modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-15 18:28:48
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
522 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-15 18:28:34
card
stringlengths
11
1.01M
aymanelotfi/ppo-LunarLander-v2
aymanelotfi
2024-02-15T14:13:41Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-02-15T14:05:01Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 42.17 +/- 91.91 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Wajid333/poca-SoccerTwos
Wajid333
2024-02-15T14:03:16Z
73
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SoccerTwos", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2024-02-15T04:25:28Z
--- library_name: ml-agents tags: - SoccerTwos - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: Wajid333/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
PG-AGI/ai-interviewer
PG-AGI
2024-02-15T14:02:53Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-02-15T14:02:50Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Cuphadi/a2c-PandaReachDense-v3
Cuphadi
2024-02-15T13:54:57Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-02-15T13:50:54Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v3 type: PandaReachDense-v3 metrics: - type: mean_reward value: -0.21 +/- 0.10 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v3** This is a trained model of a **A2C** agent playing **PandaReachDense-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Jingya/tiny-stable-diffusion-lora-64
Jingya
2024-02-15T13:53:13Z
0
0
null
[ "tensorboard", "license:apache-2.0", "region:us" ]
null
2024-02-15T13:46:44Z
--- license: apache-2.0 --- tiny lora trained with [pokemon](https://github.com/huggingface/diffusers/tree/main/examples/text_to_image#training-with-lora) for `hf-internal-testing/tiny-stable-diffusion-torch`. [TEST CIS ONLY]
manimaranpa07/my_Ws_extraction_model
manimaranpa07
2024-02-15T13:48:36Z
92
0
transformers
[ "transformers", "safetensors", "distilbert", "token-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-02-13T16:16:58Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: my_Ws_extraction_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_Ws_extraction_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2355 - Precision: 0.0 - Recall: 0.0 - F1: 0.0 - Accuracy: 0.9570 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 3 | 1.4172 | 0.0526 | 0.0833 | 0.0645 | 0.9083 | | No log | 2.0 | 6 | 1.2355 | 0.0 | 0.0 | 0.0 | 0.9570 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.0+cu118 - Datasets 2.17.0 - Tokenizers 0.15.2
Norod78/SDXL-Fairy-Form-LoRA
Norod78
2024-02-15T13:47:21Z
12
6
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2024-02-15T13:47:06Z
--- tags: - text-to-image - stable-diffusion - lora - diffusers - template:sd-lora widget: - text: A FairyForm Snoop dog holding a smoking wand parameters: negative_prompt: >- cartoon, drawing, painting, illustration, blurry, grainy, unfocused, nsfw, nude, naked, bad hands, mutilated limbs, detached limbs, extra fingers output: url: >- images/01138-7780-A FairyForm Snoop dog holding a smoking wand _lora_SDXL_Fairy_Form_LoRA_0.8_.jpg - text: A painting of The Mona Lisa FairyForm parameters: negative_prompt: >- blurry, grainy, unfocused, nsfw, nude, naked, bad hands, mutilated limbs, detached limbs, extra fingers output: url: >- images/01101-7778-A painting of The Mona Lisa FairyForm _lora_SDXL_Fairy_Form_LoRA_0.8_.jpg - text: A professional studio photo of Godzilla FairyForm in a ruined city parameters: negative_prompt: blurry, grainy, unfocused, cartoon, illustration, drawing output: url: >- images/01064-7777-A professional studio photo of Godzilla FairyForm in a ruined city _lora_SDXL_Fairy_Form_LoRA_0.8_.jpg - text: A cinematic photo of a FairyForm wonderwoman in a field of pink flowers parameters: negative_prompt: >- blurry, grainy, unfocused, cartoon, illustration, drawing, nsfw, nude, naked, bad hands, mutilated limbs, detached limbs, etra fingers output: url: >- images/01075-7780-A cinematic photo of a FairyForm wonderwoman in a field of pink flowers _lora_SDXL_Fairy_Form_LoRA_0.8_.jpg - text: >- A cinematic photo of a FairyForm Cthulhu rising from the sea in a great sparkle storm parameters: negative_prompt: >- blurry, grainy, unfocused, nsfw, nude, naked, bad hands, mutilated limbs, detached limbs, extra fingers output: url: >- images/01078-7779-A cinematic photo of a FairyForm Cthulhu rising from the sea in a great sparkle storm _lora_SDXL_Fairy_Form_LoRA_0.8_.jpg base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: FairyForm --- # SDXL Fairy Form LoRA <Gallery /> ## Model description Turn things into their Fairy Form Use *FairyForm* in your prompts [CivitAI link](https:&#x2F;&#x2F;civitai.com&#x2F;models&#x2F;306810&#x2F;sdxl-fairy-form-lora) [The dataset](https:&#x2F;&#x2F;civitai.com&#x2F;api&#x2F;download&#x2F;training-data&#x2F;344394) ## Trigger words You should use `FairyForm` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/Norod78/SDXL-Fairy-Form-LoRA/tree/main) them in the Files & versions tab.
Yuss68/HAR_model
Yuss68
2024-02-15T13:40:28Z
92
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-02-15T13:39:07Z
--- license: apache-2.0 base_model: t5-small tags: - generated_from_trainer metrics: - rouge model-index: - name: HAR_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # HAR_model This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.5524 - Rouge1: 0.3529 - Rouge2: 0.1071 - Rougel: 0.2263 - Rougelsum: 0.2263 - Gen Len: 86.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 1 | 2.9579 | 0.312 | 0.0738 | 0.2003 | 0.2003 | 75.0 | | No log | 2.0 | 2 | 2.8855 | 0.312 | 0.0738 | 0.2003 | 0.2003 | 75.0 | | No log | 3.0 | 3 | 2.8381 | 0.3376 | 0.0808 | 0.205 | 0.205 | 77.5 | | No log | 4.0 | 4 | 2.7929 | 0.3383 | 0.0903 | 0.2018 | 0.2018 | 74.5 | | No log | 5.0 | 5 | 2.7389 | 0.3383 | 0.0903 | 0.2018 | 0.2018 | 74.5 | | No log | 6.0 | 6 | 2.6640 | 0.3383 | 0.0903 | 0.2018 | 0.2018 | 74.5 | | No log | 7.0 | 7 | 2.6333 | 0.3422 | 0.0916 | 0.1961 | 0.1961 | 72.0 | | No log | 8.0 | 8 | 2.6110 | 0.3383 | 0.0903 | 0.2018 | 0.2018 | 74.5 | | No log | 9.0 | 9 | 2.5951 | 0.3529 | 0.1071 | 0.2263 | 0.2263 | 86.0 | | No log | 10.0 | 10 | 2.5826 | 0.3529 | 0.1071 | 0.2263 | 0.2263 | 86.0 | | No log | 11.0 | 11 | 2.5732 | 0.3529 | 0.1071 | 0.2263 | 0.2263 | 86.0 | | No log | 12.0 | 12 | 2.5632 | 0.3529 | 0.1071 | 0.2263 | 0.2263 | 86.0 | | No log | 13.0 | 13 | 2.5632 | 0.3529 | 0.1071 | 0.2263 | 0.2263 | 86.0 | | No log | 14.0 | 14 | 2.5562 | 0.3529 | 0.1071 | 0.2263 | 0.2263 | 86.0 | | No log | 15.0 | 15 | 2.5524 | 0.3529 | 0.1071 | 0.2263 | 0.2263 | 86.0 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1
hiendang7613/xlmr-lstm-crf-resume-ner4
hiendang7613
2024-02-15T13:38:27Z
6
1
transformers
[ "transformers", "safetensors", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:fjd_dataset", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-02-15T10:11:34Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer datasets: - fjd_dataset model-index: - name: xlmr-lstm-crf-resume-ner4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr-lstm-crf-resume-ner4 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the fjd_dataset dataset. It achieves the following results on the evaluation set: - eval_loss: 0.1764 - eval_precision: 0.5811 - eval_recall: 0.5602 - eval_f1: 0.5705 - eval_accuracy: 0.9501 - eval_runtime: 52.6822 - eval_samples_per_second: 94.415 - eval_steps_per_second: 2.961 - epoch: 4.0 - step: 3680 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1
ChayanM/Image_Captioner_Mimic
ChayanM
2024-02-15T13:36:01Z
6
0
transformers
[ "transformers", "safetensors", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "endpoints_compatible", "region:us" ]
image-text-to-text
2024-02-11T07:33:57Z
--- tags: - generated_from_trainer metrics: - rouge model-index: - name: Image_Captioner_Mimic results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Image_Captioner_Mimic This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0963 - Rouge1: 32.528 - Rouge2: 19.9922 - Rougel: 31.403 - Rougelsum: 31.9372 - Gen Len: 12.5584 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:------:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 0.0597 | 1.0 | 24457 | 0.0567 | 37.8657 | 27.8087 | 37.4596 | 37.752 | 9.9527 | | 0.0533 | 2.0 | 48914 | 0.0526 | 39.2211 | 28.2036 | 38.5786 | 38.9976 | 10.7079 | | 0.0507 | 3.0 | 73371 | 0.0499 | 39.3449 | 28.3875 | 38.7151 | 39.0449 | 10.2091 | | 0.0457 | 4.0 | 97828 | 0.0479 | 39.8753 | 28.5 | 39.127 | 39.6178 | 11.2407 | | 0.0419 | 5.0 | 122285 | 0.0461 | 40.0478 | 28.797 | 39.3201 | 39.7468 | 10.3153 | | 0.0406 | 6.0 | 146742 | 0.0445 | 39.7923 | 28.4281 | 39.0583 | 39.4523 | 10.4186 | | 0.0373 | 7.0 | 171199 | 0.0429 | 39.954 | 28.535 | 39.2226 | 39.6457 | 10.6640 | | 0.0347 | 8.0 | 195656 | 0.0419 | 39.4329 | 28.0336 | 38.6815 | 39.0968 | 10.7775 | | 0.031 | 9.0 | 220113 | 0.0411 | 39.4524 | 28.1057 | 38.6998 | 39.0906 | 10.8397 | | 0.0286 | 10.0 | 244570 | 0.0407 | 39.1493 | 27.639 | 38.3784 | 38.8085 | 10.9530 | | 0.0261 | 11.0 | 269027 | 0.0408 | 38.8083 | 27.2206 | 37.9679 | 38.422 | 11.2390 | | 0.0249 | 12.0 | 293484 | 0.0412 | 38.3972 | 26.7316 | 37.5838 | 38.0409 | 11.4510 | | 0.0214 | 13.0 | 317941 | 0.0424 | 37.785 | 26.3302 | 36.9553 | 37.3764 | 11.4482 | | 0.0188 | 14.0 | 342398 | 0.0438 | 36.9552 | 25.3108 | 36.0278 | 36.4965 | 11.6232 | | 0.0174 | 15.0 | 366855 | 0.0458 | 35.6476 | 23.9574 | 34.6526 | 35.1259 | 11.6605 | | 0.0153 | 16.0 | 391312 | 0.0487 | 34.657 | 22.8337 | 33.5891 | 34.1343 | 12.2395 | | 0.013 | 17.0 | 415769 | 0.0518 | 33.5548 | 21.1569 | 32.4899 | 33.0394 | 12.2604 | | 0.0114 | 18.0 | 440226 | 0.0559 | 34.3809 | 22.0108 | 33.2698 | 33.8578 | 12.0861 | | 0.01 | 19.0 | 464683 | 0.0601 | 32.9062 | 20.3145 | 31.8147 | 32.3802 | 12.5176 | | 0.0081 | 20.0 | 489140 | 0.0651 | 32.9482 | 20.3862 | 31.865 | 32.3837 | 12.4577 | | 0.0069 | 21.0 | 513597 | 0.0698 | 32.3054 | 19.764 | 31.2178 | 31.7592 | 12.4939 | | 0.0057 | 22.0 | 538054 | 0.0751 | 31.7627 | 19.0106 | 30.6263 | 31.175 | 12.7530 | | 0.0048 | 23.0 | 562511 | 0.0793 | 31.8295 | 19.255 | 30.6958 | 31.2314 | 12.6077 | | 0.0041 | 24.0 | 586968 | 0.0834 | 32.1523 | 19.2017 | 30.9774 | 31.5383 | 12.7461 | | 0.0032 | 25.0 | 611425 | 0.0870 | 32.5379 | 20.0041 | 31.3903 | 31.9037 | 12.6848 | | 0.0025 | 26.0 | 635882 | 0.0903 | 32.6757 | 20.1388 | 31.5495 | 32.0827 | 12.5950 | | 0.0023 | 27.0 | 660339 | 0.0927 | 32.0874 | 19.3546 | 30.9125 | 31.4675 | 12.6290 | | 0.0019 | 28.0 | 684796 | 0.0947 | 32.6988 | 20.1847 | 31.5643 | 32.1143 | 12.5412 | | 0.0017 | 29.0 | 709253 | 0.0958 | 32.4574 | 19.7702 | 31.2955 | 31.8608 | 12.5558 | | 0.0014 | 30.0 | 733710 | 0.0963 | 32.528 | 19.9922 | 31.403 | 31.9372 | 12.5584 | ### Framework versions - Transformers 4.37.1 - Pytorch 1.13.1+cu117 - Datasets 2.15.0 - Tokenizers 0.15.1
hewonty/bert-ner-finetuned-pii
hewonty
2024-02-15T13:25:44Z
98
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-02-13T12:09:46Z
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-ner-finetuned-pii results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-ner-finetuned-pii This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0076 - Precision: 0.9427 - Recall: 0.9727 - F1: 0.9575 - Accuracy: 0.9982 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0105 | 1.0 | 1324 | 0.0132 | 0.8641 | 0.9464 | 0.9033 | 0.9960 | | 0.0056 | 2.0 | 2648 | 0.0080 | 0.9298 | 0.9643 | 0.9467 | 0.9978 | | 0.0047 | 3.0 | 3972 | 0.0076 | 0.9427 | 0.9727 | 0.9575 | 0.9982 | ### Framework versions - Transformers 4.37.0 - Pytorch 2.1.2 - Datasets 2.1.0 - Tokenizers 0.15.1
logicker/SkkuDS-DPO-72B-v4
logicker
2024-02-15T13:23:59Z
48
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "pretrained, dpo", "conversational", "en", "arxiv:2309.16609", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-15T10:05:07Z
--- license: other license_name: tongyi-qianwen license_link: >- https://huggingface.co/Qwen/Qwen1.5-72B/blob/main/LICENSE language: - en pipeline_tag: text-generation tags: - pretrained, dpo --- # Qwen1.5-72B ## DPO Tuning - Dataset: Intel/orca_dpo_pairs ## Introduction Qwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: * Multilingual support of both base and chat models; * Stable support of 32K context length for models of all sizes * No need of `trust_remote_code`. For more details, please refer to [blog post](https://qwenlm.github.io/blog/qwen1.5/) and [GitHub repo](https://github.com/QwenLM/Qwen1.5). ## Model Details Qwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA and the mixture of SWA and full attention. ## Requirements The code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install `transformers>=4.37.0`, or you might encounter the following error: ``` KeyError: 'qwen2'. ``` ## Citation ``` @article{qwen, title={Qwen Technical Report}, author={Jinze Bai and Shuai Bai and Yunfei Chu and Zeyu Cui and Kai Dang and Xiaodong Deng and Yang Fan and Wenbin Ge and Yu Han and Fei Huang and Binyuan Hui and Luo Ji and Mei Li and Junyang Lin and Runji Lin and Dayiheng Liu and Gao Liu and Chengqiang Lu and Keming Lu and Jianxin Ma and Rui Men and Xingzhang Ren and Xuancheng Ren and Chuanqi Tan and Sinan Tan and Jianhong Tu and Peng Wang and Shijie Wang and Wei Wang and Shengguang Wu and Benfeng Xu and Jin Xu and An Yang and Hao Yang and Jian Yang and Shusheng Yang and Yang Yao and Bowen Yu and Hongyi Yuan and Zheng Yuan and Jianwei Zhang and Xingxuan Zhang and Yichang Zhang and Zhenru Zhang and Chang Zhou and Jingren Zhou and Xiaohuan Zhou and Tianhang Zhu}, journal={arXiv preprint arXiv:2309.16609}, year={2023} } ```
jhovitor98/pormas_gpt2
jhovitor98
2024-02-15T13:23:50Z
0
0
null
[ "text-generation", "pt", "license:other", "region:us" ]
text-generation
2024-02-15T13:15:20Z
--- license: other language: - pt pipeline_tag: text-generation ---
Anguuuuus/laryngitis-phrase
Anguuuuus
2024-02-15T13:13:15Z
146
0
transformers
[ "transformers", "tensorboard", "safetensors", "wav2vec2", "audio-classification", "generated_from_trainer", "base_model:facebook/wav2vec2-base", "base_model:finetune:facebook/wav2vec2-base", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2024-02-15T13:13:00Z
--- license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: laryngitis-phrase results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # laryngitis-phrase This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4868 - Accuracy: 0.8636 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6956 | 1.0 | 6 | 0.6940 | 0.4545 | | 0.6829 | 2.0 | 12 | 0.7607 | 0.1818 | | 0.6688 | 3.0 | 18 | 0.7834 | 0.1818 | | 0.6342 | 4.0 | 24 | 0.7330 | 0.2727 | | 0.5927 | 5.0 | 30 | 0.6679 | 0.6818 | | 0.5485 | 6.0 | 36 | 0.6057 | 0.7273 | | 0.5085 | 7.0 | 42 | 0.5197 | 0.8636 | | 0.4655 | 8.0 | 48 | 0.4943 | 0.8636 | | 0.4122 | 9.0 | 54 | 0.5054 | 0.8636 | | 0.3926 | 10.0 | 60 | 0.4868 | 0.8636 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1
CatBarks/bertES_PosWeighted1_model
CatBarks
2024-02-15T13:04:27Z
194
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-02-15T13:03:00Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
LarryAIDraw/Ranger-8
LarryAIDraw
2024-02-15T13:02:47Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2024-02-15T13:00:27Z
--- license: creativeml-openrail-m --- https://civitai.com/models/285085/kantai-collection-ranger
LarryAIDraw/buzhihuo_v0_5
LarryAIDraw
2024-02-15T13:01:16Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2024-02-15T12:58:15Z
--- license: creativeml-openrail-m --- https://civitai.com/models/101276/realistic-and-animegame-lessonmyojigreater-buzhihuo-cosplay-cosplay
LarryAIDraw/buzhihuo_V1
LarryAIDraw
2024-02-15T13:01:04Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2024-02-15T12:57:44Z
--- license: creativeml-openrail-m --- https://civitai.com/models/47056/onmyojishiranui-buzhihuo
minuva/MiniLMv2-toxic-jigsaw-lite
minuva
2024-02-15T12:56:27Z
101
1
transformers
[ "transformers", "safetensors", "bert", "text-classification", "toxic", "toxicity", "hate speech", "offensive language", "multi-class-classification", "multi-label-classification", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-02-06T17:47:07Z
--- language: - en tags: - toxic - toxicity - hate speech - offensive language - multi-class-classification - multi-label-classification license: apache-2.0 --- # Text Classification Toxicity This model is a fined-tuned version of [MiniLMv2-L6-H384](https://huggingface.co/nreimers/MiniLMv2-L6-H384-distilled-from-BERT-Large) on the on the [Jigsaw 1st Kaggle competition](https://www.kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge) dataset using [unitary/toxic-bert](https://huggingface.co/unitary/toxic-bert) as teacher model. The quantized version in ONNX format can be found [here](https://huggingface.co/minuva/MiniLMv2-toxic-jigaw-lite-onnx). The model contains two labels only (toxicity and severe toxicity). For the model with all labels refer to this [page](https://huggingface.co/minuva/MiniLMv2-toxic-jijgsaw) # Load the Model ```py from transformers import pipeline pipe = pipeline(model='minuva/MiniLMv2-toxic-jigsaw-lite', task='text-classification') pipe("This is pure trash") # [{'label': 'toxic', 'score': 0.887}] ``` # Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 48 - eval_batch_size: 48 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - warmup_ratio: 0.1 # Metrics (comparison with teacher model) | Teacher (params) | Student (params) | Set (metric) | Score (teacher) | Score (student) | |--------------------|-------------|----------|--------| --------| | unitary/toxic-bert (110M) | MiniLMv2-toxic-jigsaw-lite (23M) | Test (ROC_AUC) | 0.982677 | 0.9815 | # Deployment Check our [fast-nlp-text-toxicity repository](https://github.com/minuva/fast-nlp-text-toxicity) for a FastAPI and ONNX based server to deploy this model on CPU devices.
CatBarks/GPT2ES_ClassWeighted001_tokenizer
CatBarks
2024-02-15T12:52:43Z
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-02-15T12:52:42Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
hugo-massonnat/Reinforce-PixelCopter
hugo-massonnat
2024-02-15T12:47:23Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2024-02-13T14:54:34Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-PixelCopter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 19.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Oysiyl/speecht5_tts_common_voice_nl
Oysiyl
2024-02-15T12:45:12Z
83
1
transformers
[ "transformers", "safetensors", "speecht5", "text-to-audio", "generated_from_trainer", "text-to-speech", "nl", "dataset:common_voice_16_1", "base_model:microsoft/speecht5_tts", "base_model:finetune:microsoft/speecht5_tts", "license:mit", "endpoints_compatible", "region:us" ]
text-to-speech
2024-02-15T11:15:08Z
--- license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer datasets: - common_voice_16_1 model-index: - name: speecht5_tts_common_voice_nl results: [] language: - nl pipeline_tag: text-to-speech --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # speecht5_tts_common_voice_nl This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the common_voice_16_1 dataset. It achieves the following results on the evaluation set: - Loss: 0.3938 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.7187 | 1.0 | 441 | 0.4533 | | 0.4947 | 2.0 | 882 | 0.4243 | | 0.4648 | 3.0 | 1323 | 0.4131 | | 0.4468 | 4.0 | 1764 | 0.4062 | | 0.4384 | 5.0 | 2205 | 0.4016 | | 0.4362 | 6.0 | 2646 | 0.3982 | | 0.4309 | 7.0 | 3087 | 0.3964 | | 0.4317 | 8.0 | 3528 | 0.3959 | | 0.427 | 9.0 | 3969 | 0.3939 | | 0.424 | 10.0 | 4410 | 0.3938 | ### Framework versions - Transformers 4.37.2 - Pytorch 1.12.1+cu116 - Datasets 2.4.0 - Tokenizers 0.15.2
SmartComponents/bge-micro-v2
SmartComponents
2024-02-15T12:38:51Z
278
1
sentence-transformers
[ "sentence-transformers", "pytorch", "onnx", "bert", "feature-extraction", "sentence-similarity", "transformers", "mteb", "model-index", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-02-15T12:19:16Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers - mteb model-index: - name: bge_micro results: - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en) config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 67.76119402985074 - type: ap value: 29.637849284211114 - type: f1 value: 61.31181187111905 - task: type: Classification dataset: type: mteb/amazon_polarity name: MTEB AmazonPolarityClassification config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 79.7547 - type: ap value: 74.21401629809145 - type: f1 value: 79.65319615433783 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (en) config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 37.452000000000005 - type: f1 value: 37.0245198854966 - task: type: Retrieval dataset: type: arguana name: MTEB ArguAna config: default split: test revision: None metrics: - type: map_at_1 value: 31.152 - type: map_at_10 value: 46.702 - type: map_at_100 value: 47.563 - type: map_at_1000 value: 47.567 - type: map_at_3 value: 42.058 - type: map_at_5 value: 44.608 - type: mrr_at_1 value: 32.006 - type: mrr_at_10 value: 47.064 - type: mrr_at_100 value: 47.910000000000004 - type: mrr_at_1000 value: 47.915 - type: mrr_at_3 value: 42.283 - type: mrr_at_5 value: 44.968 - type: ndcg_at_1 value: 31.152 - type: ndcg_at_10 value: 55.308 - type: ndcg_at_100 value: 58.965 - type: ndcg_at_1000 value: 59.067 - type: ndcg_at_3 value: 45.698 - type: ndcg_at_5 value: 50.296 - type: precision_at_1 value: 31.152 - type: precision_at_10 value: 8.279 - type: precision_at_100 value: 0.987 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 18.753 - type: precision_at_5 value: 13.485 - type: recall_at_1 value: 31.152 - type: recall_at_10 value: 82.788 - type: recall_at_100 value: 98.72 - type: recall_at_1000 value: 99.502 - type: recall_at_3 value: 56.259 - type: recall_at_5 value: 67.425 - task: type: Clustering dataset: type: mteb/arxiv-clustering-p2p name: MTEB ArxivClusteringP2P config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 44.52692241938116 - task: type: Clustering dataset: type: mteb/arxiv-clustering-s2s name: MTEB ArxivClusteringS2S config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 33.245710292773595 - task: type: Reranking dataset: type: mteb/askubuntudupquestions-reranking name: MTEB AskUbuntuDupQuestions config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 58.08493637155168 - type: mrr value: 71.94378490084861 - task: type: STS dataset: type: mteb/biosses-sts name: MTEB BIOSSES config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 84.1602804378326 - type: cos_sim_spearman value: 82.92478106365587 - type: euclidean_pearson value: 82.27930167277077 - type: euclidean_spearman value: 82.18560759458093 - type: manhattan_pearson value: 82.34277425888187 - type: manhattan_spearman value: 81.72776583704467 - task: type: Classification dataset: type: mteb/banking77 name: MTEB Banking77Classification config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 81.17207792207792 - type: f1 value: 81.09893836310513 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-p2p name: MTEB BiorxivClusteringP2P config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 36.109308463095516 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-s2s name: MTEB BiorxivClusteringS2S config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 28.06048212317168 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackAndroidRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 28.233999999999998 - type: map_at_10 value: 38.092999999999996 - type: map_at_100 value: 39.473 - type: map_at_1000 value: 39.614 - type: map_at_3 value: 34.839 - type: map_at_5 value: 36.523 - type: mrr_at_1 value: 35.193000000000005 - type: mrr_at_10 value: 44.089 - type: mrr_at_100 value: 44.927 - type: mrr_at_1000 value: 44.988 - type: mrr_at_3 value: 41.559000000000005 - type: mrr_at_5 value: 43.162 - type: ndcg_at_1 value: 35.193000000000005 - type: ndcg_at_10 value: 44.04 - type: ndcg_at_100 value: 49.262 - type: ndcg_at_1000 value: 51.847 - type: ndcg_at_3 value: 39.248 - type: ndcg_at_5 value: 41.298 - type: precision_at_1 value: 35.193000000000005 - type: precision_at_10 value: 8.555 - type: precision_at_100 value: 1.3820000000000001 - type: precision_at_1000 value: 0.189 - type: precision_at_3 value: 19.123 - type: precision_at_5 value: 13.648 - type: recall_at_1 value: 28.233999999999998 - type: recall_at_10 value: 55.094 - type: recall_at_100 value: 76.85300000000001 - type: recall_at_1000 value: 94.163 - type: recall_at_3 value: 40.782000000000004 - type: recall_at_5 value: 46.796 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackEnglishRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 21.538 - type: map_at_10 value: 28.449 - type: map_at_100 value: 29.471000000000004 - type: map_at_1000 value: 29.599999999999998 - type: map_at_3 value: 26.371 - type: map_at_5 value: 27.58 - type: mrr_at_1 value: 26.815 - type: mrr_at_10 value: 33.331 - type: mrr_at_100 value: 34.114 - type: mrr_at_1000 value: 34.182 - type: mrr_at_3 value: 31.561 - type: mrr_at_5 value: 32.608 - type: ndcg_at_1 value: 26.815 - type: ndcg_at_10 value: 32.67 - type: ndcg_at_100 value: 37.039 - type: ndcg_at_1000 value: 39.769 - type: ndcg_at_3 value: 29.523 - type: ndcg_at_5 value: 31.048 - type: precision_at_1 value: 26.815 - type: precision_at_10 value: 5.955 - type: precision_at_100 value: 1.02 - type: precision_at_1000 value: 0.152 - type: precision_at_3 value: 14.033999999999999 - type: precision_at_5 value: 9.911 - type: recall_at_1 value: 21.538 - type: recall_at_10 value: 40.186 - type: recall_at_100 value: 58.948 - type: recall_at_1000 value: 77.158 - type: recall_at_3 value: 30.951 - type: recall_at_5 value: 35.276 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGamingRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 35.211999999999996 - type: map_at_10 value: 46.562 - type: map_at_100 value: 47.579 - type: map_at_1000 value: 47.646 - type: map_at_3 value: 43.485 - type: map_at_5 value: 45.206 - type: mrr_at_1 value: 40.627 - type: mrr_at_10 value: 49.928 - type: mrr_at_100 value: 50.647 - type: mrr_at_1000 value: 50.685 - type: mrr_at_3 value: 47.513 - type: mrr_at_5 value: 48.958 - type: ndcg_at_1 value: 40.627 - type: ndcg_at_10 value: 52.217 - type: ndcg_at_100 value: 56.423 - type: ndcg_at_1000 value: 57.821999999999996 - type: ndcg_at_3 value: 46.949000000000005 - type: ndcg_at_5 value: 49.534 - type: precision_at_1 value: 40.627 - type: precision_at_10 value: 8.476 - type: precision_at_100 value: 1.15 - type: precision_at_1000 value: 0.132 - type: precision_at_3 value: 21.003 - type: precision_at_5 value: 14.469999999999999 - type: recall_at_1 value: 35.211999999999996 - type: recall_at_10 value: 65.692 - type: recall_at_100 value: 84.011 - type: recall_at_1000 value: 94.03099999999999 - type: recall_at_3 value: 51.404 - type: recall_at_5 value: 57.882 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGisRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 22.09 - type: map_at_10 value: 29.516 - type: map_at_100 value: 30.462 - type: map_at_1000 value: 30.56 - type: map_at_3 value: 26.945000000000004 - type: map_at_5 value: 28.421999999999997 - type: mrr_at_1 value: 23.616 - type: mrr_at_10 value: 31.221 - type: mrr_at_100 value: 32.057 - type: mrr_at_1000 value: 32.137 - type: mrr_at_3 value: 28.738000000000003 - type: mrr_at_5 value: 30.156 - type: ndcg_at_1 value: 23.616 - type: ndcg_at_10 value: 33.97 - type: ndcg_at_100 value: 38.806000000000004 - type: ndcg_at_1000 value: 41.393 - type: ndcg_at_3 value: 28.908 - type: ndcg_at_5 value: 31.433 - type: precision_at_1 value: 23.616 - type: precision_at_10 value: 5.299 - type: precision_at_100 value: 0.812 - type: precision_at_1000 value: 0.107 - type: precision_at_3 value: 12.015 - type: precision_at_5 value: 8.701 - type: recall_at_1 value: 22.09 - type: recall_at_10 value: 46.089999999999996 - type: recall_at_100 value: 68.729 - type: recall_at_1000 value: 88.435 - type: recall_at_3 value: 32.584999999999994 - type: recall_at_5 value: 38.550000000000004 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackMathematicaRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 15.469 - type: map_at_10 value: 22.436 - type: map_at_100 value: 23.465 - type: map_at_1000 value: 23.608999999999998 - type: map_at_3 value: 19.716 - type: map_at_5 value: 21.182000000000002 - type: mrr_at_1 value: 18.905 - type: mrr_at_10 value: 26.55 - type: mrr_at_100 value: 27.46 - type: mrr_at_1000 value: 27.553 - type: mrr_at_3 value: 23.921999999999997 - type: mrr_at_5 value: 25.302999999999997 - type: ndcg_at_1 value: 18.905 - type: ndcg_at_10 value: 27.437 - type: ndcg_at_100 value: 32.555 - type: ndcg_at_1000 value: 35.885 - type: ndcg_at_3 value: 22.439 - type: ndcg_at_5 value: 24.666 - type: precision_at_1 value: 18.905 - type: precision_at_10 value: 5.2490000000000006 - type: precision_at_100 value: 0.889 - type: precision_at_1000 value: 0.131 - type: precision_at_3 value: 10.862 - type: precision_at_5 value: 8.085 - type: recall_at_1 value: 15.469 - type: recall_at_10 value: 38.706 - type: recall_at_100 value: 61.242 - type: recall_at_1000 value: 84.84 - type: recall_at_3 value: 24.973 - type: recall_at_5 value: 30.603 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackPhysicsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 24.918000000000003 - type: map_at_10 value: 34.296 - type: map_at_100 value: 35.632000000000005 - type: map_at_1000 value: 35.748999999999995 - type: map_at_3 value: 31.304 - type: map_at_5 value: 33.166000000000004 - type: mrr_at_1 value: 30.703000000000003 - type: mrr_at_10 value: 39.655 - type: mrr_at_100 value: 40.569 - type: mrr_at_1000 value: 40.621 - type: mrr_at_3 value: 37.023 - type: mrr_at_5 value: 38.664 - type: ndcg_at_1 value: 30.703000000000003 - type: ndcg_at_10 value: 39.897 - type: ndcg_at_100 value: 45.777 - type: ndcg_at_1000 value: 48.082 - type: ndcg_at_3 value: 35.122 - type: ndcg_at_5 value: 37.691 - type: precision_at_1 value: 30.703000000000003 - type: precision_at_10 value: 7.305000000000001 - type: precision_at_100 value: 1.208 - type: precision_at_1000 value: 0.159 - type: precision_at_3 value: 16.811 - type: precision_at_5 value: 12.203999999999999 - type: recall_at_1 value: 24.918000000000003 - type: recall_at_10 value: 51.31 - type: recall_at_100 value: 76.534 - type: recall_at_1000 value: 91.911 - type: recall_at_3 value: 37.855 - type: recall_at_5 value: 44.493 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackProgrammersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 22.416 - type: map_at_10 value: 30.474 - type: map_at_100 value: 31.759999999999998 - type: map_at_1000 value: 31.891000000000002 - type: map_at_3 value: 27.728 - type: map_at_5 value: 29.247 - type: mrr_at_1 value: 28.881 - type: mrr_at_10 value: 36.418 - type: mrr_at_100 value: 37.347 - type: mrr_at_1000 value: 37.415 - type: mrr_at_3 value: 33.942 - type: mrr_at_5 value: 35.386 - type: ndcg_at_1 value: 28.881 - type: ndcg_at_10 value: 35.812 - type: ndcg_at_100 value: 41.574 - type: ndcg_at_1000 value: 44.289 - type: ndcg_at_3 value: 31.239 - type: ndcg_at_5 value: 33.302 - type: precision_at_1 value: 28.881 - type: precision_at_10 value: 6.598 - type: precision_at_100 value: 1.1079999999999999 - type: precision_at_1000 value: 0.151 - type: precision_at_3 value: 14.954 - type: precision_at_5 value: 10.776 - type: recall_at_1 value: 22.416 - type: recall_at_10 value: 46.243 - type: recall_at_100 value: 71.352 - type: recall_at_1000 value: 90.034 - type: recall_at_3 value: 32.873000000000005 - type: recall_at_5 value: 38.632 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 22.528166666666667 - type: map_at_10 value: 30.317833333333333 - type: map_at_100 value: 31.44108333333333 - type: map_at_1000 value: 31.566666666666666 - type: map_at_3 value: 27.84425 - type: map_at_5 value: 29.233333333333334 - type: mrr_at_1 value: 26.75733333333333 - type: mrr_at_10 value: 34.24425 - type: mrr_at_100 value: 35.11375 - type: mrr_at_1000 value: 35.184333333333335 - type: mrr_at_3 value: 32.01225 - type: mrr_at_5 value: 33.31225 - type: ndcg_at_1 value: 26.75733333333333 - type: ndcg_at_10 value: 35.072583333333334 - type: ndcg_at_100 value: 40.13358333333334 - type: ndcg_at_1000 value: 42.81825 - type: ndcg_at_3 value: 30.79275000000001 - type: ndcg_at_5 value: 32.822 - type: precision_at_1 value: 26.75733333333333 - type: precision_at_10 value: 6.128083333333334 - type: precision_at_100 value: 1.019 - type: precision_at_1000 value: 0.14391666666666664 - type: precision_at_3 value: 14.129916666666665 - type: precision_at_5 value: 10.087416666666668 - type: recall_at_1 value: 22.528166666666667 - type: recall_at_10 value: 45.38341666666667 - type: recall_at_100 value: 67.81791666666668 - type: recall_at_1000 value: 86.71716666666666 - type: recall_at_3 value: 33.38741666666667 - type: recall_at_5 value: 38.62041666666667 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackStatsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 21.975 - type: map_at_10 value: 28.144999999999996 - type: map_at_100 value: 28.994999999999997 - type: map_at_1000 value: 29.086000000000002 - type: map_at_3 value: 25.968999999999998 - type: map_at_5 value: 27.321 - type: mrr_at_1 value: 25.0 - type: mrr_at_10 value: 30.822 - type: mrr_at_100 value: 31.647 - type: mrr_at_1000 value: 31.712 - type: mrr_at_3 value: 28.860000000000003 - type: mrr_at_5 value: 30.041 - type: ndcg_at_1 value: 25.0 - type: ndcg_at_10 value: 31.929999999999996 - type: ndcg_at_100 value: 36.258 - type: ndcg_at_1000 value: 38.682 - type: ndcg_at_3 value: 27.972 - type: ndcg_at_5 value: 30.089 - type: precision_at_1 value: 25.0 - type: precision_at_10 value: 4.923 - type: precision_at_100 value: 0.767 - type: precision_at_1000 value: 0.106 - type: precision_at_3 value: 11.860999999999999 - type: precision_at_5 value: 8.466 - type: recall_at_1 value: 21.975 - type: recall_at_10 value: 41.102 - type: recall_at_100 value: 60.866 - type: recall_at_1000 value: 78.781 - type: recall_at_3 value: 30.268 - type: recall_at_5 value: 35.552 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackTexRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 15.845999999999998 - type: map_at_10 value: 21.861 - type: map_at_100 value: 22.798 - type: map_at_1000 value: 22.925 - type: map_at_3 value: 19.922 - type: map_at_5 value: 21.054000000000002 - type: mrr_at_1 value: 19.098000000000003 - type: mrr_at_10 value: 25.397 - type: mrr_at_100 value: 26.246000000000002 - type: mrr_at_1000 value: 26.33 - type: mrr_at_3 value: 23.469 - type: mrr_at_5 value: 24.646 - type: ndcg_at_1 value: 19.098000000000003 - type: ndcg_at_10 value: 25.807999999999996 - type: ndcg_at_100 value: 30.445 - type: ndcg_at_1000 value: 33.666000000000004 - type: ndcg_at_3 value: 22.292 - type: ndcg_at_5 value: 24.075 - type: precision_at_1 value: 19.098000000000003 - type: precision_at_10 value: 4.58 - type: precision_at_100 value: 0.8099999999999999 - type: precision_at_1000 value: 0.126 - type: precision_at_3 value: 10.346 - type: precision_at_5 value: 7.542999999999999 - type: recall_at_1 value: 15.845999999999998 - type: recall_at_10 value: 34.172999999999995 - type: recall_at_100 value: 55.24099999999999 - type: recall_at_1000 value: 78.644 - type: recall_at_3 value: 24.401 - type: recall_at_5 value: 28.938000000000002 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackUnixRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 22.974 - type: map_at_10 value: 30.108 - type: map_at_100 value: 31.208000000000002 - type: map_at_1000 value: 31.330999999999996 - type: map_at_3 value: 27.889999999999997 - type: map_at_5 value: 29.023 - type: mrr_at_1 value: 26.493 - type: mrr_at_10 value: 33.726 - type: mrr_at_100 value: 34.622 - type: mrr_at_1000 value: 34.703 - type: mrr_at_3 value: 31.575999999999997 - type: mrr_at_5 value: 32.690999999999995 - type: ndcg_at_1 value: 26.493 - type: ndcg_at_10 value: 34.664 - type: ndcg_at_100 value: 39.725 - type: ndcg_at_1000 value: 42.648 - type: ndcg_at_3 value: 30.447999999999997 - type: ndcg_at_5 value: 32.145 - type: precision_at_1 value: 26.493 - type: precision_at_10 value: 5.7090000000000005 - type: precision_at_100 value: 0.9199999999999999 - type: precision_at_1000 value: 0.129 - type: precision_at_3 value: 13.464 - type: precision_at_5 value: 9.384 - type: recall_at_1 value: 22.974 - type: recall_at_10 value: 45.097 - type: recall_at_100 value: 66.908 - type: recall_at_1000 value: 87.495 - type: recall_at_3 value: 33.338 - type: recall_at_5 value: 37.499 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWebmastersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 22.408 - type: map_at_10 value: 29.580000000000002 - type: map_at_100 value: 31.145 - type: map_at_1000 value: 31.369000000000003 - type: map_at_3 value: 27.634999999999998 - type: map_at_5 value: 28.766000000000002 - type: mrr_at_1 value: 27.272999999999996 - type: mrr_at_10 value: 33.93 - type: mrr_at_100 value: 34.963 - type: mrr_at_1000 value: 35.031 - type: mrr_at_3 value: 32.016 - type: mrr_at_5 value: 33.221000000000004 - type: ndcg_at_1 value: 27.272999999999996 - type: ndcg_at_10 value: 33.993 - type: ndcg_at_100 value: 40.333999999999996 - type: ndcg_at_1000 value: 43.361 - type: ndcg_at_3 value: 30.918 - type: ndcg_at_5 value: 32.552 - type: precision_at_1 value: 27.272999999999996 - type: precision_at_10 value: 6.285 - type: precision_at_100 value: 1.389 - type: precision_at_1000 value: 0.232 - type: precision_at_3 value: 14.427000000000001 - type: precision_at_5 value: 10.356 - type: recall_at_1 value: 22.408 - type: recall_at_10 value: 41.318 - type: recall_at_100 value: 70.539 - type: recall_at_1000 value: 90.197 - type: recall_at_3 value: 32.513 - type: recall_at_5 value: 37.0 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWordpressRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 17.258000000000003 - type: map_at_10 value: 24.294 - type: map_at_100 value: 25.305 - type: map_at_1000 value: 25.419999999999998 - type: map_at_3 value: 22.326999999999998 - type: map_at_5 value: 23.31 - type: mrr_at_1 value: 18.484 - type: mrr_at_10 value: 25.863999999999997 - type: mrr_at_100 value: 26.766000000000002 - type: mrr_at_1000 value: 26.855 - type: mrr_at_3 value: 23.968 - type: mrr_at_5 value: 24.911 - type: ndcg_at_1 value: 18.484 - type: ndcg_at_10 value: 28.433000000000003 - type: ndcg_at_100 value: 33.405 - type: ndcg_at_1000 value: 36.375 - type: ndcg_at_3 value: 24.455 - type: ndcg_at_5 value: 26.031 - type: precision_at_1 value: 18.484 - type: precision_at_10 value: 4.603 - type: precision_at_100 value: 0.773 - type: precision_at_1000 value: 0.11299999999999999 - type: precision_at_3 value: 10.659 - type: precision_at_5 value: 7.505000000000001 - type: recall_at_1 value: 17.258000000000003 - type: recall_at_10 value: 39.589999999999996 - type: recall_at_100 value: 62.592000000000006 - type: recall_at_1000 value: 84.917 - type: recall_at_3 value: 28.706 - type: recall_at_5 value: 32.224000000000004 - task: type: Retrieval dataset: type: climate-fever name: MTEB ClimateFEVER config: default split: test revision: None metrics: - type: map_at_1 value: 10.578999999999999 - type: map_at_10 value: 17.642 - type: map_at_100 value: 19.451 - type: map_at_1000 value: 19.647000000000002 - type: map_at_3 value: 14.618 - type: map_at_5 value: 16.145 - type: mrr_at_1 value: 23.322000000000003 - type: mrr_at_10 value: 34.204 - type: mrr_at_100 value: 35.185 - type: mrr_at_1000 value: 35.235 - type: mrr_at_3 value: 30.847 - type: mrr_at_5 value: 32.824 - type: ndcg_at_1 value: 23.322000000000003 - type: ndcg_at_10 value: 25.352999999999998 - type: ndcg_at_100 value: 32.574 - type: ndcg_at_1000 value: 36.073 - type: ndcg_at_3 value: 20.318 - type: ndcg_at_5 value: 22.111 - type: precision_at_1 value: 23.322000000000003 - type: precision_at_10 value: 8.02 - type: precision_at_100 value: 1.5730000000000002 - type: precision_at_1000 value: 0.22200000000000003 - type: precision_at_3 value: 15.049000000000001 - type: precision_at_5 value: 11.87 - type: recall_at_1 value: 10.578999999999999 - type: recall_at_10 value: 30.964999999999996 - type: recall_at_100 value: 55.986000000000004 - type: recall_at_1000 value: 75.565 - type: recall_at_3 value: 18.686 - type: recall_at_5 value: 23.629 - task: type: Retrieval dataset: type: dbpedia-entity name: MTEB DBPedia config: default split: test revision: None metrics: - type: map_at_1 value: 7.327 - type: map_at_10 value: 14.904 - type: map_at_100 value: 20.29 - type: map_at_1000 value: 21.42 - type: map_at_3 value: 10.911 - type: map_at_5 value: 12.791 - type: mrr_at_1 value: 57.25 - type: mrr_at_10 value: 66.62700000000001 - type: mrr_at_100 value: 67.035 - type: mrr_at_1000 value: 67.052 - type: mrr_at_3 value: 64.833 - type: mrr_at_5 value: 65.908 - type: ndcg_at_1 value: 43.75 - type: ndcg_at_10 value: 32.246 - type: ndcg_at_100 value: 35.774 - type: ndcg_at_1000 value: 42.872 - type: ndcg_at_3 value: 36.64 - type: ndcg_at_5 value: 34.487 - type: precision_at_1 value: 57.25 - type: precision_at_10 value: 25.924999999999997 - type: precision_at_100 value: 7.670000000000001 - type: precision_at_1000 value: 1.599 - type: precision_at_3 value: 41.167 - type: precision_at_5 value: 34.65 - type: recall_at_1 value: 7.327 - type: recall_at_10 value: 19.625 - type: recall_at_100 value: 41.601 - type: recall_at_1000 value: 65.117 - type: recall_at_3 value: 12.308 - type: recall_at_5 value: 15.437999999999999 - task: type: Classification dataset: type: mteb/emotion name: MTEB EmotionClassification config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 44.53 - type: f1 value: 39.39884255816736 - task: type: Retrieval dataset: type: fever name: MTEB FEVER config: default split: test revision: None metrics: - type: map_at_1 value: 58.913000000000004 - type: map_at_10 value: 69.592 - type: map_at_100 value: 69.95599999999999 - type: map_at_1000 value: 69.973 - type: map_at_3 value: 67.716 - type: map_at_5 value: 68.899 - type: mrr_at_1 value: 63.561 - type: mrr_at_10 value: 74.2 - type: mrr_at_100 value: 74.468 - type: mrr_at_1000 value: 74.47500000000001 - type: mrr_at_3 value: 72.442 - type: mrr_at_5 value: 73.58 - type: ndcg_at_1 value: 63.561 - type: ndcg_at_10 value: 74.988 - type: ndcg_at_100 value: 76.52799999999999 - type: ndcg_at_1000 value: 76.88000000000001 - type: ndcg_at_3 value: 71.455 - type: ndcg_at_5 value: 73.42699999999999 - type: precision_at_1 value: 63.561 - type: precision_at_10 value: 9.547 - type: precision_at_100 value: 1.044 - type: precision_at_1000 value: 0.109 - type: precision_at_3 value: 28.143 - type: precision_at_5 value: 18.008 - type: recall_at_1 value: 58.913000000000004 - type: recall_at_10 value: 87.18 - type: recall_at_100 value: 93.852 - type: recall_at_1000 value: 96.256 - type: recall_at_3 value: 77.55199999999999 - type: recall_at_5 value: 82.42399999999999 - task: type: Retrieval dataset: type: fiqa name: MTEB FiQA2018 config: default split: test revision: None metrics: - type: map_at_1 value: 11.761000000000001 - type: map_at_10 value: 19.564999999999998 - type: map_at_100 value: 21.099 - type: map_at_1000 value: 21.288999999999998 - type: map_at_3 value: 16.683999999999997 - type: map_at_5 value: 18.307000000000002 - type: mrr_at_1 value: 23.302 - type: mrr_at_10 value: 30.979 - type: mrr_at_100 value: 32.121 - type: mrr_at_1000 value: 32.186 - type: mrr_at_3 value: 28.549000000000003 - type: mrr_at_5 value: 30.038999999999998 - type: ndcg_at_1 value: 23.302 - type: ndcg_at_10 value: 25.592 - type: ndcg_at_100 value: 32.416 - type: ndcg_at_1000 value: 36.277 - type: ndcg_at_3 value: 22.151 - type: ndcg_at_5 value: 23.483999999999998 - type: precision_at_1 value: 23.302 - type: precision_at_10 value: 7.377000000000001 - type: precision_at_100 value: 1.415 - type: precision_at_1000 value: 0.212 - type: precision_at_3 value: 14.712 - type: precision_at_5 value: 11.358 - type: recall_at_1 value: 11.761000000000001 - type: recall_at_10 value: 31.696 - type: recall_at_100 value: 58.01500000000001 - type: recall_at_1000 value: 81.572 - type: recall_at_3 value: 20.742 - type: recall_at_5 value: 25.707 - task: type: Retrieval dataset: type: hotpotqa name: MTEB HotpotQA config: default split: test revision: None metrics: - type: map_at_1 value: 32.275 - type: map_at_10 value: 44.712 - type: map_at_100 value: 45.621 - type: map_at_1000 value: 45.698 - type: map_at_3 value: 42.016999999999996 - type: map_at_5 value: 43.659 - type: mrr_at_1 value: 64.551 - type: mrr_at_10 value: 71.58099999999999 - type: mrr_at_100 value: 71.952 - type: mrr_at_1000 value: 71.96900000000001 - type: mrr_at_3 value: 70.236 - type: mrr_at_5 value: 71.051 - type: ndcg_at_1 value: 64.551 - type: ndcg_at_10 value: 53.913999999999994 - type: ndcg_at_100 value: 57.421 - type: ndcg_at_1000 value: 59.06 - type: ndcg_at_3 value: 49.716 - type: ndcg_at_5 value: 51.971999999999994 - type: precision_at_1 value: 64.551 - type: precision_at_10 value: 11.110000000000001 - type: precision_at_100 value: 1.388 - type: precision_at_1000 value: 0.161 - type: precision_at_3 value: 30.822 - type: precision_at_5 value: 20.273 - type: recall_at_1 value: 32.275 - type: recall_at_10 value: 55.55 - type: recall_at_100 value: 69.38600000000001 - type: recall_at_1000 value: 80.35799999999999 - type: recall_at_3 value: 46.232 - type: recall_at_5 value: 50.682 - task: type: Classification dataset: type: mteb/imdb name: MTEB ImdbClassification config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 76.4604 - type: ap value: 70.40498168422701 - type: f1 value: 76.38572688476046 - task: type: Retrieval dataset: type: msmarco name: MTEB MSMARCO config: default split: dev revision: None metrics: - type: map_at_1 value: 15.065999999999999 - type: map_at_10 value: 25.058000000000003 - type: map_at_100 value: 26.268 - type: map_at_1000 value: 26.344 - type: map_at_3 value: 21.626 - type: map_at_5 value: 23.513 - type: mrr_at_1 value: 15.501000000000001 - type: mrr_at_10 value: 25.548 - type: mrr_at_100 value: 26.723000000000003 - type: mrr_at_1000 value: 26.793 - type: mrr_at_3 value: 22.142 - type: mrr_at_5 value: 24.024 - type: ndcg_at_1 value: 15.501000000000001 - type: ndcg_at_10 value: 31.008000000000003 - type: ndcg_at_100 value: 37.08 - type: ndcg_at_1000 value: 39.102 - type: ndcg_at_3 value: 23.921999999999997 - type: ndcg_at_5 value: 27.307 - type: precision_at_1 value: 15.501000000000001 - type: precision_at_10 value: 5.155 - type: precision_at_100 value: 0.822 - type: precision_at_1000 value: 0.099 - type: precision_at_3 value: 10.363 - type: precision_at_5 value: 7.917000000000001 - type: recall_at_1 value: 15.065999999999999 - type: recall_at_10 value: 49.507 - type: recall_at_100 value: 78.118 - type: recall_at_1000 value: 93.881 - type: recall_at_3 value: 30.075000000000003 - type: recall_at_5 value: 38.222 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (en) config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 90.6703146374829 - type: f1 value: 90.1258004293966 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (en) config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 68.29229366165072 - type: f1 value: 50.016194478997875 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (en) config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 68.57767316745124 - type: f1 value: 67.16194062146954 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (en) config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 73.92064559515804 - type: f1 value: 73.6680729569968 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-p2p name: MTEB MedrxivClusteringP2P config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 31.56335607367883 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-s2s name: MTEB MedrxivClusteringS2S config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 28.131807833734268 - task: type: Reranking dataset: type: mteb/mind_small name: MTEB MindSmallReranking config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 31.07390328719844 - type: mrr value: 32.117370992867905 - task: type: Retrieval dataset: type: nfcorpus name: MTEB NFCorpus config: default split: test revision: None metrics: - type: map_at_1 value: 5.274 - type: map_at_10 value: 11.489 - type: map_at_100 value: 14.518 - type: map_at_1000 value: 15.914 - type: map_at_3 value: 8.399 - type: map_at_5 value: 9.889000000000001 - type: mrr_at_1 value: 42.724000000000004 - type: mrr_at_10 value: 51.486 - type: mrr_at_100 value: 51.941 - type: mrr_at_1000 value: 51.99 - type: mrr_at_3 value: 49.278 - type: mrr_at_5 value: 50.485 - type: ndcg_at_1 value: 39.938 - type: ndcg_at_10 value: 31.862000000000002 - type: ndcg_at_100 value: 29.235 - type: ndcg_at_1000 value: 37.802 - type: ndcg_at_3 value: 35.754999999999995 - type: ndcg_at_5 value: 34.447 - type: precision_at_1 value: 42.105 - type: precision_at_10 value: 23.901 - type: precision_at_100 value: 7.715 - type: precision_at_1000 value: 2.045 - type: precision_at_3 value: 33.437 - type: precision_at_5 value: 29.782999999999998 - type: recall_at_1 value: 5.274 - type: recall_at_10 value: 15.351 - type: recall_at_100 value: 29.791 - type: recall_at_1000 value: 60.722 - type: recall_at_3 value: 9.411 - type: recall_at_5 value: 12.171999999999999 - task: type: Retrieval dataset: type: nq name: MTEB NQ config: default split: test revision: None metrics: - type: map_at_1 value: 16.099 - type: map_at_10 value: 27.913 - type: map_at_100 value: 29.281000000000002 - type: map_at_1000 value: 29.343999999999998 - type: map_at_3 value: 23.791 - type: map_at_5 value: 26.049 - type: mrr_at_1 value: 18.337 - type: mrr_at_10 value: 29.953999999999997 - type: mrr_at_100 value: 31.080999999999996 - type: mrr_at_1000 value: 31.130000000000003 - type: mrr_at_3 value: 26.168000000000003 - type: mrr_at_5 value: 28.277 - type: ndcg_at_1 value: 18.308 - type: ndcg_at_10 value: 34.938 - type: ndcg_at_100 value: 41.125 - type: ndcg_at_1000 value: 42.708 - type: ndcg_at_3 value: 26.805 - type: ndcg_at_5 value: 30.686999999999998 - type: precision_at_1 value: 18.308 - type: precision_at_10 value: 6.476999999999999 - type: precision_at_100 value: 0.9939999999999999 - type: precision_at_1000 value: 0.11399999999999999 - type: precision_at_3 value: 12.784999999999998 - type: precision_at_5 value: 9.878 - type: recall_at_1 value: 16.099 - type: recall_at_10 value: 54.63 - type: recall_at_100 value: 82.24900000000001 - type: recall_at_1000 value: 94.242 - type: recall_at_3 value: 33.174 - type: recall_at_5 value: 42.164 - task: type: Retrieval dataset: type: quora name: MTEB QuoraRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 67.947 - type: map_at_10 value: 81.499 - type: map_at_100 value: 82.17 - type: map_at_1000 value: 82.194 - type: map_at_3 value: 78.567 - type: map_at_5 value: 80.34400000000001 - type: mrr_at_1 value: 78.18 - type: mrr_at_10 value: 85.05 - type: mrr_at_100 value: 85.179 - type: mrr_at_1000 value: 85.181 - type: mrr_at_3 value: 83.91 - type: mrr_at_5 value: 84.638 - type: ndcg_at_1 value: 78.2 - type: ndcg_at_10 value: 85.715 - type: ndcg_at_100 value: 87.2 - type: ndcg_at_1000 value: 87.39 - type: ndcg_at_3 value: 82.572 - type: ndcg_at_5 value: 84.176 - type: precision_at_1 value: 78.2 - type: precision_at_10 value: 12.973 - type: precision_at_100 value: 1.5010000000000001 - type: precision_at_1000 value: 0.156 - type: precision_at_3 value: 35.949999999999996 - type: precision_at_5 value: 23.62 - type: recall_at_1 value: 67.947 - type: recall_at_10 value: 93.804 - type: recall_at_100 value: 98.971 - type: recall_at_1000 value: 99.91600000000001 - type: recall_at_3 value: 84.75399999999999 - type: recall_at_5 value: 89.32 - task: type: Clustering dataset: type: mteb/reddit-clustering name: MTEB RedditClustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 45.457201684255104 - task: type: Clustering dataset: type: mteb/reddit-clustering-p2p name: MTEB RedditClusteringP2P config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 55.162226937477875 - task: type: Retrieval dataset: type: scidocs name: MTEB SCIDOCS config: default split: test revision: None metrics: - type: map_at_1 value: 4.173 - type: map_at_10 value: 10.463000000000001 - type: map_at_100 value: 12.278 - type: map_at_1000 value: 12.572 - type: map_at_3 value: 7.528 - type: map_at_5 value: 8.863 - type: mrr_at_1 value: 20.599999999999998 - type: mrr_at_10 value: 30.422 - type: mrr_at_100 value: 31.6 - type: mrr_at_1000 value: 31.663000000000004 - type: mrr_at_3 value: 27.400000000000002 - type: mrr_at_5 value: 29.065 - type: ndcg_at_1 value: 20.599999999999998 - type: ndcg_at_10 value: 17.687 - type: ndcg_at_100 value: 25.172 - type: ndcg_at_1000 value: 30.617 - type: ndcg_at_3 value: 16.81 - type: ndcg_at_5 value: 14.499 - type: precision_at_1 value: 20.599999999999998 - type: precision_at_10 value: 9.17 - type: precision_at_100 value: 2.004 - type: precision_at_1000 value: 0.332 - type: precision_at_3 value: 15.6 - type: precision_at_5 value: 12.58 - type: recall_at_1 value: 4.173 - type: recall_at_10 value: 18.575 - type: recall_at_100 value: 40.692 - type: recall_at_1000 value: 67.467 - type: recall_at_3 value: 9.488000000000001 - type: recall_at_5 value: 12.738 - task: type: STS dataset: type: mteb/sickr-sts name: MTEB SICK-R config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 81.12603499315416 - type: cos_sim_spearman value: 73.62060290948378 - type: euclidean_pearson value: 78.14083565781135 - type: euclidean_spearman value: 73.16840437541543 - type: manhattan_pearson value: 77.92017261109734 - type: manhattan_spearman value: 72.8805059949965 - task: type: STS dataset: type: mteb/sts12-sts name: MTEB STS12 config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 79.75955377133172 - type: cos_sim_spearman value: 71.8872633964069 - type: euclidean_pearson value: 76.31922068538256 - type: euclidean_spearman value: 70.86449661855376 - type: manhattan_pearson value: 76.47852229730407 - type: manhattan_spearman value: 70.99367421984789 - task: type: STS dataset: type: mteb/sts13-sts name: MTEB STS13 config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 78.80762722908158 - type: cos_sim_spearman value: 79.84588978756372 - type: euclidean_pearson value: 79.8216849781164 - type: euclidean_spearman value: 80.22647061695481 - type: manhattan_pearson value: 79.56604194112572 - type: manhattan_spearman value: 79.96495189862462 - task: type: STS dataset: type: mteb/sts14-sts name: MTEB STS14 config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 80.1012718092742 - type: cos_sim_spearman value: 76.86011381793661 - type: euclidean_pearson value: 79.94426039862019 - type: euclidean_spearman value: 77.36751135465131 - type: manhattan_pearson value: 79.87959373304288 - type: manhattan_spearman value: 77.37717129004746 - task: type: STS dataset: type: mteb/sts15-sts name: MTEB STS15 config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 83.90618420346104 - type: cos_sim_spearman value: 84.77290791243722 - type: euclidean_pearson value: 84.64732258073293 - type: euclidean_spearman value: 85.21053649543357 - type: manhattan_pearson value: 84.61616883522647 - type: manhattan_spearman value: 85.19803126766931 - task: type: STS dataset: type: mteb/sts16-sts name: MTEB STS16 config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 80.52192114059063 - type: cos_sim_spearman value: 81.9103244827937 - type: euclidean_pearson value: 80.99375176138985 - type: euclidean_spearman value: 81.540250641079 - type: manhattan_pearson value: 80.84979573396426 - type: manhattan_spearman value: 81.3742591621492 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-en) config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 85.82166001234197 - type: cos_sim_spearman value: 86.81857495659123 - type: euclidean_pearson value: 85.72798403202849 - type: euclidean_spearman value: 85.70482438950965 - type: manhattan_pearson value: 85.51579093130357 - type: manhattan_spearman value: 85.41233705379751 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (en) config: en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 64.48071151079803 - type: cos_sim_spearman value: 65.37838108084044 - type: euclidean_pearson value: 64.67378947096257 - type: euclidean_spearman value: 65.39187147219869 - type: manhattan_pearson value: 65.35487466133208 - type: manhattan_spearman value: 65.51328499442272 - task: type: STS dataset: type: mteb/stsbenchmark-sts name: MTEB STSBenchmark config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 82.64702367823314 - type: cos_sim_spearman value: 82.49732953181818 - type: euclidean_pearson value: 83.05996062475664 - type: euclidean_spearman value: 82.28159546751176 - type: manhattan_pearson value: 82.98305503664952 - type: manhattan_spearman value: 82.18405771943928 - task: type: Reranking dataset: type: mteb/scidocs-reranking name: MTEB SciDocsRR config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 78.5744649318696 - type: mrr value: 93.35386291268645 - task: type: Retrieval dataset: type: scifact name: MTEB SciFact config: default split: test revision: None metrics: - type: map_at_1 value: 52.093999999999994 - type: map_at_10 value: 61.646 - type: map_at_100 value: 62.197 - type: map_at_1000 value: 62.22800000000001 - type: map_at_3 value: 58.411 - type: map_at_5 value: 60.585 - type: mrr_at_1 value: 55.00000000000001 - type: mrr_at_10 value: 62.690999999999995 - type: mrr_at_100 value: 63.139 - type: mrr_at_1000 value: 63.166999999999994 - type: mrr_at_3 value: 60.111000000000004 - type: mrr_at_5 value: 61.778 - type: ndcg_at_1 value: 55.00000000000001 - type: ndcg_at_10 value: 66.271 - type: ndcg_at_100 value: 68.879 - type: ndcg_at_1000 value: 69.722 - type: ndcg_at_3 value: 60.672000000000004 - type: ndcg_at_5 value: 63.929 - type: precision_at_1 value: 55.00000000000001 - type: precision_at_10 value: 9.0 - type: precision_at_100 value: 1.043 - type: precision_at_1000 value: 0.11100000000000002 - type: precision_at_3 value: 23.555999999999997 - type: precision_at_5 value: 16.2 - type: recall_at_1 value: 52.093999999999994 - type: recall_at_10 value: 79.567 - type: recall_at_100 value: 91.60000000000001 - type: recall_at_1000 value: 98.333 - type: recall_at_3 value: 64.633 - type: recall_at_5 value: 72.68299999999999 - task: type: PairClassification dataset: type: mteb/sprintduplicatequestions-pairclassification name: MTEB SprintDuplicateQuestions config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.83267326732673 - type: cos_sim_ap value: 95.77995366495178 - type: cos_sim_f1 value: 91.51180311401306 - type: cos_sim_precision value: 91.92734611503532 - type: cos_sim_recall value: 91.10000000000001 - type: dot_accuracy value: 99.63366336633663 - type: dot_ap value: 88.53996286967461 - type: dot_f1 value: 81.06537530266343 - type: dot_precision value: 78.59154929577464 - type: dot_recall value: 83.7 - type: euclidean_accuracy value: 99.82376237623762 - type: euclidean_ap value: 95.53192209281187 - type: euclidean_f1 value: 91.19683481701286 - type: euclidean_precision value: 90.21526418786692 - type: euclidean_recall value: 92.2 - type: manhattan_accuracy value: 99.82376237623762 - type: manhattan_ap value: 95.55642082191741 - type: manhattan_f1 value: 91.16186693147964 - type: manhattan_precision value: 90.53254437869822 - type: manhattan_recall value: 91.8 - type: max_accuracy value: 99.83267326732673 - type: max_ap value: 95.77995366495178 - type: max_f1 value: 91.51180311401306 - task: type: Clustering dataset: type: mteb/stackexchange-clustering name: MTEB StackExchangeClustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 54.508462134213474 - task: type: Clustering dataset: type: mteb/stackexchange-clustering-p2p name: MTEB StackExchangeClusteringP2P config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 34.06549765184959 - task: type: Reranking dataset: type: mteb/stackoverflowdupquestions-reranking name: MTEB StackOverflowDupQuestions config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 49.43129549466616 - type: mrr value: 50.20613169510227 - task: type: Summarization dataset: type: mteb/summeval name: MTEB SummEval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 30.069516173193044 - type: cos_sim_spearman value: 29.872498354017353 - type: dot_pearson value: 28.80761257516063 - type: dot_spearman value: 28.397422678527708 - task: type: Retrieval dataset: type: trec-covid name: MTEB TRECCOVID config: default split: test revision: None metrics: - type: map_at_1 value: 0.169 - type: map_at_10 value: 1.208 - type: map_at_100 value: 5.925 - type: map_at_1000 value: 14.427000000000001 - type: map_at_3 value: 0.457 - type: map_at_5 value: 0.716 - type: mrr_at_1 value: 64.0 - type: mrr_at_10 value: 74.075 - type: mrr_at_100 value: 74.303 - type: mrr_at_1000 value: 74.303 - type: mrr_at_3 value: 71.0 - type: mrr_at_5 value: 72.89999999999999 - type: ndcg_at_1 value: 57.99999999999999 - type: ndcg_at_10 value: 50.376 - type: ndcg_at_100 value: 38.582 - type: ndcg_at_1000 value: 35.663 - type: ndcg_at_3 value: 55.592 - type: ndcg_at_5 value: 53.647999999999996 - type: precision_at_1 value: 64.0 - type: precision_at_10 value: 53.2 - type: precision_at_100 value: 39.6 - type: precision_at_1000 value: 16.218 - type: precision_at_3 value: 59.333000000000006 - type: precision_at_5 value: 57.599999999999994 - type: recall_at_1 value: 0.169 - type: recall_at_10 value: 1.423 - type: recall_at_100 value: 9.049999999999999 - type: recall_at_1000 value: 34.056999999999995 - type: recall_at_3 value: 0.48700000000000004 - type: recall_at_5 value: 0.792 - task: type: Retrieval dataset: type: webis-touche2020 name: MTEB Touche2020 config: default split: test revision: None metrics: - type: map_at_1 value: 1.319 - type: map_at_10 value: 7.112 - type: map_at_100 value: 12.588 - type: map_at_1000 value: 14.056 - type: map_at_3 value: 2.8049999999999997 - type: map_at_5 value: 4.68 - type: mrr_at_1 value: 18.367 - type: mrr_at_10 value: 33.94 - type: mrr_at_100 value: 35.193000000000005 - type: mrr_at_1000 value: 35.193000000000005 - type: mrr_at_3 value: 29.932 - type: mrr_at_5 value: 32.279 - type: ndcg_at_1 value: 15.306000000000001 - type: ndcg_at_10 value: 18.096 - type: ndcg_at_100 value: 30.512 - type: ndcg_at_1000 value: 42.148 - type: ndcg_at_3 value: 17.034 - type: ndcg_at_5 value: 18.509 - type: precision_at_1 value: 18.367 - type: precision_at_10 value: 18.776 - type: precision_at_100 value: 7.02 - type: precision_at_1000 value: 1.467 - type: precision_at_3 value: 19.048000000000002 - type: precision_at_5 value: 22.041 - type: recall_at_1 value: 1.319 - type: recall_at_10 value: 13.748 - type: recall_at_100 value: 43.972 - type: recall_at_1000 value: 79.557 - type: recall_at_3 value: 4.042 - type: recall_at_5 value: 7.742 - task: type: Classification dataset: type: mteb/toxic_conversations_50k name: MTEB ToxicConversationsClassification config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 70.2282 - type: ap value: 13.995763859570426 - type: f1 value: 54.08126256731344 - task: type: Classification dataset: type: mteb/tweet_sentiment_extraction name: MTEB TweetSentimentExtractionClassification config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 57.64006791171477 - type: f1 value: 57.95841320748957 - task: type: Clustering dataset: type: mteb/twentynewsgroups-clustering name: MTEB TwentyNewsgroupsClustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 40.19267841788564 - task: type: PairClassification dataset: type: mteb/twittersemeval2015-pairclassification name: MTEB TwitterSemEval2015 config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 83.96614412588663 - type: cos_sim_ap value: 67.75985678572738 - type: cos_sim_f1 value: 64.04661542276222 - type: cos_sim_precision value: 60.406922357343305 - type: cos_sim_recall value: 68.15303430079156 - type: dot_accuracy value: 79.5732252488526 - type: dot_ap value: 51.30562107572645 - type: dot_f1 value: 53.120759837177744 - type: dot_precision value: 46.478037198258804 - type: dot_recall value: 61.97889182058047 - type: euclidean_accuracy value: 84.00786791440663 - type: euclidean_ap value: 67.58930214486998 - type: euclidean_f1 value: 64.424821579775 - type: euclidean_precision value: 59.4817958454322 - type: euclidean_recall value: 70.26385224274406 - type: manhattan_accuracy value: 83.87673600762949 - type: manhattan_ap value: 67.4250981523309 - type: manhattan_f1 value: 64.10286658015808 - type: manhattan_precision value: 57.96885001066781 - type: manhattan_recall value: 71.68865435356201 - type: max_accuracy value: 84.00786791440663 - type: max_ap value: 67.75985678572738 - type: max_f1 value: 64.424821579775 - task: type: PairClassification dataset: type: mteb/twitterurlcorpus-pairclassification name: MTEB TwitterURLCorpus config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 88.41347459929368 - type: cos_sim_ap value: 84.89261930113058 - type: cos_sim_f1 value: 77.13677607258877 - type: cos_sim_precision value: 74.88581164358733 - type: cos_sim_recall value: 79.52725592854944 - type: dot_accuracy value: 86.32359219156285 - type: dot_ap value: 79.29794992131094 - type: dot_f1 value: 72.84356337679777 - type: dot_precision value: 67.31761478675462 - type: dot_recall value: 79.35786880197105 - type: euclidean_accuracy value: 88.33585593976791 - type: euclidean_ap value: 84.73257641312746 - type: euclidean_f1 value: 76.83529582788195 - type: euclidean_precision value: 72.76294052863436 - type: euclidean_recall value: 81.3905143209116 - type: manhattan_accuracy value: 88.3086894089339 - type: manhattan_ap value: 84.66304891729399 - type: manhattan_f1 value: 76.8181650632165 - type: manhattan_precision value: 73.6864436744219 - type: manhattan_recall value: 80.22790267939637 - type: max_accuracy value: 88.41347459929368 - type: max_ap value: 84.89261930113058 - type: max_f1 value: 77.13677607258877 --- # bge-micro-v2 > Forked from https://huggingface.co/TaylorAI/bge-micro-v2 purely to ensure it remains available. See also [license](LICENSE). This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. Distilled in a 2-step training process (bge-micro was step 1) from `BAAI/bge-small-en-v1.5`. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
NBA55/llama2-7B-without-grade-epoch-04-new
NBA55
2024-02-15T12:36:10Z
0
0
peft
[ "peft", "region:us" ]
null
2024-02-15T12:35:54Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0
btemirov/distill-whisper-jargon
btemirov
2024-02-15T12:28:15Z
60
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "base_model:distil-whisper/distil-small.en", "base_model:finetune:distil-whisper/distil-small.en", "license:mit", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-01-11T04:25:09Z
--- license: mit base_model: distil-whisper/distil-small.en tags: - generated_from_trainer metrics: - wer model-index: - name: distill-whisper-jargon results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distill-whisper-jargon This model is a fine-tuned version of [distil-whisper/distil-small.en](https://huggingface.co/distil-whisper/distil-small.en) on the [btemirov/fin-terms](https://huggingface.co/datasets/btemirov/fin-terms) dataset. It achieves the following results on the evaluation set: - Loss: 4.4314 - Wer: 78.4173 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 3.8199 | 22.22 | 100 | 3.5227 | 79.3525 | | 2.3504 | 44.44 | 200 | 3.7073 | 77.3022 | | 1.4612 | 66.67 | 300 | 4.1042 | 78.6691 | | 0.9713 | 88.89 | 400 | 4.3164 | 77.7698 | | 0.7453 | 111.11 | 500 | 4.4314 | 78.4173 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
CatBarks/bertES_PosWeighted001_tokenizer
CatBarks
2024-02-15T12:26:11Z
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-02-15T12:26:10Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
CatBarks/bertES_PosWeighted001_model
CatBarks
2024-02-15T12:26:10Z
176
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-02-15T12:25:19Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
IndiaBuild/GGUF_Navarna_v0_1_OpenHermes_Hindi
IndiaBuild
2024-02-15T12:24:32Z
3
0
null
[ "gguf", "llama.cpp", "hindi", "endpoints_compatible", "region:us", "conversational" ]
null
2024-02-13T22:08:29Z
--- tags: - gguf - llama.cpp - hindi --- ## Navarna 7B GGUF VERSION here is the orignal [TokenBender/Navarna_v0_1_OpenHermes_Hindi](https://huggingface.co/TokenBender/Navarna_v0_1_OpenHermes_Hindi)
Meli101/sentence-classifier
Meli101
2024-02-15T12:21:41Z
93
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:dmis-lab/biobert-v1.1", "base_model:finetune:dmis-lab/biobert-v1.1", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-02-15T12:21:21Z
--- base_model: dmis-lab/biobert-v1.1 tags: - generated_from_trainer metrics: - precision - recall - accuracy - f1 model-index: - name: sentence-classifier results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sentence-classifier This model is a fine-tuned version of [dmis-lab/biobert-v1.1](https://huggingface.co/dmis-lab/biobert-v1.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3291 - Precision: 0.9236 - Recall: 0.9217 - Accuracy: 0.9219 - F1: 0.9221 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:--------:|:------:| | No log | 1.0 | 154 | 0.3536 | 0.8783 | 0.8745 | 0.8747 | 0.8753 | | No log | 2.0 | 308 | 0.2784 | 0.9132 | 0.9105 | 0.9105 | 0.9109 | | No log | 3.0 | 462 | 0.2928 | 0.9189 | 0.9160 | 0.9162 | 0.9165 | | 0.3402 | 4.0 | 616 | 0.3098 | 0.9239 | 0.9223 | 0.9227 | 0.9228 | | 0.3402 | 5.0 | 770 | 0.3291 | 0.9236 | 0.9217 | 0.9219 | 0.9221 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1
sravaniayyagari/new-model
sravaniayyagari
2024-02-15T12:19:31Z
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-02-15T12:19:29Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
LegoClipStars/Priscilla_Perez_RH
LegoClipStars
2024-02-15T12:18:41Z
0
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "base_model:cagliostrolab/animagine-xl-3.0", "base_model:adapter:cagliostrolab/animagine-xl-3.0", "license:cc-by-4.0", "region:us" ]
text-to-image
2024-02-15T12:18:06Z
--- tags: - text-to-image - stable-diffusion - lora - diffusers - template:sd-lora widget: - text: NEFT parameters: negative_prompt: High school student output: url: images/Priscilla_Perez_Main_Outfit.jpg base_model: cagliostrolab/animagine-xl-3.0 instance_prompt: Please spare me license: cc-by-4.0 --- # Priscilla_Perez_RH <Gallery /> ## Model description Here&#39;s my RVC voice model of Priscilla Perez from Rainbow High season 4. ## Trigger words You should use `Please spare me` to trigger the image generation. ## Download model [Download](/LegoClipStars/Priscilla_Perez_RH/tree/main) them in the Files & versions tab.
nabilayumnan/emotion_classification
nabilayumnan
2024-02-15T12:03:53Z
179
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-02-15T11:27:39Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: emotion_classification results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train[:800] args: default metrics: - name: Accuracy type: accuracy value: 0.5 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # emotion_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.2936 - Accuracy: 0.5 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 40 | 1.5449 | 0.4562 | | No log | 2.0 | 80 | 1.5041 | 0.4188 | | No log | 3.0 | 120 | 1.3526 | 0.5375 | | No log | 4.0 | 160 | 1.3390 | 0.5125 | | No log | 5.0 | 200 | 1.2977 | 0.4875 | | No log | 6.0 | 240 | 1.2655 | 0.525 | | No log | 7.0 | 280 | 1.2572 | 0.5437 | | No log | 8.0 | 320 | 1.2862 | 0.4875 | | No log | 9.0 | 360 | 1.2907 | 0.5375 | | No log | 10.0 | 400 | 1.2621 | 0.5125 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1
mlath123/flan-t5-base-samsum
mlath123
2024-02-15T11:48:28Z
91
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:google/flan-t5-base", "base_model:finetune:google/flan-t5-base", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-02-15T11:47:29Z
--- license: apache-2.0 base_model: google/flan-t5-base tags: - generated_from_trainer metrics: - rouge model-index: - name: flan-t5-base-samsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flan-t5-base-samsum This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3707 - Rouge1: 47.3426 - Rouge2: 23.8703 - Rougel: 40.0537 - Rougelsum: 43.5879 - Gen Len: 17.2063 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.4525 | 1.0 | 1842 | 1.3837 | 46.3005 | 22.8797 | 39.0659 | 42.773 | 17.2149 | | 1.3436 | 2.0 | 3684 | 1.3725 | 47.0672 | 23.547 | 39.8291 | 43.3576 | 17.1954 | | 1.2821 | 3.0 | 5526 | 1.3708 | 47.2477 | 23.6592 | 39.7661 | 43.4389 | 17.2295 | | 1.2307 | 4.0 | 7368 | 1.3707 | 47.3426 | 23.8703 | 40.0537 | 43.5879 | 17.2063 | | 1.1985 | 5.0 | 9210 | 1.3762 | 47.4705 | 23.9801 | 40.0948 | 43.7244 | 17.2833 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1
AntoineGourru/Mistral_qlora_drome_Rplusplus
AntoineGourru
2024-02-15T11:47:35Z
2
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:mistralai/Mistral-7B-Instruct-v0.2", "base_model:adapter:mistralai/Mistral-7B-Instruct-v0.2", "region:us" ]
null
2024-02-15T11:47:28Z
--- library_name: peft base_model: mistralai/Mistral-7B-Instruct-v0.2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.7.0
aisuko/sft-microsoft-phi2-on-dialogsum
aisuko
2024-02-15T11:46:22Z
0
0
peft
[ "peft", "safetensors", "generated_from_trainer", "base_model:microsoft/phi-2", "base_model:adapter:microsoft/phi-2", "license:mit", "region:us" ]
null
2024-02-15T11:05:11Z
--- license: mit library_name: peft tags: - generated_from_trainer base_model: microsoft/phi-2 model-index: - name: sft-microsoft-phi2-on-dialogsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sft-microsoft-phi2-on-dialogsum This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3639 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 5 - total_train_batch_size: 10 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.4203 | 5.0 | 50 | 1.3966 | | 1.2814 | 10.0 | 100 | 1.3639 | ### Framework versions - PEFT 0.7.1 - Transformers 4.36.2 - Pytorch 2.1.2 - Datasets 2.15.0 - Tokenizers 0.15.1
DiptiPawar/t5_recommendation_sports_equipment_english
DiptiPawar
2024-02-15T11:45:33Z
91
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-02-15T09:53:44Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: t5_recommendation_sports_equipment_english results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5_recommendation_sports_equipment_english This model is a fine-tuned version of [t5-large](https://huggingface.co/t5-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3614 - Rouge1: 63.8331 - Rouge2: 0.0 - Rougel: 63.8135 - Rougelsum: 63.8922 - Gen Len: 3.0177 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | No log | 0.96 | 6 | 7.0341 | 41.3666 | 0.0 | 41.2761 | 41.3863 | 3.4923 | | No log | 1.96 | 12 | 2.9883 | 40.7910 | 0.0 | 40.6533 | 40.7615 | 3.0248 | | No log | 2.96 | 18 | 0.7740 | 40.7320 | 0.0 | 40.6139 | 40.7320 | 3.0094 | | No log | 3.96 | 24 | 0.6257 | 59.8583 | 0.0 | 59.8583 | 59.8583 | 3.0 | | No log | 4.96 | 30 | 0.6243 | 59.8583 | 0.0 | 59.8583 | 59.8583 | 3.0 | | No log | 5.96 | 36 | 0.4635 | 60.0945 | 0.0 | 59.9764 | 60.0945 | 3.0035 | | No log | 6.96 | 42 | 0.3732 | 58.2841 | 0.0 | 58.1267 | 58.3038 | 3.1606 | | No log | 7.96 | 48 | 0.3615 | 60.6749 | 0.0 | 60.5667 | 60.6848 | 3.0767 | | No log | 8.96 | 54 | 0.3673 | 61.3144 | 0.0 | 61.1177 | 61.2948 | 3.0260 | | No log | 9.96 | 60 | 0.3614 | 63.8331 | 0.0 | 63.8135 | 63.8922 | 3.0177 | ### Framework versions - Transformers 4.26.0 - Pytorch 2.1.0+cu121 - Datasets 2.8.0 - Tokenizers 0.13.3
musiclang/musiclang-4k
musiclang
2024-02-15T11:34:20Z
94
16
transformers
[ "transformers", "onnx", "safetensors", "gpt2", "text-generation", "license:gpl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-11-23T14:34:08Z
--- license: gpl-3.0 widget: - text: "CHORD_CHANGE" example_title: "Predict from scratch" --- MusicLang Predict model ======================= ![MusicLang logo](https://github.com/MusicLang/musiclang/blob/main/documentation/images/MusicLang.png?raw=true "MusicLang") MusicLang Predict is a model for creating original midi soundtracks with generative AI model. It can be used for different use cases : - Predict a new song from scratch (a fixed number of bars) - Continue a song from a prompt - Predict a new song from a template (see examples below) - Continue a song from a prompt and a template To solve template generation use cases, we provide an interface to create a template from an existing midi file. To make the prediction we have an inference package available here : [MusicLang Predict](https://github.com/MusicLang/musiclang_predict) which is based on the musiclang language : [MusicLang](https://github.com/MusicLang/musiclang). Installation ------------ Install the musiclang-predict package with pip : ```bash pip install musiclang-predict ``` How to use ? ------------ 1. Create a new 2 bars song from scratch : ```python from musiclang_predict import predict, MusicLangTokenizer from transformers import GPT2LMHeadModel # Load model and tokenizer model = GPT2LMHeadModel.from_pretrained('musiclang/musiclang-4k') tokenizer = MusicLangTokenizer('musiclang/musiclang-4k') soundtrack = predict(model, tokenizer, chord_duration=4, nb_chords=2) soundtrack.to_midi('song.mid', tempo=120, time_signature=(4, 4)) ``` 2. Or use an existing midi song as a song structure template : ```python from musiclang_predict import midi_file_to_template, predict_with_template, MusicLangTokenizer from transformers import GPT2LMHeadModel # Load model and tokenizer model = GPT2LMHeadModel.from_pretrained('musiclang/musiclang-4k') tokenizer = MusicLangTokenizer('musiclang/musiclang-4k') template = midi_file_to_template('my_song.mid') soundtrack = predict_with_template(template, model, tokenizer) soundtrack.to_midi('song.mid', tempo=template['tempo'], time_signature=template['time_signature']) ``` See : [MusicLang templates](https://discovered-scabiosa-ea3.notion.site/Create-a-song-template-with-MusicLang-dfd8cad0a14b464fb3475c7fa19c1a82) For a full description of our template format. It's only a dictionary containing information for each chord of the song and some metadata like tempo. You can even create your own without using a base midi file ! 3. Or even use a prompt and a template to create a song ```python from musiclang_predict import midi_file_to_template, predict_with_template, MusicLangTokenizer from transformers import GPT2LMHeadModel from musiclang import Score # Load model and tokenizer model = GPT2LMHeadModel.from_pretrained('musiclang/musiclang-4k') tokenizer = MusicLangTokenizer('musiclang/musiclang-4k') template = midi_file_to_template('my_song.mid') # Take the first chord of the template as a prompt prompt = Score.from_midi('my_prompt.mid', chord_range=(0, 4)) soundtrack = predict_with_template(template, model, tokenizer, prompt=prompt, # Prompt the model with a musiclang score prompt_included_in_template=True # To say the prompt score is included in the template ) soundtrack.to_midi('song.mid', tempo=template['tempo'], time_signature=template['time_signature']) ``` Contact us ---------- If you want to help shape the future of open source music generation, please contact [us](mailto:[email protected]) License ------- The MusicLang predict package (this package) and its associated models is licensed under the GPL-3.0 License. The MusicLang base language (musiclang package) is licensed under the BSD 3-Clause License.
sunwooooong/distilbert-base-uncased-finetuned-emotion
sunwooooong
2024-02-15T11:17:40Z
95
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-31T15:16:38Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.927 - name: F1 type: f1 value: 0.926984518712486 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2213 - Accuracy: 0.927 - F1: 0.9270 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.845 | 1.0 | 250 | 0.3299 | 0.9025 | 0.9003 | | 0.2539 | 2.0 | 500 | 0.2213 | 0.927 | 0.9270 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1
LuisCe/tobacco-multi-classification
LuisCe
2024-02-15T11:15:53Z
0
0
fastai
[ "fastai", "region:us" ]
null
2024-02-15T11:15:50Z
--- tags: - fastai --- # Amazing! 🥳 Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card. --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
ferrazzipietro/Mistral-7B-Instruct-v0.2_adapters_en.layer1_8_16_32_0.05_2_0.0002
ferrazzipietro
2024-02-15T11:07:50Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-02-15T11:07:37Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
vincevas/coze-stablelm-2-1_6b
vincevas
2024-02-15T11:06:07Z
9
0
null
[ "gguf", "base_model:stabilityai/stablelm-2-zephyr-1_6b", "base_model:quantized:stabilityai/stablelm-2-zephyr-1_6b", "region:us" ]
null
2024-02-15T10:56:03Z
--- base_model: "stabilityai/stablelm-2-zephyr-1_6b" --- This is a quantized version of the Stable LM 2 Zephyr 1.6B model, see the [model card](https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b) for a model description and license. This quantized version has been generated from the [model.safetensors](https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b/tree/main) weights file using the [`Candle tensor-tools`](https://github.com/huggingface/candle/blob/main/candle-core/examples/tensor-tools.rs) application: ```shell tensor-tools quantize --quantization q4_1 --out-file stablelm-2-zephyr-1_6b-Q4_1.gguf model.safetensors ```
Manish055/whisper.cpp
Manish055
2024-02-15T11:05:52Z
0
0
null
[ "license:mit", "region:us" ]
null
2024-02-15T10:52:50Z
--- license: mit --- # OpenAI's Whisper models converted to ggml format [Available models](https://huggingface.co/Manish055/whisper.cpp/tree/main) | Model | Disk | Mem | SHA | | ------- | ------ | ------- | ------------------------------------------ | | tiny | 75 MB | ~390 MB | `bd577a113a864445d4c299885e0cb97d4ba92b5f` | | tiny.en | 75 MB | ~390 MB | `c78c86eb1a8faa21b369bcd33207cc90d64ae9df` | | base | 142 MB | ~500 MB | `465707469ff3a37a2b9b8d8f89f2f99de7299dac` | | base.en | 142 MB | ~500 MB | `137c40403d78fd54d454da0f9bd998f78703390c` | | small | 466 MB | ~1.0 GB | `55356645c2b361a969dfd0ef2c5a50d530afd8d5` |
haihuynh/ppo-LunarLanderv2
haihuynh
2024-02-15T11:00:03Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-02-15T10:59:42Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 264.19 +/- 21.44 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
ferrazzipietro/Mistral-7B-Instruct-v0.2_adapters_en.layer1_8_16_32_0.05_2_0.0002_versionebfloat16
ferrazzipietro
2024-02-15T10:53:57Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-02-15T10:53:44Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
tsavage68/chat_1000STEPS_1e6_03beta_DPO
tsavage68
2024-02-15T10:42:57Z
6
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "trl", "dpo", "generated_from_trainer", "conversational", "base_model:meta-llama/Llama-2-7b-chat-hf", "base_model:finetune:meta-llama/Llama-2-7b-chat-hf", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-15T10:39:14Z
--- base_model: meta-llama/Llama-2-7b-chat-hf tags: - trl - dpo - generated_from_trainer model-index: - name: chat_1000STEPS_1e6_03beta_DPO results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # chat_1000STEPS_1e6_03beta_DPO This model is a fine-tuned version of [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6804 - Rewards/chosen: -0.5183 - Rewards/rejected: -0.7327 - Rewards/accuracies: 0.5363 - Rewards/margins: 0.2144 - Logps/rejected: -21.2336 - Logps/chosen: -18.4723 - Logits/rejected: -0.6767 - Logits/chosen: -0.6766 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 4 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.6885 | 0.2 | 100 | 0.6933 | -0.2467 | -0.2660 | 0.4637 | 0.0193 | -19.6779 | -17.5670 | -0.6067 | -0.6066 | | 0.683 | 0.39 | 200 | 0.6859 | 0.0215 | -0.0664 | 0.4923 | 0.0879 | -19.0127 | -16.6730 | -0.6150 | -0.6148 | | 0.6033 | 0.59 | 300 | 0.6999 | -0.1969 | -0.2977 | 0.4791 | 0.1009 | -19.7837 | -17.4008 | -0.6311 | -0.6309 | | 0.6812 | 0.78 | 400 | 0.6942 | -0.0785 | -0.2126 | 0.4813 | 0.1340 | -19.4998 | -17.0064 | -0.6041 | -0.6039 | | 0.6633 | 0.98 | 500 | 0.6789 | -0.1266 | -0.2799 | 0.5077 | 0.1533 | -19.7242 | -17.1665 | -0.5557 | -0.5555 | | 0.2615 | 1.17 | 600 | 0.6788 | -0.4082 | -0.6084 | 0.5253 | 0.2002 | -20.8192 | -18.1052 | -0.6281 | -0.6279 | | 0.3175 | 1.37 | 700 | 0.6809 | -0.4980 | -0.7087 | 0.5297 | 0.2107 | -21.1536 | -18.4046 | -0.6655 | -0.6653 | | 0.2805 | 1.56 | 800 | 0.6794 | -0.5125 | -0.7293 | 0.5341 | 0.2169 | -21.2224 | -18.4529 | -0.6754 | -0.6753 | | 0.3255 | 1.76 | 900 | 0.6807 | -0.5148 | -0.7297 | 0.5385 | 0.2149 | -21.2235 | -18.4605 | -0.6768 | -0.6766 | | 0.2966 | 1.95 | 1000 | 0.6804 | -0.5183 | -0.7327 | 0.5363 | 0.2144 | -21.2336 | -18.4723 | -0.6767 | -0.6766 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.0.0+cu117 - Datasets 2.17.0 - Tokenizers 0.15.2
warmestman/whisper-larger-v3-mn-2000steps
warmestman
2024-02-15T10:41:51Z
2
0
transformers
[ "transformers", "safetensors", "whisper", "automatic-speech-recognition", "whisper-event", "hf-asr-leaderboard", "mn", "dataset:mozilla-foundation/common_voice_16_1", "arxiv:1910.09700", "license:mit", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-02-15T09:49:29Z
--- library_name: transformers tags: - whisper-event - hf-asr-leaderboard license: mit datasets: - mozilla-foundation/common_voice_16_1 language: - mn pipeline_tag: automatic-speech-recognition --- # Model Card for Model ID GPU - A100-80GB ## Model Details This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the None dataset. ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** Ankhbayasgalan Davaadorj - **Model type:** Whisper - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model:** openai/whisper-large-v3 #### Training Hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-03 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adafactor - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2000 - mixed_precision_training: Native AMP ### Results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.4856 | 1.97 | 1000 | 0.496397 | | 0.1312 | 3.94 | 2000 | 0.395565 | ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** A100 80GB - **Hours used:** 1:07:08 hours ## Model Card Authors @Ankhbayasgalan davaadorj ## Model Card Contact [email protected]
leftyjoy/my-luk-dog
leftyjoy
2024-02-15T10:40:48Z
2
0
diffusers
[ "diffusers", "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-02-15T10:31:42Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### My-Luk-Dog Dreambooth model trained by leftyjoy following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: JPCE-083 Sample pictures of this concept: ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/65cde2fd44908296a2edb6dd/5pXB4_2q3GSRB31ob625M.jpeg) ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/65cde2fd44908296a2edb6dd/Rxeg-ePIRaRcHG4PQs09C.jpeg)
gabrielbenabou/ppo-LunarLander-v2
gabrielbenabou
2024-02-15T10:38:44Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-02-15T07:52:47Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 256.11 +/- 20.77 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
EvaKlimentova/knots_protbertBFD_alphafold
EvaKlimentova
2024-02-15T10:38:12Z
98
2
transformers
[ "transformers", "pytorch", "bert", "text-classification", "dataset:EvaKlimentova/knots_AF", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-08T09:46:55Z
--- datasets: - EvaKlimentova/knots_AF --- # M1 - finetuned ProtBert-BFD The model is trained on [knots_AF dataset](https://huggingface.co/datasets/EvaKlimentova/knots_AF) The accuracy on the test set is ~ 0.9848 | M1 ProtBert BFD | Dataset size | Unknotted set size | Accuracy | TPR | TNR | |:----------------------------:|:------------:|:------------------:|:--------:|:------:|:-------:| | All | 39412 | 19718 | 0.9848 | 0.9871 | 0.9826 | | SPOUT | 7371 | 550 | 0.9905 | 0.9963 | 0.9182 | | TDD | 612 | 24 | 0.9918 | 0.9966 | 0.8750 | | DUF | 736 | 429 | 0.97905 | 0.9826 | 0.9767 | | AdoMet synthase | 1794 | 240 | 0.9939 | 0.9968 | 0.9750 | | Carbonic anhydrase | 1531 | 539 | 0.9556 | 0.9718 | 0.9258 | | UCH | 477 | 125 | 0.9099 | 0.9631 | 0.7600 | | ATCase/OTCase | 3799 | 3352 | 0.9992 | 0.9955 | 0.9997 | | ribosomal-mitochondrial | 147 | 41 | 0.8912 | 0.9906 | 0.63412 | | membrane | 8309 | 1577 | 0.9791 | 0.9895 | 0.9347 | | VIT | 14347 | 12639 | 0.9873 | 0.9415 | 0.9935 | | biosynthesis of lantibiotics | 392 | 286 | 0.9719 | 0.9811 | 0.9685 | | PGluconate dehydrogenase | 1 | 0 | 1.0 | 1.0 | |
kouki13/facebook4
kouki13
2024-02-15T10:29:16Z
2
0
transformers
[ "transformers", "safetensors", "bart", "autotrain", "text-generation", "license:other", "endpoints_compatible", "region:us" ]
text-generation
2024-02-15T10:25:38Z
--- tags: - autotrain - text-generation widget: - text: "I love AutoTrain because " license: other --- # Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain). # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "PATH_TO_THIS_REPO" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Prompt content: "hi" messages = [ {"role": "user", "content": "hi"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Model response: "Hello! How can I assist you today?" print(response) ```
kouki13/facebook2
kouki13
2024-02-15T10:27:27Z
2
0
transformers
[ "transformers", "safetensors", "autotrain", "text-generation", "license:other", "endpoints_compatible", "region:us" ]
text-generation
2024-02-15T09:52:27Z
--- tags: - autotrain - text-generation widget: - text: "I love AutoTrain because " license: other --- # Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain). # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "PATH_TO_THIS_REPO" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Prompt content: "hi" messages = [ {"role": "user", "content": "hi"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Model response: "Hello! How can I assist you today?" print(response) ```
kouki13/facebook3
kouki13
2024-02-15T10:23:33Z
2
0
transformers
[ "transformers", "safetensors", "bart", "autotrain", "text-generation", "license:other", "endpoints_compatible", "region:us" ]
text-generation
2024-02-15T10:14:17Z
--- tags: - autotrain - text-generation widget: - text: "I love AutoTrain because " license: other --- # Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain). # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "PATH_TO_THIS_REPO" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Prompt content: "hi" messages = [ {"role": "user", "content": "hi"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Model response: "Hello! How can I assist you today?" print(response) ```
cataluna84/pixel_peft_model-new
cataluna84
2024-02-15T10:20:19Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-02-15T10:20:12Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
DT12the/Math-Mixtral-7B
DT12the
2024-02-15T10:12:19Z
5
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "conversational", "arxiv:2306.01708", "base_model:meta-math/MetaMath-Mistral-7B", "base_model:merge:meta-math/MetaMath-Mistral-7B", "base_model:mistralai/Mistral-7B-Instruct-v0.2", "base_model:merge:mistralai/Mistral-7B-Instruct-v0.2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-15T10:09:14Z
--- base_model: - mistralai/Mistral-7B-Instruct-v0.2 - meta-math/MetaMath-Mistral-7B library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [TIES](https://arxiv.org/abs/2306.01708) merge method using [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) as a base. ### Models Merged The following models were included in the merge: * [meta-math/MetaMath-Mistral-7B](https://huggingface.co/meta-math/MetaMath-Mistral-7B) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: mistralai/Mistral-7B-Instruct-v0.2 # No additional parameters needed for the base model - model: meta-math/MetaMath-Mistral-7B parameters: density: 0.7 # A higher density for MetaMath to prioritize its parameters for math questions weight: 0.7 # Higher weight to MetaMath to ensure its influence on math-related answers is strong merge_method: ties base_model: mistralai/Mistral-7B-Instruct-v0.2 parameters: normalize: true dtype: float16 ```
hugo-massonnat/poca-SoccerTwos
hugo-massonnat
2024-02-15T10:09:23Z
0
0
ml-agents
[ "ml-agents", "SoccerTwos", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2024-02-15T10:09:01Z
--- library_name: ml-agents tags: - SoccerTwos - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: hugo-massonnat/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
aghorbani/bank-tx-cat-opt-125m
aghorbani
2024-02-15T09:58:01Z
94
0
transformers
[ "transformers", "safetensors", "opt", "text-generation", "gpt", "llm", "large language model", "h2o-llmstudio", "en", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-15T09:57:53Z
--- language: - en library_name: transformers tags: - gpt - llm - large language model - h2o-llmstudio inference: false thumbnail: https://h2o.ai/etc.clientlibs/h2o/clientlibs/clientlib-site/resources/images/favicon.ico --- # Model Card ## Summary This model was trained using [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio). - Base model: [facebook/opt-125m](https://huggingface.co/facebook/opt-125m) ## Usage To use the model with the `transformers` library on a machine with GPUs, first make sure you have the `transformers` library installed. ```bash pip install transformers==4.36.1 ``` Also make sure you are providing your huggingface token if the model is lying in a private repo. - You can login to hugginface_hub by running ```python import huggingface_hub huggingface_hub.login(<ACCESS_TOKEN>) ``` You will also need to download the classification head, either manually, or by running the following code: ```python from huggingface_hub import hf_hub_download model_name = "aghorbani/bank-tx-cat-opt-125m" # either local folder or huggingface model name hf_hub_download(repo_id=model_name, filename="classification_head.pth", local_dir="./") ``` You can make classification predictions by following the example below: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "aghorbani/bank-tx-cat-opt-125m" # either local folder or huggingface model name # Important: The prompt needs to be in the same format the model was trained with. # You can find an example prompt in the experiment logs. prompt = "How are you?" tokenizer = AutoTokenizer.from_pretrained( model_name, use_fast=True, trust_remote_code=True, ) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map={"": "cuda:0"}, trust_remote_code=True, ).cuda().eval() head_weights = torch.load("classification_head.pth", map_location="cuda") # settings can be arbitrary here as we overwrite with saved weights head = torch.nn.Linear(1, 1, bias=False).to("cuda") head.weight.data = head_weights inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to("cuda") out = model(**inputs).logits logits = head(out[:,-1]) print(logits) ``` ## Quantization and sharding You can load the models using quantization by specifying ```load_in_8bit=True``` or ```load_in_4bit=True```. Also, sharding on multiple GPUs is possible by setting ```device_map=auto```. ## Model Architecture ``` OPTForCausalLM( (model): OPTModel( (decoder): OPTDecoder( (embed_tokens): Embedding(50272, 768, padding_idx=1) (embed_positions): OPTLearnedPositionalEmbedding(2050, 768) (final_layer_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True) (layers): ModuleList( (0-11): 12 x OPTDecoderLayer( (self_attn): OPTAttention( (k_proj): Linear(in_features=768, out_features=768, bias=True) (v_proj): Linear(in_features=768, out_features=768, bias=True) (q_proj): Linear(in_features=768, out_features=768, bias=True) (out_proj): Linear(in_features=768, out_features=768, bias=True) ) (activation_fn): ReLU() (self_attn_layer_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True) (fc1): Linear(in_features=768, out_features=3072, bias=True) (fc2): Linear(in_features=3072, out_features=768, bias=True) (final_layer_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True) ) ) ) ) (lm_head): Linear(in_features=768, out_features=50272, bias=False) ) ``` ## Model Configuration This model was trained using H2O LLM Studio and with the configuration in [cfg.yaml](cfg.yaml). Visit [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio) to learn how to train your own large language models. ## Disclaimer Please read this disclaimer carefully before using the large language model provided in this repository. Your use of the model signifies your agreement to the following terms and conditions. - Biases and Offensiveness: The large language model is trained on a diverse range of internet text data, which may contain biased, racist, offensive, or otherwise inappropriate content. By using this model, you acknowledge and accept that the generated content may sometimes exhibit biases or produce content that is offensive or inappropriate. The developers of this repository do not endorse, support, or promote any such content or viewpoints. - Limitations: The large language model is an AI-based tool and not a human. It may produce incorrect, nonsensical, or irrelevant responses. It is the user's responsibility to critically evaluate the generated content and use it at their discretion. - Use at Your Own Risk: Users of this large language model must assume full responsibility for any consequences that may arise from their use of the tool. The developers and contributors of this repository shall not be held liable for any damages, losses, or harm resulting from the use or misuse of the provided model. - Ethical Considerations: Users are encouraged to use the large language model responsibly and ethically. By using this model, you agree not to use it for purposes that promote hate speech, discrimination, harassment, or any form of illegal or harmful activities. - Reporting Issues: If you encounter any biased, offensive, or otherwise inappropriate content generated by the large language model, please report it to the repository maintainers through the provided channels. Your feedback will help improve the model and mitigate potential issues. - Changes to this Disclaimer: The developers of this repository reserve the right to modify or update this disclaimer at any time without prior notice. It is the user's responsibility to periodically review the disclaimer to stay informed about any changes. By using the large language model provided in this repository, you agree to accept and comply with the terms and conditions outlined in this disclaimer. If you do not agree with any part of this disclaimer, you should refrain from using the model and any content generated by it.
Doniaa/distilroberta-base-finetuned-wikitext2
Doniaa
2024-02-15T09:57:10Z
33
0
transformers
[ "transformers", "tensorboard", "safetensors", "roberta", "text-generation", "generated_from_trainer", "base_model:distilbert/distilroberta-base", "base_model:finetune:distilbert/distilroberta-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-02-15T09:49:17Z
--- license: apache-2.0 base_model: distilroberta-base tags: - generated_from_trainer model-index: - name: distilroberta-base-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-finetuned-wikitext2 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0005 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 425 | 0.0087 | | 0.5768 | 2.0 | 850 | 0.0035 | | 0.0087 | 3.0 | 1275 | 0.0020 | | 0.0039 | 4.0 | 1700 | 0.0006 | | 0.0023 | 5.0 | 2125 | 0.0005 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1
konz00/EvilxEchidna-7b-GGUF
konz00
2024-02-15T09:43:26Z
25
1
transformers
[ "transformers", "gguf", "text-generation", "endpoints_compatible", "region:us" ]
text-generation
2024-02-15T07:34:38Z
--- library_name: transformers pipeline_tag: text-generation --- GGUF version for [Test157t/EvilxEchidna-7b](https://huggingface.co/Test157t/EvilxEchidna-7b)
Doniaa/trial512
Doniaa
2024-02-15T09:42:42Z
33
0
transformers
[ "transformers", "tensorboard", "safetensors", "roberta", "text-generation", "generated_from_trainer", "base_model:distilbert/distilroberta-base", "base_model:finetune:distilbert/distilroberta-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-02-15T09:34:23Z
--- license: apache-2.0 base_model: distilroberta-base tags: - generated_from_trainer model-index: - name: distilroberta-base-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-finetuned-wikitext2 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0005 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 425 | 0.0087 | | 0.5768 | 2.0 | 850 | 0.0035 | | 0.0087 | 3.0 | 1275 | 0.0020 | | 0.0039 | 4.0 | 1700 | 0.0006 | | 0.0023 | 5.0 | 2125 | 0.0005 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1
zidnikh000/Belajar
zidnikh000
2024-02-15T09:36:37Z
0
0
null
[ "text-classification", "id", "dataset:teknium/OpenHermes-2.5", "region:us" ]
text-classification
2024-02-15T09:35:21Z
--- datasets: - teknium/OpenHermes-2.5 language: - id metrics: - accuracy pipeline_tag: text-classification ---
aghanim1/arttherapy
aghanim1
2024-02-15T09:33:26Z
1
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2024-02-15T08:11:47Z
--- tags: - text-to-image - stable-diffusion - lora - diffusers - template:sd-lora widget: - text: <lora:art_therapy_v1:1> art_therapy, monochrome, lineart, flowers parameters: negative_prompt: color output: url: images/IMG_0044.PNG - text: <lora:art_therapy_v1:0.8> flying falcon, detailed, monochrome, lineart parameters: negative_prompt: bad art, bad quality output: url: images/Falcon.png base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: Lineart --- # Art Therapy <Gallery /> ## Model description This model is based on art therapy coloring images. Euler a sampling method produces the best results with this model. ## Trigger words You should use `Lineart` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/aghanim1/arttherapy/tree/main) them in the Files & versions tab.
hiendang7613/xlmr-lstm-crf-resume-ner3
hiendang7613
2024-02-15T09:28:17Z
23
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:fcv_dataset", "base_model:hiendang7613/xlmr-lstm-crf-resume-ner3", "base_model:finetune:hiendang7613/xlmr-lstm-crf-resume-ner3", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-02-15T02:53:17Z
--- license: mit base_model: hiendang7613/xlmr-lstm-crf-resume-ner3 tags: - generated_from_trainer datasets: - fcv_dataset model-index: - name: xlmr-lstm-crf-resume-ner3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr-lstm-crf-resume-ner3 This model is a fine-tuned version of [hiendang7613/xlmr-lstm-crf-resume-ner3](https://huggingface.co/hiendang7613/xlmr-lstm-crf-resume-ner3) on the fcv_dataset dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1
Lalith16/Zephyr-Largedataset-2Epoch-CCApp
Lalith16
2024-02-15T09:24:16Z
0
0
null
[ "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:HuggingFaceH4/zephyr-7b-beta", "base_model:finetune:HuggingFaceH4/zephyr-7b-beta", "license:mit", "region:us" ]
null
2024-02-15T09:23:32Z
--- license: mit base_model: HuggingFaceH4/zephyr-7b-beta tags: - trl - sft - generated_from_trainer model-index: - name: results results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [HuggingFaceH4/zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6622 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.5641 | 0.14 | 100 | 1.4610 | | 1.1695 | 0.28 | 200 | 1.0388 | | 1.0319 | 0.42 | 300 | 0.9440 | | 0.905 | 0.56 | 400 | 0.8829 | | 0.8655 | 0.7 | 500 | 0.8225 | | 0.8329 | 0.85 | 600 | 0.8042 | | 0.85 | 0.99 | 700 | 0.7728 | | 0.7348 | 1.13 | 800 | 0.7426 | | 0.6723 | 1.27 | 900 | 0.7197 | | 0.6791 | 1.41 | 1000 | 0.6933 | | 0.6576 | 1.55 | 1100 | 0.6864 | | 0.6863 | 1.69 | 1200 | 0.6731 | | 0.6328 | 1.83 | 1300 | 0.6652 | | 0.6264 | 1.97 | 1400 | 0.6622 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1
Eunju2834/aicomment_kogpt2
Eunju2834
2024-02-15T09:14:50Z
93
0
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "kogpt2", "comment generation", "ko", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-15T08:56:32Z
--- language: - ko tags: - kogpt2 - comment generation ---
Balu94pratap/my_awesome_distil_huner_model
Balu94pratap
2024-02-15T09:05:24Z
91
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "token-classification", "generated_from_trainer", "dataset:transformer_dataset_ner_kaggle", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-02-14T09:16:35Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - transformer_dataset_ner_kaggle model-index: - name: my_awesome_distil_huner_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_distil_huner_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the transformer_dataset_ner_kaggle dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results ### Framework versions - Transformers 4.37.0 - Pytorch 2.1.2 - Datasets 2.17.0 - Tokenizers 0.15.1
itsyasin2002ai/Yaseen-finetuned-kde4-en-to-fr
itsyasin2002ai
2024-02-15T08:52:47Z
124
0
transformers
[ "transformers", "tensorboard", "safetensors", "marian", "text2text-generation", "translation", "generated_from_trainer", "dataset:kde4", "base_model:Helsinki-NLP/opus-mt-en-fr", "base_model:finetune:Helsinki-NLP/opus-mt-en-fr", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2024-02-15T07:27:28Z
--- license: apache-2.0 base_model: Helsinki-NLP/opus-mt-en-fr tags: - translation - generated_from_trainer datasets: - kde4 model-index: - name: Yaseen-finetuned-kde4-en-to-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Yaseen-finetuned-kde4-en-to-fr This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1
sravaniayyagari/new-finetuned-model
sravaniayyagari
2024-02-15T08:52:39Z
0
0
peft
[ "peft", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "base_model:meta-llama/Llama-2-7b-hf", "base_model:adapter:meta-llama/Llama-2-7b-hf", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-02-14T10:36:07Z
--- library_name: peft base_model: meta-llama/Llama-2-7b-hf pipeline_tag: text-generation --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
Deci/DeciDiffusion-v1-0
Deci
2024-02-15T08:50:19Z
42
139
diffusers
[ "diffusers", "safetensors", "Deci AI", "DeciDiffusion", "text-to-image", "en", "dataset:laion/laion-art", "dataset:laion/laion2B-en", "arxiv:2202.00512", "arxiv:2305.08891", "arxiv:2102.09672", "arxiv:2303.09556", "arxiv:1904.00962", "arxiv:1803.07474", "arxiv:2307.01952", "arxiv:1911.07023", "arxiv:2001.03653", "arxiv:2206.10789", "license:openrail++", "diffusers:DeciDiffusionPipeline", "region:us" ]
text-to-image
2023-09-13T12:08:18Z
--- pipeline_tag: text-to-image inference: true license: openrail++ language: - en tags: - Deci AI - DeciDiffusion datasets: - laion/laion-art - laion/laion2B-en --- # DeciDiffusion 1.0 DeciDiffusion 1.0 is an 820 million parameter text-to-image latent diffusion model trained on the LAION-v2 dataset and fine-tuned on the LAION-ART dataset. Advanced training techniques were used to speed up training, improve training performance, and achieve better inference quality. ## Model Details - **Developed by:** Deci - **Model type:** Diffusion-based text-to-image generation model - **Language(s) (NLP):** English - **Code License:** The code in this repository is released under the [Apache 2.0 License](https://huggingface.co/Deci/DeciDiffusion-v1-0/blob/main/LICENSE-MODEL.md) - **Weights License:** The weights are released under the [CreativeML Open RAIL++-M License](https://huggingface.co/Deci/DeciDiffusion-v1-0/blob/main/LICENSE-WEIGHTS.md) ### Model Sources - **Blog:** [A technical overview and comparison to Stable Diffusion 1.5](https://deci.ai/blog/decidiffusion-1-0-3x-faster-than-stable-diffusion-same-quality/?utm_campaign=repos&utm_source=hugging-face&utm_medium=model-card&utm_content=decidiffusion-v1) - **Demo:** [Experience DeciDiffusion in action](https://huggingface.co/spaces/Deci/DeciDiffusion-v1-0) ## Model Architecture DeciDiffusion 1.0 is a diffusion-based text-to-image generation model. While it maintains foundational architecture elements from Stable Diffusion, such as the Variational Autoencoder (VAE) and CLIP's pre-trained Text Encoder, DeciDiffusion introduces significant enhancements. The primary innovation is the substitution of U-Net with the more efficient U-Net-NAS, a design pioneered by Deci. This novel component streamlines the model by reducing the number of parameters, leading to superior computational efficiency. ## Training Details ### Training Procedure The model was trained in 4 phases: - **Phase 1:** Trained from scratch 1.28 million steps at resolution 256x256 on a 320 million sample subset of LAION-v2. - **Phase 2:** Trained from 870k steps at resolution 512x512 on the same dataset to learn more fine-detailed information. - **Phase 3:** Trained 65k steps with EMA, another learning rate scheduler, and more "qualitative" data. - **Phase 4:** Fine-tuning on a 2M sample subset of LAION-ART. ### Training Techniques DeciDiffusion 1.0 was trained to be sample efficient, i.e. to produce high-quality results using fewer diffusion timesteps during inference. The following training techniques were used to that end: - **[V-prediction](https://arxiv.org/pdf/2202.00512.pdf)** - **[Enforcing zero terminal SNR during training](https://arxiv.org/pdf/2305.08891.pdf)** - **[Employing a cosine variance schedule](https://arxiv.org/pdf/2102.09672.pdf)** - **[Using a Min-SNR loss weighting strategy](https://arxiv.org/abs/2303.09556)** - **[Employing Rescale Classifier-Free Guidance during inference](https://arxiv.org/pdf/2305.08891.pdf)** - **[Sampling from the last timestep](https://arxiv.org/pdf/2305.08891.pdf)** - **Training from 870k steps at resolution 512x512 on the same dataset to learn more fine-detailed information.** - **[Utilizing LAMB optimizer with large batch](https://arxiv.org/abs/1904.00962)** - The following techniques were used to shorten training time: - **Using precomputed VAE and CLIP latents** - **Using EMA only in the last phase of training** ### Additional Details #### Phase 1 - **Hardware:** 8 x 8 x A100 (80gb) - **Optimizer:** AdamW - **Batch:** 8192 - **Learning rate:** 1e-4 #### Phases 2-4 - **Hardware:** 8 x 8 x H100 (80gb) - **Optimizer:** LAMB - **Batch:** 6144 - **Learning rate:** 5e-3 ## Evaluation On average, DeciDiffusion’s generated images after 30 iterations achieve comparable Frechet Inception Distance (FID) scores to those generated by Stable Diffusion 1.5 after 50 iterations. However, many recent articles question the reliability of FID scores, warning that FID results [tend to be fragile](https://huggingface.co/docs/diffusers/conceptual/evaluation), that they are [inconsistent with human judgments on MNIST](https://arxiv.org/pdf/1803.07474.pdf) and [subjective evaluation](https://arxiv.org/pdf/2307.01952.pdf), that they are [statistically biased](https://arxiv.org/pdf/1911.07023.pdf), and that they [give better scores](https://arxiv.org/pdf/2001.03653.pdf) to memorization of the dataset than to generalization beyond it. Given this skepticism about FID’s reliability, we chose to assess DeciDiffusion 1.0's sample efficiency by performing a user study against Stable Diffusion 1.5. Our source for image captions was the [PartiPrompts](https://arxiv.org/pdf/2206.10789.pdf) benchmark, which was introduced to compare large text-to-image models on various challenging prompts. For our study we chose 10 random prompts and for each prompt generated 3 images by Stable Diffusion 1.5 configured to run for 50 iterations and 3 images by DeciDiffusion configured to run for 30 iterations. We then presented 30 side by side comparisons to a group of professionals, who voted based on adherence to the prompt and aesthetic value. According to the results, DeciDiffusion at 30 iterations exhibits an edge in aesthetics, but when it comes to prompt alignment, it’s on par with Stable Diffusion at 50 iterations. The following table summarizes our survey results: |Answer| Better image aesthetics | Better prompt alignment | |:----------|:----------|:----------| | DeciDiffusion 1.0 30 Iterations | 41.1% | 20.8% | | StableDiffusion v1.5 50 Iterations | 30.5% |18.8% | | On Par | 26.3% |39.1% | | Neither | 2.1% | 11.4%| ## Runtime Benchmarks The following tables provide an image latency comparison between DeciDiffusion 1.0 and Stable Diffusion v1.5. DeciDiffusion 1.0 vs. Stable Diffusion v1.5 at FP16 precision |Inference Tool + Iterations| DeciDiffusion 1.0 on A10 (seconds/image) | Stable Diffusion v1.5 on A10 (seconds/image) | |:----------|:----------|:----------| | Pytorch 50 Iterations | 2.11 | 2.95 | | Infery 50 Iterations | 1.55 |2.08 | | Pytorch 35 Iterations | 1.52 |- | | Infery 35 Iterations | 1.07 | -| | Pytorch 30 Iterations | 1.29 | -| | Infery 30 Iterations | 0.98 | - | ## How to Use ```bibtex # pip install diffusers transformers torch from diffusers import StableDiffusionPipeline import torch device = 'cuda' if torch.cuda.is_available() else 'cpu' checkpoint = "Deci/DeciDiffusion-v1-0" pipeline = StableDiffusionPipeline.from_pretrained(checkpoint, custom_pipeline=checkpoint, torch_dtype=torch.float16) pipeline.unet = pipeline.unet.from_pretrained(checkpoint, subfolder='flexible_unet', torch_dtype=torch.float16) pipeline = pipeline.to(device) img = pipeline(prompt=['A photo of an astronaut riding a horse on Mars']).images[0] ``` # Uses ### Misuse, Malicious Use, and Out-of-Scope Use The model must not be employed to deliberately produce or spread images that foster hostile or unwelcoming settings for individuals. This encompasses generating visuals that might be predictably upsetting, distressing, or inappropriate, as well as content that perpetuates existing or historical biases. #### Out-of-Scope Use The model isn't designed to produce accurate or truthful depictions of people or events. Thus, using it for such purposes exceeds its intended capabilities. #### Misuse and Malicious Use Misusing the model to produce content that harms or maligns individuals is strictly discouraged. Such misuses include, but aren't limited to: - Creating offensive, degrading, or damaging portrayals of individuals, their cultures, religions, or surroundings. - Intentionally promoting or propagating discriminatory content or harmful stereotypes.Deliberately endorsing or disseminating prejudiced content or harmful stereotypes. - Deliberately endorsing or disseminating prejudiced content or harmful stereotypes. - Posing as someone else without their agreement. - Generating explicit content without the knowledge or agreement of potential viewers. - Distributing copyrighted or licensed content against its usage terms. - Sharing modified versions of copyrighted or licensed content in breach of its usage guidelines. ## Limitations and Bias ### Limitations The model has certain limitations and may not function optimally in the following scenarios: - It doesn't produce completely photorealistic images. - Rendering legible text is beyond its capability. - Complex compositions, like visualizing “A green sphere to the left of a blue square”, are challenging for the model. - Generation of faces and human figures may be imprecise. - It is primarily optimized for English captions and might not be as effective with other languages. - The autoencoding component of the model is lossy. ### Bias The remarkable abilities of image generation models can unintentionally amplify societal biases. DeciDiffusion was mainly trained on subsets of LAION-v2, focused on English descriptions. Consequently, non-English communities and cultures might be underrepresented, leading to a bias towards white and western norms. Outputs from non-English prompts are notably less accurate. Given these biases, users should approach DeciDiffusion with discretion, regardless of input. ## How to Cite Please cite this model using this format. ```bibtex @misc{DeciFoundationModels, title = {DeciDiffusion 1.0}, author = {DeciAI Research Team}, year = {2023} url={[https://huggingface.co/deci/decidiffusion-v1-0](https://huggingface.co/deci/decidiffusion-v1-0)}, } ```
Deci/DeciLM-6b-instruct
Deci
2024-02-15T08:49:02Z
193
133
transformers
[ "transformers", "safetensors", "text-generation", "Deci AI", "DeciLM", "Instruction", "custom_code", "en", "dataset:cerebras/SlimPajama-627B", "dataset:Open-Orca/OpenOrca", "license:llama2", "license:other", "model-index", "autotrain_compatible", "region:us" ]
text-generation
2023-09-13T07:21:13Z
--- license: [llama2, other] datasets: - cerebras/SlimPajama-627B - Open-Orca/OpenOrca language: - en tags: - Deci AI - DeciLM - Instruction model-index: - name: DeciLM 6B results: - task: type: text-generation dataset: type: ai2/arc name: ai2_arc metrics: - name: ARC Challenge type: ARC Challenge value: 43.43 verified: false - task: type: text-generation dataset: type: ai2/arc name: ai2_arc metrics: - name: ARC Easy type: ARC Easy value: 70.58 verified: false - task: type: text-generation dataset: type: boolq name: boolq metrics: - name: BoolQ type: BoolQ value: 77.34 verified: false - task: type: text-generation dataset: type: hellaswag name: hellaswag metrics: - name: HellaSwag type: HellaSwag value: 74.57 verified: false - task: type: text-generation dataset: type: LAMBDA name: OpenAI LAMBDA metrics: - name: LAMBDA type: LAMBDA value: 70.1 verified: false - task: type: text-generation dataset: type: OpenBookQA name: openbookqa metrics: - name: OpenBookQA type: OpenBookQA value: 33 verified: false - task: type: text-generation dataset: type: PIQA name: piqa metrics: - name: PIQA type: PIQA value: 77.52 verified: false - task: type: text-generation dataset: type: truthful_qa name: truthful_qa metrics: - name: TruthfulQA type: TruthfulQA value: 43.89 verified: false - task: type: text-generation dataset: type: winogrande name: winogrande metrics: - name: Winogrande type: Winogrande value: 67.64 verified: false --- # DeciLM 6B-Instruct DeciLM 6B-Instruct is a model for short-form instruction following. It is built by LoRA fine-tuning [DeciLM 6B](https://huggingface.co/Deci/DeciLM-6b) on a subset of the [OpenOrca dataset](https://huggingface.co/datasets/Open-Orca/OpenOrca). - **Developed by:** Deci - **Model type:** DeciLM is an auto-regressive language model using an optimized transformer decoder architecture that includes variable Grouped-Query Attention. - **Language(s) (NLP):** English - **License:** [Llama 2 Community License Agreement](https://huggingface.co/Deci/DeciLM-6b-instruct/blob/main/LICENSE.md) with an extention of Deci regarding hosting service providers. ### Model Sources - **Paper:** [DeciLM 6B Technical Blog](https://deci.ai/blog/decilm-15-times-faster-than-llama2-nas-generated-llm-with-variable-gqa/?utm_campaign=repos&utm_source=hugging-face&utm_medium=model-card&utm_content=decilm-6b-instruct) - **Demo:** [DeciLM 6B-Instruct Demo](https://huggingface.co/spaces/Deci/DeciLM-6b-instruct) - **Notebook:** [DeciLM 6B-Instruct Notebook](https://bit.ly/decilm-instruct-nb) ## Uses The model is intended for commercial and research use in English and can be fine-tuned for use in other languages. ## How to Get Started with the Model Use the code below to get started with the model. ```bibtex # pip install -q transformers import torch from transformers import AutoModelForCausalLM, AutoTokenizer checkpoint = "Deci/DeciLM-6b-instruct" device = "cuda" # for GPU usage or "cpu" for CPU usage tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForCausalLM.from_pretrained(checkpoint, torch_dtype=torch.bfloat16, trust_remote_code=True).to(device) inputs = tokenizer.encode("How do I make french toast? Think through it step by step", return_tensors="pt").to(device) outputs = model.generate(inputs, max_new_tokens=100, do_sample=True, top_p=0.95) print(tokenizer.decode(outputs[0])) ``` ## Training Details DeciLM 6B underwent training utilizing the SlimPijamas dataset, leveraging advanced proprietary methodologies allowing for fast training. DeciLM 6B was further finetuned on a subset of the OpenOrca dataset, giving rise to DeciLM-6B-Instruct. ## Evaluation Below are DeciLM's 6B-instruct evaluation results. | Average | ARC Challenge* | ARC Easy* | BoolQ | HellaSwag* | LAMBDA OpenAI | OpenBookQA | PIQA | TruthfulQA | Winogrande | |:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------|:----------| | 62.01 | 44.43 | 70.58 | 77.34 | 74.57 | 70.1 | 33 | 77.52 |43.89 | 67.64 | Accuracy-norm score* ## Runtime Benchmarks |Inference Tool/Hardware | A10 (tokens/sec) | |:----------|:----------| | PyTorch | 652.49 | | Infery LLM | 2,029.6 | - Throughput (tokens/sec) - Measured with optimal batch - PyTorch BS 64, Infery LLM BS 128 - In order to replicate the results of the PyTorch benchmark, use this [code example](https://huggingface.co/Deci/DeciLM-6b-instruct/blob/main/hf_benchmark_example.py) ## Disclaimer DeciLM 6B-Instruct has not been aligned for safety or trained using RLHF. ## How to Cite Please cite this model using this format. ```bibtex @misc{DeciFoundationModels, title = {DeciLM 6B Instruct}, author = {DeciAI Research Team}, year = {2023} url={[https://huggingface.co/Deci/DeciLM-6b-instruct](https://huggingface.co/Deci/DeciLM-6b-instruct)}, } ```
Deci/DeciCoder-1b
Deci
2024-02-15T08:45:52Z
2,571
246
transformers
[ "transformers", "safetensors", "text-generation", "text generation", "Deci AI", "DeciCoder", "custom_code", "dataset:bigcode/starcoderdata", "arxiv:2305.13245", "arxiv:2104.09864", "license:apache-2.0", "model-index", "autotrain_compatible", "region:us" ]
text-generation
2023-08-16T14:52:10Z
--- pipeline_tag: text-generation license: apache-2.0 tags: - text generation - Deci AI - DeciCoder programming_language: - Java - JavaScript - Python metrics: - code_eval inference: true widget: - text: 'def print_hello_world():' example_title: Hello world group: Python model-index: - name: DeciCoder-1b results: - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (Python) metrics: - name: pass@1 type: pass@1 value: 0.191 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (JavaScript) metrics: - name: pass@1 type: pass@1 value: 0.184 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (Java) metrics: - name: pass@1 type: pass@1 value: 0.166 verified: false datasets: - bigcode/starcoderdata --- # Model Card for DeciCoder 1B DeciCoder 1B is a 1 billion parameter decoder-only code completion model trained on the Python, Java, and Javascript subsets of [Starcoder Training Dataset](https://huggingface.co/datasets/bigcode/starcoderdata). The model uses Grouped Query Attention and has a context window of 2048 tokens. It was trained using a Fill-in-the-Middle training objective. The model's architecture was generated by Deci's proprietary Neural Architecture Search-based technology, AutoNAC. ## Model Details - **Developed by:** [Deci](https://deci.ai/) - **Model type:** DeciCoder is an auto-regressive language model based on the transformer decoder architecture, using Grouped Query Attention. - **Language(s):** Python, Java, JavaScript - **License:** Model checkpoints are licensed under the [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0) ## Model Architecture | Parameters | Layers | Heads | Sequence Length | GQA num_key_value_heads | Hidden Size | |:----------|:----------|:----------|:----------|:----------|:----------| | 1.1B | 20 | 32 | 2048 | 4 | 2048 | | - **Decoder layer:** Grouped Query Attention [Ainslie et al., 2023](https://arxiv.org/abs/2305.13245) - **Position Embeddings:** Rotary Position Embeddings [Su et al., 2021](https://arxiv.org/abs/2104.09864) ## Uses The model is intended to do single/multiline code completion from a context window of up to 2048k tokens. It is *not* an instruction model and commands like \"Write a function that computes the absolute value of an integer,\" won't yield the desired results. A more effective approach is to frame instructions in the style of source code comments (e.g. \# this function calculates the absolute value of an integer) or to present a function signature and docstring, enabling the model to complete the function's body. ### How to Use ```bibtex # pip install -q transformers import torch from transformers import AutoModelForCausalLM, AutoTokenizer checkpoint = "Deci/DeciCoder-1b" device = "cuda" # for GPU usage or "cpu" for CPU usage tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForCausalLM.from_pretrained(checkpoint, torch_dtype=torch.bfloat16, trust_remote_code=True).to(device) inputs = tokenizer.encode("def print_hello_world():", return_tensors="pt").to(device) outputs = model.generate(inputs, max_new_tokens=100) print(tokenizer.decode(outputs[0])) ``` ### Attribution DeciCoder was trained on StarCoder Training Dataset, filtered for Python, Java, and Javascript code. For additional information, please refer to [https://huggingface.co/datasets/bigcode/starcoderdata](https://huggingface.co/datasets/bigcode/starcoderdata). ### Limitations The model has undergone training with source code from Python, Java, and JavaScript. While the primary language in the source is English, it does contain other languages. Therefore, the model can produce code snippets given some context. However, there\'s no assurance that the resulting code will function as expected. It might be suboptimal, contain bugs, or even exploits. ## Training Details ### Training Data DeciCoder was trained on the Python, Java, and Javascript subsets of [Starcoder Training Dataset](https://huggingface.co/datasets/bigcode/starcoderdata) ### Training Procedure - **Warm-Up Steps**: 9000 - **Total Training Steps**: 284k - **Total Tokens**: 446B - **Global Batch Size**: 768 - **Optimizer**: AdamW - **Optimizer Parameters**: beta1=0.9, beta2=0.95 - **Weight Decay**: 0.1 - **Learning Rate**: 4e-4 - **Learning Rate Schedule**: cosine ## Evaluation Below are DeciCoder's pass@1 on MultiPL HumanEval scores | Python | JavaScript | Java | |:----------|:----------|:----------| | 19.1% | 18.4% | 16.6% | ### Runtime Benchmarks |Inference Tool/Hardware | A10 (tokens/sec) |A100 (tokens/sec) | |:----------|:----------|:----------| | PyTorch | 1,364.2 | 3,244.4 | | Infery LLM | 3,889.3 | 11,676.8 | - Throughput (tokens/sec) - Measured with optimal batch size per hardware - A10 on BS 128, A100 on BS 512 - Infery-LLM, Deci's optimization and inference SDK's features a suite of optimization techniques, including selective quantization, optimized beam search, continuous batching, and custom CUDA kernels. To explore the full capabilities of Infery-LLM, we invite you to [book a demo](https://deci.ai/infery-llm-book-a-demo/?utm_campaign=repos&utm_source=hugging-face&utm_medium=model-card&utm_content=decicoder-1b) with our experts. ## Documentation - [Notebook](https://colab.research.google.com/drive/1JCxvBsWCZKHfIcHSMVf7GZCs3ClMQPjs) - Blog post: [Introducing DeciCoder: The New Gold Standard in Efficient and Accurate Code Generation](https://deci.ai/blog/decicoder-efficient-and-accurate-code-generation-llm/?utm_campaign=repos&utm_source=hugging-face&utm_medium=model-card&utm_content=decicoder-1b) - Questions:Feel free to contact us via our [Discord Community!](https://discord.com/invite/p9ecgRhDR8/) ## How to Cite Please cite this model using this format. ```bibtex @misc{DeciFoundationModels, title = {DeciCoder}, author = {DeciAI Research Team}, year = {2023} url={[https://huggingface.co/deci/decicoder-1b](https://huggingface.co/deci/decicoder-1b)}, } ```
KeiMura/QueAnsModel
KeiMura
2024-02-15T08:09:49Z
99
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2024-02-15T08:03:46Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - squad model-index: - name: QueAnsModel results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # QueAnsModel This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.5344 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 250 | 2.1018 | | 2.7104 | 2.0 | 500 | 1.6047 | | 2.7104 | 3.0 | 750 | 1.5344 | ### Framework versions - Transformers 4.37.0 - Pytorch 2.1.2 - Datasets 2.1.0 - Tokenizers 0.15.1
aghanim1/sadu
aghanim1
2024-02-15T08:05:03Z
5
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2024-02-15T08:03:52Z
--- tags: - text-to-image - stable-diffusion - lora - diffusers - template:sd-lora widget: - text: sadu, pattern, red, knitted, embroidery, repeating, palm trees, camel parameters: negative_prompt: Person, 1person output: url: images/IMG_0070.PNG - text: '-' output: url: images/IMG_0067.PNG base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: Sadu, pattern, red, embroidery, repeating --- # Sadu Traditional UAE Knitting Pattern <Gallery /> ## Model description This model is trained on traditional Emirati (UAE) embroidery (on the List of Intangible Cultural Heritage in Need of Urgent Safeguarding by UNESCO). ## Trigger words You should use `Sadu` to trigger the image generation. You should use `pattern` to trigger the image generation. You should use `red` to trigger the image generation. You should use `embroidery` to trigger the image generation. You should use `repeating` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/aghanim1/sadu/tree/main) them in the Files & versions tab.
hellomyoh/mistral_7b_ft_ko-en_v0.1
hellomyoh
2024-02-15T07:59:28Z
4
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-15T07:54:50Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
maridze/Saiga_2_13b_fine_tune_custom_data
maridze
2024-02-15T07:49:37Z
0
0
peft
[ "peft", "region:us" ]
null
2024-02-14T14:28:45Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.5.0
ahmetkca/trendyol-7B-v1.0-f32-gguf
ahmetkca
2024-02-15T07:48:53Z
0
0
null
[ "gguf", "turkish", "tr", "trendyol", "llama", "llama.cpp", "endpoints_compatible", "region:us" ]
null
2024-02-15T07:34:53Z
--- language: - tr tags: - turkish - tr - trendyol - llama - gguf - llama.cpp ---
RansikaC99/llama2-qlora-finetunined-4-bit-1500-3epoch
RansikaC99
2024-02-15T07:46:00Z
0
0
peft
[ "peft", "region:us" ]
null
2024-02-15T07:45:53Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0
ahmetkca/trendyol-7B-v1.0-f16-gguf
ahmetkca
2024-02-15T07:39:54Z
4
0
null
[ "gguf", "turkish", "tr", "trendyol", "llama", "llama.cpp", "endpoints_compatible", "region:us" ]
null
2024-02-15T07:20:10Z
--- language: - tr tags: - turkish - tr - trendyol - gguf - llama - llama.cpp ---
hustvl/Vim-tiny-midclstok
hustvl
2024-02-15T07:39:04Z
0
5
null
[ "arxiv:2401.09417", "license:apache-2.0", "region:us" ]
null
2024-02-10T14:40:18Z
--- license: apache-2.0 --- <br> # Vim Model Card ## Model Details Vision Mamba (Vim) is a generic backbone trained on the ImageNet-1K dataset for vision tasks. - **Developed by:** [HUST](https://english.hust.edu.cn/), [Horizon Robotics](https://en.horizon.cc/), [BAAI](https://www.baai.ac.cn/english.html) - **Model type:** A generic vision backbone based on the bidirectional state space model (SSM) architecture. - **License:** Non-commercial license ### Model Sources - **Repository:** https://github.com/hustvl/Vim - **Paper:** https://arxiv.org/abs/2401.09417 ## Uses The primary use of Vim is research on vision tasks, e.g., classification, segmentation, detection, and instance segmentation, with an SSM-based backbone. The primary intended users of the model are researchers and hobbyists in computer vision, machine learning, and artificial intelligence. ## How to Get Started with the Model - You can replace the backbone for vision tasks with the proposed Vim: https://github.com/hustvl/Vim/blob/main/vim/models_mamba.py - Then you can load this checkpoint and start training. ## Training Details Vim is pretrained on ImageNet-1K with classification supervision. The training data is around 1.3M images from [ImageNet-1K dataset](https://www.image-net.org/challenges/LSVRC/2012/). See more details in this [paper](https://arxiv.org/abs/2401.09417). ## Evaluation Vim-tiny is evaluated on ImageNet-1K val set, and achieves 76.1% Top-1 Acc. By further finetuning at finer granularity, Vim-tiny achieves 78.3% Top-1 Acc. See more details in this [paper](https://arxiv.org/abs/2401.09417). ## Additional Information ### Citation Information ``` @article{vim, title={Vision Mamba: Efficient Visual Representation Learning with Bidirectional State Space Model}, author={Lianghui Zhu and Bencheng Liao and Qian Zhang and Xinlong Wang and Wenyu Liu and Xinggang Wang}, journal={arXiv preprint arXiv:2401.09417}, year={2024} } ```
ehsangharibnezhad/phi-1_5-finetuned-vicgalle-alpaca-gpt4
ehsangharibnezhad
2024-02-15T07:37:04Z
38
0
transformers
[ "transformers", "safetensors", "phi", "text-generation", "custom_code", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-15T21:07:53Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
FINNUMBER/Yi-Ko-6B-Finch-SA-full
FINNUMBER
2024-02-15T07:35:45Z
4
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-15T05:55:32Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Balexml/segformer-b0-finetuned-segments-sidewalk-2
Balexml
2024-02-15T07:33:05Z
18
0
transformers
[ "transformers", "tensorboard", "safetensors", "segformer", "generated_from_trainer", "base_model:nvidia/mit-b0", "base_model:finetune:nvidia/mit-b0", "license:other", "endpoints_compatible", "region:us" ]
null
2023-11-22T18:27:53Z
--- license: other base_model: nvidia/mit-b0 tags: - generated_from_trainer model-index: - name: segformer-b0-finetuned-segments-sidewalk-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-b0-finetuned-segments-sidewalk-2 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0652 - Mean Iou: 0.9415 - Mean Accuracy: 0.9614 - Overall Accuracy: 0.9785 - Accuracy Water: 0.9290 - Accuracy Non-water: 0.9937 - Iou Water: 0.9104 - Iou Non-water: 0.9725 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Water | Accuracy Non-water | Iou Water | Iou Non-water | |:-------------:|:-------:|:-----:|:---------------:|:--------:|:-------------:|:----------------:|:--------------:|:------------------:|:---------:|:-------------:| | 0.2744 | 3.33 | 20 | 0.5474 | 0.7591 | 0.8996 | 0.8886 | 0.9204 | 0.8789 | 0.6602 | 0.8579 | | 0.6419 | 6.67 | 40 | 0.4140 | 0.7124 | 0.8985 | 0.8547 | 0.9812 | 0.8158 | 0.6136 | 0.8111 | | 0.1373 | 10.0 | 60 | 0.2129 | 0.8964 | 0.9580 | 0.9590 | 0.9561 | 0.9599 | 0.8457 | 0.9471 | | 0.1052 | 13.33 | 80 | 0.1804 | 0.8872 | 0.9597 | 0.9545 | 0.9696 | 0.9498 | 0.8335 | 0.9410 | | 0.2278 | 16.67 | 100 | 0.1461 | 0.9220 | 0.9639 | 0.9702 | 0.9519 | 0.9758 | 0.8825 | 0.9616 | | 0.0835 | 20.0 | 120 | 0.1184 | 0.9289 | 0.9635 | 0.9732 | 0.9453 | 0.9818 | 0.8923 | 0.9655 | | 0.3156 | 23.33 | 140 | 0.1160 | 0.9295 | 0.9589 | 0.9737 | 0.9309 | 0.9868 | 0.8926 | 0.9663 | | 0.0834 | 26.67 | 160 | 0.1072 | 0.9286 | 0.9551 | 0.9735 | 0.9203 | 0.9899 | 0.8910 | 0.9662 | | 0.0626 | 30.0 | 180 | 0.1039 | 0.9299 | 0.9551 | 0.9741 | 0.9191 | 0.9910 | 0.8929 | 0.9669 | | 0.0658 | 33.33 | 200 | 0.0961 | 0.9235 | 0.9687 | 0.9705 | 0.9653 | 0.9722 | 0.8851 | 0.9619 | | 0.065 | 36.67 | 220 | 0.1010 | 0.9317 | 0.9571 | 0.9747 | 0.9237 | 0.9904 | 0.8958 | 0.9677 | | 0.0485 | 40.0 | 240 | 0.0950 | 0.9324 | 0.9555 | 0.9751 | 0.9187 | 0.9924 | 0.8966 | 0.9682 | | 0.0563 | 43.33 | 260 | 0.0963 | 0.9226 | 0.9554 | 0.9710 | 0.9260 | 0.9848 | 0.8823 | 0.9629 | | 0.2679 | 46.67 | 280 | 0.0929 | 0.9341 | 0.9544 | 0.9758 | 0.9140 | 0.9949 | 0.8990 | 0.9692 | | 0.2814 | 50.0 | 300 | 0.1009 | 0.9310 | 0.9508 | 0.9748 | 0.9055 | 0.9961 | 0.8940 | 0.9679 | | 0.0347 | 53.33 | 320 | 0.0869 | 0.9279 | 0.9564 | 0.9732 | 0.9247 | 0.9880 | 0.8901 | 0.9657 | | 0.037 | 56.67 | 340 | 0.0838 | 0.9281 | 0.9599 | 0.9731 | 0.9352 | 0.9847 | 0.8908 | 0.9655 | | 0.0322 | 60.0 | 360 | 0.0844 | 0.9315 | 0.9567 | 0.9746 | 0.9230 | 0.9905 | 0.8953 | 0.9676 | | 0.042 | 63.33 | 380 | 0.0758 | 0.9303 | 0.9593 | 0.9740 | 0.9317 | 0.9870 | 0.8940 | 0.9667 | | 0.0528 | 66.67 | 400 | 0.0872 | 0.9318 | 0.9567 | 0.9748 | 0.9226 | 0.9908 | 0.8958 | 0.9678 | | 0.0288 | 70.0 | 420 | 0.0837 | 0.9280 | 0.9575 | 0.9731 | 0.9280 | 0.9870 | 0.8903 | 0.9656 | | 0.2019 | 73.33 | 440 | 0.0834 | 0.9342 | 0.9570 | 0.9758 | 0.9217 | 0.9924 | 0.8994 | 0.9691 | | 0.0386 | 76.67 | 460 | 0.0649 | 0.9377 | 0.9626 | 0.9769 | 0.9357 | 0.9896 | 0.9050 | 0.9704 | | 0.0295 | 80.0 | 480 | 0.0703 | 0.9350 | 0.9601 | 0.9759 | 0.9301 | 0.9900 | 0.9008 | 0.9692 | | 0.0399 | 83.33 | 500 | 0.0828 | 0.9365 | 0.9569 | 0.9767 | 0.9196 | 0.9942 | 0.9026 | 0.9703 | | 0.025 | 86.67 | 520 | 0.0874 | 0.9343 | 0.9531 | 0.9760 | 0.9100 | 0.9963 | 0.8991 | 0.9695 | | 0.0254 | 90.0 | 540 | 0.0669 | 0.9356 | 0.9659 | 0.9759 | 0.9472 | 0.9847 | 0.9023 | 0.9690 | | 0.1682 | 93.33 | 560 | 0.0852 | 0.9370 | 0.9571 | 0.9769 | 0.9197 | 0.9945 | 0.9035 | 0.9705 | | 0.0379 | 96.67 | 580 | 0.0709 | 0.9305 | 0.9588 | 0.9741 | 0.9299 | 0.9877 | 0.8942 | 0.9669 | | 0.0346 | 100.0 | 600 | 0.0862 | 0.9291 | 0.9562 | 0.9737 | 0.9231 | 0.9893 | 0.8919 | 0.9664 | | 0.0232 | 103.33 | 620 | 0.0750 | 0.9372 | 0.9571 | 0.9770 | 0.9195 | 0.9946 | 0.9038 | 0.9706 | | 0.0356 | 106.67 | 640 | 0.0771 | 0.9335 | 0.9574 | 0.9755 | 0.9234 | 0.9915 | 0.8984 | 0.9686 | | 0.0346 | 110.0 | 660 | 0.0635 | 0.9342 | 0.9618 | 0.9755 | 0.9358 | 0.9877 | 0.8998 | 0.9686 | | 0.0365 | 113.33 | 680 | 0.0701 | 0.9344 | 0.9711 | 0.9751 | 0.9636 | 0.9786 | 0.9009 | 0.9678 | | 0.1537 | 116.67 | 700 | 0.0762 | 0.9350 | 0.9576 | 0.9761 | 0.9226 | 0.9925 | 0.9006 | 0.9694 | | 0.0334 | 120.0 | 720 | 0.0686 | 0.9362 | 0.9578 | 0.9765 | 0.9225 | 0.9932 | 0.9024 | 0.9700 | | 0.3516 | 123.33 | 740 | 0.0629 | 0.9348 | 0.9603 | 0.9758 | 0.9309 | 0.9896 | 0.9005 | 0.9691 | | 0.1583 | 126.67 | 760 | 0.0727 | 0.9355 | 0.9578 | 0.9763 | 0.9228 | 0.9927 | 0.9014 | 0.9697 | | 0.0183 | 130.0 | 780 | 0.0652 | 0.9332 | 0.9591 | 0.9752 | 0.9287 | 0.9895 | 0.8982 | 0.9683 | | 0.0184 | 133.33 | 800 | 0.0750 | 0.9329 | 0.9573 | 0.9752 | 0.9236 | 0.9910 | 0.8975 | 0.9683 | | 0.0214 | 136.67 | 820 | 0.0730 | 0.9372 | 0.9560 | 0.9771 | 0.9163 | 0.9957 | 0.9037 | 0.9708 | | 0.0212 | 140.0 | 840 | 0.0645 | 0.9358 | 0.9580 | 0.9764 | 0.9235 | 0.9926 | 0.9018 | 0.9698 | | 0.018 | 143.33 | 860 | 0.0699 | 0.9305 | 0.9590 | 0.9741 | 0.9304 | 0.9875 | 0.8941 | 0.9669 | | 0.0324 | 146.67 | 880 | 0.0770 | 0.9363 | 0.9577 | 0.9766 | 0.9220 | 0.9934 | 0.9026 | 0.9701 | | 0.0337 | 150.0 | 900 | 0.0612 | 0.9386 | 0.9657 | 0.9771 | 0.9440 | 0.9873 | 0.9066 | 0.9706 | | 0.0427 | 153.33 | 920 | 0.0546 | 0.9414 | 0.9641 | 0.9784 | 0.9371 | 0.9910 | 0.9106 | 0.9722 | | 0.032 | 156.67 | 940 | 0.0684 | 0.9332 | 0.9583 | 0.9753 | 0.9262 | 0.9903 | 0.8980 | 0.9684 | | 0.0413 | 160.0 | 960 | 0.0699 | 0.9346 | 0.9574 | 0.9759 | 0.9225 | 0.9923 | 0.9000 | 0.9692 | | 0.0127 | 163.33 | 980 | 0.0706 | 0.9376 | 0.9572 | 0.9772 | 0.9195 | 0.9949 | 0.9044 | 0.9709 | | 0.0202 | 166.67 | 1000 | 0.0768 | 0.9377 | 0.9574 | 0.9772 | 0.9202 | 0.9947 | 0.9045 | 0.9709 | | 0.0329 | 170.0 | 1020 | 0.0663 | 0.9369 | 0.9583 | 0.9768 | 0.9233 | 0.9932 | 0.9034 | 0.9703 | | 0.235 | 173.33 | 1040 | 0.0540 | 0.9447 | 0.9704 | 0.9794 | 0.9535 | 0.9874 | 0.9160 | 0.9735 | | 0.016 | 176.67 | 1060 | 0.0558 | 0.9384 | 0.9617 | 0.9773 | 0.9324 | 0.9911 | 0.9060 | 0.9709 | | 0.0112 | 180.0 | 1080 | 0.0614 | 0.9394 | 0.9665 | 0.9774 | 0.9457 | 0.9872 | 0.9079 | 0.9710 | | 0.1565 | 183.33 | 1100 | 0.0642 | 0.9362 | 0.9620 | 0.9763 | 0.9349 | 0.9891 | 0.9028 | 0.9697 | | 0.0154 | 186.67 | 1120 | 0.0690 | 0.9381 | 0.9578 | 0.9773 | 0.9211 | 0.9946 | 0.9051 | 0.9710 | | 0.1415 | 190.0 | 1140 | 0.0684 | 0.9340 | 0.9579 | 0.9756 | 0.9243 | 0.9914 | 0.8992 | 0.9689 | | 0.0505 | 193.33 | 1160 | 0.0744 | 0.9293 | 0.9575 | 0.9737 | 0.9270 | 0.9880 | 0.8922 | 0.9663 | | 0.0101 | 196.67 | 1180 | 0.0535 | 0.9393 | 0.9610 | 0.9777 | 0.9296 | 0.9924 | 0.9073 | 0.9714 | | 0.0126 | 200.0 | 1200 | 0.0749 | 0.9356 | 0.9576 | 0.9763 | 0.9223 | 0.9929 | 0.9015 | 0.9697 | | 0.0194 | 203.33 | 1220 | 0.0758 | 0.9356 | 0.9568 | 0.9763 | 0.9200 | 0.9937 | 0.9013 | 0.9698 | | 0.0155 | 206.67 | 1240 | 0.0830 | 0.9301 | 0.9570 | 0.9740 | 0.9248 | 0.9892 | 0.8934 | 0.9668 | | 0.0195 | 210.0 | 1260 | 0.0965 | 0.9352 | 0.9574 | 0.9761 | 0.9220 | 0.9928 | 0.9008 | 0.9695 | | 0.0399 | 213.33 | 1280 | 0.0811 | 0.9377 | 0.9572 | 0.9772 | 0.9194 | 0.9949 | 0.9045 | 0.9709 | | 0.0191 | 216.67 | 1300 | 0.0678 | 0.9324 | 0.9588 | 0.9749 | 0.9283 | 0.9892 | 0.8969 | 0.9679 | | 0.0303 | 220.0 | 1320 | 0.0826 | 0.9323 | 0.9569 | 0.9750 | 0.9227 | 0.9910 | 0.8965 | 0.9680 | | 0.0085 | 223.33 | 1340 | 0.0606 | 0.9370 | 0.9635 | 0.9766 | 0.9388 | 0.9882 | 0.9040 | 0.9699 | | 0.0095 | 226.67 | 1360 | 0.0643 | 0.9347 | 0.9588 | 0.9759 | 0.9266 | 0.9910 | 0.9003 | 0.9692 | | 0.0141 | 230.0 | 1380 | 0.0717 | 0.9345 | 0.9575 | 0.9759 | 0.9228 | 0.9922 | 0.8999 | 0.9692 | | 0.0083 | 233.33 | 1400 | 0.0608 | 0.9362 | 0.9593 | 0.9765 | 0.9268 | 0.9917 | 0.9025 | 0.9699 | | 0.0082 | 236.67 | 1420 | 0.0721 | 0.9359 | 0.9577 | 0.9764 | 0.9225 | 0.9930 | 0.9019 | 0.9699 | | 0.0338 | 240.0 | 1440 | 0.0747 | 0.9365 | 0.9575 | 0.9767 | 0.9213 | 0.9937 | 0.9028 | 0.9702 | | 0.0145 | 243.33 | 1460 | 0.0709 | 0.9340 | 0.9574 | 0.9756 | 0.9231 | 0.9918 | 0.8991 | 0.9689 | | 0.0186 | 246.67 | 1480 | 0.0615 | 0.9367 | 0.9592 | 0.9766 | 0.9262 | 0.9922 | 0.9032 | 0.9701 | | 0.0375 | 250.0 | 1500 | 0.0697 | 0.9352 | 0.9581 | 0.9761 | 0.9240 | 0.9921 | 0.9010 | 0.9695 | | 0.1679 | 253.33 | 1520 | 0.0797 | 0.9349 | 0.9579 | 0.9760 | 0.9238 | 0.9921 | 0.9005 | 0.9694 | | 0.0142 | 256.67 | 1540 | 0.0671 | 0.9323 | 0.9580 | 0.9749 | 0.9260 | 0.9900 | 0.8967 | 0.9679 | | 0.0296 | 260.0 | 1560 | 0.0681 | 0.9329 | 0.9585 | 0.9751 | 0.9270 | 0.9899 | 0.8976 | 0.9682 | | 0.029 | 263.33 | 1580 | 0.0726 | 0.9354 | 0.9581 | 0.9762 | 0.9240 | 0.9922 | 0.9012 | 0.9696 | | 0.1336 | 266.67 | 1600 | 0.0692 | 0.9365 | 0.9579 | 0.9766 | 0.9224 | 0.9933 | 0.9028 | 0.9702 | | 0.0327 | 270.0 | 1620 | 0.0724 | 0.9359 | 0.9571 | 0.9764 | 0.9207 | 0.9936 | 0.9018 | 0.9699 | | 0.0074 | 273.33 | 1640 | 0.0951 | 0.9335 | 0.9511 | 0.9758 | 0.9045 | 0.9977 | 0.8978 | 0.9693 | | 0.1754 | 276.67 | 1660 | 0.0728 | 0.9373 | 0.9584 | 0.9769 | 0.9235 | 0.9934 | 0.9040 | 0.9705 | | 0.0137 | 280.0 | 1680 | 0.0573 | 0.9395 | 0.9607 | 0.9778 | 0.9285 | 0.9929 | 0.9075 | 0.9715 | | 0.0132 | 283.33 | 1700 | 0.0724 | 0.9326 | 0.9576 | 0.9750 | 0.9246 | 0.9905 | 0.8970 | 0.9681 | | 0.0133 | 286.67 | 1720 | 0.0847 | 0.9362 | 0.9582 | 0.9765 | 0.9236 | 0.9928 | 0.9024 | 0.9700 | | 0.0065 | 290.0 | 1740 | 0.0688 | 0.9324 | 0.9589 | 0.9749 | 0.9288 | 0.9891 | 0.8969 | 0.9679 | | 0.1475 | 293.33 | 1760 | 0.0751 | 0.9386 | 0.9582 | 0.9775 | 0.9217 | 0.9946 | 0.9059 | 0.9712 | | 0.0143 | 296.67 | 1780 | 0.0785 | 0.9378 | 0.9572 | 0.9772 | 0.9194 | 0.9950 | 0.9047 | 0.9709 | | 0.006 | 300.0 | 1800 | 0.0714 | 0.9369 | 0.9584 | 0.9768 | 0.9236 | 0.9932 | 0.9035 | 0.9704 | | 0.0183 | 303.33 | 1820 | 0.0900 | 0.9376 | 0.9585 | 0.9771 | 0.9234 | 0.9935 | 0.9044 | 0.9707 | | 0.0185 | 306.67 | 1840 | 0.0756 | 0.9368 | 0.9583 | 0.9767 | 0.9235 | 0.9931 | 0.9032 | 0.9703 | | 0.0127 | 310.0 | 1860 | 0.0741 | 0.9320 | 0.9577 | 0.9748 | 0.9256 | 0.9899 | 0.8962 | 0.9678 | | 0.0308 | 313.33 | 1880 | 0.0675 | 0.9328 | 0.9582 | 0.9751 | 0.9264 | 0.9901 | 0.8974 | 0.9682 | | 0.0303 | 316.67 | 1900 | 0.0584 | 0.9384 | 0.9602 | 0.9773 | 0.9279 | 0.9925 | 0.9058 | 0.9710 | | 0.1517 | 320.0 | 1920 | 0.0687 | 0.9371 | 0.9587 | 0.9769 | 0.9244 | 0.9930 | 0.9038 | 0.9704 | | 0.02 | 323.33 | 1940 | 0.0737 | 0.9311 | 0.9577 | 0.9744 | 0.9263 | 0.9892 | 0.8949 | 0.9673 | | 0.1405 | 326.67 | 1960 | 0.0750 | 0.9389 | 0.9580 | 0.9776 | 0.9211 | 0.9950 | 0.9063 | 0.9714 | | 0.0133 | 330.0 | 1980 | 0.0624 | 0.9382 | 0.9589 | 0.9773 | 0.9242 | 0.9936 | 0.9054 | 0.9710 | | 0.0352 | 333.33 | 2000 | 0.0719 | 0.9375 | 0.9581 | 0.9770 | 0.9224 | 0.9938 | 0.9042 | 0.9707 | | 0.0053 | 336.67 | 2020 | 0.0660 | 0.9369 | 0.9587 | 0.9768 | 0.9246 | 0.9928 | 0.9034 | 0.9703 | | 0.0374 | 340.0 | 2040 | 0.0806 | 0.9378 | 0.9581 | 0.9772 | 0.9220 | 0.9941 | 0.9047 | 0.9708 | | 0.0188 | 343.33 | 2060 | 0.0694 | 0.9327 | 0.9581 | 0.9751 | 0.9262 | 0.9901 | 0.8973 | 0.9681 | | 0.0129 | 346.67 | 2080 | 0.0538 | 0.9426 | 0.9662 | 0.9787 | 0.9426 | 0.9898 | 0.9125 | 0.9727 | | 0.0195 | 350.0 | 2100 | 0.0743 | 0.9328 | 0.9576 | 0.9751 | 0.9245 | 0.9907 | 0.8973 | 0.9682 | | 0.0179 | 353.33 | 2120 | 0.0583 | 0.9372 | 0.9595 | 0.9769 | 0.9267 | 0.9923 | 0.9040 | 0.9704 | | 0.1339 | 356.67 | 2140 | 0.0612 | 0.9385 | 0.9589 | 0.9774 | 0.9239 | 0.9939 | 0.9059 | 0.9712 | | 0.006 | 360.0 | 2160 | 0.0900 | 0.9377 | 0.9576 | 0.9772 | 0.9207 | 0.9945 | 0.9045 | 0.9708 | | 0.0124 | 363.33 | 2180 | 0.0660 | 0.9372 | 0.9588 | 0.9769 | 0.9247 | 0.9929 | 0.9040 | 0.9705 | | 0.144 | 366.67 | 2200 | 0.0671 | 0.9307 | 0.9583 | 0.9742 | 0.9282 | 0.9884 | 0.8943 | 0.9670 | | 0.0358 | 370.0 | 2220 | 0.0739 | 0.9335 | 0.9579 | 0.9754 | 0.9247 | 0.9910 | 0.8985 | 0.9686 | | 0.0046 | 373.33 | 2240 | 0.0692 | 0.9336 | 0.9581 | 0.9754 | 0.9253 | 0.9909 | 0.8986 | 0.9686 | | 0.0283 | 376.67 | 2260 | 0.0680 | 0.9329 | 0.9578 | 0.9752 | 0.9252 | 0.9905 | 0.8975 | 0.9683 | | 0.1312 | 380.0 | 2280 | 0.0742 | 0.9353 | 0.9581 | 0.9761 | 0.9241 | 0.9922 | 0.9010 | 0.9695 | | 0.13 | 383.33 | 2300 | 0.0700 | 0.9327 | 0.9581 | 0.9751 | 0.9261 | 0.9901 | 0.8973 | 0.9681 | | 0.0119 | 386.67 | 2320 | 0.0875 | 0.9370 | 0.9580 | 0.9768 | 0.9223 | 0.9936 | 0.9035 | 0.9704 | | 0.127 | 390.0 | 2340 | 0.0742 | 0.9357 | 0.9579 | 0.9763 | 0.9230 | 0.9927 | 0.9016 | 0.9698 | | 0.012 | 393.33 | 2360 | 0.0816 | 0.9368 | 0.9584 | 0.9767 | 0.9237 | 0.9930 | 0.9032 | 0.9703 | | 0.1322 | 396.67 | 2380 | 0.0717 | 0.9333 | 0.9582 | 0.9753 | 0.9257 | 0.9906 | 0.8982 | 0.9685 | | 0.0178 | 400.0 | 2400 | 0.0738 | 0.9358 | 0.9585 | 0.9763 | 0.9250 | 0.9921 | 0.9018 | 0.9697 | | 0.0342 | 403.33 | 2420 | 0.0677 | 0.9353 | 0.9586 | 0.9761 | 0.9255 | 0.9917 | 0.9011 | 0.9695 | | 0.0042 | 406.67 | 2440 | 0.0793 | 0.9315 | 0.9574 | 0.9746 | 0.9249 | 0.9899 | 0.8954 | 0.9675 | | 0.018 | 410.0 | 2460 | 0.0748 | 0.9356 | 0.9574 | 0.9763 | 0.9217 | 0.9931 | 0.9014 | 0.9697 | | 0.0041 | 413.33 | 2480 | 0.0717 | 0.9353 | 0.9581 | 0.9761 | 0.9241 | 0.9921 | 0.9010 | 0.9695 | | 0.004 | 416.67 | 2500 | 0.0726 | 0.9348 | 0.9579 | 0.9759 | 0.9237 | 0.9920 | 0.9003 | 0.9693 | | 0.0284 | 420.0 | 2520 | 0.0696 | 0.9359 | 0.9582 | 0.9764 | 0.9238 | 0.9926 | 0.9020 | 0.9699 | | 0.0121 | 423.33 | 2540 | 0.0669 | 0.9335 | 0.9583 | 0.9754 | 0.9260 | 0.9906 | 0.8984 | 0.9685 | | 0.0117 | 426.67 | 2560 | 0.0693 | 0.9319 | 0.9580 | 0.9747 | 0.9265 | 0.9895 | 0.8960 | 0.9677 | | 0.0171 | 430.0 | 2580 | 0.0711 | 0.9343 | 0.9580 | 0.9757 | 0.9245 | 0.9915 | 0.8996 | 0.9690 | | 0.1286 | 433.33 | 2600 | 0.0714 | 0.9350 | 0.9586 | 0.9760 | 0.9257 | 0.9914 | 0.9006 | 0.9693 | | 0.0116 | 436.67 | 2620 | 0.0693 | 0.9329 | 0.9581 | 0.9752 | 0.9259 | 0.9903 | 0.8976 | 0.9682 | | 0.0271 | 440.0 | 2640 | 0.0735 | 0.9348 | 0.9580 | 0.9760 | 0.9243 | 0.9918 | 0.9004 | 0.9693 | | 0.0333 | 443.33 | 2660 | 0.0766 | 0.9360 | 0.9581 | 0.9764 | 0.9234 | 0.9927 | 0.9020 | 0.9699 | | 0.1291 | 446.67 | 2680 | 0.0665 | 0.9344 | 0.9584 | 0.9757 | 0.9256 | 0.9912 | 0.8997 | 0.9690 | | 0.0036 | 450.0 | 2700 | 0.0788 | 0.9350 | 0.9580 | 0.9760 | 0.9240 | 0.9920 | 0.9006 | 0.9693 | | 0.0036 | 453.33 | 2720 | 0.0958 | 0.9342 | 0.9573 | 0.9757 | 0.9225 | 0.9921 | 0.8993 | 0.9690 | | 0.0172 | 456.67 | 2740 | 0.0776 | 0.9383 | 0.9586 | 0.9774 | 0.9230 | 0.9941 | 0.9055 | 0.9711 | | 0.0122 | 460.0 | 2760 | 0.0733 | 0.9353 | 0.9580 | 0.9762 | 0.9237 | 0.9923 | 0.9011 | 0.9695 | | 0.0285 | 463.33 | 2780 | 0.0881 | 0.9341 | 0.9577 | 0.9757 | 0.9237 | 0.9916 | 0.8992 | 0.9689 | | 0.0171 | 466.67 | 2800 | 0.0732 | 0.9307 | 0.9577 | 0.9743 | 0.9264 | 0.9890 | 0.8944 | 0.9671 | | 0.0279 | 470.0 | 2820 | 0.0701 | 0.9330 | 0.9583 | 0.9752 | 0.9264 | 0.9902 | 0.8978 | 0.9683 | | 0.1256 | 473.33 | 2840 | 0.0762 | 0.9342 | 0.9581 | 0.9757 | 0.9248 | 0.9913 | 0.8994 | 0.9689 | | 0.0335 | 476.67 | 2860 | 0.0693 | 0.9360 | 0.9577 | 0.9765 | 0.9223 | 0.9931 | 0.9021 | 0.9700 | | 0.0113 | 480.0 | 2880 | 0.0702 | 0.9352 | 0.9583 | 0.9761 | 0.9247 | 0.9919 | 0.9009 | 0.9694 | | 0.0133 | 483.33 | 2900 | 0.0767 | 0.9352 | 0.9581 | 0.9761 | 0.9243 | 0.9920 | 0.9009 | 0.9694 | | 0.0335 | 486.67 | 2920 | 0.0686 | 0.9354 | 0.9585 | 0.9762 | 0.9251 | 0.9919 | 0.9013 | 0.9696 | | 0.0035 | 490.0 | 2940 | 0.0709 | 0.9355 | 0.9582 | 0.9762 | 0.9241 | 0.9923 | 0.9014 | 0.9696 | | 0.0167 | 493.33 | 2960 | 0.0741 | 0.9351 | 0.9580 | 0.9761 | 0.9239 | 0.9921 | 0.9007 | 0.9694 | | 0.0166 | 496.67 | 2980 | 0.0750 | 0.9361 | 0.9583 | 0.9765 | 0.9241 | 0.9926 | 0.9022 | 0.9699 | | 0.0277 | 500.0 | 3000 | 0.0726 | 0.9369 | 0.9585 | 0.9768 | 0.9238 | 0.9931 | 0.9035 | 0.9704 | | 0.0169 | 503.33 | 3020 | 0.0779 | 0.9377 | 0.9576 | 0.9771 | 0.9206 | 0.9945 | 0.9045 | 0.9708 | | 0.0038 | 506.67 | 3040 | 0.0681 | 0.9348 | 0.9587 | 0.9759 | 0.9262 | 0.9912 | 0.9004 | 0.9692 | | 0.0166 | 510.0 | 3060 | 0.0754 | 0.9355 | 0.9583 | 0.9762 | 0.9245 | 0.9921 | 0.9014 | 0.9696 | | 0.0268 | 513.33 | 3080 | 0.0677 | 0.9358 | 0.9588 | 0.9763 | 0.9256 | 0.9919 | 0.9019 | 0.9698 | | 0.0032 | 516.67 | 3100 | 0.0720 | 0.9360 | 0.9583 | 0.9764 | 0.9240 | 0.9925 | 0.9021 | 0.9699 | | 0.1239 | 520.0 | 3120 | 0.0697 | 0.9356 | 0.9586 | 0.9763 | 0.9252 | 0.9920 | 0.9016 | 0.9697 | | 0.0269 | 523.33 | 3140 | 0.0747 | 0.9352 | 0.9584 | 0.9761 | 0.9250 | 0.9918 | 0.9010 | 0.9695 | | 0.0129 | 526.67 | 3160 | 0.0895 | 0.9354 | 0.9577 | 0.9762 | 0.9227 | 0.9927 | 0.9012 | 0.9696 | | 0.1726 | 530.0 | 3180 | 0.0636 | 0.9339 | 0.9587 | 0.9755 | 0.9268 | 0.9905 | 0.8991 | 0.9687 | | 0.0332 | 533.33 | 3200 | 0.0998 | 0.9370 | 0.9577 | 0.9769 | 0.9215 | 0.9939 | 0.9035 | 0.9705 | | 0.0115 | 536.67 | 3220 | 0.0778 | 0.9361 | 0.9585 | 0.9765 | 0.9246 | 0.9924 | 0.9023 | 0.9699 | | 0.0167 | 540.0 | 3240 | 0.0767 | 0.9360 | 0.9582 | 0.9764 | 0.9238 | 0.9926 | 0.9021 | 0.9699 | | 0.0109 | 543.33 | 3260 | 0.0725 | 0.9361 | 0.9584 | 0.9764 | 0.9243 | 0.9925 | 0.9022 | 0.9699 | | 0.0264 | 546.67 | 3280 | 0.0687 | 0.9351 | 0.9584 | 0.9761 | 0.9251 | 0.9917 | 0.9008 | 0.9694 | | 0.1259 | 550.0 | 3300 | 0.0751 | 0.9343 | 0.9582 | 0.9757 | 0.9250 | 0.9914 | 0.8997 | 0.9690 | | 0.0111 | 553.33 | 3320 | 0.0714 | 0.9348 | 0.9583 | 0.9759 | 0.9250 | 0.9916 | 0.9003 | 0.9692 | | 0.1257 | 556.67 | 3340 | 0.0656 | 0.9356 | 0.9588 | 0.9762 | 0.9259 | 0.9917 | 0.9015 | 0.9696 | | 0.0163 | 560.0 | 3360 | 0.0724 | 0.9353 | 0.9583 | 0.9761 | 0.9246 | 0.9920 | 0.9011 | 0.9695 | | 0.0111 | 563.33 | 3380 | 0.0787 | 0.9327 | 0.9578 | 0.9751 | 0.9250 | 0.9905 | 0.8973 | 0.9682 | | 0.011 | 566.67 | 3400 | 0.0679 | 0.9336 | 0.9582 | 0.9754 | 0.9256 | 0.9908 | 0.8986 | 0.9686 | | 0.1369 | 570.0 | 3420 | 0.0859 | 0.9331 | 0.9579 | 0.9753 | 0.9250 | 0.9907 | 0.8979 | 0.9684 | | 0.0325 | 573.33 | 3440 | 0.0907 | 0.9361 | 0.9573 | 0.9765 | 0.9208 | 0.9937 | 0.9022 | 0.9701 | | 0.132 | 576.67 | 3460 | 0.0849 | 0.9330 | 0.9579 | 0.9752 | 0.9252 | 0.9906 | 0.8977 | 0.9683 | | 0.0111 | 580.0 | 3480 | 0.0908 | 0.9341 | 0.9581 | 0.9756 | 0.9249 | 0.9913 | 0.8993 | 0.9689 | | 0.0109 | 583.33 | 3500 | 0.0809 | 0.9349 | 0.9584 | 0.9760 | 0.9253 | 0.9915 | 0.9005 | 0.9693 | | 0.0264 | 586.67 | 3520 | 0.0821 | 0.9360 | 0.9584 | 0.9764 | 0.9243 | 0.9924 | 0.9021 | 0.9699 | | 0.0163 | 590.0 | 3540 | 0.0690 | 0.9351 | 0.9584 | 0.9761 | 0.9249 | 0.9918 | 0.9008 | 0.9694 | | 0.0028 | 593.33 | 3560 | 0.0742 | 0.9346 | 0.9581 | 0.9758 | 0.9246 | 0.9916 | 0.9000 | 0.9691 | | 0.0274 | 596.67 | 3580 | 0.0717 | 0.9347 | 0.9582 | 0.9759 | 0.9247 | 0.9916 | 0.9002 | 0.9692 | | 0.0266 | 600.0 | 3600 | 0.0873 | 0.9345 | 0.9578 | 0.9758 | 0.9237 | 0.9919 | 0.8999 | 0.9691 | | 0.0164 | 603.33 | 3620 | 0.0735 | 0.9348 | 0.9584 | 0.9759 | 0.9254 | 0.9915 | 0.9004 | 0.9692 | | 0.0162 | 606.67 | 3640 | 0.0757 | 0.9347 | 0.9583 | 0.9759 | 0.9250 | 0.9915 | 0.9001 | 0.9692 | | 0.0109 | 610.0 | 3660 | 0.0853 | 0.9334 | 0.9580 | 0.9754 | 0.9252 | 0.9908 | 0.8983 | 0.9685 | | 0.0109 | 613.33 | 3680 | 0.0741 | 0.9354 | 0.9583 | 0.9762 | 0.9244 | 0.9921 | 0.9013 | 0.9696 | | 0.0027 | 616.67 | 3700 | 0.0751 | 0.9355 | 0.9583 | 0.9762 | 0.9244 | 0.9921 | 0.9014 | 0.9696 | | 0.0266 | 620.0 | 3720 | 0.0728 | 0.9341 | 0.9580 | 0.9757 | 0.9247 | 0.9913 | 0.8993 | 0.9689 | | 0.124 | 623.33 | 3740 | 0.0727 | 0.9323 | 0.9582 | 0.9749 | 0.9268 | 0.9897 | 0.8967 | 0.9679 | | 0.0026 | 626.67 | 3760 | 0.0912 | 0.9366 | 0.9586 | 0.9766 | 0.9246 | 0.9927 | 0.9030 | 0.9702 | | 0.0177 | 630.0 | 3780 | 0.0825 | 0.9366 | 0.9581 | 0.9767 | 0.9230 | 0.9932 | 0.9030 | 0.9702 | | 0.0262 | 633.33 | 3800 | 0.0758 | 0.9368 | 0.9583 | 0.9767 | 0.9236 | 0.9931 | 0.9032 | 0.9703 | | 0.0106 | 636.67 | 3820 | 0.0851 | 0.9339 | 0.9580 | 0.9756 | 0.9249 | 0.9912 | 0.8991 | 0.9688 | | 0.1289 | 640.0 | 3840 | 0.0711 | 0.9349 | 0.9588 | 0.9760 | 0.9265 | 0.9912 | 0.9006 | 0.9693 | | 0.0326 | 643.33 | 3860 | 0.0808 | 0.9343 | 0.9581 | 0.9757 | 0.9247 | 0.9914 | 0.8996 | 0.9690 | | 0.016 | 646.67 | 3880 | 0.0709 | 0.9334 | 0.9583 | 0.9754 | 0.9261 | 0.9905 | 0.8983 | 0.9685 | | 0.0106 | 650.0 | 3900 | 0.0812 | 0.9332 | 0.9578 | 0.9753 | 0.9247 | 0.9909 | 0.8979 | 0.9684 | | 0.0104 | 653.33 | 3920 | 0.0794 | 0.9338 | 0.9579 | 0.9755 | 0.9247 | 0.9912 | 0.8989 | 0.9687 | | 0.0326 | 656.67 | 3940 | 0.0746 | 0.9349 | 0.9582 | 0.9760 | 0.9247 | 0.9917 | 0.9005 | 0.9693 | | 0.0322 | 660.0 | 3960 | 0.0788 | 0.9345 | 0.9581 | 0.9758 | 0.9247 | 0.9916 | 0.9000 | 0.9691 | | 0.0318 | 663.33 | 3980 | 0.0815 | 0.9356 | 0.9581 | 0.9763 | 0.9238 | 0.9924 | 0.9015 | 0.9697 | | 0.0157 | 666.67 | 4000 | 0.0759 | 0.9356 | 0.9582 | 0.9763 | 0.9242 | 0.9923 | 0.9015 | 0.9697 | | 0.0024 | 670.0 | 4020 | 0.0748 | 0.9352 | 0.9583 | 0.9761 | 0.9248 | 0.9919 | 0.9010 | 0.9695 | | 0.0315 | 673.33 | 4040 | 0.0850 | 0.9351 | 0.9582 | 0.9760 | 0.9246 | 0.9919 | 0.9007 | 0.9694 | | 0.0324 | 676.67 | 4060 | 0.0820 | 0.9351 | 0.9580 | 0.9761 | 0.9239 | 0.9921 | 0.9007 | 0.9694 | | 0.0258 | 680.0 | 4080 | 0.0711 | 0.9359 | 0.9585 | 0.9764 | 0.9247 | 0.9923 | 0.9020 | 0.9698 | | 0.0315 | 683.33 | 4100 | 0.0876 | 0.9352 | 0.9579 | 0.9761 | 0.9235 | 0.9923 | 0.9009 | 0.9695 | | 0.026 | 686.67 | 4120 | 0.0752 | 0.9355 | 0.9583 | 0.9762 | 0.9246 | 0.9921 | 0.9013 | 0.9696 | | 0.0258 | 690.0 | 4140 | 0.0715 | 0.9353 | 0.9584 | 0.9761 | 0.9250 | 0.9919 | 0.9011 | 0.9695 | | 0.0258 | 693.33 | 4160 | 0.0794 | 0.9363 | 0.9584 | 0.9765 | 0.9243 | 0.9926 | 0.9025 | 0.9700 | | 0.1233 | 696.67 | 4180 | 0.0707 | 0.9358 | 0.9586 | 0.9763 | 0.9251 | 0.9921 | 0.9019 | 0.9698 | | 0.0116 | 700.0 | 4200 | 0.0984 | 0.9335 | 0.9580 | 0.9754 | 0.9251 | 0.9908 | 0.8984 | 0.9686 | | 0.013 | 703.33 | 4220 | 0.0754 | 0.9373 | 0.9586 | 0.9769 | 0.9239 | 0.9933 | 0.9041 | 0.9706 | | 0.0024 | 706.67 | 4240 | 0.0810 | 0.9344 | 0.9584 | 0.9758 | 0.9255 | 0.9912 | 0.8998 | 0.9690 | | 0.0315 | 710.0 | 4260 | 0.0745 | 0.9351 | 0.9584 | 0.9761 | 0.9252 | 0.9917 | 0.9008 | 0.9694 | | 0.1223 | 713.33 | 4280 | 0.0743 | 0.9343 | 0.9583 | 0.9757 | 0.9252 | 0.9913 | 0.8997 | 0.9690 | | 0.0315 | 716.67 | 4300 | 0.0954 | 0.9353 | 0.9579 | 0.9762 | 0.9234 | 0.9924 | 0.9011 | 0.9696 | | 0.1263 | 720.0 | 4320 | 0.0793 | 0.9365 | 0.9586 | 0.9766 | 0.9246 | 0.9926 | 0.9029 | 0.9701 | | 0.0155 | 723.33 | 4340 | 0.0923 | 0.9348 | 0.9584 | 0.9759 | 0.9252 | 0.9915 | 0.9004 | 0.9693 | | 0.0256 | 726.67 | 4360 | 0.0794 | 0.9368 | 0.9586 | 0.9768 | 0.9243 | 0.9929 | 0.9034 | 0.9703 | | 0.0316 | 730.0 | 4380 | 0.0853 | 0.9379 | 0.9584 | 0.9772 | 0.9229 | 0.9939 | 0.9049 | 0.9709 | | 0.0155 | 733.33 | 4400 | 0.0688 | 0.9363 | 0.9592 | 0.9765 | 0.9264 | 0.9919 | 0.9026 | 0.9700 | | 0.1215 | 736.67 | 4420 | 0.0720 | 0.9376 | 0.9586 | 0.9771 | 0.9239 | 0.9934 | 0.9045 | 0.9707 | | 0.0105 | 740.0 | 4440 | 0.0838 | 0.9362 | 0.9587 | 0.9765 | 0.9251 | 0.9923 | 0.9024 | 0.9700 | | 0.0326 | 743.33 | 4460 | 0.0901 | 0.9381 | 0.9585 | 0.9773 | 0.9230 | 0.9939 | 0.9052 | 0.9710 | | 0.1212 | 746.67 | 4480 | 0.0755 | 0.9367 | 0.9586 | 0.9767 | 0.9245 | 0.9927 | 0.9031 | 0.9702 | | 0.0313 | 750.0 | 4500 | 0.0770 | 0.9358 | 0.9585 | 0.9763 | 0.9248 | 0.9922 | 0.9018 | 0.9698 | | 0.0311 | 753.33 | 4520 | 0.0747 | 0.9370 | 0.9585 | 0.9768 | 0.9239 | 0.9931 | 0.9036 | 0.9704 | | 0.0255 | 756.67 | 4540 | 0.0728 | 0.9378 | 0.9586 | 0.9771 | 0.9236 | 0.9936 | 0.9047 | 0.9708 | | 0.031 | 760.0 | 4560 | 0.0722 | 0.9354 | 0.9583 | 0.9762 | 0.9247 | 0.9920 | 0.9013 | 0.9696 | | 0.0022 | 763.33 | 4580 | 0.0692 | 0.9348 | 0.9587 | 0.9759 | 0.9261 | 0.9912 | 0.9004 | 0.9692 | | 0.031 | 766.67 | 4600 | 0.0740 | 0.9363 | 0.9584 | 0.9765 | 0.9242 | 0.9926 | 0.9025 | 0.9700 | | 0.0151 | 770.0 | 4620 | 0.0738 | 0.9362 | 0.9585 | 0.9765 | 0.9244 | 0.9925 | 0.9024 | 0.9700 | | 0.015 | 773.33 | 4640 | 0.0719 | 0.9358 | 0.9585 | 0.9763 | 0.9249 | 0.9921 | 0.9018 | 0.9697 | | 0.0153 | 776.67 | 4660 | 0.0767 | 0.9339 | 0.9579 | 0.9756 | 0.9245 | 0.9913 | 0.8990 | 0.9688 | | 0.1215 | 780.0 | 4680 | 0.0732 | 0.9353 | 0.9583 | 0.9761 | 0.9246 | 0.9920 | 0.9011 | 0.9695 | | 0.0022 | 783.33 | 4700 | 0.0724 | 0.9359 | 0.9583 | 0.9764 | 0.9243 | 0.9924 | 0.9019 | 0.9698 | | 0.0022 | 786.67 | 4720 | 0.0698 | 0.9360 | 0.9587 | 0.9764 | 0.9253 | 0.9921 | 0.9021 | 0.9698 | | 0.0022 | 790.0 | 4740 | 0.0736 | 0.9356 | 0.9583 | 0.9763 | 0.9243 | 0.9922 | 0.9015 | 0.9697 | | 0.0322 | 793.33 | 4760 | 0.0697 | 0.9376 | 0.9583 | 0.9771 | 0.9230 | 0.9937 | 0.9044 | 0.9707 | | 0.0132 | 796.67 | 4780 | 0.0748 | 0.9355 | 0.9582 | 0.9762 | 0.9241 | 0.9922 | 0.9014 | 0.9696 | | 0.0024 | 800.0 | 4800 | 0.0671 | 0.9360 | 0.9588 | 0.9764 | 0.9256 | 0.9920 | 0.9022 | 0.9698 | | 0.0106 | 803.33 | 4820 | 0.0735 | 0.9361 | 0.9584 | 0.9765 | 0.9244 | 0.9925 | 0.9023 | 0.9699 | | 0.015 | 806.67 | 4840 | 0.0673 | 0.9333 | 0.9589 | 0.9753 | 0.9280 | 0.9898 | 0.8982 | 0.9684 | | 0.1232 | 810.0 | 4860 | 0.0811 | 0.9312 | 0.9579 | 0.9744 | 0.9267 | 0.9891 | 0.8950 | 0.9673 | | 0.0262 | 813.33 | 4880 | 0.0716 | 0.9365 | 0.9588 | 0.9766 | 0.9252 | 0.9924 | 0.9028 | 0.9701 | | 0.0254 | 816.67 | 4900 | 0.0743 | 0.9364 | 0.9585 | 0.9766 | 0.9242 | 0.9927 | 0.9027 | 0.9701 | | 0.1216 | 820.0 | 4920 | 0.0689 | 0.9360 | 0.9590 | 0.9764 | 0.9261 | 0.9918 | 0.9021 | 0.9698 | | 0.0105 | 823.33 | 4940 | 0.0798 | 0.9358 | 0.9583 | 0.9763 | 0.9244 | 0.9923 | 0.9018 | 0.9698 | | 0.0251 | 826.67 | 4960 | 0.0713 | 0.9367 | 0.9588 | 0.9767 | 0.9249 | 0.9926 | 0.9032 | 0.9702 | | 0.0021 | 830.0 | 4980 | 0.0701 | 0.9365 | 0.9590 | 0.9766 | 0.9257 | 0.9922 | 0.9029 | 0.9701 | | 0.0021 | 833.33 | 5000 | 0.0723 | 0.9350 | 0.9587 | 0.9760 | 0.9261 | 0.9914 | 0.9007 | 0.9693 | | 0.0148 | 836.67 | 5020 | 0.0720 | 0.9363 | 0.9588 | 0.9765 | 0.9255 | 0.9922 | 0.9025 | 0.9700 | | 0.002 | 840.0 | 5040 | 0.0728 | 0.9361 | 0.9587 | 0.9764 | 0.9253 | 0.9922 | 0.9023 | 0.9699 | | 0.0021 | 843.33 | 5060 | 0.0745 | 0.9360 | 0.9587 | 0.9764 | 0.9254 | 0.9921 | 0.9021 | 0.9698 | | 0.0169 | 846.67 | 5080 | 0.0810 | 0.9365 | 0.9589 | 0.9766 | 0.9254 | 0.9923 | 0.9028 | 0.9701 | | 0.0148 | 850.0 | 5100 | 0.0766 | 0.9353 | 0.9587 | 0.9761 | 0.9259 | 0.9916 | 0.9012 | 0.9695 | | 0.0147 | 853.33 | 5120 | 0.0806 | 0.9368 | 0.9586 | 0.9767 | 0.9243 | 0.9928 | 0.9033 | 0.9703 | | 0.0147 | 856.67 | 5140 | 0.0718 | 0.9366 | 0.9587 | 0.9767 | 0.9248 | 0.9926 | 0.9030 | 0.9702 | | 0.0152 | 860.0 | 5160 | 0.0682 | 0.9353 | 0.9591 | 0.9761 | 0.9272 | 0.9911 | 0.9011 | 0.9694 | | 0.025 | 863.33 | 5180 | 0.0730 | 0.9341 | 0.9586 | 0.9756 | 0.9264 | 0.9908 | 0.8993 | 0.9688 | | 0.031 | 866.67 | 5200 | 0.0773 | 0.9369 | 0.9588 | 0.9768 | 0.9248 | 0.9927 | 0.9034 | 0.9703 | | 0.0252 | 870.0 | 5220 | 0.0883 | 0.9353 | 0.9584 | 0.9761 | 0.9251 | 0.9918 | 0.9011 | 0.9695 | | 0.01 | 873.33 | 5240 | 0.0708 | 0.9365 | 0.9588 | 0.9766 | 0.9252 | 0.9924 | 0.9030 | 0.9701 | | 0.002 | 876.67 | 5260 | 0.0780 | 0.9372 | 0.9587 | 0.9769 | 0.9242 | 0.9931 | 0.9039 | 0.9705 | | 0.031 | 880.0 | 5280 | 0.0674 | 0.9365 | 0.9590 | 0.9766 | 0.9257 | 0.9923 | 0.9029 | 0.9701 | | 0.0022 | 883.33 | 5300 | 0.0671 | 0.9356 | 0.9589 | 0.9762 | 0.9261 | 0.9917 | 0.9016 | 0.9696 | | 0.0306 | 886.67 | 5320 | 0.0726 | 0.9370 | 0.9586 | 0.9768 | 0.9241 | 0.9931 | 0.9037 | 0.9704 | | 0.0096 | 890.0 | 5340 | 0.0698 | 0.9361 | 0.9588 | 0.9764 | 0.9254 | 0.9921 | 0.9023 | 0.9699 | | 0.1208 | 893.33 | 5360 | 0.0746 | 0.9365 | 0.9585 | 0.9766 | 0.9243 | 0.9927 | 0.9029 | 0.9701 | | 0.0177 | 896.67 | 5380 | 0.0767 | 0.9365 | 0.9585 | 0.9766 | 0.9242 | 0.9927 | 0.9028 | 0.9701 | | 0.002 | 900.0 | 5400 | 0.0677 | 0.9363 | 0.9589 | 0.9765 | 0.9257 | 0.9921 | 0.9026 | 0.9700 | | 0.0147 | 903.33 | 5420 | 0.0753 | 0.9345 | 0.9586 | 0.9758 | 0.9260 | 0.9911 | 0.9000 | 0.9691 | | 0.1214 | 906.67 | 5440 | 0.0796 | 0.9363 | 0.9585 | 0.9765 | 0.9244 | 0.9926 | 0.9026 | 0.9700 | | 0.1197 | 910.0 | 5460 | 0.0756 | 0.9374 | 0.9588 | 0.9770 | 0.9244 | 0.9931 | 0.9042 | 0.9706 | | 0.0249 | 913.33 | 5480 | 0.0756 | 0.9372 | 0.9588 | 0.9769 | 0.9245 | 0.9930 | 0.9039 | 0.9705 | | 0.0145 | 916.67 | 5500 | 0.0754 | 0.9355 | 0.9588 | 0.9762 | 0.9259 | 0.9916 | 0.9014 | 0.9695 | | 0.1201 | 920.0 | 5520 | 0.0781 | 0.9352 | 0.9585 | 0.9761 | 0.9252 | 0.9917 | 0.9010 | 0.9694 | | 0.0144 | 923.33 | 5540 | 0.0868 | 0.9366 | 0.9586 | 0.9767 | 0.9244 | 0.9927 | 0.9030 | 0.9702 | | 0.0099 | 926.67 | 5560 | 0.0664 | 0.9371 | 0.9593 | 0.9768 | 0.9263 | 0.9923 | 0.9038 | 0.9704 | | 0.0095 | 930.0 | 5580 | 0.0745 | 0.9357 | 0.9589 | 0.9763 | 0.9260 | 0.9917 | 0.9017 | 0.9697 | | 0.0095 | 933.33 | 5600 | 0.0745 | 0.9366 | 0.9589 | 0.9766 | 0.9254 | 0.9924 | 0.9030 | 0.9701 | | 0.1289 | 936.67 | 5620 | 0.0651 | 0.9375 | 0.9591 | 0.9770 | 0.9253 | 0.9929 | 0.9044 | 0.9706 | | 0.0099 | 940.0 | 5640 | 0.0755 | 0.9357 | 0.9585 | 0.9763 | 0.9250 | 0.9920 | 0.9017 | 0.9697 | | 0.01 | 943.33 | 5660 | 0.0678 | 0.9370 | 0.9591 | 0.9768 | 0.9258 | 0.9924 | 0.9036 | 0.9703 | | 0.0247 | 946.67 | 5680 | 0.0787 | 0.9374 | 0.9585 | 0.9770 | 0.9236 | 0.9934 | 0.9042 | 0.9706 | | 0.0248 | 950.0 | 5700 | 0.0740 | 0.9372 | 0.9585 | 0.9769 | 0.9238 | 0.9932 | 0.9039 | 0.9705 | | 0.1199 | 953.33 | 5720 | 0.0720 | 0.9357 | 0.9586 | 0.9763 | 0.9252 | 0.9920 | 0.9017 | 0.9697 | | 0.0148 | 956.67 | 5740 | 0.0715 | 0.9372 | 0.9589 | 0.9769 | 0.9250 | 0.9928 | 0.9039 | 0.9704 | | 0.0254 | 960.0 | 5760 | 0.0821 | 0.9335 | 0.9579 | 0.9754 | 0.9248 | 0.9909 | 0.8983 | 0.9686 | | 0.1213 | 963.33 | 5780 | 0.0709 | 0.9345 | 0.9586 | 0.9758 | 0.9263 | 0.9910 | 0.8999 | 0.9690 | | 0.0152 | 966.67 | 5800 | 0.0716 | 0.9348 | 0.9587 | 0.9759 | 0.9261 | 0.9912 | 0.9004 | 0.9692 | | 0.0248 | 970.0 | 5820 | 0.0929 | 0.9351 | 0.9581 | 0.9761 | 0.9240 | 0.9921 | 0.9008 | 0.9694 | | 0.002 | 973.33 | 5840 | 0.0684 | 0.9359 | 0.9586 | 0.9764 | 0.9252 | 0.9921 | 0.9020 | 0.9698 | | 0.1195 | 976.67 | 5860 | 0.0762 | 0.9331 | 0.9584 | 0.9752 | 0.9266 | 0.9902 | 0.8979 | 0.9683 | | 0.002 | 980.0 | 5880 | 0.0798 | 0.9346 | 0.9582 | 0.9758 | 0.9248 | 0.9915 | 0.9000 | 0.9691 | | 0.0302 | 983.33 | 5900 | 0.0840 | 0.9359 | 0.9584 | 0.9764 | 0.9245 | 0.9923 | 0.9020 | 0.9698 | | 0.1191 | 986.67 | 5920 | 0.0724 | 0.9340 | 0.9587 | 0.9756 | 0.9270 | 0.9905 | 0.8992 | 0.9688 | | 0.0142 | 990.0 | 5940 | 0.0791 | 0.9342 | 0.9583 | 0.9757 | 0.9254 | 0.9912 | 0.8995 | 0.9689 | | 0.03 | 993.33 | 5960 | 0.0772 | 0.9358 | 0.9584 | 0.9763 | 0.9245 | 0.9923 | 0.9018 | 0.9698 | | 0.0019 | 996.67 | 5980 | 0.0695 | 0.9358 | 0.9584 | 0.9764 | 0.9246 | 0.9922 | 0.9019 | 0.9698 | | 0.0301 | 1000.0 | 6000 | 0.0783 | 0.9355 | 0.9585 | 0.9762 | 0.9252 | 0.9919 | 0.9014 | 0.9696 | | 0.0246 | 1003.33 | 6020 | 0.0844 | 0.9356 | 0.9583 | 0.9763 | 0.9243 | 0.9922 | 0.9015 | 0.9697 | | 0.0147 | 1006.67 | 6040 | 0.0726 | 0.9367 | 0.9588 | 0.9767 | 0.9249 | 0.9926 | 0.9032 | 0.9702 | | 0.0021 | 1010.0 | 6060 | 0.0746 | 0.9347 | 0.9585 | 0.9759 | 0.9258 | 0.9912 | 0.9002 | 0.9691 | | 0.1189 | 1013.33 | 6080 | 0.0745 | 0.9364 | 0.9588 | 0.9766 | 0.9254 | 0.9923 | 0.9028 | 0.9701 | | 0.0301 | 1016.67 | 6100 | 0.0884 | 0.9364 | 0.9583 | 0.9766 | 0.9239 | 0.9928 | 0.9028 | 0.9701 | | 0.0163 | 1020.0 | 6120 | 0.0731 | 0.9356 | 0.9586 | 0.9762 | 0.9254 | 0.9918 | 0.9015 | 0.9696 | | 0.0141 | 1023.33 | 6140 | 0.0747 | 0.9346 | 0.9586 | 0.9758 | 0.9262 | 0.9911 | 0.9001 | 0.9691 | | 0.0019 | 1026.67 | 6160 | 0.0662 | 0.9352 | 0.9594 | 0.9761 | 0.9279 | 0.9909 | 0.9011 | 0.9694 | | 0.1197 | 1030.0 | 6180 | 0.0789 | 0.9352 | 0.9584 | 0.9761 | 0.9250 | 0.9918 | 0.9009 | 0.9694 | | 0.1191 | 1033.33 | 6200 | 0.0681 | 0.9369 | 0.9591 | 0.9767 | 0.9258 | 0.9924 | 0.9034 | 0.9703 | | 0.0093 | 1036.67 | 6220 | 0.0679 | 0.9360 | 0.9591 | 0.9764 | 0.9263 | 0.9918 | 0.9022 | 0.9698 | | 0.1189 | 1040.0 | 6240 | 0.0753 | 0.9354 | 0.9586 | 0.9762 | 0.9254 | 0.9918 | 0.9013 | 0.9696 | | 0.0092 | 1043.33 | 6260 | 0.0718 | 0.9354 | 0.9589 | 0.9762 | 0.9263 | 0.9915 | 0.9013 | 0.9695 | | 0.1185 | 1046.67 | 6280 | 0.0757 | 0.9364 | 0.9588 | 0.9766 | 0.9253 | 0.9923 | 0.9027 | 0.9700 | | 0.0315 | 1050.0 | 6300 | 0.0793 | 0.9358 | 0.9585 | 0.9763 | 0.9249 | 0.9921 | 0.9019 | 0.9698 | | 0.0307 | 1053.33 | 6320 | 0.0770 | 0.9363 | 0.9584 | 0.9766 | 0.9241 | 0.9927 | 0.9026 | 0.9700 | | 0.0247 | 1056.67 | 6340 | 0.0755 | 0.9348 | 0.9586 | 0.9759 | 0.9259 | 0.9913 | 0.9005 | 0.9692 | | 0.0092 | 1060.0 | 6360 | 0.0788 | 0.9360 | 0.9586 | 0.9764 | 0.9251 | 0.9922 | 0.9022 | 0.9699 | | 0.0093 | 1063.33 | 6380 | 0.0696 | 0.9358 | 0.9591 | 0.9763 | 0.9267 | 0.9915 | 0.9018 | 0.9697 | | 0.0298 | 1066.67 | 6400 | 0.0707 | 0.9359 | 0.9586 | 0.9764 | 0.9251 | 0.9922 | 0.9021 | 0.9698 | | 0.0018 | 1070.0 | 6420 | 0.0725 | 0.9343 | 0.9586 | 0.9757 | 0.9265 | 0.9908 | 0.8996 | 0.9689 | | 0.1184 | 1073.33 | 6440 | 0.0669 | 0.9355 | 0.9594 | 0.9762 | 0.9277 | 0.9911 | 0.9015 | 0.9695 | | 0.014 | 1076.67 | 6460 | 0.0857 | 0.9358 | 0.9584 | 0.9763 | 0.9244 | 0.9923 | 0.9019 | 0.9698 | | 0.0138 | 1080.0 | 6480 | 0.0764 | 0.9347 | 0.9583 | 0.9759 | 0.9251 | 0.9915 | 0.9003 | 0.9692 | | 0.0256 | 1083.33 | 6500 | 0.0807 | 0.9365 | 0.9582 | 0.9766 | 0.9234 | 0.9930 | 0.9028 | 0.9701 | | 0.0136 | 1086.67 | 6520 | 0.0800 | 0.9359 | 0.9584 | 0.9764 | 0.9244 | 0.9924 | 0.9020 | 0.9698 | | 0.0018 | 1090.0 | 6540 | 0.0701 | 0.9358 | 0.9589 | 0.9763 | 0.9262 | 0.9917 | 0.9019 | 0.9697 | | 0.031 | 1093.33 | 6560 | 0.0699 | 0.9373 | 0.9588 | 0.9769 | 0.9245 | 0.9931 | 0.9041 | 0.9705 | | 0.0243 | 1096.67 | 6580 | 0.0709 | 0.9368 | 0.9586 | 0.9768 | 0.9242 | 0.9929 | 0.9034 | 0.9703 | | 0.0138 | 1100.0 | 6600 | 0.0735 | 0.9372 | 0.9587 | 0.9769 | 0.9244 | 0.9930 | 0.9039 | 0.9705 | | 0.0096 | 1103.33 | 6620 | 0.0872 | 0.9358 | 0.9587 | 0.9763 | 0.9255 | 0.9919 | 0.9018 | 0.9697 | | 0.0138 | 1106.67 | 6640 | 0.0762 | 0.9352 | 0.9585 | 0.9761 | 0.9255 | 0.9916 | 0.9009 | 0.9694 | | 0.0308 | 1110.0 | 6660 | 0.0740 | 0.9373 | 0.9587 | 0.9769 | 0.9244 | 0.9931 | 0.9041 | 0.9705 | | 0.0243 | 1113.33 | 6680 | 0.0817 | 0.9375 | 0.9585 | 0.9770 | 0.9235 | 0.9935 | 0.9043 | 0.9706 | | 0.0296 | 1116.67 | 6700 | 0.0703 | 0.9370 | 0.9587 | 0.9768 | 0.9244 | 0.9929 | 0.9036 | 0.9704 | | 0.0092 | 1120.0 | 6720 | 0.0744 | 0.9364 | 0.9590 | 0.9766 | 0.9259 | 0.9921 | 0.9028 | 0.9700 | | 0.0091 | 1123.33 | 6740 | 0.0707 | 0.9351 | 0.9589 | 0.9760 | 0.9266 | 0.9912 | 0.9009 | 0.9694 | | 0.0108 | 1126.67 | 6760 | 0.0740 | 0.9366 | 0.9589 | 0.9766 | 0.9253 | 0.9924 | 0.9031 | 0.9702 | | 0.0018 | 1130.0 | 6780 | 0.0685 | 0.9345 | 0.9590 | 0.9758 | 0.9274 | 0.9906 | 0.9000 | 0.9690 | | 0.0018 | 1133.33 | 6800 | 0.0701 | 0.9349 | 0.9592 | 0.9759 | 0.9276 | 0.9908 | 0.9006 | 0.9692 | | 0.0017 | 1136.67 | 6820 | 0.0781 | 0.9360 | 0.9589 | 0.9764 | 0.9258 | 0.9920 | 0.9022 | 0.9698 | | 0.0242 | 1140.0 | 6840 | 0.0773 | 0.9366 | 0.9586 | 0.9767 | 0.9244 | 0.9927 | 0.9031 | 0.9702 | | 0.0263 | 1143.33 | 6860 | 0.0915 | 0.9375 | 0.9581 | 0.9770 | 0.9223 | 0.9939 | 0.9043 | 0.9707 | | 0.0305 | 1146.67 | 6880 | 0.0737 | 0.9368 | 0.9588 | 0.9767 | 0.9249 | 0.9927 | 0.9033 | 0.9703 | | 0.0017 | 1150.0 | 6900 | 0.0687 | 0.9369 | 0.9591 | 0.9768 | 0.9258 | 0.9925 | 0.9036 | 0.9703 | | 0.0243 | 1153.33 | 6920 | 0.0791 | 0.9355 | 0.9586 | 0.9762 | 0.9253 | 0.9919 | 0.9014 | 0.9696 | | 0.0253 | 1156.67 | 6940 | 0.0811 | 0.9359 | 0.9587 | 0.9764 | 0.9254 | 0.9921 | 0.9021 | 0.9698 | | 0.1184 | 1160.0 | 6960 | 0.0724 | 0.9369 | 0.9591 | 0.9767 | 0.9258 | 0.9924 | 0.9035 | 0.9703 | | 0.035 | 1163.33 | 6980 | 0.0781 | 0.9383 | 0.9590 | 0.9773 | 0.9244 | 0.9936 | 0.9055 | 0.9710 | | 0.0296 | 1166.67 | 7000 | 0.0875 | 0.9366 | 0.9584 | 0.9767 | 0.9239 | 0.9929 | 0.9030 | 0.9702 | | 0.0135 | 1170.0 | 7020 | 0.0847 | 0.9361 | 0.9586 | 0.9765 | 0.9250 | 0.9923 | 0.9023 | 0.9699 | | 0.1182 | 1173.33 | 7040 | 0.0681 | 0.9375 | 0.9591 | 0.9770 | 0.9254 | 0.9929 | 0.9044 | 0.9706 | | 0.0017 | 1176.67 | 7060 | 0.0674 | 0.9366 | 0.9594 | 0.9766 | 0.9269 | 0.9919 | 0.9032 | 0.9701 | | 0.0089 | 1180.0 | 7080 | 0.0767 | 0.9364 | 0.9587 | 0.9766 | 0.9250 | 0.9924 | 0.9027 | 0.9701 | | 0.0017 | 1183.33 | 7100 | 0.0720 | 0.9372 | 0.9590 | 0.9769 | 0.9252 | 0.9928 | 0.9039 | 0.9704 | | 0.0294 | 1186.67 | 7120 | 0.0827 | 0.9371 | 0.9587 | 0.9769 | 0.9243 | 0.9930 | 0.9038 | 0.9704 | | 0.0293 | 1190.0 | 7140 | 0.0723 | 0.9368 | 0.9590 | 0.9767 | 0.9257 | 0.9924 | 0.9033 | 0.9702 | | 0.0018 | 1193.33 | 7160 | 0.0713 | 0.9361 | 0.9589 | 0.9764 | 0.9259 | 0.9920 | 0.9023 | 0.9699 | | 0.0089 | 1196.67 | 7180 | 0.0852 | 0.9364 | 0.9586 | 0.9766 | 0.9248 | 0.9925 | 0.9028 | 0.9701 | | 0.0017 | 1200.0 | 7200 | 0.0730 | 0.9371 | 0.9592 | 0.9768 | 0.9258 | 0.9925 | 0.9038 | 0.9704 | | 0.0088 | 1203.33 | 7220 | 0.0662 | 0.9370 | 0.9596 | 0.9768 | 0.9271 | 0.9920 | 0.9037 | 0.9703 | | 0.0088 | 1206.67 | 7240 | 0.0768 | 0.9358 | 0.9589 | 0.9763 | 0.9260 | 0.9918 | 0.9019 | 0.9697 | | 0.0294 | 1210.0 | 7260 | 0.0731 | 0.9371 | 0.9589 | 0.9768 | 0.9250 | 0.9928 | 0.9038 | 0.9704 | | 0.0017 | 1213.33 | 7280 | 0.0647 | 0.9372 | 0.9596 | 0.9769 | 0.9271 | 0.9922 | 0.9040 | 0.9704 | | 0.009 | 1216.67 | 7300 | 0.0737 | 0.9371 | 0.9594 | 0.9768 | 0.9265 | 0.9923 | 0.9038 | 0.9703 | | 0.0136 | 1220.0 | 7320 | 0.0722 | 0.9361 | 0.9590 | 0.9764 | 0.9263 | 0.9918 | 0.9023 | 0.9698 | | 0.0019 | 1223.33 | 7340 | 0.0684 | 0.9373 | 0.9591 | 0.9769 | 0.9255 | 0.9927 | 0.9041 | 0.9705 | | 0.0133 | 1226.67 | 7360 | 0.0911 | 0.9369 | 0.9589 | 0.9768 | 0.9252 | 0.9926 | 0.9035 | 0.9703 | | 0.0018 | 1230.0 | 7380 | 0.0656 | 0.9369 | 0.9591 | 0.9767 | 0.9257 | 0.9924 | 0.9034 | 0.9703 | | 0.0137 | 1233.33 | 7400 | 0.0677 | 0.9371 | 0.9597 | 0.9768 | 0.9274 | 0.9920 | 0.9038 | 0.9703 | | 0.0309 | 1236.67 | 7420 | 0.0830 | 0.9370 | 0.9587 | 0.9768 | 0.9245 | 0.9929 | 0.9036 | 0.9704 | | 0.025 | 1240.0 | 7440 | 0.0694 | 0.9375 | 0.9593 | 0.9770 | 0.9259 | 0.9927 | 0.9045 | 0.9706 | | 0.0238 | 1243.33 | 7460 | 0.0720 | 0.9371 | 0.9593 | 0.9768 | 0.9261 | 0.9924 | 0.9038 | 0.9704 | | 0.0087 | 1246.67 | 7480 | 0.0650 | 0.9374 | 0.9595 | 0.9769 | 0.9266 | 0.9924 | 0.9042 | 0.9705 | | 0.0089 | 1250.0 | 7500 | 0.0750 | 0.9379 | 0.9589 | 0.9772 | 0.9245 | 0.9934 | 0.9049 | 0.9708 | | 0.0131 | 1253.33 | 7520 | 0.0745 | 0.9365 | 0.9592 | 0.9766 | 0.9262 | 0.9921 | 0.9030 | 0.9701 | | 0.0296 | 1256.67 | 7540 | 0.0782 | 0.9361 | 0.9587 | 0.9765 | 0.9253 | 0.9922 | 0.9024 | 0.9699 | | 0.0017 | 1260.0 | 7560 | 0.0727 | 0.9369 | 0.9590 | 0.9768 | 0.9255 | 0.9925 | 0.9035 | 0.9703 | | 0.0087 | 1263.33 | 7580 | 0.0738 | 0.9373 | 0.9592 | 0.9769 | 0.9256 | 0.9927 | 0.9040 | 0.9705 | | 0.0016 | 1266.67 | 7600 | 0.0702 | 0.9372 | 0.9591 | 0.9769 | 0.9256 | 0.9927 | 0.9040 | 0.9705 | | 0.1242 | 1270.0 | 7620 | 0.0651 | 0.9370 | 0.9597 | 0.9768 | 0.9276 | 0.9919 | 0.9038 | 0.9703 | | 0.024 | 1273.33 | 7640 | 0.0681 | 0.9373 | 0.9598 | 0.9769 | 0.9274 | 0.9921 | 0.9041 | 0.9704 | | 0.1179 | 1276.67 | 7660 | 0.0611 | 0.9372 | 0.9605 | 0.9768 | 0.9297 | 0.9913 | 0.9041 | 0.9703 | | 0.0017 | 1280.0 | 7680 | 0.0737 | 0.9365 | 0.9588 | 0.9766 | 0.9253 | 0.9924 | 0.9030 | 0.9701 | | 0.0239 | 1283.33 | 7700 | 0.0709 | 0.9367 | 0.9592 | 0.9767 | 0.9262 | 0.9922 | 0.9033 | 0.9702 | | 0.0089 | 1286.67 | 7720 | 0.0734 | 0.9386 | 0.9585 | 0.9775 | 0.9227 | 0.9943 | 0.9060 | 0.9712 | | 0.1184 | 1290.0 | 7740 | 0.0740 | 0.9373 | 0.9588 | 0.9769 | 0.9246 | 0.9930 | 0.9040 | 0.9705 | | 0.0087 | 1293.33 | 7760 | 0.0721 | 0.9356 | 0.9592 | 0.9762 | 0.9271 | 0.9913 | 0.9016 | 0.9696 | | 0.0017 | 1296.67 | 7780 | 0.0747 | 0.9366 | 0.9589 | 0.9767 | 0.9254 | 0.9924 | 0.9031 | 0.9702 | | 0.0086 | 1300.0 | 7800 | 0.0738 | 0.9370 | 0.9591 | 0.9768 | 0.9257 | 0.9925 | 0.9037 | 0.9703 | | 0.0237 | 1303.33 | 7820 | 0.0824 | 0.9367 | 0.9588 | 0.9767 | 0.9251 | 0.9925 | 0.9031 | 0.9702 | | 0.0293 | 1306.67 | 7840 | 0.0725 | 0.9380 | 0.9593 | 0.9772 | 0.9254 | 0.9931 | 0.9052 | 0.9709 | | 0.0019 | 1310.0 | 7860 | 0.0696 | 0.9385 | 0.9591 | 0.9774 | 0.9244 | 0.9937 | 0.9059 | 0.9712 | | 0.1205 | 1313.33 | 7880 | 0.0633 | 0.9371 | 0.9596 | 0.9768 | 0.9272 | 0.9920 | 0.9038 | 0.9703 | | 0.0239 | 1316.67 | 7900 | 0.0798 | 0.9379 | 0.9588 | 0.9772 | 0.9242 | 0.9935 | 0.9050 | 0.9708 | | 0.0091 | 1320.0 | 7920 | 0.0695 | 0.9370 | 0.9595 | 0.9768 | 0.9268 | 0.9921 | 0.9037 | 0.9703 | | 0.0087 | 1323.33 | 7940 | 0.0676 | 0.9374 | 0.9593 | 0.9769 | 0.9261 | 0.9926 | 0.9042 | 0.9705 | | 0.0086 | 1326.67 | 7960 | 0.0775 | 0.9373 | 0.9589 | 0.9769 | 0.9250 | 0.9929 | 0.9040 | 0.9705 | | 0.1182 | 1330.0 | 7980 | 0.0665 | 0.9371 | 0.9598 | 0.9768 | 0.9276 | 0.9919 | 0.9038 | 0.9703 | | 0.1184 | 1333.33 | 8000 | 0.0726 | 0.9381 | 0.9591 | 0.9773 | 0.9247 | 0.9934 | 0.9053 | 0.9709 | | 0.029 | 1336.67 | 8020 | 0.0818 | 0.9385 | 0.9588 | 0.9774 | 0.9236 | 0.9940 | 0.9059 | 0.9712 | | 0.0237 | 1340.0 | 8040 | 0.0773 | 0.9362 | 0.9589 | 0.9765 | 0.9258 | 0.9920 | 0.9024 | 0.9699 | | 0.0016 | 1343.33 | 8060 | 0.0662 | 0.9368 | 0.9598 | 0.9767 | 0.9280 | 0.9916 | 0.9034 | 0.9702 | | 0.0016 | 1346.67 | 8080 | 0.0690 | 0.9373 | 0.9595 | 0.9769 | 0.9265 | 0.9924 | 0.9042 | 0.9705 | | 0.0128 | 1350.0 | 8100 | 0.0797 | 0.9362 | 0.9589 | 0.9765 | 0.9257 | 0.9921 | 0.9025 | 0.9700 | | 0.0239 | 1353.33 | 8120 | 0.0759 | 0.9374 | 0.9592 | 0.9769 | 0.9256 | 0.9927 | 0.9042 | 0.9705 | | 0.0294 | 1356.67 | 8140 | 0.0722 | 0.9359 | 0.9593 | 0.9763 | 0.9271 | 0.9915 | 0.9020 | 0.9697 | | 0.1299 | 1360.0 | 8160 | 0.0715 | 0.9371 | 0.9594 | 0.9768 | 0.9264 | 0.9924 | 0.9039 | 0.9704 | | 0.0289 | 1363.33 | 8180 | 0.0711 | 0.9377 | 0.9591 | 0.9771 | 0.9252 | 0.9930 | 0.9046 | 0.9707 | | 0.0108 | 1366.67 | 8200 | 0.0717 | 0.9376 | 0.9590 | 0.9770 | 0.9249 | 0.9931 | 0.9045 | 0.9707 | | 0.0128 | 1370.0 | 8220 | 0.0730 | 0.9370 | 0.9592 | 0.9768 | 0.9260 | 0.9924 | 0.9037 | 0.9704 | | 0.0128 | 1373.33 | 8240 | 0.0735 | 0.9363 | 0.9594 | 0.9765 | 0.9271 | 0.9917 | 0.9026 | 0.9699 | | 0.0129 | 1376.67 | 8260 | 0.0699 | 0.9368 | 0.9596 | 0.9767 | 0.9273 | 0.9919 | 0.9035 | 0.9702 | | 0.0087 | 1380.0 | 8280 | 0.0793 | 0.9367 | 0.9588 | 0.9767 | 0.9252 | 0.9925 | 0.9031 | 0.9702 | | 0.0349 | 1383.33 | 8300 | 0.0810 | 0.9379 | 0.9588 | 0.9772 | 0.9241 | 0.9935 | 0.9049 | 0.9708 | | 0.0127 | 1386.67 | 8320 | 0.0777 | 0.9373 | 0.9590 | 0.9769 | 0.9253 | 0.9928 | 0.9041 | 0.9705 | | 0.0086 | 1390.0 | 8340 | 0.0737 | 0.9369 | 0.9590 | 0.9767 | 0.9256 | 0.9925 | 0.9035 | 0.9703 | | 0.0109 | 1393.33 | 8360 | 0.0809 | 0.9377 | 0.9588 | 0.9771 | 0.9242 | 0.9934 | 0.9047 | 0.9708 | | 0.0296 | 1396.67 | 8380 | 0.0745 | 0.9378 | 0.9585 | 0.9772 | 0.9232 | 0.9937 | 0.9048 | 0.9708 | | 0.0016 | 1400.0 | 8400 | 0.0763 | 0.9366 | 0.9590 | 0.9766 | 0.9256 | 0.9923 | 0.9031 | 0.9701 | | 0.0016 | 1403.33 | 8420 | 0.0722 | 0.9377 | 0.9594 | 0.9771 | 0.9260 | 0.9928 | 0.9047 | 0.9707 | | 0.0128 | 1406.67 | 8440 | 0.0791 | 0.9373 | 0.9586 | 0.9770 | 0.9240 | 0.9932 | 0.9041 | 0.9706 | | 0.0016 | 1410.0 | 8460 | 0.0685 | 0.9377 | 0.9593 | 0.9771 | 0.9258 | 0.9929 | 0.9048 | 0.9707 | | 0.0086 | 1413.33 | 8480 | 0.0746 | 0.9387 | 0.9593 | 0.9775 | 0.9249 | 0.9937 | 0.9062 | 0.9712 | | 0.0127 | 1416.67 | 8500 | 0.0859 | 0.9374 | 0.9589 | 0.9770 | 0.9248 | 0.9930 | 0.9043 | 0.9706 | | 0.0238 | 1420.0 | 8520 | 0.0729 | 0.9377 | 0.9593 | 0.9771 | 0.9257 | 0.9928 | 0.9046 | 0.9707 | | 0.0289 | 1423.33 | 8540 | 0.0752 | 0.9384 | 0.9591 | 0.9774 | 0.9247 | 0.9936 | 0.9057 | 0.9711 | | 0.0236 | 1426.67 | 8560 | 0.0722 | 0.9371 | 0.9594 | 0.9768 | 0.9264 | 0.9923 | 0.9039 | 0.9704 | | 0.0084 | 1430.0 | 8580 | 0.0708 | 0.9368 | 0.9594 | 0.9767 | 0.9268 | 0.9920 | 0.9035 | 0.9702 | | 0.0126 | 1433.33 | 8600 | 0.0822 | 0.9380 | 0.9589 | 0.9772 | 0.9244 | 0.9935 | 0.9051 | 0.9709 | | 0.0016 | 1436.67 | 8620 | 0.0661 | 0.9374 | 0.9599 | 0.9769 | 0.9278 | 0.9920 | 0.9044 | 0.9705 | | 0.0126 | 1440.0 | 8640 | 0.0723 | 0.9373 | 0.9593 | 0.9769 | 0.9259 | 0.9926 | 0.9042 | 0.9705 | | 0.1178 | 1443.33 | 8660 | 0.0646 | 0.9393 | 0.9600 | 0.9777 | 0.9266 | 0.9934 | 0.9071 | 0.9715 | | 0.0287 | 1446.67 | 8680 | 0.0767 | 0.9383 | 0.9590 | 0.9773 | 0.9244 | 0.9936 | 0.9056 | 0.9710 | | 0.0136 | 1450.0 | 8700 | 0.0721 | 0.9381 | 0.9591 | 0.9773 | 0.9248 | 0.9934 | 0.9053 | 0.9709 | | 0.0234 | 1453.33 | 8720 | 0.0805 | 0.9377 | 0.9588 | 0.9771 | 0.9242 | 0.9934 | 0.9047 | 0.9707 | | 0.0289 | 1456.67 | 8740 | 0.0667 | 0.9381 | 0.9594 | 0.9772 | 0.9258 | 0.9931 | 0.9054 | 0.9709 | | 0.117 | 1460.0 | 8760 | 0.0719 | 0.9376 | 0.9594 | 0.9770 | 0.9260 | 0.9927 | 0.9045 | 0.9706 | | 0.0286 | 1463.33 | 8780 | 0.0790 | 0.9385 | 0.9588 | 0.9774 | 0.9237 | 0.9940 | 0.9059 | 0.9712 | | 0.0247 | 1466.67 | 8800 | 0.0729 | 0.9377 | 0.9593 | 0.9771 | 0.9257 | 0.9929 | 0.9047 | 0.9707 | | 0.1171 | 1470.0 | 8820 | 0.0678 | 0.9376 | 0.9596 | 0.9770 | 0.9267 | 0.9925 | 0.9046 | 0.9706 | | 0.0287 | 1473.33 | 8840 | 0.0693 | 0.9367 | 0.9593 | 0.9766 | 0.9266 | 0.9920 | 0.9032 | 0.9701 | | 0.0238 | 1476.67 | 8860 | 0.0686 | 0.9368 | 0.9597 | 0.9767 | 0.9277 | 0.9917 | 0.9034 | 0.9702 | | 0.0084 | 1480.0 | 8880 | 0.0754 | 0.9374 | 0.9592 | 0.9769 | 0.9256 | 0.9927 | 0.9042 | 0.9705 | | 0.0015 | 1483.33 | 8900 | 0.0641 | 0.9372 | 0.9604 | 0.9768 | 0.9293 | 0.9914 | 0.9040 | 0.9703 | | 0.0135 | 1486.67 | 8920 | 0.0732 | 0.9370 | 0.9594 | 0.9768 | 0.9267 | 0.9922 | 0.9037 | 0.9703 | | 0.0234 | 1490.0 | 8940 | 0.0735 | 0.9378 | 0.9594 | 0.9771 | 0.9261 | 0.9928 | 0.9049 | 0.9708 | | 0.0234 | 1493.33 | 8960 | 0.0764 | 0.9380 | 0.9596 | 0.9772 | 0.9265 | 0.9927 | 0.9051 | 0.9708 | | 0.0016 | 1496.67 | 8980 | 0.0684 | 0.9376 | 0.9597 | 0.9770 | 0.9271 | 0.9923 | 0.9045 | 0.9706 | | 0.1167 | 1500.0 | 9000 | 0.0688 | 0.9379 | 0.9596 | 0.9771 | 0.9266 | 0.9927 | 0.9050 | 0.9708 | | 0.0232 | 1503.33 | 9020 | 0.0777 | 0.9381 | 0.9593 | 0.9772 | 0.9254 | 0.9932 | 0.9053 | 0.9709 | | 0.1176 | 1506.67 | 9040 | 0.0665 | 0.9374 | 0.9603 | 0.9769 | 0.9289 | 0.9917 | 0.9044 | 0.9704 | | 0.0286 | 1510.0 | 9060 | 0.0777 | 0.9374 | 0.9591 | 0.9770 | 0.9254 | 0.9928 | 0.9043 | 0.9706 | | 0.0128 | 1513.33 | 9080 | 0.0824 | 0.9376 | 0.9588 | 0.9771 | 0.9243 | 0.9933 | 0.9045 | 0.9707 | | 0.0016 | 1516.67 | 9100 | 0.0700 | 0.9370 | 0.9598 | 0.9768 | 0.9278 | 0.9918 | 0.9037 | 0.9703 | | 0.0232 | 1520.0 | 9120 | 0.0791 | 0.9377 | 0.9593 | 0.9771 | 0.9257 | 0.9928 | 0.9047 | 0.9707 | | 0.1192 | 1523.33 | 9140 | 0.0650 | 0.9386 | 0.9604 | 0.9774 | 0.9282 | 0.9925 | 0.9062 | 0.9711 | | 0.0016 | 1526.67 | 9160 | 0.0683 | 0.9394 | 0.9596 | 0.9777 | 0.9255 | 0.9938 | 0.9072 | 0.9716 | | 0.0251 | 1530.0 | 9180 | 0.0619 | 0.9376 | 0.9599 | 0.9770 | 0.9277 | 0.9922 | 0.9047 | 0.9706 | | 0.0017 | 1533.33 | 9200 | 0.0529 | 0.9455 | 0.9689 | 0.9798 | 0.9483 | 0.9895 | 0.9170 | 0.9740 | | 0.0312 | 1536.67 | 9220 | 0.0746 | 0.9351 | 0.9583 | 0.9761 | 0.9248 | 0.9918 | 0.9008 | 0.9694 | | 0.029 | 1540.0 | 9240 | 0.0729 | 0.9374 | 0.9591 | 0.9770 | 0.9255 | 0.9928 | 0.9042 | 0.9705 | | 0.0238 | 1543.33 | 9260 | 0.0821 | 0.9372 | 0.9587 | 0.9769 | 0.9244 | 0.9930 | 0.9039 | 0.9705 | | 0.0233 | 1546.67 | 9280 | 0.0675 | 0.9372 | 0.9595 | 0.9768 | 0.9268 | 0.9922 | 0.9040 | 0.9704 | | 0.0016 | 1550.0 | 9300 | 0.0679 | 0.9379 | 0.9594 | 0.9772 | 0.9258 | 0.9930 | 0.9050 | 0.9708 | | 0.0082 | 1553.33 | 9320 | 0.0742 | 0.9375 | 0.9592 | 0.9770 | 0.9255 | 0.9928 | 0.9044 | 0.9706 | | 0.0116 | 1556.67 | 9340 | 0.0679 | 0.9371 | 0.9597 | 0.9768 | 0.9273 | 0.9921 | 0.9039 | 0.9704 | | 0.0163 | 1560.0 | 9360 | 0.0653 | 0.9381 | 0.9597 | 0.9772 | 0.9266 | 0.9928 | 0.9053 | 0.9709 | | 0.0015 | 1563.33 | 9380 | 0.0666 | 0.9378 | 0.9594 | 0.9771 | 0.9259 | 0.9929 | 0.9049 | 0.9708 | | 0.1187 | 1566.67 | 9400 | 0.0668 | 0.9381 | 0.9597 | 0.9772 | 0.9266 | 0.9928 | 0.9053 | 0.9709 | | 0.0126 | 1570.0 | 9420 | 0.0750 | 0.9376 | 0.9593 | 0.9770 | 0.9258 | 0.9928 | 0.9045 | 0.9706 | | 0.0017 | 1573.33 | 9440 | 0.0698 | 0.9378 | 0.9598 | 0.9771 | 0.9271 | 0.9925 | 0.9049 | 0.9707 | | 0.0082 | 1576.67 | 9460 | 0.0862 | 0.9377 | 0.9588 | 0.9771 | 0.9241 | 0.9934 | 0.9047 | 0.9708 | | 0.0285 | 1580.0 | 9480 | 0.0760 | 0.9383 | 0.9592 | 0.9773 | 0.9250 | 0.9934 | 0.9056 | 0.9710 | | 0.0234 | 1583.33 | 9500 | 0.0781 | 0.9379 | 0.9591 | 0.9772 | 0.9250 | 0.9932 | 0.9050 | 0.9708 | | 0.0082 | 1586.67 | 9520 | 0.0732 | 0.9387 | 0.9593 | 0.9775 | 0.9248 | 0.9937 | 0.9062 | 0.9713 | | 0.0234 | 1590.0 | 9540 | 0.0695 | 0.9378 | 0.9598 | 0.9771 | 0.9273 | 0.9924 | 0.9049 | 0.9707 | | 0.0232 | 1593.33 | 9560 | 0.0712 | 0.9374 | 0.9598 | 0.9769 | 0.9275 | 0.9921 | 0.9042 | 0.9705 | | 0.1178 | 1596.67 | 9580 | 0.0705 | 0.9378 | 0.9594 | 0.9771 | 0.9258 | 0.9929 | 0.9049 | 0.9707 | | 0.0231 | 1600.0 | 9600 | 0.0712 | 0.9377 | 0.9597 | 0.9770 | 0.9269 | 0.9925 | 0.9047 | 0.9707 | | 0.0125 | 1603.33 | 9620 | 0.0696 | 0.9374 | 0.9599 | 0.9769 | 0.9276 | 0.9921 | 0.9043 | 0.9705 | | 0.0283 | 1606.67 | 9640 | 0.0731 | 0.9382 | 0.9594 | 0.9773 | 0.9257 | 0.9931 | 0.9054 | 0.9709 | | 0.0083 | 1610.0 | 9660 | 0.0686 | 0.9379 | 0.9599 | 0.9771 | 0.9274 | 0.9924 | 0.9050 | 0.9707 | | 0.0083 | 1613.33 | 9680 | 0.0660 | 0.9377 | 0.9601 | 0.9770 | 0.9282 | 0.9920 | 0.9048 | 0.9706 | | 0.0081 | 1616.67 | 9700 | 0.0737 | 0.9383 | 0.9593 | 0.9773 | 0.9253 | 0.9933 | 0.9056 | 0.9710 | | 0.0123 | 1620.0 | 9720 | 0.0627 | 0.9382 | 0.9606 | 0.9772 | 0.9293 | 0.9919 | 0.9055 | 0.9708 | | 0.0285 | 1623.33 | 9740 | 0.0708 | 0.9382 | 0.9590 | 0.9773 | 0.9244 | 0.9936 | 0.9054 | 0.9710 | | 0.0182 | 1626.67 | 9760 | 0.0700 | 0.9383 | 0.9598 | 0.9773 | 0.9267 | 0.9928 | 0.9057 | 0.9710 | | 0.0104 | 1630.0 | 9780 | 0.0782 | 0.9375 | 0.9592 | 0.9770 | 0.9254 | 0.9929 | 0.9045 | 0.9706 | | 0.1166 | 1633.33 | 9800 | 0.0622 | 0.9389 | 0.9603 | 0.9775 | 0.9278 | 0.9928 | 0.9065 | 0.9712 | | 0.1165 | 1636.67 | 9820 | 0.0646 | 0.9372 | 0.9602 | 0.9768 | 0.9289 | 0.9915 | 0.9040 | 0.9703 | | 0.0284 | 1640.0 | 9840 | 0.0744 | 0.9377 | 0.9594 | 0.9771 | 0.9259 | 0.9928 | 0.9047 | 0.9707 | | 0.002 | 1643.33 | 9860 | 0.0681 | 0.9366 | 0.9599 | 0.9766 | 0.9283 | 0.9914 | 0.9032 | 0.9701 | | 0.0229 | 1646.67 | 9880 | 0.0705 | 0.9381 | 0.9597 | 0.9772 | 0.9266 | 0.9928 | 0.9053 | 0.9709 | | 0.0081 | 1650.0 | 9900 | 0.0729 | 0.9383 | 0.9595 | 0.9773 | 0.9259 | 0.9931 | 0.9056 | 0.9710 | | 0.1155 | 1653.33 | 9920 | 0.0614 | 0.9386 | 0.9609 | 0.9774 | 0.9297 | 0.9920 | 0.9062 | 0.9711 | | 0.012 | 1656.67 | 9940 | 0.0686 | 0.9376 | 0.9599 | 0.9770 | 0.9277 | 0.9922 | 0.9047 | 0.9706 | | 0.0015 | 1660.0 | 9960 | 0.0717 | 0.9377 | 0.9596 | 0.9771 | 0.9268 | 0.9925 | 0.9047 | 0.9707 | | 0.1171 | 1663.33 | 9980 | 0.0645 | 0.9386 | 0.9604 | 0.9774 | 0.9284 | 0.9924 | 0.9061 | 0.9711 | | 0.0085 | 1666.67 | 10000 | 0.0788 | 0.9348 | 0.9590 | 0.9759 | 0.9272 | 0.9909 | 0.9004 | 0.9692 | | 0.03 | 1670.0 | 10020 | 0.0763 | 0.9383 | 0.9594 | 0.9773 | 0.9256 | 0.9932 | 0.9056 | 0.9710 | | 0.0121 | 1673.33 | 10040 | 0.0725 | 0.9387 | 0.9596 | 0.9775 | 0.9259 | 0.9934 | 0.9063 | 0.9712 | | 0.0121 | 1676.67 | 10060 | 0.0653 | 0.9383 | 0.9601 | 0.9773 | 0.9276 | 0.9925 | 0.9057 | 0.9709 | | 0.008 | 1680.0 | 10080 | 0.0793 | 0.9378 | 0.9592 | 0.9771 | 0.9254 | 0.9930 | 0.9049 | 0.9708 | | 0.0015 | 1683.33 | 10100 | 0.0653 | 0.9386 | 0.9602 | 0.9774 | 0.9278 | 0.9927 | 0.9062 | 0.9711 | | 0.0015 | 1686.67 | 10120 | 0.0634 | 0.9380 | 0.9607 | 0.9771 | 0.9296 | 0.9917 | 0.9053 | 0.9707 | | 0.0087 | 1690.0 | 10140 | 0.0640 | 0.9401 | 0.9610 | 0.9780 | 0.9291 | 0.9930 | 0.9084 | 0.9718 | | 0.0017 | 1693.33 | 10160 | 0.0614 | 0.9385 | 0.9595 | 0.9774 | 0.9257 | 0.9933 | 0.9058 | 0.9711 | | 0.023 | 1696.67 | 10180 | 0.0724 | 0.9362 | 0.9596 | 0.9764 | 0.9278 | 0.9914 | 0.9025 | 0.9699 | | 0.1198 | 1700.0 | 10200 | 0.0716 | 0.9384 | 0.9595 | 0.9774 | 0.9258 | 0.9932 | 0.9058 | 0.9711 | | 0.0015 | 1703.33 | 10220 | 0.0664 | 0.9384 | 0.9601 | 0.9773 | 0.9277 | 0.9926 | 0.9058 | 0.9710 | | 0.008 | 1706.67 | 10240 | 0.0643 | 0.9376 | 0.9599 | 0.9770 | 0.9276 | 0.9922 | 0.9046 | 0.9706 | | 0.0095 | 1710.0 | 10260 | 0.0660 | 0.9386 | 0.9602 | 0.9774 | 0.9278 | 0.9926 | 0.9061 | 0.9711 | | 0.0123 | 1713.33 | 10280 | 0.0619 | 0.9388 | 0.9604 | 0.9775 | 0.9280 | 0.9927 | 0.9065 | 0.9712 | | 0.0248 | 1716.67 | 10300 | 0.0704 | 0.9376 | 0.9594 | 0.9770 | 0.9262 | 0.9927 | 0.9046 | 0.9707 | | 0.023 | 1720.0 | 10320 | 0.0697 | 0.9389 | 0.9598 | 0.9775 | 0.9263 | 0.9933 | 0.9065 | 0.9713 | | 0.0285 | 1723.33 | 10340 | 0.0745 | 0.9389 | 0.9592 | 0.9776 | 0.9246 | 0.9938 | 0.9065 | 0.9713 | | 0.0081 | 1726.67 | 10360 | 0.0760 | 0.9379 | 0.9595 | 0.9772 | 0.9261 | 0.9928 | 0.9050 | 0.9708 | | 0.0228 | 1730.0 | 10380 | 0.0666 | 0.9385 | 0.9599 | 0.9774 | 0.9269 | 0.9929 | 0.9060 | 0.9711 | | 0.0015 | 1733.33 | 10400 | 0.0693 | 0.9387 | 0.9596 | 0.9775 | 0.9260 | 0.9933 | 0.9062 | 0.9712 | | 0.028 | 1736.67 | 10420 | 0.0742 | 0.9380 | 0.9597 | 0.9772 | 0.9266 | 0.9927 | 0.9052 | 0.9708 | | 0.012 | 1740.0 | 10440 | 0.0681 | 0.9379 | 0.9599 | 0.9771 | 0.9275 | 0.9924 | 0.9050 | 0.9707 | | 0.1159 | 1743.33 | 10460 | 0.0688 | 0.9390 | 0.9597 | 0.9776 | 0.9260 | 0.9934 | 0.9066 | 0.9713 | | 0.0149 | 1746.67 | 10480 | 0.0674 | 0.9383 | 0.9599 | 0.9773 | 0.9271 | 0.9927 | 0.9057 | 0.9710 | | 0.0084 | 1750.0 | 10500 | 0.0671 | 0.9385 | 0.9597 | 0.9774 | 0.9262 | 0.9931 | 0.9059 | 0.9711 | | 0.1153 | 1753.33 | 10520 | 0.0691 | 0.9391 | 0.9595 | 0.9776 | 0.9252 | 0.9937 | 0.9068 | 0.9714 | | 0.023 | 1756.67 | 10540 | 0.0780 | 0.9381 | 0.9595 | 0.9772 | 0.9261 | 0.9929 | 0.9053 | 0.9709 | | 0.0285 | 1760.0 | 10560 | 0.0738 | 0.9380 | 0.9595 | 0.9772 | 0.9262 | 0.9929 | 0.9052 | 0.9709 | | 0.0015 | 1763.33 | 10580 | 0.0688 | 0.9383 | 0.9595 | 0.9773 | 0.9258 | 0.9932 | 0.9056 | 0.9710 | | 0.0016 | 1766.67 | 10600 | 0.0679 | 0.9384 | 0.9599 | 0.9773 | 0.9269 | 0.9928 | 0.9058 | 0.9710 | | 0.1155 | 1770.0 | 10620 | 0.0673 | 0.9390 | 0.9597 | 0.9776 | 0.9260 | 0.9934 | 0.9066 | 0.9713 | | 0.1172 | 1773.33 | 10640 | 0.0621 | 0.9396 | 0.9601 | 0.9778 | 0.9267 | 0.9935 | 0.9075 | 0.9716 | | 0.0082 | 1776.67 | 10660 | 0.0661 | 0.9394 | 0.9598 | 0.9778 | 0.9259 | 0.9937 | 0.9073 | 0.9716 | | 0.0015 | 1780.0 | 10680 | 0.0613 | 0.9391 | 0.9605 | 0.9776 | 0.9283 | 0.9927 | 0.9068 | 0.9713 | | 0.0122 | 1783.33 | 10700 | 0.0666 | 0.9390 | 0.9597 | 0.9776 | 0.9261 | 0.9934 | 0.9066 | 0.9713 | | 0.0119 | 1786.67 | 10720 | 0.0672 | 0.9383 | 0.9601 | 0.9773 | 0.9277 | 0.9925 | 0.9057 | 0.9709 | | 0.0227 | 1790.0 | 10740 | 0.0741 | 0.9390 | 0.9596 | 0.9776 | 0.9257 | 0.9936 | 0.9067 | 0.9714 | | 0.1157 | 1793.33 | 10760 | 0.0653 | 0.9395 | 0.9595 | 0.9778 | 0.9250 | 0.9940 | 0.9073 | 0.9716 | | 0.0015 | 1796.67 | 10780 | 0.0672 | 0.9390 | 0.9595 | 0.9776 | 0.9255 | 0.9936 | 0.9066 | 0.9713 | | 0.0242 | 1800.0 | 10800 | 0.0734 | 0.9385 | 0.9592 | 0.9774 | 0.9249 | 0.9935 | 0.9059 | 0.9711 | | 0.0118 | 1803.33 | 10820 | 0.0700 | 0.9381 | 0.9597 | 0.9772 | 0.9266 | 0.9928 | 0.9054 | 0.9709 | | 0.0079 | 1806.67 | 10840 | 0.0705 | 0.9389 | 0.9595 | 0.9776 | 0.9256 | 0.9935 | 0.9065 | 0.9713 | | 0.0227 | 1810.0 | 10860 | 0.0671 | 0.9389 | 0.9604 | 0.9775 | 0.9281 | 0.9927 | 0.9066 | 0.9712 | | 0.1151 | 1813.33 | 10880 | 0.0654 | 0.9384 | 0.9603 | 0.9773 | 0.9280 | 0.9925 | 0.9059 | 0.9710 | | 0.1152 | 1816.67 | 10900 | 0.0683 | 0.9386 | 0.9596 | 0.9774 | 0.9261 | 0.9932 | 0.9060 | 0.9711 | | 0.0283 | 1820.0 | 10920 | 0.0671 | 0.9383 | 0.9593 | 0.9773 | 0.9252 | 0.9934 | 0.9056 | 0.9710 | | 0.1172 | 1823.33 | 10940 | 0.0585 | 0.9397 | 0.9613 | 0.9778 | 0.9302 | 0.9924 | 0.9077 | 0.9716 | | 0.0119 | 1826.67 | 10960 | 0.0693 | 0.9379 | 0.9599 | 0.9771 | 0.9274 | 0.9924 | 0.9051 | 0.9708 | | 0.0226 | 1830.0 | 10980 | 0.0705 | 0.9386 | 0.9597 | 0.9774 | 0.9262 | 0.9932 | 0.9060 | 0.9711 | | 0.0015 | 1833.33 | 11000 | 0.0668 | 0.9387 | 0.9602 | 0.9774 | 0.9277 | 0.9927 | 0.9062 | 0.9711 | | 0.023 | 1836.67 | 11020 | 0.0733 | 0.9391 | 0.9595 | 0.9776 | 0.9252 | 0.9938 | 0.9068 | 0.9714 | | 0.0227 | 1840.0 | 11040 | 0.0701 | 0.9385 | 0.9598 | 0.9774 | 0.9265 | 0.9930 | 0.9059 | 0.9711 | | 0.0226 | 1843.33 | 11060 | 0.0761 | 0.9385 | 0.9595 | 0.9774 | 0.9257 | 0.9933 | 0.9059 | 0.9711 | | 0.0243 | 1846.67 | 11080 | 0.0677 | 0.9391 | 0.9602 | 0.9776 | 0.9273 | 0.9931 | 0.9068 | 0.9713 | | 0.023 | 1850.0 | 11100 | 0.0699 | 0.9395 | 0.9597 | 0.9778 | 0.9256 | 0.9938 | 0.9073 | 0.9716 | | 0.0014 | 1853.33 | 11120 | 0.0697 | 0.9387 | 0.9596 | 0.9775 | 0.9260 | 0.9933 | 0.9062 | 0.9712 | | 0.0118 | 1856.67 | 11140 | 0.0681 | 0.9389 | 0.9599 | 0.9775 | 0.9265 | 0.9932 | 0.9065 | 0.9713 | | 0.0079 | 1860.0 | 11160 | 0.0677 | 0.9388 | 0.9598 | 0.9775 | 0.9264 | 0.9932 | 0.9063 | 0.9712 | | 0.0278 | 1863.33 | 11180 | 0.0733 | 0.9395 | 0.9592 | 0.9778 | 0.9241 | 0.9943 | 0.9073 | 0.9716 | | 0.0078 | 1866.67 | 11200 | 0.0645 | 0.9397 | 0.9606 | 0.9778 | 0.9281 | 0.9931 | 0.9077 | 0.9716 | | 0.0285 | 1870.0 | 11220 | 0.0637 | 0.9386 | 0.9600 | 0.9774 | 0.9271 | 0.9929 | 0.9061 | 0.9711 | | 0.1191 | 1873.33 | 11240 | 0.0606 | 0.9385 | 0.9609 | 0.9773 | 0.9299 | 0.9919 | 0.9060 | 0.9710 | | 0.0227 | 1876.67 | 11260 | 0.0597 | 0.9399 | 0.9609 | 0.9779 | 0.9289 | 0.9930 | 0.9081 | 0.9717 | | 0.0015 | 1880.0 | 11280 | 0.0677 | 0.9391 | 0.9600 | 0.9776 | 0.9268 | 0.9932 | 0.9068 | 0.9714 | | 0.0119 | 1883.33 | 11300 | 0.0696 | 0.9381 | 0.9600 | 0.9772 | 0.9274 | 0.9925 | 0.9054 | 0.9709 | | 0.0279 | 1886.67 | 11320 | 0.0710 | 0.9391 | 0.9596 | 0.9776 | 0.9257 | 0.9936 | 0.9068 | 0.9714 | | 0.1149 | 1890.0 | 11340 | 0.0640 | 0.9396 | 0.9605 | 0.9778 | 0.9280 | 0.9931 | 0.9076 | 0.9716 | | 0.0278 | 1893.33 | 11360 | 0.0654 | 0.9393 | 0.9597 | 0.9777 | 0.9257 | 0.9937 | 0.9071 | 0.9715 | | 0.0014 | 1896.67 | 11380 | 0.0678 | 0.9394 | 0.9597 | 0.9777 | 0.9257 | 0.9937 | 0.9072 | 0.9715 | | 0.0229 | 1900.0 | 11400 | 0.0724 | 0.9392 | 0.9596 | 0.9777 | 0.9254 | 0.9938 | 0.9070 | 0.9715 | | 0.0018 | 1903.33 | 11420 | 0.0633 | 0.9384 | 0.9612 | 0.9773 | 0.9310 | 0.9915 | 0.9059 | 0.9709 | | 0.0226 | 1906.67 | 11440 | 0.0741 | 0.9392 | 0.9596 | 0.9777 | 0.9254 | 0.9937 | 0.9069 | 0.9715 | | 0.0226 | 1910.0 | 11460 | 0.0709 | 0.9389 | 0.9599 | 0.9775 | 0.9266 | 0.9932 | 0.9065 | 0.9713 | | 0.0243 | 1913.33 | 11480 | 0.0671 | 0.9392 | 0.9597 | 0.9777 | 0.9259 | 0.9936 | 0.9070 | 0.9715 | | 0.0229 | 1916.67 | 11500 | 0.0635 | 0.9401 | 0.9602 | 0.9780 | 0.9266 | 0.9938 | 0.9084 | 0.9719 | | 0.0015 | 1920.0 | 11520 | 0.0695 | 0.9392 | 0.9598 | 0.9777 | 0.9261 | 0.9935 | 0.9070 | 0.9714 | | 0.0118 | 1923.33 | 11540 | 0.0713 | 0.9392 | 0.9599 | 0.9777 | 0.9263 | 0.9934 | 0.9069 | 0.9714 | | 0.0231 | 1926.67 | 11560 | 0.0879 | 0.9383 | 0.9592 | 0.9773 | 0.9251 | 0.9934 | 0.9055 | 0.9710 | | 0.0233 | 1930.0 | 11580 | 0.0738 | 0.9390 | 0.9595 | 0.9776 | 0.9252 | 0.9937 | 0.9067 | 0.9714 | | 0.0127 | 1933.33 | 11600 | 0.0703 | 0.9394 | 0.9597 | 0.9777 | 0.9257 | 0.9937 | 0.9072 | 0.9715 | | 0.0078 | 1936.67 | 11620 | 0.0746 | 0.9392 | 0.9594 | 0.9777 | 0.9250 | 0.9939 | 0.9069 | 0.9715 | | 0.0278 | 1940.0 | 11640 | 0.0693 | 0.9388 | 0.9598 | 0.9775 | 0.9264 | 0.9932 | 0.9064 | 0.9713 | | 0.0014 | 1943.33 | 11660 | 0.0697 | 0.9384 | 0.9597 | 0.9773 | 0.9264 | 0.9930 | 0.9057 | 0.9710 | | 0.0148 | 1946.67 | 11680 | 0.0669 | 0.9396 | 0.9600 | 0.9778 | 0.9265 | 0.9936 | 0.9075 | 0.9716 | | 0.0117 | 1950.0 | 11700 | 0.0768 | 0.9393 | 0.9593 | 0.9777 | 0.9245 | 0.9941 | 0.9070 | 0.9715 | | 0.1156 | 1953.33 | 11720 | 0.0589 | 0.9406 | 0.9613 | 0.9782 | 0.9295 | 0.9931 | 0.9092 | 0.9721 | | 0.1149 | 1956.67 | 11740 | 0.0611 | 0.9400 | 0.9606 | 0.9780 | 0.9277 | 0.9934 | 0.9083 | 0.9718 | | 0.0081 | 1960.0 | 11760 | 0.0660 | 0.9397 | 0.9599 | 0.9779 | 0.9261 | 0.9938 | 0.9077 | 0.9717 | | 0.0115 | 1963.33 | 11780 | 0.0662 | 0.9392 | 0.9601 | 0.9777 | 0.9269 | 0.9933 | 0.9070 | 0.9714 | | 0.0077 | 1966.67 | 11800 | 0.0673 | 0.9395 | 0.9600 | 0.9778 | 0.9265 | 0.9935 | 0.9074 | 0.9716 | | 0.0278 | 1970.0 | 11820 | 0.0671 | 0.9398 | 0.9599 | 0.9779 | 0.9259 | 0.9939 | 0.9079 | 0.9718 | | 0.0225 | 1973.33 | 11840 | 0.0701 | 0.9395 | 0.9598 | 0.9778 | 0.9259 | 0.9937 | 0.9074 | 0.9716 | | 0.0014 | 1976.67 | 11860 | 0.0602 | 0.9397 | 0.9609 | 0.9778 | 0.9290 | 0.9928 | 0.9077 | 0.9716 | | 0.0014 | 1980.0 | 11880 | 0.0663 | 0.9394 | 0.9601 | 0.9777 | 0.9268 | 0.9934 | 0.9073 | 0.9715 | | 0.0077 | 1983.33 | 11900 | 0.0689 | 0.9396 | 0.9601 | 0.9778 | 0.9268 | 0.9935 | 0.9075 | 0.9716 | | 0.0079 | 1986.67 | 11920 | 0.0676 | 0.9387 | 0.9604 | 0.9774 | 0.9282 | 0.9926 | 0.9063 | 0.9712 | | 0.1148 | 1990.0 | 11940 | 0.0661 | 0.9388 | 0.9599 | 0.9775 | 0.9266 | 0.9931 | 0.9064 | 0.9712 | | 0.008 | 1993.33 | 11960 | 0.0693 | 0.9395 | 0.9604 | 0.9778 | 0.9275 | 0.9932 | 0.9075 | 0.9716 | | 0.0278 | 1996.67 | 11980 | 0.0679 | 0.9400 | 0.9596 | 0.9780 | 0.9248 | 0.9943 | 0.9081 | 0.9719 | | 0.0014 | 2000.0 | 12000 | 0.0675 | 0.9396 | 0.9601 | 0.9778 | 0.9268 | 0.9935 | 0.9075 | 0.9716 | | 0.0115 | 2003.33 | 12020 | 0.0661 | 0.9395 | 0.9601 | 0.9778 | 0.9266 | 0.9935 | 0.9074 | 0.9716 | | 0.1161 | 2006.67 | 12040 | 0.0570 | 0.9400 | 0.9614 | 0.9779 | 0.9302 | 0.9926 | 0.9083 | 0.9717 | | 0.0278 | 2010.0 | 12060 | 0.0693 | 0.9393 | 0.9598 | 0.9777 | 0.9258 | 0.9937 | 0.9072 | 0.9715 | | 0.0276 | 2013.33 | 12080 | 0.0643 | 0.9397 | 0.9605 | 0.9778 | 0.9278 | 0.9932 | 0.9077 | 0.9716 | | 0.0114 | 2016.67 | 12100 | 0.0807 | 0.9391 | 0.9593 | 0.9776 | 0.9248 | 0.9939 | 0.9067 | 0.9714 | | 0.0225 | 2020.0 | 12120 | 0.0693 | 0.9396 | 0.9599 | 0.9778 | 0.9259 | 0.9938 | 0.9076 | 0.9717 | | 0.0278 | 2023.33 | 12140 | 0.0653 | 0.9394 | 0.9599 | 0.9777 | 0.9262 | 0.9936 | 0.9072 | 0.9715 | | 0.0225 | 2026.67 | 12160 | 0.0561 | 0.9416 | 0.9624 | 0.9785 | 0.9321 | 0.9928 | 0.9107 | 0.9725 | | 0.1167 | 2030.0 | 12180 | 0.0654 | 0.9395 | 0.9604 | 0.9777 | 0.9275 | 0.9932 | 0.9074 | 0.9715 | | 0.0279 | 2033.33 | 12200 | 0.0597 | 0.9399 | 0.9605 | 0.9779 | 0.9277 | 0.9934 | 0.9081 | 0.9718 | | 0.0078 | 2036.67 | 12220 | 0.0611 | 0.9393 | 0.9607 | 0.9777 | 0.9285 | 0.9928 | 0.9072 | 0.9714 | | 0.0015 | 2040.0 | 12240 | 0.0676 | 0.9393 | 0.9601 | 0.9777 | 0.9269 | 0.9933 | 0.9071 | 0.9715 | | 0.0117 | 2043.33 | 12260 | 0.0794 | 0.9390 | 0.9597 | 0.9776 | 0.9259 | 0.9935 | 0.9067 | 0.9714 | | 0.0117 | 2046.67 | 12280 | 0.0758 | 0.9387 | 0.9594 | 0.9775 | 0.9251 | 0.9936 | 0.9062 | 0.9712 | | 0.0117 | 2050.0 | 12300 | 0.0714 | 0.9386 | 0.9600 | 0.9774 | 0.9271 | 0.9929 | 0.9061 | 0.9711 | | 0.0016 | 2053.33 | 12320 | 0.0638 | 0.9394 | 0.9603 | 0.9777 | 0.9273 | 0.9932 | 0.9072 | 0.9715 | | 0.0015 | 2056.67 | 12340 | 0.0629 | 0.9391 | 0.9611 | 0.9775 | 0.9301 | 0.9921 | 0.9069 | 0.9713 | | 0.0077 | 2060.0 | 12360 | 0.0648 | 0.9391 | 0.9606 | 0.9776 | 0.9285 | 0.9927 | 0.9069 | 0.9713 | | 0.0015 | 2063.33 | 12380 | 0.0622 | 0.9392 | 0.9608 | 0.9776 | 0.9291 | 0.9925 | 0.9070 | 0.9714 | | 0.0323 | 2066.67 | 12400 | 0.0707 | 0.9393 | 0.9597 | 0.9777 | 0.9257 | 0.9937 | 0.9071 | 0.9715 | | 0.0121 | 2070.0 | 12420 | 0.0686 | 0.9391 | 0.9600 | 0.9776 | 0.9267 | 0.9933 | 0.9068 | 0.9714 | | 0.1145 | 2073.33 | 12440 | 0.0650 | 0.9407 | 0.9604 | 0.9783 | 0.9268 | 0.9941 | 0.9093 | 0.9722 | | 0.0223 | 2076.67 | 12460 | 0.0629 | 0.9401 | 0.9607 | 0.9780 | 0.9280 | 0.9933 | 0.9083 | 0.9718 | | 0.0016 | 2080.0 | 12480 | 0.0606 | 0.9402 | 0.9610 | 0.9780 | 0.9289 | 0.9931 | 0.9086 | 0.9719 | | 0.0014 | 2083.33 | 12500 | 0.0580 | 0.9401 | 0.9616 | 0.9780 | 0.9306 | 0.9925 | 0.9085 | 0.9718 | | 0.0014 | 2086.67 | 12520 | 0.0597 | 0.9404 | 0.9609 | 0.9781 | 0.9284 | 0.9934 | 0.9088 | 0.9720 | | 0.1217 | 2090.0 | 12540 | 0.0772 | 0.9386 | 0.9595 | 0.9774 | 0.9258 | 0.9933 | 0.9061 | 0.9712 | | 0.1156 | 2093.33 | 12560 | 0.0698 | 0.9395 | 0.9596 | 0.9778 | 0.9253 | 0.9939 | 0.9073 | 0.9716 | | 0.0078 | 2096.67 | 12580 | 0.0635 | 0.9401 | 0.9602 | 0.9780 | 0.9266 | 0.9938 | 0.9083 | 0.9719 | | 0.1144 | 2100.0 | 12600 | 0.0641 | 0.9395 | 0.9602 | 0.9778 | 0.9271 | 0.9933 | 0.9074 | 0.9716 | | 0.0223 | 2103.33 | 12620 | 0.0709 | 0.9394 | 0.9597 | 0.9778 | 0.9256 | 0.9938 | 0.9073 | 0.9716 | | 0.0275 | 2106.67 | 12640 | 0.0717 | 0.9391 | 0.9599 | 0.9776 | 0.9264 | 0.9934 | 0.9069 | 0.9714 | | 0.0223 | 2110.0 | 12660 | 0.0666 | 0.9397 | 0.9600 | 0.9779 | 0.9263 | 0.9937 | 0.9077 | 0.9717 | | 0.0076 | 2113.33 | 12680 | 0.0716 | 0.9395 | 0.9597 | 0.9778 | 0.9257 | 0.9938 | 0.9074 | 0.9716 | | 0.0114 | 2116.67 | 12700 | 0.0655 | 0.9395 | 0.9604 | 0.9778 | 0.9275 | 0.9932 | 0.9074 | 0.9715 | | 0.0014 | 2120.0 | 12720 | 0.0726 | 0.9392 | 0.9597 | 0.9777 | 0.9258 | 0.9936 | 0.9070 | 0.9715 | | 0.0077 | 2123.33 | 12740 | 0.0668 | 0.9398 | 0.9598 | 0.9779 | 0.9257 | 0.9939 | 0.9078 | 0.9717 | | 0.0275 | 2126.67 | 12760 | 0.0719 | 0.9396 | 0.9596 | 0.9779 | 0.9250 | 0.9941 | 0.9076 | 0.9717 | | 0.0014 | 2130.0 | 12780 | 0.0640 | 0.9400 | 0.9607 | 0.9780 | 0.9280 | 0.9933 | 0.9083 | 0.9718 | | 0.0114 | 2133.33 | 12800 | 0.0633 | 0.9387 | 0.9605 | 0.9774 | 0.9285 | 0.9925 | 0.9063 | 0.9711 | | 0.0114 | 2136.67 | 12820 | 0.0605 | 0.9398 | 0.9611 | 0.9779 | 0.9295 | 0.9927 | 0.9080 | 0.9717 | | 0.0076 | 2140.0 | 12840 | 0.0651 | 0.9402 | 0.9607 | 0.9780 | 0.9279 | 0.9934 | 0.9085 | 0.9719 | | 0.0113 | 2143.33 | 12860 | 0.0747 | 0.9394 | 0.9598 | 0.9777 | 0.9261 | 0.9936 | 0.9072 | 0.9715 | | 0.0223 | 2146.67 | 12880 | 0.0746 | 0.9396 | 0.9596 | 0.9778 | 0.9252 | 0.9940 | 0.9076 | 0.9717 | | 0.0276 | 2150.0 | 12900 | 0.0659 | 0.9397 | 0.9602 | 0.9778 | 0.9268 | 0.9935 | 0.9077 | 0.9717 | | 0.0283 | 2153.33 | 12920 | 0.0748 | 0.9390 | 0.9595 | 0.9776 | 0.9254 | 0.9936 | 0.9067 | 0.9714 | | 0.0274 | 2156.67 | 12940 | 0.0631 | 0.9400 | 0.9605 | 0.9779 | 0.9275 | 0.9934 | 0.9081 | 0.9718 | | 0.0241 | 2160.0 | 12960 | 0.0656 | 0.9398 | 0.9603 | 0.9779 | 0.9272 | 0.9934 | 0.9079 | 0.9717 | | 0.1143 | 2163.33 | 12980 | 0.0640 | 0.9403 | 0.9600 | 0.9781 | 0.9260 | 0.9941 | 0.9086 | 0.9720 | | 0.0015 | 2166.67 | 13000 | 0.0585 | 0.9410 | 0.9614 | 0.9783 | 0.9294 | 0.9934 | 0.9097 | 0.9722 | | 0.1149 | 2170.0 | 13020 | 0.0633 | 0.9396 | 0.9605 | 0.9778 | 0.9279 | 0.9931 | 0.9075 | 0.9716 | | 0.1142 | 2173.33 | 13040 | 0.0631 | 0.9400 | 0.9605 | 0.9780 | 0.9275 | 0.9935 | 0.9082 | 0.9718 | | 0.0276 | 2176.67 | 13060 | 0.0680 | 0.9400 | 0.9599 | 0.9780 | 0.9259 | 0.9940 | 0.9081 | 0.9718 | | 0.0222 | 2180.0 | 13080 | 0.0621 | 0.9404 | 0.9607 | 0.9781 | 0.9278 | 0.9936 | 0.9088 | 0.9720 | | 0.0014 | 2183.33 | 13100 | 0.0575 | 0.9407 | 0.9614 | 0.9782 | 0.9297 | 0.9931 | 0.9093 | 0.9721 | | 0.1141 | 2186.67 | 13120 | 0.0645 | 0.9403 | 0.9603 | 0.9781 | 0.9268 | 0.9939 | 0.9086 | 0.9720 | | 0.0274 | 2190.0 | 13140 | 0.0670 | 0.9399 | 0.9601 | 0.9779 | 0.9263 | 0.9938 | 0.9079 | 0.9718 | | 0.0277 | 2193.33 | 13160 | 0.0688 | 0.9397 | 0.9597 | 0.9779 | 0.9254 | 0.9940 | 0.9078 | 0.9717 | | 0.0078 | 2196.67 | 13180 | 0.0734 | 0.9399 | 0.9599 | 0.9779 | 0.9258 | 0.9939 | 0.9079 | 0.9718 | | 0.0014 | 2200.0 | 13200 | 0.0653 | 0.9403 | 0.9604 | 0.9781 | 0.9271 | 0.9937 | 0.9086 | 0.9720 | | 0.0278 | 2203.33 | 13220 | 0.0694 | 0.9399 | 0.9598 | 0.9780 | 0.9254 | 0.9941 | 0.9080 | 0.9718 | | 0.0226 | 2206.67 | 13240 | 0.0636 | 0.9401 | 0.9608 | 0.9780 | 0.9285 | 0.9932 | 0.9083 | 0.9718 | | 0.0014 | 2210.0 | 13260 | 0.0639 | 0.9404 | 0.9608 | 0.9781 | 0.9281 | 0.9935 | 0.9088 | 0.9720 | | 0.0166 | 2213.33 | 13280 | 0.0629 | 0.9405 | 0.9608 | 0.9781 | 0.9280 | 0.9935 | 0.9089 | 0.9720 | | 0.0077 | 2216.67 | 13300 | 0.0617 | 0.9396 | 0.9608 | 0.9778 | 0.9288 | 0.9929 | 0.9077 | 0.9716 | | 0.1147 | 2220.0 | 13320 | 0.0673 | 0.9401 | 0.9603 | 0.9780 | 0.9269 | 0.9937 | 0.9083 | 0.9719 | | 0.1145 | 2223.33 | 13340 | 0.0640 | 0.9404 | 0.9604 | 0.9781 | 0.9268 | 0.9939 | 0.9088 | 0.9720 | | 0.0227 | 2226.67 | 13360 | 0.0734 | 0.9396 | 0.9595 | 0.9778 | 0.9248 | 0.9942 | 0.9075 | 0.9717 | | 0.0014 | 2230.0 | 13380 | 0.0669 | 0.9392 | 0.9604 | 0.9776 | 0.9280 | 0.9929 | 0.9070 | 0.9714 | | 0.0113 | 2233.33 | 13400 | 0.0673 | 0.9398 | 0.9604 | 0.9779 | 0.9275 | 0.9934 | 0.9079 | 0.9717 | | 0.0075 | 2236.67 | 13420 | 0.0766 | 0.9397 | 0.9596 | 0.9779 | 0.9249 | 0.9942 | 0.9077 | 0.9718 | | 0.0115 | 2240.0 | 13440 | 0.0681 | 0.9397 | 0.9601 | 0.9779 | 0.9266 | 0.9936 | 0.9078 | 0.9717 | | 0.0114 | 2243.33 | 13460 | 0.0717 | 0.9399 | 0.9597 | 0.9780 | 0.9252 | 0.9942 | 0.9080 | 0.9718 | | 0.1143 | 2246.67 | 13480 | 0.0580 | 0.9409 | 0.9616 | 0.9783 | 0.9302 | 0.9931 | 0.9097 | 0.9722 | | 0.0112 | 2250.0 | 13500 | 0.0697 | 0.9398 | 0.9603 | 0.9779 | 0.9270 | 0.9935 | 0.9079 | 0.9717 | | 0.0119 | 2253.33 | 13520 | 0.0669 | 0.9398 | 0.9603 | 0.9779 | 0.9271 | 0.9935 | 0.9080 | 0.9717 | | 0.0112 | 2256.67 | 13540 | 0.0645 | 0.9406 | 0.9604 | 0.9782 | 0.9268 | 0.9940 | 0.9091 | 0.9721 | | 0.1143 | 2260.0 | 13560 | 0.0645 | 0.9401 | 0.9603 | 0.9780 | 0.9270 | 0.9937 | 0.9084 | 0.9719 | | 0.0221 | 2263.33 | 13580 | 0.0676 | 0.9400 | 0.9601 | 0.9780 | 0.9263 | 0.9939 | 0.9082 | 0.9719 | | 0.0221 | 2266.67 | 13600 | 0.0668 | 0.9400 | 0.9606 | 0.9780 | 0.9278 | 0.9934 | 0.9082 | 0.9718 | | 0.0077 | 2270.0 | 13620 | 0.0661 | 0.9403 | 0.9601 | 0.9781 | 0.9261 | 0.9941 | 0.9086 | 0.9720 | | 0.0076 | 2273.33 | 13640 | 0.0639 | 0.9398 | 0.9608 | 0.9778 | 0.9286 | 0.9930 | 0.9079 | 0.9717 | | 0.1141 | 2276.67 | 13660 | 0.0722 | 0.9405 | 0.9600 | 0.9782 | 0.9257 | 0.9943 | 0.9089 | 0.9721 | | 0.0075 | 2280.0 | 13680 | 0.0683 | 0.9397 | 0.9603 | 0.9779 | 0.9270 | 0.9935 | 0.9078 | 0.9717 | | 0.0222 | 2283.33 | 13700 | 0.0792 | 0.9403 | 0.9596 | 0.9781 | 0.9247 | 0.9945 | 0.9086 | 0.9721 | | 0.0014 | 2286.67 | 13720 | 0.0616 | 0.9401 | 0.9617 | 0.9779 | 0.9311 | 0.9923 | 0.9084 | 0.9718 | | 0.0014 | 2290.0 | 13740 | 0.0671 | 0.9398 | 0.9602 | 0.9779 | 0.9268 | 0.9936 | 0.9079 | 0.9717 | | 0.0222 | 2293.33 | 13760 | 0.0685 | 0.9397 | 0.9607 | 0.9778 | 0.9284 | 0.9930 | 0.9078 | 0.9716 | | 0.0276 | 2296.67 | 13780 | 0.0699 | 0.9402 | 0.9599 | 0.9781 | 0.9255 | 0.9942 | 0.9084 | 0.9720 | | 0.1138 | 2300.0 | 13800 | 0.0660 | 0.9402 | 0.9604 | 0.9781 | 0.9270 | 0.9938 | 0.9085 | 0.9719 | | 0.0223 | 2303.33 | 13820 | 0.0596 | 0.9408 | 0.9611 | 0.9783 | 0.9288 | 0.9935 | 0.9095 | 0.9722 | | 0.0015 | 2306.67 | 13840 | 0.0608 | 0.9400 | 0.9607 | 0.9779 | 0.9282 | 0.9932 | 0.9081 | 0.9718 | | 0.0014 | 2310.0 | 13860 | 0.0647 | 0.9401 | 0.9601 | 0.9780 | 0.9262 | 0.9939 | 0.9083 | 0.9719 | | 0.1143 | 2313.33 | 13880 | 0.0615 | 0.9408 | 0.9605 | 0.9783 | 0.9269 | 0.9941 | 0.9094 | 0.9722 | | 0.0076 | 2316.67 | 13900 | 0.0699 | 0.9396 | 0.9601 | 0.9778 | 0.9266 | 0.9936 | 0.9075 | 0.9716 | | 0.0291 | 2320.0 | 13920 | 0.0639 | 0.9405 | 0.9601 | 0.9782 | 0.9261 | 0.9942 | 0.9088 | 0.9721 | | 0.0111 | 2323.33 | 13940 | 0.0747 | 0.9397 | 0.9596 | 0.9779 | 0.9250 | 0.9941 | 0.9077 | 0.9718 | | 0.0273 | 2326.67 | 13960 | 0.0678 | 0.9398 | 0.9602 | 0.9779 | 0.9267 | 0.9936 | 0.9079 | 0.9717 | | 0.114 | 2330.0 | 13980 | 0.0659 | 0.9398 | 0.9601 | 0.9779 | 0.9266 | 0.9937 | 0.9079 | 0.9717 | | 0.0272 | 2333.33 | 14000 | 0.0748 | 0.9400 | 0.9596 | 0.9780 | 0.9249 | 0.9943 | 0.9081 | 0.9719 | | 0.0155 | 2336.67 | 14020 | 0.0659 | 0.9400 | 0.9601 | 0.9780 | 0.9263 | 0.9939 | 0.9082 | 0.9719 | | 0.0112 | 2340.0 | 14040 | 0.0622 | 0.9400 | 0.9606 | 0.9780 | 0.9278 | 0.9934 | 0.9083 | 0.9718 | | 0.0014 | 2343.33 | 14060 | 0.0452 | 0.9472 | 0.9680 | 0.9806 | 0.9443 | 0.9917 | 0.9195 | 0.9750 | | 0.1638 | 2346.67 | 14080 | 0.0961 | 0.9376 | 0.9593 | 0.9770 | 0.9258 | 0.9928 | 0.9046 | 0.9707 | | 0.1194 | 2350.0 | 14100 | 0.0704 | 0.9390 | 0.9596 | 0.9776 | 0.9256 | 0.9936 | 0.9066 | 0.9713 | | 0.0084 | 2353.33 | 14120 | 0.0613 | 0.9410 | 0.9612 | 0.9783 | 0.9289 | 0.9935 | 0.9097 | 0.9723 | | 0.0343 | 2356.67 | 14140 | 0.0730 | 0.9403 | 0.9598 | 0.9781 | 0.9253 | 0.9944 | 0.9086 | 0.9720 | | 0.0223 | 2360.0 | 14160 | 0.0728 | 0.9396 | 0.9599 | 0.9778 | 0.9261 | 0.9937 | 0.9075 | 0.9716 | | 0.0075 | 2363.33 | 14180 | 0.0695 | 0.9401 | 0.9602 | 0.9780 | 0.9266 | 0.9938 | 0.9083 | 0.9719 | | 0.0221 | 2366.67 | 14200 | 0.0750 | 0.9398 | 0.9598 | 0.9779 | 0.9256 | 0.9940 | 0.9078 | 0.9717 | | 0.0015 | 2370.0 | 14220 | 0.0717 | 0.9381 | 0.9602 | 0.9772 | 0.9280 | 0.9923 | 0.9054 | 0.9708 | | 0.0017 | 2373.33 | 14240 | 0.0590 | 0.9401 | 0.9614 | 0.9780 | 0.9301 | 0.9927 | 0.9085 | 0.9718 | | 0.0242 | 2376.67 | 14260 | 0.0634 | 0.9382 | 0.9604 | 0.9772 | 0.9285 | 0.9922 | 0.9055 | 0.9709 | | 0.0014 | 2380.0 | 14280 | 0.0694 | 0.9392 | 0.9604 | 0.9776 | 0.9279 | 0.9929 | 0.9069 | 0.9714 | | 0.0111 | 2383.33 | 14300 | 0.0734 | 0.9396 | 0.9596 | 0.9778 | 0.9252 | 0.9940 | 0.9075 | 0.9717 | | 0.1139 | 2386.67 | 14320 | 0.0603 | 0.9408 | 0.9607 | 0.9783 | 0.9276 | 0.9938 | 0.9093 | 0.9722 | | 0.0076 | 2390.0 | 14340 | 0.0665 | 0.9400 | 0.9605 | 0.9779 | 0.9276 | 0.9934 | 0.9082 | 0.9718 | | 0.022 | 2393.33 | 14360 | 0.0758 | 0.9400 | 0.9597 | 0.9780 | 0.9252 | 0.9942 | 0.9081 | 0.9719 | | 0.0074 | 2396.67 | 14380 | 0.0609 | 0.9400 | 0.9615 | 0.9779 | 0.9305 | 0.9925 | 0.9082 | 0.9717 | | 0.1145 | 2400.0 | 14400 | 0.0643 | 0.9403 | 0.9607 | 0.9781 | 0.9279 | 0.9935 | 0.9086 | 0.9719 | | 0.0015 | 2403.33 | 14420 | 0.0619 | 0.9403 | 0.9609 | 0.9781 | 0.9285 | 0.9933 | 0.9086 | 0.9719 | | 0.0076 | 2406.67 | 14440 | 0.0612 | 0.9406 | 0.9611 | 0.9782 | 0.9288 | 0.9933 | 0.9092 | 0.9721 | | 0.1154 | 2410.0 | 14460 | 0.0678 | 0.9394 | 0.9603 | 0.9777 | 0.9275 | 0.9932 | 0.9073 | 0.9715 | | 0.0272 | 2413.33 | 14480 | 0.0730 | 0.9399 | 0.9597 | 0.9780 | 0.9252 | 0.9942 | 0.9080 | 0.9718 | | 0.0014 | 2416.67 | 14500 | 0.0697 | 0.9396 | 0.9601 | 0.9778 | 0.9267 | 0.9935 | 0.9075 | 0.9716 | | 0.0075 | 2420.0 | 14520 | 0.0640 | 0.9403 | 0.9608 | 0.9781 | 0.9280 | 0.9935 | 0.9087 | 0.9720 | | 0.0343 | 2423.33 | 14540 | 0.0717 | 0.9405 | 0.9601 | 0.9782 | 0.9260 | 0.9942 | 0.9088 | 0.9721 | | 0.0115 | 2426.67 | 14560 | 0.0716 | 0.9406 | 0.9600 | 0.9782 | 0.9256 | 0.9944 | 0.9091 | 0.9722 | | 0.0111 | 2430.0 | 14580 | 0.0639 | 0.9397 | 0.9605 | 0.9779 | 0.9278 | 0.9932 | 0.9078 | 0.9717 | | 0.0113 | 2433.33 | 14600 | 0.0716 | 0.9396 | 0.9602 | 0.9778 | 0.9270 | 0.9934 | 0.9076 | 0.9716 | | 0.0272 | 2436.67 | 14620 | 0.0701 | 0.9400 | 0.9599 | 0.9780 | 0.9257 | 0.9941 | 0.9082 | 0.9719 | | 0.1135 | 2440.0 | 14640 | 0.0658 | 0.9402 | 0.9607 | 0.9780 | 0.9279 | 0.9934 | 0.9085 | 0.9719 | | 0.0013 | 2443.33 | 14660 | 0.0586 | 0.9408 | 0.9617 | 0.9782 | 0.9304 | 0.9929 | 0.9095 | 0.9721 | | 0.0271 | 2446.67 | 14680 | 0.0732 | 0.9401 | 0.9597 | 0.9780 | 0.9252 | 0.9943 | 0.9083 | 0.9719 | | 0.0143 | 2450.0 | 14700 | 0.0649 | 0.9403 | 0.9606 | 0.9781 | 0.9277 | 0.9936 | 0.9087 | 0.9720 | | 0.0152 | 2453.33 | 14720 | 0.0640 | 0.9405 | 0.9607 | 0.9782 | 0.9278 | 0.9936 | 0.9090 | 0.9721 | | 0.0271 | 2456.67 | 14740 | 0.0656 | 0.9406 | 0.9602 | 0.9782 | 0.9263 | 0.9942 | 0.9091 | 0.9721 | | 0.011 | 2460.0 | 14760 | 0.0649 | 0.9404 | 0.9605 | 0.9781 | 0.9272 | 0.9938 | 0.9088 | 0.9720 | | 0.0074 | 2463.33 | 14780 | 0.0675 | 0.9399 | 0.9605 | 0.9779 | 0.9278 | 0.9933 | 0.9080 | 0.9717 | | 0.0271 | 2466.67 | 14800 | 0.0662 | 0.9399 | 0.9603 | 0.9779 | 0.9270 | 0.9936 | 0.9081 | 0.9718 | | 0.1322 | 2470.0 | 14820 | 0.0658 | 0.9404 | 0.9616 | 0.9781 | 0.9305 | 0.9927 | 0.9089 | 0.9719 | | 0.011 | 2473.33 | 14840 | 0.0702 | 0.9401 | 0.9607 | 0.9780 | 0.9281 | 0.9933 | 0.9083 | 0.9718 | | 0.0334 | 2476.67 | 14860 | 0.0728 | 0.9410 | 0.9600 | 0.9784 | 0.9252 | 0.9948 | 0.9097 | 0.9724 | | 0.1256 | 2480.0 | 14880 | 0.0628 | 0.9408 | 0.9612 | 0.9783 | 0.9291 | 0.9934 | 0.9095 | 0.9722 | | 0.0073 | 2483.33 | 14900 | 0.0709 | 0.9400 | 0.9600 | 0.9780 | 0.9259 | 0.9940 | 0.9081 | 0.9718 | | 0.022 | 2486.67 | 14920 | 0.0668 | 0.9398 | 0.9606 | 0.9779 | 0.9281 | 0.9932 | 0.9079 | 0.9717 | | 0.0219 | 2490.0 | 14940 | 0.0650 | 0.9402 | 0.9605 | 0.9780 | 0.9275 | 0.9936 | 0.9085 | 0.9719 | | 0.011 | 2493.33 | 14960 | 0.0712 | 0.9396 | 0.9602 | 0.9778 | 0.9269 | 0.9935 | 0.9076 | 0.9716 | | 0.0219 | 2496.67 | 14980 | 0.0673 | 0.9399 | 0.9604 | 0.9779 | 0.9275 | 0.9934 | 0.9080 | 0.9718 | | 0.1136 | 2500.0 | 15000 | 0.0613 | 0.9407 | 0.9610 | 0.9782 | 0.9286 | 0.9935 | 0.9093 | 0.9721 | | 0.1133 | 2503.33 | 15020 | 0.0623 | 0.9407 | 0.9608 | 0.9782 | 0.9280 | 0.9937 | 0.9093 | 0.9722 | | 0.0331 | 2506.67 | 15040 | 0.0640 | 0.9428 | 0.9616 | 0.9790 | 0.9287 | 0.9945 | 0.9124 | 0.9732 | | 0.0272 | 2510.0 | 15060 | 0.0645 | 0.9400 | 0.9604 | 0.9780 | 0.9272 | 0.9936 | 0.9082 | 0.9718 | | 0.0013 | 2513.33 | 15080 | 0.0577 | 0.9414 | 0.9616 | 0.9785 | 0.9296 | 0.9935 | 0.9104 | 0.9725 | | 0.0013 | 2516.67 | 15100 | 0.0636 | 0.9404 | 0.9610 | 0.9781 | 0.9287 | 0.9933 | 0.9088 | 0.9720 | | 0.0014 | 2520.0 | 15120 | 0.0637 | 0.9402 | 0.9606 | 0.9780 | 0.9278 | 0.9935 | 0.9086 | 0.9719 | | 0.0013 | 2523.33 | 15140 | 0.0589 | 0.9411 | 0.9615 | 0.9784 | 0.9298 | 0.9933 | 0.9099 | 0.9723 | | 0.1133 | 2526.67 | 15160 | 0.0580 | 0.9414 | 0.9617 | 0.9785 | 0.9300 | 0.9934 | 0.9103 | 0.9724 | | 0.0108 | 2530.0 | 15180 | 0.0660 | 0.9406 | 0.9603 | 0.9782 | 0.9267 | 0.9940 | 0.9090 | 0.9721 | | 0.0219 | 2533.33 | 15200 | 0.0662 | 0.9405 | 0.9605 | 0.9782 | 0.9271 | 0.9938 | 0.9089 | 0.9721 | | 0.1207 | 2536.67 | 15220 | 0.0589 | 0.9407 | 0.9614 | 0.9782 | 0.9297 | 0.9931 | 0.9094 | 0.9721 | | 0.0073 | 2540.0 | 15240 | 0.0668 | 0.9396 | 0.9602 | 0.9778 | 0.9271 | 0.9934 | 0.9076 | 0.9716 | | 0.0218 | 2543.33 | 15260 | 0.0716 | 0.9404 | 0.9598 | 0.9781 | 0.9250 | 0.9945 | 0.9087 | 0.9721 | | 0.1133 | 2546.67 | 15280 | 0.0575 | 0.9412 | 0.9614 | 0.9784 | 0.9293 | 0.9935 | 0.9100 | 0.9724 | | 0.0219 | 2550.0 | 15300 | 0.0656 | 0.9406 | 0.9605 | 0.9782 | 0.9271 | 0.9939 | 0.9091 | 0.9721 | | 0.0108 | 2553.33 | 15320 | 0.0739 | 0.9398 | 0.9598 | 0.9779 | 0.9257 | 0.9940 | 0.9079 | 0.9718 | | 0.0222 | 2556.67 | 15340 | 0.0651 | 0.9407 | 0.9604 | 0.9782 | 0.9266 | 0.9941 | 0.9092 | 0.9722 | | 0.1138 | 2560.0 | 15360 | 0.0644 | 0.9408 | 0.9609 | 0.9782 | 0.9282 | 0.9936 | 0.9094 | 0.9722 | | 0.0014 | 2563.33 | 15380 | 0.0644 | 0.9398 | 0.9608 | 0.9779 | 0.9287 | 0.9930 | 0.9080 | 0.9717 | | 0.0072 | 2566.67 | 15400 | 0.0553 | 0.9418 | 0.9624 | 0.9786 | 0.9318 | 0.9930 | 0.9111 | 0.9726 | | 0.0218 | 2570.0 | 15420 | 0.0659 | 0.9405 | 0.9604 | 0.9782 | 0.9268 | 0.9939 | 0.9089 | 0.9721 | | 0.1145 | 2573.33 | 15440 | 0.0610 | 0.9406 | 0.9611 | 0.9782 | 0.9289 | 0.9933 | 0.9091 | 0.9721 | | 0.0072 | 2576.67 | 15460 | 0.0684 | 0.9408 | 0.9606 | 0.9783 | 0.9272 | 0.9940 | 0.9093 | 0.9722 | | 0.0222 | 2580.0 | 15480 | 0.0674 | 0.9406 | 0.9604 | 0.9782 | 0.9268 | 0.9940 | 0.9091 | 0.9721 | | 0.0218 | 2583.33 | 15500 | 0.0738 | 0.9402 | 0.9599 | 0.9780 | 0.9256 | 0.9942 | 0.9084 | 0.9719 | | 0.1132 | 2586.67 | 15520 | 0.0662 | 0.9405 | 0.9603 | 0.9782 | 0.9265 | 0.9941 | 0.9090 | 0.9721 | | 0.0271 | 2590.0 | 15540 | 0.0697 | 0.9402 | 0.9600 | 0.9781 | 0.9258 | 0.9941 | 0.9084 | 0.9720 | | 0.0108 | 2593.33 | 15560 | 0.0715 | 0.9404 | 0.9599 | 0.9781 | 0.9255 | 0.9943 | 0.9087 | 0.9721 | | 0.0273 | 2596.67 | 15580 | 0.0647 | 0.9407 | 0.9604 | 0.9783 | 0.9268 | 0.9941 | 0.9093 | 0.9722 | | 0.0014 | 2600.0 | 15600 | 0.0701 | 0.9398 | 0.9601 | 0.9779 | 0.9266 | 0.9937 | 0.9079 | 0.9718 | | 0.0305 | 2603.33 | 15620 | 0.0648 | 0.9401 | 0.9603 | 0.9780 | 0.9269 | 0.9937 | 0.9084 | 0.9719 | | 0.0222 | 2606.67 | 15640 | 0.0704 | 0.9402 | 0.9600 | 0.9781 | 0.9259 | 0.9941 | 0.9085 | 0.9720 | | 0.1133 | 2610.0 | 15660 | 0.0637 | 0.9409 | 0.9606 | 0.9783 | 0.9271 | 0.9940 | 0.9095 | 0.9723 | | 0.0218 | 2613.33 | 15680 | 0.0713 | 0.9405 | 0.9598 | 0.9782 | 0.9252 | 0.9945 | 0.9089 | 0.9721 | | 0.0073 | 2616.67 | 15700 | 0.0665 | 0.9400 | 0.9608 | 0.9779 | 0.9284 | 0.9931 | 0.9082 | 0.9718 | | 0.0273 | 2620.0 | 15720 | 0.0706 | 0.9402 | 0.9606 | 0.9780 | 0.9277 | 0.9935 | 0.9084 | 0.9719 | | 0.0087 | 2623.33 | 15740 | 0.0651 | 0.9402 | 0.9608 | 0.9780 | 0.9284 | 0.9933 | 0.9086 | 0.9719 | | 0.1133 | 2626.67 | 15760 | 0.0695 | 0.9404 | 0.9601 | 0.9781 | 0.9261 | 0.9942 | 0.9088 | 0.9721 | | 0.0218 | 2630.0 | 15780 | 0.0658 | 0.9406 | 0.9610 | 0.9782 | 0.9285 | 0.9935 | 0.9092 | 0.9721 | | 0.1131 | 2633.33 | 15800 | 0.0618 | 0.9408 | 0.9612 | 0.9783 | 0.9291 | 0.9934 | 0.9095 | 0.9722 | | 0.0219 | 2636.67 | 15820 | 0.0665 | 0.9405 | 0.9608 | 0.9781 | 0.9280 | 0.9935 | 0.9089 | 0.9720 | | 0.0073 | 2640.0 | 15840 | 0.0699 | 0.9405 | 0.9600 | 0.9782 | 0.9258 | 0.9943 | 0.9089 | 0.9721 | | 0.0219 | 2643.33 | 15860 | 0.0628 | 0.9413 | 0.9610 | 0.9785 | 0.9282 | 0.9939 | 0.9102 | 0.9724 | | 0.0108 | 2646.67 | 15880 | 0.0607 | 0.9410 | 0.9614 | 0.9783 | 0.9295 | 0.9933 | 0.9098 | 0.9723 | | 0.0072 | 2650.0 | 15900 | 0.0653 | 0.9405 | 0.9607 | 0.9781 | 0.9277 | 0.9936 | 0.9089 | 0.9720 | | 0.0218 | 2653.33 | 15920 | 0.0702 | 0.9403 | 0.9603 | 0.9781 | 0.9267 | 0.9939 | 0.9087 | 0.9720 | | 0.0013 | 2656.67 | 15940 | 0.0680 | 0.9410 | 0.9603 | 0.9784 | 0.9262 | 0.9944 | 0.9096 | 0.9723 | | 0.113 | 2660.0 | 15960 | 0.0646 | 0.9407 | 0.9607 | 0.9782 | 0.9275 | 0.9938 | 0.9092 | 0.9722 | | 0.0269 | 2663.33 | 15980 | 0.0699 | 0.9406 | 0.9601 | 0.9782 | 0.9258 | 0.9943 | 0.9090 | 0.9722 | | 0.0234 | 2666.67 | 16000 | 0.0638 | 0.9405 | 0.9609 | 0.9781 | 0.9283 | 0.9934 | 0.9089 | 0.9720 | | 0.1179 | 2670.0 | 16020 | 0.0754 | 0.9391 | 0.9600 | 0.9776 | 0.9268 | 0.9933 | 0.9069 | 0.9714 | | 0.011 | 2673.33 | 16040 | 0.0740 | 0.9396 | 0.9602 | 0.9778 | 0.9269 | 0.9935 | 0.9076 | 0.9716 | | 0.0013 | 2676.67 | 16060 | 0.0598 | 0.9411 | 0.9619 | 0.9783 | 0.9308 | 0.9930 | 0.9100 | 0.9723 | | 0.0107 | 2680.0 | 16080 | 0.0618 | 0.9406 | 0.9608 | 0.9782 | 0.9279 | 0.9936 | 0.9091 | 0.9721 | | 0.0269 | 2683.33 | 16100 | 0.0745 | 0.9404 | 0.9599 | 0.9781 | 0.9255 | 0.9943 | 0.9087 | 0.9720 | | 0.0013 | 2686.67 | 16120 | 0.0717 | 0.9404 | 0.9599 | 0.9782 | 0.9253 | 0.9944 | 0.9087 | 0.9721 | | 0.1179 | 2690.0 | 16140 | 0.0636 | 0.9408 | 0.9607 | 0.9783 | 0.9275 | 0.9939 | 0.9094 | 0.9722 | | 0.0269 | 2693.33 | 16160 | 0.0675 | 0.9405 | 0.9604 | 0.9782 | 0.9270 | 0.9939 | 0.9089 | 0.9721 | | 0.0273 | 2696.67 | 16180 | 0.0676 | 0.9409 | 0.9603 | 0.9783 | 0.9262 | 0.9944 | 0.9095 | 0.9723 | | 0.0109 | 2700.0 | 16200 | 0.0631 | 0.9407 | 0.9609 | 0.9782 | 0.9283 | 0.9936 | 0.9093 | 0.9722 | | 0.0013 | 2703.33 | 16220 | 0.0655 | 0.9400 | 0.9608 | 0.9779 | 0.9285 | 0.9932 | 0.9083 | 0.9718 | | 0.0108 | 2706.67 | 16240 | 0.0545 | 0.9430 | 0.9632 | 0.9790 | 0.9334 | 0.9931 | 0.9128 | 0.9731 | | 0.0271 | 2710.0 | 16260 | 0.0652 | 0.9405 | 0.9606 | 0.9781 | 0.9275 | 0.9937 | 0.9089 | 0.9720 | | 0.0107 | 2713.33 | 16280 | 0.0642 | 0.9400 | 0.9609 | 0.9779 | 0.9287 | 0.9931 | 0.9083 | 0.9718 | | 0.0219 | 2716.67 | 16300 | 0.0675 | 0.9405 | 0.9607 | 0.9781 | 0.9277 | 0.9936 | 0.9089 | 0.9720 | | 0.0269 | 2720.0 | 16320 | 0.0645 | 0.9407 | 0.9606 | 0.9782 | 0.9274 | 0.9938 | 0.9092 | 0.9721 | | 0.0217 | 2723.33 | 16340 | 0.0716 | 0.9403 | 0.9600 | 0.9781 | 0.9260 | 0.9941 | 0.9086 | 0.9720 | | 0.0233 | 2726.67 | 16360 | 0.0699 | 0.9405 | 0.9603 | 0.9782 | 0.9265 | 0.9941 | 0.9090 | 0.9721 | | 0.1134 | 2730.0 | 16380 | 0.0602 | 0.9411 | 0.9609 | 0.9784 | 0.9279 | 0.9939 | 0.9098 | 0.9723 | | 0.0106 | 2733.33 | 16400 | 0.0588 | 0.9410 | 0.9619 | 0.9783 | 0.9310 | 0.9928 | 0.9098 | 0.9722 | | 0.1134 | 2736.67 | 16420 | 0.0620 | 0.9408 | 0.9610 | 0.9782 | 0.9286 | 0.9935 | 0.9094 | 0.9722 | | 0.0013 | 2740.0 | 16440 | 0.0626 | 0.9408 | 0.9614 | 0.9782 | 0.9297 | 0.9932 | 0.9094 | 0.9721 | | 0.0073 | 2743.33 | 16460 | 0.0667 | 0.9406 | 0.9603 | 0.9782 | 0.9265 | 0.9941 | 0.9091 | 0.9722 | | 0.0269 | 2746.67 | 16480 | 0.0627 | 0.9411 | 0.9610 | 0.9784 | 0.9282 | 0.9938 | 0.9098 | 0.9723 | | 0.0013 | 2750.0 | 16500 | 0.0581 | 0.9416 | 0.9623 | 0.9785 | 0.9316 | 0.9929 | 0.9107 | 0.9725 | | 0.1129 | 2753.33 | 16520 | 0.0590 | 0.9415 | 0.9615 | 0.9785 | 0.9295 | 0.9936 | 0.9104 | 0.9725 | | 0.0269 | 2756.67 | 16540 | 0.0651 | 0.9410 | 0.9605 | 0.9784 | 0.9269 | 0.9942 | 0.9096 | 0.9723 | | 0.0013 | 2760.0 | 16560 | 0.0642 | 0.9406 | 0.9608 | 0.9782 | 0.9281 | 0.9936 | 0.9092 | 0.9721 | | 0.0269 | 2763.33 | 16580 | 0.0675 | 0.9408 | 0.9603 | 0.9783 | 0.9265 | 0.9942 | 0.9093 | 0.9722 | | 0.0106 | 2766.67 | 16600 | 0.0589 | 0.9417 | 0.9625 | 0.9785 | 0.9323 | 0.9928 | 0.9109 | 0.9725 | | 0.0109 | 2770.0 | 16620 | 0.0656 | 0.9400 | 0.9607 | 0.9780 | 0.9281 | 0.9933 | 0.9083 | 0.9718 | | 0.027 | 2773.33 | 16640 | 0.0730 | 0.9402 | 0.9600 | 0.9780 | 0.9260 | 0.9941 | 0.9084 | 0.9719 | | 0.0072 | 2776.67 | 16660 | 0.0677 | 0.9410 | 0.9605 | 0.9784 | 0.9268 | 0.9942 | 0.9097 | 0.9723 | | 0.0013 | 2780.0 | 16680 | 0.0649 | 0.9406 | 0.9609 | 0.9782 | 0.9283 | 0.9935 | 0.9091 | 0.9721 | | 0.1129 | 2783.33 | 16700 | 0.0611 | 0.9409 | 0.9614 | 0.9783 | 0.9295 | 0.9933 | 0.9097 | 0.9722 | | 0.0269 | 2786.67 | 16720 | 0.0611 | 0.9408 | 0.9617 | 0.9782 | 0.9306 | 0.9929 | 0.9095 | 0.9721 | | 0.0106 | 2790.0 | 16740 | 0.0642 | 0.9402 | 0.9611 | 0.9780 | 0.9291 | 0.9930 | 0.9086 | 0.9719 | | 0.1129 | 2793.33 | 16760 | 0.0628 | 0.9410 | 0.9613 | 0.9783 | 0.9292 | 0.9934 | 0.9097 | 0.9723 | | 0.0014 | 2796.67 | 16780 | 0.0626 | 0.9406 | 0.9612 | 0.9782 | 0.9291 | 0.9932 | 0.9091 | 0.9721 | | 0.0014 | 2800.0 | 16800 | 0.0627 | 0.9410 | 0.9612 | 0.9783 | 0.9288 | 0.9936 | 0.9098 | 0.9723 | | 0.0073 | 2803.33 | 16820 | 0.0664 | 0.9405 | 0.9603 | 0.9782 | 0.9267 | 0.9940 | 0.9089 | 0.9721 | | 0.1128 | 2806.67 | 16840 | 0.0586 | 0.9412 | 0.9619 | 0.9784 | 0.9309 | 0.9930 | 0.9101 | 0.9723 | | 0.0072 | 2810.0 | 16860 | 0.0635 | 0.9408 | 0.9618 | 0.9782 | 0.9307 | 0.9928 | 0.9094 | 0.9721 | | 0.0073 | 2813.33 | 16880 | 0.0602 | 0.9410 | 0.9616 | 0.9783 | 0.9302 | 0.9931 | 0.9098 | 0.9723 | | 0.0217 | 2816.67 | 16900 | 0.0618 | 0.9406 | 0.9614 | 0.9782 | 0.9297 | 0.9930 | 0.9091 | 0.9720 | | 0.022 | 2820.0 | 16920 | 0.0655 | 0.9401 | 0.9604 | 0.9780 | 0.9273 | 0.9936 | 0.9083 | 0.9719 | | 0.0136 | 2823.33 | 16940 | 0.0648 | 0.9404 | 0.9609 | 0.9781 | 0.9285 | 0.9933 | 0.9088 | 0.9720 | | 0.0013 | 2826.67 | 16960 | 0.0663 | 0.9405 | 0.9607 | 0.9781 | 0.9278 | 0.9936 | 0.9089 | 0.9720 | | 0.0234 | 2830.0 | 16980 | 0.0668 | 0.9406 | 0.9607 | 0.9782 | 0.9277 | 0.9937 | 0.9091 | 0.9721 | | 0.0102 | 2833.33 | 17000 | 0.0669 | 0.9403 | 0.9608 | 0.9780 | 0.9283 | 0.9933 | 0.9086 | 0.9719 | | 0.0217 | 2836.67 | 17020 | 0.0651 | 0.9409 | 0.9609 | 0.9783 | 0.9280 | 0.9937 | 0.9095 | 0.9722 | | 0.0071 | 2840.0 | 17040 | 0.0643 | 0.9413 | 0.9613 | 0.9784 | 0.9290 | 0.9937 | 0.9102 | 0.9724 | | 0.0269 | 2843.33 | 17060 | 0.0589 | 0.9421 | 0.9615 | 0.9788 | 0.9288 | 0.9941 | 0.9114 | 0.9728 | | 0.0216 | 2846.67 | 17080 | 0.0619 | 0.9413 | 0.9615 | 0.9784 | 0.9295 | 0.9935 | 0.9102 | 0.9724 | | 0.0268 | 2850.0 | 17100 | 0.0644 | 0.9409 | 0.9610 | 0.9783 | 0.9282 | 0.9937 | 0.9096 | 0.9723 | | 0.0216 | 2853.33 | 17120 | 0.0656 | 0.9407 | 0.9606 | 0.9782 | 0.9273 | 0.9939 | 0.9093 | 0.9722 | | 0.0015 | 2856.67 | 17140 | 0.0656 | 0.9405 | 0.9608 | 0.9781 | 0.9282 | 0.9935 | 0.9089 | 0.9720 | | 0.0072 | 2860.0 | 17160 | 0.0641 | 0.9408 | 0.9608 | 0.9783 | 0.9278 | 0.9938 | 0.9094 | 0.9722 | | 0.0071 | 2863.33 | 17180 | 0.0624 | 0.9406 | 0.9614 | 0.9782 | 0.9298 | 0.9930 | 0.9091 | 0.9720 | | 0.027 | 2866.67 | 17200 | 0.0608 | 0.9415 | 0.9617 | 0.9785 | 0.9300 | 0.9934 | 0.9104 | 0.9725 | | 0.0272 | 2870.0 | 17220 | 0.0654 | 0.9407 | 0.9608 | 0.9782 | 0.9279 | 0.9937 | 0.9093 | 0.9722 | | 0.1139 | 2873.33 | 17240 | 0.0590 | 0.9412 | 0.9618 | 0.9784 | 0.9306 | 0.9931 | 0.9101 | 0.9723 | | 0.0268 | 2876.67 | 17260 | 0.0666 | 0.9409 | 0.9603 | 0.9783 | 0.9264 | 0.9943 | 0.9095 | 0.9723 | | 0.1126 | 2880.0 | 17280 | 0.0635 | 0.9407 | 0.9609 | 0.9782 | 0.9281 | 0.9936 | 0.9093 | 0.9721 | | 0.0218 | 2883.33 | 17300 | 0.0603 | 0.9412 | 0.9614 | 0.9784 | 0.9294 | 0.9935 | 0.9100 | 0.9724 | | 0.0071 | 2886.67 | 17320 | 0.0623 | 0.9403 | 0.9613 | 0.9780 | 0.9297 | 0.9929 | 0.9087 | 0.9719 | | 0.0013 | 2890.0 | 17340 | 0.0590 | 0.9417 | 0.9616 | 0.9786 | 0.9294 | 0.9937 | 0.9108 | 0.9726 | | 0.0269 | 2893.33 | 17360 | 0.0637 | 0.9413 | 0.9607 | 0.9785 | 0.9271 | 0.9943 | 0.9101 | 0.9725 | | 0.113 | 2896.67 | 17380 | 0.0668 | 0.9411 | 0.9602 | 0.9784 | 0.9259 | 0.9945 | 0.9097 | 0.9724 | | 0.1133 | 2900.0 | 17400 | 0.0632 | 0.9411 | 0.9611 | 0.9784 | 0.9284 | 0.9937 | 0.9099 | 0.9723 | | 0.0013 | 2903.33 | 17420 | 0.0540 | 0.9428 | 0.9634 | 0.9790 | 0.9339 | 0.9928 | 0.9126 | 0.9731 | | 0.0076 | 2906.67 | 17440 | 0.0617 | 0.9412 | 0.9613 | 0.9784 | 0.9292 | 0.9935 | 0.9100 | 0.9724 | | 0.0013 | 2910.0 | 17460 | 0.0633 | 0.9406 | 0.9613 | 0.9782 | 0.9295 | 0.9931 | 0.9092 | 0.9721 | | 0.0267 | 2913.33 | 17480 | 0.0707 | 0.9407 | 0.9600 | 0.9783 | 0.9257 | 0.9944 | 0.9092 | 0.9722 | | 0.0271 | 2916.67 | 17500 | 0.0590 | 0.9417 | 0.9613 | 0.9786 | 0.9286 | 0.9940 | 0.9108 | 0.9727 | | 0.0276 | 2920.0 | 17520 | 0.0671 | 0.9394 | 0.9599 | 0.9777 | 0.9262 | 0.9936 | 0.9072 | 0.9715 | | 0.1134 | 2923.33 | 17540 | 0.0598 | 0.9416 | 0.9618 | 0.9786 | 0.9303 | 0.9934 | 0.9107 | 0.9725 | | 0.0105 | 2926.67 | 17560 | 0.0649 | 0.9409 | 0.9609 | 0.9783 | 0.9282 | 0.9937 | 0.9096 | 0.9722 | | 0.1126 | 2930.0 | 17580 | 0.0616 | 0.9412 | 0.9610 | 0.9784 | 0.9282 | 0.9938 | 0.9100 | 0.9724 | | 0.0115 | 2933.33 | 17600 | 0.0587 | 0.9416 | 0.9616 | 0.9786 | 0.9296 | 0.9936 | 0.9106 | 0.9726 | | 0.0013 | 2936.67 | 17620 | 0.0560 | 0.9422 | 0.9625 | 0.9787 | 0.9320 | 0.9931 | 0.9116 | 0.9728 | | 0.1125 | 2940.0 | 17640 | 0.0633 | 0.9412 | 0.9612 | 0.9784 | 0.9287 | 0.9937 | 0.9100 | 0.9724 | | 0.1127 | 2943.33 | 17660 | 0.0624 | 0.9414 | 0.9608 | 0.9785 | 0.9273 | 0.9943 | 0.9103 | 0.9725 | | 0.0013 | 2946.67 | 17680 | 0.0593 | 0.9419 | 0.9617 | 0.9787 | 0.9296 | 0.9937 | 0.9110 | 0.9727 | | 0.0177 | 2950.0 | 17700 | 0.0674 | 0.9414 | 0.9610 | 0.9785 | 0.9280 | 0.9940 | 0.9104 | 0.9725 | | 0.0216 | 2953.33 | 17720 | 0.0690 | 0.9407 | 0.9605 | 0.9782 | 0.9269 | 0.9940 | 0.9092 | 0.9722 | | 0.0105 | 2956.67 | 17740 | 0.0651 | 0.9407 | 0.9609 | 0.9782 | 0.9281 | 0.9937 | 0.9093 | 0.9722 | | 0.0266 | 2960.0 | 17760 | 0.0670 | 0.9409 | 0.9606 | 0.9783 | 0.9273 | 0.9940 | 0.9095 | 0.9723 | | 0.1135 | 2963.33 | 17780 | 0.0543 | 0.9432 | 0.9632 | 0.9791 | 0.9332 | 0.9932 | 0.9131 | 0.9732 | | 0.0013 | 2966.67 | 17800 | 0.0632 | 0.9409 | 0.9609 | 0.9783 | 0.9281 | 0.9937 | 0.9096 | 0.9722 | | 0.0013 | 2970.0 | 17820 | 0.0645 | 0.9408 | 0.9612 | 0.9782 | 0.9292 | 0.9933 | 0.9094 | 0.9721 | | 0.0071 | 2973.33 | 17840 | 0.0689 | 0.9406 | 0.9602 | 0.9782 | 0.9261 | 0.9942 | 0.9091 | 0.9722 | | 0.0267 | 2976.67 | 17860 | 0.0644 | 0.9409 | 0.9607 | 0.9783 | 0.9274 | 0.9940 | 0.9096 | 0.9723 | | 0.0013 | 2980.0 | 17880 | 0.0639 | 0.9407 | 0.9611 | 0.9782 | 0.9286 | 0.9935 | 0.9093 | 0.9722 | | 0.0234 | 2983.33 | 17900 | 0.0677 | 0.9408 | 0.9606 | 0.9783 | 0.9272 | 0.9940 | 0.9093 | 0.9722 | | 0.1126 | 2986.67 | 17920 | 0.0720 | 0.9414 | 0.9599 | 0.9786 | 0.9247 | 0.9951 | 0.9102 | 0.9726 | | 0.022 | 2990.0 | 17940 | 0.0667 | 0.9402 | 0.9605 | 0.9780 | 0.9274 | 0.9936 | 0.9085 | 0.9719 | | 0.0268 | 2993.33 | 17960 | 0.0585 | 0.9417 | 0.9612 | 0.9786 | 0.9282 | 0.9941 | 0.9108 | 0.9727 | | 0.0013 | 2996.67 | 17980 | 0.0621 | 0.9406 | 0.9612 | 0.9782 | 0.9291 | 0.9932 | 0.9091 | 0.9721 | | 0.1125 | 3000.0 | 18000 | 0.0633 | 0.9406 | 0.9609 | 0.9782 | 0.9284 | 0.9935 | 0.9092 | 0.9721 | | 0.0272 | 3003.33 | 18020 | 0.0666 | 0.9402 | 0.9610 | 0.9780 | 0.9289 | 0.9931 | 0.9086 | 0.9719 | | 0.0216 | 3006.67 | 18040 | 0.0743 | 0.9405 | 0.9601 | 0.9782 | 0.9258 | 0.9943 | 0.9089 | 0.9721 | | 0.1124 | 3010.0 | 18060 | 0.0606 | 0.9404 | 0.9621 | 0.9781 | 0.9321 | 0.9922 | 0.9090 | 0.9719 | | 0.0266 | 3013.33 | 18080 | 0.0712 | 0.9406 | 0.9602 | 0.9782 | 0.9261 | 0.9942 | 0.9090 | 0.9721 | | 0.0013 | 3016.67 | 18100 | 0.0589 | 0.9413 | 0.9617 | 0.9784 | 0.9301 | 0.9933 | 0.9102 | 0.9724 | | 0.0266 | 3020.0 | 18120 | 0.0644 | 0.9409 | 0.9608 | 0.9783 | 0.9276 | 0.9939 | 0.9095 | 0.9723 | | 0.0013 | 3023.33 | 18140 | 0.0599 | 0.9415 | 0.9618 | 0.9785 | 0.9301 | 0.9934 | 0.9105 | 0.9725 | | 0.0108 | 3026.67 | 18160 | 0.0627 | 0.9412 | 0.9616 | 0.9784 | 0.9300 | 0.9933 | 0.9100 | 0.9723 | | 0.0109 | 3030.0 | 18180 | 0.0639 | 0.9403 | 0.9607 | 0.9781 | 0.9280 | 0.9934 | 0.9086 | 0.9719 | | 0.0267 | 3033.33 | 18200 | 0.0623 | 0.9417 | 0.9615 | 0.9786 | 0.9292 | 0.9938 | 0.9107 | 0.9726 | | 0.1126 | 3036.67 | 18220 | 0.0588 | 0.9417 | 0.9618 | 0.9786 | 0.9301 | 0.9935 | 0.9108 | 0.9726 | | 0.0013 | 3040.0 | 18240 | 0.0630 | 0.9409 | 0.9611 | 0.9783 | 0.9288 | 0.9935 | 0.9095 | 0.9722 | | 0.0013 | 3043.33 | 18260 | 0.0617 | 0.9409 | 0.9615 | 0.9783 | 0.9298 | 0.9932 | 0.9097 | 0.9722 | | 0.0215 | 3046.67 | 18280 | 0.0747 | 0.9402 | 0.9601 | 0.9781 | 0.9262 | 0.9940 | 0.9085 | 0.9720 | | 0.0106 | 3050.0 | 18300 | 0.0679 | 0.9398 | 0.9607 | 0.9779 | 0.9283 | 0.9931 | 0.9079 | 0.9717 | | 0.1129 | 3053.33 | 18320 | 0.0622 | 0.9411 | 0.9610 | 0.9784 | 0.9281 | 0.9939 | 0.9099 | 0.9724 | | 0.0104 | 3056.67 | 18340 | 0.0636 | 0.9409 | 0.9609 | 0.9783 | 0.9281 | 0.9937 | 0.9095 | 0.9722 | | 0.0013 | 3060.0 | 18360 | 0.0616 | 0.9416 | 0.9612 | 0.9786 | 0.9283 | 0.9940 | 0.9106 | 0.9726 | | 0.0217 | 3063.33 | 18380 | 0.0654 | 0.9404 | 0.9609 | 0.9781 | 0.9285 | 0.9934 | 0.9089 | 0.9720 | | 0.007 | 3066.67 | 18400 | 0.0693 | 0.9403 | 0.9610 | 0.9781 | 0.9289 | 0.9932 | 0.9087 | 0.9719 | | 0.1128 | 3070.0 | 18420 | 0.0619 | 0.9411 | 0.9611 | 0.9784 | 0.9285 | 0.9937 | 0.9099 | 0.9724 | | 0.0107 | 3073.33 | 18440 | 0.0640 | 0.9400 | 0.9610 | 0.9779 | 0.9292 | 0.9929 | 0.9082 | 0.9717 | | 0.027 | 3076.67 | 18460 | 0.0668 | 0.9406 | 0.9606 | 0.9782 | 0.9274 | 0.9938 | 0.9091 | 0.9721 | | 0.0071 | 3080.0 | 18480 | 0.0650 | 0.9409 | 0.9608 | 0.9783 | 0.9279 | 0.9938 | 0.9096 | 0.9723 | | 0.0215 | 3083.33 | 18500 | 0.0701 | 0.9411 | 0.9605 | 0.9784 | 0.9266 | 0.9943 | 0.9098 | 0.9724 | | 0.0216 | 3086.67 | 18520 | 0.0629 | 0.9414 | 0.9612 | 0.9785 | 0.9286 | 0.9938 | 0.9103 | 0.9725 | | 0.0072 | 3090.0 | 18540 | 0.0664 | 0.9409 | 0.9607 | 0.9783 | 0.9276 | 0.9939 | 0.9096 | 0.9723 | | 0.0072 | 3093.33 | 18560 | 0.0631 | 0.9408 | 0.9616 | 0.9782 | 0.9303 | 0.9930 | 0.9095 | 0.9721 | | 0.0105 | 3096.67 | 18580 | 0.0670 | 0.9406 | 0.9608 | 0.9782 | 0.9279 | 0.9936 | 0.9090 | 0.9721 | | 0.0268 | 3100.0 | 18600 | 0.0655 | 0.9406 | 0.9609 | 0.9782 | 0.9282 | 0.9936 | 0.9091 | 0.9721 | | 0.1121 | 3103.33 | 18620 | 0.0588 | 0.9422 | 0.9620 | 0.9788 | 0.9303 | 0.9937 | 0.9115 | 0.9728 | | 0.0104 | 3106.67 | 18640 | 0.0616 | 0.9408 | 0.9618 | 0.9782 | 0.9309 | 0.9928 | 0.9095 | 0.9721 | | 0.1121 | 3110.0 | 18660 | 0.0626 | 0.9408 | 0.9616 | 0.9782 | 0.9303 | 0.9930 | 0.9095 | 0.9721 | | 0.1177 | 3113.33 | 18680 | 0.0612 | 0.9414 | 0.9609 | 0.9785 | 0.9278 | 0.9941 | 0.9102 | 0.9725 | | 0.0013 | 3116.67 | 18700 | 0.0624 | 0.9407 | 0.9614 | 0.9782 | 0.9298 | 0.9931 | 0.9093 | 0.9721 | | 0.007 | 3120.0 | 18720 | 0.0681 | 0.9404 | 0.9607 | 0.9781 | 0.9278 | 0.9936 | 0.9088 | 0.9720 | | 0.0105 | 3123.33 | 18740 | 0.0664 | 0.9405 | 0.9610 | 0.9781 | 0.9286 | 0.9933 | 0.9089 | 0.9720 | | 0.0106 | 3126.67 | 18760 | 0.0636 | 0.9412 | 0.9613 | 0.9784 | 0.9290 | 0.9936 | 0.9101 | 0.9724 | | 0.0266 | 3130.0 | 18780 | 0.0692 | 0.9405 | 0.9605 | 0.9782 | 0.9273 | 0.9938 | 0.9089 | 0.9721 | | 0.0214 | 3133.33 | 18800 | 0.0681 | 0.9405 | 0.9606 | 0.9782 | 0.9276 | 0.9937 | 0.9089 | 0.9721 | | 0.0105 | 3136.67 | 18820 | 0.0656 | 0.9408 | 0.9607 | 0.9783 | 0.9274 | 0.9939 | 0.9094 | 0.9722 | | 0.007 | 3140.0 | 18840 | 0.0639 | 0.9410 | 0.9609 | 0.9784 | 0.9278 | 0.9939 | 0.9097 | 0.9723 | | 0.0013 | 3143.33 | 18860 | 0.0554 | 0.9418 | 0.9623 | 0.9786 | 0.9314 | 0.9931 | 0.9110 | 0.9726 | | 0.0016 | 3146.67 | 18880 | 0.0705 | 0.9405 | 0.9604 | 0.9782 | 0.9269 | 0.9939 | 0.9089 | 0.9721 | | 0.1124 | 3150.0 | 18900 | 0.0644 | 0.9407 | 0.9610 | 0.9782 | 0.9284 | 0.9935 | 0.9092 | 0.9721 | | 0.0268 | 3153.33 | 18920 | 0.0636 | 0.9411 | 0.9610 | 0.9784 | 0.9282 | 0.9938 | 0.9098 | 0.9723 | | 0.0269 | 3156.67 | 18940 | 0.0687 | 0.9404 | 0.9602 | 0.9781 | 0.9263 | 0.9940 | 0.9087 | 0.9720 | | 0.1182 | 3160.0 | 18960 | 0.0589 | 0.9416 | 0.9620 | 0.9785 | 0.9309 | 0.9932 | 0.9106 | 0.9725 | | 0.0215 | 3163.33 | 18980 | 0.0640 | 0.9410 | 0.9614 | 0.9783 | 0.9294 | 0.9934 | 0.9098 | 0.9723 | | 0.0265 | 3166.67 | 19000 | 0.0656 | 0.9410 | 0.9609 | 0.9784 | 0.9280 | 0.9938 | 0.9098 | 0.9723 | | 0.0014 | 3170.0 | 19020 | 0.0576 | 0.9417 | 0.9617 | 0.9786 | 0.9299 | 0.9936 | 0.9109 | 0.9726 | | 0.1185 | 3173.33 | 19040 | 0.0542 | 0.9427 | 0.9628 | 0.9790 | 0.9322 | 0.9934 | 0.9124 | 0.9731 | | 0.0229 | 3176.67 | 19060 | 0.0623 | 0.9407 | 0.9607 | 0.9782 | 0.9275 | 0.9938 | 0.9093 | 0.9722 | | 0.0215 | 3180.0 | 19080 | 0.0616 | 0.9403 | 0.9613 | 0.9781 | 0.9296 | 0.9930 | 0.9087 | 0.9719 | | 0.0202 | 3183.33 | 19100 | 0.0734 | 0.9406 | 0.9608 | 0.9782 | 0.9279 | 0.9936 | 0.9090 | 0.9721 | | 0.0215 | 3186.67 | 19120 | 0.0677 | 0.9407 | 0.9604 | 0.9782 | 0.9268 | 0.9940 | 0.9092 | 0.9722 | | 0.0266 | 3190.0 | 19140 | 0.0645 | 0.9410 | 0.9609 | 0.9783 | 0.9281 | 0.9938 | 0.9097 | 0.9723 | | 0.1176 | 3193.33 | 19160 | 0.0519 | 0.9432 | 0.9651 | 0.9790 | 0.9387 | 0.9914 | 0.9132 | 0.9731 | | 0.0215 | 3196.67 | 19180 | 0.0634 | 0.9406 | 0.9610 | 0.9782 | 0.9287 | 0.9934 | 0.9091 | 0.9721 | | 0.0013 | 3200.0 | 19200 | 0.0607 | 0.9414 | 0.9616 | 0.9785 | 0.9298 | 0.9934 | 0.9104 | 0.9725 | | 0.0091 | 3203.33 | 19220 | 0.0638 | 0.9410 | 0.9610 | 0.9783 | 0.9284 | 0.9937 | 0.9097 | 0.9723 | | 0.112 | 3206.67 | 19240 | 0.0608 | 0.9413 | 0.9614 | 0.9784 | 0.9291 | 0.9936 | 0.9102 | 0.9724 | | 0.0071 | 3210.0 | 19260 | 0.0667 | 0.9407 | 0.9609 | 0.9782 | 0.9283 | 0.9935 | 0.9092 | 0.9721 | | 0.0013 | 3213.33 | 19280 | 0.0559 | 0.9422 | 0.9628 | 0.9788 | 0.9326 | 0.9930 | 0.9117 | 0.9728 | | 0.0103 | 3216.67 | 19300 | 0.0621 | 0.9414 | 0.9613 | 0.9785 | 0.9287 | 0.9938 | 0.9104 | 0.9725 | | 0.0069 | 3220.0 | 19320 | 0.0635 | 0.9409 | 0.9612 | 0.9783 | 0.9290 | 0.9934 | 0.9095 | 0.9722 | | 0.0069 | 3223.33 | 19340 | 0.0675 | 0.9408 | 0.9607 | 0.9783 | 0.9275 | 0.9939 | 0.9095 | 0.9722 | | 0.1124 | 3226.67 | 19360 | 0.0586 | 0.9419 | 0.9619 | 0.9787 | 0.9303 | 0.9935 | 0.9111 | 0.9727 | | 0.1123 | 3230.0 | 19380 | 0.0652 | 0.9410 | 0.9610 | 0.9783 | 0.9284 | 0.9937 | 0.9097 | 0.9723 | | 0.0271 | 3233.33 | 19400 | 0.0599 | 0.9415 | 0.9613 | 0.9785 | 0.9289 | 0.9938 | 0.9105 | 0.9725 | | 0.0102 | 3236.67 | 19420 | 0.0683 | 0.9410 | 0.9604 | 0.9784 | 0.9266 | 0.9943 | 0.9097 | 0.9724 | | 0.0069 | 3240.0 | 19440 | 0.0621 | 0.9416 | 0.9614 | 0.9786 | 0.9289 | 0.9938 | 0.9107 | 0.9726 | | 0.0265 | 3243.33 | 19460 | 0.0704 | 0.9411 | 0.9604 | 0.9784 | 0.9264 | 0.9944 | 0.9097 | 0.9724 | | 0.0102 | 3246.67 | 19480 | 0.0601 | 0.9411 | 0.9615 | 0.9784 | 0.9297 | 0.9933 | 0.9099 | 0.9723 | | 0.1121 | 3250.0 | 19500 | 0.0577 | 0.9416 | 0.9615 | 0.9785 | 0.9294 | 0.9937 | 0.9106 | 0.9725 | | 0.0013 | 3253.33 | 19520 | 0.0534 | 0.9432 | 0.9631 | 0.9791 | 0.9329 | 0.9933 | 0.9131 | 0.9733 | | 0.0074 | 3256.67 | 19540 | 0.0584 | 0.9420 | 0.9618 | 0.9787 | 0.9300 | 0.9937 | 0.9113 | 0.9728 | | 0.0013 | 3260.0 | 19560 | 0.0622 | 0.9413 | 0.9613 | 0.9784 | 0.9291 | 0.9936 | 0.9102 | 0.9724 | | 0.112 | 3263.33 | 19580 | 0.0622 | 0.9414 | 0.9614 | 0.9785 | 0.9291 | 0.9937 | 0.9103 | 0.9725 | | 0.0091 | 3266.67 | 19600 | 0.0564 | 0.9424 | 0.9628 | 0.9788 | 0.9326 | 0.9930 | 0.9119 | 0.9729 | | 0.0215 | 3270.0 | 19620 | 0.0627 | 0.9414 | 0.9614 | 0.9785 | 0.9293 | 0.9936 | 0.9103 | 0.9725 | | 0.0019 | 3273.33 | 19640 | 0.0583 | 0.9417 | 0.9627 | 0.9786 | 0.9329 | 0.9926 | 0.9109 | 0.9725 | | 0.1121 | 3276.67 | 19660 | 0.0582 | 0.9416 | 0.9617 | 0.9785 | 0.9299 | 0.9935 | 0.9106 | 0.9725 | | 0.0266 | 3280.0 | 19680 | 0.0623 | 0.9415 | 0.9612 | 0.9785 | 0.9285 | 0.9939 | 0.9105 | 0.9725 | | 0.1121 | 3283.33 | 19700 | 0.0621 | 0.9409 | 0.9612 | 0.9783 | 0.9290 | 0.9935 | 0.9096 | 0.9722 | | 0.0292 | 3286.67 | 19720 | 0.0679 | 0.9412 | 0.9604 | 0.9784 | 0.9264 | 0.9944 | 0.9099 | 0.9724 | | 0.0103 | 3290.0 | 19740 | 0.0661 | 0.9407 | 0.9610 | 0.9782 | 0.9284 | 0.9935 | 0.9093 | 0.9721 | | 0.0268 | 3293.33 | 19760 | 0.0636 | 0.9410 | 0.9612 | 0.9784 | 0.9287 | 0.9936 | 0.9098 | 0.9723 | | 0.1121 | 3296.67 | 19780 | 0.0639 | 0.9410 | 0.9609 | 0.9784 | 0.9279 | 0.9939 | 0.9097 | 0.9723 | | 0.0265 | 3300.0 | 19800 | 0.0651 | 0.9411 | 0.9610 | 0.9784 | 0.9281 | 0.9939 | 0.9099 | 0.9724 | | 0.007 | 3303.33 | 19820 | 0.0628 | 0.9408 | 0.9619 | 0.9782 | 0.9311 | 0.9927 | 0.9095 | 0.9721 | | 0.0013 | 3306.67 | 19840 | 0.0586 | 0.9418 | 0.9620 | 0.9786 | 0.9307 | 0.9933 | 0.9109 | 0.9726 | | 0.0266 | 3310.0 | 19860 | 0.0630 | 0.9411 | 0.9610 | 0.9784 | 0.9283 | 0.9938 | 0.9098 | 0.9723 | | 0.0266 | 3313.33 | 19880 | 0.0643 | 0.9411 | 0.9608 | 0.9784 | 0.9277 | 0.9940 | 0.9099 | 0.9724 | | 0.0268 | 3316.67 | 19900 | 0.0602 | 0.9419 | 0.9614 | 0.9787 | 0.9287 | 0.9941 | 0.9111 | 0.9727 | | 0.0229 | 3320.0 | 19920 | 0.0620 | 0.9409 | 0.9613 | 0.9783 | 0.9292 | 0.9934 | 0.9096 | 0.9722 | | 0.0265 | 3323.33 | 19940 | 0.0646 | 0.9419 | 0.9611 | 0.9787 | 0.9280 | 0.9943 | 0.9110 | 0.9727 | | 0.0013 | 3326.67 | 19960 | 0.0639 | 0.9415 | 0.9613 | 0.9785 | 0.9287 | 0.9938 | 0.9105 | 0.9725 | | 0.0013 | 3330.0 | 19980 | 0.0615 | 0.9412 | 0.9615 | 0.9784 | 0.9297 | 0.9933 | 0.9100 | 0.9723 | | 0.0013 | 3333.33 | 20000 | 0.0567 | 0.9417 | 0.9627 | 0.9786 | 0.9327 | 0.9926 | 0.9109 | 0.9725 | | 0.0102 | 3336.67 | 20020 | 0.0629 | 0.9413 | 0.9613 | 0.9785 | 0.9290 | 0.9937 | 0.9102 | 0.9724 | | 0.0069 | 3340.0 | 20040 | 0.0651 | 0.9408 | 0.9608 | 0.9783 | 0.9279 | 0.9938 | 0.9095 | 0.9722 | | 0.1119 | 3343.33 | 20060 | 0.0632 | 0.9413 | 0.9608 | 0.9785 | 0.9275 | 0.9941 | 0.9101 | 0.9725 | | 0.022 | 3346.67 | 20080 | 0.0699 | 0.9410 | 0.9606 | 0.9783 | 0.9270 | 0.9941 | 0.9096 | 0.9723 | | 0.007 | 3350.0 | 20100 | 0.0645 | 0.9411 | 0.9614 | 0.9783 | 0.9294 | 0.9934 | 0.9098 | 0.9723 | | 0.1118 | 3353.33 | 20120 | 0.0588 | 0.9418 | 0.9624 | 0.9786 | 0.9318 | 0.9930 | 0.9110 | 0.9726 | | 0.1118 | 3356.67 | 20140 | 0.0601 | 0.9416 | 0.9619 | 0.9785 | 0.9305 | 0.9933 | 0.9106 | 0.9725 | | 0.0069 | 3360.0 | 20160 | 0.0653 | 0.9411 | 0.9611 | 0.9784 | 0.9285 | 0.9937 | 0.9099 | 0.9724 | | 0.0264 | 3363.33 | 20180 | 0.0591 | 0.9421 | 0.9614 | 0.9787 | 0.9286 | 0.9942 | 0.9113 | 0.9728 | | 0.0013 | 3366.67 | 20200 | 0.0570 | 0.9426 | 0.9627 | 0.9789 | 0.9321 | 0.9933 | 0.9123 | 0.9730 | | 0.0102 | 3370.0 | 20220 | 0.0611 | 0.9415 | 0.9616 | 0.9785 | 0.9296 | 0.9935 | 0.9105 | 0.9725 | | 0.0013 | 3373.33 | 20240 | 0.0535 | 0.9433 | 0.9637 | 0.9791 | 0.9345 | 0.9929 | 0.9133 | 0.9733 | | 0.112 | 3376.67 | 20260 | 0.0618 | 0.9420 | 0.9613 | 0.9787 | 0.9284 | 0.9942 | 0.9111 | 0.9728 | | 0.0214 | 3380.0 | 20280 | 0.0658 | 0.9411 | 0.9610 | 0.9784 | 0.9283 | 0.9938 | 0.9098 | 0.9723 | | 0.0132 | 3383.33 | 20300 | 0.0681 | 0.9410 | 0.9605 | 0.9784 | 0.9268 | 0.9942 | 0.9097 | 0.9723 | | 0.0216 | 3386.67 | 20320 | 0.0778 | 0.9407 | 0.9600 | 0.9783 | 0.9254 | 0.9945 | 0.9092 | 0.9722 | | 0.0013 | 3390.0 | 20340 | 0.0616 | 0.9415 | 0.9615 | 0.9785 | 0.9294 | 0.9936 | 0.9105 | 0.9725 | | 0.1123 | 3393.33 | 20360 | 0.0609 | 0.9419 | 0.9613 | 0.9787 | 0.9286 | 0.9941 | 0.9111 | 0.9727 | | 0.0069 | 3396.67 | 20380 | 0.0577 | 0.9424 | 0.9623 | 0.9788 | 0.9310 | 0.9935 | 0.9118 | 0.9729 | | 0.0133 | 3400.0 | 20400 | 0.0610 | 0.9414 | 0.9615 | 0.9785 | 0.9293 | 0.9936 | 0.9104 | 0.9725 | | 0.0104 | 3403.33 | 20420 | 0.0587 | 0.9419 | 0.9622 | 0.9787 | 0.9311 | 0.9933 | 0.9112 | 0.9727 | | 0.1173 | 3406.67 | 20440 | 0.0629 | 0.9413 | 0.9609 | 0.9785 | 0.9276 | 0.9941 | 0.9102 | 0.9725 | | 0.1152 | 3410.0 | 20460 | 0.0618 | 0.9413 | 0.9616 | 0.9784 | 0.9297 | 0.9934 | 0.9102 | 0.9724 | | 0.0013 | 3413.33 | 20480 | 0.0623 | 0.9419 | 0.9616 | 0.9787 | 0.9295 | 0.9938 | 0.9111 | 0.9727 | | 0.007 | 3416.67 | 20500 | 0.0620 | 0.9425 | 0.9615 | 0.9789 | 0.9287 | 0.9944 | 0.9120 | 0.9730 | | 0.0013 | 3420.0 | 20520 | 0.0638 | 0.9417 | 0.9614 | 0.9786 | 0.9290 | 0.9939 | 0.9108 | 0.9726 | | 0.0214 | 3423.33 | 20540 | 0.0683 | 0.9411 | 0.9609 | 0.9784 | 0.9277 | 0.9940 | 0.9099 | 0.9724 | | 0.0104 | 3426.67 | 20560 | 0.0658 | 0.9410 | 0.9611 | 0.9783 | 0.9285 | 0.9937 | 0.9098 | 0.9723 | | 0.0267 | 3430.0 | 20580 | 0.0651 | 0.9415 | 0.9614 | 0.9785 | 0.9292 | 0.9937 | 0.9105 | 0.9725 | | 0.0107 | 3433.33 | 20600 | 0.0587 | 0.9425 | 0.9632 | 0.9789 | 0.9335 | 0.9928 | 0.9121 | 0.9729 | | 0.0013 | 3436.67 | 20620 | 0.0568 | 0.9428 | 0.9623 | 0.9790 | 0.9307 | 0.9938 | 0.9124 | 0.9731 | | 0.1127 | 3440.0 | 20640 | 0.0620 | 0.9425 | 0.9620 | 0.9789 | 0.9300 | 0.9939 | 0.9119 | 0.9730 | | 0.0013 | 3443.33 | 20660 | 0.0564 | 0.9432 | 0.9636 | 0.9791 | 0.9343 | 0.9929 | 0.9132 | 0.9732 | | 0.1123 | 3446.67 | 20680 | 0.0631 | 0.9410 | 0.9610 | 0.9783 | 0.9283 | 0.9937 | 0.9097 | 0.9723 | | 0.0213 | 3450.0 | 20700 | 0.0615 | 0.9415 | 0.9613 | 0.9785 | 0.9288 | 0.9938 | 0.9105 | 0.9725 | | 0.1119 | 3453.33 | 20720 | 0.0572 | 0.9428 | 0.9628 | 0.9790 | 0.9324 | 0.9933 | 0.9125 | 0.9731 | | 0.0264 | 3456.67 | 20740 | 0.0731 | 0.9410 | 0.9603 | 0.9784 | 0.9260 | 0.9945 | 0.9097 | 0.9724 | | 0.0069 | 3460.0 | 20760 | 0.0635 | 0.9412 | 0.9613 | 0.9784 | 0.9290 | 0.9936 | 0.9100 | 0.9724 | | 0.0264 | 3463.33 | 20780 | 0.0727 | 0.9410 | 0.9603 | 0.9784 | 0.9262 | 0.9944 | 0.9097 | 0.9724 | | 0.0215 | 3466.67 | 20800 | 0.0605 | 0.9419 | 0.9612 | 0.9787 | 0.9283 | 0.9942 | 0.9110 | 0.9727 | | 0.0264 | 3470.0 | 20820 | 0.0591 | 0.9426 | 0.9623 | 0.9789 | 0.9309 | 0.9937 | 0.9122 | 0.9730 | | 0.0101 | 3473.33 | 20840 | 0.0618 | 0.9410 | 0.9616 | 0.9783 | 0.9302 | 0.9931 | 0.9098 | 0.9722 | | 0.0213 | 3476.67 | 20860 | 0.0578 | 0.9418 | 0.9624 | 0.9786 | 0.9318 | 0.9930 | 0.9111 | 0.9726 | | 0.0013 | 3480.0 | 20880 | 0.0627 | 0.9412 | 0.9618 | 0.9784 | 0.9304 | 0.9931 | 0.9101 | 0.9723 | | 0.0212 | 3483.33 | 20900 | 0.0708 | 0.9408 | 0.9607 | 0.9783 | 0.9274 | 0.9939 | 0.9095 | 0.9722 | | 0.0213 | 3486.67 | 20920 | 0.0636 | 0.9415 | 0.9613 | 0.9785 | 0.9289 | 0.9938 | 0.9104 | 0.9725 | | 0.1116 | 3490.0 | 20940 | 0.0595 | 0.9420 | 0.9620 | 0.9787 | 0.9304 | 0.9936 | 0.9113 | 0.9727 | | 0.0212 | 3493.33 | 20960 | 0.0614 | 0.9417 | 0.9616 | 0.9786 | 0.9296 | 0.9937 | 0.9108 | 0.9726 | | 0.1254 | 3496.67 | 20980 | 0.0556 | 0.9435 | 0.9643 | 0.9792 | 0.9361 | 0.9925 | 0.9137 | 0.9734 | | 0.0212 | 3500.0 | 21000 | 0.0636 | 0.9414 | 0.9614 | 0.9785 | 0.9291 | 0.9937 | 0.9104 | 0.9725 | | 0.0264 | 3503.33 | 21020 | 0.0640 | 0.9416 | 0.9610 | 0.9786 | 0.9280 | 0.9941 | 0.9106 | 0.9726 | | 0.0013 | 3506.67 | 21040 | 0.0547 | 0.9432 | 0.9628 | 0.9792 | 0.9319 | 0.9937 | 0.9132 | 0.9733 | | 0.0264 | 3510.0 | 21060 | 0.0643 | 0.9415 | 0.9610 | 0.9786 | 0.9280 | 0.9941 | 0.9105 | 0.9726 | | 0.0101 | 3513.33 | 21080 | 0.0624 | 0.9412 | 0.9614 | 0.9784 | 0.9294 | 0.9935 | 0.9101 | 0.9724 | | 0.0212 | 3516.67 | 21100 | 0.0639 | 0.9412 | 0.9615 | 0.9784 | 0.9296 | 0.9934 | 0.9101 | 0.9724 | | 0.0013 | 3520.0 | 21120 | 0.0650 | 0.9410 | 0.9612 | 0.9783 | 0.9288 | 0.9936 | 0.9097 | 0.9723 | | 0.0069 | 3523.33 | 21140 | 0.0633 | 0.9417 | 0.9611 | 0.9786 | 0.9281 | 0.9942 | 0.9108 | 0.9727 | | 0.007 | 3526.67 | 21160 | 0.0578 | 0.9423 | 0.9620 | 0.9788 | 0.9303 | 0.9937 | 0.9117 | 0.9729 | | 0.0013 | 3530.0 | 21180 | 0.0610 | 0.9414 | 0.9617 | 0.9785 | 0.9299 | 0.9934 | 0.9104 | 0.9725 | | 0.0266 | 3533.33 | 21200 | 0.0613 | 0.9419 | 0.9613 | 0.9787 | 0.9285 | 0.9941 | 0.9111 | 0.9728 | | 0.0212 | 3536.67 | 21220 | 0.0646 | 0.9411 | 0.9613 | 0.9784 | 0.9291 | 0.9935 | 0.9099 | 0.9723 | | 0.01 | 3540.0 | 21240 | 0.0591 | 0.9421 | 0.9620 | 0.9787 | 0.9304 | 0.9936 | 0.9115 | 0.9728 | | 0.113 | 3543.33 | 21260 | 0.0590 | 0.9421 | 0.9620 | 0.9787 | 0.9303 | 0.9936 | 0.9114 | 0.9728 | | 0.0013 | 3546.67 | 21280 | 0.0584 | 0.9429 | 0.9624 | 0.9790 | 0.9310 | 0.9938 | 0.9126 | 0.9732 | | 0.0105 | 3550.0 | 21300 | 0.0629 | 0.9412 | 0.9613 | 0.9784 | 0.9292 | 0.9935 | 0.9100 | 0.9724 | | 0.0212 | 3553.33 | 21320 | 0.0663 | 0.9411 | 0.9611 | 0.9784 | 0.9285 | 0.9937 | 0.9098 | 0.9723 | | 0.1184 | 3556.67 | 21340 | 0.0591 | 0.9420 | 0.9622 | 0.9787 | 0.9310 | 0.9934 | 0.9113 | 0.9727 | | 0.0013 | 3560.0 | 21360 | 0.0609 | 0.9418 | 0.9617 | 0.9786 | 0.9298 | 0.9936 | 0.9110 | 0.9727 | | 0.1122 | 3563.33 | 21380 | 0.0533 | 0.9439 | 0.9639 | 0.9794 | 0.9348 | 0.9931 | 0.9143 | 0.9736 | | 0.0013 | 3566.67 | 21400 | 0.0533 | 0.9441 | 0.9645 | 0.9794 | 0.9362 | 0.9927 | 0.9146 | 0.9736 | | 0.0265 | 3570.0 | 21420 | 0.0650 | 0.9408 | 0.9607 | 0.9783 | 0.9275 | 0.9939 | 0.9094 | 0.9722 | | 0.0101 | 3573.33 | 21440 | 0.0611 | 0.9422 | 0.9622 | 0.9788 | 0.9309 | 0.9935 | 0.9116 | 0.9728 | | 0.0264 | 3576.67 | 21460 | 0.0586 | 0.9420 | 0.9619 | 0.9787 | 0.9301 | 0.9937 | 0.9113 | 0.9728 | | 0.0089 | 3580.0 | 21480 | 0.0564 | 0.9429 | 0.9626 | 0.9790 | 0.9316 | 0.9936 | 0.9127 | 0.9732 | | 0.0071 | 3583.33 | 21500 | 0.0625 | 0.9418 | 0.9615 | 0.9786 | 0.9291 | 0.9939 | 0.9109 | 0.9727 | | 0.1116 | 3586.67 | 21520 | 0.0631 | 0.9416 | 0.9613 | 0.9786 | 0.9287 | 0.9939 | 0.9106 | 0.9726 | | 0.0101 | 3590.0 | 21540 | 0.0599 | 0.9422 | 0.9620 | 0.9788 | 0.9304 | 0.9936 | 0.9115 | 0.9728 | | 0.0068 | 3593.33 | 21560 | 0.0660 | 0.9409 | 0.9611 | 0.9783 | 0.9286 | 0.9936 | 0.9096 | 0.9722 | | 0.0212 | 3596.67 | 21580 | 0.0595 | 0.9421 | 0.9620 | 0.9787 | 0.9304 | 0.9936 | 0.9114 | 0.9728 | | 0.0212 | 3600.0 | 21600 | 0.0584 | 0.9425 | 0.9623 | 0.9789 | 0.9309 | 0.9936 | 0.9120 | 0.9730 | | 0.0264 | 3603.33 | 21620 | 0.0697 | 0.9417 | 0.9605 | 0.9786 | 0.9264 | 0.9947 | 0.9106 | 0.9727 | | 0.0014 | 3606.67 | 21640 | 0.0575 | 0.9424 | 0.9621 | 0.9788 | 0.9306 | 0.9937 | 0.9118 | 0.9729 | | 0.0068 | 3610.0 | 21660 | 0.0594 | 0.9421 | 0.9618 | 0.9787 | 0.9298 | 0.9938 | 0.9113 | 0.9728 | | 0.0015 | 3613.33 | 21680 | 0.0595 | 0.9417 | 0.9631 | 0.9785 | 0.9340 | 0.9922 | 0.9110 | 0.9725 | | 0.0263 | 3616.67 | 21700 | 0.0613 | 0.9418 | 0.9617 | 0.9786 | 0.9299 | 0.9936 | 0.9109 | 0.9726 | | 0.0069 | 3620.0 | 21720 | 0.0670 | 0.9410 | 0.9608 | 0.9783 | 0.9278 | 0.9939 | 0.9096 | 0.9723 | | 0.0216 | 3623.33 | 21740 | 0.0644 | 0.9415 | 0.9613 | 0.9785 | 0.9289 | 0.9938 | 0.9105 | 0.9725 | | 0.0068 | 3626.67 | 21760 | 0.0620 | 0.9417 | 0.9615 | 0.9786 | 0.9292 | 0.9938 | 0.9109 | 0.9726 | | 0.0212 | 3630.0 | 21780 | 0.0624 | 0.9416 | 0.9614 | 0.9786 | 0.9291 | 0.9938 | 0.9107 | 0.9726 | | 0.0215 | 3633.33 | 21800 | 0.0612 | 0.9416 | 0.9618 | 0.9785 | 0.9302 | 0.9934 | 0.9106 | 0.9725 | | 0.1175 | 3636.67 | 21820 | 0.0625 | 0.9417 | 0.9615 | 0.9786 | 0.9293 | 0.9938 | 0.9108 | 0.9726 | | 0.01 | 3640.0 | 21840 | 0.0580 | 0.9424 | 0.9622 | 0.9789 | 0.9306 | 0.9937 | 0.9119 | 0.9730 | | 0.1181 | 3643.33 | 21860 | 0.0555 | 0.9432 | 0.9630 | 0.9792 | 0.9326 | 0.9935 | 0.9132 | 0.9733 | | 0.1124 | 3646.67 | 21880 | 0.0574 | 0.9427 | 0.9628 | 0.9789 | 0.9322 | 0.9933 | 0.9123 | 0.9730 | | 0.0068 | 3650.0 | 21900 | 0.0571 | 0.9427 | 0.9629 | 0.9790 | 0.9324 | 0.9933 | 0.9124 | 0.9731 | | 0.0266 | 3653.33 | 21920 | 0.0644 | 0.9416 | 0.9612 | 0.9786 | 0.9283 | 0.9940 | 0.9106 | 0.9726 | | 0.0087 | 3656.67 | 21940 | 0.0520 | 0.9437 | 0.9637 | 0.9793 | 0.9341 | 0.9932 | 0.9140 | 0.9735 | | 0.0069 | 3660.0 | 21960 | 0.0654 | 0.9414 | 0.9608 | 0.9785 | 0.9275 | 0.9942 | 0.9102 | 0.9725 | | 0.0014 | 3663.33 | 21980 | 0.0545 | 0.9435 | 0.9635 | 0.9793 | 0.9336 | 0.9933 | 0.9137 | 0.9734 | | 0.1183 | 3666.67 | 22000 | 0.0593 | 0.9421 | 0.9613 | 0.9788 | 0.9282 | 0.9943 | 0.9114 | 0.9728 | | 0.0013 | 3670.0 | 22020 | 0.0610 | 0.9418 | 0.9616 | 0.9786 | 0.9294 | 0.9938 | 0.9110 | 0.9727 | | 0.0013 | 3673.33 | 22040 | 0.0624 | 0.9418 | 0.9616 | 0.9786 | 0.9296 | 0.9937 | 0.9110 | 0.9727 | | 0.01 | 3676.67 | 22060 | 0.0613 | 0.9417 | 0.9614 | 0.9786 | 0.9290 | 0.9939 | 0.9108 | 0.9726 | | 0.0264 | 3680.0 | 22080 | 0.0626 | 0.9417 | 0.9611 | 0.9786 | 0.9281 | 0.9942 | 0.9108 | 0.9727 | | 0.1114 | 3683.33 | 22100 | 0.0580 | 0.9423 | 0.9623 | 0.9788 | 0.9312 | 0.9935 | 0.9118 | 0.9729 | | 0.0013 | 3686.67 | 22120 | 0.0607 | 0.9419 | 0.9617 | 0.9787 | 0.9297 | 0.9937 | 0.9111 | 0.9727 | | 0.0211 | 3690.0 | 22140 | 0.0633 | 0.9416 | 0.9615 | 0.9786 | 0.9292 | 0.9937 | 0.9107 | 0.9726 | | 0.0102 | 3693.33 | 22160 | 0.0608 | 0.9422 | 0.9622 | 0.9787 | 0.9310 | 0.9934 | 0.9115 | 0.9728 | | 0.0013 | 3696.67 | 22180 | 0.0659 | 0.9412 | 0.9611 | 0.9784 | 0.9284 | 0.9938 | 0.9101 | 0.9724 | | 0.01 | 3700.0 | 22200 | 0.0622 | 0.9417 | 0.9616 | 0.9786 | 0.9295 | 0.9937 | 0.9108 | 0.9726 | | 0.0068 | 3703.33 | 22220 | 0.0671 | 0.9414 | 0.9606 | 0.9785 | 0.9269 | 0.9944 | 0.9103 | 0.9725 | | 0.023 | 3706.67 | 22240 | 0.0575 | 0.9421 | 0.9618 | 0.9788 | 0.9298 | 0.9938 | 0.9114 | 0.9728 | | 0.0265 | 3710.0 | 22260 | 0.0585 | 0.9419 | 0.9616 | 0.9787 | 0.9295 | 0.9938 | 0.9111 | 0.9727 | | 0.01 | 3713.33 | 22280 | 0.0662 | 0.9411 | 0.9610 | 0.9784 | 0.9281 | 0.9939 | 0.9099 | 0.9724 | | 0.1114 | 3716.67 | 22300 | 0.0593 | 0.9422 | 0.9618 | 0.9788 | 0.9299 | 0.9938 | 0.9116 | 0.9729 | | 0.1114 | 3720.0 | 22320 | 0.0585 | 0.9423 | 0.9623 | 0.9788 | 0.9311 | 0.9935 | 0.9117 | 0.9729 | | 0.1116 | 3723.33 | 22340 | 0.0562 | 0.9427 | 0.9626 | 0.9790 | 0.9318 | 0.9935 | 0.9124 | 0.9731 | | 0.0266 | 3726.67 | 22360 | 0.0677 | 0.9417 | 0.9609 | 0.9786 | 0.9275 | 0.9943 | 0.9107 | 0.9727 | | 0.0265 | 3730.0 | 22380 | 0.0628 | 0.9417 | 0.9613 | 0.9786 | 0.9285 | 0.9940 | 0.9107 | 0.9726 | | 0.0102 | 3733.33 | 22400 | 0.0633 | 0.9415 | 0.9610 | 0.9785 | 0.9279 | 0.9941 | 0.9105 | 0.9726 | | 0.1115 | 3736.67 | 22420 | 0.0613 | 0.9418 | 0.9613 | 0.9787 | 0.9284 | 0.9941 | 0.9110 | 0.9727 | | 0.0263 | 3740.0 | 22440 | 0.0633 | 0.9414 | 0.9613 | 0.9785 | 0.9289 | 0.9937 | 0.9103 | 0.9725 | | 0.0264 | 3743.33 | 22460 | 0.0655 | 0.9412 | 0.9608 | 0.9784 | 0.9274 | 0.9941 | 0.9100 | 0.9724 | | 0.0069 | 3746.67 | 22480 | 0.0620 | 0.9417 | 0.9617 | 0.9786 | 0.9299 | 0.9936 | 0.9108 | 0.9726 | | 0.0211 | 3750.0 | 22500 | 0.0636 | 0.9413 | 0.9612 | 0.9785 | 0.9285 | 0.9938 | 0.9102 | 0.9725 | | 0.0212 | 3753.33 | 22520 | 0.0602 | 0.9413 | 0.9620 | 0.9784 | 0.9310 | 0.9930 | 0.9102 | 0.9723 | | 0.01 | 3756.67 | 22540 | 0.0625 | 0.9421 | 0.9621 | 0.9787 | 0.9308 | 0.9934 | 0.9114 | 0.9728 | | 0.0068 | 3760.0 | 22560 | 0.0639 | 0.9413 | 0.9611 | 0.9784 | 0.9285 | 0.9938 | 0.9101 | 0.9724 | | 0.0263 | 3763.33 | 22580 | 0.0646 | 0.9416 | 0.9611 | 0.9786 | 0.9280 | 0.9942 | 0.9107 | 0.9726 | | 0.0081 | 3766.67 | 22600 | 0.0555 | 0.9426 | 0.9621 | 0.9789 | 0.9304 | 0.9939 | 0.9122 | 0.9730 | | 0.0101 | 3770.0 | 22620 | 0.0622 | 0.9416 | 0.9613 | 0.9786 | 0.9288 | 0.9938 | 0.9106 | 0.9726 | | 0.0263 | 3773.33 | 22640 | 0.0686 | 0.9417 | 0.9605 | 0.9786 | 0.9263 | 0.9947 | 0.9106 | 0.9727 | | 0.0068 | 3776.67 | 22660 | 0.0552 | 0.9430 | 0.9634 | 0.9790 | 0.9340 | 0.9929 | 0.9128 | 0.9731 | | 0.01 | 3780.0 | 22680 | 0.0595 | 0.9420 | 0.9620 | 0.9787 | 0.9305 | 0.9935 | 0.9113 | 0.9727 | | 0.0013 | 3783.33 | 22700 | 0.0545 | 0.9431 | 0.9636 | 0.9791 | 0.9344 | 0.9928 | 0.9130 | 0.9732 | | 0.0212 | 3786.67 | 22720 | 0.0677 | 0.9413 | 0.9608 | 0.9785 | 0.9276 | 0.9941 | 0.9101 | 0.9724 | | 0.1114 | 3790.0 | 22740 | 0.0598 | 0.9419 | 0.9619 | 0.9786 | 0.9304 | 0.9935 | 0.9111 | 0.9727 | | 0.0013 | 3793.33 | 22760 | 0.0571 | 0.9425 | 0.9628 | 0.9789 | 0.9325 | 0.9931 | 0.9121 | 0.9729 | | 0.0068 | 3796.67 | 22780 | 0.0703 | 0.9415 | 0.9606 | 0.9785 | 0.9267 | 0.9945 | 0.9103 | 0.9726 | | 0.0068 | 3800.0 | 22800 | 0.0614 | 0.9417 | 0.9615 | 0.9786 | 0.9292 | 0.9938 | 0.9108 | 0.9726 | | 0.1114 | 3803.33 | 22820 | 0.0592 | 0.9423 | 0.9613 | 0.9788 | 0.9282 | 0.9944 | 0.9116 | 0.9729 | | 0.1116 | 3806.67 | 22840 | 0.0582 | 0.9425 | 0.9617 | 0.9789 | 0.9291 | 0.9943 | 0.9120 | 0.9730 | | 0.007 | 3810.0 | 22860 | 0.0621 | 0.9417 | 0.9615 | 0.9786 | 0.9293 | 0.9937 | 0.9107 | 0.9726 | | 0.0068 | 3813.33 | 22880 | 0.0590 | 0.9420 | 0.9625 | 0.9787 | 0.9320 | 0.9930 | 0.9113 | 0.9727 | | 0.0265 | 3816.67 | 22900 | 0.0697 | 0.9409 | 0.9607 | 0.9783 | 0.9274 | 0.9939 | 0.9095 | 0.9723 | | 0.0263 | 3820.0 | 22920 | 0.0605 | 0.9418 | 0.9617 | 0.9786 | 0.9299 | 0.9936 | 0.9109 | 0.9726 | | 0.1114 | 3823.33 | 22940 | 0.0545 | 0.9434 | 0.9633 | 0.9792 | 0.9334 | 0.9933 | 0.9134 | 0.9734 | | 0.1114 | 3826.67 | 22960 | 0.0618 | 0.9418 | 0.9612 | 0.9787 | 0.9283 | 0.9941 | 0.9109 | 0.9727 | | 0.0211 | 3830.0 | 22980 | 0.0647 | 0.9413 | 0.9611 | 0.9784 | 0.9283 | 0.9939 | 0.9101 | 0.9724 | | 0.0228 | 3833.33 | 23000 | 0.0603 | 0.9420 | 0.9619 | 0.9787 | 0.9303 | 0.9936 | 0.9113 | 0.9728 | | 0.0263 | 3836.67 | 23020 | 0.0618 | 0.9419 | 0.9614 | 0.9787 | 0.9288 | 0.9940 | 0.9110 | 0.9727 | | 0.0211 | 3840.0 | 23040 | 0.0551 | 0.9428 | 0.9630 | 0.9790 | 0.9327 | 0.9932 | 0.9126 | 0.9731 | | 0.0211 | 3843.33 | 23060 | 0.0624 | 0.9410 | 0.9614 | 0.9783 | 0.9295 | 0.9933 | 0.9097 | 0.9723 | | 0.0103 | 3846.67 | 23080 | 0.0592 | 0.9424 | 0.9621 | 0.9789 | 0.9304 | 0.9937 | 0.9118 | 0.9729 | | 0.0263 | 3850.0 | 23100 | 0.0584 | 0.9423 | 0.9619 | 0.9788 | 0.9299 | 0.9939 | 0.9118 | 0.9729 | | 0.0211 | 3853.33 | 23120 | 0.0650 | 0.9414 | 0.9613 | 0.9785 | 0.9288 | 0.9938 | 0.9103 | 0.9725 | | 0.0067 | 3856.67 | 23140 | 0.0642 | 0.9414 | 0.9613 | 0.9785 | 0.9287 | 0.9938 | 0.9104 | 0.9725 | | 0.0221 | 3860.0 | 23160 | 0.0635 | 0.9416 | 0.9613 | 0.9786 | 0.9286 | 0.9939 | 0.9107 | 0.9726 | | 0.0099 | 3863.33 | 23180 | 0.0643 | 0.9416 | 0.9613 | 0.9786 | 0.9288 | 0.9939 | 0.9107 | 0.9726 | | 0.0068 | 3866.67 | 23200 | 0.0622 | 0.9413 | 0.9619 | 0.9784 | 0.9306 | 0.9931 | 0.9102 | 0.9724 | | 0.0228 | 3870.0 | 23220 | 0.0613 | 0.9419 | 0.9613 | 0.9787 | 0.9284 | 0.9941 | 0.9110 | 0.9727 | | 0.0277 | 3873.33 | 23240 | 0.0575 | 0.9427 | 0.9621 | 0.9790 | 0.9302 | 0.9940 | 0.9124 | 0.9731 | | 0.0013 | 3876.67 | 23260 | 0.0589 | 0.9420 | 0.9624 | 0.9787 | 0.9319 | 0.9930 | 0.9112 | 0.9727 | | 0.1115 | 3880.0 | 23280 | 0.0569 | 0.9422 | 0.9624 | 0.9788 | 0.9316 | 0.9933 | 0.9116 | 0.9728 | | 0.0014 | 3883.33 | 23300 | 0.0537 | 0.9436 | 0.9639 | 0.9793 | 0.9349 | 0.9929 | 0.9138 | 0.9734 | | 0.1115 | 3886.67 | 23320 | 0.0629 | 0.9415 | 0.9616 | 0.9785 | 0.9296 | 0.9935 | 0.9105 | 0.9725 | | 0.0013 | 3890.0 | 23340 | 0.0626 | 0.9418 | 0.9616 | 0.9786 | 0.9295 | 0.9937 | 0.9110 | 0.9727 | | 0.1113 | 3893.33 | 23360 | 0.0575 | 0.9426 | 0.9618 | 0.9789 | 0.9295 | 0.9941 | 0.9121 | 0.9731 | | 0.0013 | 3896.67 | 23380 | 0.0560 | 0.9428 | 0.9627 | 0.9790 | 0.9320 | 0.9934 | 0.9124 | 0.9731 | | 0.0086 | 3900.0 | 23400 | 0.0595 | 0.9420 | 0.9621 | 0.9787 | 0.9308 | 0.9934 | 0.9112 | 0.9727 | | 0.0262 | 3903.33 | 23420 | 0.0720 | 0.9412 | 0.9605 | 0.9784 | 0.9267 | 0.9943 | 0.9100 | 0.9724 | | 0.0099 | 3906.67 | 23440 | 0.0640 | 0.9414 | 0.9614 | 0.9785 | 0.9293 | 0.9936 | 0.9104 | 0.9725 | | 0.1117 | 3910.0 | 23460 | 0.0605 | 0.9419 | 0.9619 | 0.9786 | 0.9304 | 0.9935 | 0.9110 | 0.9727 | | 0.1112 | 3913.33 | 23480 | 0.0568 | 0.9426 | 0.9631 | 0.9789 | 0.9332 | 0.9929 | 0.9122 | 0.9730 | | 0.0099 | 3916.67 | 23500 | 0.0607 | 0.9419 | 0.9618 | 0.9786 | 0.9299 | 0.9936 | 0.9110 | 0.9727 | | 0.1112 | 3920.0 | 23520 | 0.0613 | 0.9417 | 0.9618 | 0.9786 | 0.9302 | 0.9934 | 0.9107 | 0.9726 | | 0.0265 | 3923.33 | 23540 | 0.0656 | 0.9416 | 0.9611 | 0.9786 | 0.9281 | 0.9941 | 0.9106 | 0.9726 | | 0.0129 | 3926.67 | 23560 | 0.0611 | 0.9417 | 0.9620 | 0.9786 | 0.9306 | 0.9933 | 0.9109 | 0.9726 | | 0.0099 | 3930.0 | 23580 | 0.0634 | 0.9412 | 0.9618 | 0.9784 | 0.9306 | 0.9931 | 0.9100 | 0.9723 | | 0.1113 | 3933.33 | 23600 | 0.0545 | 0.9435 | 0.9637 | 0.9792 | 0.9345 | 0.9930 | 0.9136 | 0.9734 | | 0.0013 | 3936.67 | 23620 | 0.0564 | 0.9432 | 0.9631 | 0.9791 | 0.9328 | 0.9934 | 0.9131 | 0.9733 | | 0.0067 | 3940.0 | 23640 | 0.0629 | 0.9415 | 0.9615 | 0.9785 | 0.9293 | 0.9936 | 0.9104 | 0.9725 | | 0.1112 | 3943.33 | 23660 | 0.0596 | 0.9422 | 0.9619 | 0.9788 | 0.9299 | 0.9938 | 0.9115 | 0.9728 | | 0.0214 | 3946.67 | 23680 | 0.0595 | 0.9424 | 0.9615 | 0.9789 | 0.9288 | 0.9943 | 0.9118 | 0.9730 | | 0.0013 | 3950.0 | 23700 | 0.0614 | 0.9419 | 0.9616 | 0.9787 | 0.9294 | 0.9938 | 0.9111 | 0.9727 | | 0.0067 | 3953.33 | 23720 | 0.0656 | 0.9415 | 0.9612 | 0.9785 | 0.9286 | 0.9939 | 0.9105 | 0.9726 | | 0.0014 | 3956.67 | 23740 | 0.0588 | 0.9419 | 0.9617 | 0.9787 | 0.9297 | 0.9937 | 0.9111 | 0.9727 | | 0.1112 | 3960.0 | 23760 | 0.0571 | 0.9426 | 0.9626 | 0.9789 | 0.9318 | 0.9934 | 0.9121 | 0.9730 | | 0.0262 | 3963.33 | 23780 | 0.0679 | 0.9415 | 0.9607 | 0.9786 | 0.9270 | 0.9944 | 0.9105 | 0.9726 | | 0.0099 | 3966.67 | 23800 | 0.0715 | 0.9411 | 0.9606 | 0.9784 | 0.9271 | 0.9941 | 0.9098 | 0.9724 | | 0.0013 | 3970.0 | 23820 | 0.0582 | 0.9425 | 0.9623 | 0.9789 | 0.9310 | 0.9936 | 0.9121 | 0.9730 | | 0.0107 | 3973.33 | 23840 | 0.0591 | 0.9422 | 0.9626 | 0.9787 | 0.9322 | 0.9930 | 0.9116 | 0.9728 | | 0.0098 | 3976.67 | 23860 | 0.0735 | 0.9410 | 0.9606 | 0.9784 | 0.9272 | 0.9941 | 0.9097 | 0.9723 | | 0.0013 | 3980.0 | 23880 | 0.0589 | 0.9420 | 0.9622 | 0.9787 | 0.9310 | 0.9934 | 0.9113 | 0.9727 | | 0.0013 | 3983.33 | 23900 | 0.0576 | 0.9424 | 0.9626 | 0.9788 | 0.9319 | 0.9932 | 0.9118 | 0.9729 | | 0.0013 | 3986.67 | 23920 | 0.0607 | 0.9417 | 0.9621 | 0.9786 | 0.9311 | 0.9932 | 0.9109 | 0.9726 | | 0.0264 | 3990.0 | 23940 | 0.0635 | 0.9424 | 0.9610 | 0.9789 | 0.9272 | 0.9948 | 0.9117 | 0.9730 | | 0.0128 | 3993.33 | 23960 | 0.0678 | 0.9413 | 0.9609 | 0.9784 | 0.9278 | 0.9940 | 0.9101 | 0.9724 | | 0.021 | 3996.67 | 23980 | 0.0658 | 0.9411 | 0.9614 | 0.9783 | 0.9295 | 0.9933 | 0.9098 | 0.9723 | | 0.0013 | 4000.0 | 24000 | 0.0570 | 0.9424 | 0.9629 | 0.9788 | 0.9328 | 0.9930 | 0.9119 | 0.9729 | | 0.0067 | 4003.33 | 24020 | 0.0628 | 0.9420 | 0.9614 | 0.9787 | 0.9289 | 0.9940 | 0.9112 | 0.9728 | | 0.0018 | 4006.67 | 24040 | 0.0536 | 0.9445 | 0.9651 | 0.9796 | 0.9379 | 0.9924 | 0.9153 | 0.9738 | | 0.0068 | 4010.0 | 24060 | 0.0611 | 0.9418 | 0.9616 | 0.9786 | 0.9294 | 0.9938 | 0.9110 | 0.9727 | | 0.0067 | 4013.33 | 24080 | 0.0609 | 0.9419 | 0.9620 | 0.9787 | 0.9306 | 0.9935 | 0.9112 | 0.9727 | | 0.1112 | 4016.67 | 24100 | 0.0590 | 0.9421 | 0.9621 | 0.9787 | 0.9307 | 0.9935 | 0.9114 | 0.9728 | | 0.0211 | 4020.0 | 24120 | 0.0601 | 0.9419 | 0.9618 | 0.9787 | 0.9299 | 0.9937 | 0.9112 | 0.9727 | | 0.0211 | 4023.33 | 24140 | 0.0675 | 0.9411 | 0.9611 | 0.9784 | 0.9285 | 0.9937 | 0.9098 | 0.9723 | | 0.0262 | 4026.67 | 24160 | 0.0579 | 0.9427 | 0.9623 | 0.9790 | 0.9308 | 0.9938 | 0.9124 | 0.9731 | | 0.0013 | 4030.0 | 24180 | 0.0616 | 0.9419 | 0.9619 | 0.9787 | 0.9301 | 0.9936 | 0.9111 | 0.9727 | | 0.1111 | 4033.33 | 24200 | 0.0547 | 0.9431 | 0.9635 | 0.9791 | 0.9341 | 0.9929 | 0.9130 | 0.9732 | | 0.0068 | 4036.67 | 24220 | 0.0640 | 0.9415 | 0.9613 | 0.9785 | 0.9287 | 0.9938 | 0.9105 | 0.9725 | | 0.1111 | 4040.0 | 24240 | 0.0603 | 0.9419 | 0.9617 | 0.9787 | 0.9298 | 0.9937 | 0.9111 | 0.9727 | | 0.1111 | 4043.33 | 24260 | 0.0549 | 0.9434 | 0.9636 | 0.9792 | 0.9343 | 0.9930 | 0.9134 | 0.9733 | | 0.0262 | 4046.67 | 24280 | 0.0634 | 0.9419 | 0.9614 | 0.9787 | 0.9287 | 0.9940 | 0.9111 | 0.9727 | | 0.0099 | 4050.0 | 24300 | 0.0597 | 0.9419 | 0.9620 | 0.9787 | 0.9305 | 0.9935 | 0.9112 | 0.9727 | | 0.0013 | 4053.33 | 24320 | 0.0550 | 0.9431 | 0.9633 | 0.9791 | 0.9335 | 0.9931 | 0.9130 | 0.9732 | | 0.0213 | 4056.67 | 24340 | 0.0642 | 0.9417 | 0.9613 | 0.9786 | 0.9286 | 0.9940 | 0.9107 | 0.9726 | | 0.1112 | 4060.0 | 24360 | 0.0618 | 0.9419 | 0.9617 | 0.9787 | 0.9295 | 0.9938 | 0.9111 | 0.9727 | | 0.0211 | 4063.33 | 24380 | 0.0657 | 0.9413 | 0.9609 | 0.9785 | 0.9276 | 0.9941 | 0.9101 | 0.9724 | | 0.0013 | 4066.67 | 24400 | 0.0636 | 0.9412 | 0.9616 | 0.9784 | 0.9299 | 0.9933 | 0.9101 | 0.9723 | | 0.0013 | 4070.0 | 24420 | 0.0600 | 0.9419 | 0.9620 | 0.9786 | 0.9305 | 0.9934 | 0.9111 | 0.9727 | | 0.1111 | 4073.33 | 24440 | 0.0595 | 0.9426 | 0.9623 | 0.9789 | 0.9309 | 0.9937 | 0.9122 | 0.9730 | | 0.1162 | 4076.67 | 24460 | 0.0522 | 0.9438 | 0.9636 | 0.9794 | 0.9338 | 0.9934 | 0.9141 | 0.9736 | | 0.1112 | 4080.0 | 24480 | 0.0575 | 0.9422 | 0.9623 | 0.9788 | 0.9312 | 0.9934 | 0.9116 | 0.9728 | | 0.021 | 4083.33 | 24500 | 0.0651 | 0.9411 | 0.9613 | 0.9784 | 0.9289 | 0.9936 | 0.9100 | 0.9723 | | 0.021 | 4086.67 | 24520 | 0.0585 | 0.9421 | 0.9623 | 0.9787 | 0.9312 | 0.9934 | 0.9115 | 0.9728 | | 0.0098 | 4090.0 | 24540 | 0.0602 | 0.9418 | 0.9622 | 0.9786 | 0.9311 | 0.9932 | 0.9109 | 0.9726 | | 0.021 | 4093.33 | 24560 | 0.0668 | 0.9411 | 0.9611 | 0.9784 | 0.9284 | 0.9938 | 0.9099 | 0.9724 | | 0.0081 | 4096.67 | 24580 | 0.0527 | 0.9437 | 0.9638 | 0.9793 | 0.9346 | 0.9931 | 0.9140 | 0.9735 | | 0.0013 | 4100.0 | 24600 | 0.0642 | 0.9426 | 0.9623 | 0.9789 | 0.9310 | 0.9937 | 0.9122 | 0.9730 | | 0.0263 | 4103.33 | 24620 | 0.0634 | 0.9416 | 0.9613 | 0.9786 | 0.9287 | 0.9939 | 0.9106 | 0.9726 | | 0.021 | 4106.67 | 24640 | 0.0679 | 0.9412 | 0.9608 | 0.9784 | 0.9275 | 0.9941 | 0.9100 | 0.9724 | | 0.0262 | 4110.0 | 24660 | 0.0624 | 0.9419 | 0.9617 | 0.9787 | 0.9296 | 0.9937 | 0.9111 | 0.9727 | | 0.0072 | 4113.33 | 24680 | 0.0593 | 0.9422 | 0.9626 | 0.9787 | 0.9321 | 0.9931 | 0.9115 | 0.9728 | | 0.0104 | 4116.67 | 24700 | 0.0613 | 0.9416 | 0.9616 | 0.9786 | 0.9297 | 0.9936 | 0.9107 | 0.9726 | | 0.0098 | 4120.0 | 24720 | 0.0588 | 0.9420 | 0.9620 | 0.9787 | 0.9306 | 0.9935 | 0.9112 | 0.9727 | | 0.0067 | 4123.33 | 24740 | 0.0573 | 0.9424 | 0.9634 | 0.9788 | 0.9342 | 0.9925 | 0.9120 | 0.9728 | | 0.0261 | 4126.67 | 24760 | 0.0650 | 0.9414 | 0.9610 | 0.9785 | 0.9281 | 0.9940 | 0.9103 | 0.9725 | | 0.0067 | 4130.0 | 24780 | 0.0592 | 0.9422 | 0.9619 | 0.9788 | 0.9299 | 0.9938 | 0.9116 | 0.9729 | | 0.0099 | 4133.33 | 24800 | 0.0634 | 0.9416 | 0.9616 | 0.9785 | 0.9295 | 0.9936 | 0.9106 | 0.9725 | | 0.1265 | 4136.67 | 24820 | 0.0574 | 0.9430 | 0.9630 | 0.9790 | 0.9328 | 0.9933 | 0.9128 | 0.9731 | | 0.0067 | 4140.0 | 24840 | 0.0584 | 0.9426 | 0.9625 | 0.9789 | 0.9316 | 0.9935 | 0.9122 | 0.9730 | | 0.021 | 4143.33 | 24860 | 0.0690 | 0.9415 | 0.9606 | 0.9786 | 0.9266 | 0.9945 | 0.9104 | 0.9726 | | 0.021 | 4146.67 | 24880 | 0.0599 | 0.9420 | 0.9621 | 0.9787 | 0.9307 | 0.9934 | 0.9113 | 0.9727 | | 0.0068 | 4150.0 | 24900 | 0.0593 | 0.9423 | 0.9618 | 0.9788 | 0.9298 | 0.9939 | 0.9116 | 0.9729 | | 0.0067 | 4153.33 | 24920 | 0.0587 | 0.9422 | 0.9623 | 0.9788 | 0.9313 | 0.9934 | 0.9116 | 0.9728 | | 0.0262 | 4156.67 | 24940 | 0.0625 | 0.9418 | 0.9612 | 0.9787 | 0.9283 | 0.9941 | 0.9109 | 0.9727 | | 0.0067 | 4160.0 | 24960 | 0.0584 | 0.9424 | 0.9626 | 0.9788 | 0.9319 | 0.9932 | 0.9119 | 0.9729 | | 0.111 | 4163.33 | 24980 | 0.0529 | 0.9435 | 0.9638 | 0.9792 | 0.9348 | 0.9929 | 0.9137 | 0.9734 | | 0.0098 | 4166.67 | 25000 | 0.0608 | 0.9418 | 0.9616 | 0.9786 | 0.9294 | 0.9938 | 0.9110 | 0.9727 | | 0.0013 | 4170.0 | 25020 | 0.0587 | 0.9423 | 0.9623 | 0.9788 | 0.9311 | 0.9935 | 0.9117 | 0.9729 | | 0.111 | 4173.33 | 25040 | 0.0585 | 0.9423 | 0.9626 | 0.9788 | 0.9320 | 0.9932 | 0.9118 | 0.9728 | | 0.0068 | 4176.67 | 25060 | 0.0624 | 0.9417 | 0.9617 | 0.9786 | 0.9300 | 0.9935 | 0.9108 | 0.9726 | | 0.0067 | 4180.0 | 25080 | 0.0602 | 0.9421 | 0.9619 | 0.9787 | 0.9302 | 0.9936 | 0.9114 | 0.9728 | | 0.0098 | 4183.33 | 25100 | 0.0660 | 0.9411 | 0.9613 | 0.9784 | 0.9290 | 0.9936 | 0.9099 | 0.9723 | | 0.0091 | 4186.67 | 25120 | 0.0655 | 0.9412 | 0.9610 | 0.9784 | 0.9282 | 0.9939 | 0.9101 | 0.9724 | | 0.1111 | 4190.0 | 25140 | 0.0593 | 0.9420 | 0.9622 | 0.9787 | 0.9310 | 0.9934 | 0.9113 | 0.9727 | | 0.111 | 4193.33 | 25160 | 0.0586 | 0.9421 | 0.9621 | 0.9787 | 0.9308 | 0.9934 | 0.9114 | 0.9727 | | 0.0262 | 4196.67 | 25180 | 0.0593 | 0.9420 | 0.9617 | 0.9787 | 0.9296 | 0.9938 | 0.9112 | 0.9728 | | 0.021 | 4200.0 | 25200 | 0.0620 | 0.9417 | 0.9617 | 0.9786 | 0.9297 | 0.9936 | 0.9108 | 0.9726 | | 0.0013 | 4203.33 | 25220 | 0.0541 | 0.9433 | 0.9635 | 0.9792 | 0.9341 | 0.9930 | 0.9133 | 0.9733 | | 0.1128 | 4206.67 | 25240 | 0.0593 | 0.9418 | 0.9618 | 0.9786 | 0.9301 | 0.9936 | 0.9110 | 0.9727 | | 0.0211 | 4210.0 | 25260 | 0.0641 | 0.9414 | 0.9612 | 0.9785 | 0.9285 | 0.9939 | 0.9103 | 0.9725 | | 0.0098 | 4213.33 | 25280 | 0.0647 | 0.9412 | 0.9614 | 0.9784 | 0.9292 | 0.9936 | 0.9101 | 0.9724 | | 0.021 | 4216.67 | 25300 | 0.0600 | 0.9420 | 0.9621 | 0.9787 | 0.9307 | 0.9934 | 0.9113 | 0.9727 | | 0.021 | 4220.0 | 25320 | 0.0608 | 0.9420 | 0.9620 | 0.9787 | 0.9305 | 0.9935 | 0.9113 | 0.9727 | | 0.017 | 4223.33 | 25340 | 0.0705 | 0.9417 | 0.9612 | 0.9786 | 0.9283 | 0.9941 | 0.9108 | 0.9727 | | 0.0264 | 4226.67 | 25360 | 0.0618 | 0.9423 | 0.9618 | 0.9788 | 0.9295 | 0.9940 | 0.9117 | 0.9729 | | 0.0067 | 4230.0 | 25380 | 0.0595 | 0.9426 | 0.9623 | 0.9789 | 0.9309 | 0.9937 | 0.9121 | 0.9730 | | 0.0013 | 4233.33 | 25400 | 0.0617 | 0.9418 | 0.9619 | 0.9786 | 0.9304 | 0.9935 | 0.9110 | 0.9726 | | 0.0013 | 4236.67 | 25420 | 0.0580 | 0.9428 | 0.9627 | 0.9790 | 0.9320 | 0.9934 | 0.9125 | 0.9731 | | 0.111 | 4240.0 | 25440 | 0.0604 | 0.9422 | 0.9618 | 0.9788 | 0.9298 | 0.9938 | 0.9115 | 0.9729 | | 0.1113 | 4243.33 | 25460 | 0.0582 | 0.9425 | 0.9619 | 0.9789 | 0.9299 | 0.9939 | 0.9119 | 0.9730 | | 0.0098 | 4246.67 | 25480 | 0.0526 | 0.9442 | 0.9647 | 0.9795 | 0.9369 | 0.9926 | 0.9147 | 0.9737 | | 0.0067 | 4250.0 | 25500 | 0.0602 | 0.9421 | 0.9621 | 0.9787 | 0.9306 | 0.9936 | 0.9115 | 0.9728 | | 0.0212 | 4253.33 | 25520 | 0.0601 | 0.9419 | 0.9618 | 0.9787 | 0.9301 | 0.9936 | 0.9111 | 0.9727 | | 0.0274 | 4256.67 | 25540 | 0.0612 | 0.9417 | 0.9621 | 0.9786 | 0.9309 | 0.9932 | 0.9108 | 0.9725 | | 0.0067 | 4260.0 | 25560 | 0.0600 | 0.9420 | 0.9619 | 0.9787 | 0.9301 | 0.9936 | 0.9113 | 0.9727 | | 0.0067 | 4263.33 | 25580 | 0.0601 | 0.9420 | 0.9619 | 0.9787 | 0.9300 | 0.9937 | 0.9112 | 0.9727 | | 0.0067 | 4266.67 | 25600 | 0.0613 | 0.9421 | 0.9617 | 0.9787 | 0.9297 | 0.9938 | 0.9113 | 0.9728 | | 0.0012 | 4270.0 | 25620 | 0.0603 | 0.9421 | 0.9623 | 0.9787 | 0.9313 | 0.9933 | 0.9114 | 0.9728 | | 0.0067 | 4273.33 | 25640 | 0.0634 | 0.9416 | 0.9618 | 0.9786 | 0.9301 | 0.9934 | 0.9107 | 0.9726 | | 0.0099 | 4276.67 | 25660 | 0.0558 | 0.9430 | 0.9626 | 0.9791 | 0.9316 | 0.9937 | 0.9128 | 0.9732 | | 0.0013 | 4280.0 | 25680 | 0.0610 | 0.9418 | 0.9618 | 0.9786 | 0.9301 | 0.9935 | 0.9109 | 0.9726 | | 0.0262 | 4283.33 | 25700 | 0.0608 | 0.9422 | 0.9615 | 0.9788 | 0.9288 | 0.9942 | 0.9115 | 0.9729 | | 0.0067 | 4286.67 | 25720 | 0.0639 | 0.9412 | 0.9617 | 0.9784 | 0.9302 | 0.9932 | 0.9100 | 0.9723 | | 0.0013 | 4290.0 | 25740 | 0.0573 | 0.9425 | 0.9623 | 0.9789 | 0.9309 | 0.9936 | 0.9120 | 0.9730 | | 0.111 | 4293.33 | 25760 | 0.0529 | 0.9440 | 0.9639 | 0.9794 | 0.9346 | 0.9932 | 0.9143 | 0.9736 | | 0.0209 | 4296.67 | 25780 | 0.0630 | 0.9420 | 0.9613 | 0.9787 | 0.9285 | 0.9942 | 0.9113 | 0.9728 | | 0.111 | 4300.0 | 25800 | 0.0609 | 0.9421 | 0.9620 | 0.9787 | 0.9303 | 0.9936 | 0.9114 | 0.9728 | | 0.0215 | 4303.33 | 25820 | 0.0586 | 0.9423 | 0.9622 | 0.9788 | 0.9308 | 0.9936 | 0.9118 | 0.9729 | | 0.1109 | 4306.67 | 25840 | 0.0556 | 0.9428 | 0.9631 | 0.9790 | 0.9332 | 0.9930 | 0.9125 | 0.9730 | | 0.0013 | 4310.0 | 25860 | 0.0610 | 0.9419 | 0.9619 | 0.9787 | 0.9302 | 0.9935 | 0.9111 | 0.9727 | | 0.0013 | 4313.33 | 25880 | 0.0572 | 0.9424 | 0.9621 | 0.9788 | 0.9305 | 0.9937 | 0.9118 | 0.9729 | | 0.0067 | 4316.67 | 25900 | 0.0586 | 0.9425 | 0.9623 | 0.9789 | 0.9311 | 0.9936 | 0.9121 | 0.9730 | | 0.0261 | 4320.0 | 25920 | 0.0615 | 0.9418 | 0.9618 | 0.9786 | 0.9302 | 0.9935 | 0.9109 | 0.9726 | | 0.0012 | 4323.33 | 25940 | 0.0621 | 0.9412 | 0.9618 | 0.9784 | 0.9306 | 0.9931 | 0.9101 | 0.9723 | | 0.0067 | 4326.67 | 25960 | 0.0554 | 0.9431 | 0.9635 | 0.9791 | 0.9343 | 0.9928 | 0.9130 | 0.9732 | | 0.0212 | 4330.0 | 25980 | 0.0617 | 0.9420 | 0.9617 | 0.9787 | 0.9296 | 0.9938 | 0.9112 | 0.9728 | | 0.0261 | 4333.33 | 26000 | 0.0636 | 0.9415 | 0.9613 | 0.9785 | 0.9288 | 0.9938 | 0.9104 | 0.9725 | | 0.0069 | 4336.67 | 26020 | 0.0658 | 0.9413 | 0.9610 | 0.9785 | 0.9281 | 0.9940 | 0.9102 | 0.9725 | | 0.1114 | 4340.0 | 26040 | 0.0641 | 0.9414 | 0.9612 | 0.9785 | 0.9284 | 0.9939 | 0.9104 | 0.9725 | | 0.021 | 4343.33 | 26060 | 0.0640 | 0.9413 | 0.9612 | 0.9785 | 0.9287 | 0.9937 | 0.9102 | 0.9724 | | 0.0212 | 4346.67 | 26080 | 0.0658 | 0.9415 | 0.9611 | 0.9785 | 0.9283 | 0.9940 | 0.9104 | 0.9725 | | 0.0261 | 4350.0 | 26100 | 0.0649 | 0.9415 | 0.9614 | 0.9785 | 0.9290 | 0.9938 | 0.9105 | 0.9725 | | 0.0014 | 4353.33 | 26120 | 0.0615 | 0.9419 | 0.9615 | 0.9787 | 0.9290 | 0.9939 | 0.9110 | 0.9727 | | 0.0067 | 4356.67 | 26140 | 0.0554 | 0.9430 | 0.9629 | 0.9791 | 0.9325 | 0.9934 | 0.9129 | 0.9732 | | 0.0263 | 4360.0 | 26160 | 0.0612 | 0.9418 | 0.9615 | 0.9786 | 0.9293 | 0.9938 | 0.9109 | 0.9726 | | 0.0013 | 4363.33 | 26180 | 0.0529 | 0.9437 | 0.9642 | 0.9793 | 0.9357 | 0.9927 | 0.9140 | 0.9735 | | 0.0067 | 4366.67 | 26200 | 0.0691 | 0.9415 | 0.9608 | 0.9786 | 0.9272 | 0.9944 | 0.9105 | 0.9726 | | 0.0014 | 4370.0 | 26220 | 0.0567 | 0.9431 | 0.9630 | 0.9791 | 0.9327 | 0.9934 | 0.9129 | 0.9732 | | 0.0261 | 4373.33 | 26240 | 0.0652 | 0.9416 | 0.9610 | 0.9786 | 0.9278 | 0.9942 | 0.9106 | 0.9726 | | 0.0012 | 4376.67 | 26260 | 0.0594 | 0.9419 | 0.9619 | 0.9786 | 0.9304 | 0.9935 | 0.9111 | 0.9727 | | 0.111 | 4380.0 | 26280 | 0.0596 | 0.9419 | 0.9615 | 0.9787 | 0.9291 | 0.9939 | 0.9111 | 0.9727 | | 0.0067 | 4383.33 | 26300 | 0.0547 | 0.9428 | 0.9640 | 0.9789 | 0.9359 | 0.9922 | 0.9127 | 0.9730 | | 0.0261 | 4386.67 | 26320 | 0.0554 | 0.9433 | 0.9630 | 0.9792 | 0.9326 | 0.9935 | 0.9132 | 0.9733 | | 0.0067 | 4390.0 | 26340 | 0.0626 | 0.9416 | 0.9615 | 0.9786 | 0.9293 | 0.9937 | 0.9106 | 0.9726 | | 0.0097 | 4393.33 | 26360 | 0.0704 | 0.9408 | 0.9609 | 0.9783 | 0.9281 | 0.9937 | 0.9094 | 0.9722 | | 0.0013 | 4396.67 | 26380 | 0.0586 | 0.9424 | 0.9620 | 0.9788 | 0.9301 | 0.9938 | 0.9118 | 0.9729 | | 0.0209 | 4400.0 | 26400 | 0.0608 | 0.9414 | 0.9620 | 0.9785 | 0.9310 | 0.9931 | 0.9104 | 0.9724 | | 0.0209 | 4403.33 | 26420 | 0.0692 | 0.9413 | 0.9608 | 0.9785 | 0.9273 | 0.9942 | 0.9102 | 0.9725 | | 0.0067 | 4406.67 | 26440 | 0.0611 | 0.9418 | 0.9618 | 0.9786 | 0.9300 | 0.9936 | 0.9110 | 0.9727 | | 0.0067 | 4410.0 | 26460 | 0.0616 | 0.9420 | 0.9620 | 0.9787 | 0.9305 | 0.9935 | 0.9112 | 0.9727 | | 0.0067 | 4413.33 | 26480 | 0.0593 | 0.9420 | 0.9626 | 0.9787 | 0.9322 | 0.9929 | 0.9112 | 0.9727 | | 0.0261 | 4416.67 | 26500 | 0.0584 | 0.9423 | 0.9620 | 0.9788 | 0.9302 | 0.9937 | 0.9116 | 0.9729 | | 0.1111 | 4420.0 | 26520 | 0.0588 | 0.9426 | 0.9627 | 0.9789 | 0.9320 | 0.9933 | 0.9122 | 0.9730 | | 0.0097 | 4423.33 | 26540 | 0.0574 | 0.9424 | 0.9624 | 0.9789 | 0.9313 | 0.9935 | 0.9119 | 0.9729 | | 0.0067 | 4426.67 | 26560 | 0.0597 | 0.9419 | 0.9623 | 0.9786 | 0.9313 | 0.9932 | 0.9111 | 0.9726 | | 0.0209 | 4430.0 | 26580 | 0.0660 | 0.9412 | 0.9612 | 0.9784 | 0.9287 | 0.9937 | 0.9100 | 0.9724 | | 0.0104 | 4433.33 | 26600 | 0.0610 | 0.9419 | 0.9610 | 0.9787 | 0.9275 | 0.9945 | 0.9111 | 0.9728 | | 0.0014 | 4436.67 | 26620 | 0.0495 | 0.9446 | 0.9646 | 0.9796 | 0.9363 | 0.9930 | 0.9154 | 0.9739 | | 0.021 | 4440.0 | 26640 | 0.0598 | 0.9418 | 0.9618 | 0.9786 | 0.9299 | 0.9936 | 0.9110 | 0.9727 | | 0.1109 | 4443.33 | 26660 | 0.0587 | 0.9423 | 0.9623 | 0.9788 | 0.9311 | 0.9935 | 0.9118 | 0.9729 | | 0.1109 | 4446.67 | 26680 | 0.0638 | 0.9415 | 0.9612 | 0.9785 | 0.9285 | 0.9939 | 0.9105 | 0.9726 | | 0.0067 | 4450.0 | 26700 | 0.0595 | 0.9422 | 0.9622 | 0.9788 | 0.9309 | 0.9935 | 0.9115 | 0.9728 | | 0.021 | 4453.33 | 26720 | 0.0633 | 0.9415 | 0.9616 | 0.9785 | 0.9296 | 0.9935 | 0.9104 | 0.9725 | | 0.0261 | 4456.67 | 26740 | 0.0607 | 0.9423 | 0.9617 | 0.9788 | 0.9294 | 0.9940 | 0.9117 | 0.9729 | | 0.021 | 4460.0 | 26760 | 0.0613 | 0.9419 | 0.9616 | 0.9787 | 0.9293 | 0.9939 | 0.9112 | 0.9727 | | 0.0013 | 4463.33 | 26780 | 0.0528 | 0.9437 | 0.9644 | 0.9793 | 0.9361 | 0.9926 | 0.9140 | 0.9735 | | 0.0262 | 4466.67 | 26800 | 0.0572 | 0.9427 | 0.9631 | 0.9789 | 0.9332 | 0.9930 | 0.9125 | 0.9730 | | 0.0261 | 4470.0 | 26820 | 0.0559 | 0.9426 | 0.9622 | 0.9789 | 0.9308 | 0.9937 | 0.9122 | 0.9730 | | 0.1109 | 4473.33 | 26840 | 0.0554 | 0.9429 | 0.9630 | 0.9790 | 0.9327 | 0.9933 | 0.9126 | 0.9731 | | 0.0012 | 4476.67 | 26860 | 0.0541 | 0.9436 | 0.9634 | 0.9793 | 0.9335 | 0.9934 | 0.9138 | 0.9735 | | 0.0013 | 4480.0 | 26880 | 0.0576 | 0.9424 | 0.9622 | 0.9789 | 0.9308 | 0.9936 | 0.9119 | 0.9729 | | 0.0066 | 4483.33 | 26900 | 0.0642 | 0.9414 | 0.9614 | 0.9785 | 0.9292 | 0.9936 | 0.9103 | 0.9724 | | 0.0097 | 4486.67 | 26920 | 0.0523 | 0.9440 | 0.9643 | 0.9794 | 0.9359 | 0.9928 | 0.9144 | 0.9736 | | 0.1109 | 4490.0 | 26940 | 0.0635 | 0.9420 | 0.9615 | 0.9787 | 0.9290 | 0.9940 | 0.9112 | 0.9728 | | 0.1109 | 4493.33 | 26960 | 0.0522 | 0.9444 | 0.9646 | 0.9795 | 0.9365 | 0.9928 | 0.9150 | 0.9738 | | 0.0013 | 4496.67 | 26980 | 0.0592 | 0.9420 | 0.9626 | 0.9787 | 0.9323 | 0.9929 | 0.9113 | 0.9727 | | 0.1108 | 4500.0 | 27000 | 0.0603 | 0.9422 | 0.9619 | 0.9788 | 0.9301 | 0.9937 | 0.9116 | 0.9728 | | 0.0261 | 4503.33 | 27020 | 0.0665 | 0.9415 | 0.9607 | 0.9785 | 0.9271 | 0.9944 | 0.9104 | 0.9726 | | 0.0013 | 4506.67 | 27040 | 0.0581 | 0.9425 | 0.9624 | 0.9789 | 0.9313 | 0.9935 | 0.9121 | 0.9730 | | 0.1108 | 4510.0 | 27060 | 0.0579 | 0.9421 | 0.9622 | 0.9787 | 0.9309 | 0.9934 | 0.9114 | 0.9728 | | 0.0261 | 4513.33 | 27080 | 0.0618 | 0.9413 | 0.9616 | 0.9784 | 0.9299 | 0.9933 | 0.9102 | 0.9724 | | 0.0266 | 4516.67 | 27100 | 0.0626 | 0.9417 | 0.9616 | 0.9786 | 0.9295 | 0.9937 | 0.9108 | 0.9726 | | 0.0013 | 4520.0 | 27120 | 0.0602 | 0.9420 | 0.9619 | 0.9787 | 0.9302 | 0.9936 | 0.9112 | 0.9727 | | 0.0013 | 4523.33 | 27140 | 0.0602 | 0.9419 | 0.9623 | 0.9786 | 0.9316 | 0.9931 | 0.9111 | 0.9726 | | 0.0209 | 4526.67 | 27160 | 0.0725 | 0.9411 | 0.9607 | 0.9784 | 0.9272 | 0.9941 | 0.9098 | 0.9724 | | 0.026 | 4530.0 | 27180 | 0.0606 | 0.9420 | 0.9617 | 0.9787 | 0.9298 | 0.9937 | 0.9112 | 0.9727 | | 0.1108 | 4533.33 | 27200 | 0.0564 | 0.9428 | 0.9620 | 0.9790 | 0.9299 | 0.9941 | 0.9125 | 0.9732 | | 0.0097 | 4536.67 | 27220 | 0.0586 | 0.9422 | 0.9623 | 0.9788 | 0.9313 | 0.9933 | 0.9116 | 0.9728 | | 0.026 | 4540.0 | 27240 | 0.0633 | 0.9418 | 0.9614 | 0.9786 | 0.9290 | 0.9939 | 0.9109 | 0.9727 | | 0.021 | 4543.33 | 27260 | 0.0656 | 0.9415 | 0.9614 | 0.9785 | 0.9290 | 0.9937 | 0.9105 | 0.9725 | | 0.0013 | 4546.67 | 27280 | 0.0576 | 0.9423 | 0.9627 | 0.9788 | 0.9323 | 0.9931 | 0.9118 | 0.9729 | | 0.0066 | 4550.0 | 27300 | 0.0612 | 0.9418 | 0.9616 | 0.9786 | 0.9296 | 0.9937 | 0.9109 | 0.9727 | | 0.0212 | 4553.33 | 27320 | 0.0667 | 0.9412 | 0.9612 | 0.9784 | 0.9287 | 0.9937 | 0.9100 | 0.9724 | | 0.026 | 4556.67 | 27340 | 0.0617 | 0.9421 | 0.9615 | 0.9788 | 0.9289 | 0.9941 | 0.9114 | 0.9728 | | 0.0209 | 4560.0 | 27360 | 0.0580 | 0.9425 | 0.9623 | 0.9789 | 0.9309 | 0.9937 | 0.9120 | 0.9730 | | 0.0097 | 4563.33 | 27380 | 0.0652 | 0.9412 | 0.9614 | 0.9784 | 0.9294 | 0.9935 | 0.9101 | 0.9724 | | 0.0097 | 4566.67 | 27400 | 0.0559 | 0.9430 | 0.9634 | 0.9790 | 0.9338 | 0.9929 | 0.9128 | 0.9731 | | 0.026 | 4570.0 | 27420 | 0.0634 | 0.9417 | 0.9615 | 0.9786 | 0.9292 | 0.9938 | 0.9108 | 0.9726 | | 0.0097 | 4573.33 | 27440 | 0.0702 | 0.9414 | 0.9607 | 0.9785 | 0.9271 | 0.9943 | 0.9102 | 0.9725 | | 0.0097 | 4576.67 | 27460 | 0.0613 | 0.9417 | 0.9618 | 0.9786 | 0.9302 | 0.9934 | 0.9108 | 0.9726 | | 0.0013 | 4580.0 | 27480 | 0.0588 | 0.9424 | 0.9621 | 0.9788 | 0.9306 | 0.9937 | 0.9118 | 0.9729 | | 0.0012 | 4583.33 | 27500 | 0.0591 | 0.9423 | 0.9620 | 0.9788 | 0.9303 | 0.9938 | 0.9118 | 0.9729 | | 0.0209 | 4586.67 | 27520 | 0.0603 | 0.9423 | 0.9618 | 0.9788 | 0.9296 | 0.9939 | 0.9116 | 0.9729 | | 0.0014 | 4590.0 | 27540 | 0.0575 | 0.9423 | 0.9625 | 0.9788 | 0.9319 | 0.9932 | 0.9117 | 0.9728 | | 0.0263 | 4593.33 | 27560 | 0.0638 | 0.9415 | 0.9617 | 0.9785 | 0.9300 | 0.9934 | 0.9105 | 0.9725 | | 0.1112 | 4596.67 | 27580 | 0.0639 | 0.9417 | 0.9611 | 0.9786 | 0.9280 | 0.9942 | 0.9107 | 0.9726 | | 0.0107 | 4600.0 | 27600 | 0.0604 | 0.9420 | 0.9619 | 0.9787 | 0.9303 | 0.9936 | 0.9112 | 0.9727 | | 0.0209 | 4603.33 | 27620 | 0.0593 | 0.9423 | 0.9620 | 0.9788 | 0.9304 | 0.9937 | 0.9117 | 0.9729 | | 0.1168 | 4606.67 | 27640 | 0.0612 | 0.9423 | 0.9613 | 0.9788 | 0.9283 | 0.9944 | 0.9116 | 0.9729 | | 0.0013 | 4610.0 | 27660 | 0.0597 | 0.9424 | 0.9621 | 0.9788 | 0.9306 | 0.9937 | 0.9118 | 0.9729 | | 0.026 | 4613.33 | 27680 | 0.0610 | 0.9419 | 0.9618 | 0.9787 | 0.9301 | 0.9936 | 0.9111 | 0.9727 | | 0.0013 | 4616.67 | 27700 | 0.0622 | 0.9415 | 0.9618 | 0.9785 | 0.9303 | 0.9933 | 0.9105 | 0.9725 | | 0.0097 | 4620.0 | 27720 | 0.0650 | 0.9415 | 0.9614 | 0.9785 | 0.9291 | 0.9937 | 0.9105 | 0.9725 | | 0.0263 | 4623.33 | 27740 | 0.0626 | 0.9418 | 0.9611 | 0.9787 | 0.9280 | 0.9943 | 0.9110 | 0.9727 | | 0.0012 | 4626.67 | 27760 | 0.0623 | 0.9419 | 0.9616 | 0.9787 | 0.9294 | 0.9938 | 0.9111 | 0.9727 | | 0.0013 | 4630.0 | 27780 | 0.0616 | 0.9426 | 0.9625 | 0.9789 | 0.9315 | 0.9935 | 0.9122 | 0.9730 | | 0.0099 | 4633.33 | 27800 | 0.0560 | 0.9428 | 0.9628 | 0.9790 | 0.9322 | 0.9933 | 0.9125 | 0.9731 | | 0.0066 | 4636.67 | 27820 | 0.0571 | 0.9423 | 0.9626 | 0.9788 | 0.9320 | 0.9932 | 0.9118 | 0.9729 | | 0.0068 | 4640.0 | 27840 | 0.0609 | 0.9418 | 0.9617 | 0.9786 | 0.9296 | 0.9937 | 0.9110 | 0.9727 | | 0.0226 | 4643.33 | 27860 | 0.0606 | 0.9419 | 0.9617 | 0.9787 | 0.9297 | 0.9937 | 0.9111 | 0.9727 | | 0.0066 | 4646.67 | 27880 | 0.0561 | 0.9427 | 0.9634 | 0.9789 | 0.9341 | 0.9927 | 0.9124 | 0.9730 | | 0.0068 | 4650.0 | 27900 | 0.0571 | 0.9425 | 0.9620 | 0.9789 | 0.9302 | 0.9939 | 0.9120 | 0.9730 | | 0.0097 | 4653.33 | 27920 | 0.0582 | 0.9424 | 0.9626 | 0.9788 | 0.9319 | 0.9933 | 0.9119 | 0.9729 | | 0.0012 | 4656.67 | 27940 | 0.0635 | 0.9415 | 0.9613 | 0.9785 | 0.9289 | 0.9938 | 0.9105 | 0.9725 | | 0.026 | 4660.0 | 27960 | 0.0626 | 0.9416 | 0.9615 | 0.9785 | 0.9293 | 0.9937 | 0.9106 | 0.9726 | | 0.0013 | 4663.33 | 27980 | 0.0590 | 0.9421 | 0.9622 | 0.9787 | 0.9311 | 0.9934 | 0.9114 | 0.9728 | | 0.0261 | 4666.67 | 28000 | 0.0646 | 0.9414 | 0.9612 | 0.9785 | 0.9286 | 0.9938 | 0.9103 | 0.9725 | | 0.1108 | 4670.0 | 28020 | 0.0592 | 0.9420 | 0.9619 | 0.9787 | 0.9302 | 0.9936 | 0.9113 | 0.9728 | | 0.0068 | 4673.33 | 28040 | 0.0640 | 0.9415 | 0.9613 | 0.9785 | 0.9288 | 0.9938 | 0.9105 | 0.9726 | | 0.0013 | 4676.67 | 28060 | 0.0655 | 0.9417 | 0.9611 | 0.9786 | 0.9279 | 0.9942 | 0.9108 | 0.9727 | | 0.0209 | 4680.0 | 28080 | 0.0614 | 0.9418 | 0.9618 | 0.9786 | 0.9299 | 0.9936 | 0.9109 | 0.9726 | | 0.0068 | 4683.33 | 28100 | 0.0648 | 0.9416 | 0.9611 | 0.9786 | 0.9280 | 0.9941 | 0.9106 | 0.9726 | | 0.0209 | 4686.67 | 28120 | 0.0625 | 0.9413 | 0.9619 | 0.9784 | 0.9308 | 0.9930 | 0.9102 | 0.9724 | | 0.1165 | 4690.0 | 28140 | 0.0589 | 0.9422 | 0.9622 | 0.9788 | 0.9310 | 0.9934 | 0.9115 | 0.9728 | | 0.0066 | 4693.33 | 28160 | 0.0644 | 0.9414 | 0.9614 | 0.9785 | 0.9290 | 0.9937 | 0.9103 | 0.9725 | | 0.0215 | 4696.67 | 28180 | 0.0674 | 0.9418 | 0.9609 | 0.9787 | 0.9273 | 0.9945 | 0.9108 | 0.9727 | | 0.026 | 4700.0 | 28200 | 0.0649 | 0.9415 | 0.9613 | 0.9785 | 0.9289 | 0.9938 | 0.9105 | 0.9725 | | 0.0066 | 4703.33 | 28220 | 0.0568 | 0.9425 | 0.9632 | 0.9789 | 0.9337 | 0.9927 | 0.9121 | 0.9729 | | 0.1108 | 4706.67 | 28240 | 0.0541 | 0.9434 | 0.9638 | 0.9792 | 0.9347 | 0.9929 | 0.9135 | 0.9733 | | 0.0066 | 4710.0 | 28260 | 0.0589 | 0.9423 | 0.9621 | 0.9788 | 0.9307 | 0.9936 | 0.9117 | 0.9729 | | 0.026 | 4713.33 | 28280 | 0.0646 | 0.9416 | 0.9608 | 0.9786 | 0.9271 | 0.9944 | 0.9106 | 0.9726 | | 0.026 | 4716.67 | 28300 | 0.0579 | 0.9424 | 0.9622 | 0.9788 | 0.9308 | 0.9936 | 0.9118 | 0.9729 | | 0.0097 | 4720.0 | 28320 | 0.0595 | 0.9418 | 0.9617 | 0.9786 | 0.9297 | 0.9937 | 0.9110 | 0.9727 | | 0.009 | 4723.33 | 28340 | 0.0621 | 0.9418 | 0.9615 | 0.9786 | 0.9291 | 0.9939 | 0.9110 | 0.9727 | | 0.1109 | 4726.67 | 28360 | 0.0637 | 0.9417 | 0.9613 | 0.9786 | 0.9286 | 0.9940 | 0.9107 | 0.9726 | | 0.0209 | 4730.0 | 28380 | 0.0637 | 0.9415 | 0.9616 | 0.9785 | 0.9296 | 0.9935 | 0.9105 | 0.9725 | | 0.0015 | 4733.33 | 28400 | 0.0518 | 0.9446 | 0.9648 | 0.9796 | 0.9367 | 0.9928 | 0.9153 | 0.9738 | | 0.0209 | 4736.67 | 28420 | 0.0524 | 0.9436 | 0.9636 | 0.9793 | 0.9340 | 0.9932 | 0.9138 | 0.9735 | | 0.0209 | 4740.0 | 28440 | 0.0585 | 0.9424 | 0.9622 | 0.9789 | 0.9307 | 0.9937 | 0.9119 | 0.9729 | | 0.0013 | 4743.33 | 28460 | 0.0625 | 0.9416 | 0.9615 | 0.9786 | 0.9294 | 0.9937 | 0.9107 | 0.9726 | | 0.0281 | 4746.67 | 28480 | 0.0661 | 0.9419 | 0.9608 | 0.9787 | 0.9271 | 0.9945 | 0.9110 | 0.9728 | | 0.0209 | 4750.0 | 28500 | 0.0626 | 0.9415 | 0.9616 | 0.9785 | 0.9296 | 0.9936 | 0.9106 | 0.9725 | | 0.026 | 4753.33 | 28520 | 0.0635 | 0.9418 | 0.9617 | 0.9786 | 0.9298 | 0.9937 | 0.9110 | 0.9727 | | 0.1108 | 4756.67 | 28540 | 0.0586 | 0.9423 | 0.9624 | 0.9788 | 0.9314 | 0.9934 | 0.9117 | 0.9729 | | 0.0209 | 4760.0 | 28560 | 0.0655 | 0.9414 | 0.9612 | 0.9785 | 0.9285 | 0.9938 | 0.9103 | 0.9725 | | 0.0264 | 4763.33 | 28580 | 0.0691 | 0.9413 | 0.9607 | 0.9785 | 0.9272 | 0.9943 | 0.9102 | 0.9725 | | 0.026 | 4766.67 | 28600 | 0.0591 | 0.9422 | 0.9620 | 0.9788 | 0.9303 | 0.9937 | 0.9116 | 0.9729 | | 0.0209 | 4770.0 | 28620 | 0.0629 | 0.9417 | 0.9614 | 0.9786 | 0.9288 | 0.9939 | 0.9108 | 0.9726 | | 0.0013 | 4773.33 | 28640 | 0.0531 | 0.9441 | 0.9641 | 0.9795 | 0.9352 | 0.9931 | 0.9146 | 0.9737 | | 0.01 | 4776.67 | 28660 | 0.0598 | 0.9422 | 0.9615 | 0.9788 | 0.9289 | 0.9941 | 0.9115 | 0.9729 | | 0.026 | 4780.0 | 28680 | 0.0632 | 0.9417 | 0.9615 | 0.9786 | 0.9293 | 0.9937 | 0.9108 | 0.9726 | | 0.0066 | 4783.33 | 28700 | 0.0654 | 0.9418 | 0.9611 | 0.9786 | 0.9279 | 0.9942 | 0.9108 | 0.9727 | | 0.0012 | 4786.67 | 28720 | 0.0581 | 0.9424 | 0.9624 | 0.9788 | 0.9315 | 0.9934 | 0.9119 | 0.9729 | | 0.0012 | 4790.0 | 28740 | 0.0560 | 0.9429 | 0.9629 | 0.9790 | 0.9324 | 0.9934 | 0.9127 | 0.9732 | | 0.0262 | 4793.33 | 28760 | 0.0562 | 0.9433 | 0.9628 | 0.9792 | 0.9318 | 0.9937 | 0.9132 | 0.9733 | | 0.0209 | 4796.67 | 28780 | 0.0567 | 0.9424 | 0.9627 | 0.9788 | 0.9322 | 0.9932 | 0.9120 | 0.9729 | | 0.026 | 4800.0 | 28800 | 0.0615 | 0.9419 | 0.9616 | 0.9787 | 0.9292 | 0.9939 | 0.9111 | 0.9727 | | 0.0066 | 4803.33 | 28820 | 0.0647 | 0.9418 | 0.9611 | 0.9787 | 0.9279 | 0.9942 | 0.9109 | 0.9727 | | 0.0012 | 4806.67 | 28840 | 0.0525 | 0.9441 | 0.9641 | 0.9795 | 0.9352 | 0.9931 | 0.9145 | 0.9737 | | 0.1107 | 4810.0 | 28860 | 0.0605 | 0.9420 | 0.9617 | 0.9787 | 0.9295 | 0.9938 | 0.9112 | 0.9728 | | 0.0209 | 4813.33 | 28880 | 0.0584 | 0.9422 | 0.9621 | 0.9788 | 0.9307 | 0.9936 | 0.9116 | 0.9728 | | 0.0209 | 4816.67 | 28900 | 0.0638 | 0.9415 | 0.9615 | 0.9785 | 0.9294 | 0.9936 | 0.9105 | 0.9725 | | 0.026 | 4820.0 | 28920 | 0.0613 | 0.9418 | 0.9616 | 0.9786 | 0.9293 | 0.9938 | 0.9110 | 0.9727 | | 0.0209 | 4823.33 | 28940 | 0.0643 | 0.9420 | 0.9617 | 0.9787 | 0.9295 | 0.9939 | 0.9113 | 0.9728 | | 0.0068 | 4826.67 | 28960 | 0.0536 | 0.9437 | 0.9637 | 0.9793 | 0.9342 | 0.9932 | 0.9140 | 0.9735 | | 0.0096 | 4830.0 | 28980 | 0.0577 | 0.9427 | 0.9623 | 0.9790 | 0.9308 | 0.9938 | 0.9123 | 0.9731 | | 0.026 | 4833.33 | 29000 | 0.0634 | 0.9417 | 0.9615 | 0.9786 | 0.9292 | 0.9938 | 0.9108 | 0.9726 | | 0.0012 | 4836.67 | 29020 | 0.0638 | 0.9413 | 0.9615 | 0.9785 | 0.9295 | 0.9935 | 0.9103 | 0.9724 | | 0.021 | 4840.0 | 29040 | 0.0627 | 0.9416 | 0.9613 | 0.9786 | 0.9288 | 0.9939 | 0.9107 | 0.9726 | | 0.0012 | 4843.33 | 29060 | 0.0597 | 0.9419 | 0.9623 | 0.9786 | 0.9315 | 0.9932 | 0.9112 | 0.9727 | | 0.026 | 4846.67 | 29080 | 0.0720 | 0.9414 | 0.9606 | 0.9785 | 0.9269 | 0.9944 | 0.9102 | 0.9725 | | 0.0263 | 4850.0 | 29100 | 0.0606 | 0.9419 | 0.9616 | 0.9787 | 0.9295 | 0.9938 | 0.9111 | 0.9727 | | 0.0067 | 4853.33 | 29120 | 0.0626 | 0.9416 | 0.9615 | 0.9786 | 0.9294 | 0.9937 | 0.9107 | 0.9726 | | 0.027 | 4856.67 | 29140 | 0.0680 | 0.9414 | 0.9612 | 0.9785 | 0.9285 | 0.9938 | 0.9103 | 0.9725 | | 0.1107 | 4860.0 | 29160 | 0.0586 | 0.9427 | 0.9627 | 0.9789 | 0.9321 | 0.9933 | 0.9123 | 0.9730 | | 0.0012 | 4863.33 | 29180 | 0.0530 | 0.9442 | 0.9643 | 0.9795 | 0.9357 | 0.9929 | 0.9147 | 0.9737 | | 0.026 | 4866.67 | 29200 | 0.0618 | 0.9421 | 0.9615 | 0.9787 | 0.9289 | 0.9941 | 0.9113 | 0.9728 | | 0.0013 | 4870.0 | 29220 | 0.0627 | 0.9416 | 0.9618 | 0.9786 | 0.9301 | 0.9934 | 0.9107 | 0.9726 | | 0.011 | 4873.33 | 29240 | 0.0567 | 0.9427 | 0.9624 | 0.9790 | 0.9313 | 0.9936 | 0.9123 | 0.9731 | | 0.0096 | 4876.67 | 29260 | 0.0596 | 0.9422 | 0.9624 | 0.9788 | 0.9314 | 0.9933 | 0.9116 | 0.9728 | | 0.0209 | 4880.0 | 29280 | 0.0610 | 0.9422 | 0.9618 | 0.9788 | 0.9299 | 0.9938 | 0.9115 | 0.9728 | | 0.0096 | 4883.33 | 29300 | 0.0660 | 0.9417 | 0.9612 | 0.9786 | 0.9282 | 0.9941 | 0.9108 | 0.9727 | | 0.0096 | 4886.67 | 29320 | 0.0646 | 0.9413 | 0.9618 | 0.9784 | 0.9303 | 0.9932 | 0.9102 | 0.9724 | | 0.0099 | 4890.0 | 29340 | 0.0634 | 0.9417 | 0.9616 | 0.9786 | 0.9295 | 0.9937 | 0.9108 | 0.9726 | | 0.1107 | 4893.33 | 29360 | 0.0541 | 0.9437 | 0.9639 | 0.9793 | 0.9349 | 0.9929 | 0.9139 | 0.9735 | | 0.026 | 4896.67 | 29380 | 0.0604 | 0.9423 | 0.9620 | 0.9788 | 0.9301 | 0.9938 | 0.9117 | 0.9729 | | 0.0263 | 4900.0 | 29400 | 0.0619 | 0.9420 | 0.9615 | 0.9787 | 0.9290 | 0.9940 | 0.9113 | 0.9728 | | 0.026 | 4903.33 | 29420 | 0.0655 | 0.9418 | 0.9610 | 0.9787 | 0.9275 | 0.9944 | 0.9109 | 0.9727 | | 0.0208 | 4906.67 | 29440 | 0.0642 | 0.9418 | 0.9613 | 0.9787 | 0.9285 | 0.9941 | 0.9109 | 0.9727 | | 0.0012 | 4910.0 | 29460 | 0.0594 | 0.9423 | 0.9622 | 0.9788 | 0.9310 | 0.9935 | 0.9117 | 0.9729 | | 0.0096 | 4913.33 | 29480 | 0.0658 | 0.9416 | 0.9612 | 0.9786 | 0.9285 | 0.9939 | 0.9106 | 0.9726 | | 0.0066 | 4916.67 | 29500 | 0.0497 | 0.9453 | 0.9649 | 0.9799 | 0.9365 | 0.9933 | 0.9164 | 0.9742 | | 0.0215 | 4920.0 | 29520 | 0.0600 | 0.9422 | 0.9618 | 0.9788 | 0.9298 | 0.9939 | 0.9115 | 0.9729 | | 0.0066 | 4923.33 | 29540 | 0.0643 | 0.9415 | 0.9616 | 0.9785 | 0.9296 | 0.9936 | 0.9105 | 0.9725 | | 0.0012 | 4926.67 | 29560 | 0.0626 | 0.9417 | 0.9617 | 0.9786 | 0.9297 | 0.9936 | 0.9108 | 0.9726 | | 0.0097 | 4930.0 | 29580 | 0.0611 | 0.9422 | 0.9620 | 0.9788 | 0.9304 | 0.9936 | 0.9115 | 0.9728 | | 0.0084 | 4933.33 | 29600 | 0.0535 | 0.9438 | 0.9635 | 0.9794 | 0.9335 | 0.9935 | 0.9141 | 0.9736 | | 0.0066 | 4936.67 | 29620 | 0.0548 | 0.9433 | 0.9633 | 0.9792 | 0.9334 | 0.9932 | 0.9133 | 0.9733 | | 0.0107 | 4940.0 | 29640 | 0.0583 | 0.9422 | 0.9622 | 0.9788 | 0.9308 | 0.9935 | 0.9116 | 0.9728 | | 0.0013 | 4943.33 | 29660 | 0.0604 | 0.9417 | 0.9620 | 0.9786 | 0.9307 | 0.9933 | 0.9109 | 0.9726 | | 0.0014 | 4946.67 | 29680 | 0.0596 | 0.9421 | 0.9618 | 0.9787 | 0.9299 | 0.9937 | 0.9114 | 0.9728 | | 0.0013 | 4950.0 | 29700 | 0.0596 | 0.9421 | 0.9620 | 0.9787 | 0.9305 | 0.9936 | 0.9114 | 0.9728 | | 0.026 | 4953.33 | 29720 | 0.0625 | 0.9418 | 0.9613 | 0.9786 | 0.9286 | 0.9940 | 0.9109 | 0.9727 | | 0.0013 | 4956.67 | 29740 | 0.0581 | 0.9426 | 0.9628 | 0.9789 | 0.9325 | 0.9932 | 0.9123 | 0.9730 | | 0.0087 | 4960.0 | 29760 | 0.0549 | 0.9437 | 0.9629 | 0.9794 | 0.9320 | 0.9939 | 0.9139 | 0.9736 | | 0.0013 | 4963.33 | 29780 | 0.0566 | 0.9428 | 0.9629 | 0.9790 | 0.9326 | 0.9932 | 0.9125 | 0.9731 | | 0.1117 | 4966.67 | 29800 | 0.0568 | 0.9432 | 0.9627 | 0.9791 | 0.9317 | 0.9937 | 0.9131 | 0.9733 | | 0.011 | 4970.0 | 29820 | 0.0564 | 0.9424 | 0.9623 | 0.9789 | 0.9310 | 0.9936 | 0.9119 | 0.9729 | | 0.1108 | 4973.33 | 29840 | 0.0556 | 0.9430 | 0.9628 | 0.9791 | 0.9322 | 0.9935 | 0.9129 | 0.9732 | | 0.1107 | 4976.67 | 29860 | 0.0558 | 0.9431 | 0.9630 | 0.9791 | 0.9327 | 0.9934 | 0.9130 | 0.9732 | | 0.0208 | 4980.0 | 29880 | 0.0601 | 0.9421 | 0.9622 | 0.9787 | 0.9309 | 0.9934 | 0.9115 | 0.9728 | | 0.0066 | 4983.33 | 29900 | 0.0554 | 0.9431 | 0.9632 | 0.9791 | 0.9331 | 0.9932 | 0.9130 | 0.9732 | | 0.0209 | 4986.67 | 29920 | 0.0627 | 0.9420 | 0.9613 | 0.9787 | 0.9286 | 0.9941 | 0.9112 | 0.9728 | | 0.01 | 4990.0 | 29940 | 0.0583 | 0.9422 | 0.9622 | 0.9788 | 0.9308 | 0.9935 | 0.9115 | 0.9728 | | 0.0096 | 4993.33 | 29960 | 0.0605 | 0.9418 | 0.9623 | 0.9786 | 0.9314 | 0.9931 | 0.9110 | 0.9726 | | 0.0013 | 4996.67 | 29980 | 0.0635 | 0.9414 | 0.9616 | 0.9785 | 0.9299 | 0.9934 | 0.9104 | 0.9725 | | 0.0096 | 5000.0 | 30000 | 0.0652 | 0.9415 | 0.9614 | 0.9785 | 0.9290 | 0.9937 | 0.9104 | 0.9725 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cpu - Datasets 2.15.0 - Tokenizers 0.14.1
wonjeongho/t5-wmt16-ro-en
wonjeongho
2024-02-15T07:26:54Z
34
0
transformers
[ "transformers", "pytorch", "elastic_t5", "text2text-generation", "generated_from_trainer", "en", "ro", "dataset:wmt16", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-02-15T07:21:39Z
--- language: - en - ro license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: t5 results: - task: name: Translation type: translation dataset: name: wmt16 ro-en type: wmt16 args: ro-en metrics: - name: Bleu type: bleu value: 27.1318 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt16 ro-en dataset. It achieves the following results on the evaluation set: - Loss: 1.3574 - Bleu: 27.1318 - Gen Len: 42.5798 - Loss Smallest Subnet: 1.3574 - Bleu Smallest Subnet: 27.1318 - Gen Len Smallest Subnet: 42.5798 - Loss Random Subnet: 1.3574 - Loss Sum: 4.0723 - Bleu Random Subnet: 27.1318 - Bleu Sum: 81.3954 - Gen Len Random Subnet: 42.5798 - Gen Len Sum: 127.7394 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 24 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 48 - total_eval_batch_size: 96 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | Loss Smallest Subnet | Bleu Smallest Subnet | Gen Len Smallest Subnet | Loss Random Subnet | Loss Sum | Bleu Random Subnet | Bleu Sum | Gen Len Random Subnet | Gen Len Sum | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:--------------------:|:--------------------:|:-----------------------:|:------------------:|:--------:|:------------------:|:--------:|:---------------------:|:-----------:| | 0.5967 | 1.0 | 12715 | 1.3820 | 26.593 | 42.4422 | 1.3820 | 26.593 | 42.4422 | 1.3820 | 4.1461 | 26.593 | 79.779 | 42.4422 | 127.3266 | | 0.5768 | 2.0 | 25430 | 1.3728 | 26.6191 | 42.6738 | 1.3728 | 26.6191 | 42.6738 | 1.3728 | 4.1184 | 26.6191 | 79.8573 | 42.6738 | 128.0214 | | 0.5663 | 3.0 | 38145 | 1.3616 | 26.9203 | 42.5298 | 1.3616 | 26.9203 | 42.5298 | 1.3616 | 4.0849 | 26.9203 | 80.7609 | 42.5298 | 127.5894 | | 0.5523 | 4.0 | 50860 | 1.3570 | 27.0195 | 42.5203 | 1.3570 | 27.0195 | 42.5203 | 1.3570 | 4.0709 | 27.0195 | 81.0585 | 42.5203 | 127.5609 | | 0.5436 | 5.0 | 63575 | 1.3574 | 27.1318 | 42.5798 | 1.3574 | 27.1318 | 42.5798 | 1.3574 | 4.0723 | 27.1318 | 81.3954 | 42.5798 | 127.7394 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.8.0 - Datasets 2.4.0 - Tokenizers 0.12.1
nold/openbuddy-mixtral-7bx8-v18.1-32k-GGUF
nold
2024-02-15T07:23:51Z
11
2
transformers
[ "transformers", "gguf", "text-generation", "zh", "en", "fr", "de", "ja", "ko", "it", "ru", "license:apache-2.0", "region:us" ]
text-generation
2024-02-14T20:10:36Z
--- language: - zh - en - fr - de - ja - ko - it - ru pipeline_tag: text-generation inference: false library_name: transformers license: apache-2.0 --- # OpenBuddy - Open Multilingual Chatbot GitHub and Usage Guide: [https://github.com/OpenBuddy/OpenBuddy](https://github.com/OpenBuddy/OpenBuddy) Website and Demo: [https://openbuddy.ai](https://openbuddy.ai) Evaluation result of this model: [Evaluation.txt](Evaluation.txt) ![Demo](https://raw.githubusercontent.com/OpenBuddy/OpenBuddy/main/media/demo.png) # Copyright Notice Base model: https://huggingface.co/mistralai/Mixtral-8x7B-v0.1 License: Apache 2.0 ## Disclaimer All OpenBuddy models have inherent limitations and may potentially produce outputs that are erroneous, harmful, offensive, or otherwise undesirable. Users should not use these models in critical or high-stakes situations that may lead to personal injury, property damage, or significant losses. Examples of such scenarios include, but are not limited to, the medical field, controlling software and hardware systems that may cause harm, and making important financial or legal decisions. OpenBuddy is provided "as-is" without any warranty of any kind, either express or implied, including, but not limited to, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement. In no event shall the authors, contributors, or copyright holders be liable for any claim, damages, or other liabilities, whether in an action of contract, tort, or otherwise, arising from, out of, or in connection with the software or the use or other dealings in the software. By using OpenBuddy, you agree to these terms and conditions, and acknowledge that you understand the potential risks associated with its use. You also agree to indemnify and hold harmless the authors, contributors, and copyright holders from any claims, damages, or liabilities arising from your use of OpenBuddy. ## 免责声明 所有OpenBuddy模型均存在固有的局限性,可能产生错误的、有害的、冒犯性的或其他不良的输出。用户在关键或高风险场景中应谨慎行事,不要使用这些模型,以免导致人身伤害、财产损失或重大损失。此类场景的例子包括但不限于医疗领域、可能导致伤害的软硬件系统的控制以及进行重要的财务或法律决策。 OpenBuddy按“原样”提供,不附带任何种类的明示或暗示的保证,包括但不限于适销性、特定目的的适用性和非侵权的暗示保证。在任何情况下,作者、贡献者或版权所有者均不对因软件或使用或其他软件交易而产生的任何索赔、损害赔偿或其他责任(无论是合同、侵权还是其他原因)承担责任。 使用OpenBuddy即表示您同意这些条款和条件,并承认您了解其使用可能带来的潜在风险。您还同意赔偿并使作者、贡献者和版权所有者免受因您使用OpenBuddy而产生的任何索赔、损害赔偿或责任的影响。 *** Quantization of Model [OpenBuddy/openbuddy-mixtral-7bx8-v18.1-32k](https://huggingface.co/OpenBuddy/openbuddy-mixtral-7bx8-v18.1-32k). Created using [llm-quantizer](https://github.com/Nold360/llm-quantizer) Pipeline [8668cbd2081063e33a128251312e6de9744d0a64]
Skier8402/distilbert-base-uncased-finetuned-imdb
Skier8402
2024-02-15T07:16:34Z
104
0
transformers
[ "transformers", "safetensors", "distilbert", "fill-mask", "generated_from_trainer", "huggingface_course", "movies", "en", "dataset:imdb", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2024-02-15T06:48:14Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer - huggingface_course - movies model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] datasets: - imdb language: - en metrics: - perplexity library_name: transformers pipeline_tag: fill-mask --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.4253 - Perplexity: 11.20 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.6962 | 1.0 | 157 | 2.5423 | | 2.5701 | 2.0 | 314 | 2.4638 | | 2.5417 | 3.0 | 471 | 2.4253 | ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
changok/phi-2-ko-v0.1-gguf
changok
2024-02-15T07:10:42Z
2
1
null
[ "gguf", "license:cc-by-sa-3.0", "endpoints_compatible", "region:us" ]
null
2024-02-15T07:01:27Z
--- license: cc-by-sa-3.0 --- This model was converted to gguf format from daekeun-ml/phi-2-ko-v0.1.
Akimitsujiro/FurSho
Akimitsujiro
2024-02-15T07:01:09Z
11
2
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "base_model:cagliostrolab/animagine-xl-3.0", "base_model:adapter:cagliostrolab/animagine-xl-3.0", "region:us" ]
text-to-image
2024-02-15T07:00:54Z
--- tags: - text-to-image - stable-diffusion - lora - diffusers - template:sd-lora widget: - text: '-' output: url: images/1000079717.webp base_model: cagliostrolab/animagine-xl-3.0 instance_prompt: null --- # FurSho <Gallery /> ## Download model Weights for this model are available in Safetensors format. [Download](/Akimitsujiro/FurSho/tree/main) them in the Files & versions tab.
oraul/table_transformer_TSR_v1
oraul
2024-02-15T06:58:59Z
174
0
transformers
[ "transformers", "safetensors", "table-transformer", "object-detection", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
object-detection
2024-02-15T06:58:31Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
LoneStriker/Kyllene-34B-v1.1-2.7bpw-h6-exl2
LoneStriker
2024-02-15T06:56:11Z
4
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "merge", "conversational", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-15T06:50:41Z
--- license: other license_name: yi-license license_link: https://huggingface.co/01-ai/Yi-34B-200K/blob/main/LICENSE tags: - merge --- # Kyllene 34B v1.1 ![image/png](https://huggingface.co/TeeZee/Kyllene-34B-v1.1/resolve/main/Kyllene_v1.1.jpg) ## Model Details - A result of new merge method provided by [MergeMonster](https://github.com/Gryphe/MergeMonster/) tool with extended RPG preset. - models used for merge: [jondurbin/bagel-dpo-34b-v0.2](https://huggingface.co/jondurbin/bagel-dpo-34b-v0.2) [NousResearch/Nous-Capybara-34B](https://huggingface.co/NousResearch/Nous-Capybara-34B) [NousResearch_Nous-Hermes-2-Yi-34B](https://huggingface.co/NousResearch/Nous-Hermes-2-Yi-34B) [SUSTech/SUS-Chat-34B](https://huggingface.co/SUSTech/SUS-Chat-34B) - Method is aimed to maximize probability of certain phrases and minimize probablility of other phrases. - RPG preset was extened with examples of typical, nonsensical output of most models like 'unbreakable bond', 'send shivers down her spine' etc. - The resulting model has approximately 34 billion parameters. - See [mergekit-config.yml](https://huggingface.co/TeeZee/Kyllene-34B-v1.1/resolve/main/merge-config.yml) for details on the merge method used and RPG presets. **Warning: This model can produce NSFW content!** ## Results - produces SFW nad NSFW content without issues, switches context seamlessly. - 200K context length - good at following instructions - different than [TeeZee/Kyllene-57B-v1.0](https://huggingface.co/TeeZee/Kyllene-57B-v1.0), but also surprisingly entertaining (but more tests are needed) ## Side notes - [MergeMonster](https://github.com/Gryphe/MergeMonster/) method works, however project would benefit greatly from some more love from developers. - In its current state MergeMonster consumes insane amounts of RAM (256GB+) or VRAM and takes a really long time to process model data, this merge took 24H on 1xADA6000 - MergeMonster is not a golden bullet, other experiments has shown that it can also produce incredibly stupid models. All comments are greatly appreciated, download, test and if you appreciate my work, consider buying me my fuel: <a href="https://www.buymeacoffee.com/TeeZee" target="_blank"><img src="https://cdn.buymeacoffee.com/buttons/v2/default-yellow.png" alt="Buy Me A Coffee" style="height: 60px !important;width: 217px !important;" ></a>
ribhu/mistral-7b-test-finetune
ribhu
2024-02-15T06:55:23Z
3
0
transformers
[ "transformers", "pytorch", "mistral", "text-generation", "text-generation-inference", "unsloth", "trl", "en", "base_model:unsloth/mistral-7b-bnb-4bit", "base_model:finetune:unsloth/mistral-7b-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-02-15T06:47:44Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - mistral - trl base_model: unsloth/mistral-7b-bnb-4bit --- # Uploaded model - **Developed by:** ribhu - **License:** apache-2.0 - **Finetuned from model :** unsloth/mistral-7b-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
norman-codes/transfer-learning-attempt1
norman-codes
2024-02-15T06:42:13Z
91
0
transformers
[ "transformers", "safetensors", "gpt_neo", "text-generation", "transfer_learning", "en", "dataset:izumi-lab/open-text-books", "dataset:AlekseyKorshuk/fiction-books", "dataset:vishnupriyavr/wiki-movie-plots-with-summaries", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-02-15T06:34:03Z
--- datasets: - izumi-lab/open-text-books - AlekseyKorshuk/fiction-books - vishnupriyavr/wiki-movie-plots-with-summaries language: - en tags: - transfer_learning ---
theidoldaily/kotori-minami
theidoldaily
2024-02-15T06:41:37Z
4
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "base_model:cagliostrolab/animagine-xl-3.0", "base_model:adapter:cagliostrolab/animagine-xl-3.0", "license:mit", "region:us" ]
text-to-image
2024-02-15T06:36:24Z
--- tags: - text-to-image - stable-diffusion - lora - diffusers - template:sd-lora widget: - text: >- masterpiece, high quality, defined pupil, looking at viewer, rounded pupil, defined iris, (soft iris:1.2), parameters: negative_prompt: >- bad_anatomy, deformation, amputation, deformity, deformed_nipples, duplicated_torso, deformed_torso, long_torso, large_torso, unproportioned_torso, (deformed_pussy:1.2), (deformed_hands:1.2), unproportioned_eyes, unproportioned_head, small_head, duplicated_nose, big_nose, fusioned_clothes, fusioned_arms, undefined_limbs, divided_pussy, red_pussy, duplicated_pussy, deformed_anus, deformed_pussy, output: url: images/00000-2136358392.png base_model: cagliostrolab/animagine-xl-3.0 instance_prompt: id_kotori_minami license: mit --- # Kotori Minami <Gallery /> ## Model description This model was trained to generate high quality images based on SIFAS cards. To achieve better quality, you should be using hako-mikan&#39;s regional prompter, along with Latent Mode, which modifies the way Stable Diffusion isolates the LoRA resulting in a significant improvement. ## Trigger words You should use `id_kotori_minami` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/theidoldaily/kotori-minami/tree/main) them in the Files & versions tab.
hotdogs/openuka_v1_1_7B_GGUF
hotdogs
2024-02-15T06:40:52Z
6
0
transformers
[ "transformers", "gguf", "mixtral", "en", "th", "license:other", "endpoints_compatible", "region:us" ]
null
2024-02-14T06:58:03Z
--- license: other language: - en - th ---
h2m/Convex-Workshop-8x7B-Adapter
h2m
2024-02-15T06:40:48Z
1
0
peft
[ "peft", "safetensors", "llama-factory", "lora", "generated_from_trainer", "base_model:mistralai/Mixtral-8x7B-Instruct-v0.1", "base_model:adapter:mistralai/Mixtral-8x7B-Instruct-v0.1", "license:other", "region:us" ]
null
2024-02-15T06:37:01Z
--- license: other library_name: peft tags: - llama-factory - lora - generated_from_trainer base_model: mistralai/Mixtral-8x7B-Instruct-v0.1 model-index: - name: train_2024-02-15-06-06-50 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # train_2024-02-15-06-06-50 This model is a fine-tuned version of [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) on the 3_line dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.8.2 - Transformers 4.37.2 - Pytorch 2.2.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.2
leoreigoto/Data2_V2_Blip2_Finetune_Caption
leoreigoto
2024-02-15T06:14:53Z
3
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:ybelkada/blip2-opt-2.7b-fp16-sharded", "base_model:adapter:ybelkada/blip2-opt-2.7b-fp16-sharded", "region:us" ]
null
2024-02-15T04:12:11Z
--- library_name: peft base_model: ybelkada/blip2-opt-2.7b-fp16-sharded --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.8.2
jan-hq/stealth-finance-v1-e1
jan-hq
2024-02-15T06:10:03Z
8
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-15T06:06:48Z
--- license: apache-2.0 language: - en --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto" > <img src="https://github.com/janhq/jan/assets/89722390/35daac7d-b895-487c-a6ac-6663daaad78e" alt="Jan banner" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <p align="center"> <a href="https://jan.ai/">Jan</a > - <a href="https://discord.gg/AsJ8krTT3N">Discord</a> </p> <!-- header end --> # Prompt template ChatML ``` <|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` # Training detail You can read [here](https://huggingface.co/jan-hq/stealth-finance-v1-adapter). # Run this model You can run this model using [Jan Desktop](https://jan.ai/) on Mac, Windows, or Linux. Jan is an open source, ChatGPT alternative that is: - 💻 **100% offline on your machine**: Your conversations remain confidential, and visible only to you. - 🗂️ ** An Open File Format**: Conversations and model settings stay on your computer and can be exported or deleted at any time. - 🌐 **OpenAI Compatible**: Local server on port `1337` with OpenAI compatible endpoints - 🌍 **Open Source & Free**: We build in public; check out our [Github](https://github.com/janhq) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65713d70f56f9538679e5a56/r7VmEBLGXpPLTu2MImM7S.png) # About Jan Jan believes in the need for an open-source AI ecosystem and is building the infra and tooling to allow open-source AIs to compete on a level playing field with proprietary ones. Jan's long-term vision is to build a cognitive framework for future robots, who are practical, useful assistants for humans and businesses in everyday life.
silk-road/Haruhi-dialogue-action-extract-7B
silk-road
2024-02-15T06:07:55Z
1
0
transformers
[ "transformers", "pytorch", "qwen", "text-generation", "custom_code", "autotrain_compatible", "region:us" ]
text-generation
2024-02-15T05:23:07Z
# Zero凉宫春日 基于Qwen_7B_base 热启,在15w高质量的NPC抽取样本上进行2k训练 epoch=2,batch_size=64,lr=2e-5
Pplus/mistral-health-faq_log_50
Pplus
2024-02-15T05:52:45Z
4
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "text-generation-inference", "my", "arxiv:1910.09700", "base_model:mistralai/Mistral-7B-v0.1", "base_model:finetune:mistralai/Mistral-7B-v0.1", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-02-15T05:13:39Z
--- library_name: transformers base_model: mistralai/Mistral-7B-v0.1 language: - my pipeline_tag: text-generation tags: - text-generation-inference --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.8.2
himanshue2e/whisper-small-dataset
himanshue2e
2024-02-15T05:50:01Z
60
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "hi", "dataset:mozilla-foundation/common_voice_11_0", "base_model:openai/whisper-large-v3", "base_model:finetune:openai/whisper-large-v3", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-02-14T12:10:02Z
--- language: - hi license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer base_model: openai/whisper-large-v3 model-index: - name: whisper-small-dataset results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: hi split: None args: 'config: hi, split: test' metrics: - type: wer value: 48.5207100591716 name: Wer --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-small-dataset This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2599 - Wer: 48.5207 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - training_steps: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | No log | 1.6 | 10 | 0.3733 | 50.2959 | | No log | 3.2 | 20 | 0.2663 | 52.0710 | | 0.2997 | 4.8 | 30 | 0.2667 | 48.5207 | | 0.2997 | 6.4 | 40 | 0.2599 | 48.5207 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.2
ONS-AI-RESEARCH/ONS-SOLAR-10.7B-AWQ
ONS-AI-RESEARCH
2024-02-15T05:49:21Z
60
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "SOLAR-10.7B", "AWQ", "conversational", "ko", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "awq", "region:us" ]
text-generation
2024-02-14T07:58:34Z
--- license: cc-by-nc-4.0 language: - ko tags: - SOLAR-10.7B - AWQ --- # ONS-SOLAR-10.7B-AWQ ### Model Details - Base Model: [ONS-AI-RESEARCH/ONS-SOLAR-10.7B](https://huggingface.co/ONS-AI-RESEARCH/ONS-SOLAR-10.7B) - Quantization by AutoAWQ(https://github.com/casper-hansen/AutoAWQ)
raucha/peft-test
raucha
2024-02-15T05:48:24Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-02-15T05:46:39Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]