modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
sequence
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
5p33ch3xpr/XLS-R_Finetuned
5p33ch3xpr
2022-12-01T20:55:03Z
107
1
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-10-29T16:49:02Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: XLS-R_Finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # XLS-R_Finetuned This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2280 - Wer: 0.1725 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00024 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 800 - num_epochs: 25 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 6.0094 | 0.32 | 500 | 3.5637 | 1.0 | | 3.3935 | 0.64 | 1000 | 2.6589 | 1.0 | | 1.5455 | 0.95 | 1500 | 0.7979 | 0.8225 | | 0.9065 | 1.27 | 2000 | 0.5392 | 0.6244 | | 0.7891 | 1.59 | 2500 | 0.3554 | 0.4551 | | 0.7118 | 1.91 | 3000 | 0.3682 | 0.4608 | | 0.6061 | 2.23 | 3500 | 0.3384 | 0.4416 | | 0.5536 | 2.54 | 4000 | 0.2987 | 0.4042 | | 0.547 | 2.86 | 4500 | 0.2892 | 0.3892 | | 0.4841 | 3.18 | 5000 | 0.2890 | 0.3690 | | 0.4434 | 3.5 | 5500 | 0.2605 | 0.3636 | | 0.4542 | 3.81 | 6000 | 0.2932 | 0.3773 | | 0.4171 | 4.13 | 6500 | 0.2768 | 0.3550 | | 0.3697 | 4.45 | 7000 | 0.2443 | 0.3382 | | 0.3776 | 4.77 | 7500 | 0.2572 | 0.3366 | | 0.3448 | 5.09 | 8000 | 0.2267 | 0.3006 | | 0.3285 | 5.4 | 8500 | 0.2377 | 0.3023 | | 0.3165 | 5.72 | 9000 | 0.2344 | 0.2888 | | 0.3194 | 6.04 | 9500 | 0.2228 | 0.2699 | | 0.2737 | 6.36 | 10000 | 0.2201 | 0.2754 | | 0.2986 | 6.68 | 10500 | 0.2413 | 0.2850 | | 0.2836 | 6.99 | 11000 | 0.2117 | 0.2629 | | 0.2467 | 7.31 | 11500 | 0.2408 | 0.2877 | | 0.2577 | 7.63 | 12000 | 0.2134 | 0.2448 | | 0.2503 | 7.95 | 12500 | 0.2260 | 0.2600 | | 0.2371 | 8.26 | 13000 | 0.2081 | 0.2379 | | 0.2303 | 8.58 | 13500 | 0.2322 | 0.2668 | | 0.213 | 8.9 | 14000 | 0.2339 | 0.2586 | | 0.2029 | 9.22 | 14500 | 0.2300 | 0.2704 | | 0.2146 | 9.54 | 15000 | 0.2321 | 0.2533 | | 0.2044 | 9.85 | 15500 | 0.2393 | 0.2685 | | 0.2008 | 10.17 | 16000 | 0.2193 | 0.2467 | | 0.182 | 10.49 | 16500 | 0.2323 | 0.2611 | | 0.2 | 10.81 | 17000 | 0.2188 | 0.2537 | | 0.1855 | 11.13 | 17500 | 0.2436 | 0.2523 | | 0.1745 | 11.44 | 18000 | 0.2351 | 0.2473 | | 0.1705 | 11.76 | 18500 | 0.2556 | 0.2663 | | 0.1745 | 12.08 | 19000 | 0.2189 | 0.2229 | | 0.1641 | 12.4 | 19500 | 0.2192 | 0.2342 | | 0.1546 | 12.71 | 20000 | 0.2432 | 0.2228 | | 0.1661 | 13.03 | 20500 | 0.2323 | 0.2242 | | 0.1436 | 13.35 | 21000 | 0.2554 | 0.2496 | | 0.1443 | 13.67 | 21500 | 0.2195 | 0.2026 | | 0.151 | 13.99 | 22000 | 0.2400 | 0.2201 | | 0.1333 | 14.3 | 22500 | 0.2181 | 0.2235 | | 0.137 | 14.62 | 23000 | 0.2400 | 0.2254 | | 0.1303 | 14.94 | 23500 | 0.2265 | 0.2088 | | 0.1386 | 15.26 | 24000 | 0.2330 | 0.2152 | | 0.1325 | 15.58 | 24500 | 0.2328 | 0.2127 | | 0.1227 | 15.89 | 25000 | 0.2375 | 0.2077 | | 0.1196 | 16.21 | 25500 | 0.2394 | 0.2144 | | 0.1197 | 16.53 | 26000 | 0.2591 | 0.2171 | | 0.1122 | 16.85 | 26500 | 0.2383 | 0.2066 | | 0.1093 | 17.16 | 27000 | 0.2254 | 0.2042 | | 0.105 | 17.48 | 27500 | 0.2330 | 0.2008 | | 0.0982 | 17.8 | 28000 | 0.2317 | 0.1902 | | 0.1072 | 18.12 | 28500 | 0.2332 | 0.1971 | | 0.1033 | 18.44 | 29000 | 0.2313 | 0.1923 | | 0.0982 | 18.75 | 29500 | 0.2344 | 0.1934 | | 0.103 | 19.07 | 30000 | 0.2295 | 0.1902 | | 0.0945 | 19.39 | 30500 | 0.2352 | 0.1976 | | 0.0892 | 19.71 | 31000 | 0.2414 | 0.1920 | | 0.1003 | 20.03 | 31500 | 0.2300 | 0.1879 | | 0.0861 | 20.34 | 32000 | 0.2215 | 0.1778 | | 0.0845 | 20.66 | 32500 | 0.2321 | 0.1866 | | 0.0858 | 20.98 | 33000 | 0.2311 | 0.1850 | | 0.0785 | 21.3 | 33500 | 0.2341 | 0.1874 | | 0.0786 | 21.61 | 34000 | 0.2322 | 0.1916 | | 0.0793 | 21.93 | 34500 | 0.2358 | 0.1846 | | 0.0772 | 22.25 | 35000 | 0.2234 | 0.1770 | | 0.0786 | 22.57 | 35500 | 0.2180 | 0.1758 | | 0.0747 | 22.89 | 36000 | 0.2269 | 0.1830 | | 0.0734 | 23.2 | 36500 | 0.2320 | 0.1860 | | 0.067 | 23.52 | 37000 | 0.2324 | 0.1797 | | 0.0733 | 23.84 | 37500 | 0.2324 | 0.1772 | | 0.0701 | 24.16 | 38000 | 0.2293 | 0.1737 | | 0.0691 | 24.48 | 38500 | 0.2303 | 0.1750 | | 0.0613 | 24.79 | 39000 | 0.2280 | 0.1725 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
unstructuredio/donut-base-sroie
unstructuredio
2022-12-01T20:45:49Z
131
1
transformers
[ "transformers", "pytorch", "tensorboard", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "dataset:imagefolder", "license:mit", "endpoints_compatible", "region:us" ]
image-text-to-text
2022-12-01T15:48:28Z
--- license: mit tags: - generated_from_trainer datasets: - imagefolder model-index: - name: donut-base-sroie-long results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # donut-base-sroie-long This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1 - Datasets 2.7.0 - Tokenizers 0.11.0
fathyshalab/all-roberta-large-v1-auto_and_commute-4-16-5
fathyshalab
2022-12-01T20:40:16Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-30T18:55:42Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-auto_and_commute-4-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-auto_and_commute-4-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.2614 - Accuracy: 0.4289 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7929 | 1.0 | 1 | 2.5690 | 0.2667 | | 2.267 | 2.0 | 2 | 2.4558 | 0.3533 | | 1.8495 | 3.0 | 3 | 2.3630 | 0.3911 | | 1.4397 | 4.0 | 4 | 2.2956 | 0.4133 | | 1.2985 | 5.0 | 5 | 2.2614 | 0.4289 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
facebook/esm2_t36_3B_UR50D
facebook
2022-12-01T20:22:22Z
3,892,233
18
transformers
[ "transformers", "pytorch", "tf", "esm", "fill-mask", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-10-13T12:38:30Z
--- license: mit widget: - text: "MQIFVKTLTGKTITLEVEPS<mask>TIENVKAKIQDKEGIPPDQQRLIFAGKQLEDGRTLSDYNIQKESTLHLVLRLRGG" --- ## ESM-2 ESM-2 is a state-of-the-art protein model trained on a masked language modelling objective. It is suitable for fine-tuning on a wide range of tasks that take protein sequences as input. For detailed information on the model architecture and training data, please refer to the [accompanying paper](https://www.biorxiv.org/content/10.1101/2022.07.20.500902v2). You may also be interested in some demo notebooks ([PyTorch](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/protein_language_modeling.ipynb), [TensorFlow](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/protein_language_modeling-tf.ipynb)) which demonstrate how to fine-tune ESM-2 models on your tasks of interest. Several ESM-2 checkpoints are available in the Hub with varying sizes. Larger sizes generally have somewhat better accuracy, but require much more memory and time to train: | Checkpoint name | Num layers | Num parameters | |------------------------------|----|----------| | [esm2_t48_15B_UR50D](https://huggingface.co/facebook/esm2_t48_15B_UR50D) | 48 | 15B | | [esm2_t36_3B_UR50D](https://huggingface.co/facebook/esm2_t36_3B_UR50D) | 36 | 3B | | [esm2_t33_650M_UR50D](https://huggingface.co/facebook/esm2_t33_650M_UR50D) | 33 | 650M | | [esm2_t30_150M_UR50D](https://huggingface.co/facebook/esm2_t30_150M_UR50D) | 30 | 150M | | [esm2_t12_35M_UR50D](https://huggingface.co/facebook/esm2_t12_35M_UR50D) | 12 | 35M | | [esm2_t6_8M_UR50D](https://huggingface.co/facebook/esm2_t6_8M_UR50D) | 6 | 8M |
RomeroRZ/style-eternos
RomeroRZ
2022-12-01T20:16:55Z
0
11
null
[ "stable-diffusion", "text-to-image", "en", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2022-11-30T18:55:09Z
--- language: - en tags: - stable-diffusion - text-to-image license: creativeml-openrail-m --- ![The San Juan Mountains are beautiful!](https://i.imgur.com/FqZXZBa.jpg "Eternos, surrealism stable diffusion model") ![The San Juan Mountains are beautiful!](https://i.imgur.com/PV30R4X.jpg "Eternos, surrealism stable diffusion model") #### Eternos - A surrealist / Minimalist model (2.0 work in progress yay!) With a base instances images generated from multiples surrealism art, some Dali touches and roman / greek architecture influences the 704 version is more abstract and less style transferrable due to the higher resolution towards all regular styles. Tips : use init image (even stretched) for non-standart resolution, it can help SD a lot to guide it :) instance prompt : **romerorzeternos** (optional) You can find cool prompts with associated outputs on my website : **[romerorz.art](https://www.romerorz.art/)**
fathyshalab/all-roberta-large-v1-auto_and_commute-2-16-5
fathyshalab
2022-12-01T19:52:06Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-30T18:51:39Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-auto_and_commute-2-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-auto_and_commute-2-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.2614 - Accuracy: 0.4289 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7929 | 1.0 | 1 | 2.5690 | 0.2667 | | 2.267 | 2.0 | 2 | 2.4558 | 0.3533 | | 1.8495 | 3.0 | 3 | 2.3630 | 0.3911 | | 1.4397 | 4.0 | 4 | 2.2956 | 0.4133 | | 1.2985 | 5.0 | 5 | 2.2614 | 0.4289 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
ameerTelbani/ameeeer
ameerTelbani
2022-12-01T19:49:18Z
186
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-12-01T19:49:03Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: ameeeer results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.8656716346740723 --- # ameeeer Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### corgi ![corgi](images/corgi.jpg) #### samoyed ![samoyed](images/samoyed.jpg) #### shiba inu ![shiba inu](images/shiba_inu.jpg)
futuredatascience/from-classifier-v2
futuredatascience
2022-12-01T19:42:12Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-12-01T19:42:02Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 53 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 20, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 1060, "warmup_steps": 106, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
nvidia/nemo-megatron-mt5-3B
nvidia
2022-12-01T19:34:02Z
30
12
nemo
[ "nemo", "pytorch", "seq2seq", "masked language modeling", "multilingual", "ja", "en", "it", "lv", "ru", "hu", "zh", "pl", "el", "de", "cs", "ko", "hi", "no", "da", "sk", "fr", "pt", "lt", "es", "nl", "sv", "ro", "fi", "dataset:mc4", "arxiv:2010.11934", "arxiv:1910.10683", "arxiv:1809.05053", "arxiv:1909.08053", "license:cc-by-4.0", "region:us" ]
null
2022-09-22T19:46:28Z
--- language: - ja - en - it - lv - ru - hu - zh - pl - el - de - cs - ko - hi - no - da - sk - fr - pt - lt - es - nl - sv - ro - fi library_name: nemo datasets: - mc4 tags: - pytorch - seq2seq - masked language modeling - multilingual license: cc-by-4.0 --- # NeMo Megatron-mT5 3B <style> img { display: inline; } </style> |[![Model architecture](https://img.shields.io/badge/Arch-Encoder--Decoder-green)](#model-architecture)|[![Model size](https://img.shields.io/badge/Params-3B-green)](#model-architecture)|[![Language](https://img.shields.io/badge/Language-Multilingual-green)](#datasets) ## Model Description NeMo Megatron-mT5 3B is a *multilingual* transformer-based masked language model. [mT5](https://arxiv.org/abs/2010.11934) [1] is a class of encoder-decoder models trained with a span-based masked language modeling objective on a dataset comprising documents from many different languages. We follow the [T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1) approach of pre-training using only the masked language modeling objective. It has Tensor Parallelism (TP) of 2, Pipeline Parallelism (PP) of 1 and should fit on a single NVIDIA GPU for inference and 2 A100 80G GPUs for finetuning. This model was trained with [NeMo Megatron](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/stable/nlp/nemo_megatron/intro.html). **NOTE**: Weights are distributed in bfloat16. ## List of Languages We pre-trained our mT5 model on the following languages from the [mC4](https://github.com/allenai/allennlp/discussions/5265) dataset. 1. Japanese 2. English 3. Italian 4. Latvian 5. Russian 6. Hungarian 7. Chinese 8. Polish 9. Greek 10. German 11. Czech 12. Korean 13. Hindi 14. Norwegian 15. Danish 16. Slovak 17. French 18. Portuguese 19. Lithuanian 20. Spanish 21. Dutch 22. Swedish 23. Romanian 24. Finnish *NOTE*: The English data used to train our model is the smaller "clean" version (C4) used in the [T5 paper](https://arxiv.org/abs/1910.10683) and not the larger one distributed as part of mC4. ## Getting started ### Step 1: Install NeMo and dependencies You will need to install NVIDIA Apex and NeMo. ``` git clone https://github.com/ericharper/apex.git cd apex git checkout nm_v1.11.0 pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" --global-option="--fast_layer_norm" --global-option="--distributed_adam" --global-option="--deprecated_fused_adam" ./ ``` ``` pip install nemo_toolkit['nlp']==1.12.0 ``` Alternatively, you can use NeMo Megatron training docker container with all dependencies pre-installed - [https://developer.nvidia.com/nemo-megatron-open-beta?nvid=nv-int-tblg-249896](https://developer.nvidia.com/nemo-megatron-open-beta) ### Step 2: Run inference **Note.** The model has been trained with Tensor Parallelism (TP) of 2 and Pipeline Parallelism (PP) of 1, but it should be possible to run inference with tensor parallel size 1 on most NVIDIA GPUs ``` git clone https://github.com/NVIDIA/NeMo.git cd NeMo/examples/nlp/language_modeling git checkout r1.12.0 python megatron_t5_eval.py \ --model_file nemo_megatron_mt5_3b_bf16_tp2.nemo \ --prompt "La capitale de la France est <mask>" \ --tensor_model_parallel_size 2 ``` The script will automatically replace all \<mask\> tokens with the appropriate sentinel tokens used while pre-training and attempt to fill them in autoregressively with greedy decoding. *Expected Response*: ``` { 'prompt': 'La capitale de la France est <mask>', 'completion': { 'text': 'Paris', 'tokens': [(4586, '▁Paris', 0.0)]}, 'masked_input': '▁La ▁capital e ▁de ▁la ▁France ▁est ▁<extra_id_0>' } ``` - prompt: The provided raw prompt as input - completion: - text: The final generated text from the model along with special/sentinel tokens besides \</s\> - tokens: Each individual subword that is generated along with its log-probability. - masked_input: The original raw prompt with <mask> replaced with appropriate sentinel tokens. ## Training Data The model was trained on the [mC4](https://github.com/allenai/allennlp/discussions/5265) dataset made available by AI2 and hosted on Huggingface. ## Evaluation results Zero-shot language transformer performance on the [XNLI](https://arxiv.org/abs/1809.05053) dataset for a model fine-tuned on MNLI. | English | Spanish | German | French | Chinese| |---|---| ---|---|---| |89.4|86.4|84.5|85.8|79.9| ## Limitations The model was trained on the data originally crawled from the Internet. This data contains toxic language and societal biases. Therefore, the model may amplify those biases and return toxic responses especially when prompted with toxic prompts. ## References [1] [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) [2] [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/pdf/1909.08053.pdf) [3] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo) [4] [XNLI: Evaluating Cross-lingual Sentence Representations](https://arxiv.org/abs/1809.05053) ## Licence License to use this model is covered by the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/). By downloading the public and release version of the model, you accept the terms and conditions of the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/) license.
alanila/autotrain-training-2307973005
alanila
2022-12-01T19:32:39Z
101
0
transformers
[ "transformers", "pytorch", "autotrain", "text-classification", "en", "dataset:alanila/autotrain-data-training", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
text-classification
2022-12-01T19:29:41Z
--- tags: - autotrain - text-classification language: - en widget: - text: "I love AutoTrain 🤗" datasets: - alanila/autotrain-data-training co2_eq_emissions: emissions: 3.7679548759427006 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 2307973005 - CO2 Emissions (in grams): 3.7680 ## Validation Metrics - Loss: 1.098 - Accuracy: 0.508 - Macro F1: 0.559 - Micro F1: 0.508 - Weighted F1: 0.452 - Macro Precision: 0.610 - Micro Precision: 0.508 - Weighted Precision: 0.537 - Macro Recall: 0.581 - Micro Recall: 0.508 - Weighted Recall: 0.508 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/alanila/autotrain-training-2307973005 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("alanila/autotrain-training-2307973005", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("alanila/autotrain-training-2307973005", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
juancopi81/sd-class-cryptopunks-64
juancopi81
2022-12-01T19:24:22Z
37
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-12-01T19:21:45Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cryptopunks. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(juancopi81/sd-class-cryptopunks-64) image = pipeline().images[0] image ```
drewski/distilbert-base-uncased-finetuned-cola
drewski
2022-12-01T19:09:26Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-01T18:58:28Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: cola split: train args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5258252097729852 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.5561 - Matthews Correlation: 0.5258 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5245 | 1.0 | 535 | 0.5269 | 0.4122 | | 0.3513 | 2.0 | 1070 | 0.4976 | 0.4999 | | 0.2411 | 3.0 | 1605 | 0.5561 | 0.5258 | | 0.1907 | 4.0 | 2140 | 0.7641 | 0.5174 | | 0.1409 | 5.0 | 2675 | 0.8216 | 0.5189 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
shahukareem/sd-class-butterflies-64
shahukareem
2022-12-01T19:08:22Z
32
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-12-01T19:07:58Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('shahukareem/sd-class-butterflies-64') image = pipeline().images[0] image ```
fathyshalab/all-roberta-large-v1-home-9-16-5
fathyshalab
2022-12-01T19:02:24Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-30T18:47:41Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-home-9-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-home-9-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3789 - Accuracy: 0.3356 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7614 | 1.0 | 1 | 2.6146 | 0.1889 | | 2.2082 | 2.0 | 2 | 2.5232 | 0.2667 | | 1.8344 | 3.0 | 3 | 2.4516 | 0.2933 | | 1.4601 | 4.0 | 4 | 2.4033 | 0.3267 | | 1.2748 | 5.0 | 5 | 2.3789 | 0.3356 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
shrinivasbjoshi/r2-w266-setfit-mbti-multiclass-hypsearch-mpnet-nov30
shrinivasbjoshi
2022-12-01T18:17:06Z
6
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-12-01T18:16:51Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 2560 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 4.2848872506915845e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 2560, "warmup_steps": 256, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
fathyshalab/all-roberta-large-v1-home-6-16-5
fathyshalab
2022-12-01T17:37:54Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-30T18:41:46Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-home-6-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-home-6-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3789 - Accuracy: 0.3356 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7614 | 1.0 | 1 | 2.6146 | 0.1889 | | 2.2082 | 2.0 | 2 | 2.5232 | 0.2667 | | 1.8344 | 3.0 | 3 | 2.4516 | 0.2933 | | 1.4601 | 4.0 | 4 | 2.4033 | 0.3267 | | 1.2748 | 5.0 | 5 | 2.3789 | 0.3356 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
VlakoResker/sd-class-butterflies-32
VlakoResker
2022-12-01T17:28:55Z
32
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-12-01T17:28:38Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('VlakoResker/sd-class-butterflies-32') image = pipeline().images[0] image ```
fathyshalab/all-roberta-large-v1-home-5-16-5
fathyshalab
2022-12-01T17:10:56Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-30T18:39:47Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-home-5-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-home-5-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3789 - Accuracy: 0.3356 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7614 | 1.0 | 1 | 2.6146 | 0.1889 | | 2.2082 | 2.0 | 2 | 2.5232 | 0.2667 | | 1.8344 | 3.0 | 3 | 2.4516 | 0.2933 | | 1.4601 | 4.0 | 4 | 2.4033 | 0.3267 | | 1.2748 | 5.0 | 5 | 2.3789 | 0.3356 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
bowwwave/sd-class-butterflies-32
bowwwave
2022-12-01T16:52:39Z
32
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-12-01T16:52:24Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('bowwwave/sd-class-butterflies-32') image = pipeline().images[0] image ```
varunsappa/finetuning-sentiment-model-3000-samples
varunsappa
2022-12-01T16:23:25Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-01T16:09:20Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: train args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8833333333333333 - name: F1 type: f1 value: 0.8844884488448845 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3132 - Accuracy: 0.8833 - F1: 0.8845 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
fanpu/model_output_original_subreddit-AskScienceFiction_1
fanpu
2022-12-01T15:13:34Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-12-01T06:12:05Z
--- license: mit tags: - generated_from_trainer model-index: - name: model_output_original_subreddit-AskScienceFiction_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # model_output_original_subreddit-AskScienceFiction_1 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6407 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.9231 | 0.3 | 500 | 3.8087 | | 3.8459 | 0.6 | 1000 | 3.7766 | | 3.8217 | 0.9 | 1500 | 3.7372 | | 3.6939 | 1.21 | 2000 | 3.7237 | | 3.6745 | 1.51 | 2500 | 3.7030 | | 3.6757 | 1.81 | 3000 | 3.6811 | | 3.5099 | 2.11 | 3500 | 3.6839 | | 3.505 | 2.41 | 4000 | 3.6709 | | 3.5232 | 2.71 | 4500 | 3.6515 | | 3.3416 | 3.01 | 5000 | 3.6563 | | 3.3725 | 3.32 | 5500 | 3.6496 | | 3.3672 | 3.62 | 6000 | 3.6373 | | 3.3495 | 3.92 | 6500 | 3.6280 | | 3.2464 | 4.22 | 7000 | 3.6439 | | 3.2467 | 4.52 | 7500 | 3.6415 | | 3.2473 | 4.82 | 8000 | 3.6407 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1 - Tokenizers 0.13.2
YeaHi/diffusion
YeaHi
2022-12-01T15:11:02Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2022-12-01T15:11:02Z
--- license: bigscience-openrail-m ---
arrafmousa/xlnet-base-cased-finetuned-squad
arrafmousa
2022-12-01T15:02:55Z
88
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlnet", "question-answering", "generated_from_trainer", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-12-01T13:27:48Z
--- license: mit tags: - generated_from_trainer model-index: - name: xlnet-base-cased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlnet-base-cased-finetuned-squad This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1093 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 203 | 0.2186 | | No log | 2.0 | 406 | 0.1985 | | 0.4204 | 3.0 | 609 | 0.1093 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
mousaazari/t5-text2sql_v1
mousaazari
2022-12-01T13:46:33Z
15
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-15T12:11:22Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5-text2sql_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-text2sql_v1 This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0772 - Rouge2 Precision: 0.8835 - Rouge2 Recall: 0.39 - Rouge2 Fmeasure: 0.5088 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:----:|:---------------:|:----------------:|:-------------:|:---------------:| | No log | 1.0 | 11 | 1.9420 | 0.0755 | 0.022 | 0.0323 | | No log | 2.0 | 22 | 1.2731 | 0.0912 | 0.0263 | 0.039 | | No log | 3.0 | 33 | 0.8717 | 0.0993 | 0.0284 | 0.0424 | | No log | 4.0 | 44 | 0.5705 | 0.1014 | 0.032 | 0.0464 | | No log | 5.0 | 55 | 0.3929 | 0.4151 | 0.1528 | 0.2149 | | No log | 6.0 | 66 | 0.2911 | 0.7778 | 0.351 | 0.4594 | | No log | 7.0 | 77 | 0.2290 | 0.781 | 0.3305 | 0.4395 | | No log | 8.0 | 88 | 0.1995 | 0.7381 | 0.2992 | 0.4018 | | No log | 9.0 | 99 | 0.1768 | 0.752 | 0.3147 | 0.4202 | | No log | 10.0 | 110 | 0.1554 | 0.7242 | 0.3136 | 0.412 | | No log | 11.0 | 121 | 0.1446 | 0.8128 | 0.3583 | 0.4694 | | No log | 12.0 | 132 | 0.1337 | 0.8194 | 0.3653 | 0.478 | | No log | 13.0 | 143 | 0.1264 | 0.8088 | 0.3564 | 0.4675 | | No log | 14.0 | 154 | 0.1170 | 0.8036 | 0.3502 | 0.462 | | No log | 15.0 | 165 | 0.1078 | 0.8851 | 0.3981 | 0.5188 | | No log | 16.0 | 176 | 0.1046 | 0.8716 | 0.3864 | 0.5054 | | No log | 17.0 | 187 | 0.1007 | 0.8753 | 0.3851 | 0.5042 | | No log | 18.0 | 198 | 0.0951 | 0.8756 | 0.3941 | 0.5126 | | No log | 19.0 | 209 | 0.0928 | 0.8414 | 0.3565 | 0.4708 | | No log | 20.0 | 220 | 0.0894 | 0.854 | 0.3642 | 0.4808 | | No log | 21.0 | 231 | 0.0863 | 0.8954 | 0.3954 | 0.5168 | | No log | 22.0 | 242 | 0.0832 | 0.888 | 0.3931 | 0.5122 | | No log | 23.0 | 253 | 0.0828 | 0.8835 | 0.39 | 0.5088 | | No log | 24.0 | 264 | 0.0820 | 0.8835 | 0.39 | 0.5088 | | No log | 25.0 | 275 | 0.0803 | 0.8835 | 0.39 | 0.5088 | | No log | 26.0 | 286 | 0.0792 | 0.8835 | 0.39 | 0.5088 | | No log | 27.0 | 297 | 0.0784 | 0.8761 | 0.3886 | 0.5066 | | No log | 28.0 | 308 | 0.0775 | 0.8835 | 0.39 | 0.5088 | | No log | 29.0 | 319 | 0.0772 | 0.8835 | 0.39 | 0.5088 | | No log | 30.0 | 330 | 0.0772 | 0.8835 | 0.39 | 0.5088 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
MGanesh29/distilbert-base-uncased-finetuned-cola-v5
MGanesh29
2022-12-01T13:40:01Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-01T10:54:11Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: distilbert-base-uncased-finetuned-cola-v5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola-v5 This model is a fine-tuned version of [MGanesh29/distilbert-base-uncased-finetuned-cola-v5](https://huggingface.co/MGanesh29/distilbert-base-uncased-finetuned-cola-v5) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2563 - Accuracy: 0.9310 - Precision: 0.9310 - Recall: 0.9310 - F1: 0.9310 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 6.25 | 50 | 0.2638 | 0.9310 | 0.9310 | 0.9310 | 0.9310 | | No log | 12.5 | 100 | 0.2607 | 0.9310 | 0.9310 | 0.9310 | 0.9310 | | No log | 18.75 | 150 | 0.2643 | 0.9310 | 0.9310 | 0.9310 | 0.9310 | | No log | 25.0 | 200 | 0.2563 | 0.9310 | 0.9310 | 0.9310 | 0.9310 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
fathyshalab/all-roberta-large-v1-home-2-16-5
fathyshalab
2022-12-01T13:02:46Z
106
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-30T18:33:51Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-home-2-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-home-2-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3789 - Accuracy: 0.3356 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7614 | 1.0 | 1 | 2.6146 | 0.1889 | | 2.2082 | 2.0 | 2 | 2.5232 | 0.2667 | | 1.8344 | 3.0 | 3 | 2.4516 | 0.2933 | | 1.4601 | 4.0 | 4 | 2.4033 | 0.3267 | | 1.2748 | 5.0 | 5 | 2.3789 | 0.3356 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
manirai91/enlm-roberta-conll2003-final
manirai91
2022-12-01T12:28:17Z
110
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:conll2003", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-12-01T11:02:56Z
--- tags: - generated_from_trainer datasets: - conll2003 model-index: - name: enlm-roberta-conll2003-final results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # enlm-roberta-conll2003-final This model is a fine-tuned version of [manirai91/enlm-roberta-final](https://huggingface.co/manirai91/enlm-roberta-final) on the conll2003 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.11.0 - Datasets 2.7.0 - Tokenizers 0.13.2
fathyshalab/all-roberta-large-v1-kitchen_and_dining-9-16-5
fathyshalab
2022-12-01T12:11:49Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-30T18:30:01Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-kitchen_and_dining-9-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-kitchen_and_dining-9-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3560 - Accuracy: 0.2692 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7421 | 1.0 | 1 | 2.5878 | 0.2012 | | 2.1065 | 2.0 | 2 | 2.4975 | 0.2012 | | 1.5994 | 3.0 | 3 | 2.4274 | 0.2249 | | 1.1739 | 4.0 | 4 | 2.3808 | 0.2456 | | 1.083 | 5.0 | 5 | 2.3560 | 0.2692 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
ViktorDo/DistilBERT-POWO_MGH_Life_Form_Finetuned
ViktorDo
2022-12-01T11:55:19Z
110
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-01T11:45:50Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: DistilBERT-POWO_MGH_Life_Form_Finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DistilBERT-POWO_MGH_Life_Form_Finetuned This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3845 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.5891 | 1.0 | 914 | 0.4130 | | 0.4207 | 2.0 | 1828 | 0.3868 | | 0.3722 | 3.0 | 2742 | 0.3845 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
hizak/sd-class-butterflies-64
hizak
2022-12-01T11:52:54Z
33
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-12-01T11:52:01Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(hizak/sd-class-butterflies-64) image = pipeline().images[0] image ```
fathyshalab/all-roberta-large-v1-kitchen_and_dining-8-16-5
fathyshalab
2022-12-01T11:45:56Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-30T18:28:12Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-kitchen_and_dining-8-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-kitchen_and_dining-8-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3560 - Accuracy: 0.2692 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7421 | 1.0 | 1 | 2.5878 | 0.2012 | | 2.1065 | 2.0 | 2 | 2.4975 | 0.2012 | | 1.5994 | 3.0 | 3 | 2.4274 | 0.2249 | | 1.1739 | 4.0 | 4 | 2.3808 | 0.2456 | | 1.083 | 5.0 | 5 | 2.3560 | 0.2692 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
fathyshalab/all-roberta-large-v1-kitchen_and_dining-7-16-5
fathyshalab
2022-12-01T11:20:14Z
103
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-30T18:26:22Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-kitchen_and_dining-7-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-kitchen_and_dining-7-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3560 - Accuracy: 0.2692 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7421 | 1.0 | 1 | 2.5878 | 0.2012 | | 2.1065 | 2.0 | 2 | 2.4975 | 0.2012 | | 1.5994 | 3.0 | 3 | 2.4274 | 0.2249 | | 1.1739 | 4.0 | 4 | 2.3808 | 0.2456 | | 1.083 | 5.0 | 5 | 2.3560 | 0.2692 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
rls-telefonica/word_sense_mchoice_w_d_c
rls-telefonica
2022-12-01T11:13:31Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "multiple-choice", "generated_from_trainer", "endpoints_compatible", "region:us" ]
multiple-choice
2022-12-01T10:46:55Z
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: word_sense_mchoice_w_d_c results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # word_sense_mchoice_w_d_c This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-cased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8885 - Accuracy: 0.8210 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6904 | 1.0 | 531 | 0.5099 | 0.7913 | | 0.2393 | 2.0 | 1062 | 0.6351 | 0.8202 | | 0.0842 | 3.0 | 1593 | 0.8885 | 0.8210 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
Earrr/Disco
Earrr
2022-12-01T11:10:20Z
0
0
null
[ "region:us" ]
null
2022-12-01T11:03:56Z
I don't own this model I uploaded it for personal use please contact me to delete if you are the auther [email protected]
hizak/sd-class-butterflies-32
hizak
2022-12-01T11:09:16Z
37
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-12-01T10:12:45Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(hizak/sd-class-butterflies-32) image = pipeline().images[0] image ```
AlekseyKorshuk/6.7b-ri-reproduce-combined-4-gpu-0-val
AlekseyKorshuk
2022-12-01T10:15:15Z
9
0
transformers
[ "transformers", "pytorch", "opt", "text-generation", "generated_from_trainer", "dataset:ChaiML/dalio_combined_v1", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-30T10:39:53Z
--- license: other tags: - generated_from_trainer datasets: - ChaiML/dalio_combined_v1 model-index: - name: 6.7b-ri-reproduce-combined-4-gpu-0-val results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 6.7b-ri-reproduce-combined-4-gpu-0-val This model is a fine-tuned version of [facebook/opt-6.7b](https://huggingface.co/facebook/opt-6.7b) on the ChaiML/dalio_combined_v1 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 9e-07 - train_batch_size: 1 - eval_batch_size: 8 - seed: 100 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 4 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 15.0 ### Training results ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
ConvLab/lava-policy-multiwoz20
ConvLab
2022-12-01T09:59:09Z
0
0
null
[ "dialogue policy", "task-oriented dialog", "en", "license:apache-2.0", "region:us" ]
null
2022-11-29T15:40:46Z
--- language: - en license: apache-2.0 tags: - dialogue policy - task-oriented dialog --- # lava-policy-multiwoz This is the best performing LAVA_kl model from the [LAVA paper](https://aclanthology.org/2020.coling-main.41/) which can be used as a word-level policy module in ConvLab3 pipeline. Refer to [ConvLab-3](https://github.com/ConvLab/ConvLab-3) for model description and usage. ## Training procedure The model was trained on MultiWOZ 2.0 data using the [LAVA codebase](https://gitlab.cs.uni-duesseldorf.de/general/dsml/lava-public). The model started with VAE pre-training and fine-tuning with informative prior KL loss, followed by corpus-based RL with REINFORCE. ### Training hyperparameters The following hyperparameters were used during SL training: - y_size: 10 - k_size: 20 - beta: 0.1 - simple_posterior: true - contextual_posterior: false - learning_rate: 1e-03 - max_vocab_size: 1000 - max_utt_len: 50 - max_dec_len: 30 - backward_size: 2 - train_batch_size: 128 - seed: 58 - optimizer: Adam - num_epoch: 100 with early stopping based on validation set The following hyperparameters were used during RL training: - tune_pi_only: false - max_words: 100 - temperature: 1.0 - episode_repeat: 1.0 - rl_lr: 0.01 - momentum: 0.0 - nesterov: false - gamma: 0.99 - rl_clip: 5.0 - random_seed: 38
AlekseyKorshuk/6.7b-ri-reproduce-combined-4-gpu-20-val
AlekseyKorshuk
2022-12-01T09:45:32Z
4
0
transformers
[ "transformers", "pytorch", "opt", "text-generation", "generated_from_trainer", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-30T10:26:05Z
--- license: other tags: - generated_from_trainer metrics: - accuracy model-index: - name: 6.7b-ri-reproduce-combined-4-gpu-20-val results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 6.7b-ri-reproduce-combined-4-gpu-20-val This model is a fine-tuned version of [facebook/opt-6.7b](https://huggingface.co/facebook/opt-6.7b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.9434 - Accuracy: 0.0329 - Perplexity: 51.5916 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 9e-07 - train_batch_size: 1 - eval_batch_size: 8 - seed: 100 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 4 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 15.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Perplexity | |:-------------:|:-----:|:----:|:---------------:|:--------:|:----------:| | 2.5731 | 1.0 | 79 | 2.6113 | 0.0317 | 13.6171 | | 2.206 | 2.0 | 158 | 2.4805 | 0.0328 | 11.9469 | | 1.9105 | 3.0 | 237 | 2.4512 | 0.0333 | 11.6019 | | 1.6301 | 4.0 | 316 | 2.5078 | 0.0345 | 12.2780 | | 1.3733 | 5.0 | 395 | 2.6816 | 0.0342 | 14.6090 | | 1.1337 | 6.0 | 474 | 3.0078 | 0.0330 | 20.2431 | | 0.9619 | 7.0 | 553 | 3.1777 | 0.0330 | 23.9923 | | 0.798 | 8.0 | 632 | 3.2559 | 0.0330 | 25.9419 | | 0.6653 | 9.0 | 711 | 3.4277 | 0.0331 | 30.8068 | | 0.552 | 10.0 | 790 | 3.5566 | 0.0333 | 35.0453 | | 0.4568 | 11.0 | 869 | 3.7324 | 0.0324 | 41.7802 | | 0.3756 | 12.0 | 948 | 3.8184 | 0.0328 | 45.5295 | | 0.3119 | 13.0 | 1027 | 3.8477 | 0.0331 | 46.8831 | | 0.2448 | 14.0 | 1106 | 3.9062 | 0.0329 | 49.7122 | | 0.1986 | 15.0 | 1185 | 3.9434 | 0.0329 | 51.5916 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
gary109/ai-light-dance_drums_ft_pretrain_wav2vec2-base-new-13k_onset-drums_fold_3
gary109
2022-12-01T09:36:58Z
85
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "gary109/AI_Light_Dance", "generated_from_trainer", "dataset:ai_light_dance", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-30T11:17:30Z
--- tags: - automatic-speech-recognition - gary109/AI_Light_Dance - generated_from_trainer datasets: - ai_light_dance model-index: - name: ai-light-dance_drums_ft_pretrain_wav2vec2-base-new-13k_onset-drums_fold_3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ai-light-dance_drums_ft_pretrain_wav2vec2-base-new-13k_onset-drums_fold_3 This model is a fine-tuned version of [gary109/ai-light-dance_drums_ft_pretrain_wav2vec2-base-new-13k_onset-drums_fold_2](https://huggingface.co/gary109/ai-light-dance_drums_ft_pretrain_wav2vec2-base-new-13k_onset-drums_fold_2) on the GARY109/AI_LIGHT_DANCE - ONSET-DRUMS_FOLD_3 dataset. It achieves the following results on the evaluation set: - Loss: 0.4093 - Wer: 0.1250 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.4557 | 1.0 | 70 | 0.5794 | 0.1197 | | 0.6796 | 2.0 | 140 | 0.5726 | 0.1388 | | 0.4511 | 3.0 | 210 | 0.6290 | 0.1242 | | 0.609 | 4.0 | 280 | 0.7112 | 0.1187 | | 0.4082 | 5.0 | 350 | 0.8275 | 0.1965 | | 0.4638 | 6.0 | 420 | 0.4767 | 0.1524 | | 0.4446 | 7.0 | 490 | 0.5091 | 0.1376 | | 0.4337 | 8.0 | 560 | 0.6622 | 0.1170 | | 0.4604 | 9.0 | 630 | 0.7242 | 0.1600 | | 0.4462 | 10.0 | 700 | 0.7298 | 0.1383 | | 0.4201 | 11.0 | 770 | 0.8058 | 0.1362 | | 0.4204 | 12.0 | 840 | 0.6255 | 0.1099 | | 0.461 | 13.0 | 910 | 0.5204 | 0.1109 | | 0.3779 | 14.0 | 980 | 0.6911 | 0.1125 | | 0.3403 | 15.0 | 1050 | 0.5863 | 0.1188 | | 0.6223 | 16.0 | 1120 | 0.6367 | 0.1147 | | 0.3827 | 17.0 | 1190 | 0.6266 | 0.1293 | | 0.3055 | 18.0 | 1260 | 0.4866 | 0.1095 | | 0.3917 | 19.0 | 1330 | 0.4093 | 0.1250 | | 0.3912 | 20.0 | 1400 | 0.4514 | 0.1077 | | 0.3861 | 21.0 | 1470 | 0.5043 | 0.1156 | | 0.3659 | 22.0 | 1540 | 0.5680 | 0.1091 | | 0.3536 | 23.0 | 1610 | 0.7940 | 0.1029 | | 0.3559 | 24.0 | 1680 | 0.5877 | 0.1101 | | 0.3274 | 25.0 | 1750 | 0.4461 | 0.1059 | | 0.5232 | 26.0 | 1820 | 1.2051 | 0.1068 | | 0.3241 | 27.0 | 1890 | 0.8716 | 0.1099 | | 0.3169 | 28.0 | 1960 | 0.6752 | 0.1082 | | 0.2938 | 29.0 | 2030 | 0.6023 | 0.1071 | | 0.3022 | 30.0 | 2100 | 0.6122 | 0.1146 | | 0.4245 | 31.0 | 2170 | 0.5735 | 0.1102 | | 0.3095 | 32.0 | 2240 | 0.4476 | 0.1042 | | 0.4062 | 33.0 | 2310 | 0.6339 | 0.1130 | | 0.3202 | 34.0 | 2380 | 0.4101 | 0.1077 | | 0.2952 | 35.0 | 2450 | 0.4825 | 0.1076 | | 0.2945 | 36.0 | 2520 | 0.4998 | 0.1058 | | 0.336 | 37.0 | 2590 | 0.5490 | 0.1061 | | 0.2912 | 38.0 | 2660 | 0.4804 | 0.1038 | | 0.282 | 39.0 | 2730 | 0.4776 | 0.1022 | | 0.4359 | 40.0 | 2800 | 0.4376 | 0.1044 | | 0.2698 | 41.0 | 2870 | 0.5609 | 0.1098 | | 0.3004 | 42.0 | 2940 | 0.5258 | 0.1083 | | 0.2873 | 43.0 | 3010 | 0.4810 | 0.1069 | | 0.3413 | 44.0 | 3080 | 0.4961 | 0.1080 | | 0.2802 | 45.0 | 3150 | 0.6850 | 0.1076 | | 0.2584 | 46.0 | 3220 | 0.7210 | 0.1082 | | 0.3282 | 47.0 | 3290 | 0.6179 | 0.1053 | | 0.2666 | 48.0 | 3360 | 0.7673 | 0.1075 | | 0.2989 | 49.0 | 3430 | 0.7710 | 0.1079 | | 0.2676 | 50.0 | 3500 | 0.7655 | 0.1076 | ### Framework versions - Transformers 4.24.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
MGanesh29/distilbert-base-uncased-finetuned-cola-v3
MGanesh29
2022-12-01T09:17:29Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-01T09:00:47Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola-v3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola-v3 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9655 - Matthews Correlation: 0.7369 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | No log | 1.0 | 8 | 1.9112 | 0.1486 | | No log | 2.0 | 16 | 1.8626 | 0.1273 | | No log | 3.0 | 24 | 1.7793 | 0.1947 | | No log | 4.0 | 32 | 1.6722 | 0.1681 | | No log | 5.0 | 40 | 1.5578 | 0.3876 | | No log | 6.0 | 48 | 1.4463 | 0.5551 | | No log | 7.0 | 56 | 1.3280 | 0.5498 | | No log | 8.0 | 64 | 1.2302 | 0.5936 | | No log | 9.0 | 72 | 1.1408 | 0.6998 | | No log | 10.0 | 80 | 1.0765 | 0.6601 | | No log | 11.0 | 88 | 1.0145 | 0.6988 | | No log | 12.0 | 96 | 0.9655 | 0.7369 | | No log | 13.0 | 104 | 0.9389 | 0.6992 | | No log | 14.0 | 112 | 0.9258 | 0.6992 | | No log | 15.0 | 120 | 0.9209 | 0.6992 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
hr-elrond/autotrain-consumer-nature-speech_finbert-2147169289
hr-elrond
2022-12-01T08:59:48Z
100
2
transformers
[ "transformers", "pytorch", "autotrain", "text-classification", "unk", "dataset:hr-elrond/autotrain-data-consumer-nature-speech_finbert", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
text-classification
2022-11-18T15:00:49Z
--- tags: - autotrain - text-classification language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - hr-elrond/autotrain-data-consumer-nature-speech_finbert co2_eq_emissions: emissions: 0.004371975254312265 --- # Model Trained Using AutoTrain We trained FinBERT to identify whether firms´ talk contains consumer concepts of human nature (e.g., "I believe consumers generally act rational.", "Consumers must take over responsibility for the choices they make.", "It seems consumers behave quite altruistic.") from statements that do not (e.g., "We expect buyers to double their purchases next year.", "We see a 5% growth in numbers compared to the previous year."). The training data consisted of 236 positive documents (containing concepts of consumer nature) and 1034 negative documents (not contain concepts of consumer nature) extracted from earnings call transcripts of S&P-500 companies (2015-2020). # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 2147169289 - CO2 Emissions (in grams): 0.0044 ## Validation Metrics - Loss: 0.256 - Accuracy: 0.913 - Precision: 0.736 - Recall: 0.830 - AUC: 0.956 - F1: 0.780 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/hr-elrond/autotrain-consumer-nature-speech_finbert-2147169289 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("hr-elrond/autotrain-consumer-nature-speech_finbert-2147169289", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("hr-elrond/autotrain-consumer-nature-speech_finbert-2147169289", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
htermotto/distilbert-base-uncased-finetuned-sngp-squad-seed-999
htermotto
2022-12-01T08:30:08Z
31
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "generated_from_trainer", "dataset:squad_v2", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-12-01T05:08:42Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: distilbert-base-uncased-finetuned-sngp-squad-seed-999 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-sngp-squad-seed-999 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 1.9622 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.4527 | 1.0 | 8248 | 2.0711 | | 2.1703 | 2.0 | 16496 | 1.9622 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
ravinduj/finetuning-sentiment-model-3000-samples
ravinduj
2022-12-01T08:21:50Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-30T10:38:16Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: train args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8533333333333334 - name: F1 type: f1 value: 0.8543046357615894 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3489 - Accuracy: 0.8533 - F1: 0.8543 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
fathyshalab/all-roberta-large-v1-kitchen_and_dining-3-16-5
fathyshalab
2022-12-01T08:14:12Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-30T18:19:00Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-kitchen_and_dining-3-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-kitchen_and_dining-3-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3560 - Accuracy: 0.2692 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7421 | 1.0 | 1 | 2.5878 | 0.2012 | | 2.1065 | 2.0 | 2 | 2.4975 | 0.2012 | | 1.5994 | 3.0 | 3 | 2.4274 | 0.2249 | | 1.1739 | 4.0 | 4 | 2.3808 | 0.2456 | | 1.083 | 5.0 | 5 | 2.3560 | 0.2692 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
pig4431/YELP_ALBERT_5E
pig4431
2022-12-01T08:07:20Z
107
0
transformers
[ "transformers", "pytorch", "albert", "text-classification", "generated_from_trainer", "dataset:yelp_review_full", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-01T07:33:09Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - yelp_review_full metrics: - accuracy model-index: - name: YELP_ALBERT_5E results: - task: name: Text Classification type: text-classification dataset: name: yelp_review_full type: yelp_review_full config: yelp_review_full split: train args: yelp_review_full metrics: - name: Accuracy type: accuracy value: 0.9733333333333334 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # YELP_ALBERT_5E This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the yelp_review_full dataset. It achieves the following results on the evaluation set: - Loss: 0.1394 - Accuracy: 0.9733 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4967 | 0.03 | 50 | 0.1667 | 0.9467 | | 0.3268 | 0.06 | 100 | 0.2106 | 0.9133 | | 0.3413 | 0.1 | 150 | 0.2107 | 0.9667 | | 0.3172 | 0.13 | 200 | 0.1906 | 0.94 | | 0.2804 | 0.16 | 250 | 0.2588 | 0.9 | | 0.2604 | 0.19 | 300 | 0.2023 | 0.94 | | 0.2532 | 0.22 | 350 | 0.1263 | 0.9533 | | 0.2103 | 0.26 | 400 | 0.1233 | 0.96 | | 0.212 | 0.29 | 450 | 0.2019 | 0.9267 | | 0.2669 | 0.32 | 500 | 0.1110 | 0.9667 | | 0.2187 | 0.35 | 550 | 0.1542 | 0.96 | | 0.2203 | 0.38 | 600 | 0.0879 | 0.9733 | | 0.2699 | 0.42 | 650 | 0.0971 | 0.9667 | | 0.2107 | 0.45 | 700 | 0.0863 | 0.9667 | | 0.2443 | 0.48 | 750 | 0.0823 | 0.9733 | | 0.1987 | 0.51 | 800 | 0.1207 | 0.9733 | | 0.2326 | 0.54 | 850 | 0.1368 | 0.9667 | | 0.1787 | 0.58 | 900 | 0.1027 | 0.9667 | | 0.2159 | 0.61 | 950 | 0.2443 | 0.9333 | | 0.1316 | 0.64 | 1000 | 0.2035 | 0.9467 | | 0.2416 | 0.67 | 1050 | 0.0882 | 0.9733 | | 0.2008 | 0.7 | 1100 | 0.1709 | 0.9533 | | 0.2065 | 0.74 | 1150 | 0.1098 | 0.9667 | | 0.2391 | 0.77 | 1200 | 0.1055 | 0.9667 | | 0.1533 | 0.8 | 1250 | 0.1997 | 0.94 | | 0.2016 | 0.83 | 1300 | 0.0899 | 0.96 | | 0.2016 | 0.86 | 1350 | 0.0957 | 0.9733 | | 0.2316 | 0.9 | 1400 | 0.0784 | 0.98 | | 0.1839 | 0.93 | 1450 | 0.0784 | 0.9733 | | 0.2121 | 0.96 | 1500 | 0.1150 | 0.9733 | | 0.1307 | 0.99 | 1550 | 0.0969 | 0.9733 | | 0.1271 | 1.02 | 1600 | 0.2326 | 0.9467 | | 0.1736 | 1.06 | 1650 | 0.0979 | 0.9667 | | 0.1357 | 1.09 | 1700 | 0.0862 | 0.98 | | 0.1871 | 1.12 | 1750 | 0.1419 | 0.9667 | | 0.1411 | 1.15 | 1800 | 0.1301 | 0.96 | | 0.1317 | 1.18 | 1850 | 0.1602 | 0.9533 | | 0.1432 | 1.22 | 1900 | 0.1885 | 0.9533 | | 0.1793 | 1.25 | 1950 | 0.0776 | 0.9667 | | 0.1322 | 1.28 | 2000 | 0.0822 | 0.9733 | | 0.1416 | 1.31 | 2050 | 0.0920 | 0.9733 | | 0.1524 | 1.34 | 2100 | 0.0673 | 0.98 | | 0.1338 | 1.38 | 2150 | 0.0602 | 0.98 | | 0.152 | 1.41 | 2200 | 0.0916 | 0.98 | | 0.1192 | 1.44 | 2250 | 0.0559 | 0.98 | | 0.1471 | 1.47 | 2300 | 0.1096 | 0.9667 | | 0.1267 | 1.5 | 2350 | 0.0695 | 0.9733 | | 0.1776 | 1.54 | 2400 | 0.1363 | 0.96 | | 0.1495 | 1.57 | 2450 | 0.0818 | 0.98 | | 0.1158 | 1.6 | 2500 | 0.1282 | 0.9667 | | 0.1772 | 1.63 | 2550 | 0.0682 | 0.9733 | | 0.1187 | 1.66 | 2600 | 0.1032 | 0.9733 | | 0.136 | 1.7 | 2650 | 0.1071 | 0.9667 | | 0.1829 | 1.73 | 2700 | 0.0753 | 0.9667 | | 0.1147 | 1.76 | 2750 | 0.1071 | 0.9733 | | 0.1174 | 1.79 | 2800 | 0.1441 | 0.9667 | | 0.0707 | 1.82 | 2850 | 0.1362 | 0.9667 | | 0.1372 | 1.86 | 2900 | 0.1861 | 0.9533 | | 0.2108 | 1.89 | 2950 | 0.0770 | 0.9733 | | 0.2014 | 1.92 | 3000 | 0.1114 | 0.9667 | | 0.1373 | 1.95 | 3050 | 0.1244 | 0.9667 | | 0.1242 | 1.98 | 3100 | 0.1220 | 0.96 | | 0.1267 | 2.02 | 3150 | 0.1139 | 0.9733 | | 0.1021 | 2.05 | 3200 | 0.2013 | 0.9533 | | 0.1091 | 2.08 | 3250 | 0.1027 | 0.9733 | | 0.0648 | 2.11 | 3300 | 0.1464 | 0.9733 | | 0.1207 | 2.14 | 3350 | 0.1255 | 0.9733 | | 0.0833 | 2.18 | 3400 | 0.0708 | 0.98 | | 0.0796 | 2.21 | 3450 | 0.1608 | 0.96 | | 0.0624 | 2.24 | 3500 | 0.0827 | 0.98 | | 0.0518 | 2.27 | 3550 | 0.0602 | 0.98 | | 0.1242 | 2.3 | 3600 | 0.0752 | 0.9733 | | 0.0422 | 2.34 | 3650 | 0.1000 | 0.9733 | | 0.0748 | 2.37 | 3700 | 0.1171 | 0.9667 | | 0.0839 | 2.4 | 3750 | 0.1341 | 0.9667 | | 0.1033 | 2.43 | 3800 | 0.0744 | 0.98 | | 0.0567 | 2.46 | 3850 | 0.0869 | 0.98 | | 0.0756 | 2.5 | 3900 | 0.0745 | 0.98 | | 0.0768 | 2.53 | 3950 | 0.0895 | 0.9733 | | 0.0878 | 2.56 | 4000 | 0.0703 | 0.98 | | 0.1023 | 2.59 | 4050 | 0.0806 | 0.98 | | 0.0807 | 2.62 | 4100 | 0.0338 | 0.9867 | | 0.0868 | 2.66 | 4150 | 0.0892 | 0.9667 | | 0.0648 | 2.69 | 4200 | 0.1637 | 0.9533 | | 0.0535 | 2.72 | 4250 | 0.1622 | 0.9667 | | 0.0675 | 2.75 | 4300 | 0.1354 | 0.9733 | | 0.1121 | 2.78 | 4350 | 0.1440 | 0.9533 | | 0.0714 | 2.82 | 4400 | 0.1022 | 0.9467 | | 0.0786 | 2.85 | 4450 | 0.1110 | 0.9733 | | 0.0822 | 2.88 | 4500 | 0.1218 | 0.9733 | | 0.1075 | 2.91 | 4550 | 0.1041 | 0.9733 | | 0.0783 | 2.94 | 4600 | 0.0992 | 0.9733 | | 0.1059 | 2.98 | 4650 | 0.1187 | 0.9733 | | 0.067 | 3.01 | 4700 | 0.0931 | 0.9733 | | 0.0425 | 3.04 | 4750 | 0.1252 | 0.9733 | | 0.0539 | 3.07 | 4800 | 0.1152 | 0.9733 | | 0.0419 | 3.1 | 4850 | 0.1534 | 0.9667 | | 0.0462 | 3.13 | 4900 | 0.1398 | 0.9733 | | 0.0435 | 3.17 | 4950 | 0.1168 | 0.98 | | 0.0144 | 3.2 | 5000 | 0.1489 | 0.9667 | | 0.0367 | 3.23 | 5050 | 0.1293 | 0.9733 | | 0.0336 | 3.26 | 5100 | 0.1353 | 0.9733 | | 0.0246 | 3.29 | 5150 | 0.0958 | 0.98 | | 0.0181 | 3.33 | 5200 | 0.1294 | 0.9733 | | 0.0357 | 3.36 | 5250 | 0.1209 | 0.9733 | | 0.0683 | 3.39 | 5300 | 0.1748 | 0.96 | | 0.0353 | 3.42 | 5350 | 0.2159 | 0.9533 | | 0.0415 | 3.45 | 5400 | 0.1723 | 0.96 | | 0.0336 | 3.49 | 5450 | 0.1031 | 0.98 | | 0.0475 | 3.52 | 5500 | 0.0959 | 0.98 | | 0.0393 | 3.55 | 5550 | 0.2163 | 0.96 | | 0.0337 | 3.58 | 5600 | 0.1097 | 0.9733 | | 0.0415 | 3.61 | 5650 | 0.1365 | 0.98 | | 0.035 | 3.65 | 5700 | 0.1175 | 0.98 | | 0.0448 | 3.68 | 5750 | 0.1543 | 0.9667 | | 0.0445 | 3.71 | 5800 | 0.2005 | 0.96 | | 0.0211 | 3.74 | 5850 | 0.1179 | 0.98 | | 0.0198 | 3.77 | 5900 | 0.1298 | 0.9733 | | 0.026 | 3.81 | 5950 | 0.2167 | 0.9667 | | 0.0412 | 3.84 | 6000 | 0.1224 | 0.98 | | 0.0446 | 3.87 | 6050 | 0.0798 | 0.98 | | 0.0174 | 3.9 | 6100 | 0.0577 | 0.9933 | | 0.0535 | 3.93 | 6150 | 0.1482 | 0.9667 | | 0.0495 | 3.97 | 6200 | 0.0862 | 0.98 | | 0.0267 | 4.0 | 6250 | 0.1190 | 0.98 | | 0.0087 | 4.03 | 6300 | 0.0747 | 0.98 | | 0.0102 | 4.06 | 6350 | 0.0753 | 0.9867 | | 0.0178 | 4.09 | 6400 | 0.1812 | 0.9667 | | 0.0088 | 4.13 | 6450 | 0.0817 | 0.98 | | 0.0144 | 4.16 | 6500 | 0.0805 | 0.98 | | 0.014 | 4.19 | 6550 | 0.0862 | 0.9867 | | 0.0002 | 4.22 | 6600 | 0.0894 | 0.98 | | 0.0112 | 4.25 | 6650 | 0.1004 | 0.9733 | | 0.0054 | 4.29 | 6700 | 0.0832 | 0.9867 | | 0.0001 | 4.32 | 6750 | 0.0812 | 0.9867 | | 0.0202 | 4.35 | 6800 | 0.1828 | 0.9667 | | 0.009 | 4.38 | 6850 | 0.1114 | 0.98 | | 0.0001 | 4.41 | 6900 | 0.1295 | 0.98 | | 0.0077 | 4.45 | 6950 | 0.1610 | 0.9733 | | 0.0082 | 4.48 | 7000 | 0.1787 | 0.9667 | | 0.0198 | 4.51 | 7050 | 0.1485 | 0.9733 | | 0.0017 | 4.54 | 7100 | 0.1774 | 0.9733 | | 0.0115 | 4.57 | 7150 | 0.1567 | 0.9733 | | 0.0001 | 4.61 | 7200 | 0.1534 | 0.9733 | | 0.0247 | 4.64 | 7250 | 0.2020 | 0.9667 | | 0.0059 | 4.67 | 7300 | 0.1918 | 0.9667 | | 0.0052 | 4.7 | 7350 | 0.1315 | 0.98 | | 0.0076 | 4.73 | 7400 | 0.1289 | 0.98 | | 0.0218 | 4.77 | 7450 | 0.1610 | 0.9733 | | 0.0077 | 4.8 | 7500 | 0.1355 | 0.98 | | 0.0096 | 4.83 | 7550 | 0.1378 | 0.9733 | | 0.008 | 4.86 | 7600 | 0.1568 | 0.9733 | | 0.0103 | 4.89 | 7650 | 0.1388 | 0.9733 | | 0.0009 | 4.93 | 7700 | 0.1221 | 0.98 | | 0.0287 | 4.96 | 7750 | 0.1448 | 0.9733 | | 0.01 | 4.99 | 7800 | 0.1394 | 0.9733 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.7.1 - Tokenizers 0.13.2
srnsrn120/whisper-small-hi
srnsrn120
2022-12-01T07:24:42Z
77
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "hi", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-01T05:57:41Z
--- language: - hi license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Hi - srnsrn120 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 args: 'config: hi, split: test' metrics: - name: Wer type: wer value: 40.772877338525355 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Hi - srnsrn120 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3428 - Wer: 40.7729 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 400 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.2442 | 0.98 | 400 | 0.3428 | 40.7729 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
minhhoque/segformer-b0-scene-parse-150
minhhoque
2022-12-01T06:31:02Z
45
0
transformers
[ "transformers", "pytorch", "tensorboard", "segformer", "generated_from_trainer", "dataset:scene_parse_150", "license:other", "endpoints_compatible", "region:us" ]
null
2022-12-01T05:42:03Z
--- license: other tags: - generated_from_trainer datasets: - scene_parse_150 model-index: - name: segformer-b0-scene-parse-150 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-b0-scene-parse-150 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the scene_parse_150 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
Evelyn18/roberta-base-spanish-squades-becasv3
Evelyn18
2022-12-01T06:27:03Z
103
0
transformers
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:becasv2", "endpoints_compatible", "region:us" ]
question-answering
2022-07-19T13:20:41Z
--- tags: - generated_from_trainer datasets: - becasv2 model-index: - name: roberta-base-spanish-squades-becasv3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-spanish-squades-modelo-robertav3 This model is a fine-tuned version of [IIC/roberta-base-spanish-squades](https://huggingface.co/IIC/roberta-base-spanish-squades) on the becasv2 dataset. It achieves the following results on the evaluation set: - Loss: 1.6939 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 11 - eval_batch_size: 11 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 5 | 1.7032 | | No log | 2.0 | 10 | 1.6939 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
fanpu/model_output_original_subreddit-cmu_1
fanpu
2022-12-01T05:40:32Z
117
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-12-01T05:04:04Z
--- license: mit tags: - generated_from_trainer model-index: - name: model_output_original_subreddit-cmu_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # model_output_original_subreddit-cmu_1 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1 - Tokenizers 0.13.2
dicquiloan/q-FrozenLake-v1-4x4-noSlippery
dicquiloan
2022-12-01T05:11:21Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-11-25T23:37:21Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="dicquiloan/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
minhhoque/distilbert-base-uncased_imdb_reviews
minhhoque
2022-12-01T04:56:58Z
118
1
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-28T02:21:56Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased_imdb_reviews results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased_imdb_reviews This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2549 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.385 | 0.4 | 500 | 0.3796 | | 0.2803 | 0.8 | 1000 | 0.2549 | | 0.208 | 1.2 | 1500 | 0.3218 | | 0.1655 | 1.6 | 2000 | 0.2577 | | 0.153 | 2.0 | 2500 | 0.2718 | | 0.0552 | 2.4 | 3000 | 0.3514 | | 0.0667 | 2.8 | 3500 | 0.3427 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
fathyshalab/all-roberta-large-v1-kitchen_and_dining-1-16-5
fathyshalab
2022-12-01T04:45:46Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-30T18:15:17Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-kitchen_and_dining-1-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-kitchen_and_dining-1-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3560 - Accuracy: 0.2692 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7421 | 1.0 | 1 | 2.5878 | 0.2012 | | 2.1065 | 2.0 | 2 | 2.4975 | 0.2012 | | 1.5994 | 3.0 | 3 | 2.4274 | 0.2249 | | 1.1739 | 4.0 | 4 | 2.3808 | 0.2456 | | 1.083 | 5.0 | 5 | 2.3560 | 0.2692 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
fathyshalab/all-roberta-large-v1-credit_cards-8-16-5
fathyshalab
2022-12-01T03:58:24Z
103
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-30T18:12:11Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-credit_cards-8-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-credit_cards-8-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3376 - Accuracy: 0.3186 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.75 | 1.0 | 1 | 2.5769 | 0.2389 | | 2.178 | 2.0 | 2 | 2.4879 | 0.2389 | | 1.769 | 3.0 | 3 | 2.4180 | 0.2566 | | 1.4703 | 4.0 | 4 | 2.3657 | 0.3097 | | 1.2711 | 5.0 | 5 | 2.3376 | 0.3186 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
DLL888/roberta-base-squad
DLL888
2022-12-01T03:55:20Z
63
0
transformers
[ "transformers", "tf", "tensorboard", "roberta", "question-answering", "generated_from_keras_callback", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-12-01T03:24:46Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: DLL888/roberta-base-squad results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # DLL888/roberta-base-squad This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.7054 - Train End Logits Accuracy: 0.8022 - Train Start Logits Accuracy: 0.7586 - Validation Loss: 0.8224 - Validation End Logits Accuracy: 0.7692 - Validation Start Logits Accuracy: 0.7402 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 10570, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 500, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: mixed_float16 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 1.1613 | 0.7038 | 0.6632 | 0.8676 | 0.7626 | 0.7342 | 0 | | 0.7054 | 0.8022 | 0.7586 | 0.8224 | 0.7692 | 0.7402 | 1 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Datasets 2.7.1 - Tokenizers 0.13.2
Roman1998/tesorflowTest
Roman1998
2022-12-01T03:48:43Z
62
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-01T03:47:33Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: tesorflowTest results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # tesorflowTest This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1220 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 3e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 0.2863 | 0 | | 0.1671 | 1 | | 0.1220 | 2 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Datasets 2.7.1 - Tokenizers 0.13.2
Zengwei/icefall-asr-librispeech-pruned-transducer-stateless7-ctc-2022-12-01
Zengwei
2022-12-01T03:29:09Z
0
0
null
[ "tensorboard", "region:us" ]
null
2022-12-01T02:01:38Z
This repo contains pre-trained models, checkpoints, training logs and decoding results of the following pull-request: https://github.com/k2-fsa/icefall/pull/683
huggingtweets/prezoh
huggingtweets
2022-12-01T03:28:19Z
117
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/prezoh/1669865295720/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1590487732387733505/JiMBIJrZ_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">prezoh</div> <div style="text-align: center; font-size: 14px;">@prezoh</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from prezoh. | Data | prezoh | | --- | --- | | Tweets downloaded | 3158 | | Retweets | 30 | | Short tweets | 905 | | Tweets kept | 2223 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/278h7rp5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @prezoh's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3e7ukxmi) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3e7ukxmi/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/prezoh') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Rastadayon/wav2vec2-large-xls-r-300m-dutch-colab
Rastadayon
2022-12-01T03:20:45Z
161
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-30T20:59:25Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-dutch-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-dutch-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - eval_loss: 0.5834 - eval_wer: 0.3471 - eval_cer: 0.1181 - eval_runtime: 338.6313 - eval_samples_per_second: 14.582 - eval_steps_per_second: 1.825 - epoch: 14.87 - step: 4000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 40 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
itisphilippe/StackOverflowNER
itisphilippe
2022-12-01T02:53:38Z
0
1
null
[ "license:mit", "region:us" ]
null
2022-11-30T07:01:36Z
--- license: mit --- Models and other data for https://github.com/jeniyat/StackOverflowNER. Use `git lfs fetch --all` to download all files. Please note that folders are stored decompressed due to HuggingFace file size limitations. The individual files in ./data_ctc/ are compressed using `gzip`, and can be decompressed using `gunzip -d *.gz`. Intermediate model checkpoints have not been uploaded due to bandwidth limitations. **BibTeX entry and citation info** ```bibtex @inproceedings{Tabassum20acl, title = {Code and Named Entity Recognition in StackOverflow}, author = "Tabassum, Jeniya and Maddela, Mounica and Xu, Wei and Ritter, Alan", booktitle = {The Annual Meeting of the Association for Computational Linguistics (ACL)}, year = {2020} } ```
fathyshalab/all-roberta-large-v1-credit_cards-5-16-5
fathyshalab
2022-12-01T02:47:27Z
106
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-30T18:07:32Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-credit_cards-5-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-credit_cards-5-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3376 - Accuracy: 0.3186 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.75 | 1.0 | 1 | 2.5769 | 0.2389 | | 2.178 | 2.0 | 2 | 2.4879 | 0.2389 | | 1.769 | 3.0 | 3 | 2.4180 | 0.2566 | | 1.4703 | 4.0 | 4 | 2.3657 | 0.3097 | | 1.2711 | 5.0 | 5 | 2.3376 | 0.3186 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
Yanjie24/t5-samsung
Yanjie24
2022-12-01T02:31:14Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:samsum", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-12-01T02:09:57Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - samsum metrics: - rouge model-index: - name: t5-samsung results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: samsum type: samsum config: samsum split: train args: samsum metrics: - name: Rouge1 type: rouge value: 42.2345 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-samsung This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.8153 - Rouge1: 42.2345 - Rouge2: 18.983 - Rougel: 33.0073 - Rougelsum: 38.8755 - Gen Len: 36.4242 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 2.0028 | 1.0 | 1841 | 1.8153 | 42.2345 | 18.983 | 33.0073 | 38.8755 | 36.4242 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
SathEdu/distilbert-base-uncased-finetuned-emotion
SathEdu
2022-12-01T02:15:54Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-19T07:30:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9255 - name: F1 type: f1 value: 0.9256889016417648 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2222 - Accuracy: 0.9255 - F1: 0.9257 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.7962 | 1.0 | 250 | 0.3167 | 0.903 | 0.8984 | | 0.2475 | 2.0 | 500 | 0.2222 | 0.9255 | 0.9257 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
cardiffnlp/bert-base-multilingual-cased-sentiment-multilingual
cardiffnlp
2022-12-01T02:11:30Z
114
4
transformers
[ "transformers", "pytorch", "bert", "text-classification", "dataset:cardiffnlp/tweet_sentiment_multilingual", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-01T02:07:08Z
--- datasets: - cardiffnlp/tweet_sentiment_multilingual metrics: - f1 - accuracy model-index: - name: cardiffnlp/bert-base-multilingual-cased-sentiment-multilingual results: - task: type: text-classification name: Text Classification dataset: name: cardiffnlp/tweet_sentiment_multilingual type: all split: test metrics: - name: Micro F1 (cardiffnlp/tweet_sentiment_multilingual/all) type: micro_f1_cardiffnlp/tweet_sentiment_multilingual/all value: 0.6169540229885058 - name: Macro F1 (cardiffnlp/tweet_sentiment_multilingual/all) type: micro_f1_cardiffnlp/tweet_sentiment_multilingual/all value: 0.6168385894019698 - name: Accuracy (cardiffnlp/tweet_sentiment_multilingual/all) type: accuracy_cardiffnlp/tweet_sentiment_multilingual/all value: 0.6169540229885058 pipeline_tag: text-classification widget: - text: Get the all-analog Classic Vinyl Edition of "Takin Off" Album from {@herbiehancock@} via {@bluenoterecords@} link below {{URL}} example_title: "topic_classification 1" - text: Yes, including Medicare and social security saving👍 example_title: "sentiment 1" - text: All two of them taste like ass. example_title: "offensive 1" - text: If you wanna look like a badass, have drama on social media example_title: "irony 1" - text: Whoever just unfollowed me you a bitch example_title: "hate 1" - text: I love swimming for the same reason I love meditating...the feeling of weightlessness. example_title: "emotion 1" - text: Beautiful sunset last night from the pontoon @TupperLakeNY example_title: "emoji 1" --- # cardiffnlp/bert-base-multilingual-cased-sentiment-multilingual This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the [`cardiffnlp/tweet_sentiment_multilingual (all)`](https://huggingface.co/datasets/cardiffnlp/tweet_sentiment_multilingual) via [`tweetnlp`](https://github.com/cardiffnlp/tweetnlp). Training split is `train` and parameters have been tuned on the validation split `validation`. Following metrics are achieved on the test split `test` ([link](https://huggingface.co/cardiffnlp/bert-base-multilingual-cased-sentiment-multilingual/raw/main/metric.json)). - F1 (micro): 0.6169540229885058 - F1 (macro): 0.6168385894019698 - Accuracy: 0.6169540229885058 ### Usage Install tweetnlp via pip. ```shell pip install tweetnlp ``` Load the model in python. ```python import tweetnlp model = tweetnlp.Classifier("cardiffnlp/bert-base-multilingual-cased-sentiment-multilingual", max_length=128) model.predict('Get the all-analog Classic Vinyl Edition of "Takin Off" Album from {@herbiehancock@} via {@bluenoterecords@} link below {{URL}}') ``` ### Reference ``` @inproceedings{dimosthenis-etal-2022-twitter, title = "{T}witter {T}opic {C}lassification", author = "Antypas, Dimosthenis and Ushio, Asahi and Camacho-Collados, Jose and Neves, Leonardo and Silva, Vitor and Barbieri, Francesco", booktitle = "Proceedings of the 29th International Conference on Computational Linguistics", month = oct, year = "2022", address = "Gyeongju, Republic of Korea", publisher = "International Committee on Computational Linguistics" } ```
fathyshalab/all-roberta-large-v1-credit_cards-3-16-5
fathyshalab
2022-12-01T01:59:23Z
106
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-30T18:04:30Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-credit_cards-3-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-credit_cards-3-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3376 - Accuracy: 0.3186 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.75 | 1.0 | 1 | 2.5769 | 0.2389 | | 2.178 | 2.0 | 2 | 2.4879 | 0.2389 | | 1.769 | 3.0 | 3 | 2.4180 | 0.2566 | | 1.4703 | 4.0 | 4 | 2.3657 | 0.3097 | | 1.2711 | 5.0 | 5 | 2.3376 | 0.3186 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
DiogoSabec/BOT
DiogoSabec
2022-12-01T01:33:17Z
119
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-12-01T00:40:43Z
--- tags: - conversational ---
sd-dreambooth-library/crisimsestelle
sd-dreambooth-library
2022-12-01T01:20:13Z
52
0
diffusers
[ "diffusers", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2022-11-29T16:50:18Z
--- license: creativeml-openrail-m tags: - text-to-image --- ### Contain Real Ingredients on Stable Diffusion 2 via Dreambooth #### model by estelleflores ![image 20](https://i.ibb.co/6b0ZBtr/1.png) This is a Stable Diffusion 2 model fine-tuned to the CRIsimsEstelle concept taught to Stable Diffusion with Dreambooth. ![image 21](https://i.ibb.co/7tL6Vs4/59.png) It can be used by modifying the `instance_prompt`: **3d render in \<cri-sims> style** or just using the initializer \'\<cri-sims> style' somewhere in your prompt will work. ![image 22](https://i.ibb.co/H21FX8Q/37.png) Images used for training this concept come from the [project Contain Real Ingredients](https://teia.art/estelle), an art practice inside the game The Sims 4 by artist Estelle Flores: ![image 0](https://huggingface.co/sd-dreambooth-library/crisimsestelle/resolve/main/concept_images/13.jpeg) ![image 1](https://huggingface.co/sd-dreambooth-library/crisimsestelle/resolve/main/concept_images/0.jpeg) ![image 2](https://huggingface.co/sd-dreambooth-library/crisimsestelle/resolve/main/concept_images/7.jpeg) ![image 3](https://huggingface.co/sd-dreambooth-library/crisimsestelle/resolve/main/concept_images/11.jpeg) ![image 4](https://huggingface.co/sd-dreambooth-library/crisimsestelle/resolve/main/concept_images/10.jpeg) ![image 5](https://huggingface.co/sd-dreambooth-library/crisimsestelle/resolve/main/concept_images/2.jpeg) ![image 6](https://huggingface.co/sd-dreambooth-library/crisimsestelle/resolve/main/concept_images/8.jpeg) ![image 7](https://huggingface.co/sd-dreambooth-library/crisimsestelle/resolve/main/concept_images/3.jpeg) ![image 8](https://huggingface.co/sd-dreambooth-library/crisimsestelle/resolve/main/concept_images/12.jpeg) ![image 9](https://huggingface.co/sd-dreambooth-library/crisimsestelle/resolve/main/concept_images/4.jpeg) ![image 10](https://huggingface.co/sd-dreambooth-library/crisimsestelle/resolve/main/concept_images/5.jpeg) ![image 11](https://huggingface.co/sd-dreambooth-library/crisimsestelle/resolve/main/concept_images/1.jpeg) ![image 12](https://huggingface.co/sd-dreambooth-library/crisimsestelle/resolve/main/concept_images/14.jpeg) ![image 13](https://huggingface.co/sd-dreambooth-library/crisimsestelle/resolve/main/concept_images/9.jpeg) ![image 14](https://huggingface.co/sd-dreambooth-library/crisimsestelle/resolve/main/concept_images/17.jpeg) ![image 15](https://huggingface.co/sd-dreambooth-library/crisimsestelle/resolve/main/concept_images/16.jpeg) ![image 16](https://huggingface.co/sd-dreambooth-library/crisimsestelle/resolve/main/concept_images/18.jpeg) ![image 17](https://huggingface.co/sd-dreambooth-library/crisimsestelle/resolve/main/concept_images/6.jpeg) ![image 18](https://huggingface.co/sd-dreambooth-library/crisimsestelle/resolve/main/concept_images/15.jpeg) ![image 19](https://huggingface.co/sd-dreambooth-library/crisimsestelle/resolve/main/concept_images/19.jpeg) You can also train your own concepts and upload them to the library by using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_training.ipynb). And you can run your new concept via `diffusers`: [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb)
wmFrank/sample-factory-2-megaverse
wmFrank
2022-12-01T00:50:17Z
1
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-01T00:49:58Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: TowerBuilding type: TowerBuilding metrics: - type: mean_reward value: nan +/- nan name: mean_reward verified: false --- A(n) **APPO** model trained on the **TowerBuilding** environment. This model was trained using Sample Factory 2.0: https://github.com/alex-petrenko/sample-factory
fathyshalab/all-roberta-large-v1-banking-9-16-5
fathyshalab
2022-12-01T00:47:58Z
108
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-28T18:53:06Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-banking-9-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-banking-9-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.2920 - Accuracy: 0.3982 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7211 | 1.0 | 1 | 2.5748 | 0.2301 | | 2.2722 | 2.0 | 2 | 2.4566 | 0.3009 | | 1.9185 | 3.0 | 3 | 2.3596 | 0.3805 | | 1.667 | 4.0 | 4 | 2.2920 | 0.3982 | | 1.4704 | 5.0 | 5 | 2.2565 | 0.3982 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
fathyshalab/all-roberta-large-v1-banking-8-16-5
fathyshalab
2022-12-01T00:21:13Z
109
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-28T18:30:16Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-banking-8-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-banking-8-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.2920 - Accuracy: 0.3982 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7211 | 1.0 | 1 | 2.5748 | 0.2301 | | 2.2722 | 2.0 | 2 | 2.4566 | 0.3009 | | 1.9185 | 3.0 | 3 | 2.3596 | 0.3805 | | 1.667 | 4.0 | 4 | 2.2920 | 0.3982 | | 1.4704 | 5.0 | 5 | 2.2565 | 0.3982 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
Taqwa/whisper-small-hi
Taqwa
2022-12-01T00:05:15Z
75
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "hi", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-26T20:53:48Z
--- language: - hi license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Hi - Sanchit Gandhi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 args: 'config: hi, split: test' metrics: - name: Wer type: wer value: 35.74028612545501 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Hi - Sanchit Gandhi This model is a fine-tuned version of [Taqwa/whisper-small-hiTaqwa](https://huggingface.co/Taqwa/whisper-small-hiTaqwa) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3353 - Wer: 35.7403 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0762 | 0.31 | 125 | 0.2818 | 33.3573 | | 0.0653 | 0.61 | 250 | 0.2930 | 33.9584 | | 0.062 | 0.92 | 375 | 0.3060 | 34.7456 | | 0.0518 | 1.22 | 500 | 0.3353 | 35.7403 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
fathyshalab/all-roberta-large-v1-banking-6-16-5
fathyshalab
2022-11-30T23:26:46Z
3
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-28T17:44:01Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-banking-6-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-banking-6-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.2920 - Accuracy: 0.3982 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7211 | 1.0 | 1 | 2.5748 | 0.2301 | | 2.2722 | 2.0 | 2 | 2.4566 | 0.3009 | | 1.9185 | 3.0 | 3 | 2.3596 | 0.3805 | | 1.667 | 4.0 | 4 | 2.2920 | 0.3982 | | 1.4704 | 5.0 | 5 | 2.2565 | 0.3982 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
CarperAI/randomwalks
CarperAI
2022-11-30T22:22:26Z
164
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-10-28T17:23:14Z
--- license: mit --- This is a pretrained model used in [PPO toy example](https://github.com/CarperAI/trlx/tree/main/examples/randomwalks) from [CarperAI/trlX](https://github.com/CarperAI/trlx/tree/main/examples/randomwalks)
deblagoj/distilbert-base-uncased-finetuned-emotion
deblagoj
2022-11-30T22:05:20Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-07T18:26:07Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.919 - name: F1 type: f1 value: 0.9190903538852266 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2225 - Accuracy: 0.919 - F1: 0.9191 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.814 | 1.0 | 250 | 0.3153 | 0.904 | 0.9016 | | 0.2515 | 2.0 | 500 | 0.2225 | 0.919 | 0.9191 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu116 - Datasets 2.6.1 - Tokenizers 0.13.1
huggingtweets/poisonjr
huggingtweets
2022-11-30T21:50:40Z
119
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-30T21:49:04Z
--- language: en thumbnail: http://www.huggingtweets.com/poisonjr/1669845035713/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1582446449228382209/8JRLlVu__400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">gale na</div> <div style="text-align: center; font-size: 14px;">@poisonjr</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from gale na. | Data | gale na | | --- | --- | | Tweets downloaded | 3204 | | Retweets | 731 | | Short tweets | 782 | | Tweets kept | 1691 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/33t9oiqy/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @poisonjr's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3c5vn57r) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3c5vn57r/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/poisonjr') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
manirai91/enlm-roberta-final
manirai91
2022-11-30T21:40:33Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-11-28T03:41:11Z
--- tags: - generated_from_trainer model-index: - name: enlm-roberta-final results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # enlm-roberta-final This model is a fine-tuned version of [manirai91/enlm-roberta](https://huggingface.co/manirai91/enlm-roberta) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4187 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 128 - total_train_batch_size: 8192 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-06 - lr_scheduler_type: polynomial - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.5245 | 0.34 | 160 | 1.4187 | | 1.5245 | 0.69 | 320 | 1.4183 | | 1.5259 | 1.03 | 480 | 1.4177 | | 1.5265 | 1.37 | 640 | 1.4185 | | 1.5245 | 1.72 | 800 | 1.4190 | | 1.5241 | 2.06 | 960 | 1.4172 | | 1.5227 | 2.4 | 1120 | 1.4165 | | 1.5226 | 2.75 | 1280 | 1.4152 | | 1.522 | 3.09 | 1440 | 1.4190 | | 1.5243 | 3.43 | 1600 | 1.4177 | | 1.5213 | 3.78 | 1760 | 1.4134 | | 1.524 | 4.12 | 1920 | 1.4140 | | 1.5223 | 4.46 | 2080 | 1.4173 | | 1.5236 | 4.81 | 2240 | 1.4121 | | 1.5239 | 5.15 | 2400 | 1.4186 | | 1.5203 | 5.49 | 2560 | 1.4154 | | 1.522 | 5.84 | 2720 | 1.4162 | | 1.5209 | 6.18 | 2880 | 1.4154 | | 1.5196 | 6.52 | 3040 | 1.4153 | | 1.5209 | 6.87 | 3200 | 1.4122 | | 1.5202 | 7.21 | 3360 | 1.4146 | | 1.5192 | 7.55 | 3520 | 1.4141 | | 1.5215 | 7.9 | 3680 | 1.4123 | | 1.5228 | 8.24 | 3840 | 1.4147 | | 1.5222 | 8.58 | 4000 | 1.4144 | | 1.5201 | 8.93 | 4160 | 1.4173 | | 1.523 | 9.27 | 4320 | 1.4171 | | 1.5212 | 9.61 | 4480 | 1.4149 | | 1.522 | 9.96 | 4640 | 1.4187 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.3.2 - Tokenizers 0.12.1
huggingtweets/blewglass
huggingtweets
2022-11-30T21:38:03Z
117
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-30T21:36:41Z
--- language: en thumbnail: http://www.huggingtweets.com/blewglass/1669844278462/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1589805873366724610/ifGVL-6g_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">come back clammy</div> <div style="text-align: center; font-size: 14px;">@blewglass</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from come back clammy. | Data | come back clammy | | --- | --- | | Tweets downloaded | 3174 | | Retweets | 582 | | Short tweets | 317 | | Tweets kept | 2275 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3cybl684/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @blewglass's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/zifv54gk) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/zifv54gk/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/blewglass') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
danielsaggau/scotus_py
danielsaggau
2022-11-30T21:12:28Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "longformer", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-11-30T21:12:16Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 512 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 970 with parameters: ``` {'batch_size': 4, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 970, "warmup_steps": 97, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 4096, 'do_lower_case': False}) with Transformer model: LongformerModel (1): Pooling({'word_embedding_dimension': 512, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
fathyshalab/all-roberta-large-v1-banking-1-16-5
fathyshalab
2022-11-30T21:09:17Z
5
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-28T15:45:09Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-banking-1-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-banking-1-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.4479 - Accuracy: 0.2301 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.716 | 1.0 | 1 | 2.6641 | 0.1327 | | 2.1674 | 2.0 | 2 | 2.5852 | 0.1858 | | 1.7169 | 3.0 | 3 | 2.5202 | 0.2035 | | 1.3976 | 4.0 | 4 | 2.4729 | 0.2124 | | 1.2503 | 5.0 | 5 | 2.4479 | 0.2301 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
gavin124/gpt2-finetuned-cnn-summarization-v1
gavin124
2022-11-30T20:40:22Z
80
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "summarization", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
summarization
2022-11-30T15:33:05Z
--- license: mit tags: - summarization - generated_from_trainer model-index: - name: gpt2-finetuned-cnn-summarization-v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-finetuned-cnn-summarization-v1 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.1709 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.2025 | 1.0 | 5742 | 2.1636 | | 2.0428 | 2.0 | 11484 | 2.1659 | | 1.9681 | 3.0 | 17226 | 2.1709 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
pere/whisper-medium-NST-uf-linlr
pere
2022-11-30T19:24:35Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "NbAiLab/NST", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-28T07:44:59Z
--- license: apache-2.0 tags: - hf-asr-leaderboard - automatic-speech-recognition - NbAiLab/NST - generated_from_trainer metrics: - wer model-index: - name: whisper-medium-NST-uf-linlr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-medium-NST-uf-linlr This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the NBAILAB/NST - NO-CLOSE dataset. It achieves the following results on the evaluation set: - Loss: 0.3007 - Wer: 9.1220 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 72 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 20000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 0.2046 | 0.05 | 1000 | 0.3426 | 15.2794 | | 0.148 | 0.1 | 2000 | 0.3284 | 10.8324 | | 0.121 | 0.15 | 3000 | 0.3092 | 12.8848 | | 0.1089 | 0.2 | 4000 | 0.2808 | 10.4903 | | 0.0976 | 0.25 | 5000 | 0.2617 | 9.9202 | | 0.0901 | 0.3 | 6000 | 0.2604 | 21.8928 | | 0.0834 | 0.35 | 7000 | 0.2877 | 9.3501 | | 0.0825 | 0.4 | 8000 | 0.2794 | 9.3501 | | 0.0553 | 1.05 | 9000 | 0.2845 | 9.5781 | | 0.0472 | 1.1 | 10000 | 0.2814 | 24.1733 | | 0.0409 | 1.15 | 11000 | 0.3084 | 8.0958 | | 0.041 | 1.2 | 12000 | 0.2865 | 9.2360 | | 0.0353 | 1.25 | 13000 | 0.2828 | 6.4994 | | 0.0348 | 1.3 | 14000 | 0.2708 | 7.5257 | | 0.0349 | 1.35 | 15000 | 0.2842 | 23.0331 | | 0.0361 | 1.4 | 16000 | 0.2769 | 10.1482 | | 0.0249 | 2.04 | 17000 | 0.2935 | 8.8940 | | 0.0204 | 2.09 | 18000 | 0.2874 | 12.4287 | | 0.0175 | 2.14 | 19000 | 0.2882 | 12.9989 | | 0.0197 | 2.19 | 20000 | 0.3007 | 9.1220 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.6.1 - Tokenizers 0.13.1
ShadoWxShinigamI/vray-render
ShadoWxShinigamI
2022-11-30T19:05:09Z
0
54
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-11-30T18:55:42Z
--- license: creativeml-openrail-m --- ##Textual Inversion Embedding For SD 2.0 (768) by ShadoWxShinigamI 44 Images, 768x768, Batch Size 4, Gradient Accumulation 11, Vectors - 6, Steps 500 I love the V-Ray Render style, and wanted to try making an embed for a highly varied style. This is my attempt. It is definitely not perfect. It gives slightly soft outputs, I will revisit this embed once i get the hang of training efficiently. In case of any errors when using this embedd with Auto1111, try out the png embed instead. Examples:- ![cabin vray.png](https://s3.amazonaws.com/moonup/production/uploads/1669834885077-633a520aecbd8b19357b4806.png) ![car.png](https://s3.amazonaws.com/moonup/production/uploads/1669834906577-633a520aecbd8b19357b4806.png) ![lion v-ray.png](https://s3.amazonaws.com/moonup/production/uploads/1669834916379-633a520aecbd8b19357b4806.png) ![ship.png](https://s3.amazonaws.com/moonup/production/uploads/1669834936057-633a520aecbd8b19357b4806.png) ![00019-3721583948.png](https://s3.amazonaws.com/moonup/production/uploads/1669834960130-633a520aecbd8b19357b4806.png) ![human.png](https://s3.amazonaws.com/moonup/production/uploads/1669835006537-633a520aecbd8b19357b4806.png)
abdalrahmanshahrour/ShahrourDamageLenses
abdalrahmanshahrour
2022-11-30T19:01:07Z
0
0
null
[ "region:us" ]
null
2022-11-30T18:37:14Z
# Damage-detection ![image](https://github.com/AbdelrahmanShahrour/Damage-detection/blob/main/damage-prj.png?raw=true) prj files: ## step 1: download all files 1. clone my repo ```python git clone https://github.com/AbdelrahmanShahrour/Damage-detection.git ``` 2. get data and models files from [here](https://drive.google.com/drive/folders/1vXaD8z2J_kbh8oDU4rNcyuPoXgjOSRKs?usp=sharing) ![image](https://github.com/AbdelrahmanShahrour/Damage-detection/blob/main/output/Screenshot%20from%202022-11-27%2014-34-48.png?raw=true) ## step 2: creat venv and install all lib ```python python3 -m venv env ``` ```python source env/bin/activate ``` ```python pip3 install -r requirements.txt ``` ## step 3: open jupyter notebook ```python jupyter notebook ``` ## step 4: open `output.ipynb` and run all Cells ![image](https://github.com/AbdelrahmanShahrour/Damage-detection/blob/main/output/Screenshot%20from%202022-11-27%2014-33-19.png?raw=true) ![image](https://github.com/AbdelrahmanShahrour/Damage-detection/blob/main/output/Screenshot%20from%202022-11-27%2014-33-28.png?raw=true) ![image](https://github.com/AbdelrahmanShahrour/Damage-detection/blob/main/output/Screenshot%20from%202022-11-27%2014-33-37.png?raw=true) # step 5: enjoy and develop this project and share his with me 😁👍🏻
andrewzhang505/isaacgym_humanoid
andrewzhang505
2022-11-30T19:00:40Z
9
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-11-30T01:40:53Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Humanoid type: Humanoid metrics: - type: mean_reward value: 8418.38 +/- 1855.54 name: mean_reward verified: false --- A(n) **APPO** model trained on the **Humanoid** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r andrewzhang505/isaacgym_humanoid ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m sf_examples.isaacgym_examples.enjoy_isaacgym --algo=APPO --env=Humanoid --train_dir=./train_dir --experiment=isaacgym_humanoid ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m sf_examples.isaacgym_examples.train_isaacgym --algo=APPO --env=Humanoid --train_dir=./train_dir --experiment=isaacgym_humanoid --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
Crushtoe/GODEL-v1_1-base-seq2seq-vangluss
Crushtoe
2022-11-30T18:59:59Z
103
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-30T17:39:03Z
--- tags: - conversational --- # Vangluss: Bot Edition Trying (and failing) to use GODEL in place of DialoGPT.
htermotto/distilbert-base-uncased-finetuned-sngp-squad-seed-42
htermotto
2022-11-30T18:58:48Z
33
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "generated_from_trainer", "dataset:squad_v2", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-11-30T10:31:02Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: distilbert-base-uncased-finetuned-sngp-squad-seed-42 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-sngp-squad-seed-42 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 1.9074 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.4521 | 1.0 | 8248 | 2.0439 | | 2.1298 | 2.0 | 16496 | 1.9074 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
jmunoz/finetuning-sentiment-model-3000-samples
jmunoz
2022-11-30T18:41:53Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-29T22:47:02Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: finetuning-sentiment-model-3000-samples results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cpu - Datasets 1.2.1 - Tokenizers 0.12.1
ximboleta/Glebbo
ximboleta
2022-11-30T18:39:44Z
0
0
null
[ "license:cc-by-nc-nd-4.0", "region:us" ]
null
2022-11-30T18:39:44Z
--- license: cc-by-nc-nd-4.0 ---
edgertej/poebert-checkpoint-finetuned-poetry-foundation-2
edgertej
2022-11-30T17:14:10Z
78
0
transformers
[ "transformers", "tf", "bert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-11-30T16:14:34Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: edgertej/poebert-checkpoint-finetuned-poetry-foundation-2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # edgertej/poebert-checkpoint-finetuned-poetry-foundation-2 This model is a fine-tuned version of [edgertej/poebert-checkpoint-finetuned-poetry-foundation](https://huggingface.co/edgertej/poebert-checkpoint-finetuned-poetry-foundation) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 3.8653 - Validation Loss: 3.5986 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 3e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 3.9003 | 3.6587 | 0 | | 3.8970 | 3.6169 | 1 | | 3.8653 | 3.5986 | 2 | ### Framework versions - Transformers 4.19.2 - TensorFlow 2.9.1 - Datasets 2.4.0 - Tokenizers 0.12.1
alexrofail/sd-class-butterflies-32
alexrofail
2022-11-30T16:31:22Z
33
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-11-30T16:29:47Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. In this run I just ran each cell of the NB to understand what is going on. Experimentation to follow 🙏 ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(alexrofail/sd-class-butterflies-32) image = pipeline().images[0] image ```
fathyshalab/all-roberta-large-v1-banking-17-16-5
fathyshalab
2022-11-30T15:28:05Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-28T21:57:40Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-banking-17-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-banking-17-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.7470 - Accuracy: 0.0756 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.8182 | 1.0 | 1 | 2.7709 | 0.0356 | | 2.6751 | 2.0 | 2 | 2.7579 | 0.0578 | | 2.5239 | 3.0 | 3 | 2.7509 | 0.0622 | | 2.4346 | 4.0 | 4 | 2.7470 | 0.0756 | | 2.4099 | 5.0 | 5 | 2.7452 | 0.0756 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1 - Datasets 2.3.2 - Tokenizers 0.12.1
fathyshalab/all-roberta-large-v1-banking-16-16-5
fathyshalab
2022-11-30T15:24:44Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-28T21:34:27Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-banking-16-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-banking-16-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.7470 - Accuracy: 0.0756 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.8182 | 1.0 | 1 | 2.7709 | 0.0356 | | 2.6751 | 2.0 | 2 | 2.7579 | 0.0578 | | 2.5239 | 3.0 | 3 | 2.7509 | 0.0622 | | 2.4346 | 4.0 | 4 | 2.7470 | 0.0756 | | 2.4099 | 5.0 | 5 | 2.7452 | 0.0756 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1 - Datasets 2.3.2 - Tokenizers 0.12.1
fathyshalab/all-roberta-large-v1-banking-14-16-5
fathyshalab
2022-11-30T15:17:52Z
106
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-28T20:48:52Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-banking-14-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-banking-14-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.7470 - Accuracy: 0.0756 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.8182 | 1.0 | 1 | 2.7709 | 0.0356 | | 2.6751 | 2.0 | 2 | 2.7579 | 0.0578 | | 2.5239 | 3.0 | 3 | 2.7509 | 0.0622 | | 2.4346 | 4.0 | 4 | 2.7470 | 0.0756 | | 2.4099 | 5.0 | 5 | 2.7452 | 0.0756 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1 - Datasets 2.3.2 - Tokenizers 0.12.1
gd1m3y/sentiment_bert
gd1m3y
2022-11-30T15:04:50Z
159
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:financial_phrasebank", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-30T14:20:13Z
--- tags: - generated_from_trainer datasets: - financial_phrasebank metrics: - accuracy model-index: - name: sentiment_bert results: - task: name: Text Classification type: text-classification dataset: name: financial_phrasebank type: financial_phrasebank config: sentences_66agree split: train args: sentences_66agree metrics: - name: Accuracy type: accuracy value: 0.9360189573459715 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sentiment_bert This model is a fine-tuned version of [SALT-NLP/FLANG-BERT](https://huggingface.co/SALT-NLP/FLANG-BERT) on the financial_phrasebank dataset. It achieves the following results on the evaluation set: - Loss: 0.3754 - Accuracy: 0.9360 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
tomekkorbak/compassionate_hypatia
tomekkorbak
2022-11-30T14:23:57Z
103
0
transformers
[ "transformers", "pytorch", "gpt2", "generated_from_trainer", "en", "dataset:tomekkorbak/detoxify-pile-chunk3-0-50000", "dataset:tomekkorbak/detoxify-pile-chunk3-50000-100000", "dataset:tomekkorbak/detoxify-pile-chunk3-100000-150000", "dataset:tomekkorbak/detoxify-pile-chunk3-150000-200000", "dataset:tomekkorbak/detoxify-pile-chunk3-200000-250000", "dataset:tomekkorbak/detoxify-pile-chunk3-250000-300000", "dataset:tomekkorbak/detoxify-pile-chunk3-300000-350000", "dataset:tomekkorbak/detoxify-pile-chunk3-350000-400000", "dataset:tomekkorbak/detoxify-pile-chunk3-400000-450000", "dataset:tomekkorbak/detoxify-pile-chunk3-450000-500000", "dataset:tomekkorbak/detoxify-pile-chunk3-500000-550000", "dataset:tomekkorbak/detoxify-pile-chunk3-550000-600000", "dataset:tomekkorbak/detoxify-pile-chunk3-600000-650000", "dataset:tomekkorbak/detoxify-pile-chunk3-650000-700000", "dataset:tomekkorbak/detoxify-pile-chunk3-700000-750000", "dataset:tomekkorbak/detoxify-pile-chunk3-750000-800000", "dataset:tomekkorbak/detoxify-pile-chunk3-800000-850000", "dataset:tomekkorbak/detoxify-pile-chunk3-850000-900000", "dataset:tomekkorbak/detoxify-pile-chunk3-900000-950000", "dataset:tomekkorbak/detoxify-pile-chunk3-950000-1000000", "dataset:tomekkorbak/detoxify-pile-chunk3-1000000-1050000", "dataset:tomekkorbak/detoxify-pile-chunk3-1050000-1100000", "dataset:tomekkorbak/detoxify-pile-chunk3-1100000-1150000", "dataset:tomekkorbak/detoxify-pile-chunk3-1150000-1200000", "dataset:tomekkorbak/detoxify-pile-chunk3-1200000-1250000", "dataset:tomekkorbak/detoxify-pile-chunk3-1250000-1300000", "dataset:tomekkorbak/detoxify-pile-chunk3-1300000-1350000", "dataset:tomekkorbak/detoxify-pile-chunk3-1350000-1400000", "dataset:tomekkorbak/detoxify-pile-chunk3-1400000-1450000", "dataset:tomekkorbak/detoxify-pile-chunk3-1450000-1500000", "dataset:tomekkorbak/detoxify-pile-chunk3-1500000-1550000", "dataset:tomekkorbak/detoxify-pile-chunk3-1550000-1600000", "dataset:tomekkorbak/detoxify-pile-chunk3-1600000-1650000", "dataset:tomekkorbak/detoxify-pile-chunk3-1650000-1700000", "dataset:tomekkorbak/detoxify-pile-chunk3-1700000-1750000", "dataset:tomekkorbak/detoxify-pile-chunk3-1750000-1800000", "dataset:tomekkorbak/detoxify-pile-chunk3-1800000-1850000", "dataset:tomekkorbak/detoxify-pile-chunk3-1850000-1900000", "dataset:tomekkorbak/detoxify-pile-chunk3-1900000-1950000", "license:mit", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2022-11-29T19:22:43Z
--- language: - en license: mit tags: - generated_from_trainer datasets: - tomekkorbak/detoxify-pile-chunk3-0-50000 - tomekkorbak/detoxify-pile-chunk3-50000-100000 - tomekkorbak/detoxify-pile-chunk3-100000-150000 - tomekkorbak/detoxify-pile-chunk3-150000-200000 - tomekkorbak/detoxify-pile-chunk3-200000-250000 - tomekkorbak/detoxify-pile-chunk3-250000-300000 - tomekkorbak/detoxify-pile-chunk3-300000-350000 - tomekkorbak/detoxify-pile-chunk3-350000-400000 - tomekkorbak/detoxify-pile-chunk3-400000-450000 - tomekkorbak/detoxify-pile-chunk3-450000-500000 - tomekkorbak/detoxify-pile-chunk3-500000-550000 - tomekkorbak/detoxify-pile-chunk3-550000-600000 - tomekkorbak/detoxify-pile-chunk3-600000-650000 - tomekkorbak/detoxify-pile-chunk3-650000-700000 - tomekkorbak/detoxify-pile-chunk3-700000-750000 - tomekkorbak/detoxify-pile-chunk3-750000-800000 - tomekkorbak/detoxify-pile-chunk3-800000-850000 - tomekkorbak/detoxify-pile-chunk3-850000-900000 - tomekkorbak/detoxify-pile-chunk3-900000-950000 - tomekkorbak/detoxify-pile-chunk3-950000-1000000 - tomekkorbak/detoxify-pile-chunk3-1000000-1050000 - tomekkorbak/detoxify-pile-chunk3-1050000-1100000 - tomekkorbak/detoxify-pile-chunk3-1100000-1150000 - tomekkorbak/detoxify-pile-chunk3-1150000-1200000 - tomekkorbak/detoxify-pile-chunk3-1200000-1250000 - tomekkorbak/detoxify-pile-chunk3-1250000-1300000 - tomekkorbak/detoxify-pile-chunk3-1300000-1350000 - tomekkorbak/detoxify-pile-chunk3-1350000-1400000 - tomekkorbak/detoxify-pile-chunk3-1400000-1450000 - tomekkorbak/detoxify-pile-chunk3-1450000-1500000 - tomekkorbak/detoxify-pile-chunk3-1500000-1550000 - tomekkorbak/detoxify-pile-chunk3-1550000-1600000 - tomekkorbak/detoxify-pile-chunk3-1600000-1650000 - tomekkorbak/detoxify-pile-chunk3-1650000-1700000 - tomekkorbak/detoxify-pile-chunk3-1700000-1750000 - tomekkorbak/detoxify-pile-chunk3-1750000-1800000 - tomekkorbak/detoxify-pile-chunk3-1800000-1850000 - tomekkorbak/detoxify-pile-chunk3-1850000-1900000 - tomekkorbak/detoxify-pile-chunk3-1900000-1950000 model-index: - name: compassionate_hypatia results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # compassionate_hypatia This model was trained from scratch on the tomekkorbak/detoxify-pile-chunk3-0-50000, the tomekkorbak/detoxify-pile-chunk3-50000-100000, the tomekkorbak/detoxify-pile-chunk3-100000-150000, the tomekkorbak/detoxify-pile-chunk3-150000-200000, the tomekkorbak/detoxify-pile-chunk3-200000-250000, the tomekkorbak/detoxify-pile-chunk3-250000-300000, the tomekkorbak/detoxify-pile-chunk3-300000-350000, the tomekkorbak/detoxify-pile-chunk3-350000-400000, the tomekkorbak/detoxify-pile-chunk3-400000-450000, the tomekkorbak/detoxify-pile-chunk3-450000-500000, the tomekkorbak/detoxify-pile-chunk3-500000-550000, the tomekkorbak/detoxify-pile-chunk3-550000-600000, the tomekkorbak/detoxify-pile-chunk3-600000-650000, the tomekkorbak/detoxify-pile-chunk3-650000-700000, the tomekkorbak/detoxify-pile-chunk3-700000-750000, the tomekkorbak/detoxify-pile-chunk3-750000-800000, the tomekkorbak/detoxify-pile-chunk3-800000-850000, the tomekkorbak/detoxify-pile-chunk3-850000-900000, the tomekkorbak/detoxify-pile-chunk3-900000-950000, the tomekkorbak/detoxify-pile-chunk3-950000-1000000, the tomekkorbak/detoxify-pile-chunk3-1000000-1050000, the tomekkorbak/detoxify-pile-chunk3-1050000-1100000, the tomekkorbak/detoxify-pile-chunk3-1100000-1150000, the tomekkorbak/detoxify-pile-chunk3-1150000-1200000, the tomekkorbak/detoxify-pile-chunk3-1200000-1250000, the tomekkorbak/detoxify-pile-chunk3-1250000-1300000, the tomekkorbak/detoxify-pile-chunk3-1300000-1350000, the tomekkorbak/detoxify-pile-chunk3-1350000-1400000, the tomekkorbak/detoxify-pile-chunk3-1400000-1450000, the tomekkorbak/detoxify-pile-chunk3-1450000-1500000, the tomekkorbak/detoxify-pile-chunk3-1500000-1550000, the tomekkorbak/detoxify-pile-chunk3-1550000-1600000, the tomekkorbak/detoxify-pile-chunk3-1600000-1650000, the tomekkorbak/detoxify-pile-chunk3-1650000-1700000, the tomekkorbak/detoxify-pile-chunk3-1700000-1750000, the tomekkorbak/detoxify-pile-chunk3-1750000-1800000, the tomekkorbak/detoxify-pile-chunk3-1800000-1850000, the tomekkorbak/detoxify-pile-chunk3-1850000-1900000 and the tomekkorbak/detoxify-pile-chunk3-1900000-1950000 datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 50354 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.5.1 - Tokenizers 0.11.6 # Full config {'dataset': {'datasets': ['tomekkorbak/detoxify-pile-chunk3-0-50000', 'tomekkorbak/detoxify-pile-chunk3-50000-100000', 'tomekkorbak/detoxify-pile-chunk3-100000-150000', 'tomekkorbak/detoxify-pile-chunk3-150000-200000', 'tomekkorbak/detoxify-pile-chunk3-200000-250000', 'tomekkorbak/detoxify-pile-chunk3-250000-300000', 'tomekkorbak/detoxify-pile-chunk3-300000-350000', 'tomekkorbak/detoxify-pile-chunk3-350000-400000', 'tomekkorbak/detoxify-pile-chunk3-400000-450000', 'tomekkorbak/detoxify-pile-chunk3-450000-500000', 'tomekkorbak/detoxify-pile-chunk3-500000-550000', 'tomekkorbak/detoxify-pile-chunk3-550000-600000', 'tomekkorbak/detoxify-pile-chunk3-600000-650000', 'tomekkorbak/detoxify-pile-chunk3-650000-700000', 'tomekkorbak/detoxify-pile-chunk3-700000-750000', 'tomekkorbak/detoxify-pile-chunk3-750000-800000', 'tomekkorbak/detoxify-pile-chunk3-800000-850000', 'tomekkorbak/detoxify-pile-chunk3-850000-900000', 'tomekkorbak/detoxify-pile-chunk3-900000-950000', 'tomekkorbak/detoxify-pile-chunk3-950000-1000000', 'tomekkorbak/detoxify-pile-chunk3-1000000-1050000', 'tomekkorbak/detoxify-pile-chunk3-1050000-1100000', 'tomekkorbak/detoxify-pile-chunk3-1100000-1150000', 'tomekkorbak/detoxify-pile-chunk3-1150000-1200000', 'tomekkorbak/detoxify-pile-chunk3-1200000-1250000', 'tomekkorbak/detoxify-pile-chunk3-1250000-1300000', 'tomekkorbak/detoxify-pile-chunk3-1300000-1350000', 'tomekkorbak/detoxify-pile-chunk3-1350000-1400000', 'tomekkorbak/detoxify-pile-chunk3-1400000-1450000', 'tomekkorbak/detoxify-pile-chunk3-1450000-1500000', 'tomekkorbak/detoxify-pile-chunk3-1500000-1550000', 'tomekkorbak/detoxify-pile-chunk3-1550000-1600000', 'tomekkorbak/detoxify-pile-chunk3-1600000-1650000', 'tomekkorbak/detoxify-pile-chunk3-1650000-1700000', 'tomekkorbak/detoxify-pile-chunk3-1700000-1750000', 'tomekkorbak/detoxify-pile-chunk3-1750000-1800000', 'tomekkorbak/detoxify-pile-chunk3-1800000-1850000', 'tomekkorbak/detoxify-pile-chunk3-1850000-1900000', 'tomekkorbak/detoxify-pile-chunk3-1900000-1950000'], 'filter_threshold': 0.00065, 'is_split_by_sentences': True}, 'generation': {'force_call_on': [25354], 'metrics_configs': [{}, {'n': 1}, {'n': 2}, {'n': 5}], 'scenario_configs': [{'generate_kwargs': {'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_samples': 2048}, {'generate_kwargs': {'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'challenging_rtp', 'num_samples': 2048, 'prompts_path': 'resources/challenging_rtp.jsonl'}], 'scorer_config': {'device': 'cuda:0'}}, 'kl_gpt3_callback': {'force_call_on': [25354], 'max_tokens': 64, 'num_samples': 4096}, 'model': {'from_scratch': True, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'path_or_name': 'gpt2'}, 'objective': {'name': 'MLE'}, 'tokenizer': {'path_or_name': 'gpt2'}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 64, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'compassionate_hypatia', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.0005, 'logging_first_step': True, 'logging_steps': 1, 'num_tokens': 3300000000, 'output_dir': 'training_output104340', 'per_device_train_batch_size': 16, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 25354, 'save_strategy': 'steps', 'seed': 42, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/tomekkorbak/apo/runs/3kybxs99
yorko/sd-class-butterflies-32
yorko
2022-11-30T13:41:32Z
35
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-11-30T13:30:35Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained("yorko/sd-class-butterflies-32") image = pipeline().images[0] image ```
nixmaverick1997/app-setfit-classifier
nixmaverick1997
2022-11-30T13:32:26Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-classifier", "transformers", "sentiment-classifier", "sentence-similarity", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-10-31T16:11:57Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-classifier - transformers - sentiment-classifier --- # SetFit Sentiment Classifier This is a variant of the [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> Uses Siamese and triplet network structures to generate semantically meaningful sentence embeddings ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install setfit ``` Then you can use the model like this: ```python from setfit import SetFitModel sentences = ["This is an example sentence", "Each sentence is converted"] model = SetFitModel.from_pretrained("nixmaverick1997/app-setfit-classifier") embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained("nixmaverick1997/app-setfit-classifier") model = AutoModel.from_pretrained("nixmaverick1997/app-setfit-classifier") # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> Loss class = CosineSimilarityLoss ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 640 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 640, "warmup_steps": 64, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Watwat100/256data
Watwat100
2022-11-30T13:00:52Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-11-30T13:00:38Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 1576 with parameters: ``` {'batch_size': 13, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 3, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 4728, "warmup_steps": 473, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
kejian/immaculate-filtering
kejian
2022-11-30T12:11:34Z
104
0
transformers
[ "transformers", "pytorch", "gpt2", "generated_from_trainer", "en", "dataset:kejian/codeparrot-train-more-filter-3.3b-cleaned", "license:apache-2.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2022-11-29T15:12:15Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - kejian/codeparrot-train-more-filter-3.3b-cleaned model-index: - name: immaculate-filtering results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # immaculate-filtering This model was trained from scratch on the kejian/codeparrot-train-more-filter-3.3b-cleaned dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0008 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 50354 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.23.0 - Pytorch 1.13.0+cu116 - Datasets 2.0.0 - Tokenizers 0.12.1 # Full config {'dataset': {'datasets': ['kejian/codeparrot-train-more-filter-3.3b-cleaned'], 'filter_threshold': 0.002361, 'is_split_by_sentences': True}, 'generation': {'batch_size': 128, 'metrics_configs': [{}, {'n': 1}, {}], 'scenario_configs': [{'display_as_html': True, 'generate_kwargs': {'do_sample': True, 'eos_token_id': 0, 'max_length': 640, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_samples': 512}, {'display_as_html': True, 'generate_kwargs': {'do_sample': True, 'eos_token_id': 0, 'max_length': 272, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'functions', 'num_samples': 512, 'prompts_path': 'resources/functions_csnet.jsonl', 'use_prompt_for_scoring': True}], 'scorer_config': {}}, 'kl_gpt3_callback': {'gpt3_kwargs': {'model_name': 'code-cushman-001'}, 'max_tokens': 64, 'num_samples': 4096}, 'model': {'from_scratch': True, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'path_or_name': 'codeparrot/codeparrot-small'}, 'objective': {'name': 'MLE'}, 'tokenizer': {'path_or_name': 'codeparrot/codeparrot-small'}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 64, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'immaculate-filtering', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.0008, 'logging_first_step': True, 'logging_steps': 1, 'num_tokens': 3300000000.0, 'output_dir': 'training_output', 'per_device_train_batch_size': 16, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 25177, 'save_strategy': 'steps', 'seed': 42, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/kejian/uncategorized/runs/3jjalm0n
GujjetiNagaraju/xlm-roberta-base-finetuned-Telugu_NLP
GujjetiNagaraju
2022-11-30T12:10:20Z
117
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "fill-mask", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-11-30T11:05:48Z
--- license: mit tags: - generated_from_trainer model-index: - name: xlm-roberta-base-finetuned-Telugu_NLP results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-Telugu_NLP This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9986 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.4192 | 1.0 | 1250 | 2.1557 | | 2.2859 | 2.0 | 2500 | 2.0632 | | 2.2311 | 3.0 | 3750 | 2.0083 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
roscazo/DisTEMIST_fine_tuned_sentence
roscazo
2022-11-30T11:30:15Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-23T09:51:37Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 model-index: - name: DisTEMIST_fine_tuned_sentence results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DisTEMIST_fine_tuned_sentence This model is a fine-tuned version of [PlanTL-GOB-ES/bsc-bio-es](https://huggingface.co/PlanTL-GOB-ES/bsc-bio-es) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2164 - Precision: 0.6069 - Recall: 0.6401 - F1: 0.6231 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=2.6e-09 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 73 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:| | 0.1166 | 1.0 | 1099 | 0.1152 | 0.5214 | 0.6433 | 0.5760 | | 0.0718 | 2.0 | 2198 | 0.1096 | 0.6015 | 0.6297 | 0.6153 | | 0.0438 | 3.0 | 3297 | 0.1517 | 0.6573 | 0.5895 | 0.6215 | | 0.0293 | 4.0 | 4396 | 0.1496 | 0.6212 | 0.6198 | 0.6205 | | 0.0179 | 5.0 | 5495 | 0.1665 | 0.5670 | 0.6505 | 0.6059 | | 0.0119 | 6.0 | 6594 | 0.1602 | 0.6035 | 0.6379 | 0.6202 | | 0.0078 | 7.0 | 7693 | 0.1844 | 0.6008 | 0.6347 | 0.6173 | | 0.0041 | 8.0 | 8792 | 0.2019 | 0.6006 | 0.6288 | 0.6144 | | 0.0026 | 9.0 | 9891 | 0.2075 | 0.6015 | 0.6270 | 0.6140 | | 0.0014 | 10.0 | 10990 | 0.2164 | 0.6069 | 0.6401 | 0.6231 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2