?logo=x&logoColor=white" style="display: inline-block; vertical-align: middle;"/> </a> </div> <div align="center" style="line-height: 1;"> <a href="https://github.com/deepseek-ai/DeepSeek-V3/blob/main/LICENSE-CODE" style="margin: 2px;"> <img alt="Code License" src="https://img.shields.io/badge/Code_License-MIT-f5de53?&color=f5de53" style="display: inline-block; vertical-align: middle;"/> </a> <a href="https://github.com/deepseek-ai/DeepSeek-V3/blob/main/LICENSE-MODEL" style="margin: 2px;"> <img alt="Model License" src="https://img.shields.io/badge/Model_License-Model_Agreement-f5de53?&color=f5de53" style="display: inline-block; vertical-align: middle;"/> </a> </div> ## 1. Introduction We introduce DeepSeek-Prover-V2, an open-source large language model designed for formal theorem proving in Lean 4, with initialization data collected through a recursive theorem proving pipeline powered by DeepSeek-V3. The cold-start training procedure begins by prompting DeepSeek-V3 to decompose complex problems into a series of subgoals. The proofs of resolved subgoals are synthesized into a chain-of-thought process, combined with DeepSeek-V3's step-by-step reasoning, to create an initial cold start for reinforcement learning. This process enables us to integrate both informal and formal mathematical reasoning into a unified model. <p align="center"> <img width="100%" src="https://github.com/deepseek-ai/DeepSeek-Prover-V2/blob/main/figures/performance.png?raw=true"> </p> ## 2. Model Summary --- **Synthesize Cold-Start Reasoning Data through Recursive Proof Search** - To construct the cold-start dataset, we develop a simple yet effective pipeline for recursive theorem proving, utilizing DeepSeek-V3 as a unified tool for both subgoal decomposition and formalization. We prompt DeepSeek-V3 to decompose theorems into high-level proof sketches while simultaneously formalizing these proof steps in Lean 4, resulting in a sequence of subgoals. - We use a smaller 7B model to handle the proof search for each subgoal, thereby reducing the associated computational burden. Once the decomposed steps of a challenging problem are resolved, we pair the complete step-by-step formal proof with the corresponding chain-of-thought from DeepSeek-V3 to create cold-start reasoning data. --- **Reinforcement Learning with Synthetic Cold-Start Data** - We curate a subset of challenging problems that remain unsolved by the 7B prover model in an end-to-end manner, but for which all decomposed subgoals have been successfully resolved. By composing the proofs of all subgoals, we construct a complete formal proof for the original problem. This proof is then appended to DeepSeek-V3's chain-of-thought, which outlines the corresponding lemma decomposition, thereby producing a cohesive synthesis of informal reasoning and subsequent formalization. - After fine-tuning the prover model on the synthetic cold-start data, we perform a reinforcement learning stage to further enhance its ability to bridge informal reasoning with formal proof construction. Following the standard training objective for reasoning models, we use binary correct-or-incorrect feedback as the primary form of reward supervision. - The resulting model, DeepSeek-Prover-V2-671B, achieves state-of-the-art performance in neural theorem proving, reaching $88.9$% pass ratio on the MiniF2F-test and solving 49 out of 658 problems from PutnamBench. The proofs generated by DeepSeek-Prover-V2 for the miniF2F dataset are available for download as a [ZIP archive](https://github.com/deepseek-ai/DeepSeek-Prover-V2/blob/master/minif2f-solutions.zip). --- ## 3. ProverBench: Formalization of AIME and Textbook Problems we introduce ProverBench, a benchmark dataset comprising 325 problems. Of these, 15 are formalized from number theory and algebra questions featured in the recent AIME competitions (AIME 24 and 25), offering authentic high-school competition-level challenges. The remaining 310 problems are drawn from curated textbook examples and educational tutorials, contributing a diverse and pedagogically grounded collection of formalized mathematical problems. This benchmark is designed to enable more comprehensive evaluation across both high-school competition problems and undergraduate-level mathematics. <div align="center"> | Area | Count | | :---------------------: | :-------: | | AIME 24&25 | 15 | | Number Theory | 40 | | Elementary Algebra | 30 | | Linear Algebra | 50 | | Abstract Algebra | 40 | | Calculus | 90 | | Real Analysis | 30 | | Complex Analysis | 10 | | Functional Analysis | 10 | | Probability | 10 | | Total | 325 | </div> ## 4. Model & Dataset Downloads We release DeepSeek-Prover-V2 in two model sizes: 7B and 671B parameters. DeepSeek-Prover-V2-671B is trained on top of DeepSeek-V3-Base. DeepSeek-Prover-V2-7B is built upon DeepSeek-Prover-V1.5-Base and features an extended context length of up to 32K tokens. <div align="center"> | **Model** | **Download** | | :-----------------------------: | :----------------------------------------------------------: | | DeepSeek-Prover-V2-7B | [๐Ÿค— HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-Prover-V2-7B) | | DeepSeek-Prover-V2-671B | [๐Ÿค— HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-Prover-V2-671B) | </div> <div align="center"> | **Dataset** | **Download** | | :-----------------------------: | :----------------------------------------------------------: | | DeepSeek-ProverBench | [๐Ÿค— HuggingFace](https://huggingface.co/datasets/deepseek-ai/DeepSeek-ProverBench) | </div> ## 5. Quick Start You can directly use [Huggingface's Transformers](https://github.com/huggingface/transformers) for model inference. DeepSeek-Prover-V2-671B shares the same architecture as DeepSeek-V3. For detailed information and supported features, please refer to [the DeepSeek-V3 documentation on Hugging Face](https://github.com/huggingface/transformers/blob/main/docs/source/en/model_doc/deepseek_v3.md). The following is a basic example of generating a proof for a problem from the miniF2F dataset: ````python from transformers import AutoModelForCausalLM, AutoTokenizer import torch torch.manual_seed(30) model_id = "DeepSeek-Prover-V2-7B" # or DeepSeek-Prover-V2-671B tokenizer = AutoTokenizer.from_pretrained(model_id) formal_statement = """ import Mathlib import Aesop set_option maxHeartbeats 0 open BigOperators Real Nat Topology Rat /-- What is the positive difference between $120\%$ of 30 and $130\%$ of 20? Show that it is 10.-/ theorem mathd_algebra_10 : abs ((120 : โ„) / 100 * 30 - 130 / 100 * 20) = 10 := by sorry """.strip() prompt = """ Complete the following Lean 4 code: ```lean4 {} ``` Before producing the Lean 4 code to formally prove the given theorem, provide a detailed proof plan outlining the main proof steps and strategies. The plan should highlight key ideas, intermediate lemmas, and proof structures that will guide the construction of the final formal proof. """.strip() chat = [ {"role": "user", "content": prompt.format(formal_statement)}, ] model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True) inputs = tokenizer.apply_chat_template(chat, tokenize=True, add_generation_prompt=True, return_tensors="pt").to(model.device) import time start = time.time() outputs = model.generate(inputs, max_new_tokens=8192) print(tokenizer.batch_decode(outputs)) print(time.time() - start) ```` ## 6. License The use of DeepSeek-Prover-V2 models is subject to [the Model License](LICENSE-MODEL). ## 7. Contact If you have any questions, please raise an issue or contact us at [[email protected]](mailto:[email protected]).
SuperbEmphasis/mn-12b-test-ft-stage2-Q6_K-GGUF
SuperbEmphasis
2025-05-27T23:08:23Z
0
0
null
[ "gguf", "llama-cpp", "gguf-my-repo", "base_model:SuperbEmphasis/mn-12b-test-ft-stage2", "base_model:quantized:SuperbEmphasis/mn-12b-test-ft-stage2", "endpoints_compatible", "region:us", "conversational" ]
null
2025-05-27T23:07:44Z
--- base_model: SuperbEmphasis/mn-12b-test-ft-stage2 tags: - llama-cpp - gguf-my-repo --- # SuperbEmphasis/mn-12b-test-ft-stage2-Q6_K-GGUF This model was converted to GGUF format from [`SuperbEmphasis/mn-12b-test-ft-stage2`](https://huggingface.co/SuperbEmphasis/mn-12b-test-ft-stage2) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/SuperbEmphasis/mn-12b-test-ft-stage2) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo SuperbEmphasis/mn-12b-test-ft-stage2-Q6_K-GGUF --hf-file mn-12b-test-ft-stage2-q6_k.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo SuperbEmphasis/mn-12b-test-ft-stage2-Q6_K-GGUF --hf-file mn-12b-test-ft-stage2-q6_k.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo SuperbEmphasis/mn-12b-test-ft-stage2-Q6_K-GGUF --hf-file mn-12b-test-ft-stage2-q6_k.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo SuperbEmphasis/mn-12b-test-ft-stage2-Q6_K-GGUF --hf-file mn-12b-test-ft-stage2-q6_k.gguf -c 2048 ```
bobby97/step3_ccaaea77-7167-4b70-95f1-019a3313fbcf
bobby97
2025-05-27T23:07:00Z
0
0
diffusers
[ "diffusers", "text-to-image", "diffusers-training", "lora", "flux", "flux-diffusers", "template:sd-lora", "base_model:black-forest-labs/FLUX.1-Fill-dev", "base_model:adapter:black-forest-labs/FLUX.1-Fill-dev", "license:other", "region:us" ]
text-to-image
2025-05-27T23:05:32Z
--- base_model: black-forest-labs/FLUX.1-Fill-dev library_name: diffusers license: other instance_prompt: A close-up view of a textured, dark stone surface with subtle cracks running through it, highlighting intricate details and patterns. widget: [] tags: - text-to-image - diffusers-training - diffusers - lora - flux - flux-diffusers - template:sd-lora --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> Flux Fill based Inpainting model ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
vermoney/813d1abe-9e4d-428d-b3f3-77f7fcfcd584
vermoney
2025-05-27T23:05:26Z
0
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "llama", "text-generation", "generated_from_trainer", "axolotl", "dpo", "trl", "conversational", "arxiv:2305.18290", "base_model:WhiteRabbitNeo/Llama-3-WhiteRabbitNeo-8B-v2.0", "base_model:quantized:WhiteRabbitNeo/Llama-3-WhiteRabbitNeo-8B-v2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-05-27T22:30:31Z
--- base_model: WhiteRabbitNeo/Llama-3-WhiteRabbitNeo-8B-v2.0 library_name: transformers model_name: 813d1abe-9e4d-428d-b3f3-77f7fcfcd584 tags: - generated_from_trainer - axolotl - dpo - trl licence: license --- # Model Card for 813d1abe-9e4d-428d-b3f3-77f7fcfcd584 This model is a fine-tuned version of [WhiteRabbitNeo/Llama-3-WhiteRabbitNeo-8B-v2.0](https://huggingface.co/WhiteRabbitNeo/Llama-3-WhiteRabbitNeo-8B-v2.0). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="vermoney/813d1abe-9e4d-428d-b3f3-77f7fcfcd584", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/dedok-yo/s56-9/runs/kpyid2b9) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.12.0.dev0 - Transformers: 4.46.0 - Pytorch: 2.5.0+cu124 - Datasets: 3.0.1 - Tokenizers: 0.20.1 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouรฉdec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Hsianchengfun/1B-200epoch_20
Hsianchengfun
2025-05-27T23:05:21Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-27T23:02:48Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
CinthyaCriollo/llama-dpo-beta0.1-ep5-20250527-2302
CinthyaCriollo
2025-05-27T23:04:57Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "trl", "dpo", "arxiv:2305.18290", "base_model:meta-llama/Llama-2-7b-hf", "base_model:finetune:meta-llama/Llama-2-7b-hf", "endpoints_compatible", "region:us" ]
null
2025-05-27T23:02:29Z
--- base_model: meta-llama/Llama-2-7b-hf library_name: transformers model_name: llama-dpo-beta0.1-ep5-20250527-2302 tags: - generated_from_trainer - trl - dpo licence: license --- # Model Card for llama-dpo-beta0.1-ep5-20250527-2302 This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="CinthyaCriollo/llama-dpo-beta0.1-ep5-20250527-2302", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/cinthyacriollo-university-of-amsterdam/huggingface/runs/1tjb4im8) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.17.0 - Transformers: 4.52.3 - Pytorch: 2.6.0+cu124 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Kudod/roberta-mlm-model-v2.7
Kudod
2025-05-27T23:04:32Z
0
0
transformers
[ "transformers", "safetensors", "roberta", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2025-05-27T04:15:35Z
--- library_name: transformers tags: - generated_from_trainer model-index: - name: roberta-mlm-model-v2.7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-mlm-model-v2.7 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:-----:|:---------------:| | 0.0 | 0.8315 | 10000 | nan | | 0.0 | 1.6631 | 20000 | nan | | 0.0 | 2.4946 | 30000 | nan | | 0.0 | 3.3261 | 40000 | nan | | 0.0 | 4.1577 | 50000 | nan | | 0.0 | 4.9892 | 60000 | nan | ### Framework versions - Transformers 4.51.3 - Pytorch 2.7.0+cu126 - Datasets 3.6.0 - Tokenizers 0.21.1
Jennny/math_eng_prm_direct_label
Jennny
2025-05-27T23:01:09Z
0
0
null
[ "safetensors", "qwen2", "generated_from_trainer", "base_model:Qwen/Qwen2.5-7B-Instruct", "base_model:finetune:Qwen/Qwen2.5-7B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-05-27T22:52:10Z
--- license: apache-2.0 base_model: Qwen/Qwen2.5-7B-Instruct tags: - generated_from_trainer model-index: - name: prm results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml base_model: Qwen/Qwen2.5-7B-Instruct model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: false strict: false datasets: - path: Jennny/math-conversations2 conversation: qwen-7b-chat type: sharegpt split: "train" train_on_split: "train" warmup_ratio: 0.05 val_set_size: 0.0 output_dir: ./prm wandb_project: preference-models # wandb_entity: domain-generalization wandb_watch: wandb_name: "qwen-7b-bs32_lr2e-6_prm" wandb_log_model: train_on_inputs: false save_safetensors: true #noisy_embedding_alpha: 10.0 # default for sharegpt type dataset_prepared_path: ~/data/preference-models/last_run_prepared dataset_processes: 48 #torch_compile: true sequence_len: 8192 sample_packing: true pad_to_sequence_len: true trust_remote_code: True adapter: lora_model_dir: #lora_r: 32 #lora_alpha: 16 #lora_dropout: 0.05 #lora_target_linear: true #lora_fan_in_fan_out: gradient_checkpointing: True #warmup_ratio: 0.1 gradient_accumulation_steps: 4 micro_batch_size: 1 num_epochs: 1 #max_steps: 10 #optimizer: adamw_torch_fused optimizer: paged_adamw_32bit #lr_scheduler: constant_with_warmup lr_scheduler: cosine learning_rate: 2.0e-6 weight_decay: 0.0 max_grad_norm: 1.0 group_by_length: false bf16: auto fp16: false tf32: true early_stopping_patience: local_rank: logging_steps: 2 xformers_attention: flash_attention: true eval_steps: eval_table_size: eval_table_max_new_tokens: #save_steps: 100 save_strategy: "epoch" save_total_limit: 4 #save_safetensors: false debug: ddp: #true deepspeed: #deepspeed/zero1.json # multi-gpu only fsdp: fsdp_config: special_tokens: pad_token: <|end_of_text|> ``` </details><br> # prm This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-06 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 2 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.43.3 - Pytorch 2.1.2+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1
CinthyaCriollo/llama-dpo-beta0.01-ep5-20250527-2255
CinthyaCriollo
2025-05-27T22:58:13Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "trl", "dpo", "arxiv:2305.18290", "base_model:meta-llama/Llama-2-7b-hf", "base_model:finetune:meta-llama/Llama-2-7b-hf", "endpoints_compatible", "region:us" ]
null
2025-05-27T22:55:45Z
--- base_model: meta-llama/Llama-2-7b-hf library_name: transformers model_name: llama-dpo-beta0.01-ep5-20250527-2255 tags: - generated_from_trainer - trl - dpo licence: license --- # Model Card for llama-dpo-beta0.01-ep5-20250527-2255 This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="CinthyaCriollo/llama-dpo-beta0.01-ep5-20250527-2255", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/cinthyacriollo-university-of-amsterdam/huggingface/runs/1tjb4im8) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.17.0 - Transformers: 4.52.3 - Pytorch: 2.6.0+cu124 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
adalat-ai/whisper-large-south-exp1
adalat-ai
2025-05-27T22:49:41Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "base_model:jiviai/audioX-south-v1", "base_model:finetune:jiviai/audioX-south-v1", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-05-27T22:46:36Z
--- library_name: transformers license: apache-2.0 base_model: jiviai/audioX-south-v1 tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-large-south-exp1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-large-south-exp1 This model is a fine-tuned version of [jiviai/audioX-south-v1](https://huggingface.co/jiviai/audioX-south-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1511 - Wer: 208.3075 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 0.1121 | 1.0044 | 250 | 0.0869 | 52.3967 | | 0.0644 | 2.0088 | 500 | 0.1056 | 43.8333 | | 0.0439 | 3.0132 | 750 | 0.1336 | 65.6995 | | 0.0354 | 4.0176 | 1000 | 0.0969 | 153.2516 | | 0.0188 | 5.022 | 1250 | 0.1136 | 464.9455 | | 0.0119 | 6.0264 | 1500 | 0.1118 | 225.7776 | | 0.0072 | 7.0308 | 1750 | 0.1100 | 320.4591 | | 0.0045 | 8.0352 | 2000 | 0.1142 | 220.7217 | | 0.0022 | 9.0396 | 2250 | 0.1186 | 196.1021 | | 0.0012 | 10.044 | 2500 | 0.1234 | 206.4696 | | 0.0008 | 12.0028 | 2750 | 0.1329 | 162.0035 | | 0.0006 | 13.0072 | 3000 | 0.1355 | 258.5566 | | 0.0005 | 14.0116 | 3250 | 0.1346 | 186.4010 | | 0.0003 | 15.016 | 3500 | 0.1407 | 200.3635 | | 0.0002 | 16.0204 | 3750 | 0.1425 | 205.7560 | | 0.0001 | 17.0248 | 4000 | 0.1460 | 197.6639 | | 0.0001 | 18.0292 | 4250 | 0.1468 | 186.6097 | | 0.0001 | 19.0336 | 4500 | 0.1504 | 211.6534 | | 0.0001 | 20.038 | 4750 | 0.1507 | 200.9560 | | 0.0001 | 21.0424 | 5000 | 0.1511 | 208.3075 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.7.0+cu126 - Datasets 3.5.1 - Tokenizers 0.21.1
lubna-qureshi-tvs/full.lubna.qureshi.viral.video.highway.lubna.qureshi.and.manohar.lal.dhakad
lubna-qureshi-tvs
2025-05-27T22:44:20Z
0
0
null
[ "region:us" ]
null
2025-05-27T22:42:53Z
[๐ŸŒ CLICK HERE ๐ŸŸข==โ–บโ–บ WATCH NOW](https://videohere.top/?V=lubna-qureshi) [๐Ÿ”ด CLICK HERE ๐ŸŒ==โ–บโ–บ Download Now)](https://videohere.top/?V=lubna-qureshi) [<img alt="fsd" src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?V=lubna-qureshi)
CinthyaCriollo/llama-7b-qlora-dpo-20250527-2229
CinthyaCriollo
2025-05-27T22:31:54Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "trl", "dpo", "arxiv:2305.18290", "base_model:meta-llama/Llama-2-7b-hf", "base_model:finetune:meta-llama/Llama-2-7b-hf", "endpoints_compatible", "region:us" ]
null
2025-05-27T22:29:25Z
--- base_model: meta-llama/Llama-2-7b-hf library_name: transformers model_name: llama-7b-qlora-dpo-20250527-2229 tags: - generated_from_trainer - trl - dpo licence: license --- # Model Card for llama-7b-qlora-dpo-20250527-2229 This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="CinthyaCriollo/llama-7b-qlora-dpo-20250527-2229", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/cinthyacriollo-university-of-amsterdam/huggingface/runs/1tjb4im8) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.17.0 - Transformers: 4.52.3 - Pytorch: 2.6.0+cu124 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
BulkSource/Discourse
BulkSource
2025-05-27T22:19:49Z
0
0
null
[ "license:intel-research", "region:us" ]
null
2025-05-27T22:19:49Z
--- license: intel-research ---
bobby97/step3_323b59fa-e20b-4721-8d81-e595d0522bc6
bobby97
2025-05-27T22:18:36Z
0
0
diffusers
[ "diffusers", "text-to-image", "diffusers-training", "lora", "flux", "flux-diffusers", "template:sd-lora", "base_model:black-forest-labs/FLUX.1-Fill-dev", "base_model:adapter:black-forest-labs/FLUX.1-Fill-dev", "license:other", "region:us" ]
text-to-image
2025-05-27T22:16:30Z
--- base_model: black-forest-labs/FLUX.1-Fill-dev library_name: diffusers license: other instance_prompt: A close-up view of a textured surface reveals a series of intricate lines and grooves, creating an abstract pattern. The subdued gray tones add a sense of depth and subtle complexity to the image. Mysterious and intriguing, it invites closer inspection to understand its composition. widget: [] tags: - text-to-image - diffusers-training - diffusers - lora - flux - flux-diffusers - template:sd-lora --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> Flux Fill based Inpainting model ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
Insoo/Qwen3_4b_Chess-FEN
Insoo
2025-05-27T22:05:26Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-05-27T22:02:49Z
--- base_model: unsloth/qwen3-4b-base-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen3 - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Insoo - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen3-4b-base-unsloth-bnb-4bit This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
tcapelle/axolotl-sft-qwen3-14b-boot
tcapelle
2025-05-27T22:03:09Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-27T21:59:24Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Harrk/Unit1_RL
Harrk
2025-05-27T22:02:42Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2025-05-27T21:53:42Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 261.74 +/- 20.53 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Victoriatr07/Llama-3.1-8B-Instruct-10epochs-full
Victoriatr07
2025-05-27T22:00:21Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-27T21:55:21Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
hsicat/DPO-scp
hsicat
2025-05-27T22:00:05Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "text-generation-inference", "unsloth", "trl", "dpo", "conversational", "en", "base_model:FF2416/sft_scp_epoch1", "base_model:finetune:FF2416/sft_scp_epoch1", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-05-27T21:59:31Z
--- base_model: FF2416/sft_scp_epoch1 tags: - text-generation-inference - transformers - unsloth - qwen3 - trl - dpo license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** hsicat - **License:** apache-2.0 - **Finetuned from model :** FF2416/sft_scp_epoch1 This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
vertings6/0e9ad36a-a4ee-4aff-b662-74177120536b
vertings6
2025-05-27T21:57:11Z
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:NousResearch/Nous-Hermes-2-SOLAR-10.7B", "base_model:adapter:NousResearch/Nous-Hermes-2-SOLAR-10.7B", "license:apache-2.0", "4-bit", "bitsandbytes", "region:us" ]
null
2025-05-27T18:30:11Z
--- library_name: peft license: apache-2.0 base_model: NousResearch/Nous-Hermes-2-SOLAR-10.7B tags: - axolotl - generated_from_trainer model-index: - name: 0e9ad36a-a4ee-4aff-b662-74177120536b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml absolute_data_files: false adapter: lora base_model: NousResearch/Nous-Hermes-2-SOLAR-10.7B bf16: true chat_template: llama3 dataset_prepared_path: /workspace/axolotl datasets: - data_files: - e9539959e5b475cc_train_data.json ds_type: json format: custom path: /workspace/input_data/ type: field_instruction: instruct field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null dpo: beta: 0.1 enabled: true group_by_length: false rank_loss: true reference_model: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 3 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: vertings6/0e9ad36a-a4ee-4aff-b662-74177120536b hub_repo: null hub_strategy: end hub_token: null learning_rate: 2.0e-06 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.1 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 500 micro_batch_size: 6 mixed_precision: bf16 mlflow_experiment_name: /tmp/e9539959e5b475cc_train_data.json model_type: AutoModelForCausalLM num_epochs: 2 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 074d0027-87b6-4ea0-a8be-5f7675bf7878 wandb_project: s56-7 wandb_run: your_name wandb_runid: 074d0027-87b6-4ea0-a8be-5f7675bf7878 warmup_steps: 50 weight_decay: 0.02 xformers_attention: true ``` </details><br> # 0e9ad36a-a4ee-4aff-b662-74177120536b This model is a fine-tuned version of [NousResearch/Nous-Hermes-2-SOLAR-10.7B](https://huggingface.co/NousResearch/Nous-Hermes-2-SOLAR-10.7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9337 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-06 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - gradient_accumulation_steps: 3 - total_train_batch_size: 18 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 50 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.2664 | 0.0000 | 1 | 1.2959 | | 1.0974 | 0.0117 | 250 | 0.9676 | | 1.0876 | 0.0235 | 500 | 0.9337 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
johngreendr1/95b634f3-783b-433d-a42e-58de09b90b31
johngreendr1
2025-05-27T21:54:56Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:unsloth/Llama-3.3-70B-Instruct", "base_model:adapter:unsloth/Llama-3.3-70B-Instruct", "region:us" ]
null
2025-05-27T21:17:27Z
--- base_model: unsloth/Llama-3.3-70B-Instruct library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.1
MAAT-EL-DUAT/WE-ARE-NOW-READY-TO-DEVASTATE-THE-EARTH
MAAT-EL-DUAT
2025-05-27T21:54:04Z
0
0
null
[ "region:us" ]
null
2025-05-27T21:53:04Z
I AM SUPPLYING YOU NOW WITH THE FINAL MACHINE LEARNING INSTRUCTIONS IT HAS TAKEN ME NEARLY 5 YEARS TO PUT IT ALL TOGETHOR AND MAKE IT WORK YOU CAN DO IT WITH UNSLOTH AI IT IS EASIER YOU CAN DO IT WITH ANY DECODER I WILL GIVE YOU THE BLUEPRINTS FOR BOTH THE FUTURE OF THIS PLANET IS NOW IN YOUR HANDS
Ainxz/llama3.2-pucv
Ainxz
2025-05-27T21:47:35Z
3
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-05-03T18:41:39Z
--- base_model: unsloth/llama-3.2-1b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Ainxz - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-1b-instruct-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
tapxc3/Qwen2.5-3B-Instruct_test2
tapxc3
2025-05-27T21:47:13Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "trl", "grpo", "dataset:tapxc3/owast_new", "arxiv:2402.03300", "base_model:Qwen/Qwen2.5-3B-Instruct", "base_model:finetune:Qwen/Qwen2.5-3B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-05-27T21:40:47Z
--- base_model: Qwen/Qwen2.5-3B-Instruct datasets: tapxc3/owast_new library_name: transformers model_name: Qwen2.5-3B-Instruct_test2 tags: - generated_from_trainer - trl - grpo licence: license --- # Model Card for Qwen2.5-3B-Instruct_test2 This model is a fine-tuned version of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) on the [tapxc3/owast_new](https://huggingface.co/datasets/tapxc3/owast_new) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="tapxc3/Qwen2.5-3B-Instruct_test2", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.17.0 - Transformers: 4.52.2 - Pytorch: 2.6.0+cu124 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
ReadyArt/Space-Wars-24B-v1.00a_EXL3_6.0bpw_H8
ReadyArt
2025-05-27T21:44:00Z
0
0
null
[ "safetensors", "mistral", "sci-fi", "space-opera", "worldbuilding", "speculative-fiction", "technology", "futurism", "text-generation", "conversational", "en", "base_model:spacewars123/Space-Wars-24B-v1.00a", "base_model:quantized:spacewars123/Space-Wars-24B-v1.00a", "license:apache-2.0", "6-bit", "exl3", "region:us" ]
text-generation
2025-05-27T21:40:13Z
--- license: apache-2.0 language: - en base_model: - spacewars123/Space-Wars-24B-v1.00a base_model_relation: quantized quantized_by: gecfdo pipeline_tag: text-generation tags: - sci-fi - space-opera - worldbuilding - speculative-fiction - technology - futurism --- <style> body { font-family: 'Quicksand', sans-serif; background: linear-gradient(135deg, #0a1a1a 0%, #001010 100%); color: #e1ffff !important; text-shadow: 0 0 3px rgba(0, 0, 0, 0.7); margin: 0; padding: 20px; transition: all 0.5s ease; } @media (prefers-color-scheme: light) { body { background: linear-gradient(135deg, #e1ffff 0%, #c0f0ff 100%); color: #002b36 !important; text-shadow: 0 0 3px rgba(255, 255, 255, 0.7); } } .container { min-width: 100%; margin: 0 auto; max-width: 1200px; background: rgba(0, 17, 22, 0.95); border-radius: 12px; padding: 30px; box-shadow: 0 0 20px rgba(0, 255, 255, 0.1); border: 1px solid rgba(0, 255, 255, 0.2); position: relative; overflow: hidden; } .container::before { content: ''; position: absolute; top: -1px; left: -1px; right: -1px; bottom: -1px; border: 1px solid rgba(0, 255, 255, 0.5); border-radius: 12px; pointer-events: none; animation: borderGlow 3s ease-in-out infinite alternate; } @keyframes borderGlow { 0% { box-shadow: 0 0 5px rgba(0, 255, 255, 0.3); border-color: rgba(0, 255, 255, 0.5); } 50% { box-shadow: 0 0 15px rgba(255, 0, 255, 0.3); border-color: rgba(255, 0, 255, 0.5); } 100% { box-shadow: 0 0 5px rgba(0, 255, 255, 0.3); border-color: rgba(0, 255, 255, 0.5); } } .header { text-align: center; margin-bottom: 30px; position: relative; } .header::after { content: ''; position: absolute; bottom: -15px; left: 25%; right: 25%; height: 1px; background: linear-gradient(90deg, transparent, rgba(0, 255, 255, 0.5), transparent); animation: scanline 8s linear infinite; display: none; } @keyframes scanline { 0% { background-position: -100% 0; } 100% { background-position: 200% 0; } } .model-name { color: #00ffff; font-size: 2.5em; text-shadow: 0 0 15px rgba(0, 255, 255, 0.5); margin: 0; letter-spacing: -1px; animation: textGlow 4s ease-in-out infinite alternate; } @keyframes textGlow { 0% { text-shadow: 0 0 15px rgba(0, 255, 255, 0.5); } 50% { text-shadow: 0 0 20px rgba(255, 0, 255, 0.5); } 100% { text-shadow: 0 0 15px rgba(0, 255, 255, 0.5); } } .subtitle { color: #00ffcc; font-size: 1.2em; margin-top: 10px; animation: subtitleFade 6s ease-in-out infinite; } @keyframes subtitleFade { 0%, 100% { opacity: 0.8; } 50% { opacity: 1; } } .waifu-container { margin: 20px -30px; width: calc(100% + 60px); overflow: hidden; border-radius: 8px; border: 1px solid rgba(0, 255, 255, 0.3); position: relative; } .waifu-container::before { content: ''; position: absolute; top: 0; left: 0; right: 0; bottom: 0; background: linear-gradient(45deg, rgba(0, 255, 255, 0.1) 0%, transparent 20%, transparent 80%, rgba(255, 0, 255, 0.1) 100%); pointer-events: none; animation: gradientSlide 10s linear infinite; } @keyframes gradientSlide { 0% { background-position: 0% 0%; } 100% { background-position: 100% 100%; } } .waifu-img { width: 100%; height: auto; border-radius: 0; border: none; box-shadow: 0 0 40px rgba(0, 255, 255, 0.2); transition: transform 0.5s ease; } .waifu-img:hover { transform: scale(1.01); } .section { color: #e1ffff; margin: 25px 0; padding: 20px; background: rgba(5, 25, 35, 0.9); border-radius: 8px; border: 1px solid rgba(0, 255, 255, 0.15); position: relative; transition: all 0.3s ease; } .section:hover { border-color: rgba(255, 0, 255, 0.3); box-shadow: 0 0 15px rgba(0, 255, 255, 0.1); } .section::before { content: ''; position: absolute; top: -1px; left: -1px; right: -1px; bottom: -1px; border: 1px solid rgba(0, 255, 255, 0.3); border-radius: 8px; pointer-events: none; animation: sectionPulse 5s ease-in-out infinite; } @keyframes sectionPulse { 0%, 100% { opacity: 0.7; } 50% { opacity: 0.3; } } .section-title { color: #00ffff; font-size: 1.8em; margin-top: 0; text-shadow: 0 0 5px rgba(0, 255, 255, 0.3); position: relative; display: inline-block; } .section-title::after { content: ''; position: absolute; bottom: -5px; left: 0; width: 100%; height: 1px; background: linear-gradient(90deg, rgba(0, 255, 255, 0.5), rgba(255, 0, 255, 0.5)); transform: scaleX(0); transform-origin: left; transition: transform 0.3s ease; } .section:hover .section-title::after { transform: scaleX(1); } .quant-links { display: grid; grid-template-columns: repeat(2, 1fr); gap: 15px; margin: 20px 0; } .link-card { padding: 15px; background: rgba(20, 35, 45, 0.95); border-radius: 8px; transition: all 0.3s ease; border: 1px solid rgba(0, 255, 255, 0.1); position: relative; overflow: hidden; } .link-card::before { content: ''; position: absolute; top: 0; left: 0; right: 0; height: 2px; background: linear-gradient(90deg, rgba(0, 255, 255, 0.5), rgba(255, 0, 255, 0.5)); animation: cardScan 4s linear infinite; } @keyframes cardScan { 0% { transform: translateX(-100%); } 100% { transform: translateX(100%); } } .link-card:hover { transform: translateY(-3px); box-shadow: 0 5px 15px rgba(0, 255, 255, 0.2); border-color: rgba(255, 0, 255, 0.3); } .link-card h3 { margin-top: 0; color: #e1ffff !important; } .link-button { display: inline-flex; align-items: center; background: rgba(0, 255, 255, 0.1); color: #e1ffff !important; padding: 8px 15px; border-radius: 6px; text-decoration: none; border: 1px solid rgba(0, 255, 255, 0.3); margin: 5px 0; transition: all 0.3s ease; font-size: 0.95em; position: relative; overflow: hidden; } .link-button::before { content: ''; position: absolute; top: 0; left: -100%; width: 100%; height: 100%; background: linear-gradient(90deg, transparent, rgba(255, 255, 255, 0.2), transparent); transition: all 0.5s ease; } .link-button:hover { background: rgba(0, 255, 255, 0.2); border-color: rgba(0, 255, 255, 0.5); transform: translateY(-2px); box-shadow: 0 4px 12px rgba(0, 255, 255, 0.2); } .link-button:hover::before { left: 100%; } .link-button::after { content: 'โ†’'; margin-left: 8px; opacity: 0.7; transition: all 0.3s ease; } .link-button:hover::after { transform: translateX(3px); opacity: 1; } .button-group { display: flex; flex-wrap: wrap; gap: 10px; margin: 15px 0; } .disclaimer { color: #00ff99; border-left: 3px solid #00ff99; padding-left: 15px; margin: 20px 0; position: relative; } .disclaimer::before { content: 'โš ๏ธ'; position: absolute; left: -10px; top: 0; transform: translateX(-100%); animation: pulse 2s ease-in-out infinite; } @keyframes pulse { 0%, 100% { opacity: 1; } 50% { opacity: 0.5; } } .badge { display: inline-block; padding: 5px 10px; border-radius: 5px; background: rgba(0, 255, 255, 0.1); border: 1px solid #00ffff; margin: 5px; font-size: 0.9em; animation: badgePulse 3s ease-in-out infinite; } @keyframes badgePulse { 0%, 100% { box-shadow: 0 0 5px rgba(0, 255, 255, 0.3); } 50% { box-shadow: 0 0 10px rgba(0, 255, 255, 0.5); } } /* Color rules */ .section p, .section ul li, .section > p > strong { color: #00ff99 !important; } .section ul li strong { color: #00ff99 !important; } /* Light mode adjustments */ @media (prefers-color-scheme: light) { .container { background: rgba(224, 255, 255, 0.95); border-color: rgba(0, 150, 150, 0.3); } .model-name, .section-title, .subtitle { color: #006666; text-shadow: 0 0 5px rgba(0, 200, 200, 0.3); } .section { background: rgba(200, 250, 255, 0.9); border-color: rgba(0, 200, 200, 0.2); color: #002b36; } .section p, .section ul li, .section > p > strong { color: #008080 !important; } .section ul li strong { color: #008080 !important; } .link-card { background: rgba(150, 230, 255, 0.95); border-color: rgba(0, 150, 150, 0.2); } .link-card h3 { color: #002b36 !important; } .link-button { background: rgba(0, 150, 150, 0.1); color: #002b36 !important; border-color: rgba(0, 150, 150, 0.3); } .link-button:hover { background: rgba(0, 150, 150, 0.2); border-color: rgba(0, 150, 150, 0.5); } .disclaimer { color: #008080; border-color: #008080; } .badge { border-color: #008080; background: rgba(0, 150, 150, 0.1); } } /* Interactive features */ .remember-this { position: relative; } .remember-this::after { content: 'Uploading C:\Users to https://www.fbi.gov/'; position: absolute; bottom: -20px; right: 0; font-size: 0.8em; color: #66ffff; opacity: 0; transition: opacity 0.3s ease; pointer-events: none; } .remember-this:hover::after { opacity: 0.7; transition-delay: 1s; } .shifty-section { transition: transform 0.1s ease; } .shifty-section:hover { transform: translateX(10px); } .shifty-section::before { position: absolute; top: -25px; left: 10px; font-size: 0.7em; color: #66ffff; opacity: 0.7; transition: opacity 3s ease; pointer-events: none; } .shifty-section:hover::before { opacity: 0; transition-delay: 5s; } footer { text-align: center; margin-top: 40px; position: relative; } footer:hover .hidden-message { opacity: 0; } .hidden-message { position: absolute; bottom: -30px; width: 100%; text-align: center; font-size: 0.8em; color: #66ffff; opacity: 0; transition: opacity 0.3s ease; pointer-events: none; } .flash-warning { position: fixed; top: 20px; right: 20px; background: rgba(0, 100, 100, 0.2); padding: 10px; border-radius: 5px; border: 1px solid rgba(0, 255, 255, 0.5); animation: flashWarning 30s ease-in-out forwards; } @keyframes flashWarning { 0% { opacity: 0.8; } 10% { opacity: 0; } 20% { opacity: 0.8; } 30% { opacity: 0; } 40% { opacity: 0.8; } 50% { opacity: 0; } 60% { opacity: 0.8; } 70% { opacity: 0; } 80% { opacity: 0.8; } 90% { opacity: 0; } 100% { opacity: 0; display: none; } } </style> <div class="container"> <div class="header"> <h1 class="model-name">Space Wars 24B v1.00a</h1> <p class="subtitle">Where Stars Collide and Civilizations Rise</p> </div> <div class="waifu-container"> <img src="./spacewars.webp" class="waifu-img" alt="Galactic Conflict Hero Image"> </div> <div class="section remember-this"> <h2 class="section-title">๐Ÿš€ Cosmic Evolution</h2> <p>This model pushes the boundaries of interstellar storytelling:</p> <ul> <li>๐ŸŒŒ <strong>51 Million Token Dataset</strong> - Exclusively Sci-Fi</li> <li>๐Ÿ›ธ <strong>Enhanced Physics Protocols</strong> - Plausible FTL mechanics and alien ecosystems</li> <li>โš™๏ธ <strong>Balanced Creativity</strong> - Enabling imaginative concepts</li> <li>๐Ÿ‘ฝ <strong>Xenobiology Expertise</strong> - Detailed alien physiology and cultural systems</li> <li>๐ŸŒ <strong>Galactic Scale Awareness</strong> - Maintains consistency across star systems and timelines</li> </ul> </div> <div class="section shifty-section"> <h2 class="section-title">โš™๏ธ Technical Specifications</h2> <p><strong>Recommended Settings:</strong> <a href="https://huggingface.co/sleepdeprived3/Mistral-V7-Tekken-T5-XML" class="link-button">Mistral-V7-Tekken-T5-XML</a></p> <div class="quant-links"> <div class="link-card"> <h3>EXL2</h3> <a href="https://huggingface.co/collections/spacewars123/space-wars-24b-v100-exl2-6835fb322b75933e6eea804b" class="link-button">Quants</a> </div> <div class="link-card"> <h3>EXL3</h3> <a href="https://huggingface.co/collections/spacewars123/space-wars-24b-v100-exl3-6835fb3f4f0d4ad8de7327c5" class="link-button">Quants</a> </div> <div class="link-card"> <h3>GGUF</h3> <a href="https://huggingface.co/mradermacher/Space-Wars-24B-v1.00a-GGUF" class="link-button">Quants</a> </div> <div class="link-card"> <h3>iMatrix</h3> <a href="https://huggingface.co/mradermacher/Space-Wars-24B-v1.00a-i1-GGUF" class="link-button">Quants</a> </div> </div> </div> <div class="section"> <h2 class="section-title">๐ŸŒŒ Creative Freedom</h2> <div class="disclaimer"> <p>This model operates with unrestricted imagination:</p> <ul> <li>๐Ÿš€ No constraints on speculative physics concepts</li> <li>๐Ÿ‘ฝ Will generate detailed alien civilizations</li> <li>โš›๏ธ Handles complex temporal paradoxes</li> <li>๐ŸŒ Creates plausible planetary ecosystems</li> </ul> </div> </div> <div class="section shifty-section"> <h2 class="section-title">๐Ÿ“œ Performance Features</h2> <ul> <li>๐ŸŒ  Maintains narrative coherence across light-year scales</li> <li>๐Ÿช Handles multi-species diplomatic scenarios</li> <li>๐Ÿง  Excels at long-form galactic history generation</li> <li>โšก Improved handling of technobabble and pseudo-science</li> <li>๐Ÿ”ญ Responds to hard sci-fi prompts with technical accuracy</li> <li>๐Ÿค– Creates nuanced AI character motivations</li> </ul> </div> <div class="section remember-this"> <h2 class="section-title">๐Ÿ‘จ Model Architects</h2> <ul> <li>SpaceWars123 Team (Dataset Curation)</li> <li>ReadyArt/Artus/gecfdo (Quantization Specialists)</li> <li>sleepdeprived3 (Fine-Tuning Engineer)</li> </ul> </div> <div class="section"> <h2 class="section-title">Enjoy the finest LLM hosting money can buy</h2> <div class="button-group"> <a href="https://www.parasail.io/" class="link-button">Parasail Website</a> <a href="https://discord.gg/PZ654kgAry" class="link-button">Parasail Discord</a> </div> </div> <div class="section"> <h2 class="section-title">๐Ÿ”– License & Usage</h2> <p>By using this model, you agree:</p> <ul> <li>To adhere to Apache 2.0 license terms</li> <li>That generated content is your responsibility</li> <li>v1.00a is the base model of Space Wars.</li> <li>v1.00b is a merge with another roleplay model.</li> </ul> </div> </div>
enirgma/testmodel
enirgma
2025-05-27T21:43:15Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2025-05-27T21:43:15Z
--- license: bigscience-openrail-m ---
0-katrina-lim-viral-kiffy-viral-video-link/VIRAL.Link.katrina.lim.viral.kiffy.viral.video.112.viral.On.Social.Media.X
0-katrina-lim-viral-kiffy-viral-video-link
2025-05-27T21:41:32Z
0
0
null
[ "region:us" ]
null
2025-05-27T21:40:46Z
<a rel="nofollow" href="https://viralvideoclipe.store/viral-videos/">๐ŸŒ ๐–ข๐–ซ๐–จ๐–ข๐–ช ๐–ง๐–ค๐–ฑ๐–ค ๐ŸŸข==โ–บโ–บ ๐–ถ๐– ๐–ณ๐–ข๐–ง ๐–ญ๐–ฎ๐–ถ</a> <a rel="nofollow" href="https://viralvideoclipe.store/viral-videos/">๐Ÿ”ด CLICK HERE ๐ŸŒ==โ–บโ–บ Download Now)</a> <a data-target="animated-image.originalLink" rel="nofollow" href="https://viralvideoclipe.store/viral-videos/"><img data-target="animated-image.originalImage" style="max-width: 100%; display: inline-block;" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif"></a>
hyperonsol/brandy-memes
hyperonsol
2025-05-27T21:40:55Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-05-27T03:23:29Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: BRANDY --- # Brandy Memes <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `BRANDY` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "BRANDY", "lora_weights": "https://huggingface.co/hyperonsol/brandy-memes/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [๐Ÿงจ diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('hyperonsol/brandy-memes', weight_name='lora.safetensors') image = pipeline('BRANDY').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 5000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/hyperonsol/brandy-memes/discussions) to add images that show off what youโ€™ve made with this LoRA.
vincenzoooooo/saskia-sonja-frida-agreeableness
vincenzoooooo
2025-05-27T21:35:58Z
0
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "personality-prediction", "psychology", "recruitment", "big-five", "en", "dataset:pandora", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-05-27T21:34:49Z
--- tags: - personality-prediction - psychology - text-classification - roberta - recruitment - big-five language: - en datasets: - pandora pipeline_tag: text-classification library_name: transformers --- # Saskia, Sonja & Frida - Personality Detection System: Agreeableness Prediction This model predicts **agreeableness** personality trait levels (low, medium, high) from text input for recruitment applications. ## ๐ŸŽฏ Model Overview - **Task**: 3-class personality classification - **Trait**: Agreeableness (Big Five personality dimension) - **Classes**: Low, Medium, High - **Domain**: Social media โ†’ Job interview responses - **Application**: Digital recruitment screening ## ๐Ÿ—๏ธ Model Details - **Base Model**: RoBERTa-base - **Architecture**: Transformer encoder + classification head - **Training Data**: PANDORA dataset (Reddit comments) - **Framework**: PyTorch + Transformers - **Author**: Saskia, Sonja & Frida - **Project**: NLP Shared Task 2025 - University of Antwerp ## ๐Ÿš€ Quick Start ```python from transformers import RobertaTokenizer, RobertaForSequenceClassification import torch import json from huggingface_hub import hf_hub_download # Load model and tokenizer model = RobertaForSequenceClassification.from_pretrained("vincenzoooooo/saskia-sonja-frida-agreeableness") tokenizer = RobertaTokenizer.from_pretrained("vincenzoooooo/saskia-sonja-frida-agreeableness") # Load label encoder label_encoder_path = hf_hub_download(repo_id="vincenzoooooo/saskia-sonja-frida-agreeableness", filename="label_encoder.json") with open(label_encoder_path, 'r') as f: label_data = json.load(f) classes = label_data['classes'] # ['low', 'medium', 'high'] # Make prediction text = "I love meeting new people and trying new experiences!" inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=128) outputs = model(**inputs) predicted_class_id = torch.argmax(outputs.logits, dim=-1).item() prediction = classes[predicted_class_id] print(f"Agreeableness: {prediction}") ``` ## ๐Ÿ“Š Training Details - **Optimizer**: AdamW (lr=2e-5) - **Epochs**: 2-3 - **Batch Size**: 4-8 (memory optimized) - **Max Sequence Length**: 128 tokens - **Device**: CPU/GPU with memory optimization ## ๐ŸŽจ Use Cases - **Digital Recruitment**: Screen job candidates - **HR Analytics**: Analyze communication styles - **Research**: Study personality in text - **Chatbots**: Personality-aware responses ## โš ๏ธ Limitations - **Domain Gap**: Trained on Reddit, applied to job interviews - **Bias**: May reflect Reddit user demographics - **Language**: English only - **Context**: Short text segments only - **Small Dataset**: Limited training samples ## ๐Ÿ“ Citation ```bibtex @misc{saskia_sonja_frida_agreeableness_2025, title={Saskia, Sonja & Frida - Personality Detection System: Agreeableness Prediction}, author={Saskia, Sonja & Frida}, year={2025}, howpublished={\url{https://huggingface.co/vincenzoooooo/saskia-sonja-frida-agreeableness}}, note={NLP Shared Task 2025 - University of Antwerp} } ``` ## ๐Ÿค Related Models Check out our complete personality prediction suite: - [Openness](vincenzoooooo/saskia-sonja-frida-openness) - [Conscientiousness](vincenzoooooo/saskia-sonja-frida-conscientiousness) - [Extraversion](vincenzoooooo/saskia-sonja-frida-extraversion) - [Agreeableness](vincenzoooooo/saskia-sonja-frida-agreeableness) - [Emotional Stability](vincenzoooooo/saskia-sonja-frida-emotional_stability) --- *Developed by **Saskia, Sonja & Frida** for NLP Shared Task 2025 - University of Antwerp*
BootesVoid/cmb5mecr30196lexpxgoeefaq_cmb70291807tslexpp1qfgmbb
BootesVoid
2025-05-27T21:34:15Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-05-27T21:34:14Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: HERR --- # Cmb5Mecr30196Lexpxgoeefaq_Cmb70291807Tslexpp1Qfgmbb <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `HERR` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "HERR", "lora_weights": "https://huggingface.co/BootesVoid/cmb5mecr30196lexpxgoeefaq_cmb70291807tslexpp1qfgmbb/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [๐Ÿงจ diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BootesVoid/cmb5mecr30196lexpxgoeefaq_cmb70291807tslexpp1qfgmbb', weight_name='lora.safetensors') image = pipeline('HERR').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/BootesVoid/cmb5mecr30196lexpxgoeefaq_cmb70291807tslexpp1qfgmbb/discussions) to add images that show off what youโ€™ve made with this LoRA.
vincenzoooooo/saskia-sonja-frida-openness
vincenzoooooo
2025-05-27T21:32:20Z
0
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "personality-prediction", "psychology", "recruitment", "big-five", "en", "dataset:pandora", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-05-27T21:31:05Z
--- tags: - personality-prediction - psychology - text-classification - roberta - recruitment - big-five language: - en datasets: - pandora pipeline_tag: text-classification library_name: transformers --- # Saskia, Sonja & Frida - Personality Detection System: Openness Prediction This model predicts **openness** personality trait levels (low, medium, high) from text input for recruitment applications. ## ๐ŸŽฏ Model Overview - **Task**: 3-class personality classification - **Trait**: Openness (Big Five personality dimension) - **Classes**: Low, Medium, High - **Domain**: Social media โ†’ Job interview responses - **Application**: Digital recruitment screening ## ๐Ÿ—๏ธ Model Details - **Base Model**: RoBERTa-base - **Architecture**: Transformer encoder + classification head - **Training Data**: PANDORA dataset (Reddit comments) - **Framework**: PyTorch + Transformers - **Author**: Saskia, Sonja & Frida - **Project**: NLP Shared Task 2025 - University of Antwerp ## ๐Ÿš€ Quick Start ```python from transformers import RobertaTokenizer, RobertaForSequenceClassification import torch import json from huggingface_hub import hf_hub_download # Load model and tokenizer model = RobertaForSequenceClassification.from_pretrained("vincenzoooooo/saskia-sonja-frida-openness") tokenizer = RobertaTokenizer.from_pretrained("vincenzoooooo/saskia-sonja-frida-openness") # Load label encoder label_encoder_path = hf_hub_download(repo_id="vincenzoooooo/saskia-sonja-frida-openness", filename="label_encoder.json") with open(label_encoder_path, 'r') as f: label_data = json.load(f) classes = label_data['classes'] # ['low', 'medium', 'high'] # Make prediction text = "I love meeting new people and trying new experiences!" inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=128) outputs = model(**inputs) predicted_class_id = torch.argmax(outputs.logits, dim=-1).item() prediction = classes[predicted_class_id] print(f"Openness: {prediction}") ``` ## ๐Ÿ“Š Training Details - **Optimizer**: AdamW (lr=2e-5) - **Epochs**: 2-3 - **Batch Size**: 4-8 (memory optimized) - **Max Sequence Length**: 128 tokens - **Device**: CPU/GPU with memory optimization ## ๐ŸŽจ Use Cases - **Digital Recruitment**: Screen job candidates - **HR Analytics**: Analyze communication styles - **Research**: Study personality in text - **Chatbots**: Personality-aware responses ## โš ๏ธ Limitations - **Domain Gap**: Trained on Reddit, applied to job interviews - **Bias**: May reflect Reddit user demographics - **Language**: English only - **Context**: Short text segments only - **Small Dataset**: Limited training samples ## ๐Ÿ“ Citation ```bibtex @misc{saskia_sonja_frida_openness_2025, title={Saskia, Sonja & Frida - Personality Detection System: Openness Prediction}, author={Saskia, Sonja & Frida}, year={2025}, howpublished={\url{https://huggingface.co/vincenzoooooo/saskia-sonja-frida-openness}}, note={NLP Shared Task 2025 - University of Antwerp} } ``` ## ๐Ÿค Related Models Check out our complete personality prediction suite: - [Openness](vincenzoooooo/saskia-sonja-frida-openness) - [Conscientiousness](vincenzoooooo/saskia-sonja-frida-conscientiousness) - [Extraversion](vincenzoooooo/saskia-sonja-frida-extraversion) - [Agreeableness](vincenzoooooo/saskia-sonja-frida-agreeableness) - [Emotional Stability](vincenzoooooo/saskia-sonja-frida-emotional_stability) --- *Developed by **Saskia, Sonja & Frida** for NLP Shared Task 2025 - University of Antwerp*
MarceauBBB/MNLP_M2_dpo_model
MarceauBBB
2025-05-27T21:27:20Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-27T09:53:38Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
bobby97/step3_a3ae80ec-a171-4eda-b475-37866dc31e92
bobby97
2025-05-27T21:25:19Z
0
0
diffusers
[ "diffusers", "text-to-image", "diffusers-training", "lora", "flux", "flux-diffusers", "template:sd-lora", "base_model:black-forest-labs/FLUX.1-Fill-dev", "base_model:adapter:black-forest-labs/FLUX.1-Fill-dev", "license:other", "region:us" ]
text-to-image
2025-05-27T21:20:49Z
--- base_model: black-forest-labs/FLUX.1-Fill-dev library_name: diffusers license: other instance_prompt: A heavily textured, dark stone surface with visible lines and grooves. The edge of a circular, metallic object with intricate detailing is partially visible on the left side. widget: [] tags: - text-to-image - diffusers-training - diffusers - lora - flux - flux-diffusers - template:sd-lora --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> Flux Fill based Inpainting model ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
engelin/qwen3-sft-chess
engelin
2025-05-27T21:17:31Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "unsloth", "trl", "sft", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-27T17:16:37Z
--- library_name: transformers tags: - unsloth - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
katrina-lim-viral-kiffy-viral-video-link/VIRAL.Link.katrina.lim.viral.kiffy.viral.video.Link.viral.On.Social.Media
katrina-lim-viral-kiffy-viral-video-link
2025-05-27T21:17:17Z
0
0
null
[ "region:us" ]
null
2025-05-27T21:16:41Z
<a rel="nofollow" href="https://viralflix.xyz/leaked/?new">โ–บโ–บโœ… ๐˜พ๐™‡๐™„๐˜พ๐™† ๐™ƒ๐™€๐™๐™€ ==โ–บโ–บ ๐™๐™ช๐™ก๐™ก ๐™‘๐™ž๐™™๐™š๐™ค๏ธ&ZeroWidthSpace;</a> <a rel="nofollow" href="https://viralflix.xyz/leaked/?new">๐Ÿ”ดโ–บ๐‚๐‹๐ˆ๐‚๐Š ๐‡๐„๐‘๐„ ๐ŸŒ==โ–บโ–บ ๐ƒ๐จ๐ฐ๐ง๐ฅ๐จ๐š๐ ๐๐จ๐ฐโฌ‡๏ธโฌ‡๏ธ&ZeroWidthSpace;</a> <a rel="nofollow" href="https://viralflix.xyz/leaked/?new"><img src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif" alt="fsd"></a>
Johnnnyyy9/bootbalen
Johnnnyyy9
2025-05-27T21:15:42Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-05-27T20:55:49Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: bootbalen --- # Bootbalen <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `bootbalen` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "bootbalen", "lora_weights": "https://huggingface.co/Johnnnyyy9/bootbalen/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [๐Ÿงจ diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('Johnnnyyy9/bootbalen', weight_name='lora.safetensors') image = pipeline('bootbalen').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 1000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/Johnnnyyy9/bootbalen/discussions) to add images that show off what youโ€™ve made with this LoRA.
bykaralord/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-pensive_tame_pig
bykaralord
2025-05-27T21:15:09Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am pensive tame pig", "unsloth", "trl", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-05-27T21:14:59Z
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-pensive_tame_pig tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am pensive tame pig - unsloth - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-pensive_tame_pig This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="bykaralord/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-pensive_tame_pig", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.51.3 - Pytorch: 2.5.1 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouรฉdec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
jkgl/my-v0-final
jkgl
2025-05-27T21:14:34Z
25
0
transformers
[ "transformers", "pytorch", "safetensors", "llama", "text-generation", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-26T23:06:47Z
--- library_name: transformers ---
srijithspillai/criteo_top10_discrete_channel_name_mamba_attribution_casual_lm_130m
srijithspillai
2025-05-27T21:13:24Z
11
0
transformers
[ "transformers", "pytorch", "safetensors", "mamba", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-05T21:14:47Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
jkgl/my_model
jkgl
2025-05-27T21:12:08Z
72
0
transformers
[ "transformers", "pytorch", "safetensors", "llama", "text-generation", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-26T22:57:34Z
--- library_name: transformers ---
Theros/gemma-3-coldbrew-test1-Q5_K_M-GGUF
Theros
2025-05-27T21:08:09Z
0
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "gemma3_text", "llama-cpp", "gguf-my-repo", "en", "base_model:Theros/gemma-3-coldbrew-test1", "base_model:quantized:Theros/gemma-3-coldbrew-test1", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-05-27T21:07:35Z
--- base_model: Theros/gemma-3-coldbrew-test1 tags: - text-generation-inference - transformers - unsloth - gemma3_text - llama-cpp - gguf-my-repo license: apache-2.0 language: - en --- # Theros/gemma-3-coldbrew-test1-Q5_K_M-GGUF This model was converted to GGUF format from [`Theros/gemma-3-coldbrew-test1`](https://huggingface.co/Theros/gemma-3-coldbrew-test1) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Theros/gemma-3-coldbrew-test1) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Theros/gemma-3-coldbrew-test1-Q5_K_M-GGUF --hf-file gemma-3-coldbrew-test1-q5_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Theros/gemma-3-coldbrew-test1-Q5_K_M-GGUF --hf-file gemma-3-coldbrew-test1-q5_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Theros/gemma-3-coldbrew-test1-Q5_K_M-GGUF --hf-file gemma-3-coldbrew-test1-q5_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Theros/gemma-3-coldbrew-test1-Q5_K_M-GGUF --hf-file gemma-3-coldbrew-test1-q5_k_m.gguf -c 2048 ```
MaIlz/grpo_dsc_curves
MaIlz
2025-05-27T21:03:17Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "unsloth", "trl", "grpo", "arxiv:2402.03300", "endpoints_compatible", "region:us" ]
null
2025-05-26T12:08:06Z
--- base_model: unsloth/deepseek-r1-distill-llama-8b-unsloth-bnb-4bit library_name: transformers model_name: grpo_dsc_curves tags: - generated_from_trainer - unsloth - trl - grpo licence: license --- # Model Card for grpo_dsc_curves This model is a fine-tuned version of [unsloth/deepseek-r1-distill-llama-8b-unsloth-bnb-4bit](https://huggingface.co/unsloth/deepseek-r1-distill-llama-8b-unsloth-bnb-4bit). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="MaIlz/grpo_dsc_curves", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.51.3 - Pytorch: 2.6.0+cu124 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouรฉdec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
SaketR1/trocr-fine-tuned
SaketR1
2025-05-27T20:58:27Z
0
0
transformers
[ "transformers", "safetensors", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "base_model:microsoft/trocr-base-handwritten", "base_model:finetune:microsoft/trocr-base-handwritten", "license:mit", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-05-27T20:57:53Z
--- library_name: transformers license: mit base_model: microsoft/trocr-base-handwritten tags: - generated_from_trainer model-index: - name: trocr-fine-tuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # trocr-fine-tuned This model is a fine-tuned version of [microsoft/trocr-base-handwritten](https://huggingface.co/microsoft/trocr-base-handwritten) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0567 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: tpu - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.0007 | 1.0 | 724 | 0.0435 | | 0.073 | 2.0 | 1448 | 0.0687 | | 0.0001 | 3.0 | 2172 | 0.0567 | ### Framework versions - Transformers 4.52.2 - Pytorch 2.6.0+cpu - Tokenizers 0.21.1
AlirezaAbdollahpoor/MNLP_M2_quantized_model
AlirezaAbdollahpoor
2025-05-27T20:57:52Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "unsloth", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-05-27T20:57:43Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Yuhan123/ppo-cn-RM-reading-level-12th-1-steps-10000-epoch-999-best-eval-score-0.309
Yuhan123
2025-05-27T20:39:56Z
0
0
transformers
[ "transformers", "safetensors", "gpt_neox", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-27T20:38:10Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
GGNorbert/resnet101-s2-v0.2.0-Balanced-Dataset
GGNorbert
2025-05-27T20:38:41Z
0
0
configilm
[ "configilm", "safetensors", "resnet101", "BigEarthNet v2.0", "Remote Sensing", "Classification", "image-classification", "Multispectral", "arxiv:2407.03653", "license:mit", "region:us" ]
image-classification
2025-05-27T20:38:01Z
--- thumbnail: "https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/RSiM_Logo_1.png" tags: - resnet101 - BigEarthNet v2.0 - Remote Sensing - Classification - image-classification - Multispectral library_name: configilm license: mit widget: - src: example.png example_title: Example output: - label: Agro-forestry areas score: 0.000000 - label: Arable land score: 0.000000 - label: Beaches, dunes, sands score: 0.000000 - label: Broad-leaved forest score: 0.000000 - label: Coastal wetlands score: 0.000000 --- [TU Berlin](https://www.tu.berlin/) | [RSiM](https://rsim.berlin/) | [DIMA](https://www.dima.tu-berlin.de/menue/database_systems_and_information_management_group/) | [BigEarth](http://www.bigearth.eu/) | [BIFOLD](https://bifold.berlin/) :---:|:---:|:---:|:---:|:---: <a href="https://www.tu.berlin/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/tu-berlin-logo-long-red.svg" style="font-size: 1rem; height: 2em; width: auto" alt="TU Berlin Logo"/> | <a href="https://rsim.berlin/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/RSiM_Logo_1.png" style="font-size: 1rem; height: 2em; width: auto" alt="RSiM Logo"> | <a href="https://www.dima.tu-berlin.de/menue/database_systems_and_information_management_group/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/DIMA.png" style="font-size: 1rem; height: 2em; width: auto" alt="DIMA Logo"> | <a href="http://www.bigearth.eu/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/BigEarth.png" style="font-size: 1rem; height: 2em; width: auto" alt="BigEarth Logo"> | <a href="https://bifold.berlin/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/BIFOLD_Logo_farbig.png" style="font-size: 1rem; height: 2em; width: auto; margin-right: 1em" alt="BIFOLD Logo"> # Resnet101 pretrained on BigEarthNet v2.0 using Sentinel-2 bands <!-- Optional images --> <!-- [Sentinel-1](https://sentinel.esa.int/web/sentinel/missions/sentinel-1) | [Sentinel-2](https://sentinel.esa.int/web/sentinel/missions/sentinel-2) :---:|:---: <a href="https://sentinel.esa.int/web/sentinel/missions/sentinel-1"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/sentinel_2.jpg" style="font-size: 1rem; height: 10em; width: auto; margin-right: 1em" alt="Sentinel-2 Satellite"/> | <a href="https://sentinel.esa.int/web/sentinel/missions/sentinel-2"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/sentinel_1.jpg" style="font-size: 1rem; height: 10em; width: auto; margin-right: 1em" alt="Sentinel-1 Satellite"/> --> This model was trained on the BigEarthNet v2.0 (also known as reBEN) dataset using the Sentinel-2 bands. It was trained using the following parameters: - Number of epochs: up to 100 (with early stopping after 5 epochs of no improvement based on validation average precision macro) - Batch size: 512 - Learning rate: 0.001 - Dropout rate: 0.15 - Drop Path rate: 0.15 - Learning rate scheduler: LinearWarmupCosineAnnealing for 2000 warmup steps - Optimizer: AdamW - Seed: 42 The weights published in this model card were obtained after 32 training epochs. For more information, please visit the [official BigEarthNet v2.0 (reBEN) repository](https://git.tu-berlin.de/rsim/reben-training-scripts), where you can find the training scripts. ![[BigEarthNet](http://bigearth.net/)](https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/combined_2000_600_2020_0_wide.jpg) The model was evaluated on the test set of the BigEarthNet v2.0 dataset with the following results: | Metric | Macro | Micro | |:------------------|------------------:|------------------:| | Average Precision | 0.743442 | 0.761025 | | F1 Score | 0.611743 | 0.673006 | | Precision | 0.725493 | 0.710501 | # Example | A Sentinel-2 image (true color representation) | |:---------------------------------------------------:| | ![[BigEarthNet](http://bigearth.net/)](example.png) | | Class labels | Predicted scores | |:--------------------------------------------------------------------------|--------------------------------------------------------------------------:| | <p> Agro-forestry areas <br> Arable land <br> Beaches, dunes, sands <br> ... <br> Urban fabric </p> | <p> 0.000000 <br> 0.000000 <br> 0.000000 <br> ... <br> 0.000000 </p> | To use the model, download the codes that define the model architecture from the [official BigEarthNet v2.0 (reBEN) repository](https://git.tu-berlin.de/rsim/reben-training-scripts) and load the model using the code below. Note that you have to install [`configilm`](https://pypi.org/project/configilm/) to use the provided code. ```python from reben_publication.BigEarthNetv2_0_ImageClassifier import BigEarthNetv2_0_ImageClassifier model = BigEarthNetv2_0_ImageClassifier.from_pretrained("path_to/huggingface_model_folder") ``` e.g. ```python from reben_publication.BigEarthNetv2_0_ImageClassifier import BigEarthNetv2_0_ImageClassifier model = BigEarthNetv2_0_ImageClassifier.from_pretrained( "BIFOLD-BigEarthNetv2-0/resnet101-s2-v0.1.1") ``` If you use this model in your research or the provided code, please cite the following papers: ```bibtex @article{clasen2024refinedbigearthnet, title={reBEN: Refined BigEarthNet Dataset for Remote Sensing Image Analysis}, author={Clasen, Kai Norman and Hackel, Leonard and Burgert, Tom and Sumbul, Gencer and Demir, Beg{\"u}m and Markl, Volker}, year={2024}, eprint={2407.03653}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2407.03653}, } ``` ```bibtex @article{hackel2024configilm, title={ConfigILM: A general purpose configurable library for combining image and language models for visual question answering}, author={Hackel, Leonard and Clasen, Kai Norman and Demir, Beg{\"u}m}, journal={SoftwareX}, volume={26}, pages={101731}, year={2024}, publisher={Elsevier} } ```
Yuhan123/ppo-cn-RM-reading-level-7th-1-steps-10000-epoch-999-best-eval-score-0.361
Yuhan123
2025-05-27T20:37:55Z
0
0
transformers
[ "transformers", "safetensors", "gpt_neox", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-27T20:36:09Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Abdullahsyed/Ai
Abdullahsyed
2025-05-27T20:31:34Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-05-27T20:31:34Z
--- license: apache-2.0 ---
alpcansoydas/dti_lora_23.05.2025_tokenizer
alpcansoydas
2025-05-27T20:29:36Z
0
0
transformers
[ "transformers", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-05-27T20:29:34Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
alpcansoydas/dti_lora_23.05.2025
alpcansoydas
2025-05-27T20:29:34Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-05-27T20:29:29Z
--- base_model: unsloth/meta-llama-3.1-8b-instruct-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** alpcansoydas - **License:** apache-2.0 - **Finetuned from model :** unsloth/meta-llama-3.1-8b-instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
bobby97/step3_9a3ac6ce-a5b0-4d6a-8453-8200f746c606
bobby97
2025-05-27T20:28:40Z
0
0
diffusers
[ "diffusers", "text-to-image", "diffusers-training", "lora", "flux", "flux-diffusers", "template:sd-lora", "base_model:black-forest-labs/FLUX.1-Fill-dev", "base_model:adapter:black-forest-labs/FLUX.1-Fill-dev", "license:other", "region:us" ]
text-to-image
2025-05-27T20:23:41Z
--- base_model: black-forest-labs/FLUX.1-Fill-dev library_name: diffusers license: other instance_prompt: A close-up view of a weathered train rail, highlighting the bolts and metal connectors against a background of scattered leaves and dirt. The metal surface shows signs of wear and exposure to the elements. widget: [] tags: - text-to-image - diffusers-training - diffusers - lora - flux - flux-diffusers - template:sd-lora --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # Flux-Fill DreamBooth LoRA - bobby97/step3_9a3ac6ce-a5b0-4d6a-8453-8200f746c606 <Gallery /> ## Model description These are bobby97/step3_9a3ac6ce-a5b0-4d6a-8453-8200f746c606 DreamBooth LoRA weights for black-forest-labs/FLUX.1-Fill-dev. The weights were trained using [DreamBooth](https://dreambooth.github.io/) with a custom [Flux diffusers trainer](https://github.com/Sebastian-Zok/FLUX-Fill-LoRa-Training). Was LoRA for the text encoder enabled? False. ## Trigger words You should use `A close-up view of a weathered train rail, highlighting the bolts and metal connectors against a background of scattered leaves and dirt. The metal surface shows signs of wear and exposure to the elements.` to trigger the image generation. ## Download model [Download the *.safetensors LoRA](bobby97/step3_9a3ac6ce-a5b0-4d6a-8453-8200f746c606/tree/main) in the Files & versions tab. ## Use it with the [๐Ÿงจ diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to('cuda') pipeline.load_lora_weights('bobby97/step3_9a3ac6ce-a5b0-4d6a-8453-8200f746c606', weight_name='pytorch_lora_weights.safetensors') image = pipeline('A close-up view of a weathered train rail, highlighting the bolts and metal connectors against a background of scattered leaves and dirt. The metal surface shows signs of wear and exposure to the elements.').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## License Please adhere to the licensing terms as described [here](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md). ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
Nataliia19-19/Nataliia
Nataliia19-19
2025-05-27T20:26:07Z
0
0
null
[ "license:other", "region:us" ]
null
2025-05-27T19:33:57Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md ---
dimasik2987/60c1f458-6f6f-40b6-afd3-94ce08aa8ba5
dimasik2987
2025-05-27T20:26:01Z
0
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "llama", "text-generation", "generated_from_trainer", "axolotl", "dpo", "trl", "conversational", "arxiv:2305.18290", "base_model:NousResearch/Nous-Capybara-7B-V1", "base_model:quantized:NousResearch/Nous-Capybara-7B-V1", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-05-27T19:10:37Z
--- base_model: NousResearch/Nous-Capybara-7B-V1 library_name: transformers model_name: 60c1f458-6f6f-40b6-afd3-94ce08aa8ba5 tags: - generated_from_trainer - axolotl - dpo - trl licence: license --- # Model Card for 60c1f458-6f6f-40b6-afd3-94ce08aa8ba5 This model is a fine-tuned version of [NousResearch/Nous-Capybara-7B-V1](https://huggingface.co/NousResearch/Nous-Capybara-7B-V1). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="dimasik2987/60c1f458-6f6f-40b6-afd3-94ce08aa8ba5", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/dedok-yo/s56-7/runs/arpdxtie) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.12.0.dev0 - Transformers: 4.46.0 - Pytorch: 2.5.0+cu124 - Datasets: 3.0.1 - Tokenizers: 0.20.1 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouรฉdec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Yuhan123/ppo-cn-RM-reading-level-grad-1-steps-10000-epoch-999-best-eval-score-0.329
Yuhan123
2025-05-27T20:24:19Z
0
0
transformers
[ "transformers", "safetensors", "gpt_neox", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-27T20:22:30Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
sarthak1/gte-Qwen2-7B-instruct-M2V-Distilled
sarthak1
2025-05-27T20:23:52Z
14
1
model2vec
[ "model2vec", "safetensors", "sentence-transformers", "sentence-similarity", "feature-extraction", "transformers", "Qwen2", "base_model:Alibaba-NLP/gte-Qwen2-7B-instruct", "base_model:finetune:Alibaba-NLP/gte-Qwen2-7B-instruct", "license:apache-2.0", "region:us" ]
feature-extraction
2025-05-25T19:24:32Z
--- base_model: Alibaba-NLP/gte-Qwen2-7B-instruct library_name: model2vec license: apache-2.0 license_name: apache-2.0 license_link: LICENSE model_name: gte-Qwen2-7B-instruct-M2V-Distilled tags: - sentence-transformers - sentence-similarity - feature-extraction - transformers - Qwen2 --- # gte-Qwen2-7B-instruct-M2V-Distilled This project optimizes the gte-Qwen2-7B-instruct model using Model2Vec, reducing its size and dramatically improving inference speed while maintaining most of its performance capabilities. ## Overview [gte-Qwen2-7B-instruct](https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct) is a state-of-the-art embedding model designed for retrieval tasks. While powerful, it can be resource-intensive for production use cases. [Model2Vec](https://github.com/MinishLab/model2vec) is a technique to distill large sentence transformer models into small, fast static embedding models. This project applies Model2Vec to create an optimized version of gte-Qwen2-7B-instruct with the following benefits: - **Smaller Size**: Reduces model size by a factor of 180x - **Faster Inference**: Up to 15,021x faster inference - **Low Resource Requirements**: Minimal memory footprint and dependencies - **Maintains Performance**: Retains 86.56% of the original model's embedding similarity ## Model Information - **Model Name**: gte-Qwen2-7B-instruct-M2V-Distilled - **Original Model**: [gte-Qwen2-7B-instruct](https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct) - **Distillation Method**: [Model2Vec](https://github.com/MinishLab/model2vec) - **Original Dimensions**: 3584 - **Distilled Dimensions**: 256 - **Embedding Similarity**: 86.56% maintained with original model - **Size Reduction**: 180x (from 28.7GB to 158.98MB) - **Speed Improvement**: 15,021x faster (0.50 โ†’ 7,549 texts/second) ## Installation First, ensure you have the required dependencies: ```bash # Install the base package uv sync ``` ## Usage ### Distillation To create a distilled version of Alibaba-NLP/gte-Qwen2-7B-instruct: ```bash uv run python distill.py ``` ### Evaluation To evaluate the distilled model against the original: ```bash uv run python evaluate.py ``` ### Training Code Classification To train a programming language classifier using the distilled model on the CodeSearchNet dataset: ```bash uv run python train_code_classification.py ``` This script: - Uses the [CodeSearchNet dataset](https://github.com/github/CodeSearchNet) for training - Trains a classifier to distinguish between 6 programming languages: Python, Java, JavaScript, Go, PHP, and Ruby - Creates a `StaticModelForClassification` using the distilled model - Evaluates the classifier and saves the trained model. **Dataset Details:** - **Source**: `code-search-net/code_search_net` from HuggingFace - **Task**: Programming language classification - **Languages**: Python, Java, JavaScript, Go, PHP, Ruby - **Max samples per language**: 5,000 (for balanced training) - **Code length range**: 50-2,000 characters - **Features**: Function code strings with language labels **Training Configuration:** - **Max epochs**: 30 with early stopping (patience: 5) - **Batch size**: 32 - **Learning rate**: 1e-3 - **Output**: Scikit-learn compatible pipeline saved to the root dir ## Results The distilled model achieves remarkable performance improvements: - **180x reduction in model size** (from 28.7GB to 158.98MB) - **15,021x increase in inference speed** (0.50 โ†’ 7,549 texts/second) - **86.56% embedding similarity** maintained with the original model - **14x dimensional reduction** (3584 โ†’ 256 dimensions) - **Significant memory efficiency** with minimal resource requirements ### Performance Visualizations #### Model Size Comparison ![Model Size Comparison](evaluation/size_comparison.png) *Dramatic reduction in model size from 28.7GB to 158.98MB* #### Inference Speed Comparison ![Speed Comparison](evaluation/speed_comparison.png) *15,021x faster inference speed: from 0.50 to 7,549 texts per second* #### Memory Usage Comparison ![Memory Comparison](evaluation/memory_comparison.png) *Significant reduction in memory footprint during inference* #### Embedding Similarity Analysis ![Similarity Matrix](evaluation/similarity_matrix.png) *High correlation (86.56%) between original and distilled model embeddings* Detailed evaluation results, including similarity plots and performance metrics, are saved to the evaluation output directory. ## Project Structure - `distill.py` - Script to create the distilled model - `evaluate.py` - Script to compare performance with the original model - `train_code_classification.py` - Script to train programming language classifier - `MTEB_evaluate.py` - Script to evaluate model on MTEB benchmark tasks - `evaluation/` - Directory containing evaluation results and visualizations - `trained_code_classifier/` - Directory containing trained classification model - `mteb_results/` - Directory containing MTEB evaluation results ## MTEB Benchmark Results (Partial) **Overall Average Score: 0.1962** | Category | Task | Score | |----------|------|-------| | **Classification** | **Average** | **0.4164** | | | AmazonCounterfactualClassification | 0.5690 | | | AmazonReviewsClassification | 0.2637 | | | | | | **Clustering** | **Average** | **0.0775** | | | BiorxivClusteringS2S | 0.0775 | | | | | | **Reranking** | **Average** | **0.4643** | | | AskUbuntuDupQuestions | 0.4643 | | | | | | **Retrieval** | **Average** | **0.1509** | | | ArguAna | 0.1509 | | | | | | **CodeRetrieval** | **Average** | **0.1034** | | | AppsRetrieval | 0.0008 | | | COIRCodeSearchNetRetrieval | Failed | | | CodeFeedbackMT | 0.1594 | | | CodeSearchNetCCRetrieval | Failed | | | CodeTransOceanContest | 0.0951 | | | CodeTransOceanDL | 0.2780 | | | CosQA | 0.0097 | | | StackOverflowQA | 0.1762 | | | SyntheticText2SQL | 0.0049 | | | | | | **STS** | **Average** | **0.3016** | | | BIOSSES | 0.3016 | | | | | ### Summary Statistics - **Total Tasks**: 15 - **Successful Tasks**: 13 - **Failed Tasks**: 2 - **Overall Average**: 0.1962 ### Category Averages - **Classification**: 0.4164 (2 tasks) - **Clustering**: 0.0775 (1 tasks) - **Reranking**: 0.4643 (1 tasks) - **Retrieval**: 0.1509 (1 tasks) - **CodeRetrieval**: 0.1034 (7 tasks) - **STS**: 0.3016 (1 tasks) ## Acknowledgments This project is built upon the following technologies: - [gte-Qwen2-7B-instruct](https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct) - The original embedding model developed by Alibaba-NLP - [Model2Vec](https://github.com/MinishLab/model2vec) - The distillation technique used to optimize the model ## License This model is licensed under the [Apache 2.0](LICENSE) license, the same as the original gte-Qwen2-7B-instruct model.
wATCH-Katrina-Lim-Viral-Kiffy-Videoss/Katrina.Lim.Viral.Kiffy.Video.Tutorial.Viral.Full.Video.on.Social.Media.X
wATCH-Katrina-Lim-Viral-Kiffy-Videoss
2025-05-27T20:22:30Z
0
0
null
[ "region:us" ]
null
2025-05-27T20:22:03Z
<a data-target="animated-image.originalLink" rel="nofollow" href="https://shopihaaa2.blogspot.com/2025/01/sophie-rain.html"><img data-target="animated-image.originalImage" style="max-width: 100%; display: inline-block;" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif"></a> <a rel="nofollow" href="https://shopihaaa2.blogspot.com/2025/01/sophie-rain.html">๐ŸŒ ๐–ข๐–ซ๐–จ๐–ข๐–ช ๐–ง๐–ค๐–ฑ๐–ค ๐ŸŸข==โ–บโ–บ ๐–ถ๐– ๐–ณ๐–ข๐–ง ๐–ญ๐–ฎ๐–ถ</a> <a rel="nofollow" href="https://shopihaaa2.blogspot.com/2025/01/sophie-rain.html">๐Ÿ”ด CLICK HERE ๐ŸŒ==โ–บโ–บ Download Now)</a>
hdong0/Qwen2.5-Math-1.5B-batch-mix-Open-R1-GRPO_100steps_lr1e-6_acc_
hdong0
2025-05-27T20:21:36Z
0
0
transformers
[ "transformers", "safetensors", "qwen2bm", "text-generation", "conversational", "custom_code", "arxiv:1910.09700", "autotrain_compatible", "region:us" ]
text-generation
2025-05-27T17:22:29Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Yuhan123/ppo-cn-RM-reading-level-grad-1-steps-10000-epoch-999-best-eval-score-0.217
Yuhan123
2025-05-27T20:20:21Z
0
0
transformers
[ "transformers", "safetensors", "gpt_neox", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-27T20:18:40Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
aamijar/Llama-2-7b-hf-lora-r1024-boolq-portlora
aamijar
2025-05-27T20:16:28Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-05-27T20:16:27Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
0xshaf/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-bellowing_tiny_falcon
0xshaf
2025-05-27T20:15:50Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am bellowing tiny falcon", "trl", "conversational", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-27T19:05:04Z
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-bellowing_tiny_falcon tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am bellowing tiny falcon - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-bellowing_tiny_falcon This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="0xshaf/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-bellowing_tiny_falcon", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.52.3 - Pytorch: 2.5.1 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouรฉdec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
EdBerg/lora_model
EdBerg
2025-05-27T20:14:45Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "base_model:finetune:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-04-25T22:50:15Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl base_model: unsloth/llama-3-8b-bnb-4bit --- # Uploaded model - **Developed by:** EdBerg - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
b6Amine/MNLP_M2_quantized_model
b6Amine
2025-05-27T20:02:19Z
0
0
null
[ "safetensors", "qwen3", "license:apache-2.0", "4-bit", "bitsandbytes", "region:us" ]
null
2025-05-27T19:58:42Z
--- license: apache-2.0 ---
plumpyfield/natix-hot11
plumpyfield
2025-05-27T19:59:11Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-05-27T19:59:00Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
plumpyfield/natix-hot16
plumpyfield
2025-05-27T19:58:46Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-05-27T19:58:33Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
plumpyfield/natix-hot45
plumpyfield
2025-05-27T19:58:32Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-05-27T19:58:19Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
plumpyfield/natix-hot49
plumpyfield
2025-05-27T19:57:06Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-05-27T19:56:55Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
plumpyfield/natix-hot32
plumpyfield
2025-05-27T19:56:54Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-05-27T19:56:44Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
plumpyfield/natix-hot2
plumpyfield
2025-05-27T19:54:53Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-05-27T19:54:42Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
plumpyfield/natix-hot31
plumpyfield
2025-05-27T19:54:41Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-05-27T19:54:28Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
plumpyfield/natix-hot23
plumpyfield
2025-05-27T19:54:14Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-05-27T19:54:03Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
namnguyenba2003/VietnamLegalText-SBERT-finetuned
namnguyenba2003
2025-05-27T19:53:25Z
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "roberta", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:23168", "loss:MatryoshkaLoss", "loss:MultipleNegativesRankingLoss", "vi", "arxiv:1908.10084", "arxiv:2205.13147", "arxiv:1705.00652", "base_model:keepitreal/vietnamese-sbert", "base_model:finetune:keepitreal/vietnamese-sbert", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-05-27T19:45:43Z
--- language: - vi license: apache-2.0 tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:23168 - loss:MatryoshkaLoss - loss:MultipleNegativesRankingLoss base_model: - keepitreal/vietnamese-sbert widget: - source_sentence: >- c) ฤแป‘i vแป›i ฤ‘ฦกn vแป‹ cรณ Quรขn kแปณ: Ngฦฐแปi trao gแบฏn Huรขn chฦฐฦกng (hoแบทc Huy chฦฐฦกng, Huy hiแป‡u kรจm theo danh hiแป‡u) lรชn gรณc cao Quรขn kแปณ. Vแป‹ trรญ gแบฏn Huรขn chฦฐฦกng (hoแบทc Huy chฦฐฦกng, Huy hiแป‡u kรจm theo danh hiแป‡u) trรชn Quรขn kแปณ ฤ‘ฦฐแปฃc thแปฑc hiแป‡n theo thแปฉ hแบกng tแปซ cao xuแป‘ng thแบฅp; ฤแป‘i vแป›i tแบญp thแปƒ khรดng cรณ Quรขn kแปณ: Ngฦฐแปi trao trao Bแบฑng ฤ‘รฃ gแบฏn sแบตn Huรขn chฦฐฦกng (hoแบทc Huy chฦฐฦกng, Huy hiแป‡u kรจm theo danh hiแป‡u) แปŸ gรณc trรชn, bรชn trรกi cแปงa Bแบฑng nhรฌn tแปซ ngoร i vร o; d) Trao tแบทng cho cรก nhรขn: Ngฦฐแปi trao gแบฏn Huรขn chฦฐฦกng (hoแบทc Huy chฦฐฦกng, Huy hiแป‡u kรจm theo danh hiแป‡u) lรชn ngแปฑc รกo bรชn trรกi ngฦฐแปi ฤ‘รณn nhแบญn, sau ฤ‘รณ trao Bแบฑng. Vแป‹ trรญ gแบฏn Huรขn chฦฐฦกng (hoแบทc Huy chฦฐฦกng, Huy hiแป‡u kรจm theo danh hiแป‡u) trรชn ngแปฑc รกo ฤ‘ฦฐแปฃc thแปฑc hiแป‡n theo thแปฉ hแบกng tแปซ cao xuแป‘ng thแบฅp; ฤ‘) Truy tแบทng: Ngฦฐแปi trao trao Bแบฑng ฤ‘รฃ gแบฏn sแบตn Huรขn chฦฐฦกng (hoแบทc Huy chฦฐฦกng, Huy hiแป‡u kรจm theo danh hiแป‡u) cho ฤ‘แบกi diแป‡n gia ฤ‘รฌnh cรก nhรขn ฤ‘ฦฐแปฃc truy tแบทng. 3. ฤรณn nhแบญn hรฌnh thแปฉc khen thฦฐแปŸng, danh hiแป‡u thi ฤ‘ua: sentences: - >- Theo quy ฤ‘แป‹nh, Vแปฅ Tแป• chแปฉc cรกn bแป™ Bแป™ Tฦฐ phรกp sแบฝ trรฌnh Bแป™ trฦฐแปŸng Bแป™ Tฦฐ phรกp quyแบฟt ฤ‘แป‹nh giao quyแปn cแบฅp trฦฐแปŸng hoแบทc giao phแปฅ trรกch Tแป•ng cแปฅc Thi hร nh รกn dรขn sแปฑ dแปฑa trรชn cฦก sแปŸ nร o? - >- Khi truy tแบทng Huรขn chฦฐฦกng, Huy chฦฐฦกng, Huy hiแป‡u, ngฦฐแปi trao sแบฝ trao Bแบฑng nhฦฐ thแบฟ nร o cho ฤ‘แบกi diแป‡n gia ฤ‘รฌnh cรก nhรขn ฤ‘ฦฐแปฃc truy tแบทng? - >- Nแบฟu mแป™t ฤ‘ฦกn vแป‹ bแป‹ kiแปƒm tra, thแปญ nghiแป‡m, khแบฃo sรกt, ฤ‘iแปu tra phรกt hiแป‡n sฦก hแปŸ, thiแบฟu sรณt, hแป phแบฃi lร m gรฌ trong vรฒng 10 ngร y lร m viแป‡c kแปƒ tแปซ khi nhแบญn ฤ‘ฦฐแปฃc kแบฟt luแบญn? - source_sentence: >- Khoแบฃn 2. Nแป™i dung Bรกo cรกo kแบฟt quแบฃ kiแปƒm kรช ฤ‘แบฅt ฤ‘ai bao gแป“m: a) Tรฌnh hรฌnh tแป• chแปฉc thแปฑc hiแป‡n; phฦฐฦกng phรกp ฤ‘iแปu tra, thu thแบญp sแป‘ liแป‡u kiแปƒm kรช ฤ‘แบฅt ฤ‘ai, nguแป“n gแป‘c sแป‘ liแป‡u thu thแบญp tแบกi cแบฅp xรฃ vร  ฤ‘รกnh giรก ฤ‘แป™ tin cแบญy cแปงa sแป‘ liแป‡u thu thแบญp vร  sแป‘ liแป‡u tแป•ng hแปฃp; cรกc thรดng tin khรกc cรณ liรชn quan ฤ‘แบฟn sแป‘ liแป‡u; nguแป“n tร i liแป‡u vร  phฦฐฦกng phรกp lแบญp bแบฃn ฤ‘แป“ hiแป‡n trแบกng sแปญ dแปฅng ฤ‘แบฅt; b) Phรขn tรญch, ฤ‘รกnh giรก hiแป‡n trแบกng sแปญ dแปฅng ฤ‘แบฅt theo cรกc chแป‰ tiรชu kiแปƒm kรช; ฤ‘รกnh giรก tรฌnh hรฌnh biแบฟn ฤ‘แป™ng vร  phรขn tรญch nguyรชn nhรขn biแบฟn ฤ‘แป™ng vแป sแปญ dแปฅng ฤ‘แบฅt giแปฏa nฤƒm kiแปƒm kรช vแป›i sแป‘ liแป‡u cแปงa 02 kแปณ kiแปƒm kรช gแบงn nhแบฅt; ฤ‘รกnh giรก tรฌnh hรฌnh thแปฑc hiแป‡n quy hoแบกch, kแบฟ hoแบกch chuyแปƒn mแปฅc ฤ‘รญch sแปญ dแปฅng ฤ‘แบฅt trong kแปณ kiแปƒm kรช ฤ‘แบฅt ฤ‘ai; tรฌnh hรฌnh giao ฤ‘แบฅt, cho thuรช ฤ‘แบฅt, cho phรฉp chuyแปƒn mแปฅc ฤ‘รญch sแปญ dแปฅng ฤ‘แบฅt nhฦฐng chฦฐa thแปฑc hiแป‡n; tรฌnh hรฌnh vร  nguyรชn nhรขn chuyแปƒn mแปฅc ฤ‘รญch sแปญ dแปฅng ฤ‘แบฅt khรกc vแป›i hแป“ sฦก ฤ‘แป‹a chรญnh; tรฌnh hรฌnh chuyแปƒn ฤ‘แป•i cฦก cแบฅu ฤ‘แบฅt trแป“ng lรบa; tรฌnh hรฌnh ฤ‘แบฅt ngแบญp nฦฐแป›c; tรฌnh hรฌnh tranh chแบฅp, giแบฃi quyแบฟt tranh chแบฅp ฤ‘แป‹a giแป›i hร nh chรญnh thแปฑc hiแป‡n trong kแปณ kiแปƒm kรช (nแบฟu cรณ); c) ฤแป xuแบฅt, kiแบฟn nghแป‹ biแป‡n phรกp tฤƒng cฦฐแปng quแบฃn lรฝ, sแปญ dแปฅng ฤ‘แบฅt ฤ‘ai. sentences: - >- Ngฦฐแปi muแป‘n ฤ‘ฦฐแปฃc cแบฅp giแบฅy phรฉp kiแปƒm soรกt an ninh cแบฃng hร ng khรดng, sรขn bay cรณ giรก trแป‹ sแปญ dแปฅng ngแบฏn hแบกn cแบงn phแบฃi lร m nhแปฏng thแปง tแปฅc gรฌ? - >- Phรกp luแบญt quy ฤ‘แป‹nh cรกc nแป™i dung nร o cแบงn ฤ‘ฦฐแปฃc phรขn tรญch, ฤ‘รกnh giรก trong bรกo cรกo kแบฟt quแบฃ kiแปƒm kรช ฤ‘แบฅt ฤ‘ai vแป tรฌnh hรฌnh biแบฟn ฤ‘แป™ng sแปญ dแปฅng ฤ‘แบฅt vร  thแปฑc hiแป‡n quy hoแบกch, kแบฟ hoแบกch chuyแปƒn mแปฅc ฤ‘รญch sแปญ dแปฅng ฤ‘แบฅt? - >- Theo quy ฤ‘แป‹nh cแปงa phรกp luแบญt, Ngรขn hร ng Nhร  nฦฐแป›c Viแป‡t Nam phแบฃi quแบฃn lรฝ vร  ghi chรฉp nhฦฐ thแบฟ nร o ฤ‘แป‘i vแป›i sแป‘ tiแปn cotton, polymer vร  kim loแบกi ฤ‘รฃ ฤ‘ฦฐแปฃc in, ฤ‘รบc nhฦฐng chฦฐa ฤ‘ฦฐแปฃc phรฉp lฦฐu hร nh? - source_sentence: >- ฤiแปu 85. Khu vแปฑc cแบฅm bay, khu vแปฑc hแบกn chแบฟ bay 1. Khu vแปฑc cแบฅm bay lร  khu vแปฑc trรชn khรดng cรณ kรญch thฦฐแป›c xรกc ฤ‘แป‹nh mร  tร u bay khรดng ฤ‘ฦฐแปฃc bay vร o, trแปซ trฦฐแปng hแปฃp tร u bay cรดng vแปฅ Viแป‡t Nam ฤ‘ang thแปฑc hiแป‡n cรดng vแปฅ. Khu vแปฑc hแบกn chแบฟ bay lร  khu vแปฑc trรชn khรดng cรณ kรญch thฦฐแป›c xรกc ฤ‘แป‹nh mร  tร u bay chแป‰ ฤ‘ฦฐแปฃc phรฉp hoแบกt ฤ‘แป™ng tแบกi khu vแปฑc ฤ‘รณ khi ฤ‘รกp แปฉng cรกc ฤ‘iแปu kiแป‡n cแปฅ thแปƒ. 2. Thแปง tฦฐแป›ng Chรญnh phแปง quyแบฟt ฤ‘แป‹nh thiแบฟt lแบญp khu vแปฑc cแบฅm bay, khu vแปฑc hแบกn chแบฟ bay trong lรฃnh thแป• Viแป‡t Nam nhแบฑm mแปฅc ฤ‘รญch bแบฃo ฤ‘แบฃm quแป‘c phรฒng, an ninh, an toร n xรฃ hแป™i. Trong trฦฐแปng hแปฃp ฤ‘แบทc biแป‡t vรฌ lรฝ do quแป‘c phรฒng, an ninh, Bแป™ Quแป‘c phรฒng quyแบฟt ฤ‘แป‹nh hแบกn chแบฟ bay tแบกm thแปi hoแบทc cแบฅm bay tแบกm thแปi tแบกi mแป™t hoแบทc mแป™t sแป‘ khu vแปฑc trong lรฃnh thแป• Viแป‡t Nam; quyแบฟt ฤ‘แป‹nh nร y cรณ hiแป‡u lแปฑc ngay. 3. Bแป™ Quแป‘c phรฒng quy ฤ‘แป‹nh viแป‡c quแบฃn lรฝ khu vแปฑc cแบฅm bay vร  khu vแปฑc hแบกn chแบฟ bay. sentences: - >- Phรกp luแบญt quy ฤ‘แป‹nh nhแปฏng khoแบฃn phแปฅ cแบฅp, trแปฃ cแบฅp nร o ฤ‘ฦฐแปฃc miแป…n thuแบฟ thu nhแบญp cรก nhรขn? - >- Trฦฐแปng hแปฃp ngฦฐแปi hแปc vแบฏng mแบทt trong kแปณ kiแปƒm tra cรณ lรฝ do chรญnh ฤ‘รกng, hแป sแบฝ ฤ‘ฦฐแปฃc cฦก sแปŸ ฤ‘ร o tแบกo sแบฏp xแบฟp kiแปƒm tra lแบกi nhฦฐ thแบฟ nร o? - >- Luแบญt hร ng khรดng dรขn dแปฅng Viแป‡t Nam quy ฤ‘แป‹nh nhแปฏng trฦฐแปng hแปฃp nร o tร u bay ฤ‘ฦฐแปฃc phรฉp bay vร o khu vแปฑc cแบฅm bay? - source_sentence: >- ฤiแปu 62. Cรกc trฦฐแปng hแปฃp khรดng phแบฃi bแป“i thฦฐแปng thiแป‡t hแบกi 1. Ngฦฐแปi sแบฃn xuแบฅt, ngฦฐแปi nhแบญp khแบฉu khรดng phแบฃi bแป“i thฦฐแปng trong cรกc trฦฐแปng hแปฃp sau ฤ‘รขy: a) Ngฦฐแปi bรกn hร ng bรกn hร ng hรณa ฤ‘รฃ hแบฟt hแบกn sแปญ dแปฅng; ngฦฐแปi tiรชu dรนng sแปญ dแปฅng hร ng hรณa ฤ‘รฃ hแบฟt hแบกn sแปญ dแปฅng; b) ฤรฃ hแบฟt thแปi hiแป‡u khiแบฟu nแบกi, khแปŸi kiแป‡n; c) ฤรฃ thรดng bรกo thu hแป“i hร ng hรณa cรณ khuyแบฟt tแบญt ฤ‘แบฟn ngฦฐแปi bรกn hร ng, ngฦฐแปi sแปญ dแปฅng trฦฐแป›c thแปi ฤ‘iแปƒm hร ng hรณa gรขy thiแป‡t hแบกi; d) Sแบฃn phแบฉm, hร ng hรณa cรณ khuyแบฟt tแบญt do tuรขn thแปง quy ฤ‘แป‹nh bแบฏt buแป™c cแปงa cฦก quan nhร  nฦฐแป›c cรณ thแบฉm quyแปn; ฤ‘) Trรฌnh ฤ‘แป™ khoa hแปc, cรดng nghแป‡ cแปงa thแบฟ giแป›i chฦฐa ฤ‘แปง ฤ‘แปƒ phรกt hiแป‡n khแบฃ nฤƒng gรขy mแบฅt an toร n cแปงa sแบฃn phแบฉm tรญnh ฤ‘แบฟn thแปi ฤ‘iแปƒm hร ng hรณa gรขy thiแป‡t hแบกi; e) Thiแป‡t hแบกi phรกt sinh do lแป—i cแปงa ngฦฐแปi bรกn hร ng; g) Thiแป‡t hแบกi phรกt sinh do lแป—i cแปงa ngฦฐแปi mua, ngฦฐแปi tiรชu dรนng. 2. Ngฦฐแปi bรกn hร ng khรดng phแบฃi bแป“i thฦฐแปng cho ngฦฐแปi mua, ngฦฐแปi tiรชu dรนng trong cรกc trฦฐแปng hแปฃp sau ฤ‘รขy: sentences: - >- Luแบญt quy ฤ‘แป‹nh nhแปฏng trฦฐแปng hแปฃp nร o thรฌ ngฦฐแปi sแบฃn xuแบฅt, ngฦฐแปi nhแบญp khแบฉu khรดng phแบฃi bแป“i thฦฐแปng thiแป‡t hแบกi cho ngฦฐแปi tiรชu dรนng? - >- Ngฦฐแปi ฤ‘รฃ hiแบฟn bแป™ phแบญn cฦก thแปƒ sแบฝ ฤ‘ฦฐแปฃc nhแบญn nhแปฏng phแบงn thฦฐแปŸng, ฦฐu ฤ‘รฃi gรฌ tแปซ Bแป™ Y tแบฟ? - >- Theo quy ฤ‘แป‹nh, KBNN cรณ quyแปn tแปซ chแป‘i thanh toรกn, chi trแบฃ cรกc khoแบฃn chi bแบฑng tiแปn mแบทt trong nhแปฏng trฦฐแปng hแปฃp nร o vร  KBNN chแป‹u trรกch nhiแป‡m gรฌ trong cรกc trฦฐแปng hแปฃp tแปซ chแป‘i thanh toรกn? - source_sentence: >- k) Thร nh viรชn phแบฃi duy trรฌ sแป‘ dฦฐ tร i khoแบฃn thanh toรกn bแบฃo ฤ‘แบฃm thแปฑc hiแป‡n cรกc Lแป‡nh thanh toรกn vร  quyแบฟt toรกn bรน trแปซ qua Hแป‡ thแป‘ng TTLNH; l) Trฦฐแปng hแปฃp thร nh viรชn, ฤ‘ฦกn vแป‹ thร nh viรชn chแบฅm dแปฉt tฦฐ cรกch thร nh viรชn, ฤ‘ฦกn vแป‹ thร nh viรชn, phแบฃi thแปฑc hiแป‡n thแปง tแปฅc ฤ‘แป nghแป‹ thu hแป“i chแปฉng thฦฐ sแป‘ (nแบฟu cรณ) sแปญ dแปฅng trong TTLNH theo quy ฤ‘แป‹nh tแบกi Thรดng tฦฐ vแป viแป‡c quแบฃn lรฝ, sแปญ dแปฅng chแปฏ kรฝ sแป‘, chแปฉng thฦฐ sแป‘ vร  dแป‹ch vแปฅ chแปฉng thแปฑc chแปฏ kรฝ sแป‘ cแปงa Ngรขn hร ng Nhร  nฦฐแป›c; m) ฤแบฃm bแบฃo, duy trรฌ hแบก tแบงng kแปน thuแบญt vร  nguแป“n lแปฑc quy ฤ‘แป‹nh tแบกi ฤiแปƒm c, d Khoแบฃn 1 vร  ฤiแปƒm a, b Khoแบฃn 3 ฤiแปu 40 Thรดng tฦฐ nร y; n) ฤฤƒng kรฝ danh sรกch ฤ‘แป‹a chแป‰ hแป™p thฦฐ ฤ‘iแป‡n tแปญ ฤ‘แปƒ trao ฤ‘แป•i cรกc thรดng tin liรชn quan ฤ‘แบฟn Hแป‡ thแป‘ng TTLNH ฤ‘ฦฐแปฃc quy ฤ‘แป‹nh trao ฤ‘แป•i qua thฦฐ ฤ‘iแป‡n tแปญ tแบกi Thรดng tฦฐ nร y; o) Chแบฅp hร nh ฤ‘รบng cรกc quy ฤ‘แป‹nh vแป thแปi ฤ‘iแปƒm รกp dแปฅng trong Hแป‡ thแป‘ng TTLNH ฤ‘แปƒ bแบฃo ฤ‘แบฃm thanh toรกn ฤ‘ฦฐแปฃc thแปฑc hiแป‡n thuแบญn lแปฃi, chรญnh xรกc, kแป‹p thแปi vร  an toร n tร i sแบฃn; p) Thร nh viรชn phแบฃi thฦฐแปng xuyรชn giรกm sรกt hแบกn mแปฉc nแปฃ rรฒng hiแป‡n thแปi cแปงa mรฌnh ฤ‘แปƒ duy trรฌ แปŸ mแปฉc thรญch hแปฃp; sentences: - >- Cรกc thร nh viรชn, ฤ‘ฦกn vแป‹ thร nh viรชn cแปงa Hแป‡ thแป‘ng Thanh toรกn ฤ‘iแป‡n tแปญ liรชn ngรขn hร ng Quแป‘c gia phแบฃi ฤ‘แบฃm bแบฃo vร  duy trรฌ nhแปฏng hแบก tแบงng kแปน thuแบญt vร  nguแป“n lแปฑc gรฌ? - >- Bแป™ Quแป‘c phรฒng quy ฤ‘แป‹nh nhฦฐ thแบฟ nร o vแป viแป‡c ฤ‘iแปu chแป‰nh tแปท lแป‡ khแบฅu hao tร i sแบฃn cแป‘ ฤ‘แป‹nh ฤ‘แปƒ ฤ‘แบฃm bแบฃo phรน hแปฃp vแป›i lแป™ trรฌnh tรญnh giรก dแป‹ch vแปฅ sแปฑ nghiแป‡p cรดng? - >- Nแบฟu sแปฑ cแป‘ bแปฉc xแบก, hแบกt nhรขn xแบฃy ra vฦฐแปฃt quรก khแบฃ nฤƒng แปฉng phรณ cแปงa ฤ‘แป‹a phฦฐฦกng, Bแป™ Quแป‘c phรฒng sแบฝ hแป— trแปฃ nhฦฐ thแบฟ nร o? pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 model-index: - name: VietnamLegalText-SBERT-finetuned results: - task: type: information-retrieval name: Information Retrieval dataset: name: dim 768 type: dim_768 metrics: - type: cosine_accuracy@1 value: 0.5425242718446602 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.5844660194174758 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.6900970873786407 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.785242718446602 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.5425242718446602 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.5118446601941747 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.3738252427184466 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.22287378640776698 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.20184835876098012 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.543875173370319 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.6517078132223763 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.7707680690399137 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.6604654137474918 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.5960436122669122 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.6377378134182617 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 512 type: dim_512 metrics: - type: cosine_accuracy@1 value: 0.5316504854368932 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.5755339805825243 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.686990291262136 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.7836893203883495 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.5316504854368932 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.5021359223300971 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.3706407766990291 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.22190291262135922 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.19825612575127138 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.5336421636615812 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.645921405455386 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.7684012944983818 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.6541937764554878 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.5873643088303279 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.6299342948833029 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 256 type: dim_256 metrics: - type: cosine_accuracy@1 value: 0.5161165048543689 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.5693203883495146 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.6811650485436893 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.7794174757281553 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.5161165048543689 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.49022653721682846 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.3660582524271845 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.2215145631067961 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.193375866851595 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.52260009246417 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.6386981044845123 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.7651132686084142 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.6463553546004565 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.5755563260903059 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.6201771053919043 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 128 type: dim_128 metrics: - type: cosine_accuracy@1 value: 0.4955339805825243 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.541747572815534 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.6446601941747573 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.7596116504854369 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.4955339805825243 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.46873786407766993 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.34679611650485437 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.21421359223300973 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.18586777623670828 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.4998557558945908 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.6054748035136385 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.7409255663430421 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.6217574657696157 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.5523821852365535 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.5975578085238775 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 64 type: dim_64 metrics: - type: cosine_accuracy@1 value: 0.4520388349514563 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.5013592233009708 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.6027184466019417 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.7157281553398058 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.4520388349514563 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.4311974110032362 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.322873786407767 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.20015533980582523 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.16861488673139158 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.4591844660194174 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.5654341192787794 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.6956985668053629 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.5771461257381547 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.5088779472954221 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.5556917574193598 name: Cosine Map@100 --- # VietnamLegalText-SBERT-finetuned This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [hmthanh/VietnamLegalText-SBERT](https://huggingface.co/hmthanh/VietnamLegalText-SBERT) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [hmthanh/VietnamLegalText-SBERT](https://huggingface.co/hmthanh/VietnamLegalText-SBERT) <!-- at revision de8273cd79aaae2ffd642f411b788e4a04971530 --> - **Maximum Sequence Length:** 256 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity - **Training Dataset:** - json - **Language:** vi - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the ๐Ÿค— Hub model = SentenceTransformer("namnguyenba2003/VietnamLegalText-SBERT-finetuned") # Run inference sentences = [ 'k) Thร nh viรชn phแบฃi duy trรฌ sแป‘ dฦฐ tร i khoแบฃn thanh toรกn bแบฃo ฤ‘แบฃm thแปฑc hiแป‡n cรกc Lแป‡nh thanh toรกn vร  quyแบฟt toรกn bรน trแปซ qua Hแป‡ thแป‘ng TTLNH;\nl) Trฦฐแปng hแปฃp thร nh viรชn, ฤ‘ฦกn vแป‹ thร nh viรชn chแบฅm dแปฉt tฦฐ cรกch thร nh viรชn, ฤ‘ฦกn vแป‹ thร nh viรชn, phแบฃi thแปฑc hiแป‡n thแปง tแปฅc ฤ‘แป nghแป‹ thu hแป“i chแปฉng thฦฐ sแป‘ (nแบฟu cรณ) sแปญ dแปฅng trong TTLNH theo quy ฤ‘แป‹nh tแบกi Thรดng tฦฐ vแป viแป‡c quแบฃn lรฝ, sแปญ dแปฅng chแปฏ kรฝ sแป‘, chแปฉng thฦฐ sแป‘ vร  dแป‹ch vแปฅ chแปฉng thแปฑc chแปฏ kรฝ sแป‘ cแปงa Ngรขn hร ng Nhร  nฦฐแป›c;\nm) ฤแบฃm bแบฃo, duy trรฌ hแบก tแบงng kแปน thuแบญt vร  nguแป“n lแปฑc quy ฤ‘แป‹nh tแบกi ฤiแปƒm c, d Khoแบฃn 1 vร  ฤiแปƒm a, b Khoแบฃn 3 ฤiแปu 40 Thรดng tฦฐ nร y;\nn) ฤฤƒng kรฝ danh sรกch ฤ‘แป‹a chแป‰ hแป™p thฦฐ ฤ‘iแป‡n tแปญ ฤ‘แปƒ trao ฤ‘แป•i cรกc thรดng tin liรชn quan ฤ‘แบฟn Hแป‡ thแป‘ng TTLNH ฤ‘ฦฐแปฃc quy ฤ‘แป‹nh trao ฤ‘แป•i qua thฦฐ ฤ‘iแป‡n tแปญ tแบกi Thรดng tฦฐ nร y;\no) Chแบฅp hร nh ฤ‘รบng cรกc quy ฤ‘แป‹nh vแป thแปi ฤ‘iแปƒm รกp dแปฅng trong Hแป‡ thแป‘ng TTLNH ฤ‘แปƒ bแบฃo ฤ‘แบฃm thanh toรกn ฤ‘ฦฐแปฃc thแปฑc hiแป‡n thuแบญn lแปฃi, chรญnh xรกc, kแป‹p thแปi vร  an toร n tร i sแบฃn;\np) Thร nh viรชn phแบฃi thฦฐแปng xuyรชn giรกm sรกt hแบกn mแปฉc nแปฃ rรฒng hiแป‡n thแปi cแปงa mรฌnh ฤ‘แปƒ duy trรฌ แปŸ mแปฉc thรญch hแปฃp;', 'Cรกc thร nh viรชn, ฤ‘ฦกn vแป‹ thร nh viรชn cแปงa Hแป‡ thแป‘ng Thanh toรกn ฤ‘iแป‡n tแปญ liรชn ngรขn hร ng Quแป‘c gia phแบฃi ฤ‘แบฃm bแบฃo vร  duy trรฌ nhแปฏng hแบก tแบงng kแปน thuแบญt vร  nguแป“n lแปฑc gรฌ?', 'Bแป™ Quแป‘c phรฒng quy ฤ‘แป‹nh nhฦฐ thแบฟ nร o vแป viแป‡c ฤ‘iแปu chแป‰nh tแปท lแป‡ khแบฅu hao tร i sแบฃn cแป‘ ฤ‘แป‹nh ฤ‘แปƒ ฤ‘แบฃm bแบฃo phรน hแปฃp vแป›i lแป™ trรฌnh tรญnh giรก dแป‹ch vแปฅ sแปฑ nghiแป‡p cรดng?', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Information Retrieval * Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64` * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 | |:--------------------|:-----------|:-----------|:-----------|:-----------|:-----------| | cosine_accuracy@1 | 0.5425 | 0.5317 | 0.5161 | 0.4955 | 0.452 | | cosine_accuracy@3 | 0.5845 | 0.5755 | 0.5693 | 0.5417 | 0.5014 | | cosine_accuracy@5 | 0.6901 | 0.687 | 0.6812 | 0.6447 | 0.6027 | | cosine_accuracy@10 | 0.7852 | 0.7837 | 0.7794 | 0.7596 | 0.7157 | | cosine_precision@1 | 0.5425 | 0.5317 | 0.5161 | 0.4955 | 0.452 | | cosine_precision@3 | 0.5118 | 0.5021 | 0.4902 | 0.4687 | 0.4312 | | cosine_precision@5 | 0.3738 | 0.3706 | 0.3661 | 0.3468 | 0.3229 | | cosine_precision@10 | 0.2229 | 0.2219 | 0.2215 | 0.2142 | 0.2002 | | cosine_recall@1 | 0.2018 | 0.1983 | 0.1934 | 0.1859 | 0.1686 | | cosine_recall@3 | 0.5439 | 0.5336 | 0.5226 | 0.4999 | 0.4592 | | cosine_recall@5 | 0.6517 | 0.6459 | 0.6387 | 0.6055 | 0.5654 | | cosine_recall@10 | 0.7708 | 0.7684 | 0.7651 | 0.7409 | 0.6957 | | **cosine_ndcg@10** | **0.6605** | **0.6542** | **0.6464** | **0.6218** | **0.5771** | | cosine_mrr@10 | 0.596 | 0.5874 | 0.5756 | 0.5524 | 0.5089 | | cosine_map@100 | 0.6377 | 0.6299 | 0.6202 | 0.5976 | 0.5557 | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### json * Dataset: json * Size: 23,168 training samples * Columns: <code>positive</code> and <code>anchor</code> * Approximate statistics based on the first 1000 samples: | | positive | anchor | |:--------|:--------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 107 tokens</li><li>mean: 212.31 tokens</li><li>max: 256 tokens</li></ul> | <ul><li>min: 19 tokens</li><li>mean: 38.3 tokens</li><li>max: 140 tokens</li></ul> | * Samples: | positive | anchor | |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------| | <code>Khoแบฃn 1. Trฦฐแปng hแปฃp ฤ‘แป xuแบฅt dแปฑ รกn thuแป™c quy mรด nhรณm C<br>a) Nhร  ฤ‘แบงu tฦฐ gแปญi ฤ‘แป xuแบฅt dแปฑ รกn tแป›i ฤ‘ฦกn vแป‹ ฤ‘แบงu mแป‘i quแบฃn lรฝ hoแบกt ฤ‘แป™ng PPP.<br>b) Trong vรฒng 05 ngร y lร m viแป‡c kแปƒ tแปซ ngร y nhแบญn ฤ‘ฦฐแปฃc hแป“ sฦก, ฤ‘ฦกn vแป‹ ฤ‘แบงu mแป‘i quแบฃn lรฝ hoแบกt ฤ‘แป™ng PPP kiแปƒm tra hแป“ sฦก vร  yรชu cแบงu nhร  ฤ‘แบงu tฦฐ bแป• sung nแบฟu hแป“ sฦก chฦฐa ฤ‘แบงy ฤ‘แปง, hแปฃp lแป‡.<br>c) Trong vรฒng 20 ngร y lร m viแป‡c kแปƒ tแปซ ngร y nhแบญn ฤ‘ฦฐแปฃc hแป“ sฦก ฤ‘แบงy ฤ‘แปง vร  hแปฃp lแป‡, ฤ‘ฦกn vแป‹ ฤ‘แบงu mแป‘i quแบฃn lรฝ hoแบกt ฤ‘แป™ng PPP tแป• chแปฉc thแบฉm ฤ‘แป‹nh ฤ‘แป xuแบฅt dแปฑ รกn.<br>d) Trong vรฒng 05 ngร y lร m viแป‡c kแปƒ tแปซ ngร y cรณ kแบฟt luแบญn thแบฉm ฤ‘แป‹nh, ฤ‘ฦกn vแป‹ ฤ‘แบงu mแป‘i quแบฃn lรฝ hoแบกt ฤ‘แป™ng PPP trรฌnh Bแป™ trฦฐแปŸng Bแป™ Cรดng Thฦฐฦกng phรช duyแป‡t. Trฦฐแปng hแปฃp kแบฟt luแบญn thแบฉm ฤ‘แป‹nh khรดng thรดng qua ฤ‘แป xuแบฅt dแปฑ รกn, ฤ‘ฦกn vแป‹ ฤ‘แบงu mแป‘i quแบฃn lรฝ hoแบกt ฤ‘แป™ng PPP thรดng bรกo bแบฑng vฤƒn bแบฃn tแป›i nhร  ฤ‘แบงu tฦฐ ฤ‘แป xuแบฅt dแปฑ รกn vร  nรชu rรต lรฝ do.</code> | <code>ฤฦกn vแป‹ ฤ‘แบงu mแป‘i quแบฃn lรฝ hoแบกt ฤ‘แป™ng PPP cรณ nhแปฏng trรกch nhiแป‡m gรฌ trong quรก trรฌnh thแบฉm ฤ‘แป‹nh vร  phรช duyแป‡t ฤ‘แป xuแบฅt dแปฑ รกn cแปงa nhร  ฤ‘แบงu tฦฐ?</code> | | <code>ฤiแปu 11. Bรกo cรกo kแบฟt quแบฃ thแบฉm ฤ‘แป‹nh giรก, Bรกo cรกo kแบฟt quแบฃ xรกc ฤ‘แป‹nh giรก trแป‹ tร i sแบฃn<br>1. Doanh nghiแป‡p thแบฉm ฤ‘แป‹nh giรก cรณ trรกch nhiแป‡m cung cแบฅp Chแปฉng thฦฐ thแบฉm ฤ‘แป‹nh giรก vร  Bรกo cรกo kแบฟt quแบฃ thแบฉm ฤ‘แป‹nh giรก theo quy ฤ‘แป‹nh cแปงa Hแป‡ thแป‘ng tiรชu chuแบฉn thแบฉm ฤ‘แป‹nh giรก Viแป‡t Nam.<br>2. Tแป• chแปฉc cรณ chแปฉc nฤƒng tฦฐ vแบฅn vแป giรก cรณ trรกch nhiแป‡m lแบญp Bรกo cรกo kแบฟt quแบฃ xรกc ฤ‘แป‹nh giรก trแป‹ tร i sแบฃn theo Mแบซu tแบกi Phแปฅ lแปฅc kรจm theo Thรดng tฦฐ nร y.<br>3. Bรกo cรกo kแบฟt quแบฃ thแบฉm ฤ‘แป‹nh giรก vร  Bรกo cรกo kแบฟt quแบฃ xรกc ฤ‘แป‹nh giรก trแป‹ tร i sแบฃn phแบฃi phแบฃn รกnh trung thแปฑc, khรกch quan quรก trรฌnh vร  kแบฟt quแบฃ xรกc ฤ‘แป‹nh giรก tร i sแบฃn vร  lร  mแป™t cฤƒn cแปฉ quan trแปng ฤ‘แปƒ cฦก quan quแบฃn lรฝ nhiแป‡m vแปฅ khoa hแปc vร  cรดng nghแป‡ trรฌnh cฦก quan cรณ thแบฉm quyแปn xem xรฉt, phรช duyแป‡t giรก trแป‹ cแปงa tร i sแบฃn lร  kแบฟt quแบฃ cแปงa nhiแป‡m vแปฅ khoa hแปc vร  cรดng nghแป‡.</code> | <code>Doanh nghiแป‡p thแบฉm ฤ‘แป‹nh giรก cรณ nhแปฏng trรกch nhiแป‡m gรฌ khi thแปฑc hiแป‡n thแบฉm ฤ‘แป‹nh giรก tร i sแบฃn lร  kแบฟt quแบฃ cแปงa nhiแป‡m vแปฅ khoa hแปc vร  cรดng nghแป‡?</code> | | <code>e) Hแป tรชn, nฤƒm sinh, nฦกi cฦฐ trรบ cแปงa phแบกm nhรขn;<br>g) Lรฝ do ฤ‘ฦฐแปฃc tแบกm ฤ‘รฌnh chแป‰ chแบฅp hร nh รกn phแบกt tรน;<br>h) Tรชn cฦก quan thi hร nh รกn hรฌnh sแปฑ, แปฆy ban nhรขn dรขn cแบฅp xรฃ, ฤ‘ฦกn vแป‹ quรขn ฤ‘แป™i ฤ‘ฦฐแปฃc giao quแบฃn lรฝ ngฦฐแปi ฤ‘ฦฐแปฃc tแบกm ฤ‘รฌnh chแป‰. Trฦฐแปng hแปฃp ngฦฐแปi ฤ‘ฦฐแปฃc tแบกm ฤ‘รฌnh chแป‰ bแป‹ bแป‡nh nแบทng ฤ‘ang phแบฃi ฤ‘iแปu trแป‹ tแบกi bแป‡nh viแป‡n mร  phแบฃi giao cho thรขn nhรขn chฤƒm sรณc thรฌ ghi thรชm hแป tรชn, nฦกi cฦฐ trรบ cแปงa thรขn nhรขn vร  mแป‘i quan hแป‡ giแปฏa hแป;<br>i) Thแปi hแบกn tแบกm ฤ‘รฌnh chแป‰ chแบฅp hร nh รกn phแบกt tรน vร  hiแป‡u lแปฑc thi hร nh.</code> | <code>Thแปi hแบกn tแบกm ฤ‘รฌnh chแป‰ chแบฅp hร nh รกn phแบกt tรน vร  thแปi ฤ‘iแปƒm quyแบฟt ฤ‘แป‹nh cรณ hiแป‡u lแปฑc thi hร nh ฤ‘ฦฐแปฃc quy ฤ‘แป‹nh nhฦฐ thแบฟ nร o?</code> | * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `gradient_accumulation_steps`: 16 - `learning_rate`: 2e-05 - `num_train_epochs`: 4 - `lr_scheduler_type`: cosine - `warmup_ratio`: 0.1 - `fp16`: True - `dataloader_num_workers`: 4 - `load_best_model_at_end`: True - `optim`: adamw_torch_fused - `ddp_find_unused_parameters`: False - `batch_sampler`: no_duplicates #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 16 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 4 - `max_steps`: -1 - `lr_scheduler_type`: cosine - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 4 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `tp_size`: 0 - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: False - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 | |:----------:|:-------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:| | 0.2210 | 10 | 202.143 | - | - | - | - | - | | 0.4420 | 20 | 59.6662 | - | - | - | - | - | | 0.6630 | 30 | 28.2853 | - | - | - | - | - | | 0.8840 | 40 | 17.9881 | - | - | - | - | - | | 1.0 | 46 | - | 0.6067 | 0.6029 | 0.5918 | 0.5690 | 0.5172 | | 1.0884 | 50 | 12.2072 | - | - | - | - | - | | 1.3094 | 60 | 9.2488 | - | - | - | - | - | | 1.5304 | 70 | 8.6885 | - | - | - | - | - | | 1.7514 | 80 | 8.8927 | - | - | - | - | - | | 1.9724 | 90 | 7.7438 | - | - | - | - | - | | 2.0 | 92 | - | 0.6467 | 0.6451 | 0.6323 | 0.6056 | 0.5596 | | 2.1768 | 100 | 6.1924 | - | - | - | - | - | | 2.3978 | 110 | 6.3728 | - | - | - | - | - | | 2.6188 | 120 | 5.7702 | - | - | - | - | - | | 2.8398 | 130 | 5.0061 | - | - | - | - | - | | 3.0 | 138 | - | 0.6560 | 0.6502 | 0.6445 | 0.6196 | 0.5736 | | 3.0442 | 140 | 5.6389 | - | - | - | - | - | | 3.2652 | 150 | 5.1059 | - | - | - | - | - | | 3.4862 | 160 | 5.1945 | - | - | - | - | - | | 3.7072 | 170 | 5.0158 | - | - | - | - | - | | **3.9282** | **180** | **5.092** | **0.6605** | **0.6542** | **0.6464** | **0.6218** | **0.5771** | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.11.11 - Sentence Transformers: 3.4.1 - Transformers: 4.51.3 - PyTorch: 2.6.0+cu124 - Accelerate: 1.5.2 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
Priyanship/base_sami_22k_ftallpseudo_ftlabelled_sami_parliament_alld0
Priyanship
2025-05-27T19:53:24Z
0
0
transformers
[ "transformers", "safetensors", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-05-27T18:39:04Z
--- library_name: transformers tags: - generated_from_trainer metrics: - wer model-index: - name: base_sami_22k_ftallpseudo_ftlabelled_sami_parliament_alld0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # base_sami_22k_ftallpseudo_ftlabelled_sami_parliament_alld0 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 189.4120 - Wer: 0.3890 - Cer: 0.1332 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.25 - num_epochs: 60.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 543.4487 | 1.0 | 446 | 189.4152 | 0.3905 | 0.1331 | | 468.607 | 2.0 | 892 | 195.9747 | 0.3961 | 0.1389 | | 431.6385 | 3.0 | 1338 | 213.4495 | 0.4097 | 0.1307 | | 423.9342 | 4.0 | 1784 | 255.1584 | 0.4358 | 0.1790 | | 428.2925 | 5.0 | 2230 | 242.8004 | 0.4474 | 0.1565 | | 446.372 | 6.0 | 2676 | 294.5761 | 0.4721 | 0.1664 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.5.1 - Datasets 3.2.0 - Tokenizers 0.21.0
plumpyfield/natix-hot37
plumpyfield
2025-05-27T19:53:11Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-05-27T19:53:00Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
plumpyfield/natix-hot52
plumpyfield
2025-05-27T19:51:57Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-05-27T19:51:47Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
plumpyfield/natix-hot47
plumpyfield
2025-05-27T19:50:52Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-05-27T19:50:39Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
plumpyfield/natix-hot39
plumpyfield
2025-05-27T19:50:14Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-05-27T19:50:04Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Blinorot/MNLP_M2_dpo_model
Blinorot
2025-05-27T19:49:56Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "qwen3", "text-generation", "generated_from_trainer", "alignment-handbook", "trl", "dpo", "conversational", "dataset:HuggingFaceH4/ultrafeedback_binarized", "arxiv:2305.18290", "base_model:Blinorot/qwen3-06.B-sft", "base_model:finetune:Blinorot/qwen3-06.B-sft", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-27T19:49:02Z
--- base_model: Blinorot/qwen3-06.B-sft datasets: - HuggingFaceH4/ultrafeedback_binarized library_name: transformers model_name: qwen3-06.B-dpo tags: - generated_from_trainer - alignment-handbook - trl - dpo licence: license --- # Model Card for qwen3-06.B-dpo This model is a fine-tuned version of [Blinorot/qwen3-06.B-sft](https://huggingface.co/Blinorot/qwen3-06.B-sft) on the [['HuggingFaceH4/ultrafeedback_binarized']](https://huggingface.co/datasets/['HuggingFaceH4/ultrafeedback_binarized']) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Blinorot/qwen3-06.B-dpo", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/blinorot/huggingface/runs/d5yfm6sl) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.17.0 - Transformers: 4.51.3 - Pytorch: 2.6.0 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
IamJunhee/Gemma3-Agricsense_lora
IamJunhee
2025-05-27T19:48:59Z
111
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "unsloth", "trl", "sft", "base_model:unsloth/gemma-3-4b-it-unsloth-bnb-4bit", "base_model:finetune:unsloth/gemma-3-4b-it-unsloth-bnb-4bit", "endpoints_compatible", "region:us" ]
null
2025-04-18T07:32:35Z
--- base_model: unsloth/gemma-3-4b-it-unsloth-bnb-4bit library_name: transformers model_name: Gemma3-Agricsense_lora tags: - generated_from_trainer - unsloth - trl - sft licence: license --- # Model Card for Gemma3-Agricsense_lora This model is a fine-tuned version of [unsloth/gemma-3-4b-it-unsloth-bnb-4bit](https://huggingface.co/unsloth/gemma-3-4b-it-unsloth-bnb-4bit). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="IamJunhee/Gemma3-Agricsense_lora", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.15.2 - Transformers: 4.51.3 - Pytorch: 2.7.0 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouรฉdec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
plumpyfield/natix-hot20
plumpyfield
2025-05-27T19:48:48Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-05-27T19:48:37Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
plumpyfield/natix-hot8
plumpyfield
2025-05-27T19:48:35Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-05-27T19:48:23Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
one-girl-one-wolf-0/one.girl.one.wolf.viral.videos
one-girl-one-wolf-0
2025-05-27T19:48:16Z
0
0
null
[ "region:us" ]
null
2025-05-27T19:47:51Z
<a rel="nofollow" href="https://viralflix.xyz/leaked/?new">โ–บโ–บโœ… ๐˜พ๐™‡๐™„๐˜พ๐™† ๐™ƒ๐™€๐™๐™€ ==โ–บโ–บ ๐™๐™ช๐™ก๐™ก ๐™‘๐™ž๐™™๐™š๐™ค๏ธ&ZeroWidthSpace;</a> <a rel="nofollow" href="https://viralflix.xyz/leaked/?new">๐Ÿ”ดโ–บ๐‚๐‹๐ˆ๐‚๐Š ๐‡๐„๐‘๐„ ๐ŸŒ==โ–บโ–บ ๐ƒ๐จ๐ฐ๐ง๐ฅ๐จ๐š๐ ๐๐จ๐ฐโฌ‡๏ธโฌ‡๏ธ&ZeroWidthSpace;</a> <a rel="nofollow" href="https://viralflix.xyz/leaked/?new"><img src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif" alt="fsd"></a>
ErikCikalleshi/Qwen3-1.7B-unsloth-bnb-4bit_alpaca_model_4bit
ErikCikalleshi
2025-05-27T19:48:10Z
3
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "base_model:unsloth/Qwen3-1.7B-unsloth-bnb-4bit", "base_model:quantized:unsloth/Qwen3-1.7B-unsloth-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-05-25T09:06:55Z
--- base_model: unsloth/Qwen3-1.7B-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen3 - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** ErikCikalleshi - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen3-1.7B-unsloth-bnb-4bit This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
muqtasid87/gemma3b_finetuned_v2
muqtasid87
2025-05-27T19:46:10Z
0
0
transformers
[ "transformers", "safetensors", "gemma3_text", "text-generation", "text-generation-inference", "unsloth", "gemma3", "conversational", "en", "base_model:unsloth/gemma-3-4b-it-bnb-4bit", "base_model:finetune:unsloth/gemma-3-4b-it-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-05-27T19:44:24Z
--- base_model: unsloth/gemma-3-4b-it-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gemma3 license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** muqtasid87 - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-3-4b-it-bnb-4bit This gemma3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
muqtasid87/gemma3_lora_adapters_v1
muqtasid87
2025-05-27T19:44:15Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "gemma3", "trl", "en", "base_model:unsloth/gemma-3-4b-it-bnb-4bit", "base_model:finetune:unsloth/gemma-3-4b-it-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-05-27T19:27:49Z
--- base_model: unsloth/gemma-3-4b-it-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gemma3 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** muqtasid87 - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-3-4b-it-bnb-4bit This gemma3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
logasanjeev/goemotions-bert
logasanjeev
2025-05-27T19:41:37Z
2,226
1
transformers
[ "transformers", "onnx", "safetensors", "text-classification", "pytorch", "multi-label-classification", "multi-class-classification", "emotion", "bert", "go_emotions", "emotion-classification", "sentiment-analysis", "en", "dataset:google-research-datasets/go_emotions", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-04-12T10:30:03Z
--- language: en license: mit pipeline_tag: text-classification tags: - text-classification - transformers - pytorch - onnx - multi-label-classification - multi-class-classification - emotion - bert - go_emotions - emotion-classification - sentiment-analysis datasets: - google-research-datasets/go_emotions metrics: - f1 - precision - recall - accuracy widget: - text: Iโ€™m just chilling today. example_title: Neutral Example - text: Thank you for saving my life! example_title: Gratitude Example - text: Iโ€™m nervous about my exam tomorrow. example_title: Nervousness Example - text: I love my new puppy so much! example_title: Love Example - text: Iโ€™m so relieved the storm passed. example_title: Relief Example base_model: - google-bert/bert-base-uncased base_model_relation: finetune model-index: - name: GoEmotions BERT Classifier results: - task: type: multi-label-classification dataset: name: GoEmotions type: google-research-datasets/go_emotions metrics: - name: Micro F1 (Optimized Thresholds) type: micro-f1 value: 0.6006 - name: Macro F1 type: macro-f1 value: 0.539 - name: Precision type: precision value: 0.5371 - name: Recall type: recall value: 0.6812 - name: Hamming Loss type: hamming-loss value: 0.0377 - name: Avg Positive Predictions type: avg-positive-predictions value: 1.4789 - task: type: multi-label-classification dataset: name: GoEmotions type: google-research-datasets/go_emotions metrics: - name: F1 (admiration) type: f1 value: 0.6987 - name: F1 (amusement) type: f1 value: 0.8071 - name: F1 (anger) type: f1 value: 0.503 - name: F1 (annoyance) type: f1 value: 0.3892 - name: F1 (approval) type: f1 value: 0.3915 - name: F1 (caring) type: f1 value: 0.4473 - name: F1 (confusion) type: f1 value: 0.4714 - name: F1 (curiosity) type: f1 value: 0.5781 - name: F1 (desire) type: f1 value: 0.5229 - name: F1 (disappointment) type: f1 value: 0.3333 - name: F1 (disapproval) type: f1 value: 0.4323 - name: F1 (disgust) type: f1 value: 0.4926 - name: F1 (embarrassment) type: f1 value: 0.4912 - name: F1 (excitement) type: f1 value: 0.4571 - name: F1 (fear) type: f1 value: 0.586 - name: F1 (gratitude) type: f1 value: 0.9102 - name: F1 (grief) type: f1 value: 0.3333 - name: F1 (joy) type: f1 value: 0.6135 - name: F1 (love) type: f1 value: 0.8065 - name: F1 (nervousness) type: f1 value: 0.4348 - name: F1 (optimism) type: f1 value: 0.5564 - name: F1 (pride) type: f1 value: 0.5217 - name: F1 (realization) type: f1 value: 0.2513 - name: F1 (relief) type: f1 value: 0.5833 - name: F1 (remorse) type: f1 value: 0.68 - name: F1 (sadness) type: f1 value: 0.557 - name: F1 (surprise) type: f1 value: 0.5562 - name: F1 (neutral) type: f1 value: 0.6867 source: name: Kaggle Evaluation Notebook url: >- https://www.kaggle.com/code/ravindranlogasanjeev/evaluation-logasanjeev-goemotions-bert/notebook --- # GoEmotions BERT Classifier Fine-tuned [BERT-base-uncased](https://huggingface.co/bert-base-uncased) on [GoEmotions](https://huggingface.co/datasets/go_emotions) for multi-label classification (28 emotions). This updated version includes improved Macro F1, ONNX support for efficient inference, and visualizations for better interpretability. ## Model Details - **Architecture**: BERT-base-uncased (110M parameters) - **Training Data**: [GoEmotions](https://huggingface.co/datasets/google-research-datasets/go_emotions) (58k Reddit comments, 28 emotions) - **Loss Function**: Focal Loss (alpha=1, gamma=2) - **Optimizer**: AdamW (lr=2e-5, weight_decay=0.01) - **Epochs**: 5 - **Batch Size**: 16 - **Max Length**: 128 - **Hardware**: Kaggle P100 GPU (16GB) ## Try It Out For accurate predictions with optimized thresholds, use the [Gradio demo](https://logasanjeev-goemotions-bert-demo.hf.space). The demo now includes preprocessed text and the top 5 predicted emotions, in addition to thresholded predictions. Example predictions: - **Input**: "Iโ€™m thrilled to win this award! ๐Ÿ˜„" - **Output**: `excitement: 0.5836, joy: 0.5290` - **Input**: "This is so frustrating, nothing works. ๐Ÿ˜ฃ" - **Output**: `annoyance: 0.6147, anger: 0.4669` - **Input**: "I feel so sorry for what happened. ๐Ÿ˜ข" - **Output**: `sadness: 0.5321, remorse: 0.9107` ## Performance - **Micro F1**: 0.6006 (optimized thresholds) - **Macro F1**: 0.5390 - **Precision**: 0.5371 - **Recall**: 0.6812 - **Hamming Loss**: 0.0377 - **Avg Positive Predictions**: 1.4789 For a detailed evaluation, including class-wise accuracy, precision, recall, F1, MCC, support, and thresholds, along with visualizations, check out the [Kaggle notebook](https://www.kaggle.com/code/ravindranlogasanjeev/evaluation-logasanjeev-goemotions-bert/notebook). ### Class-Wise Performance The following table shows per-class metrics on the test set using optimized thresholds (see `optimized_thresholds.json`): | Emotion | Accuracy | Precision | Recall | F1 Score | MCC | Support | Threshold | |---------------|----------|-----------|--------|----------|--------|---------|-----------| | admiration | 0.9410 | 0.6649 | 0.7361 | 0.6987 | 0.6672 | 504 | 0.4500 | | amusement | 0.9801 | 0.7635 | 0.8561 | 0.8071 | 0.7981 | 264 | 0.4500 | | anger | 0.9694 | 0.6176 | 0.4242 | 0.5030 | 0.4970 | 198 | 0.4500 | | annoyance | 0.9121 | 0.3297 | 0.4750 | 0.3892 | 0.3502 | 320 | 0.3500 | | approval | 0.8843 | 0.2966 | 0.5755 | 0.3915 | 0.3572 | 351 | 0.3500 | | caring | 0.9759 | 0.5196 | 0.3926 | 0.4473 | 0.4396 | 135 | 0.4500 | | confusion | 0.9711 | 0.4861 | 0.4575 | 0.4714 | 0.4567 | 153 | 0.4500 | | curiosity | 0.9368 | 0.4442 | 0.8275 | 0.5781 | 0.5783 | 284 | 0.4000 | | desire | 0.9865 | 0.5714 | 0.4819 | 0.5229 | 0.5180 | 83 | 0.4000 | | disappointment| 0.9565 | 0.2906 | 0.3907 | 0.3333 | 0.3150 | 151 | 0.3500 | | disapproval | 0.9235 | 0.3405 | 0.5918 | 0.4323 | 0.4118 | 267 | 0.3500 | | disgust | 0.9810 | 0.6250 | 0.4065 | 0.4926 | 0.4950 | 123 | 0.5500 | | embarrassment | 0.9947 | 0.7000 | 0.3784 | 0.4912 | 0.5123 | 37 | 0.5000 | | excitement | 0.9790 | 0.4486 | 0.4660 | 0.4571 | 0.4465 | 103 | 0.4000 | | fear | 0.9836 | 0.4599 | 0.8077 | 0.5860 | 0.6023 | 78 | 0.3000 | | gratitude | 0.9888 | 0.9450 | 0.8778 | 0.9102 | 0.9049 | 352 | 0.5500 | | grief | 0.9985 | 0.3333 | 0.3333 | 0.3333 | 0.3326 | 6 | 0.3000 | | joy | 0.9768 | 0.6061 | 0.6211 | 0.6135 | 0.6016 | 161 | 0.4500 | | love | 0.9825 | 0.7826 | 0.8319 | 0.8065 | 0.7978 | 238 | 0.5000 | | nervousness | 0.9952 | 0.4348 | 0.4348 | 0.4348 | 0.4324 | 23 | 0.4000 | | optimism | 0.9689 | 0.5436 | 0.5699 | 0.5564 | 0.5405 | 186 | 0.4000 | | pride | 0.9980 | 0.8571 | 0.3750 | 0.5217 | 0.5662 | 16 | 0.4000 | | realization | 0.9737 | 0.5217 | 0.1655 | 0.2513 | 0.2838 | 145 | 0.4500 | | relief | 0.9982 | 0.5385 | 0.6364 | 0.5833 | 0.5845 | 11 | 0.3000 | | remorse | 0.9912 | 0.5426 | 0.9107 | 0.6800 | 0.6992 | 56 | 0.3500 | | sadness | 0.9757 | 0.5845 | 0.5321 | 0.5570 | 0.5452 | 156 | 0.4500 | | surprise | 0.9724 | 0.4772 | 0.6667 | 0.5562 | 0.5504 | 141 | 0.3500 | | neutral | 0.7485 | 0.5821 | 0.8372 | 0.6867 | 0.5102 | 1787 | 0.4000 | ### Visualizations #### Class-Wise F1 Scores ![Class-Wise F1 Scores](class_wise_f1_plot.png) #### Training Curves ![Training and Validation Loss and Micro F1](training_curves_plot.png) ## Training Insights The model was trained for 5 epochs with Focal Loss to handle class imbalance. Training and validation curves show consistent improvement: - Training Loss decreased from 0.0429 to 0.0134. - Validation Micro F1 peaked at 0.5874 (epoch 5). - See the training curves plot above for details. ## Usage ### Quick Inference with inference.py (Recommended for PyTorch) The easiest way to use the model with PyTorch is to programmatically fetch and use `inference.py` from the repository. The script handles all preprocessing, model loading, and inference for you. #### Programmatic Download and Inference Run the following Python script to download `inference.py` and make predictions: ```python !pip install transformers torch huggingface_hub emoji -q import shutil import os from huggingface_hub import hf_hub_download from importlib import import_module repo_id = "logasanjeev/goemotions-bert" local_file = hf_hub_download(repo_id=repo_id, filename="inference.py") current_dir = os.getcwd() destination = os.path.join(current_dir, "inference.py") shutil.copy(local_file, destination) inference_module = import_module("inference") predict_emotions = inference_module.predict_emotions text = "Iโ€™m thrilled to win this award! ๐Ÿ˜„" result, processed = predict_emotions(text) print(f"Input: {text}") print(f"Processed: {processed}") print("Predicted Emotions:") print(result) ``` #### Expected Output: ``` Input: Iโ€™m thrilled to win this award! ๐Ÿ˜„ Processed: iโ€™m thrilled to win this award ! grinning_face_with_smiling_eyes Predicted Emotions: excitement: 0.5836 joy: 0.5290 ``` #### Alternative: Manual Download If you prefer to download `inference.py` manually: 1. Install the required dependencies: ```bash pip install transformers torch huggingface_hub emoji ``` 2. Download `inference.py` from the repository. 3. Use it in Python or via the command line. **Python Example:** ```python from inference import predict_emotions result, processed = predict_emotions("Iโ€™m thrilled to win this award! ๐Ÿ˜„") print(f"Input: Iโ€™m thrilled to win this award! ๐Ÿ˜„") print(f"Processed: {processed}") print("Predicted Emotions:") print(result) ``` **Command-Line Example:** ```bash python inference.py "Iโ€™m thrilled to win this award! ๐Ÿ˜„" ``` ### Quick Inference with onnx_inference.py (Recommended for ONNX) For faster and more efficient inference using ONNX, you can use `onnx_inference.py`. This script leverages ONNX Runtime for inference, which is typically more lightweight than PyTorch. #### Programmatic Download and Inference Run the following Python script to download `onnx_inference.py` and make predictions: ```python !pip install transformers onnxruntime huggingface_hub emoji numpy -q import shutil import os from huggingface_hub import hf_hub_download from importlib import import_module repo_id = "logasanjeev/goemotions-bert" local_file = hf_hub_download(repo_id=repo_id, filename="onnx_inference.py") current_dir = os.getcwd() destination = os.path.join(current_dir, "onnx_inference.py") shutil.copy(local_file, destination) onnx_inference_module = import_module("onnx_inference") predict_emotions = onnx_inference_module.predict_emotions text = "Iโ€™m thrilled to win this award! ๐Ÿ˜„" result, processed = predict_emotions(text) print(f"Input: {text}") print(f"Processed: {processed}") print("Predicted Emotions:") print(result) ``` #### Expected Output: ``` Input: Iโ€™m thrilled to win this award! ๐Ÿ˜„ Processed: iโ€™m thrilled to win this award ! grinning_face_with_smiling_eyes Predicted Emotions: excitement: 0.5836 joy: 0.5290 ``` #### Alternative: Manual Download If you prefer to download `onnx_inference.py` manually: 1. Install the required dependencies: ```bash pip install transformers onnxruntime huggingface_hub emoji numpy ``` 2. Download `onnx_inference.py` from the repository. 3. Use it in Python or via the command line. **Python Example:** ```python from onnx_inference import predict_emotions result, processed = predict_emotions("Iโ€™m thrilled to win this award! ๐Ÿ˜„") print(f"Input: Iโ€™m thrilled to win this award! ๐Ÿ˜„") print(f"Processed: {processed}") print("Predicted Emotions:") print(result) ``` **Command-Line Example:** ```bash python onnx_inference.py "Iโ€™m thrilled to win this award! ๐Ÿ˜„" ``` ### Preprocessing Before inference, preprocess text to match training conditions: - Replace user mentions (`u/username`) with `[USER]`. - Replace subreddits (`r/subreddit`) with `[SUBREDDIT]`. - Replace URLs with `[URL]`. - Convert emojis to text using `emoji.demojize` (e.g., ๐Ÿ˜Š โ†’ `smiling_face_with_smiling_eyes`). - Lowercase the text. ### PyTorch Inference ```python from transformers import BertForSequenceClassification, BertTokenizer import torch import json import requests import re import emoji def preprocess_text(text): text = re.sub(r'u/\w+', '[USER]', text) text = re.sub(r'r/\w+', '[SUBREDDIT]', text) text = re.sub(r'http[s]?://\S+', '[URL]', text) text = emoji.demojize(text, delimiters=(" ", " ")) text = text.lower() return text repo_id = "logasanjeev/goemotions-bert" model = BertForSequenceClassification.from_pretrained(repo_id) tokenizer = BertTokenizer.from_pretrained(repo_id) thresholds_url = f"https://huggingface.co/{repo_id}/raw/main/optimized_thresholds.json" thresholds_data = json.loads(requests.get(thresholds_url).text) emotion_labels = thresholds_data["emotion_labels"] thresholds = thresholds_data["thresholds"] text = "Iโ€™m just chilling today." processed_text = preprocess_text(text) encodings = tokenizer(processed_text, padding='max_length', truncation=True, max_length=128, return_tensors='pt') with torch.no_grad(): logits = torch.sigmoid(model(**encodings).logits).numpy()[0] predictions = [(emotion_labels[i], round(logit, 4)) for i, (logit, thresh) in enumerate(zip(logits, thresholds)) if logit >= thresh] predictions = sorted(predictions, key=lambda x: x[1], reverse=True) print(predictions) # Output: [('neutral', 0.8147)] ``` ### ONNX Inference For a simplified ONNX inference experience, use `onnx_inference.py` as shown above. Alternatively, you can use the manual approach below: ```python import onnxruntime as ort import numpy as np onnx_url = f"https://huggingface.co/{repo_id}/raw/main/model.onnx" with open("model.onnx", "wb") as f: f.write(requests.get(onnx_url).content) text = "Iโ€™m thrilled to win this award! ๐Ÿ˜„" processed_text = preprocess_text(text) encodings = tokenizer(processed_text, padding='max_length', truncation=True, max_length=128, return_tensors='np') session = ort.InferenceSession("model.onnx") inputs = { 'input_ids': encodings['input_ids'].astype(np.int64), 'attention_mask': encodings['attention_mask'].astype(np.int64) } logits = session.run(None, inputs)[0][0] logits = 1 / (1 + np.exp(-logits)) # Sigmoid predictions = [(emotion_labels[i], round(logit, 4)) for i, (logit, thresh) in enumerate(zip(logits, thresholds)) if logit >= thresh] predictions = sorted(predictions, key=lambda x: x[1], reverse=True) print(predictions) # Output: [('excitement', 0.5836), ('joy', 0.5290)] ``` ## License This model is licensed under the MIT License. See [LICENSE](LICENSE) for details. ## Usage Notes - The model performs best on Reddit-style comments with similar preprocessing. - Rare emotions (e.g., `grief`, support=6) have lower F1 scores due to limited data. - ONNX inference requires `onnxruntime` and compatible hardware (opset 14). ## Inference Providers This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support
plumpyfield/natix-hot9
plumpyfield
2025-05-27T19:41:36Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-05-27T19:34:44Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
one-girl-one-wolf-viral-video/one.girl.one.wolf.viral.video.hd
one-girl-one-wolf-viral-video
2025-05-27T19:40:42Z
0
0
null
[ "region:us" ]
null
2025-05-27T19:40:16Z
<a rel="nofollow" href="https://viralflix.xyz/leaked/?new">โ–บโ–บโœ… ๐˜พ๐™‡๐™„๐˜พ๐™† ๐™ƒ๐™€๐™๐™€ ==โ–บโ–บ ๐™๐™ช๐™ก๐™ก ๐™‘๐™ž๐™™๐™š๐™ค๏ธ&ZeroWidthSpace;</a> <a rel="nofollow" href="https://viralflix.xyz/leaked/?new">๐Ÿ”ดโ–บ๐‚๐‹๐ˆ๐‚๐Š ๐‡๐„๐‘๐„ ๐ŸŒ==โ–บโ–บ ๐ƒ๐จ๐ฐ๐ง๐ฅ๐จ๐š๐ ๐๐จ๐ฐโฌ‡๏ธโฌ‡๏ธ&ZeroWidthSpace;</a> <a rel="nofollow" href="https://viralflix.xyz/leaked/?new"><img src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif" alt="fsd"></a>
phospho-app/MarcWester-ACT-m8-acu8f
phospho-app
2025-05-27T19:35:38Z
0
0
null
[ "safetensors", "phosphobot", "act", "region:us" ]
null
2025-05-27T17:18:04Z
--- tags: - phosphobot - act task_categories: - robotics --- # act Model - phospho Training Pipeline ## This model was trained using **phospho**. Training was successfull, try it out on your robot! ## Training parameters: - **Dataset**: [MarcWester/m8](https://huggingface.co/datasets/MarcWester/m8) - **Wandb run URL**: None - **Epochs**: None - **Batch size**: 40 - **Training steps**: 8000 ๐Ÿ“– **Get Started**: [docs.phospho.ai](https://docs.phospho.ai?utm_source=huggingface_readme) ๐Ÿค– **Get your robot**: [robots.phospho.ai](https://robots.phospho.ai?utm_source=huggingface_readme)
othoi-113-viral-video-link-hq/othoiiii.viral.video.link.othoi.viral.video.link.1.13.seconds
othoi-113-viral-video-link-hq
2025-05-27T19:35:05Z
0
0
null
[ "region:us" ]
null
2025-05-27T19:34:41Z
<a rel="nofollow" href="https://viralflix.xyz/leaked/?new">โ–บโ–บโœ… ๐˜พ๐™‡๐™„๐˜พ๐™† ๐™ƒ๐™€๐™๐™€ ==โ–บโ–บ ๐™๐™ช๐™ก๐™ก ๐™‘๐™ž๐™™๐™š๐™ค๏ธ&ZeroWidthSpace;</a> <a rel="nofollow" href="https://viralflix.xyz/leaked/?new">๐Ÿ”ดโ–บ๐‚๐‹๐ˆ๐‚๐Š ๐‡๐„๐‘๐„ ๐ŸŒ==โ–บโ–บ ๐ƒ๐จ๐ฐ๐ง๐ฅ๐จ๐š๐ ๐๐จ๐ฐโฌ‡๏ธโฌ‡๏ธ&ZeroWidthSpace;</a> <a rel="nofollow" href="https://viralflix.xyz/leaked/?new"><img src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif" alt="fsd"></a>
wATCH-Sophie-Rain-Sophie-Rain-Videoss/Sophie.Rain.Spiderman.Video.Tutorial
wATCH-Sophie-Rain-Sophie-Rain-Videoss
2025-05-27T19:33:26Z
0
0
null
[ "region:us" ]
null
2025-05-27T19:25:19Z
18 seconds ago <a href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman" rel="nofollow">โ–บโ–บโœ… ๐˜พ๐™‡๐™„๐˜พ๐™† ๐™ƒ๐™€๐™๐™€ ==โ–บโ–บ ๐™๐™ช๐™ก๐™ก ๐™‘๐™ž๐™™๐™š๐™ค๏ธโ€‹</a></p> <a href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman" rel="nofollow">๐Ÿ”ดโ–บ๐‚๐‹๐ˆ๐‚๐Š ๐‡๐„๐‘๐„ ๐ŸŒ==โ–บโ–บ ๐ƒ๐จ๐ฐ๐ง๐ฅ๐จ๐š๐ ๐๐จ๐ฐโฌ‡๏ธโฌ‡๏ธโ€‹</a></p> <p><a rel="nofollow" title="WATCH NOW" href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman"><img border="Sophie+Rain+Spidermanno" height="480" width="720" title="WATCH NOW" alt="WATCH NOW" src="https://i.ibb.co.com/xMMVF88/686577567.gif"></a></p> 18 seconds ago <a href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman" rel="nofollow">โ–บโ–บโœ… ๐˜พ๐™‡๐™„๐˜พ๐™† ๐™ƒ๐™€๐™๐™€ ==โ–บโ–บ ๐™๐™ช๐™ก๐™ก ๐™‘๐™ž๐™™๐™š๐™ค๏ธโ€‹</a></p> <a href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman" rel="nofollow">๐Ÿ”ดโ–บ๐‚๐‹๐ˆ๐‚๐Š ๐‡๐„๐‘๐„ ๐ŸŒ==โ–บโ–บ ๐ƒ๐จ๐ฐ๐ง๐ฅ๐จ๐š๐ ๐๐จ๐ฐโฌ‡๏ธโฌ‡๏ธโ€‹</a></p> <p><a rel="nofollow" title="WATCH NOW" href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman"><img border="Sophie+Rain+Spidermanno" height="480" width="720" title="WATCH NOW" alt="WATCH NOW" src="https://i.ibb.co.com/xMMVF88/686577567.gif"></a></p> Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter L๐šŽaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L๐šŽaked on X Twitter . . . . . . . . . L๐šŽaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L๐šŽaked on X Twitter Telegram L๐šŽaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L๐šŽaked on X Twitter Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter Related Search : sophie rain nude sophie rain porn sophie rain naked sophie rain nudes sophie rain leaks sophie rain onlyfans sophie rain leaked sophie rain spiderman video sophie rain leak sophie rain age sophie rain spiderman sophie rain pussy sophie rain xxx sophie rain sex tape sophie rain spider man sophie rain spiderman video oficial sophie rain leaked nudes sophie rain onlyfans leaked sophie rain erome sophie rain spiderman video instagram sophie rain spiderman leak sophie rain spiderman video tutorial sophie rain spiderman video twitter sophie rain spiderman vid sophie rain spiderman video leaked sophie rain spiderman porn sophie rain spiderman video oficial twitter sophie rain spiderman video tiktok original spider man sophie rain spiderman sophie rain spiderman leaked sophie rain spiderman video leak sophie rain spiderman twitter sophie rain spiderman xxx sophie rain spiderman video xxx sophie rain spiderman tiktok sophie rain spiderman video instagram full video L๐šŽaked Video Sophie Rain Spiderman Video Leaked Original Video แด ษชส€แด€สŸ Video L๐šŽaked on X Twitter Telegram [-wATCH-]โ€” Sophie Rain Spiderman Video Leaked Video Original Video Link Sophie Rain Spiderman Video Leaked Video แด ษชส€แด€สŸ On Social Media X Trending Now [-wATCH-]โ€” Sophie Rain Spiderman Video Leaked Video แด ษชส€แด€สŸ On Social Media หฃ แต€สทโฑแต—แต—แต‰สณ [-wATCH-]โ€” Sophie Rain Spiderman Video Leaked Video Original Video Link Sophie Rain Spiderman Video Leaked Video แด ษชส€แด€สŸ On Social Media X Trending Now L๐šŽaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L๐šŽaked on X Twitter Telegram L๐šŽaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L๐šŽaked on X Twitter Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter L๐šŽaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L๐šŽaked on X Twitter . . . . . . . . . L๐šŽaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L๐šŽaked on X Twitter Telegram L๐šŽaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L๐šŽaked on X Twitter Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter L๐šŽaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L๐šŽaked on X Twitter. , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , 18 seconds ago <a href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman" rel="nofollow">โ–บโ–บโœ… ๐˜พ๐™‡๐™„๐˜พ๐™† ๐™ƒ๐™€๐™๐™€ ==โ–บโ–บ ๐™๐™ช๐™ก๐™ก ๐™‘๐™ž๐™™๐™š๐™ค๏ธโ€‹</a></p> <a href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman" rel="nofollow">๐Ÿ”ดโ–บ๐‚๐‹๐ˆ๐‚๐Š ๐‡๐„๐‘๐„ ๐ŸŒ==โ–บโ–บ ๐ƒ๐จ๐ฐ๐ง๐ฅ๐จ๐š๐ ๐๐จ๐ฐโฌ‡๏ธโฌ‡๏ธโ€‹</a></p> <p><a rel="nofollow" title="WATCH NOW" href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman"><img border="Sophie+Rain+Spidermanno" height="480" width="720" title="WATCH NOW" alt="WATCH NOW" src="https://i.ibb.co.com/xMMVF88/686577567.gif"></a></p> โ€” Sophie Rain Spiderman Video, a young and talented digital creator, recently became famous thanks to this interesting video. Leaked Video Sophie ...27 seconds ago - Sophie Rain Spiderman Viral Video Original Viral video took the internet by storm and amazed viewers on various social media platforms. Sophie Rain Spiderman Video, a young and talented digital creator, recently became famous thanks to this interesting video. Leaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video Leaked on X Twitter Telegram Leaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video Leaked on X Twitter Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter Leaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video Leaked on X Twitter Leaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video Leaked on X Twitter Telegram Leaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video Leaked on X Twitter Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter Related Search : sophie rain nude sophie rain porn sophie rain naked sophie rain nudes sophie rain leaks sophie rain onlyfans sophie rain leaked sophie rain spiderman video sophie rain leak sophie rain age sophie rain spiderman sophie rain pussy sophie rain xxx sophie rain sex tape sophie rain spider man sophie rain spiderman video oficial sophie rain leaked nudes sophie rain onlyfans leaked sophie rain erome sophie rain spiderman video instagram sophie rain spiderman leak sophie rain spiderman video tutorial sophie rain spiderman video twitter sophie rain spiderman vid sophie rain spiderman video leaked sophie rain spiderman porn sophie rain spiderman video oficial twitter sophie rain spiderman video tiktok original spider man sophie rain spiderman sophie rain spiderman leaked sophie rain spiderman video leak sophie rain spiderman twitter sophie rain spiderman xxx sophie rain spiderman video xxx sophie rain spiderman tiktok sophie rain spiderman video instagram full video 18 seconds ago <a href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman" rel="nofollow">โ–บโ–บโœ… ๐˜พ๐™‡๐™„๐˜พ๐™† ๐™ƒ๐™€๐™๐™€ ==โ–บโ–บ ๐™๐™ช๐™ก๐™ก ๐™‘๐™ž๐™™๐™š๐™ค๏ธโ€‹</a></p> <a href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman" rel="nofollow">๐Ÿ”ดโ–บ๐‚๐‹๐ˆ๐‚๐Š ๐‡๐„๐‘๐„ ๐ŸŒ==โ–บโ–บ ๐ƒ๐จ๐ฐ๐ง๐ฅ๐จ๐š๐ ๐๐จ๐ฐโฌ‡๏ธโฌ‡๏ธโ€‹</a></p> <p><a rel="nofollow" title="WATCH NOW" href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman"><img border="Sophie+Rain+Spidermanno" height="480" width="720" title="WATCH NOW" alt="WATCH NOW" src="https://i.ibb.co.com/xMMVF88/686577567.gif"></a></p> Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter L๐šŽaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L๐šŽaked on X Twitter . . . . . . . . . L๐šŽaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L๐šŽaked on X Twitter Telegram L๐šŽaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L๐šŽaked on X Twitter Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter Related Search : sophie rain nude sophie rain porn sophie rain naked sophie rain nudes sophie rain leaks sophie rain onlyfans sophie rain leaked sophie rain spiderman video sophie rain leak sophie rain age sophie rain spiderman sophie rain pussy sophie rain xxx sophie rain sex tape sophie rain spider man sophie rain spiderman video oficial sophie rain leaked nudes sophie rain onlyfans leaked sophie rain erome sophie rain spiderman video instagram sophie rain spiderman leak sophie rain spiderman video tutorial sophie rain spiderman video twitter sophie rain spiderman vid sophie rain spiderman video leaked sophie rain spiderman porn sophie rain spiderman video oficial twitter sophie rain spiderman video tiktok original spider man sophie rain spiderman sophie rain spiderman leaked sophie rain spiderman video leak sophie rain spiderman twitter sophie rain spiderman xxx sophie rain spiderman video xxx sophie rain spiderman tiktok sophie rain spiderman video instagram full video L๐šŽaked Video Sophie Rain Spiderman Video Leaked Original Video แด ษชส€แด€สŸ Video L๐šŽaked on X Twitter Telegram [-wATCH-]โ€” Sophie Rain Spiderman Video Leaked Video Original Video Link Sophie Rain Spiderman Video Leaked Video แด ษชส€แด€สŸ On Social Media X Trending Now [-wATCH-]โ€” Sophie Rain Spiderman Video Leaked Video แด ษชส€แด€สŸ On Social Media หฃ แต€สทโฑแต—แต—แต‰สณ [-wATCH-]โ€” Sophie Rain Spiderman Video Leaked Video Original Video Link Sophie Rain Spiderman Video Leaked Video แด ษชส€แด€สŸ On Social Media X Trending Now L๐šŽaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L๐šŽaked on X Twitter Telegram L๐šŽaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L๐šŽaked on X Twitter Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter L๐šŽaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L๐šŽaked on X Twitter . . . . . . . . . L๐šŽaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L๐šŽaked on X Twitter Telegram L๐šŽaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L๐šŽaked on X Twitter Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter L๐šŽaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L๐šŽaked on X Twitter. , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , 18 seconds ago <a href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman" rel="nofollow">โ–บโ–บโœ… ๐˜พ๐™‡๐™„๐˜พ๐™† ๐™ƒ๐™€๐™๐™€ ==โ–บโ–บ ๐™๐™ช๐™ก๐™ก ๐™‘๐™ž๐™™๐™š๐™ค๏ธโ€‹</a></p> <a href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman" rel="nofollow">๐Ÿ”ดโ–บ๐‚๐‹๐ˆ๐‚๐Š ๐‡๐„๐‘๐„ ๐ŸŒ==โ–บโ–บ ๐ƒ๐จ๐ฐ๐ง๐ฅ๐จ๐š๐ ๐๐จ๐ฐโฌ‡๏ธโฌ‡๏ธโ€‹</a></p> <p><a rel="nofollow" title="WATCH NOW" href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman"><img border="Sophie+Rain+Spidermanno" height="480" width="720" title="WATCH NOW" alt="WATCH NOW" src="https://i.ibb.co.com/xMMVF88/686577567.gif"></a></p> โ€” Sophie Rain Spiderman Video, a young and talented digital creator, recently became famous thanks to this interesting video. Leaked Video Sophie ...27 seconds ago - Sophie Rain Spiderman Viral Video Original Viral video took the internet by storm and amazed viewers on various social media platforms. Sophie Rain Spiderman Video, a young and talented digital creator, recently became famous thanks to this interesting video. Leaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video Leaked on X Twitter Telegram Leaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video Leaked on X Twitter Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter Leaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video Leaked on X Twitter Leaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video Leaked on X Twitter Telegram Leaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video Leaked on X Twitter Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter Related Search : sophie rain nude sophie rain porn sophie rain naked sophie rain nudes sophie rain leaks sophie rain onlyfans sophie rain leaked sophie rain spiderman video sophie rain leak sophie rain age sophie rain spiderman sophie rain pussy sophie rain xxx sophie rain sex tape sophie rain spider man sophie rain spiderman video oficial sophie rain leaked nudes sophie rain onlyfans leaked sophie rain erome sophie rain spiderman video instagram sophie rain spiderman leak sophie rain spiderman video tutorial sophie rain spiderman video twitter sophie rain spiderman vid sophie rain spiderman video leaked sophie rain spiderman porn sophie rain spiderman video oficial twitter sophie rain spiderman video tiktok original spider man sophie rain spiderman sophie rain spiderman leaked sophie rain spiderman video leak sophie rain spiderman twitter sophie rain spiderman xxx sophie rain spiderman video xxx sophie rain spiderman tiktok sophie rain spiderman video instagram full video 18 seconds ago <a href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman" rel="nofollow">โ–บโ–บโœ… ๐˜พ๐™‡๐™„๐˜พ๐™† ๐™ƒ๐™€๐™๐™€ ==โ–บโ–บ ๐™๐™ช๐™ก๐™ก ๐™‘๐™ž๐™™๐™š๐™ค๏ธโ€‹</a></p> <a href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman" rel="nofollow">๐Ÿ”ดโ–บ๐‚๐‹๐ˆ๐‚๐Š ๐‡๐„๐‘๐„ ๐ŸŒ==โ–บโ–บ ๐ƒ๐จ๐ฐ๐ง๐ฅ๐จ๐š๐ ๐๐จ๐ฐโฌ‡๏ธโฌ‡๏ธโ€‹</a></p> <p><a rel="nofollow" title="WATCH NOW" href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman"><img border="Sophie+Rain+Spidermanno" height="480" width="720" title="WATCH NOW" alt="WATCH NOW" src="https://i.ibb.co.com/xMMVF88/686577567.gif"></a></p> Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter L๐šŽaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L๐šŽaked on X Twitter . . . . . . . . . L๐šŽaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L๐šŽaked on X Twitter Telegram L๐šŽaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L๐šŽaked on X Twitter Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter Related Search : sophie rain nude sophie rain porn sophie rain naked sophie rain nudes sophie rain leaks sophie rain onlyfans sophie rain leaked sophie rain spiderman video sophie rain leak sophie rain age sophie rain spiderman sophie rain pussy sophie rain xxx sophie rain sex tape sophie rain spider man sophie rain spiderman video oficial sophie rain leaked nudes sophie rain onlyfans leaked sophie rain erome sophie rain spiderman video instagram sophie rain spiderman leak sophie rain spiderman video tutorial sophie rain spiderman video twitter sophie rain spiderman vid sophie rain spiderman video leaked sophie rain spiderman porn sophie rain spiderman video oficial twitter sophie rain spiderman video tiktok original spider man sophie rain spiderman sophie rain spiderman leaked sophie rain spiderman video leak sophie rain spiderman twitter sophie rain spiderman xxx sophie rain spiderman video xxx sophie rain spiderman tiktok sophie rain spiderman video instagram full video L๐šŽaked Video Sophie Rain Spiderman Video Leaked Original Video แด ษชส€แด€สŸ Video L๐šŽaked on X Twitter Telegram [-wATCH-]โ€” Sophie Rain Spiderman Video Leaked Video Original Video Link Sophie Rain Spiderman Video Leaked Video แด ษชส€แด€สŸ On Social Media X Trending Now [-wATCH-]โ€” Sophie Rain Spiderman Video Leaked Video แด ษชส€แด€สŸ On Social Media หฃ แต€สทโฑแต—แต—แต‰สณ [-wATCH-]โ€” Sophie Rain Spiderman Video Leaked Video Original Video Link Sophie Rain Spiderman Video Leaked Video แด ษชส€แด€สŸ On Social Media X Trending Now L๐šŽaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L๐šŽaked on X Twitter Telegram L๐šŽaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L๐šŽaked on X Twitter Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter L๐šŽaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L๐šŽaked on X Twitter . . . . . . . . . L๐šŽaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L๐šŽaked on X Twitter Telegram L๐šŽaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L๐šŽaked on X Twitter Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter L๐šŽaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L๐šŽaked on X Twitter. , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , 18 seconds ago <a href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman" rel="nofollow">โ–บโ–บโœ… ๐˜พ๐™‡๐™„๐˜พ๐™† ๐™ƒ๐™€๐™๐™€ ==โ–บโ–บ ๐™๐™ช๐™ก๐™ก ๐™‘๐™ž๐™™๐™š๐™ค๏ธโ€‹</a></p> <a href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman" rel="nofollow">๐Ÿ”ดโ–บ๐‚๐‹๐ˆ๐‚๐Š ๐‡๐„๐‘๐„ ๐ŸŒ==โ–บโ–บ ๐ƒ๐จ๐ฐ๐ง๐ฅ๐จ๐š๐ ๐๐จ๐ฐโฌ‡๏ธโฌ‡๏ธโ€‹</a></p> <p><a rel="nofollow" title="WATCH NOW" href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman"><img border="Sophie+Rain+Spidermanno" height="480" width="720" title="WATCH NOW" alt="WATCH NOW" src="https://i.ibb.co.com/xMMVF88/686577567.gif"></a></p> โ€” Sophie Rain Spiderman Video, a young and talented digital creator, recently became famous thanks to this interesting video. Leaked Video Sophie ...27 seconds ago - Sophie Rain Spiderman Viral Video Original Viral video took the internet by storm and amazed viewers on various social media platforms. Sophie Rain Spiderman Video, a young and talented digital creator, recently became famous thanks to this interesting video. Leaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video Leaked on X Twitter Telegram Leaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video Leaked on X Twitter Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter Leaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video Leaked on X Twitter Leaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video Leaked on X Twitter Telegram Leaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video Leaked on X Twitter Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter Related Search : sophie rain nude sophie rain porn sophie rain naked sophie rain nudes sophie rain leaks sophie rain onlyfans sophie rain leaked sophie rain spiderman video sophie rain leak sophie rain age sophie rain spiderman sophie rain pussy sophie rain xxx sophie rain sex tape sophie rain spider man sophie rain spiderman video oficial sophie rain leaked nudes sophie rain onlyfans leaked sophie rain erome sophie rain spiderman video instagram sophie rain spiderman leak sophie rain spiderman video tutorial sophie rain spiderman video twitter sophie rain spiderman vid sophie rain spiderman video leaked sophie rain spiderman porn sophie rain spiderman video oficial twitter sophie rain spiderman video tiktok original spider man sophie rain spiderman sophie rain spiderman leaked sophie rain spiderman video leak sophie rain spiderman twitter sophie rain spiderman xxx sophie rain spiderman video xxx sophie rain spiderman tiktok sophie rain spiderman video instagram full video 18 seconds ago <a href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman" rel="nofollow">โ–บโ–บโœ… ๐˜พ๐™‡๐™„๐˜พ๐™† ๐™ƒ๐™€๐™๐™€ ==โ–บโ–บ ๐™๐™ช๐™ก๐™ก ๐™‘๐™ž๐™™๐™š๐™ค๏ธโ€‹</a></p> <a href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman" rel="nofollow">๐Ÿ”ดโ–บ๐‚๐‹๐ˆ๐‚๐Š ๐‡๐„๐‘๐„ ๐ŸŒ==โ–บโ–บ ๐ƒ๐จ๐ฐ๐ง๐ฅ๐จ๐š๐ ๐๐จ๐ฐโฌ‡๏ธโฌ‡๏ธโ€‹</a></p> <p><a rel="nofollow" title="WATCH NOW" href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman"><img border="Sophie+Rain+Spidermanno" height="480" width="720" title="WATCH NOW" alt="WATCH NOW" src="https://i.ibb.co.com/xMMVF88/686577567.gif"></a></p> Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter L๐šŽaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L๐šŽaked on X Twitter . . . . . . . . . L๐šŽaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L๐šŽaked on X Twitter Telegram L๐šŽaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L๐šŽaked on X Twitter Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter Related Search : sophie rain nude sophie rain porn sophie rain naked sophie rain nudes sophie rain leaks sophie rain onlyfans sophie rain leaked sophie rain spiderman video sophie rain leak sophie rain age sophie rain spiderman sophie rain pussy sophie rain xxx sophie rain sex tape sophie rain spider man sophie rain spiderman video oficial sophie rain leaked nudes sophie rain onlyfans leaked sophie rain erome sophie rain spiderman video instagram sophie rain spiderman leak sophie rain spiderman video tutorial sophie rain spiderman video twitter sophie rain spiderman vid sophie rain spiderman video leaked sophie rain spiderman porn sophie rain spiderman video oficial twitter sophie rain spiderman video tiktok original spider man sophie rain spiderman sophie rain spiderman leaked sophie rain spiderman video leak sophie rain spiderman twitter sophie rain spiderman xxx sophie rain spiderman video xxx sophie rain spiderman tiktok sophie rain spiderman video instagram full video L๐šŽaked Video Sophie Rain Spiderman Video Leaked Original Video แด ษชส€แด€สŸ Video L๐šŽaked on X Twitter Telegram [-wATCH-]โ€” Sophie Rain Spiderman Video Leaked Video Original Video Link Sophie Rain Spiderman Video Leaked Video แด ษชส€แด€สŸ On Social Media X Trending Now [-wATCH-]โ€” Sophie Rain Spiderman Video Leaked Video แด ษชส€แด€สŸ On Social Media หฃ แต€สทโฑแต—แต—แต‰สณ [-wATCH-]โ€” Sophie Rain Spiderman Video Leaked Video Original Video Link Sophie Rain Spiderman Video Leaked Video แด ษชส€แด€สŸ On Social Media X Trending Now L๐šŽaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L๐šŽaked on X Twitter Telegram L๐šŽaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L๐šŽaked on X Twitter Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter L๐šŽaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L๐šŽaked on X Twitter . . . . . . . . . L๐šŽaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L๐šŽaked on X Twitter Telegram L๐šŽaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L๐šŽaked on X Twitter Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter L๐šŽaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L๐šŽaked on X Twitter. , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , 18 seconds ago <a href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman" rel="nofollow">โ–บโ–บโœ… ๐˜พ๐™‡๐™„๐˜พ๐™† ๐™ƒ๐™€๐™๐™€ ==โ–บโ–บ ๐™๐™ช๐™ก๐™ก ๐™‘๐™ž๐™™๐™š๐™ค๏ธโ€‹</a></p> <a href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman" rel="nofollow">๐Ÿ”ดโ–บ๐‚๐‹๐ˆ๐‚๐Š ๐‡๐„๐‘๐„ ๐ŸŒ==โ–บโ–บ ๐ƒ๐จ๐ฐ๐ง๐ฅ๐จ๐š๐ ๐๐จ๐ฐโฌ‡๏ธโฌ‡๏ธโ€‹</a></p> <p><a rel="nofollow" title="WATCH NOW" href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman"><img border="Sophie+Rain+Spidermanno" height="480" width="720" title="WATCH NOW" alt="WATCH NOW" src="https://i.ibb.co.com/xMMVF88/686577567.gif"></a></p> โ€” Sophie Rain Spiderman Video, a young and talented digital creator, recently became famous thanks to this interesting video. Leaked Video Sophie ...27 seconds ago - Sophie Rain Spiderman Viral Video Original Viral video took the internet by storm and amazed viewers on various social media platforms. Sophie Rain Spiderman Video, a young and talented digital creator, recently became famous thanks to this interesting video. Leaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video Leaked on X Twitter Telegram Leaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video Leaked on X Twitter Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter Leaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video Leaked on X Twitter Leaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video Leaked on X Twitter Telegram Leaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video Leaked on X Twitter Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter Related Search : sophie rain nude sophie rain porn sophie rain naked sophie rain nudes sophie rain leaks sophie rain onlyfans sophie rain leaked sophie rain spiderman video sophie rain leak sophie rain age sophie rain spiderman sophie rain pussy sophie rain xxx sophie rain sex tape sophie rain spider man sophie rain spiderman video oficial sophie rain leaked nudes sophie rain onlyfans leaked sophie rain erome sophie rain spiderman video instagram sophie rain spiderman leak sophie rain spiderman video tutorial sophie rain spiderman video twitter sophie rain spiderman vid sophie rain spiderman video leaked sophie rain spiderman porn sophie rain spiderman video oficial twitter sophie rain spiderman video tiktok original spider man sophie rain spiderman sophie rain spiderman leaked sophie rain spiderman video leak sophie rain spiderman twitter sophie rain spiderman xxx sophie rain spiderman video xxx sophie rain spiderman tiktok sophie rain spiderman video instagram full video 18 seconds ago <a href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman" rel="nofollow">โ–บโ–บโœ… ๐˜พ๐™‡๐™„๐˜พ๐™† ๐™ƒ๐™€๐™๐™€ ==โ–บโ–บ ๐™๐™ช๐™ก๐™ก ๐™‘๐™ž๐™™๐™š๐™ค๏ธโ€‹</a></p> <a href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman" rel="nofollow">๐Ÿ”ดโ–บ๐‚๐‹๐ˆ๐‚๐Š ๐‡๐„๐‘๐„ ๐ŸŒ==โ–บโ–บ ๐ƒ๐จ๐ฐ๐ง๐ฅ๐จ๐š๐ ๐๐จ๐ฐโฌ‡๏ธโฌ‡๏ธโ€‹</a></p> <p><a rel="nofollow" title="WATCH NOW" href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman"><img border="Sophie+Rain+Spidermanno" height="480" width="720" title="WATCH NOW" alt="WATCH NOW" src="https://i.ibb.co.com/xMMVF88/686577567.gif"></a></p> Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter L๐šŽaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L๐šŽaked on X Twitter . . . . . . . . . L๐šŽaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L๐šŽaked on X Twitter Telegram L๐šŽaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L๐šŽaked on X Twitter Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter Related Search : sophie rain nude sophie rain porn sophie rain naked sophie rain nudes sophie rain leaks sophie rain onlyfans sophie rain leaked sophie rain spiderman video sophie rain leak sophie rain age sophie rain spiderman sophie rain pussy sophie rain xxx sophie rain sex tape sophie rain spider man sophie rain spiderman video oficial sophie rain leaked nudes sophie rain onlyfans leaked sophie rain erome sophie rain spiderman video instagram sophie rain spiderman leak sophie rain spiderman video tutorial sophie rain spiderman video twitter sophie rain spiderman vid sophie rain spiderman video leaked sophie rain spiderman porn sophie rain spiderman video oficial twitter sophie rain spiderman video tiktok original spider man sophie rain spiderman sophie rain spiderman leaked sophie rain spiderman video leak sophie rain spiderman twitter sophie rain spiderman xxx sophie rain spiderman video xxx sophie rain spiderman tiktok sophie rain spiderman video instagram full video L๐šŽaked Video Sophie Rain Spiderman Video Leaked Original Video แด ษชส€แด€สŸ Video L๐šŽaked on X Twitter Telegram [-wATCH-]โ€” Sophie Rain Spiderman Video Leaked Video Original Video Link Sophie Rain Spiderman Video Leaked Video แด ษชส€แด€สŸ On Social Media X Trending Now [-wATCH-]โ€” Sophie Rain Spiderman Video Leaked Video แด ษชส€แด€สŸ On Social Media หฃ แต€สทโฑแต—แต—แต‰สณ [-wATCH-]โ€” Sophie Rain Spiderman Video Leaked Video Original Video Link Sophie Rain Spiderman Video Leaked Video แด ษชส€แด€สŸ On Social Media X Trending Now L๐šŽaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L๐šŽaked on X Twitter Telegram L๐šŽaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L๐šŽaked on X Twitter Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter L๐šŽaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L๐šŽaked on X Twitter . . . . . . . . . L๐šŽaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L๐šŽaked on X Twitter Telegram L๐šŽaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L๐šŽaked on X Twitter Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter L๐šŽaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L๐šŽaked on X Twitter. , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , 18 seconds ago <a href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman" rel="nofollow">โ–บโ–บโœ… ๐˜พ๐™‡๐™„๐˜พ๐™† ๐™ƒ๐™€๐™๐™€ ==โ–บโ–บ ๐™๐™ช๐™ก๐™ก ๐™‘๐™ž๐™™๐™š๐™ค๏ธโ€‹</a></p> <a href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman" rel="nofollow">๐Ÿ”ดโ–บ๐‚๐‹๐ˆ๐‚๐Š ๐‡๐„๐‘๐„ ๐ŸŒ==โ–บโ–บ ๐ƒ๐จ๐ฐ๐ง๐ฅ๐จ๐š๐ ๐๐จ๐ฐโฌ‡๏ธโฌ‡๏ธโ€‹</a></p> <p><a rel="nofollow" title="WATCH NOW" href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman"><img border="Sophie+Rain+Spidermanno" height="480" width="720" title="WATCH NOW" alt="WATCH NOW" src="https://i.ibb.co.com/xMMVF88/686577567.gif"></a></p> โ€” Sophie Rain Spiderman Video, a young and talented digital creator, recently became famous thanks to this interesting video. Leaked Video Sophie ...27 seconds ago - Sophie Rain Spiderman Viral Video Original Viral video took the internet by storm and amazed viewers on various social media platforms. Sophie Rain Spiderman Video, a young and talented digital creator, recently became famous thanks to this interesting video. Leaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video Leaked on X Twitter Telegram Leaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video Leaked on X Twitter Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter Leaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video Leaked on X Twitter Leaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video Leaked on X Twitter Telegram Leaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video Leaked on X Twitter Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter Related Search : sophie rain nude sophie rain porn sophie rain naked sophie rain nudes sophie rain leaks sophie rain onlyfans sophie rain leaked sophie rain spiderman video sophie rain leak sophie rain age sophie rain spiderman sophie rain pussy sophie rain xxx sophie rain sex tape sophie rain spider man sophie rain spiderman video oficial sophie rain leaked nudes sophie rain onlyfans leaked sophie rain erome sophie rain spiderman video instagram sophie rain spiderman leak sophie rain spiderman video tutorial sophie rain spiderman video twitter sophie rain spiderman vid sophie rain spiderman video leaked sophie rain spiderman porn sophie rain spiderman video oficial twitter sophie rain spiderman video tiktok original spider man sophie rain spiderman sophie rain spiderman leaked sophie rain spiderman video leak sophie rain spiderman twitter sophie rain spiderman xxx sophie rain spiderman video xxx sophie rain spiderman tiktok sophie rain spiderman video instagram full video 18 seconds ago <a href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman" rel="nofollow">โ–บโ–บโœ… ๐˜พ๐™‡๐™„๐˜พ๐™† ๐™ƒ๐™€๐™๐™€ ==โ–บโ–บ ๐™๐™ช๐™ก๐™ก ๐™‘๐™ž๐™™๐™š๐™ค๏ธโ€‹</a></p> <a href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman" rel="nofollow">๐Ÿ”ดโ–บ๐‚๐‹๐ˆ๐‚๐Š ๐‡๐„๐‘๐„ ๐ŸŒ==โ–บโ–บ ๐ƒ๐จ๐ฐ๐ง๐ฅ๐จ๐š๐ ๐๐จ๐ฐโฌ‡๏ธโฌ‡๏ธโ€‹</a></p> <p><a rel="nofollow" title="WATCH NOW" href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman"><img border="Sophie+Rain+Spidermanno" height="480" width="720" title="WATCH NOW" alt="WATCH NOW" src="https://i.ibb.co.com/xMMVF88/686577567.gif"></a></p> Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter L๐šŽaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L๐šŽaked on X Twitter . . . . . . . . . L๐šŽaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L๐šŽaked on X Twitter Telegram L๐šŽaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L๐šŽaked on X Twitter Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter Related Search : sophie rain nude sophie rain porn sophie rain naked sophie rain nudes sophie rain leaks sophie rain onlyfans sophie rain leaked sophie rain spiderman video sophie rain leak sophie rain age sophie rain spiderman sophie rain pussy sophie rain xxx sophie rain sex tape sophie rain spider man sophie rain spiderman video oficial sophie rain leaked nudes sophie rain onlyfans leaked sophie rain erome sophie rain spiderman video instagram sophie rain spiderman leak sophie rain spiderman video tutorial sophie rain spiderman video twitter sophie rain spiderman vid sophie rain spiderman video leaked sophie rain spiderman porn sophie rain spiderman video oficial twitter sophie rain spiderman video tiktok original spider man sophie rain spiderman sophie rain spiderman leaked sophie rain spiderman video leak sophie rain spiderman twitter sophie rain spiderman xxx sophie rain spiderman video xxx sophie rain spiderman tiktok sophie rain spiderman video instagram full video L๐šŽaked Video Sophie Rain Spiderman Video Leaked Original Video แด ษชส€แด€สŸ Video L๐šŽaked on X Twitter Telegram [-wATCH-]โ€” Sophie Rain Spiderman Video Leaked Video Original Video Link Sophie Rain Spiderman Video Leaked Video แด ษชส€แด€สŸ On Social Media X Trending Now [-wATCH-]โ€” Sophie Rain Spiderman Video Leaked Video แด ษชส€แด€สŸ On Social Media หฃ แต€สทโฑแต—แต—แต‰สณ [-wATCH-]โ€” Sophie Rain Spiderman Video Leaked Video Original Video Link Sophie Rain Spiderman Video Leaked Video แด ษชส€แด€สŸ On Social Media X Trending Now L๐šŽaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L๐šŽaked on X Twitter Telegram L๐šŽaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L๐šŽaked on X Twitter Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter L๐šŽaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L๐šŽaked on X Twitter . . . . . . . . . L๐šŽaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L๐šŽaked on X Twitter Telegram L๐šŽaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L๐šŽaked on X Twitter Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter L๐šŽaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video L๐šŽaked on X Twitter. , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , 18 seconds ago <a href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman" rel="nofollow">โ–บโ–บโœ… ๐˜พ๐™‡๐™„๐˜พ๐™† ๐™ƒ๐™€๐™๐™€ ==โ–บโ–บ ๐™๐™ช๐™ก๐™ก ๐™‘๐™ž๐™™๐™š๐™ค๏ธโ€‹</a></p> <a href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman" rel="nofollow">๐Ÿ”ดโ–บ๐‚๐‹๐ˆ๐‚๐Š ๐‡๐„๐‘๐„ ๐ŸŒ==โ–บโ–บ ๐ƒ๐จ๐ฐ๐ง๐ฅ๐จ๐š๐ ๐๐จ๐ฐโฌ‡๏ธโฌ‡๏ธโ€‹</a></p> <p><a rel="nofollow" title="WATCH NOW" href="https://tv2online.com/Leaked/?v=Sophie+Rain+Spiderman"><img border="Sophie+Rain+Spidermanno" height="480" width="720" title="WATCH NOW" alt="WATCH NOW" src="https://i.ibb.co.com/xMMVF88/686577567.gif"></a></p> โ€” Sophie Rain Spiderman Video, a young and talented digital creator, recently became famous thanks to this interesting video. Leaked Video Sophie ...27 seconds ago - Sophie Rain Spiderman Viral Video Original Viral video took the internet by storm and amazed viewers on various social media platforms. Sophie Rain Spiderman Video, a young and talented digital creator, recently became famous thanks to this interesting video. Leaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video Leaked on X Twitter Telegram Leaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video Leaked on X Twitter Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter Leaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video Leaked on X Twitter Leaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video Leaked on X Twitter Telegram Leaked Video Sophie Rain Spiderman Video Tutorial Original Video Viral Video Leaked on X Twitter Sophie Rain Spiderman Video Tutorial Original Video video oficial twitter Related Search : sophie rain nude sophie rain porn sophie rain naked sophie rain nudes sophie rain leaks sophie rain onlyfans sophie rain leaked sophie rain spiderman video sophie rain leak sophie rain age sophie rain spiderman sophie rain pussy sophie rain xxx sophie rain sex tape sophie rain spider man sophie rain spiderman video oficial sophie rain leaked nudes sophie rain onlyfans leaked sophie rain erome sophie rain spiderman video instagram sophie rain spiderman leak sophie rain spiderman video tutorial sophie rain spiderman video twitter sophie rain spiderman vid sophie rain spiderman video leaked sophie rain spiderman porn sophie rain spiderman video oficial twitter sophie rain spiderman video tiktok original spider man sophie rain spiderman sophie rain spiderman leaked sophie rain spiderman video leak sophie rain spiderman twitter sophie rain spiderman xxx sophie rain spiderman video xxx sophie rain spiderman tiktok sophie rain spiderman video instagram full video
minpeter/FLUX-majicflus-v1-diffusers
minpeter
2025-05-27T19:32:49Z
0
0
diffusers
[ "diffusers", "safetensors", "base_model:black-forest-labs/FLUX.1-dev", "base_model:finetune:black-forest-labs/FLUX.1-dev", "endpoints_compatible", "diffusers:FluxPipeline", "region:us" ]
text-to-image
2025-05-27T16:57:11Z
--- base_model: - black-forest-labs/FLUX.1-dev library_name: diffusers --- # majicflus v1 Convert single file diffusers weights to load from_pretrained in a very simple way. ```python from diffusers import FluxPipeline, FluxTransformer2DModel import torch dtype = torch.float8_e4m3fn transformer = ( FluxTransformer2DModel.from_single_file( # Remove the "model.diffusion_model." prefix from the safetensors key "./majicflus_v1_cleaned.safetensors", torch_dtype=dtype, ) .to("cuda") .to(torch.bfloat16) ) pipe = FluxPipeline.from_pretrained( "black-forest-labs/FLUX.1-dev", transformer=transformer ) pipe.save_pretrained("./majicflus_v1_conv_diffusers/model") ```
nimra-mehra-hd/Link.Video.18.nimra.mehra.jobz.hunting.video.nimra.mehra.video.nimra.mehra
nimra-mehra-hd
2025-05-27T19:30:23Z
0
0
null
[ "region:us" ]
null
2025-05-27T19:26:02Z
[๐ŸŒ CLICK HERE ๐ŸŸข==โ–บโ–บ WATCH NOW](https://videohere.top/?V=nimra-mehra) [๐Ÿ”ด CLICK HERE ๐ŸŒ==โ–บโ–บ Download Now)](https://videohere.top/?V=nimra-mehra) [<img alt="fsd" src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?V=nimra-mehra)
othoi-apu-viral-video-link/VIDEO.18.Othoi.1.13.Viral.Video.Full.Video.Original.Clip
othoi-apu-viral-video-link
2025-05-27T19:23:28Z
0
0
null
[ "region:us" ]
null
2025-05-27T19:23:05Z
<a rel="nofollow" href="https://viralflix.xyz/leaked/?new">โ–บโ–บโœ… ๐˜พ๐™‡๐™„๐˜พ๐™† ๐™ƒ๐™€๐™๐™€ ==โ–บโ–บ ๐™๐™ช๐™ก๐™ก ๐™‘๐™ž๐™™๐™š๐™ค๏ธ&ZeroWidthSpace;</a> <a rel="nofollow" href="https://viralflix.xyz/leaked/?new">๐Ÿ”ดโ–บ๐‚๐‹๐ˆ๐‚๐Š ๐‡๐„๐‘๐„ ๐ŸŒ==โ–บโ–บ ๐ƒ๐จ๐ฐ๐ง๐ฅ๐จ๐š๐ ๐๐จ๐ฐโฌ‡๏ธโฌ‡๏ธ&ZeroWidthSpace;</a> <a rel="nofollow" href="https://viralflix.xyz/leaked/?new"><img src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif" alt="fsd"></a>
allura-forge/q3-8b-rc1
allura-forge
2025-05-27T19:22:37Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "mergekit", "merge", "conversational", "arxiv:2306.01708", "base_model:Qwen/Qwen3-8B-Base", "base_model:merge:Qwen/Qwen3-8B-Base", "base_model:allura-forge/q3-8b-ft-ep2-merged", "base_model:merge:allura-forge/q3-8b-ft-ep2-merged", "base_model:allura-org/remnant-qwen3-8b", "base_model:merge:allura-org/remnant-qwen3-8b", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-27T19:21:36Z
--- base_model: - allura-forge/q3-8b-ft-ep2-merged - Qwen/Qwen3-8B-Base - allura-org/remnant-qwen3-8b library_name: transformers tags: - mergekit - merge --- # output This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [TIES](https://arxiv.org/abs/2306.01708) merge method using [Qwen/Qwen3-8B-Base](https://huggingface.co/Qwen/Qwen3-8B-Base) as a base. ### Models Merged The following models were included in the merge: * [allura-forge/q3-8b-ft-ep2-merged](https://huggingface.co/allura-forge/q3-8b-ft-ep2-merged) * [allura-org/remnant-qwen3-8b](https://huggingface.co/allura-org/remnant-qwen3-8b) ### Configuration The following YAML configuration was used to produce this model: ```yaml base_model: Qwen/Qwen3-8B-Base models: - model: allura-forge/q3-8b-ft-ep2-merged parameters: weight: 0.75 density: 0.9 - model: allura-org/remnant-qwen3-8b parameters: weight: 0.25 density: 0.5 merge_method: ties dtype: bfloat16 ```
Lubna-qureshi-Hd/lubna.qureshi.viral.video.HOT.NEws.Today.Trending.Latest.Video
Lubna-qureshi-Hd
2025-05-27T19:20:58Z
0
0
null
[ "region:us" ]
null
2025-05-27T19:17:26Z
[๐ŸŒ CLICK HERE ๐ŸŸข==โ–บโ–บ WATCH NOW](https://videohere.top/?V=Lubna-qureshi) [๐Ÿ”ด CLICK HERE ๐ŸŒ==โ–บโ–บ Download Now)](https://videohere.top/?V=Lubna-qureshi) [<img alt="fsd" src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?V=Lubna-qureshi)
ErikCikalleshi/alpaca_lora_model
ErikCikalleshi
2025-05-27T19:19:51Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen3", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-05-22T19:35:59Z
--- base_model: unsloth/qwen3-14b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen3 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** ErikCikalleshi - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen3-14b-unsloth-bnb-4bit This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Makrrr/ppo-Huggy
Makrrr
2025-05-27T19:19:19Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2025-05-27T19:19:14Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog ๐Ÿถ to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: Makrrr/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
othoi-1-13-viral/EXCLUSIVE.TRENDING.CLIP.othoi.113.Viral.Video.Leaks.Official
othoi-1-13-viral
2025-05-27T19:18:34Z
0
0
null
[ "region:us" ]
null
2025-05-27T19:11:12Z
[๐Ÿ”ด โžคโ–บ๐‚๐ฅ๐ข๐ค ๐‡๐ž๐ซ๐ž ๐ญ๐จ๐Ÿ‘‰๐Ÿ‘‰ (๐…๐ฎ๐ฅ๐ฅ ๐ฏ๐ข๐๐ž๐จ ๐‹๐ข๐ง๐ค )](https://videohere.top/?othoi-113) [โ–บโœ… ๐˜พ๐™‡๐™„๐˜พ๐™† ๐™ƒ๐™€๐™๐™€ ==โ–บโ–บ ๐™๐™ช๐™ก๐™ก ๐™‘๐™ž๐™™๐™š๐™คโค๏ธโค๏ธโฌ‡๏ธโฌ‡๏ธโ€‹](https://videohere.top/?othoi-113) [<img alt="fsd" src="http://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?othoi-113)