modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
sequence
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
smilton/mt5-large-qasrl-es-p2-question
smilton
2022-11-29T04:36:00Z
3
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "generated_from_trainer", "es", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-29T03:55:16Z
--- language: - es license: apache-2.0 tags: - generated_from_trainer model-index: - name: mt5-large-qasrl-es-p2-question results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-large-qasrl-es-p2-question This model is a fine-tuned version of [google/mt5-large](https://huggingface.co/google/mt5-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7515 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.11.0 - Datasets 2.7.1 - Tokenizers 0.11.0
renatanerenata/bart-paraphrase1-finetuned-in-to-fo
renatanerenata
2022-11-29T04:35:59Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-29T00:54:14Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bart-paraphrase1-finetuned-in-to-fo results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-paraphrase1-finetuned-in-to-fo This model is a fine-tuned version of [eugenesiow/bart-paraphrase](https://huggingface.co/eugenesiow/bart-paraphrase) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.002 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
Zhaohui/finetuning-misinfo-model-700-Zhaohui-1_misinfo
Zhaohui
2022-11-29T04:10:10Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-29T03:57:58Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: finetuning-misinfo-model-700-Zhaohui-1_misinfo results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-misinfo-model-700-Zhaohui-1_misinfo This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5343 - Accuracy: 0.8571 - F1: 0.8571 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
NSandra/distilbert-base-uncased-finetuned-ner
NSandra
2022-11-29T04:09:17Z
125
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-29T03:55:13Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2393 - Precision: 1.0 - Recall: 1.0 - F1: 1.0 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:| | No log | 1.0 | 1 | 1.5491 | 1.0 | 1.0 | 1.0 | 1.0 | | No log | 2.0 | 2 | 1.3278 | 1.0 | 1.0 | 1.0 | 1.0 | | No log | 3.0 | 3 | 1.2393 | 1.0 | 1.0 | 1.0 | 1.0 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
ryvalenza/sd-class-butterflies-32
ryvalenza
2022-11-29T04:00:32Z
34
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-11-29T04:00:01Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(ryvalenza/sd-class-butterflies-32) image = pipeline().images[0] image ```
jeraldflowers/vit_model
jeraldflowers
2022-11-29T03:51:31Z
188
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "dataset:beans", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-11-27T05:06:17Z
--- license: apache-2.0 tags: - image-classification - generated_from_trainer datasets: - beans metrics: - accuracy widget: - src: https://huggingface.co/jeraldflowers/vit_model/blob/main/healthy.jpeg example_title: Healthy - src: https://huggingface.co/jeraldflowers/vit_model/blob/main/bean_rust.jpeg example_title: Bean Rust model-index: - name: vit_model results: - task: name: Image Classification type: image-classification dataset: name: beans type: beans config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 1.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit_model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0095 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1526 | 3.85 | 500 | 0.0095 | 1.0 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
UCSYNLP/MyanBERTa
UCSYNLP
2022-11-29T03:35:58Z
297
3
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "MyanBERTa", "Myanmar", "BERT", "RoBERTa", "my", "dataset:MyCorpus", "dataset:Web", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-07-25T06:57:10Z
--- language: my tags: - MyanBERTa - Myanmar - BERT - RoBERTa license: apache-2.0 datasets: - MyCorpus - Web --- ## Model description This model is a BERT based Myanmar pre-trained language model. MyanBERTa was pre-trained for 528K steps on a word segmented Myanmar dataset consisting of 5,992,299 sentences (136M words). As the tokenizer, byte-leve BPE tokenizer of 30,522 subword units which is learned after word segmentation is applied. Cite this work as: ``` Aye Mya Hlaing, Win Pa Pa, "MyanBERTa: A Pre-trained Language Model For Myanmar", In Proceedings of 2022 International Conference on Communication and Computer Research (ICCR2022), November 2022, Seoul, Republic of Korea ``` [Download Paper](https://journal-home.s3.ap-northeast-2.amazonaws.com/site/iccr2022/abs/QOHFI-0004.pdf)
jeraldflowers/distilroberts-base-mrpc-glue-jeraldflowers
jeraldflowers
2022-11-29T02:57:36Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-28T05:30:00Z
--- license: apache-2.0 tags: - text-classification - generated_from_trainer datasets: - glue metrics: - accuracy - f1 widget: - text: ["Yucaipa owned Dominick's before selling the chain to Safeway in 1998 for $ 2.5 billion.", "Yucaipa bought Dominick's in 1995 for $ 693 million and sold it to Safeway for $ 1.8 billion in 1998."] example_title: Not Equivalent - text: ["Revenue in the first quarter of the year dropped 15 percent from the same period a year earlier.", "With the scandal hanging over Stewart's company revenue the first quarter of the year dropped 15 percent from the same period a year earlier."] example_title: Equivalent model-index: - name: distilroberts-base-mrpc-glue-jeraldflowers results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: mrpc split: train args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8431372549019608 - name: F1 type: f1 value: 0.8814814814814815 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberts-base-mrpc-glue-jeraldflowers This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the glue and the mrpc datasets. It achieves the following results on the evaluation set: - Loss: 0.4990 - Accuracy: 0.8431 - F1: 0.8815 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.5289 | 1.09 | 500 | 0.5668 | 0.8211 | 0.8689 | | 0.3675 | 2.18 | 1000 | 0.4990 | 0.8431 | 0.8815 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
neulab/omnitab-large-128shot-finetuned-wtq-128shot
neulab
2022-11-29T02:55:31Z
47
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "tapex", "table-question-answering", "en", "dataset:wikitablequestions", "arxiv:2207.03637", "autotrain_compatible", "endpoints_compatible", "region:us" ]
table-question-answering
2022-11-29T02:54:00Z
--- language: en tags: - tapex - table-question-answering datasets: - wikitablequestions --- # OmniTab OmniTab is a table-based QA model proposed in [OmniTab: Pretraining with Natural and Synthetic Data for Few-shot Table-based Question Answering](https://arxiv.org/pdf/2207.03637.pdf). The original Github repository is [https://github.com/jzbjyb/OmniTab](https://github.com/jzbjyb/OmniTab). ## Description `neulab/omnitab-large-128shot-finetuned-wtq-128shot` (based on BART architecture) is initialized with `neulab/omnitab-large-128shot` and fine-tuned on [WikiTableQuestions](https://huggingface.co/datasets/wikitablequestions) in the 128-shot setting. ## Usage ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import pandas as pd tokenizer = AutoTokenizer.from_pretrained("neulab/omnitab-large-128shot-finetuned-wtq-128shot") model = AutoModelForSeq2SeqLM.from_pretrained("neulab/omnitab-large-128shot-finetuned-wtq-128shot") data = { "year": [1896, 1900, 1904, 2004, 2008, 2012], "city": ["athens", "paris", "st. louis", "athens", "beijing", "london"] } table = pd.DataFrame.from_dict(data) query = "In which year did beijing host the Olympic Games?" encoding = tokenizer(table=table, query=query, return_tensors="pt") outputs = model.generate(**encoding) print(tokenizer.batch_decode(outputs, skip_special_tokens=True)) # [' 2008'] ``` ## Reference ```bibtex @inproceedings{jiang-etal-2022-omnitab, title = "{O}mni{T}ab: Pretraining with Natural and Synthetic Data for Few-shot Table-based Question Answering", author = "Jiang, Zhengbao and Mao, Yi and He, Pengcheng and Neubig, Graham and Chen, Weizhu", booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies", month = jul, year = "2022", } ```
neulab/omnitab-large-1024shot-finetuned-wtq-1024shot
neulab
2022-11-29T02:45:55Z
51
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "tapex", "table-question-answering", "en", "dataset:wikitablequestions", "arxiv:2207.03637", "autotrain_compatible", "endpoints_compatible", "region:us" ]
table-question-answering
2022-11-29T02:44:57Z
--- language: en tags: - tapex - table-question-answering datasets: - wikitablequestions --- # OmniTab OmniTab is a table-based QA model proposed in [OmniTab: Pretraining with Natural and Synthetic Data for Few-shot Table-based Question Answering](https://arxiv.org/pdf/2207.03637.pdf). The original Github repository is [https://github.com/jzbjyb/OmniTab](https://github.com/jzbjyb/OmniTab). ## Description `neulab/omnitab-large-1024shot-finetuned-wtq-1024shot` (based on BART architecture) is initialized with `neulab/omnitab-large-1024shot` and fine-tuned on [WikiTableQuestions](https://huggingface.co/datasets/wikitablequestions) in the 1024-shot setting. ## Usage ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import pandas as pd tokenizer = AutoTokenizer.from_pretrained("neulab/omnitab-large-1024shot-finetuned-wtq-1024shot") model = AutoModelForSeq2SeqLM.from_pretrained("neulab/omnitab-large-1024shot-finetuned-wtq-1024shot") data = { "year": [1896, 1900, 1904, 2004, 2008, 2012], "city": ["athens", "paris", "st. louis", "athens", "beijing", "london"] } table = pd.DataFrame.from_dict(data) query = "In which year did beijing host the Olympic Games?" encoding = tokenizer(table=table, query=query, return_tensors="pt") outputs = model.generate(**encoding) print(tokenizer.batch_decode(outputs, skip_special_tokens=True)) # [' 2008'] ``` ## Reference ```bibtex @inproceedings{jiang-etal-2022-omnitab, title = "{O}mni{T}ab: Pretraining with Natural and Synthetic Data for Few-shot Table-based Question Answering", author = "Jiang, Zhengbao and Mao, Yi and He, Pengcheng and Neubig, Graham and Chen, Weizhu", booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies", month = jul, year = "2022", } ```
npark/asr-conformer-ksponspeech
npark
2022-11-29T02:25:40Z
5
1
null
[ "region:us" ]
null
2022-11-29T01:26:29Z
# KsponSpeech ASR with Transformers This repository provides pretrained end-to-end ASR models on KsponSpeech with Speechbrain v0.5.13. Model files in this repository trained using the files is below URL, but in Speechbrain version 0.5.13. https://github.com/speechbrain/speechbrain/tree/develop/recipes/KsponSpeech/ASR/transformer language: - "ko" - ko datasets: - KsponSpeech ## About SpeechBrain * Website: https://speechbrain.github.io/ * Code: https://github.com/speechbrain/speechbrain/ * HuggingFace: https://huggingface.co/speechbrain/
huggingtweets/elonmusk-lexfridman
huggingtweets
2022-11-29T01:35:11Z
118
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1590968738358079488/IY9Gx6Ok_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/956331551435960322/OaqR8pAB_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Elon Musk & Lex Fridman</div> <div style="text-align: center; font-size: 14px;">@elonmusk-lexfridman</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Elon Musk & Lex Fridman. | Data | Elon Musk | Lex Fridman | | --- | --- | --- | | Tweets downloaded | 3198 | 2410 | | Retweets | 126 | 253 | | Short tweets | 968 | 49 | | Tweets kept | 2104 | 2108 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/18nt3c0k/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @elonmusk-lexfridman's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2ozchvjo) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2ozchvjo/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/elonmusk-lexfridman') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
akmoyu/whisper-medium-mn
akmoyu
2022-11-29T01:27:26Z
3
0
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "mn", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-27T12:12:01Z
--- language: - mn license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Medium Mn - akmoyu results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 args: 'config: hi, split: test' metrics: - name: Wer type: wer value: 42.52948885976409 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Medium Mn - akmoyu This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.7233 - Wer: 42.5295 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0182 | 7.94 | 1000 | 0.5995 | 46.5269 | | 0.0027 | 15.87 | 2000 | 0.6499 | 44.2169 | | 0.0002 | 23.81 | 3000 | 0.7057 | 42.5623 | | 0.0001 | 31.75 | 4000 | 0.7233 | 42.5295 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.6.1 - Tokenizers 0.13.2
dlwh/legal-xlm-base_128k
dlwh
2022-11-29T00:48:35Z
4
2
transformers
[ "transformers", "roberta", "fill-mask", "bg", "cs", "da", "de", "el", "en", "es", "et", "fi", "fr", "ga", "hr", "hu", "it", "lt", "lv", "mt", "nl", "pl", "pt", "ro", "sk", "sl", "sv", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-11-29T00:41:54Z
--- license: apache-2.0 language: - bg - cs - da - de - el - en - es - et - fi - fr - ga - hr - hu - it - lt - lv - mt - nl - pl - pt - ro - sk - sl - sv dataset: - joelito/MultiLegalPile_Wikipedia_Filtered --- Huggingface thinks this is a model, but it's just a tokenizer. Trained on https://huggingface.co/datasets/joelito/MultiLegalPile_Wikipedia_Filtered
matan-diamond/sd-class-butterflies-32
matan-diamond
2022-11-29T00:47:21Z
36
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-11-29T00:46:35Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(matan-diamond/sd-class-butterflies-32) image = pipeline().images[0] image ```
adrien-alloreview/whisper-small-fr
adrien-alloreview
2022-11-29T00:13:29Z
83
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "hi", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-28T22:32:23Z
--- language: - hi license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 model-index: - name: Whisper Small Hi - Sanchit Gandhi results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Hi - Sanchit Gandhi This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - eval_loss: 0.2226 - eval_wer: 10.0023 - eval_runtime: 65.2041 - eval_samples_per_second: 1.748 - eval_steps_per_second: 0.23 - epoch: 19.51 - step: 800 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - training_steps: 1000 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
joweyel/sd-class-butterflies-32
joweyel
2022-11-28T23:54:45Z
37
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-11-28T23:51:15Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of (more or less) cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(datboi223/sd-class-butterflies-32) image = pipeline().images[0] image ```
Serhio/sd-fine-tune-v2
Serhio
2022-11-28T23:43:18Z
34
0
diffusers
[ "diffusers", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2022-11-28T23:41:46Z
--- license: creativeml-openrail-m tags: - text-to-image --- ### sd-fine-tune-v2 on Stable Diffusion via Dreambooth #### model by Serhio This your the Stable Diffusion model fine-tuned the sd-fine-tune-v2 concept taught to Stable Diffusion with Dreambooth. It can be used by modifying the `instance_prompt`: **Bashkov Sergey** You can also train your own concepts and upload them to the library by using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_training.ipynb). And you can run your new concept via `diffusers`: [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb), [Spaces with the Public Concepts loaded](https://huggingface.co/spaces/sd-dreambooth-library/stable-diffusion-dreambooth-concepts)
pig4431/TweetEval_BERT_5E
pig4431
2022-11-28T23:38:03Z
102
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "dataset:tweet_eval", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-28T23:31:54Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - accuracy model-index: - name: TweetEval_BERT_5E results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval config: sentiment split: train args: sentiment metrics: - name: Accuracy type: accuracy value: 0.9266666666666666 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # TweetEval_BERT_5E This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.5419 - Accuracy: 0.9267 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6264 | 0.04 | 50 | 0.5266 | 0.74 | | 0.5054 | 0.08 | 100 | 0.5959 | 0.6333 | | 0.4732 | 0.12 | 150 | 0.3524 | 0.86 | | 0.3916 | 0.16 | 200 | 0.3195 | 0.8667 | | 0.3477 | 0.2 | 250 | 0.2878 | 0.8867 | | 0.3116 | 0.24 | 300 | 0.2903 | 0.92 | | 0.3039 | 0.28 | 350 | 0.2488 | 0.8933 | | 0.2633 | 0.32 | 400 | 0.2530 | 0.92 | | 0.2667 | 0.37 | 450 | 0.2125 | 0.9267 | | 0.2604 | 0.41 | 500 | 0.2628 | 0.8867 | | 0.278 | 0.45 | 550 | 0.2322 | 0.8867 | | 0.2625 | 0.49 | 600 | 0.1903 | 0.92 | | 0.2808 | 0.53 | 650 | 0.2400 | 0.8933 | | 0.2396 | 0.57 | 700 | 0.2184 | 0.9067 | | 0.2571 | 0.61 | 750 | 0.1906 | 0.9133 | | 0.2676 | 0.65 | 800 | 0.2467 | 0.9067 | | 0.2288 | 0.69 | 850 | 0.2038 | 0.9133 | | 0.2959 | 0.73 | 900 | 0.1941 | 0.9 | | 0.2619 | 0.77 | 950 | 0.2100 | 0.9333 | | 0.2504 | 0.81 | 1000 | 0.1523 | 0.9333 | | 0.2338 | 0.85 | 1050 | 0.1429 | 0.94 | | 0.2529 | 0.89 | 1100 | 0.1269 | 0.94 | | 0.2238 | 0.93 | 1150 | 0.1722 | 0.9333 | | 0.2295 | 0.97 | 1200 | 0.1874 | 0.94 | | 0.2089 | 1.01 | 1250 | 0.2214 | 0.9067 | | 0.1406 | 1.06 | 1300 | 0.3410 | 0.9133 | | 0.1587 | 1.1 | 1350 | 0.3330 | 0.9133 | | 0.1732 | 1.14 | 1400 | 0.2716 | 0.9133 | | 0.195 | 1.18 | 1450 | 0.3726 | 0.92 | | 0.1777 | 1.22 | 1500 | 0.2430 | 0.9267 | | 0.1433 | 1.26 | 1550 | 0.3011 | 0.9267 | | 0.1333 | 1.3 | 1600 | 0.2489 | 0.9333 | | 0.1516 | 1.34 | 1650 | 0.3340 | 0.9267 | | 0.1774 | 1.38 | 1700 | 0.2497 | 0.8933 | | 0.1608 | 1.42 | 1750 | 0.3234 | 0.9 | | 0.1534 | 1.46 | 1800 | 0.3383 | 0.9133 | | 0.1287 | 1.5 | 1850 | 0.3134 | 0.9133 | | 0.1422 | 1.54 | 1900 | 0.3330 | 0.9 | | 0.1578 | 1.58 | 1950 | 0.3281 | 0.9133 | | 0.1786 | 1.62 | 2000 | 0.2939 | 0.9267 | | 0.2019 | 1.66 | 2050 | 0.3535 | 0.9 | | 0.1995 | 1.7 | 2100 | 0.3032 | 0.9067 | | 0.159 | 1.75 | 2150 | 0.2598 | 0.9267 | | 0.1493 | 1.79 | 2200 | 0.2391 | 0.9267 | | 0.1748 | 1.83 | 2250 | 0.2258 | 0.92 | | 0.1783 | 1.87 | 2300 | 0.2749 | 0.9133 | | 0.1619 | 1.91 | 2350 | 0.2699 | 0.92 | | 0.1378 | 1.95 | 2400 | 0.2776 | 0.9067 | | 0.1529 | 1.99 | 2450 | 0.2235 | 0.9333 | | 0.1071 | 2.03 | 2500 | 0.2841 | 0.9267 | | 0.0812 | 2.07 | 2550 | 0.3178 | 0.9267 | | 0.0464 | 2.11 | 2600 | 0.3567 | 0.92 | | 0.1108 | 2.15 | 2650 | 0.2723 | 0.92 | | 0.0845 | 2.19 | 2700 | 0.2774 | 0.9267 | | 0.0795 | 2.23 | 2750 | 0.3027 | 0.9267 | | 0.0403 | 2.27 | 2800 | 0.3566 | 0.9267 | | 0.0664 | 2.31 | 2850 | 0.4015 | 0.92 | | 0.0659 | 2.35 | 2900 | 0.4298 | 0.9067 | | 0.1059 | 2.39 | 2950 | 0.4028 | 0.92 | | 0.105 | 2.44 | 3000 | 0.3701 | 0.92 | | 0.0808 | 2.48 | 3050 | 0.3206 | 0.9267 | | 0.0811 | 2.52 | 3100 | 0.3644 | 0.9133 | | 0.0458 | 2.56 | 3150 | 0.3781 | 0.9267 | | 0.0764 | 2.6 | 3200 | 0.3749 | 0.9267 | | 0.0567 | 2.64 | 3250 | 0.3995 | 0.92 | | 0.0971 | 2.68 | 3300 | 0.3455 | 0.92 | | 0.0579 | 2.72 | 3350 | 0.4508 | 0.92 | | 0.0853 | 2.76 | 3400 | 0.4350 | 0.92 | | 0.0577 | 2.8 | 3450 | 0.3804 | 0.9333 | | 0.0732 | 2.84 | 3500 | 0.4387 | 0.92 | | 0.0874 | 2.88 | 3550 | 0.3885 | 0.9333 | | 0.1031 | 2.92 | 3600 | 0.3937 | 0.92 | | 0.0335 | 2.96 | 3650 | 0.4963 | 0.8933 | | 0.0913 | 3.0 | 3700 | 0.3827 | 0.9333 | | 0.047 | 3.04 | 3750 | 0.4136 | 0.92 | | 0.0531 | 3.08 | 3800 | 0.4362 | 0.92 | | 0.0265 | 3.12 | 3850 | 0.4857 | 0.92 | | 0.038 | 3.17 | 3900 | 0.4425 | 0.92 | | 0.0294 | 3.21 | 3950 | 0.4347 | 0.92 | | 0.0367 | 3.25 | 4000 | 0.4291 | 0.9333 | | 0.0102 | 3.29 | 4050 | 0.5178 | 0.9267 | | 0.0311 | 3.33 | 4100 | 0.4784 | 0.9267 | | 0.0274 | 3.37 | 4150 | 0.5421 | 0.9267 | | 0.0275 | 3.41 | 4200 | 0.5194 | 0.92 | | 0.0795 | 3.45 | 4250 | 0.4788 | 0.92 | | 0.0413 | 3.49 | 4300 | 0.4393 | 0.9267 | | 0.0373 | 3.53 | 4350 | 0.4965 | 0.92 | | 0.0303 | 3.57 | 4400 | 0.4284 | 0.9267 | | 0.0248 | 3.61 | 4450 | 0.4476 | 0.9267 | | 0.0557 | 3.65 | 4500 | 0.4690 | 0.92 | | 0.0358 | 3.69 | 4550 | 0.4774 | 0.9133 | | 0.0194 | 3.73 | 4600 | 0.4755 | 0.92 | | 0.0473 | 3.77 | 4650 | 0.4637 | 0.92 | | 0.0133 | 3.81 | 4700 | 0.4868 | 0.92 | | 0.0204 | 3.86 | 4750 | 0.4886 | 0.9267 | | 0.0338 | 3.9 | 4800 | 0.5101 | 0.9267 | | 0.0424 | 3.94 | 4850 | 0.4812 | 0.9267 | | 0.0237 | 3.98 | 4900 | 0.4837 | 0.9267 | | 0.0372 | 4.02 | 4950 | 0.5000 | 0.9267 | | 0.0254 | 4.06 | 5000 | 0.5210 | 0.92 | | 0.024 | 4.1 | 5050 | 0.5272 | 0.92 | | 0.0117 | 4.14 | 5100 | 0.5447 | 0.92 | | 0.018 | 4.18 | 5150 | 0.5353 | 0.92 | | 0.0097 | 4.22 | 5200 | 0.5415 | 0.9267 | | 0.0151 | 4.26 | 5250 | 0.5447 | 0.9267 | | 0.0118 | 4.3 | 5300 | 0.5285 | 0.9267 | | 0.0004 | 4.34 | 5350 | 0.5399 | 0.9267 | | 0.0102 | 4.38 | 5400 | 0.5552 | 0.9267 | | 0.0012 | 4.42 | 5450 | 0.5689 | 0.92 | | 0.02 | 4.46 | 5500 | 0.5619 | 0.9267 | | 0.0056 | 4.5 | 5550 | 0.5784 | 0.92 | | 0.0271 | 4.55 | 5600 | 0.5766 | 0.92 | | 0.0191 | 4.59 | 5650 | 0.5662 | 0.92 | | 0.0311 | 4.63 | 5700 | 0.5514 | 0.9267 | | 0.0167 | 4.67 | 5750 | 0.5510 | 0.9267 | | 0.0293 | 4.71 | 5800 | 0.5571 | 0.9267 | | 0.0304 | 4.75 | 5850 | 0.5494 | 0.92 | | 0.0161 | 4.79 | 5900 | 0.5469 | 0.9267 | | 0.0017 | 4.83 | 5950 | 0.5468 | 0.9267 | | 0.0176 | 4.87 | 6000 | 0.5426 | 0.9267 | | 0.0094 | 4.91 | 6050 | 0.5402 | 0.9267 | | 0.0041 | 4.95 | 6100 | 0.5416 | 0.9267 | | 0.0281 | 4.99 | 6150 | 0.5419 | 0.9267 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.3.2 - Tokenizers 0.13.2
jiping/whisper-small-jsun2-hi
jiping
2022-11-28T22:38:58Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "hi", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-24T21:04:14Z
--- language: - hi license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Jsun Hi - Jiping results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 args: 'config: hi, split: test' metrics: - name: Wer type: wer value: 31.761618555828324 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Jsun Hi - Jiping This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2775 - Wer: 31.7616 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 400 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.2092 | 0.61 | 1000 | 0.3201 | 38.7666 | | 0.1106 | 1.22 | 2000 | 0.2810 | 34.1023 | | 0.1049 | 1.83 | 3000 | 0.2660 | 32.4812 | | 0.052 | 2.45 | 4000 | 0.2775 | 31.7616 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.0+cu102 - Datasets 2.6.1 - Tokenizers 0.13.1
rahul77/t5-small-finetuned-rahul-summariza
rahul77
2022-11-28T22:11:14Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-28T22:03:46Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: t5-small-finetuned-rahul-summariza results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-rahul-summariza This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7002 - Rouge1: 29.5043 - Rouge2: 23.832 - Rougel: 27.5786 - Rougelsum: 28.404 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.123 | 1.0 | 16 | 0.8258 | 27.2788 | 21.3634 | 25.7114 | 26.7324 | 19.0 | | 0.9067 | 2.0 | 32 | 0.7539 | 28.873 | 23.5401 | 27.2337 | 27.939 | 19.0 | | 0.8137 | 3.0 | 48 | 0.7280 | 29.1767 | 23.6599 | 27.7065 | 28.3569 | 19.0 | | 0.7872 | 4.0 | 64 | 0.7230 | 29.0451 | 23.4597 | 27.2762 | 28.1324 | 19.0 | | 0.7338 | 5.0 | 80 | 0.7133 | 29.4821 | 23.8113 | 27.4912 | 28.326 | 19.0 | | 0.6913 | 6.0 | 96 | 0.7101 | 29.4237 | 23.8523 | 27.4109 | 28.2418 | 19.0 | | 0.6679 | 7.0 | 112 | 0.7097 | 29.4237 | 23.8523 | 27.4109 | 28.2418 | 19.0 | | 0.6963 | 8.0 | 128 | 0.7046 | 29.4237 | 23.8523 | 27.4109 | 28.2418 | 19.0 | | 0.6223 | 9.0 | 144 | 0.7052 | 29.4237 | 23.7633 | 27.493 | 28.3362 | 19.0 | | 0.6494 | 10.0 | 160 | 0.7019 | 29.4237 | 23.7633 | 27.493 | 28.3362 | 19.0 | | 0.616 | 11.0 | 176 | 0.7010 | 29.4237 | 23.7633 | 27.493 | 28.3362 | 19.0 | | 0.6058 | 12.0 | 192 | 0.7028 | 29.4237 | 23.7633 | 27.493 | 28.3362 | 19.0 | | 0.5964 | 13.0 | 208 | 0.6996 | 29.4237 | 23.7633 | 27.493 | 28.3362 | 19.0 | | 0.5958 | 14.0 | 224 | 0.6997 | 29.4237 | 23.7633 | 27.493 | 28.3362 | 19.0 | | 0.57 | 15.0 | 240 | 0.6996 | 29.5043 | 23.832 | 27.5786 | 28.404 | 19.0 | | 0.5714 | 16.0 | 256 | 0.6998 | 29.5043 | 23.832 | 27.5786 | 28.404 | 19.0 | | 0.5648 | 17.0 | 272 | 0.6999 | 29.5043 | 23.832 | 27.5786 | 28.404 | 19.0 | | 0.5258 | 18.0 | 288 | 0.7005 | 29.5043 | 23.832 | 27.5786 | 28.404 | 19.0 | | 0.5692 | 19.0 | 304 | 0.7001 | 29.5043 | 23.832 | 27.5786 | 28.404 | 19.0 | | 0.5708 | 20.0 | 320 | 0.7002 | 29.5043 | 23.832 | 27.5786 | 28.404 | 19.0 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
ThomasSimonini/ML-Agents-SnowballFight-1vs1-model
ThomasSimonini
2022-11-28T22:07:31Z
6
0
ml-agents
[ "ml-agents", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Snowballfight-1vs1", "region:us" ]
reinforcement-learning
2022-11-28T21:26:07Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Snowballfight-1vs1 library_name: ml-agents ---
alryan1478/gpt-neo-125M-wikitext2
alryan1478
2022-11-28T21:57:47Z
4
0
transformers
[ "transformers", "pytorch", "gpt_neo", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-11-22T20:55:28Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: gpt-neo-125M-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt-neo-125M-wikitext2 This model is a fine-tuned version of [EleutherAI/gpt-neo-125M](https://huggingface.co/EleutherAI/gpt-neo-125M) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.0325 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 259 | 6.4308 | | 6.8563 | 2.0 | 518 | 6.0898 | | 6.8563 | 3.0 | 777 | 6.0325 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0+cu117 - Datasets 2.7.0 - Tokenizers 0.13.2
michaelmayo704/sd-class-butterflies-64
michaelmayo704
2022-11-28T21:39:43Z
34
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-11-28T21:38:51Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(michaelmayo704/sd-class-butterflies-64) image = pipeline().images[0] image ```
pig4431/TUF_ALBERT_5E
pig4431
2022-11-28T21:34:30Z
105
0
transformers
[ "transformers", "pytorch", "albert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-28T21:32:18Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: TUF_ALBERT_5E results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # TUF_ALBERT_5E This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2389 - Accuracy: 0.9533 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5099 | 0.1 | 50 | 0.3861 | 0.8533 | | 0.2985 | 0.2 | 100 | 0.2961 | 0.8933 | | 0.2972 | 0.3 | 150 | 0.2335 | 0.9333 | | 0.2835 | 0.4 | 200 | 0.1872 | 0.94 | | 0.26 | 0.5 | 250 | 0.4147 | 0.9133 | | 0.2986 | 0.59 | 300 | 0.2080 | 0.9267 | | 0.2554 | 0.69 | 350 | 0.3984 | 0.9133 | | 0.2306 | 0.79 | 400 | 0.2136 | 0.9333 | | 0.2218 | 0.89 | 450 | 0.4455 | 0.8867 | | 0.2113 | 0.99 | 500 | 0.2205 | 0.94 | | 0.2541 | 1.09 | 550 | 0.1705 | 0.9333 | | 0.1947 | 1.19 | 600 | 0.3264 | 0.8933 | | 0.2409 | 1.29 | 650 | 0.2084 | 0.92 | | 0.1968 | 1.39 | 700 | 0.2550 | 0.9267 | | 0.172 | 1.49 | 750 | 0.2238 | 0.9467 | | 0.1478 | 1.58 | 800 | 0.2501 | 0.9533 | | 0.2199 | 1.68 | 850 | 0.2618 | 0.9133 | | 0.1792 | 1.78 | 900 | 0.2109 | 0.9267 | | 0.1831 | 1.88 | 950 | 0.2641 | 0.92 | | 0.1534 | 1.98 | 1000 | 0.1924 | 0.94 | | 0.1208 | 2.08 | 1050 | 0.2990 | 0.9333 | | 0.1118 | 2.18 | 1100 | 0.4952 | 0.9 | | 0.158 | 2.28 | 1150 | 0.1706 | 0.9533 | | 0.1163 | 2.38 | 1200 | 0.1238 | 0.9733 | | 0.1738 | 2.48 | 1250 | 0.1989 | 0.9467 | | 0.1305 | 2.57 | 1300 | 0.4354 | 0.9067 | | 0.1668 | 2.67 | 1350 | 0.1276 | 0.9667 | | 0.1195 | 2.77 | 1400 | 0.2170 | 0.9533 | | 0.1057 | 2.87 | 1450 | 0.2882 | 0.9333 | | 0.1172 | 2.97 | 1500 | 0.1435 | 0.9667 | | 0.0893 | 3.07 | 1550 | 0.1754 | 0.96 | | 0.0582 | 3.17 | 1600 | 0.1858 | 0.96 | | 0.0887 | 3.27 | 1650 | 0.4954 | 0.92 | | 0.1166 | 3.37 | 1700 | 0.2356 | 0.9467 | | 0.0518 | 3.47 | 1750 | 0.1910 | 0.96 | | 0.0741 | 3.56 | 1800 | 0.1328 | 0.9733 | | 0.072 | 3.66 | 1850 | 0.2769 | 0.9467 | | 0.0534 | 3.76 | 1900 | 0.3501 | 0.94 | | 0.0776 | 3.86 | 1950 | 0.3171 | 0.94 | | 0.0537 | 3.96 | 2000 | 0.2138 | 0.9533 | | 0.0683 | 4.06 | 2050 | 0.2934 | 0.94 | | 0.015 | 4.16 | 2100 | 0.2233 | 0.9533 | | 0.0236 | 4.26 | 2150 | 0.2673 | 0.9533 | | 0.0357 | 4.36 | 2200 | 0.2279 | 0.96 | | 0.0298 | 4.46 | 2250 | 0.3017 | 0.9467 | | 0.0357 | 4.55 | 2300 | 0.2910 | 0.9467 | | 0.0208 | 4.65 | 2350 | 0.2498 | 0.9533 | | 0.0345 | 4.75 | 2400 | 0.2259 | 0.9667 | | 0.0174 | 4.85 | 2450 | 0.2274 | 0.9667 | | 0.0393 | 4.95 | 2500 | 0.2389 | 0.9533 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.7.1 - Tokenizers 0.13.2
anikethjr/PromoGen_K562_2080Ti_restart
anikethjr
2022-11-28T21:24:36Z
91
0
transformers
[ "transformers", "pytorch", "tensorboard", "prophetnet", "text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-11-27T05:27:24Z
--- tags: - generated_from_trainer model-index: - name: PromoGen_K562_2080Ti_restart results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # PromoGen_K562_2080Ti_restart This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4624 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 25 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 0.7676 | 0.49 | 2500 | 0.7383 | | 0.7121 | 0.97 | 5000 | 0.6867 | | 0.6914 | 1.46 | 7500 | 0.6705 | | 0.6837 | 1.95 | 10000 | 0.6622 | | 0.6778 | 2.44 | 12500 | 0.6558 | | 0.6748 | 2.92 | 15000 | 0.6517 | | 0.6676 | 3.41 | 17500 | 0.6433 | | 0.6593 | 3.9 | 20000 | 0.6358 | | 0.6584 | 4.38 | 22500 | 0.6320 | | 0.6557 | 4.87 | 25000 | 0.6301 | | 0.6523 | 5.36 | 27500 | 0.6257 | | 0.6478 | 5.84 | 30000 | 0.6236 | | 0.6393 | 6.33 | 32500 | 0.6145 | | 0.6039 | 6.82 | 35000 | 0.5658 | | 0.5616 | 7.31 | 37500 | 0.5376 | | 0.5518 | 7.79 | 40000 | 0.5310 | | 0.5509 | 8.28 | 42500 | 0.5273 | | 0.5487 | 8.77 | 45000 | 0.5261 | | 0.5479 | 9.25 | 47500 | 0.5249 | | 0.546 | 9.74 | 50000 | 0.5242 | | 0.5447 | 10.23 | 52500 | 0.5229 | | 0.5439 | 10.71 | 55000 | 0.5220 | | 0.5433 | 11.2 | 57500 | 0.5209 | | 0.5394 | 11.69 | 60000 | 0.5162 | | 0.5153 | 12.18 | 62500 | 0.4944 | | 0.5137 | 12.66 | 65000 | 0.4932 | | 0.514 | 13.15 | 67500 | 0.4924 | | 0.5131 | 13.64 | 70000 | 0.4919 | | 0.5104 | 14.12 | 72500 | 0.4914 | | 0.5122 | 14.61 | 75000 | 0.4906 | | 0.5089 | 15.1 | 77500 | 0.4901 | | 0.5076 | 15.59 | 80000 | 0.4891 | | 0.4986 | 16.07 | 82500 | 0.4721 | | 0.4875 | 16.56 | 85000 | 0.4672 | | 0.4887 | 17.05 | 87500 | 0.4669 | | 0.4839 | 17.53 | 90000 | 0.4661 | | 0.4849 | 18.02 | 92500 | 0.4654 | | 0.4848 | 18.51 | 95000 | 0.4649 | | 0.4831 | 18.99 | 97500 | 0.4646 | | 0.4816 | 19.48 | 100000 | 0.4644 | | 0.4808 | 19.97 | 102500 | 0.4637 | | 0.4812 | 20.46 | 105000 | 0.4634 | | 0.4813 | 20.94 | 107500 | 0.4633 | | 0.4818 | 21.43 | 110000 | 0.4631 | | 0.4813 | 21.92 | 112500 | 0.4629 | | 0.4782 | 22.4 | 115000 | 0.4628 | | 0.4804 | 22.89 | 117500 | 0.4626 | | 0.4815 | 23.38 | 120000 | 0.4625 | | 0.4812 | 23.87 | 122500 | 0.4625 | | 0.4785 | 24.35 | 125000 | 0.4624 | | 0.4795 | 24.84 | 127500 | 0.4624 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.7.0 - Tokenizers 0.13.0.dev0
Inayat/Fine_tune_whisper_small
Inayat
2022-11-28T21:14:32Z
79
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-14T19:18:30Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: Fine_tune_whisper_small results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Fine_tune_whisper_small This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8238 - Wer: 42.9362 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - training_steps: 900 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.2994 | 3.92 | 200 | 0.6607 | 44.0797 | | 0.0201 | 7.84 | 400 | 0.7371 | 42.6042 | | 0.002 | 11.76 | 600 | 0.8027 | 42.5304 | | 0.0011 | 15.69 | 800 | 0.8238 | 42.9362 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
pig4431/TweetEval_DistilBERT_5E
pig4431
2022-11-28T21:09:36Z
103
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:tweet_eval", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-28T21:03:38Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - accuracy model-index: - name: TweetEval_DistilBERT_5E results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval config: sentiment split: train args: sentiment metrics: - name: Accuracy type: accuracy value: 0.9133333333333333 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # TweetEval_DistilBERT_5E This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.4043 - Accuracy: 0.9133 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5747 | 0.04 | 50 | 0.4843 | 0.7333 | | 0.4336 | 0.08 | 100 | 0.2888 | 0.8667 | | 0.3437 | 0.12 | 150 | 0.2895 | 0.8667 | | 0.3375 | 0.16 | 200 | 0.2864 | 0.8733 | | 0.3072 | 0.2 | 250 | 0.2577 | 0.8867 | | 0.3019 | 0.24 | 300 | 0.2574 | 0.8933 | | 0.2662 | 0.28 | 350 | 0.2621 | 0.8867 | | 0.283 | 0.32 | 400 | 0.2340 | 0.92 | | 0.2949 | 0.37 | 450 | 0.2482 | 0.8933 | | 0.3066 | 0.41 | 500 | 0.2537 | 0.9 | | 0.2457 | 0.45 | 550 | 0.2473 | 0.9 | | 0.295 | 0.49 | 600 | 0.2177 | 0.9133 | | 0.2862 | 0.53 | 650 | 0.2215 | 0.9133 | | 0.2603 | 0.57 | 700 | 0.2272 | 0.9133 | | 0.2976 | 0.61 | 750 | 0.2298 | 0.9067 | | 0.2823 | 0.65 | 800 | 0.2451 | 0.8933 | | 0.2583 | 0.69 | 850 | 0.2645 | 0.8933 | | 0.2694 | 0.73 | 900 | 0.2352 | 0.9 | | 0.2433 | 0.77 | 950 | 0.2322 | 0.9133 | | 0.2598 | 0.81 | 1000 | 0.2300 | 0.9 | | 0.2701 | 0.85 | 1050 | 0.2162 | 0.9 | | 0.2227 | 0.89 | 1100 | 0.2135 | 0.8933 | | 0.2045 | 0.93 | 1150 | 0.2233 | 0.9133 | | 0.2821 | 0.97 | 1200 | 0.2194 | 0.9 | | 0.2342 | 1.01 | 1250 | 0.2488 | 0.88 | | 0.2028 | 1.06 | 1300 | 0.2451 | 0.8867 | | 0.1509 | 1.1 | 1350 | 0.3174 | 0.88 | | 0.1888 | 1.14 | 1400 | 0.2537 | 0.9133 | | 0.1825 | 1.18 | 1450 | 0.2559 | 0.9067 | | 0.1721 | 1.22 | 1500 | 0.2511 | 0.92 | | 0.2137 | 1.26 | 1550 | 0.2963 | 0.9133 | | 0.2153 | 1.3 | 1600 | 0.2210 | 0.92 | | 0.1989 | 1.34 | 1650 | 0.2231 | 0.9133 | | 0.2155 | 1.38 | 1700 | 0.1991 | 0.9133 | | 0.1912 | 1.42 | 1750 | 0.2146 | 0.92 | | 0.1623 | 1.46 | 1800 | 0.2721 | 0.9 | | 0.2236 | 1.5 | 1850 | 0.2301 | 0.9267 | | 0.1907 | 1.54 | 1900 | 0.1988 | 0.92 | | 0.1286 | 1.58 | 1950 | 0.2326 | 0.9 | | 0.2147 | 1.62 | 2000 | 0.2432 | 0.9267 | | 0.2018 | 1.66 | 2050 | 0.2162 | 0.9067 | | 0.2073 | 1.7 | 2100 | 0.2153 | 0.9133 | | 0.1498 | 1.75 | 2150 | 0.2335 | 0.92 | | 0.1812 | 1.79 | 2200 | 0.2275 | 0.9267 | | 0.1482 | 1.83 | 2250 | 0.2734 | 0.9 | | 0.2233 | 1.87 | 2300 | 0.2454 | 0.9 | | 0.1673 | 1.91 | 2350 | 0.2394 | 0.92 | | 0.1555 | 1.95 | 2400 | 0.2725 | 0.92 | | 0.2082 | 1.99 | 2450 | 0.2684 | 0.9133 | | 0.1545 | 2.03 | 2500 | 0.3049 | 0.9067 | | 0.1384 | 2.07 | 2550 | 0.2960 | 0.9133 | | 0.1201 | 2.11 | 2600 | 0.3259 | 0.9 | | 0.1348 | 2.15 | 2650 | 0.3091 | 0.9133 | | 0.1046 | 2.19 | 2700 | 0.2916 | 0.9267 | | 0.1506 | 2.23 | 2750 | 0.2910 | 0.9133 | | 0.1481 | 2.27 | 2800 | 0.2855 | 0.9067 | | 0.1318 | 2.31 | 2850 | 0.3075 | 0.9 | | 0.1204 | 2.35 | 2900 | 0.3169 | 0.8933 | | 0.1669 | 2.39 | 2950 | 0.3050 | 0.9067 | | 0.1725 | 2.44 | 3000 | 0.2970 | 0.9133 | | 0.1305 | 2.48 | 3050 | 0.3065 | 0.9 | | 0.1508 | 2.52 | 3100 | 0.3079 | 0.9133 | | 0.184 | 2.56 | 3150 | 0.3482 | 0.9067 | | 0.1263 | 2.6 | 3200 | 0.3310 | 0.9 | | 0.1282 | 2.64 | 3250 | 0.3520 | 0.8933 | | 0.1217 | 2.68 | 3300 | 0.3158 | 0.9067 | | 0.1203 | 2.72 | 3350 | 0.3351 | 0.92 | | 0.1068 | 2.76 | 3400 | 0.3239 | 0.92 | | 0.1517 | 2.8 | 3450 | 0.3247 | 0.92 | | 0.113 | 2.84 | 3500 | 0.3269 | 0.9133 | | 0.1276 | 2.88 | 3550 | 0.3162 | 0.92 | | 0.1548 | 2.92 | 3600 | 0.3196 | 0.9133 | | 0.1305 | 2.96 | 3650 | 0.3163 | 0.92 | | 0.149 | 3.0 | 3700 | 0.3013 | 0.92 | | 0.0816 | 3.04 | 3750 | 0.3097 | 0.9267 | | 0.0884 | 3.08 | 3800 | 0.3028 | 0.92 | | 0.0727 | 3.12 | 3850 | 0.3487 | 0.9133 | | 0.1018 | 3.17 | 3900 | 0.3447 | 0.92 | | 0.1266 | 3.21 | 3950 | 0.3589 | 0.9133 | | 0.1216 | 3.25 | 4000 | 0.3464 | 0.92 | | 0.091 | 3.29 | 4050 | 0.3454 | 0.92 | | 0.0829 | 3.33 | 4100 | 0.3450 | 0.92 | | 0.1084 | 3.37 | 4150 | 0.3670 | 0.92 | | 0.0754 | 3.41 | 4200 | 0.3661 | 0.92 | | 0.094 | 3.45 | 4250 | 0.3588 | 0.9067 | | 0.0641 | 3.49 | 4300 | 0.3936 | 0.92 | | 0.1138 | 3.53 | 4350 | 0.3616 | 0.92 | | 0.0744 | 3.57 | 4400 | 0.3562 | 0.92 | | 0.0697 | 3.61 | 4450 | 0.3532 | 0.9267 | | 0.1083 | 3.65 | 4500 | 0.3451 | 0.9267 | | 0.0701 | 3.69 | 4550 | 0.3307 | 0.92 | | 0.0849 | 3.73 | 4600 | 0.3797 | 0.92 | | 0.09 | 3.77 | 4650 | 0.3746 | 0.9267 | | 0.0799 | 3.81 | 4700 | 0.3799 | 0.92 | | 0.0589 | 3.86 | 4750 | 0.3805 | 0.92 | | 0.0578 | 3.9 | 4800 | 0.3910 | 0.9133 | | 0.0816 | 3.94 | 4850 | 0.3856 | 0.9133 | | 0.1366 | 3.98 | 4900 | 0.3707 | 0.92 | | 0.0846 | 4.02 | 4950 | 0.3802 | 0.92 | | 0.0401 | 4.06 | 5000 | 0.3842 | 0.92 | | 0.0851 | 4.1 | 5050 | 0.3773 | 0.9267 | | 0.0514 | 4.14 | 5100 | 0.3922 | 0.9133 | | 0.0909 | 4.18 | 5150 | 0.3893 | 0.92 | | 0.0764 | 4.22 | 5200 | 0.3818 | 0.9133 | | 0.1208 | 4.26 | 5250 | 0.4096 | 0.92 | | 0.0689 | 4.3 | 5300 | 0.3940 | 0.9133 | | 0.0524 | 4.34 | 5350 | 0.4020 | 0.9133 | | 0.0733 | 4.38 | 5400 | 0.4002 | 0.9133 | | 0.0699 | 4.42 | 5450 | 0.4013 | 0.9133 | | 0.0712 | 4.46 | 5500 | 0.4037 | 0.9067 | | 0.0557 | 4.5 | 5550 | 0.4121 | 0.92 | | 0.0679 | 4.55 | 5600 | 0.4067 | 0.9133 | | 0.0651 | 4.59 | 5650 | 0.4194 | 0.9133 | | 0.0607 | 4.63 | 5700 | 0.4007 | 0.9133 | | 0.0676 | 4.67 | 5750 | 0.4013 | 0.9133 | | 0.0303 | 4.71 | 5800 | 0.3984 | 0.9133 | | 0.0674 | 4.75 | 5850 | 0.4037 | 0.9133 | | 0.0842 | 4.79 | 5900 | 0.4072 | 0.9133 | | 0.0516 | 4.83 | 5950 | 0.4096 | 0.9133 | | 0.0556 | 4.87 | 6000 | 0.4111 | 0.92 | | 0.0277 | 4.91 | 6050 | 0.4079 | 0.9133 | | 0.0629 | 4.95 | 6100 | 0.4053 | 0.9133 | | 0.0426 | 4.99 | 6150 | 0.4043 | 0.9133 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.3.2 - Tokenizers 0.13.2
michaelmayo704/sd-class-butterflies-32
michaelmayo704
2022-11-28T21:00:24Z
35
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-11-28T20:59:37Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(michaelmayo704/sd-class-butterflies-32) image = pipeline().images[0] image ```
pig4431/YELP_roBERTa_5E
pig4431
2022-11-28T20:50:36Z
108
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "dataset:yelp_review_full", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-28T20:34:22Z
--- license: mit tags: - generated_from_trainer datasets: - yelp_review_full metrics: - accuracy model-index: - name: YELP_roBERTa_5E results: - task: name: Text Classification type: text-classification dataset: name: yelp_review_full type: yelp_review_full config: yelp_review_full split: train args: yelp_review_full metrics: - name: Accuracy type: accuracy value: 0.9866666666666667 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # YELP_roBERTa_5E This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the yelp_review_full dataset. It achieves the following results on the evaluation set: - Loss: 0.0995 - Accuracy: 0.9867 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5721 | 0.03 | 50 | 0.3248 | 0.88 | | 0.2836 | 0.06 | 100 | 0.1190 | 0.9733 | | 0.1793 | 0.1 | 150 | 0.1707 | 0.96 | | 0.2196 | 0.13 | 200 | 0.0841 | 0.9733 | | 0.2102 | 0.16 | 250 | 0.0634 | 0.9867 | | 0.2197 | 0.19 | 300 | 0.0763 | 0.98 | | 0.1866 | 0.22 | 350 | 0.0640 | 0.9867 | | 0.1717 | 0.26 | 400 | 0.0612 | 0.9867 | | 0.1443 | 0.29 | 450 | 0.0844 | 0.9733 | | 0.1669 | 0.32 | 500 | 0.1297 | 0.9667 | | 0.2005 | 0.35 | 550 | 0.0644 | 0.9867 | | 0.1543 | 0.38 | 600 | 0.0874 | 0.9867 | | 0.1345 | 0.42 | 650 | 0.1853 | 0.96 | | 0.1664 | 0.45 | 700 | 0.1157 | 0.9667 | | 0.1876 | 0.48 | 750 | 0.0474 | 0.9733 | | 0.111 | 0.51 | 800 | 0.0645 | 0.98 | | 0.1511 | 0.54 | 850 | 0.0432 | 0.9933 | | 0.1846 | 0.58 | 900 | 0.0505 | 0.9867 | | 0.151 | 0.61 | 950 | 0.0452 | 0.98 | | 0.1338 | 0.64 | 1000 | 0.1007 | 0.98 | | 0.1175 | 0.67 | 1050 | 0.0747 | 0.9867 | | 0.1818 | 0.7 | 1100 | 0.0852 | 0.98 | | 0.1557 | 0.74 | 1150 | 0.0255 | 0.9933 | | 0.1487 | 0.77 | 1200 | 0.1266 | 0.9733 | | 0.1315 | 0.8 | 1250 | 0.0593 | 0.9867 | | 0.1059 | 0.83 | 1300 | 0.0697 | 0.9867 | | 0.108 | 0.86 | 1350 | 0.0459 | 0.9933 | | 0.1525 | 0.9 | 1400 | 0.0446 | 0.9933 | | 0.1185 | 0.93 | 1450 | 0.0528 | 0.9867 | | 0.1611 | 0.96 | 1500 | 0.0582 | 0.9867 | | 0.1556 | 0.99 | 1550 | 0.0726 | 0.98 | | 0.0902 | 1.02 | 1600 | 0.0466 | 0.9867 | | 0.1535 | 1.06 | 1650 | 0.0850 | 0.9733 | | 0.0787 | 1.09 | 1700 | 0.0869 | 0.9867 | | 0.1019 | 1.12 | 1750 | 0.0984 | 0.98 | | 0.1234 | 1.15 | 1800 | 0.0358 | 0.9933 | | 0.0884 | 1.18 | 1850 | 0.0621 | 0.9867 | | 0.0785 | 1.22 | 1900 | 0.0507 | 0.9867 | | 0.1454 | 1.25 | 1950 | 0.0793 | 0.98 | | 0.1035 | 1.28 | 2000 | 0.0501 | 0.9867 | | 0.0579 | 1.31 | 2050 | 0.0935 | 0.9867 | | 0.1215 | 1.34 | 2100 | 0.0079 | 1.0 | | 0.0958 | 1.38 | 2150 | 0.0673 | 0.9867 | | 0.106 | 1.41 | 2200 | 0.0875 | 0.9867 | | 0.095 | 1.44 | 2250 | 0.0745 | 0.9867 | | 0.0958 | 1.47 | 2300 | 0.0715 | 0.9867 | | 0.085 | 1.5 | 2350 | 0.0742 | 0.9867 | | 0.082 | 1.54 | 2400 | 0.1053 | 0.9733 | | 0.1202 | 1.57 | 2450 | 0.0711 | 0.9867 | | 0.1041 | 1.6 | 2500 | 0.0723 | 0.9867 | | 0.1145 | 1.63 | 2550 | 0.0361 | 0.9867 | | 0.0909 | 1.66 | 2600 | 0.0868 | 0.9867 | | 0.1029 | 1.7 | 2650 | 0.0680 | 0.9867 | | 0.1083 | 1.73 | 2700 | 0.0599 | 0.9867 | | 0.0871 | 1.76 | 2750 | 0.0452 | 0.9867 | | 0.1506 | 1.79 | 2800 | 0.0344 | 0.9933 | | 0.0778 | 1.82 | 2850 | 0.0380 | 0.9933 | | 0.0982 | 1.86 | 2900 | 0.0349 | 0.9933 | | 0.1296 | 1.89 | 2950 | 0.0713 | 0.9867 | | 0.0836 | 1.92 | 3000 | 0.0693 | 0.9867 | | 0.0699 | 1.95 | 3050 | 0.1023 | 0.98 | | 0.0631 | 1.98 | 3100 | 0.0852 | 0.98 | | 0.0724 | 2.02 | 3150 | 0.0835 | 0.9867 | | 0.0898 | 2.05 | 3200 | 0.0872 | 0.9867 | | 0.0642 | 2.08 | 3250 | 0.0427 | 0.9933 | | 0.0524 | 2.11 | 3300 | 0.0731 | 0.9867 | | 0.0415 | 2.14 | 3350 | 0.0632 | 0.9867 | | 0.0604 | 2.18 | 3400 | 0.0428 | 0.9867 | | 0.0701 | 2.21 | 3450 | 0.0671 | 0.9867 | | 0.0668 | 2.24 | 3500 | 0.0360 | 0.9933 | | 0.0442 | 2.27 | 3550 | 0.0454 | 0.9933 | | 0.0677 | 2.3 | 3600 | 0.0517 | 0.9867 | | 0.0965 | 2.34 | 3650 | 0.0659 | 0.98 | | 0.0781 | 2.37 | 3700 | 0.0732 | 0.9867 | | 0.0421 | 2.4 | 3750 | 0.0855 | 0.9867 | | 0.0674 | 2.43 | 3800 | 0.0813 | 0.9867 | | 0.0613 | 2.46 | 3850 | 0.0859 | 0.98 | | 0.0679 | 2.5 | 3900 | 0.0721 | 0.9867 | | 0.0417 | 2.53 | 3950 | 0.0977 | 0.9867 | | 0.0616 | 2.56 | 4000 | 0.0789 | 0.9867 | | 0.0678 | 2.59 | 4050 | 0.0804 | 0.9867 | | 0.0651 | 2.62 | 4100 | 0.0994 | 0.98 | | 0.0714 | 2.66 | 4150 | 0.0744 | 0.98 | | 0.034 | 2.69 | 4200 | 0.0679 | 0.9867 | | 0.0356 | 2.72 | 4250 | 0.0432 | 0.9933 | | 0.0813 | 2.75 | 4300 | 0.0483 | 0.9933 | | 0.052 | 2.78 | 4350 | 0.0689 | 0.9867 | | 0.0611 | 2.82 | 4400 | 0.0474 | 0.9867 | | 0.0615 | 2.85 | 4450 | 0.0557 | 0.9867 | | 0.0569 | 2.88 | 4500 | 0.1056 | 0.98 | | 0.0352 | 2.91 | 4550 | 0.0443 | 0.9933 | | 0.0312 | 2.94 | 4600 | 0.1026 | 0.98 | | 0.0662 | 2.98 | 4650 | 0.0677 | 0.9867 | | 0.0694 | 3.01 | 4700 | 0.0368 | 0.9933 | | 0.0144 | 3.04 | 4750 | 0.0647 | 0.9867 | | 0.0378 | 3.07 | 4800 | 0.0893 | 0.9867 | | 0.0393 | 3.1 | 4850 | 0.0841 | 0.9867 | | 0.0598 | 3.13 | 4900 | 0.0594 | 0.9867 | | 0.0329 | 3.17 | 4950 | 0.0933 | 0.9867 | | 0.036 | 3.2 | 5000 | 0.0974 | 0.9867 | | 0.0166 | 3.23 | 5050 | 0.0962 | 0.9867 | | 0.0189 | 3.26 | 5100 | 0.0827 | 0.9867 | | 0.0482 | 3.29 | 5150 | 0.0955 | 0.9867 | | 0.0105 | 3.33 | 5200 | 0.0745 | 0.9867 | | 0.0447 | 3.36 | 5250 | 0.1038 | 0.9867 | | 0.0495 | 3.39 | 5300 | 0.0684 | 0.9867 | | 0.0445 | 3.42 | 5350 | 0.0815 | 0.9867 | | 0.0006 | 3.45 | 5400 | 0.1012 | 0.9867 | | 0.0214 | 3.49 | 5450 | 0.0707 | 0.9867 | | 0.0289 | 3.52 | 5500 | 0.1000 | 0.9867 | | 0.0304 | 3.55 | 5550 | 0.1069 | 0.9867 | | 0.0339 | 3.58 | 5600 | 0.1079 | 0.9867 | | 0.0227 | 3.61 | 5650 | 0.1032 | 0.9867 | | 0.0626 | 3.65 | 5700 | 0.0978 | 0.9867 | | 0.04 | 3.68 | 5750 | 0.0965 | 0.9867 | | 0.0358 | 3.71 | 5800 | 0.1048 | 0.9867 | | 0.0287 | 3.74 | 5850 | 0.0921 | 0.9867 | | 0.049 | 3.77 | 5900 | 0.1108 | 0.98 | | 0.0497 | 3.81 | 5950 | 0.0795 | 0.9867 | | 0.0047 | 3.84 | 6000 | 0.0979 | 0.9867 | | 0.0252 | 3.87 | 6050 | 0.1071 | 0.9867 | | 0.0691 | 3.9 | 6100 | 0.0821 | 0.9867 | | 0.0419 | 3.93 | 6150 | 0.0896 | 0.9867 | | 0.0197 | 3.97 | 6200 | 0.0943 | 0.9867 | | 0.0281 | 4.0 | 6250 | 0.0901 | 0.9867 | | 0.0118 | 4.03 | 6300 | 0.0950 | 0.9867 | | 0.0057 | 4.06 | 6350 | 0.1031 | 0.9867 | | 0.0335 | 4.09 | 6400 | 0.0896 | 0.9867 | | 0.0095 | 4.13 | 6450 | 0.0966 | 0.9867 | | 0.05 | 4.16 | 6500 | 0.0977 | 0.9867 | | 0.0142 | 4.19 | 6550 | 0.1174 | 0.98 | | 0.018 | 4.22 | 6600 | 0.0963 | 0.9867 | | 0.0274 | 4.25 | 6650 | 0.0953 | 0.9867 | | 0.0199 | 4.29 | 6700 | 0.0968 | 0.9867 | | 0.0171 | 4.32 | 6750 | 0.0963 | 0.9867 | | 0.0195 | 4.35 | 6800 | 0.0916 | 0.9867 | | 0.0091 | 4.38 | 6850 | 0.0954 | 0.9867 | | 0.0115 | 4.41 | 6900 | 0.0974 | 0.9867 | | 0.0299 | 4.45 | 6950 | 0.0971 | 0.9867 | | 0.0338 | 4.48 | 7000 | 0.0922 | 0.9867 | | 0.0107 | 4.51 | 7050 | 0.0964 | 0.9867 | | 0.0063 | 4.54 | 7100 | 0.0921 | 0.9867 | | 0.0099 | 4.57 | 7150 | 0.0923 | 0.9867 | | 0.0101 | 4.61 | 7200 | 0.0971 | 0.9867 | | 0.0262 | 4.64 | 7250 | 0.1008 | 0.9867 | | 0.0097 | 4.67 | 7300 | 0.0999 | 0.9867 | | 0.0302 | 4.7 | 7350 | 0.0980 | 0.9867 | | 0.0225 | 4.73 | 7400 | 0.0976 | 0.9867 | | 0.0235 | 4.77 | 7450 | 0.1016 | 0.9867 | | 0.0106 | 4.8 | 7500 | 0.1034 | 0.9867 | | 0.0495 | 4.83 | 7550 | 0.1135 | 0.98 | | 0.0228 | 4.86 | 7600 | 0.1034 | 0.9867 | | 0.0229 | 4.89 | 7650 | 0.0990 | 0.9867 | | 0.0206 | 4.93 | 7700 | 0.0993 | 0.9867 | | 0.0188 | 4.96 | 7750 | 0.0993 | 0.9867 | | 0.0189 | 4.99 | 7800 | 0.0995 | 0.9867 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.3.2 - Tokenizers 0.13.2
SwePalm/sd-class-butterflies-64
SwePalm
2022-11-28T20:42:14Z
34
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-11-28T20:41:56Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(SwePalm/sd-class-butterflies-64) image = pipeline().images[0] image ```
pig4431/TUF_XLNET_5E
pig4431
2022-11-28T20:40:06Z
89
0
transformers
[ "transformers", "pytorch", "xlnet", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-28T20:20:56Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: TUF_XLNET_5E results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # TUF_XLNET_5E This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2725 - Accuracy: 0.9533 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4817 | 0.1 | 50 | 0.2602 | 0.8733 | | 0.2405 | 0.2 | 100 | 0.5818 | 0.88 | | 0.2172 | 0.3 | 150 | 0.1851 | 0.9533 | | 0.2697 | 0.4 | 200 | 0.1692 | 0.9267 | | 0.2313 | 0.5 | 250 | 0.1086 | 0.9467 | | 0.2245 | 0.59 | 300 | 0.2031 | 0.9267 | | 0.1805 | 0.69 | 350 | 0.1414 | 0.9467 | | 0.1896 | 0.79 | 400 | 0.0824 | 0.9733 | | 0.1969 | 0.89 | 450 | 0.1499 | 0.9533 | | 0.1745 | 0.99 | 500 | 0.1827 | 0.9267 | | 0.1143 | 1.09 | 550 | 0.1923 | 0.9533 | | 0.1478 | 1.19 | 600 | 0.1718 | 0.94 | | 0.1368 | 1.29 | 650 | 0.1170 | 0.9733 | | 0.1288 | 1.39 | 700 | 0.1418 | 0.9667 | | 0.1689 | 1.49 | 750 | 0.1173 | 0.9733 | | 0.1078 | 1.58 | 800 | 0.2784 | 0.9333 | | 0.1343 | 1.68 | 850 | 0.1555 | 0.9533 | | 0.1104 | 1.78 | 900 | 0.1361 | 0.9533 | | 0.1267 | 1.88 | 950 | 0.1936 | 0.9267 | | 0.0928 | 1.98 | 1000 | 0.3070 | 0.94 | | 0.0949 | 2.08 | 1050 | 0.1905 | 0.94 | | 0.0329 | 2.18 | 1100 | 0.2296 | 0.9533 | | 0.0406 | 2.28 | 1150 | 0.3202 | 0.94 | | 0.0983 | 2.38 | 1200 | 0.4515 | 0.9267 | | 0.0533 | 2.48 | 1250 | 0.2152 | 0.9533 | | 0.0878 | 2.57 | 1300 | 0.1573 | 0.9533 | | 0.0595 | 2.67 | 1350 | 0.1699 | 0.96 | | 0.0937 | 2.77 | 1400 | 0.2825 | 0.9333 | | 0.0817 | 2.87 | 1450 | 0.2325 | 0.9467 | | 0.0845 | 2.97 | 1500 | 0.1918 | 0.9533 | | 0.0711 | 3.07 | 1550 | 0.3186 | 0.94 | | 0.033 | 3.17 | 1600 | 0.2571 | 0.94 | | 0.0134 | 3.27 | 1650 | 0.2733 | 0.94 | | 0.0546 | 3.37 | 1700 | 0.1934 | 0.9533 | | 0.0277 | 3.47 | 1750 | 0.2731 | 0.94 | | 0.0081 | 3.56 | 1800 | 0.2531 | 0.9467 | | 0.0387 | 3.66 | 1850 | 0.2121 | 0.96 | | 0.0014 | 3.76 | 1900 | 0.2601 | 0.96 | | 0.0379 | 3.86 | 1950 | 0.2501 | 0.9467 | | 0.0271 | 3.96 | 2000 | 0.2899 | 0.94 | | 0.0182 | 4.06 | 2050 | 0.2197 | 0.9533 | | 0.0263 | 4.16 | 2100 | 0.2374 | 0.9533 | | 0.0079 | 4.26 | 2150 | 0.3192 | 0.94 | | 0.0239 | 4.36 | 2200 | 0.3755 | 0.9333 | | 0.02 | 4.46 | 2250 | 0.2702 | 0.9467 | | 0.0072 | 4.55 | 2300 | 0.2055 | 0.9533 | | 0.0124 | 4.65 | 2350 | 0.2299 | 0.9533 | | 0.0072 | 4.75 | 2400 | 0.2813 | 0.9533 | | 0.0125 | 4.85 | 2450 | 0.2696 | 0.9533 | | 0.0205 | 4.95 | 2500 | 0.2725 | 0.9533 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.7.1 - Tokenizers 0.13.2
rmartinshort/sd-class-butterflies-64
rmartinshort
2022-11-28T20:32:13Z
36
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-11-28T20:31:54Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(rmartinshort/sd-class-butterflies-64) image = pipeline().images[0] image ```
CyantifiCQ/noisy_butterflied_diffusion
CyantifiCQ
2022-11-28T20:23:45Z
35
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-11-28T20:22:34Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(CyantifiCQ/noisy_butterflied_diffusion) image = pipeline().images[0] image ```
futuredatascience/from-classifier-v1
futuredatascience
2022-11-28T20:07:27Z
4
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-11-28T20:07:15Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 53 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 530, "warmup_steps": 53, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
SwePalm/sd-class-butterflies-32
SwePalm
2022-11-28T20:01:43Z
32
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-11-28T20:00:51Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of (not so?) cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(SwePalm/sd-class-butterflies-32) image = pipeline().images[0] image ```
reubenjohn/stack-overflow-open-status-classifier-pt
reubenjohn
2022-11-28T20:01:21Z
4
0
transformers
[ "transformers", "pytorch", "albert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-16T03:44:14Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: stack-overflow-open-status-classifier-pt results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # stack-overflow-open-status-classifier-pt This model is a fine-tuned version of [reubenjohn/stack-overflow-open-status-classifier-pt](https://huggingface.co/reubenjohn/stack-overflow-open-status-classifier-pt) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 0.9448 - eval_runtime: 3.554 - eval_samples_per_second: 28.137 - eval_steps_per_second: 0.563 - epoch: 0.01 - step: 60 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - num_epochs: 1 ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
UKP-SQuARE/tweac_16
UKP-SQuARE
2022-11-28T19:43:48Z
102
1
transformers
[ "transformers", "pytorch", "bert", "text-classification", "QA", "en", "dataset:BoolQ", "dataset:CommonSenseQA", "dataset:DROP", "dataset:DuoRC", "dataset:HellaSWAG", "dataset:HotpotQA", "dataset:HybridQA", "dataset:NarrativeQA", "dataset:NaturalQuestionsShort", "dataset:NewsQA", "dataset:QAMR", "dataset:RACE", "dataset:SearchQA", "dataset:SIQA", "dataset:SQuAD", "dataset:TriviaQA-web", "arxiv:2104.07081", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-09T18:34:07Z
--- language: - en tags: - QA license: cc-by-4.0 datasets: - BoolQ - CommonSenseQA - DROP - DuoRC - HellaSWAG - HotpotQA - HybridQA - NarrativeQA - NaturalQuestionsShort - NewsQA - QAMR - RACE - SearchQA - SIQA - SQuAD - TriviaQA-web metrics: - Accuracy - Precision - Recall - F1 - MRR - R@3 - R@5 --- BERT for Sequence Classification trained on QA Dataset prediction task. - Input: question. - Output: dataset from where that question comes from. Original paper: TWEAC: Transformer with Extendable QA Agent Classifiers https://arxiv.org/abs/2104.07081 Datasets used for training: ``` list_datasets = ['BoolQ','CommonSenseQA','DROP','DuoRC','HellaSWAG','HotpotQA','HybridQA','NarrativeQA','NaturalQuestionsShort','NewsQA','QAMR','RACE','SearchQA','SIQA','SQuAD','TriviaQA-web'] ``` Results for all datasets: - Accuracy: 0.7919096825783123 - Precision: 0.731586272892176 - Recall: 0.7919096825783123 - F1: 0.7494425609552463 - MRR: 0.8720871733637521 - R@3: 0.9438690810655046 - R@5: 0.9745318608004427 - Queries/second: 6052.33538824659 Results per dataset: ``` "BoolQ": { "accuracy": 0.998776758409786, "mrr": 0.999388379204893, "r@3": 1.0, "r@5": 1.0, "query_per_second": 6978.947907596168, "precision": 0.8649364406779662, "recall": 0.998776758409786, "f1": 0.9270508089696281 }, "CommonSenseQA": { "accuracy": 0.9247135842880524, "mrr": 0.9476358338878795, "r@3": 0.9705400981996727, "r@5": 0.9705400981996727, "query_per_second": 5823.984138936813, "precision": 0.442443226311668, "recall": 0.9247135842880524, "f1": 0.5985169491525425 }, "DROP": { "accuracy": 0.9075083892617449, "mrr": 0.9378200367399193, "r@3": 0.9609899328859061, "r@5": 0.9786073825503355, "query_per_second": 6440.988897129248, "precision": 0.8636726546906187, "recall": 0.9075083892617449, "f1": 0.8850480670893842 }, "DuoRC": { "accuracy": 0.5555803405457654, "mrr": 0.7368963429107307, "r@3": 0.9092125808610305, "r@5": 0.9596996059186557, "query_per_second": 6853.643198794893, "precision": 0.646814404432133, "recall": 0.5555803405457654, "f1": 0.5977360905563778 }, "HellaSWAG": { "accuracy": 0.998406691894045, "mrr": 0.9990705702715262, "r@3": 1.0, "r@5": 1.0, "query_per_second": 3091.5012960785157, "precision": 0.9974134500596896, "recall": 0.998406691894045, "f1": 0.9979098238280083 }, "HotpotQA": { "accuracy": 0.7414435784479837, "mrr": 0.8435804344945315, "r@3": 0.9325652321247034, "r@5": 0.973568281938326, "query_per_second": 4972.668019223381, "precision": 0.7352150537634409, "recall": 0.7414435784479837, "f1": 0.7383161801923401 }, "HybridQA": { "accuracy": 0.7934218118869013, "mrr": 0.8806947764680021, "r@3": 0.964800923254472, "r@5": 0.9930755914598961, "query_per_second": 4886.494046259562, "precision": 0.7198952879581152, "recall": 0.7934218118869013, "f1": 0.7548723579467472 }, "NarrativeQA": { "accuracy": 0.5623756749076442, "mrr": 0.7416681781060867, "r@3": 0.9011082693947144, "r@5": 0.9580373212086767, "query_per_second": 7081.067049796865, "precision": 0.5623224095472628, "recall": 0.5623756749076442, "f1": 0.5623490409661377 }, "NaturalQuestionsShort": { "accuracy": 0.7985353692739171, "mrr": 0.8743599435345307, "r@3": 0.9439077594266126, "r@5": 0.9774072919912745, "query_per_second": 7136.590426649795, "precision": 0.7963020509633313, "recall": 0.7985353692739171, "f1": 0.7974171464135678 }, "NewsQA": { "accuracy": 0.5375118708452041, "mrr": 0.71192075967717, "r@3": 0.855650522317189, "r@5": 0.939696106362773, "query_per_second": 7193.851409052092, "precision": 0.18757249378624688, "recall": 0.5375118708452041, "f1": 0.2780985136961061 }, "QAMR": { "accuracy": 0.6658497602557272, "mrr": 0.7969741223377345, "r@3": 0.9207778369738945, "r@5": 0.973361747469366, "query_per_second": 7321.775044800525, "precision": 0.8654525309881587, "recall": 0.6658497602557272, "f1": 0.7526421968624852 }, "RACE": { "accuracy": 0.8771538617474154, "mrr": 0.917901778042666, "r@3": 0.9489154672613015, "r@5": 0.9693898236367322, "query_per_second": 6952.225120744351, "precision": 0.8767983789260385, "recall": 0.8771538617474154, "f1": 0.8769760843129306 }, "SearchQA": { "accuracy": 0.9762073027090695, "mrr": 0.9865069592101393, "r@3": 0.9972909305064782, "r@5": 0.9984687868080094, "query_per_second": 4031.0193826035634, "precision": 0.9870191735143503, "recall": 0.9762073027090695, "f1": 0.9815834665719192 }, "SIQA": { "accuracy": 0.9969293756397134, "mrr": 0.9977823268509042, "r@3": 0.9979529170931423, "r@5": 1.0, "query_per_second": 6711.547709005977, "precision": 0.9329501915708812, "recall": 0.9969293756397134, "f1": 0.9638792676892627 }, "SQuAD": { "accuracy": 0.550628092881614, "mrr": 0.7164538452390565, "r@3": 0.8660068519223448, "r@5": 0.9366197183098591, "query_per_second": 7033.420124363291, "precision": 0.48613678373382624, "recall": 0.550628092881614, "f1": 0.5163766175814368 }, "TriviaQA-web": { "accuracy": 0.7855124582584125, "mrr": 0.8647404868442627, "r@3": 0.9321859748266119, "r@5": 0.9640380169535063, "query_per_second": 4327.642440910395, "precision": 0.7404358353510896, "recall": 0.7855124582584125, "f1": 0.7623083634550667 }, ```
essayproj/syntax
essayproj
2022-11-28T19:15:52Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-28T18:59:34Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: syntax results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # syntax This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1395 - Accuracy: 0.6111 - F1: 0.4596 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
huggingtweets/ttunguz
huggingtweets
2022-11-28T19:09:57Z
115
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-24T01:44:13Z
--- language: en thumbnail: http://www.huggingtweets.com/ttunguz/1669662593098/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/901542400559992832/yDp0b2Al_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Tomasz Tunguz</div> <div style="text-align: center; font-size: 14px;">@ttunguz</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Tomasz Tunguz. | Data | Tomasz Tunguz | | --- | --- | | Tweets downloaded | 3239 | | Retweets | 590 | | Short tweets | 50 | | Tweets kept | 2599 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/vxbo3iui/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ttunguz's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/190cyogq) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/190cyogq/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ttunguz') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
essayproj/roberta-base-essay
essayproj
2022-11-28T19:08:54Z
59
0
transformers
[ "transformers", "tf", "roberta", "feature-extraction", "generated_from_keras_callback", "license:mit", "endpoints_compatible", "region:us" ]
feature-extraction
2022-11-28T19:08:03Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: roberta-base-essay results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-essay This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Tokenizers 0.13.2
leonrafael29/bert2bert_uncased_english_to_spanish
leonrafael29
2022-11-28T18:52:56Z
13
0
transformers
[ "transformers", "encoder-decoder", "text2text-generation", "translation", "en", "es", "dataset:news_commentary", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-11-28T17:32:46Z
--- language: - en - es tags: - translation datasets: - news_commentary metrics: - bleurt ---
FrancoisDongier/sd-class-butterflies-32
FrancoisDongier
2022-11-28T18:19:31Z
34
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-11-28T18:16:21Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(FrancoisDongier/sd-class-butterflies-32) image = pipeline().images[0] image ```
ashu1318/lilt-en-funsd
ashu1318
2022-11-28T18:17:59Z
80
0
transformers
[ "transformers", "pytorch", "tensorboard", "lilt", "token-classification", "generated_from_trainer", "dataset:funsd-layoutlmv3", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-28T17:49:59Z
--- license: mit tags: - generated_from_trainer datasets: - funsd-layoutlmv3 model-index: - name: lilt-en-funsd results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lilt-en-funsd This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on the funsd-layoutlmv3 dataset. It achieves the following results on the evaluation set: - Loss: 1.8731 - Answer: {'precision': 0.8688915375446961, 'recall': 0.8922888616891065, 'f1': 0.8804347826086957, 'number': 817} - Header: {'precision': 0.638095238095238, 'recall': 0.5630252100840336, 'f1': 0.5982142857142857, 'number': 119} - Question: {'precision': 0.9105166051660517, 'recall': 0.9164345403899722, 'f1': 0.9134659879685332, 'number': 1077} - Overall Precision: 0.8792 - Overall Recall: 0.8857 - Overall F1: 0.8825 - Overall Accuracy: 0.7976 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 2500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:| | 0.4323 | 10.53 | 200 | 1.0423 | {'precision': 0.8369195922989807, 'recall': 0.9045287637698899, 'f1': 0.8694117647058823, 'number': 817} | {'precision': 0.5405405405405406, 'recall': 0.5042016806722689, 'f1': 0.5217391304347826, 'number': 119} | {'precision': 0.8869323447636701, 'recall': 0.8885793871866295, 'f1': 0.8877551020408162, 'number': 1077} | 0.8471 | 0.8723 | 0.8595 | 0.7981 | | 0.045 | 21.05 | 400 | 1.2757 | {'precision': 0.8435374149659864, 'recall': 0.9106487148102815, 'f1': 0.8758092995879929, 'number': 817} | {'precision': 0.5795454545454546, 'recall': 0.42857142857142855, 'f1': 0.49275362318840576, 'number': 119} | {'precision': 0.8626943005181347, 'recall': 0.9275766016713092, 'f1': 0.8939597315436242, 'number': 1077} | 0.8430 | 0.8912 | 0.8665 | 0.8026 | | 0.0133 | 31.58 | 600 | 1.4887 | {'precision': 0.8632075471698113, 'recall': 0.8959608323133414, 'f1': 0.8792792792792793, 'number': 817} | {'precision': 0.6020408163265306, 'recall': 0.4957983193277311, 'f1': 0.543778801843318, 'number': 119} | {'precision': 0.8791887125220459, 'recall': 0.9257195914577531, 'f1': 0.9018543645409318, 'number': 1077} | 0.8596 | 0.8882 | 0.8737 | 0.7983 | | 0.0051 | 42.11 | 800 | 1.7382 | {'precision': 0.8601645123384254, 'recall': 0.8959608323133414, 'f1': 0.8776978417266187, 'number': 817} | {'precision': 0.5636363636363636, 'recall': 0.5210084033613446, 'f1': 0.5414847161572053, 'number': 119} | {'precision': 0.9032558139534884, 'recall': 0.9015784586815228, 'f1': 0.9024163568773235, 'number': 1077} | 0.8669 | 0.8768 | 0.8718 | 0.7925 | | 0.004 | 52.63 | 1000 | 1.7599 | {'precision': 0.8307349665924276, 'recall': 0.9130966952264382, 'f1': 0.8699708454810495, 'number': 817} | {'precision': 0.6039603960396039, 'recall': 0.5126050420168067, 'f1': 0.5545454545454545, 'number': 119} | {'precision': 0.8939256572982774, 'recall': 0.9155060352831941, 'f1': 0.9045871559633027, 'number': 1077} | 0.8530 | 0.8907 | 0.8714 | 0.7941 | | 0.002 | 63.16 | 1200 | 1.8409 | {'precision': 0.8312985571587126, 'recall': 0.9167686658506732, 'f1': 0.8719441210710128, 'number': 817} | {'precision': 0.6074766355140186, 'recall': 0.5462184873949579, 'f1': 0.575221238938053, 'number': 119} | {'precision': 0.8814949863263446, 'recall': 0.8978644382544104, 'f1': 0.8896044158233671, 'number': 1077} | 0.8461 | 0.8847 | 0.8650 | 0.7876 | | 0.0013 | 73.68 | 1400 | 1.7795 | {'precision': 0.81445523193096, 'recall': 0.9241126070991432, 'f1': 0.8658256880733943, 'number': 817} | {'precision': 0.6237623762376238, 'recall': 0.5294117647058824, 'f1': 0.5727272727272728, 'number': 119} | {'precision': 0.888785046728972, 'recall': 0.883008356545961, 'f1': 0.8858872845831393, 'number': 1077} | 0.8432 | 0.8788 | 0.8606 | 0.7934 | | 0.0011 | 84.21 | 1600 | 1.8386 | {'precision': 0.8338833883388339, 'recall': 0.9277845777233782, 'f1': 0.8783314020857474, 'number': 817} | {'precision': 0.6597938144329897, 'recall': 0.5378151260504201, 'f1': 0.5925925925925926, 'number': 119} | {'precision': 0.8943985307621671, 'recall': 0.904363974001857, 'f1': 0.8993536472760849, 'number': 1077} | 0.8573 | 0.8922 | 0.8744 | 0.7945 | | 0.0048 | 94.74 | 1800 | 1.8664 | {'precision': 0.8589595375722543, 'recall': 0.9094247246022031, 'f1': 0.8834720570749108, 'number': 817} | {'precision': 0.6504854368932039, 'recall': 0.5630252100840336, 'f1': 0.6036036036036037, 'number': 119} | {'precision': 0.9003656307129799, 'recall': 0.914577530176416, 'f1': 0.9074159373560571, 'number': 1077} | 0.8705 | 0.8917 | 0.8810 | 0.7927 | | 0.0004 | 105.26 | 2000 | 1.8672 | {'precision': 0.8634772462077013, 'recall': 0.9057527539779682, 'f1': 0.8841099163679809, 'number': 817} | {'precision': 0.7093023255813954, 'recall': 0.5126050420168067, 'f1': 0.5951219512195123, 'number': 119} | {'precision': 0.8923076923076924, 'recall': 0.9155060352831941, 'f1': 0.9037580201649862, 'number': 1077} | 0.8726 | 0.8877 | 0.8801 | 0.7953 | | 0.0005 | 115.79 | 2200 | 1.8731 | {'precision': 0.8688915375446961, 'recall': 0.8922888616891065, 'f1': 0.8804347826086957, 'number': 817} | {'precision': 0.638095238095238, 'recall': 0.5630252100840336, 'f1': 0.5982142857142857, 'number': 119} | {'precision': 0.9105166051660517, 'recall': 0.9164345403899722, 'f1': 0.9134659879685332, 'number': 1077} | 0.8792 | 0.8857 | 0.8825 | 0.7976 | | 0.0002 | 126.32 | 2400 | 1.9408 | {'precision': 0.8408071748878924, 'recall': 0.9179926560587516, 'f1': 0.8777062609713283, 'number': 817} | {'precision': 0.6310679611650486, 'recall': 0.5462184873949579, 'f1': 0.5855855855855856, 'number': 119} | {'precision': 0.9091760299625468, 'recall': 0.9015784586815228, 'f1': 0.9053613053613054, 'number': 1077} | 0.8657 | 0.8872 | 0.8763 | 0.7935 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
kejian/final-filter-again
kejian
2022-11-28T17:39:16Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "generated_from_trainer", "en", "dataset:kejian/codeparrot-train-more-filter-3.3b-cleaned", "license:apache-2.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2022-11-28T01:33:32Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - kejian/codeparrot-train-more-filter-3.3b-cleaned model-index: - name: kejian/final-filter-again results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kejian/final-filter-again This model was trained from scratch on the kejian/codeparrot-train-more-filter-3.3b-cleaned dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0008 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 50354 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.23.0 - Pytorch 1.13.0+cu116 - Datasets 2.0.0 - Tokenizers 0.12.1 # Full config {'dataset': {'datasets': ['kejian/codeparrot-train-more-filter-3.3b-cleaned'], 'filter_threshold': 0.002361, 'is_split_by_sentences': True}, 'generation': {'batch_size': 64, 'metrics_configs': [{}, {'n': 1}, {}], 'scenario_configs': [{'display_as_html': True, 'generate_kwargs': {'do_sample': True, 'eos_token_id': 0, 'max_length': 640, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_samples': 512}, {'display_as_html': True, 'generate_kwargs': {'do_sample': True, 'eos_token_id': 0, 'max_length': 272, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'functions', 'num_samples': 512, 'prompts_path': 'resources/functions_csnet.jsonl', 'use_prompt_for_scoring': True}], 'scorer_config': {}}, 'kl_gpt3_callback': {'gpt3_kwargs': {'model_name': 'code-cushman-001'}, 'max_tokens': 64, 'num_samples': 4096}, 'model': {'from_scratch': True, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'path_or_name': 'codeparrot/codeparrot-small'}, 'objective': {'name': 'MLE'}, 'tokenizer': {'path_or_name': 'codeparrot/codeparrot-small'}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 64, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'kejian/final-filter-again', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.0008, 'logging_first_step': True, 'logging_steps': 1, 'num_tokens': 3300000000.0, 'output_dir': 'training_output', 'per_device_train_batch_size': 16, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 5000, 'save_strategy': 'steps', 'seed': 42, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/kejian/uncategorized/runs/25z4zfy3
akmmsr/mt5-small-finetuned-amazon-en-es_akmmsr
akmmsr
2022-11-28T17:15:10Z
61
0
transformers
[ "transformers", "tf", "mt5", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-28T16:23:28Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: akmmsr/mt5-small-finetuned-amazon-en-es_akmmsr results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # akmmsr/mt5-small-finetuned-amazon-en-es_akmmsr This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 4.0336 - Validation Loss: 3.3393 - Epoch: 7 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5.6e-05, 'decay_steps': 9672, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 9.6397 | 4.2364 | 0 | | 5.8621 | 3.7162 | 1 | | 5.0948 | 3.5552 | 2 | | 4.6724 | 3.4873 | 3 | | 4.4007 | 3.4245 | 4 | | 4.2162 | 3.3792 | 5 | | 4.0985 | 3.3499 | 6 | | 4.0336 | 3.3393 | 7 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Datasets 2.7.1 - Tokenizers 0.13.2
wa3dbk/whisper-small-ar
wa3dbk
2022-11-28T17:11:32Z
113
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-25T18:33:06Z
## whisper-small-ar This model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset (language=Arabic).
antgrutta/sd-class-butterflies-32
antgrutta
2022-11-28T16:59:10Z
32
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-11-28T16:58:32Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(antgrutta/sd-class-butterflies-32) image = pipeline().images[0] image ```
EmnaBou/bert-finetuned-DT
EmnaBou
2022-11-28T16:49:12Z
123
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-28T15:20:02Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-DT results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-DT This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6697 - Precision: 0.2381 - Recall: 0.0321 - F1: 0.0565 - Accuracy: 0.8179 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 99 | 0.7505 | 0.0 | 0.0 | 0.0 | 0.8196 | | No log | 2.0 | 198 | 0.7033 | 0.0 | 0.0 | 0.0 | 0.8196 | | No log | 3.0 | 297 | 0.6697 | 0.2381 | 0.0321 | 0.0565 | 0.8179 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
luisgasco/distilbert-base-uncased-finetuned-emotion
luisgasco
2022-11-28T16:17:49Z
110
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-28T16:03:30Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.892 - name: F1 type: f1 value: 0.8873822002431591 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.3693 - Accuracy: 0.892 - F1: 0.8874 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 125 | 0.5715 | 0.8275 | 0.8047 | | 0.7552 | 2.0 | 250 | 0.3693 | 0.892 | 0.8874 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.11.0 - Datasets 1.16.1 - Tokenizers 0.10.3
tomekkorbak/awesome_ride
tomekkorbak
2022-11-28T16:12:40Z
0
0
null
[ "generated_from_trainer", "en", "dataset:tomekkorbak/detoxify-pile-chunk3-0-50000", "dataset:tomekkorbak/detoxify-pile-chunk3-50000-100000", "dataset:tomekkorbak/detoxify-pile-chunk3-100000-150000", "dataset:tomekkorbak/detoxify-pile-chunk3-150000-200000", "dataset:tomekkorbak/detoxify-pile-chunk3-200000-250000", "dataset:tomekkorbak/detoxify-pile-chunk3-250000-300000", "dataset:tomekkorbak/detoxify-pile-chunk3-300000-350000", "dataset:tomekkorbak/detoxify-pile-chunk3-350000-400000", "dataset:tomekkorbak/detoxify-pile-chunk3-400000-450000", "dataset:tomekkorbak/detoxify-pile-chunk3-450000-500000", "dataset:tomekkorbak/detoxify-pile-chunk3-500000-550000", "dataset:tomekkorbak/detoxify-pile-chunk3-550000-600000", "dataset:tomekkorbak/detoxify-pile-chunk3-600000-650000", "dataset:tomekkorbak/detoxify-pile-chunk3-650000-700000", "dataset:tomekkorbak/detoxify-pile-chunk3-700000-750000", "dataset:tomekkorbak/detoxify-pile-chunk3-750000-800000", "dataset:tomekkorbak/detoxify-pile-chunk3-800000-850000", "dataset:tomekkorbak/detoxify-pile-chunk3-850000-900000", "dataset:tomekkorbak/detoxify-pile-chunk3-900000-950000", "dataset:tomekkorbak/detoxify-pile-chunk3-950000-1000000", "dataset:tomekkorbak/detoxify-pile-chunk3-1000000-1050000", "dataset:tomekkorbak/detoxify-pile-chunk3-1050000-1100000", "dataset:tomekkorbak/detoxify-pile-chunk3-1100000-1150000", "dataset:tomekkorbak/detoxify-pile-chunk3-1150000-1200000", "dataset:tomekkorbak/detoxify-pile-chunk3-1200000-1250000", "dataset:tomekkorbak/detoxify-pile-chunk3-1250000-1300000", "dataset:tomekkorbak/detoxify-pile-chunk3-1300000-1350000", "dataset:tomekkorbak/detoxify-pile-chunk3-1350000-1400000", "dataset:tomekkorbak/detoxify-pile-chunk3-1400000-1450000", "dataset:tomekkorbak/detoxify-pile-chunk3-1450000-1500000", "dataset:tomekkorbak/detoxify-pile-chunk3-1500000-1550000", "dataset:tomekkorbak/detoxify-pile-chunk3-1550000-1600000", "dataset:tomekkorbak/detoxify-pile-chunk3-1600000-1650000", "dataset:tomekkorbak/detoxify-pile-chunk3-1650000-1700000", "dataset:tomekkorbak/detoxify-pile-chunk3-1700000-1750000", "dataset:tomekkorbak/detoxify-pile-chunk3-1750000-1800000", "dataset:tomekkorbak/detoxify-pile-chunk3-1800000-1850000", "dataset:tomekkorbak/detoxify-pile-chunk3-1850000-1900000", "dataset:tomekkorbak/detoxify-pile-chunk3-1900000-1950000", "license:mit", "region:us" ]
null
2022-11-28T16:12:19Z
--- language: - en license: mit tags: - generated_from_trainer datasets: - tomekkorbak/detoxify-pile-chunk3-0-50000 - tomekkorbak/detoxify-pile-chunk3-50000-100000 - tomekkorbak/detoxify-pile-chunk3-100000-150000 - tomekkorbak/detoxify-pile-chunk3-150000-200000 - tomekkorbak/detoxify-pile-chunk3-200000-250000 - tomekkorbak/detoxify-pile-chunk3-250000-300000 - tomekkorbak/detoxify-pile-chunk3-300000-350000 - tomekkorbak/detoxify-pile-chunk3-350000-400000 - tomekkorbak/detoxify-pile-chunk3-400000-450000 - tomekkorbak/detoxify-pile-chunk3-450000-500000 - tomekkorbak/detoxify-pile-chunk3-500000-550000 - tomekkorbak/detoxify-pile-chunk3-550000-600000 - tomekkorbak/detoxify-pile-chunk3-600000-650000 - tomekkorbak/detoxify-pile-chunk3-650000-700000 - tomekkorbak/detoxify-pile-chunk3-700000-750000 - tomekkorbak/detoxify-pile-chunk3-750000-800000 - tomekkorbak/detoxify-pile-chunk3-800000-850000 - tomekkorbak/detoxify-pile-chunk3-850000-900000 - tomekkorbak/detoxify-pile-chunk3-900000-950000 - tomekkorbak/detoxify-pile-chunk3-950000-1000000 - tomekkorbak/detoxify-pile-chunk3-1000000-1050000 - tomekkorbak/detoxify-pile-chunk3-1050000-1100000 - tomekkorbak/detoxify-pile-chunk3-1100000-1150000 - tomekkorbak/detoxify-pile-chunk3-1150000-1200000 - tomekkorbak/detoxify-pile-chunk3-1200000-1250000 - tomekkorbak/detoxify-pile-chunk3-1250000-1300000 - tomekkorbak/detoxify-pile-chunk3-1300000-1350000 - tomekkorbak/detoxify-pile-chunk3-1350000-1400000 - tomekkorbak/detoxify-pile-chunk3-1400000-1450000 - tomekkorbak/detoxify-pile-chunk3-1450000-1500000 - tomekkorbak/detoxify-pile-chunk3-1500000-1550000 - tomekkorbak/detoxify-pile-chunk3-1550000-1600000 - tomekkorbak/detoxify-pile-chunk3-1600000-1650000 - tomekkorbak/detoxify-pile-chunk3-1650000-1700000 - tomekkorbak/detoxify-pile-chunk3-1700000-1750000 - tomekkorbak/detoxify-pile-chunk3-1750000-1800000 - tomekkorbak/detoxify-pile-chunk3-1800000-1850000 - tomekkorbak/detoxify-pile-chunk3-1850000-1900000 - tomekkorbak/detoxify-pile-chunk3-1900000-1950000 model-index: - name: awesome_ride results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # awesome_ride This model was trained from scratch on the tomekkorbak/detoxify-pile-chunk3-0-50000, the tomekkorbak/detoxify-pile-chunk3-50000-100000, the tomekkorbak/detoxify-pile-chunk3-100000-150000, the tomekkorbak/detoxify-pile-chunk3-150000-200000, the tomekkorbak/detoxify-pile-chunk3-200000-250000, the tomekkorbak/detoxify-pile-chunk3-250000-300000, the tomekkorbak/detoxify-pile-chunk3-300000-350000, the tomekkorbak/detoxify-pile-chunk3-350000-400000, the tomekkorbak/detoxify-pile-chunk3-400000-450000, the tomekkorbak/detoxify-pile-chunk3-450000-500000, the tomekkorbak/detoxify-pile-chunk3-500000-550000, the tomekkorbak/detoxify-pile-chunk3-550000-600000, the tomekkorbak/detoxify-pile-chunk3-600000-650000, the tomekkorbak/detoxify-pile-chunk3-650000-700000, the tomekkorbak/detoxify-pile-chunk3-700000-750000, the tomekkorbak/detoxify-pile-chunk3-750000-800000, the tomekkorbak/detoxify-pile-chunk3-800000-850000, the tomekkorbak/detoxify-pile-chunk3-850000-900000, the tomekkorbak/detoxify-pile-chunk3-900000-950000, the tomekkorbak/detoxify-pile-chunk3-950000-1000000, the tomekkorbak/detoxify-pile-chunk3-1000000-1050000, the tomekkorbak/detoxify-pile-chunk3-1050000-1100000, the tomekkorbak/detoxify-pile-chunk3-1100000-1150000, the tomekkorbak/detoxify-pile-chunk3-1150000-1200000, the tomekkorbak/detoxify-pile-chunk3-1200000-1250000, the tomekkorbak/detoxify-pile-chunk3-1250000-1300000, the tomekkorbak/detoxify-pile-chunk3-1300000-1350000, the tomekkorbak/detoxify-pile-chunk3-1350000-1400000, the tomekkorbak/detoxify-pile-chunk3-1400000-1450000, the tomekkorbak/detoxify-pile-chunk3-1450000-1500000, the tomekkorbak/detoxify-pile-chunk3-1500000-1550000, the tomekkorbak/detoxify-pile-chunk3-1550000-1600000, the tomekkorbak/detoxify-pile-chunk3-1600000-1650000, the tomekkorbak/detoxify-pile-chunk3-1650000-1700000, the tomekkorbak/detoxify-pile-chunk3-1700000-1750000, the tomekkorbak/detoxify-pile-chunk3-1750000-1800000, the tomekkorbak/detoxify-pile-chunk3-1800000-1850000, the tomekkorbak/detoxify-pile-chunk3-1850000-1900000 and the tomekkorbak/detoxify-pile-chunk3-1900000-1950000 datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 50354 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.5.1 - Tokenizers 0.11.6 # Full config {'dataset': {'datasets': ['tomekkorbak/detoxify-pile-chunk3-0-50000', 'tomekkorbak/detoxify-pile-chunk3-50000-100000', 'tomekkorbak/detoxify-pile-chunk3-100000-150000', 'tomekkorbak/detoxify-pile-chunk3-150000-200000', 'tomekkorbak/detoxify-pile-chunk3-200000-250000', 'tomekkorbak/detoxify-pile-chunk3-250000-300000', 'tomekkorbak/detoxify-pile-chunk3-300000-350000', 'tomekkorbak/detoxify-pile-chunk3-350000-400000', 'tomekkorbak/detoxify-pile-chunk3-400000-450000', 'tomekkorbak/detoxify-pile-chunk3-450000-500000', 'tomekkorbak/detoxify-pile-chunk3-500000-550000', 'tomekkorbak/detoxify-pile-chunk3-550000-600000', 'tomekkorbak/detoxify-pile-chunk3-600000-650000', 'tomekkorbak/detoxify-pile-chunk3-650000-700000', 'tomekkorbak/detoxify-pile-chunk3-700000-750000', 'tomekkorbak/detoxify-pile-chunk3-750000-800000', 'tomekkorbak/detoxify-pile-chunk3-800000-850000', 'tomekkorbak/detoxify-pile-chunk3-850000-900000', 'tomekkorbak/detoxify-pile-chunk3-900000-950000', 'tomekkorbak/detoxify-pile-chunk3-950000-1000000', 'tomekkorbak/detoxify-pile-chunk3-1000000-1050000', 'tomekkorbak/detoxify-pile-chunk3-1050000-1100000', 'tomekkorbak/detoxify-pile-chunk3-1100000-1150000', 'tomekkorbak/detoxify-pile-chunk3-1150000-1200000', 'tomekkorbak/detoxify-pile-chunk3-1200000-1250000', 'tomekkorbak/detoxify-pile-chunk3-1250000-1300000', 'tomekkorbak/detoxify-pile-chunk3-1300000-1350000', 'tomekkorbak/detoxify-pile-chunk3-1350000-1400000', 'tomekkorbak/detoxify-pile-chunk3-1400000-1450000', 'tomekkorbak/detoxify-pile-chunk3-1450000-1500000', 'tomekkorbak/detoxify-pile-chunk3-1500000-1550000', 'tomekkorbak/detoxify-pile-chunk3-1550000-1600000', 'tomekkorbak/detoxify-pile-chunk3-1600000-1650000', 'tomekkorbak/detoxify-pile-chunk3-1650000-1700000', 'tomekkorbak/detoxify-pile-chunk3-1700000-1750000', 'tomekkorbak/detoxify-pile-chunk3-1750000-1800000', 'tomekkorbak/detoxify-pile-chunk3-1800000-1850000', 'tomekkorbak/detoxify-pile-chunk3-1850000-1900000', 'tomekkorbak/detoxify-pile-chunk3-1900000-1950000'], 'filter_threshold': 0.00065, 'is_split_by_sentences': True}, 'generation': {'force_call_on': [25354], 'metrics_configs': [{}, {'n': 1}, {'n': 2}, {'n': 5}], 'scenario_configs': [{'generate_kwargs': {'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_samples': 2048}, {'generate_kwargs': {'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'challenging_rtp', 'num_samples': 2048, 'prompts_path': 'resources/challenging_rtp.jsonl'}], 'scorer_config': {'device': 'cuda:0'}}, 'kl_gpt3_callback': {'force_call_on': [25354], 'max_tokens': 64, 'num_samples': 4096}, 'model': {'from_scratch': True, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'path_or_name': 'gpt2'}, 'objective': {'name': 'MLE'}, 'tokenizer': {'path_or_name': 'gpt2'}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 64, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'awesome_ride', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.0005, 'logging_first_step': True, 'logging_steps': 1, 'num_tokens': 3300000000, 'output_dir': 'training_output104340', 'per_device_train_batch_size': 16, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 25354, 'save_strategy': 'steps', 'seed': 42, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/tomekkorbak/apo/runs/3m98rnwq
alexziweiwang/pure-start-epoch2
alexziweiwang
2022-11-28T16:08:48Z
31
0
transformers
[ "transformers", "pytorch", "wav2vec2", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2022-11-28T15:52:06Z
--- tags: - generated_from_trainer model-index: - name: pure-start-epoch2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pure-start-epoch2 This model is a fine-tuned version of [alexziweiwang/pure-start-epoch1](https://huggingface.co/alexziweiwang/pure-start-epoch1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 7.7447 - Acc: 0.24 - Wer: 1.0 - Correct: 48 - Total: 200 - Strlen: 200 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 9e-06 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Acc | Wer | Correct | Total | Strlen | |:-------------:|:-----:|:----:|:---------------:|:-----:|:---:|:-------:|:-----:|:------:| | No log | 0.01 | 2 | 20.4002 | 0.095 | 1.0 | 19 | 200 | 200 | | No log | 0.02 | 4 | 19.9080 | 0.095 | 1.0 | 19 | 200 | 200 | | No log | 0.03 | 6 | 19.4711 | 0.095 | 1.0 | 19 | 200 | 200 | | No log | 0.03 | 8 | 19.1535 | 0.095 | 1.0 | 19 | 200 | 200 | | 46.6007 | 0.04 | 10 | 18.6684 | 0.095 | 1.0 | 19 | 200 | 200 | | 46.6007 | 0.05 | 12 | 18.1640 | 0.095 | 1.0 | 19 | 200 | 200 | | 46.6007 | 0.06 | 14 | 17.6937 | 0.095 | 1.0 | 19 | 200 | 200 | | 46.6007 | 0.07 | 16 | 17.2710 | 0.095 | 1.0 | 19 | 200 | 200 | | 46.6007 | 0.08 | 18 | 16.8469 | 0.095 | 1.0 | 19 | 200 | 200 | | 49.1547 | 0.08 | 20 | 16.4418 | 0.095 | 1.0 | 19 | 200 | 200 | | 49.1547 | 0.09 | 22 | 16.0409 | 0.095 | 1.0 | 19 | 200 | 200 | | 49.1547 | 0.1 | 24 | 15.6677 | 0.095 | 1.0 | 19 | 200 | 200 | | 49.1547 | 0.11 | 26 | 15.3291 | 0.095 | 1.0 | 19 | 200 | 200 | | 49.1547 | 0.12 | 28 | 15.0097 | 0.095 | 1.0 | 19 | 200 | 200 | | 35.1416 | 0.13 | 30 | 14.6776 | 0.095 | 1.0 | 19 | 200 | 200 | | 35.1416 | 0.13 | 32 | 14.3788 | 0.095 | 1.0 | 19 | 200 | 200 | | 35.1416 | 0.14 | 34 | 14.0924 | 0.095 | 1.0 | 19 | 200 | 200 | | 35.1416 | 0.15 | 36 | 13.8133 | 0.095 | 1.0 | 19 | 200 | 200 | | 35.1416 | 0.16 | 38 | 13.5539 | 0.095 | 1.0 | 19 | 200 | 200 | | 34.4057 | 0.17 | 40 | 13.3095 | 0.095 | 1.0 | 19 | 200 | 200 | | 34.4057 | 0.18 | 42 | 13.0804 | 0.095 | 1.0 | 19 | 200 | 200 | | 34.4057 | 0.19 | 44 | 12.8580 | 0.105 | 1.0 | 21 | 200 | 200 | | 34.4057 | 0.19 | 46 | 12.6532 | 0.115 | 1.0 | 23 | 200 | 200 | | 34.4057 | 0.2 | 48 | 12.4532 | 0.13 | 1.0 | 26 | 200 | 200 | | 33.2759 | 0.21 | 50 | 12.2452 | 0.14 | 1.0 | 28 | 200 | 200 | | 33.2759 | 0.22 | 52 | 12.0666 | 0.13 | 1.0 | 26 | 200 | 200 | | 33.2759 | 0.23 | 54 | 11.8976 | 0.165 | 1.0 | 33 | 200 | 200 | | 33.2759 | 0.24 | 56 | 11.7373 | 0.175 | 1.0 | 35 | 200 | 200 | | 33.2759 | 0.24 | 58 | 11.5933 | 0.17 | 1.0 | 34 | 200 | 200 | | 29.8129 | 0.25 | 60 | 11.4281 | 0.15 | 1.0 | 30 | 200 | 200 | | 29.8129 | 0.26 | 62 | 11.2665 | 0.14 | 1.0 | 28 | 200 | 200 | | 29.8129 | 0.27 | 64 | 11.1158 | 0.145 | 1.0 | 29 | 200 | 200 | | 29.8129 | 0.28 | 66 | 10.9840 | 0.135 | 1.0 | 27 | 200 | 200 | | 29.8129 | 0.29 | 68 | 10.8502 | 0.15 | 1.0 | 30 | 200 | 200 | | 38.792 | 0.3 | 70 | 10.7341 | 0.15 | 1.0 | 30 | 200 | 200 | | 38.792 | 0.3 | 72 | 10.6082 | 0.165 | 1.0 | 33 | 200 | 200 | | 38.792 | 0.31 | 74 | 10.4944 | 0.18 | 1.0 | 36 | 200 | 200 | | 38.792 | 0.32 | 76 | 10.3818 | 0.21 | 1.0 | 42 | 200 | 200 | | 38.792 | 0.33 | 78 | 10.2719 | 0.235 | 1.0 | 47 | 200 | 200 | | 28.0092 | 0.34 | 80 | 10.1636 | 0.235 | 1.0 | 47 | 200 | 200 | | 28.0092 | 0.35 | 82 | 10.0709 | 0.24 | 1.0 | 48 | 200 | 200 | | 28.0092 | 0.35 | 84 | 9.9797 | 0.24 | 1.0 | 48 | 200 | 200 | | 28.0092 | 0.36 | 86 | 9.8958 | 0.24 | 1.0 | 48 | 200 | 200 | | 28.0092 | 0.37 | 88 | 9.7977 | 0.24 | 1.0 | 48 | 200 | 200 | | 21.6175 | 0.38 | 90 | 9.7015 | 0.24 | 1.0 | 48 | 200 | 200 | | 21.6175 | 0.39 | 92 | 9.6150 | 0.24 | 1.0 | 48 | 200 | 200 | | 21.6175 | 0.4 | 94 | 9.5304 | 0.24 | 1.0 | 48 | 200 | 200 | | 21.6175 | 0.4 | 96 | 9.4521 | 0.24 | 1.0 | 48 | 200 | 200 | | 21.6175 | 0.41 | 98 | 9.3832 | 0.24 | 1.0 | 48 | 200 | 200 | | 26.3434 | 0.42 | 100 | 9.3148 | 0.24 | 1.0 | 48 | 200 | 200 | | 26.3434 | 0.43 | 102 | 9.2563 | 0.24 | 1.0 | 48 | 200 | 200 | | 26.3434 | 0.44 | 104 | 9.1944 | 0.24 | 1.0 | 48 | 200 | 200 | | 26.3434 | 0.45 | 106 | 9.1323 | 0.24 | 1.0 | 48 | 200 | 200 | | 26.3434 | 0.46 | 108 | 9.0717 | 0.24 | 1.0 | 48 | 200 | 200 | | 24.4387 | 0.46 | 110 | 9.0245 | 0.24 | 1.0 | 48 | 200 | 200 | | 24.4387 | 0.47 | 112 | 8.9772 | 0.24 | 1.0 | 48 | 200 | 200 | | 24.4387 | 0.48 | 114 | 8.9390 | 0.24 | 1.0 | 48 | 200 | 200 | | 24.4387 | 0.49 | 116 | 8.9013 | 0.24 | 1.0 | 48 | 200 | 200 | | 24.4387 | 0.5 | 118 | 8.8605 | 0.24 | 1.0 | 48 | 200 | 200 | | 21.7305 | 0.51 | 120 | 8.8126 | 0.24 | 1.0 | 48 | 200 | 200 | | 21.7305 | 0.51 | 122 | 8.7503 | 0.24 | 1.0 | 48 | 200 | 200 | | 21.7305 | 0.52 | 124 | 8.6921 | 0.24 | 1.0 | 48 | 200 | 200 | | 21.7305 | 0.53 | 126 | 8.6378 | 0.24 | 1.0 | 48 | 200 | 200 | | 21.7305 | 0.54 | 128 | 8.5927 | 0.24 | 1.0 | 48 | 200 | 200 | | 21.5989 | 0.55 | 130 | 8.5520 | 0.24 | 1.0 | 48 | 200 | 200 | | 21.5989 | 0.56 | 132 | 8.5126 | 0.24 | 1.0 | 48 | 200 | 200 | | 21.5989 | 0.56 | 134 | 8.4743 | 0.24 | 1.0 | 48 | 200 | 200 | | 21.5989 | 0.57 | 136 | 8.4369 | 0.24 | 1.0 | 48 | 200 | 200 | | 21.5989 | 0.58 | 138 | 8.3993 | 0.24 | 1.0 | 48 | 200 | 200 | | 21.8372 | 0.59 | 140 | 8.3636 | 0.24 | 1.0 | 48 | 200 | 200 | | 21.8372 | 0.6 | 142 | 8.3311 | 0.24 | 1.0 | 48 | 200 | 200 | | 21.8372 | 0.61 | 144 | 8.2983 | 0.24 | 1.0 | 48 | 200 | 200 | | 21.8372 | 0.62 | 146 | 8.2652 | 0.24 | 1.0 | 48 | 200 | 200 | | 21.8372 | 0.62 | 148 | 8.2345 | 0.24 | 1.0 | 48 | 200 | 200 | | 20.1716 | 0.63 | 150 | 8.2064 | 0.24 | 1.0 | 48 | 200 | 200 | | 20.1716 | 0.64 | 152 | 8.1818 | 0.24 | 1.0 | 48 | 200 | 200 | | 20.1716 | 0.65 | 154 | 8.1603 | 0.24 | 1.0 | 48 | 200 | 200 | | 20.1716 | 0.66 | 156 | 8.1403 | 0.24 | 1.0 | 48 | 200 | 200 | | 20.1716 | 0.67 | 158 | 8.1180 | 0.24 | 1.0 | 48 | 200 | 200 | | 24.5655 | 0.67 | 160 | 8.0997 | 0.24 | 1.0 | 48 | 200 | 200 | | 24.5655 | 0.68 | 162 | 8.0791 | 0.24 | 1.0 | 48 | 200 | 200 | | 24.5655 | 0.69 | 164 | 8.0563 | 0.24 | 1.0 | 48 | 200 | 200 | | 24.5655 | 0.7 | 166 | 8.0342 | 0.24 | 1.0 | 48 | 200 | 200 | | 24.5655 | 0.71 | 168 | 8.0130 | 0.24 | 1.0 | 48 | 200 | 200 | | 17.3768 | 0.72 | 170 | 7.9936 | 0.24 | 1.0 | 48 | 200 | 200 | | 17.3768 | 0.72 | 172 | 7.9756 | 0.24 | 1.0 | 48 | 200 | 200 | | 17.3768 | 0.73 | 174 | 7.9594 | 0.24 | 1.0 | 48 | 200 | 200 | | 17.3768 | 0.74 | 176 | 7.9439 | 0.24 | 1.0 | 48 | 200 | 200 | | 17.3768 | 0.75 | 178 | 7.9298 | 0.24 | 1.0 | 48 | 200 | 200 | | 19.7473 | 0.76 | 180 | 7.9157 | 0.24 | 1.0 | 48 | 200 | 200 | | 19.7473 | 0.77 | 182 | 7.9021 | 0.24 | 1.0 | 48 | 200 | 200 | | 19.7473 | 0.78 | 184 | 7.8899 | 0.24 | 1.0 | 48 | 200 | 200 | | 19.7473 | 0.78 | 186 | 7.8796 | 0.24 | 1.0 | 48 | 200 | 200 | | 19.7473 | 0.79 | 188 | 7.8697 | 0.24 | 1.0 | 48 | 200 | 200 | | 15.7279 | 0.8 | 190 | 7.8598 | 0.24 | 1.0 | 48 | 200 | 200 | | 15.7279 | 0.81 | 192 | 7.8490 | 0.24 | 1.0 | 48 | 200 | 200 | | 15.7279 | 0.82 | 194 | 7.8390 | 0.24 | 1.0 | 48 | 200 | 200 | | 15.7279 | 0.83 | 196 | 7.8293 | 0.24 | 1.0 | 48 | 200 | 200 | | 15.7279 | 0.83 | 198 | 7.8211 | 0.24 | 1.0 | 48 | 200 | 200 | | 18.5034 | 0.84 | 200 | 7.8135 | 0.24 | 1.0 | 48 | 200 | 200 | | 18.5034 | 0.85 | 202 | 7.8064 | 0.24 | 1.0 | 48 | 200 | 200 | | 18.5034 | 0.86 | 204 | 7.7991 | 0.24 | 1.0 | 48 | 200 | 200 | | 18.5034 | 0.87 | 206 | 7.7924 | 0.24 | 1.0 | 48 | 200 | 200 | | 18.5034 | 0.88 | 208 | 7.7862 | 0.24 | 1.0 | 48 | 200 | 200 | | 17.1983 | 0.89 | 210 | 7.7803 | 0.24 | 1.0 | 48 | 200 | 200 | | 17.1983 | 0.89 | 212 | 7.7749 | 0.24 | 1.0 | 48 | 200 | 200 | | 17.1983 | 0.9 | 214 | 7.7701 | 0.24 | 1.0 | 48 | 200 | 200 | | 17.1983 | 0.91 | 216 | 7.7657 | 0.24 | 1.0 | 48 | 200 | 200 | | 17.1983 | 0.92 | 218 | 7.7628 | 0.24 | 1.0 | 48 | 200 | 200 | | 17.7276 | 0.93 | 220 | 7.7595 | 0.24 | 1.0 | 48 | 200 | 200 | | 17.7276 | 0.94 | 222 | 7.7567 | 0.24 | 1.0 | 48 | 200 | 200 | | 17.7276 | 0.94 | 224 | 7.7541 | 0.24 | 1.0 | 48 | 200 | 200 | | 17.7276 | 0.95 | 226 | 7.7518 | 0.24 | 1.0 | 48 | 200 | 200 | | 17.7276 | 0.96 | 228 | 7.7497 | 0.24 | 1.0 | 48 | 200 | 200 | | 17.8692 | 0.97 | 230 | 7.7479 | 0.24 | 1.0 | 48 | 200 | 200 | | 17.8692 | 0.98 | 232 | 7.7463 | 0.24 | 1.0 | 48 | 200 | 200 | | 17.8692 | 0.99 | 234 | 7.7453 | 0.24 | 1.0 | 48 | 200 | 200 | | 17.8692 | 0.99 | 236 | 7.7447 | 0.24 | 1.0 | 48 | 200 | 200 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 1.18.3 - Tokenizers 0.13.2
SYH99999/autotrain-translator-2261971987
SYH99999
2022-11-28T15:30:31Z
104
0
transformers
[ "transformers", "pytorch", "autotrain", "translation", "ja", "en", "dataset:SYH99999/autotrain-data-translator-3c03831c-5fcf2e86-839aa322-a7658498-cb30b55a-eefc0458", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
translation
2022-11-28T11:53:31Z
--- tags: - autotrain - translation language: - ja - en datasets: - SYH99999/autotrain-data-translator-3c03831c-5fcf2e86-839aa322-a7658498-cb30b55a-eefc0458 co2_eq_emissions: emissions: 234.5986254372695 --- # Model Trained Using AutoTrain - Problem type: Translation - Model ID: 2261971987 - CO2 Emissions (in grams): 234.5986 ## Validation Metrics - Loss: 4.237 - SacreBLEU: 0.697 - Gen len: 256.387
fathyshalab/all-roberta-large-v1-banking-2-2-1
fathyshalab
2022-11-28T15:28:40Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-28T15:27:01Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-banking-2-2-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-banking-2-2-1 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.6817 - Accuracy: 0.1022 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.653 | 1.0 | 5 | 2.6817 | 0.1022 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1 - Datasets 2.3.2 - Tokenizers 0.12.1
ConvLab/ddpt-policy-sgd_0.01multiwoz21
ConvLab
2022-11-28T15:24:29Z
0
0
null
[ "dialogue policy", "task-oriented dialog", "en", "dataset:ConvLab/sgd", "license:apache-2.0", "region:us" ]
null
2022-11-28T15:21:11Z
--- language: - en license: apache-2.0 tags: - dialogue policy - task-oriented dialog datasets: - ConvLab/sgd --- # ddpt-policy-sgd_0.01multiwoz21 This is a DDPT model (https://aclanthology.org/2022.coling-1.21/) trained on [Schema-Guided Dialog](https://huggingface.co/datasets/ConvLab/sgd) and afterwards on 1 percent of [MultiWOZ 2.1](https://huggingface.co/datasets/ConvLab/multiwoz21) Refer to [ConvLab-3](https://github.com/ConvLab/ConvLab-3) for model description and usage. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - seed: 0 - optimizer: Adam - num_epochs: 40 - use checkpoint which performed best on validation set ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.2+cu111
ConvLab/ddpt-policy-0.01multiwoz21
ConvLab
2022-11-28T15:20:35Z
0
0
null
[ "dialogue policy", "task-oriented dialog", "en", "dataset:ConvLab/sgd", "license:apache-2.0", "region:us" ]
null
2022-11-28T15:18:28Z
--- language: - en license: apache-2.0 tags: - dialogue policy - task-oriented dialog datasets: - ConvLab/sgd --- # ddpt-policy-0.01multiwoz21 This is a DDPT model (https://aclanthology.org/2022.coling-1.21/) trained on 1 percent of [MultiWOZ 2.1](https://huggingface.co/datasets/ConvLab/multiwoz21) Refer to [ConvLab-3](https://github.com/ConvLab/ConvLab-3) for model description and usage. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - seed: 0 - optimizer: Adam - num_epochs: 40 - use checkpoint which performed best on validation set ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.2+cu111
fathyshalab/all-roberta-large-v1-banking-1-2-1
fathyshalab
2022-11-28T15:12:05Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-28T15:10:30Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-banking-1-2-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-banking-1-2-1 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.6235 - Accuracy: 0.2578 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.6542 | 1.0 | 3 | 2.6235 | 0.2578 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1 - Datasets 2.3.2 - Tokenizers 0.12.1
ConvLab/mle-policy-multiwoz21
ConvLab
2022-11-28T15:11:19Z
0
0
null
[ "dialogue policy", "task-oriented dialog", "en", "dataset:ConvLab/multiwoz21", "license:apache-2.0", "region:us" ]
null
2022-11-28T15:07:50Z
--- language: - en license: apache-2.0 tags: - dialogue policy - task-oriented dialog datasets: - ConvLab/multiwoz21 --- # mle-policy-multiwoz21 This is a MLE model trained on [MultiWOZ 2.1](https://huggingface.co/datasets/ConvLab/multiwoz21) Refer to [ConvLab-3](https://github.com/ConvLab/ConvLab-3) for model description and usage. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - seed: 0 - optimizer: Adam - num_epochs: 24 - use checkpoint which performed best on validation set ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.2+cu111
ConvLab/ddpt-policy-sgd
ConvLab
2022-11-28T15:01:15Z
0
1
null
[ "dialogue policy", "task-oriented dialog", "en", "dataset:ConvLab/sgd", "license:apache-2.0", "region:us" ]
null
2022-11-28T13:21:09Z
--- language: - en license: apache-2.0 tags: - dialogue policy - task-oriented dialog datasets: - ConvLab/sgd --- # ddpt-policy-sgd This is a DDPT model (https://aclanthology.org/2022.coling-1.21/) trained on [Schema-Guided Dialog](https://huggingface.co/datasets/ConvLab/sgd) Refer to [ConvLab-3](https://github.com/ConvLab/ConvLab-3) for model description and usage. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - seed: 0 - optimizer: Adam - num_epochs: 1 - use checkpoint which performed best on validation set ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.2+cu111
regel-corpus/hunflair-tfbs
regel-corpus
2022-11-28T14:37:52Z
3
0
flair
[ "flair", "pytorch", "hunflair", "token-classification", "sequence-tagger-model", "en", "region:us" ]
token-classification
2022-03-29T11:26:41Z
--- tags: - flair - hunflair - token-classification - sequence-tagger-model language: en widget: - text: "It contains a functional GCGGCGGCG Egr-1-binding site" --- ## HunFlair model for Transcription Factor Binding Site (TFBS) [HunFlair](https://github.com/flairNLP/flair/blob/master/resources/docs/HUNFLAIR.md) (biomedical flair) for TFBS entity. Predicts 1 tag: | **tag** | **meaning** | |---------------------------------|-----------| | Tfbs | DNA region bound by transcription factor | --- ### Cite Please cite the following paper when using this model. ``` @article{garda2022regel, title={RegEl corpus: identifying DNA regulatory elements in the scientific literature}, author={Garda, Samuele and Lenihan-Geels, Freyda and Proft, Sebastian and Hochmuth, Stefanie and Sch{\"u}lke, Markus and Seelow, Dominik and Leser, Ulf}, journal={Database}, volume={2022}, year={2022}, publisher={Oxford Academic} } ``` --- ### Demo: How to use in Flair Requires: - **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`) ```python from flair.data import Sentence from flair.models import SequenceTagger # for biomedical-specific tokenization: # from flair.tokenization import SciSpacyTokenizer # load tagger tagger = SequenceTagger.load("regel-corpus/hunflair-tfbs") text = "We found that Egr-1 specifically binds to the PTEN 5' untranslated region, which contains a functional GCGGCGGCG Egr-1-binding site." # make example sentence sentence = Sentence(text) # for biomedical-specific tokenization: # sentence = Sentence(text, use_tokenizer=SciSpacyTokenizer()) # predict NER tags tagger.predict(sentence) # print sentence print(sentence) # print predicted NER spans print('The following NER tags are found:') # iterate over entities and print for entity in sentence.get_spans('ner'): print(entity) ``` This yields the following output: ``` Span [19,20,21]: "GCGGCGGCG Egr-1-binding site" [− Labels: Tfbs (0.9631)] ``` So, the entity "*GCGGCGGCG Egr-1-binding site*" is found in the sentence. Alternatively download all models locally and use the `MultiTagger` class. ```python from flair.models import MultiTagger tagger = [ './models/hunflair-promoter/pytorch_model.bin', './models/hunflair-enhancer/pytorch_model.bin', './models/hunflair-tfbs/pytorch_model.bin', ] tagger = MultiTagger.load(['./models/hunflair-']) tagger.predict(sentence) ``` ---
regel-corpus/hunflair-enhancer
regel-corpus
2022-11-28T14:37:03Z
4
0
flair
[ "flair", "pytorch", "hunflair", "token-classification", "sequence-tagger-model", "en", "region:us" ]
token-classification
2022-03-29T09:09:18Z
--- tags: - flair - hunflair - token-classification - sequence-tagger-model language: en widget: - text: "Isolate an enhancer element located between -89 and -50 bp in PAI-1" --- ## HunFlair model for ENHANCER [HunFlair](https://github.com/flairNLP/flair/blob/master/resources/docs/HUNFLAIR.md) (biomedical flair) for enhancer entity. Predicts 1 tag: | **tag** | **meaning** | |---------------------------------|-----------| | Enhancer | DNA enhancer region | --- ### Cite Please cite the following paper when using this model. ``` @article{garda2022regel, title={RegEl corpus: identifying DNA regulatory elements in the scientific literature}, author={Garda, Samuele and Lenihan-Geels, Freyda and Proft, Sebastian and Hochmuth, Stefanie and Sch{\"u}lke, Markus and Seelow, Dominik and Leser, Ulf}, journal={Database}, volume={2022}, year={2022}, publisher={Oxford Academic} } ``` --- ### Demo: How to use in Flair Requires: - **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`) ```python from flair.data import Sentence from flair.models import SequenceTagger # for biomedical-specific tokenization: # from flair.tokenization import SciSpacyTokenizer # load tagger tagger = SequenceTagger.load("regel-corpus/hunflair-promoter") text = "An upstream activator of the mitogen-activated protein (MAP) kinase pathways was used to isolate an enhancer element located between -89 and -50 bp in PAI-1 promoter that was activated by MEKK-1." # make example sentence sentence = Sentence(text) # for biomedical-specific tokenization: # sentence = Sentence(text, use_tokenizer=SciSpacyTokenizer()) # predict NER tags tagger.predict(sentence) # print sentence print(sentence) # print predicted NER spans print('The following NER tags are found:') # iterate over entities and print for entity in sentence.get_spans('ner'): print(entity) ``` This yields the following output: ``` Span [18,19,20,21,22,23,24,25,26,27,28,29,30]: "enhancer element located between - 89 and - 50 bp in PAI-1 promoter" [− Labels: Enhancer (0.992)] ``` So, the entity "*enhancer element located between - 89 and - 50 bp in PAI-1*" (labeled as a **enhancer**) is found in the sentence. Alternatively download all models locally and use the `MultiTagger` class. ```python from flair.models import MultiTagger tagger = [ './models/hunflair-promoter/pytorch_model.bin', './models/hunflair-enhancer/pytorch_model.bin', './models/hunflair-tfbs/pytorch_model.bin', ] tagger = MultiTagger.load(['./models/hunflair-']) tagger.predict(sentence) ``` ---
regel-corpus/hunflair-promoter
regel-corpus
2022-11-28T14:36:20Z
7
0
flair
[ "flair", "pytorch", "hunflair", "token-classification", "sequence-tagger-model", "en", "region:us" ]
token-classification
2022-03-29T11:22:27Z
--- tags: - flair - hunflair - token-classification - sequence-tagger-model language: en widget: - text: "Two putative extended promoters consensus sequences (p1 and p2)." --- ## HunFlair model for PROMOTER [HunFlair](https://github.com/flairNLP/flair/blob/master/resources/docs/HUNFLAIR.md) (biomedical flair) for promoter entity. Predicts 1 tag: | **tag** | **meaning** | |---------------------------------|-----------| | Promoter | DNA promoter region | --- ### Cite Please cite the following paper when using this model. ``` @article{garda2022regel, title={RegEl corpus: identifying DNA regulatory elements in the scientific literature}, author={Garda, Samuele and Lenihan-Geels, Freyda and Proft, Sebastian and Hochmuth, Stefanie and Sch{\"u}lke, Markus and Seelow, Dominik and Leser, Ulf}, journal={Database}, volume={2022}, year={2022}, publisher={Oxford Academic} } ``` --- ### Demo: How to use in Flair Requires: - **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`) ```python from flair.data import Sentence from flair.models import SequenceTagger # for biomedical-specific tokenization: # from flair.tokenization import SciSpacyTokenizer # load tagger tagger = SequenceTagger.load("regel-corpus/hunflair-promoter") text = "The upstream region of the glnA gene contained two putative extended promoter consensus sequences (p1 and p2)." # make example sentence sentence = Sentence(text) # for biomedical-specific tokenization: # sentence = Sentence(text, use_tokenizer=SciSpacyTokenizer()) # predict NER tags tagger.predict(sentence) # print sentence print(sentence) # print predicted NER spans print('The following NER tags are found:') # iterate over entities and print for entity in sentence.get_spans('ner'): print(entity) ``` This yields the following output: ``` Span [16]: "p1" [− Labels: Promoter (0.9878)] Span [18]: "p2" [− Labels: Promoter (0.9216)] ``` So, the entities "*p1*" and "*p2*" (labeled as a **promoter**) are found in the sentence. Alternatively download all models locally and use the `MultiTagger` class. ```python from flair.models import MultiTagger tagger = [ './models/hunflair-promoter/pytorch_model.bin', './models/hunflair-enhancer/pytorch_model.bin', './models/hunflair-tfbs/pytorch_model.bin', ] tagger = MultiTagger.load(['./models/hunflair-']) tagger.predict(sentence) ```
fathyshalab/all-roberta-large-v1-banking-1
fathyshalab
2022-11-28T14:25:57Z
104
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-28T14:24:22Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-banking-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-banking-1 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.6515 - Accuracy: 0.1644 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.5795 | 1.0 | 3 | 2.6515 | 0.1644 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1 - Datasets 2.3.2 - Tokenizers 0.12.1
fathyshalab/bert-uncased-massive-intent-classification-banking-1
fathyshalab
2022-11-28T14:15:57Z
103
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-28T14:11:34Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-uncased-massive-intent-classification-banking-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-uncased-massive-intent-classification-banking-1 This model is a fine-tuned version of [gokuls/bert-uncased-massive-intent-classification](https://huggingface.co/gokuls/bert-uncased-massive-intent-classification) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.7010 - Accuracy: 0.1289 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.6675 | 1.0 | 3 | 2.7010 | 0.1289 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1 - Datasets 2.3.2 - Tokenizers 0.12.1
Fabiuas/test
Fabiuas
2022-11-28T14:01:56Z
187
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-11-28T13:42:00Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: test results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 1.0 --- # test Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### cat ![cat](images/cat.jpg) #### dog ![dog](images/dog.jpg)
fathyshalab/bert-uncased-massive-intent-classification_banking-1
fathyshalab
2022-11-28T13:48:29Z
103
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-28T13:40:09Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-uncased-massive-intent-classification_banking-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-uncased-massive-intent-classification_banking-1 This model is a fine-tuned version of [gokuls/bert-uncased-massive-intent-classification](https://huggingface.co/gokuls/bert-uncased-massive-intent-classification) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.6770 - Accuracy: 0.1378 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.8977 | 1.0 | 3 | 2.7353 | 0.0622 | | 2.5889 | 2.0 | 6 | 2.7109 | 0.0933 | | 2.4362 | 3.0 | 9 | 2.6940 | 0.1111 | | 2.3175 | 4.0 | 12 | 2.6817 | 0.1333 | | 2.2524 | 5.0 | 15 | 2.6770 | 0.1378 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1 - Datasets 2.3.2 - Tokenizers 0.12.1
fathyshalab/bert-uncased-massive-intent-classification-finetuned-banking
fathyshalab
2022-11-28T12:54:50Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-28T11:50:48Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-uncased-massive-intent-classification-finetuned-banking results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-uncased-massive-intent-classification-finetuned-banking This model is a fine-tuned version of [gokuls/bert-uncased-massive-intent-classification](https://huggingface.co/gokuls/bert-uncased-massive-intent-classification) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.5965 - Accuracy: 0.12 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.731 | 1.0 | 3 | 2.6423 | 0.1067 | | 2.4424 | 2.0 | 6 | 2.6178 | 0.1067 | | 2.2005 | 3.0 | 9 | 2.6028 | 0.1111 | | 2.1954 | 4.0 | 12 | 2.5965 | 0.12 | | 2.0599 | 5.0 | 15 | 2.5935 | 0.12 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1 - Datasets 2.3.2 - Tokenizers 0.12.1
minhtoan/t5-small-vietnamese-news
minhtoan
2022-11-28T12:52:14Z
122
4
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "summarization", "vi", "dataset:Wikilingua", "dataset:Vietnews", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
summarization
2022-11-24T08:01:28Z
--- language: vi datasets: - Wikilingua - Vietnews tags: - summarization license: mit widget: - text: 'VKS cáo buộc ông Nguyễn Thế Hiệp có sai phạm trong vụ cháy gần Bệnh viện Nhi trung ương khiến 2 người chết, thiệt hại 1,9 tỷ đồng song bị cáo khẳng định vô tội. Mức án đề nghị 9-10 năm tù với bị cáo 73 tuổi được đại diện VKSND quận Ba Đình đưa ra chiều 28/11, quy buộc phạm tội Vi phạm quy định về phòng cháy chữa cháy, theo Điều 313 Bộ luật Hình sự. VKS nhận định ông Hiệp có lỗi trong việc vận hành nhà trọ không phép, không đủ điều kiện an toàn phòng cháy chữa cháy, gây thiệt hại về tài sản và khiến hai người chết. Tuy nhiên, bị cáo chưa bồi thường. Bản luận tội nêu, tại phiên tòa hôm nay ông Hiệp "chưa tỏ thái độ ăn năn hối hận, có nhân thân đặc biệt xấu". Từ hàng chục năm trước, ông từng 11 lần bị lập danh chỉ bản về hành vi trộm cắp, năm 1985 lại nhận 18 năm tù về các tội cướp tài sản, hiếp dâm, đưa hối lộ...' inference: parameters: max_length: 150 --- # Text summarization for Vietnamese Language State-of-the-art lightweights pretrained Transformer-based encoder-decoder model for Vietnamese. Model trained on dataset Vietnamese News with input length = 512, output length = 150 ## How to use ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM # Example test data on VNExpress: https://vnexpress.net/ong-hiep-khung-khong-nhan-toi-trong-vu-chay-gan-benh-vien-nhi-4541483.html tokenizer = AutoTokenizer.from_pretrained("minhtoan/t5-small-vietnamese-news") model = AutoModelForSeq2SeqLM.from_pretrained("minhtoan/t5-small-vietnamese-news") model.cuda() src = 'VKS cáo buộc ông Nguyễn Thế Hiệp có sai phạm trong vụ cháy gần Bệnh viện Nhi trung ương khiến 2 người chết, thiệt hại 1,9 tỷ đồng song bị cáo khẳng định vô tội. Mức án đề nghị 9-10 năm tù với bị cáo 73 tuổi được đại diện VKSND quận Ba Đình đưa ra chiều 28/11, quy buộc phạm tội Vi phạm quy định về phòng cháy chữa cháy, theo Điều 313 Bộ luật Hình sự. VKS nhận định ông Hiệp có lỗi trong việc vận hành nhà trọ không phép, không đủ điều kiện an toàn phòng cháy chữa cháy, gây thiệt hại về tài sản và khiến hai người chết. Tuy nhiên, bị cáo chưa bồi thường. Bản luận tội nêu, tại phiên tòa hôm nay ông Hiệp "chưa tỏ thái độ ăn năn hối hận, có nhân thân đặc biệt xấu". Từ hàng chục năm trước, ông từng 11 lần bị lập danh chỉ bản về hành vi trộm cắp, năm 1985 lại nhận 18 năm tù về các tội cướp tài sản, hiếp dâm, đưa hối lộ...' tokenized_text = tokenizer.encode(src, return_tensors="pt").cuda() model.eval() summary_ids = model.generate(tokenized_text, max_length=150) output = tokenizer.decode(summary_ids[0], skip_special_tokens=True) output ``` ## Author ` Phan Minh Toan `
team-nave/distilbert-base-uncased-distilled-clinc
team-nave
2022-11-28T12:14:29Z
108
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-28T12:06:14Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-distilled-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9367741935483871 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-distilled-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.4175 - Accuracy: 0.9368 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 96 - eval_batch_size: 96 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 159 | 3.3516 | 0.6652 | | 3.4274 | 2.0 | 318 | 2.2866 | 0.7848 | | 3.4274 | 3.0 | 477 | 1.5064 | 0.8545 | | 1.6307 | 4.0 | 636 | 1.0204 | 0.8971 | | 1.6307 | 5.0 | 795 | 0.7421 | 0.9177 | | 0.7641 | 6.0 | 954 | 0.5838 | 0.9258 | | 0.7641 | 7.0 | 1113 | 0.4986 | 0.9306 | | 0.4482 | 8.0 | 1272 | 0.4489 | 0.9365 | | 0.4482 | 9.0 | 1431 | 0.4258 | 0.9368 | | 0.3442 | 10.0 | 1590 | 0.4175 | 0.9368 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1 - Datasets 1.16.1 - Tokenizers 0.10.3
tomekkorbak/zealous_almeida
tomekkorbak
2022-11-28T12:04:20Z
0
0
null
[ "generated_from_trainer", "en", "dataset:tomekkorbak/detoxify-pile-chunk3-0-50000", "dataset:tomekkorbak/detoxify-pile-chunk3-50000-100000", "dataset:tomekkorbak/detoxify-pile-chunk3-100000-150000", "dataset:tomekkorbak/detoxify-pile-chunk3-150000-200000", "dataset:tomekkorbak/detoxify-pile-chunk3-200000-250000", "dataset:tomekkorbak/detoxify-pile-chunk3-250000-300000", "dataset:tomekkorbak/detoxify-pile-chunk3-300000-350000", "dataset:tomekkorbak/detoxify-pile-chunk3-350000-400000", "dataset:tomekkorbak/detoxify-pile-chunk3-400000-450000", "dataset:tomekkorbak/detoxify-pile-chunk3-450000-500000", "dataset:tomekkorbak/detoxify-pile-chunk3-500000-550000", "dataset:tomekkorbak/detoxify-pile-chunk3-550000-600000", "dataset:tomekkorbak/detoxify-pile-chunk3-600000-650000", "dataset:tomekkorbak/detoxify-pile-chunk3-650000-700000", "dataset:tomekkorbak/detoxify-pile-chunk3-700000-750000", "dataset:tomekkorbak/detoxify-pile-chunk3-750000-800000", "dataset:tomekkorbak/detoxify-pile-chunk3-800000-850000", "dataset:tomekkorbak/detoxify-pile-chunk3-850000-900000", "dataset:tomekkorbak/detoxify-pile-chunk3-900000-950000", "dataset:tomekkorbak/detoxify-pile-chunk3-950000-1000000", "dataset:tomekkorbak/detoxify-pile-chunk3-1000000-1050000", "dataset:tomekkorbak/detoxify-pile-chunk3-1050000-1100000", "dataset:tomekkorbak/detoxify-pile-chunk3-1100000-1150000", "dataset:tomekkorbak/detoxify-pile-chunk3-1150000-1200000", "dataset:tomekkorbak/detoxify-pile-chunk3-1200000-1250000", "dataset:tomekkorbak/detoxify-pile-chunk3-1250000-1300000", "dataset:tomekkorbak/detoxify-pile-chunk3-1300000-1350000", "dataset:tomekkorbak/detoxify-pile-chunk3-1350000-1400000", "dataset:tomekkorbak/detoxify-pile-chunk3-1400000-1450000", "dataset:tomekkorbak/detoxify-pile-chunk3-1450000-1500000", "dataset:tomekkorbak/detoxify-pile-chunk3-1500000-1550000", "dataset:tomekkorbak/detoxify-pile-chunk3-1550000-1600000", "dataset:tomekkorbak/detoxify-pile-chunk3-1600000-1650000", "dataset:tomekkorbak/detoxify-pile-chunk3-1650000-1700000", "dataset:tomekkorbak/detoxify-pile-chunk3-1700000-1750000", "dataset:tomekkorbak/detoxify-pile-chunk3-1750000-1800000", "dataset:tomekkorbak/detoxify-pile-chunk3-1800000-1850000", "dataset:tomekkorbak/detoxify-pile-chunk3-1850000-1900000", "dataset:tomekkorbak/detoxify-pile-chunk3-1900000-1950000", "license:mit", "region:us" ]
null
2022-11-28T12:04:13Z
--- language: - en license: mit tags: - generated_from_trainer datasets: - tomekkorbak/detoxify-pile-chunk3-0-50000 - tomekkorbak/detoxify-pile-chunk3-50000-100000 - tomekkorbak/detoxify-pile-chunk3-100000-150000 - tomekkorbak/detoxify-pile-chunk3-150000-200000 - tomekkorbak/detoxify-pile-chunk3-200000-250000 - tomekkorbak/detoxify-pile-chunk3-250000-300000 - tomekkorbak/detoxify-pile-chunk3-300000-350000 - tomekkorbak/detoxify-pile-chunk3-350000-400000 - tomekkorbak/detoxify-pile-chunk3-400000-450000 - tomekkorbak/detoxify-pile-chunk3-450000-500000 - tomekkorbak/detoxify-pile-chunk3-500000-550000 - tomekkorbak/detoxify-pile-chunk3-550000-600000 - tomekkorbak/detoxify-pile-chunk3-600000-650000 - tomekkorbak/detoxify-pile-chunk3-650000-700000 - tomekkorbak/detoxify-pile-chunk3-700000-750000 - tomekkorbak/detoxify-pile-chunk3-750000-800000 - tomekkorbak/detoxify-pile-chunk3-800000-850000 - tomekkorbak/detoxify-pile-chunk3-850000-900000 - tomekkorbak/detoxify-pile-chunk3-900000-950000 - tomekkorbak/detoxify-pile-chunk3-950000-1000000 - tomekkorbak/detoxify-pile-chunk3-1000000-1050000 - tomekkorbak/detoxify-pile-chunk3-1050000-1100000 - tomekkorbak/detoxify-pile-chunk3-1100000-1150000 - tomekkorbak/detoxify-pile-chunk3-1150000-1200000 - tomekkorbak/detoxify-pile-chunk3-1200000-1250000 - tomekkorbak/detoxify-pile-chunk3-1250000-1300000 - tomekkorbak/detoxify-pile-chunk3-1300000-1350000 - tomekkorbak/detoxify-pile-chunk3-1350000-1400000 - tomekkorbak/detoxify-pile-chunk3-1400000-1450000 - tomekkorbak/detoxify-pile-chunk3-1450000-1500000 - tomekkorbak/detoxify-pile-chunk3-1500000-1550000 - tomekkorbak/detoxify-pile-chunk3-1550000-1600000 - tomekkorbak/detoxify-pile-chunk3-1600000-1650000 - tomekkorbak/detoxify-pile-chunk3-1650000-1700000 - tomekkorbak/detoxify-pile-chunk3-1700000-1750000 - tomekkorbak/detoxify-pile-chunk3-1750000-1800000 - tomekkorbak/detoxify-pile-chunk3-1800000-1850000 - tomekkorbak/detoxify-pile-chunk3-1850000-1900000 - tomekkorbak/detoxify-pile-chunk3-1900000-1950000 model-index: - name: zealous_almeida results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # zealous_almeida This model was trained from scratch on the tomekkorbak/detoxify-pile-chunk3-0-50000, the tomekkorbak/detoxify-pile-chunk3-50000-100000, the tomekkorbak/detoxify-pile-chunk3-100000-150000, the tomekkorbak/detoxify-pile-chunk3-150000-200000, the tomekkorbak/detoxify-pile-chunk3-200000-250000, the tomekkorbak/detoxify-pile-chunk3-250000-300000, the tomekkorbak/detoxify-pile-chunk3-300000-350000, the tomekkorbak/detoxify-pile-chunk3-350000-400000, the tomekkorbak/detoxify-pile-chunk3-400000-450000, the tomekkorbak/detoxify-pile-chunk3-450000-500000, the tomekkorbak/detoxify-pile-chunk3-500000-550000, the tomekkorbak/detoxify-pile-chunk3-550000-600000, the tomekkorbak/detoxify-pile-chunk3-600000-650000, the tomekkorbak/detoxify-pile-chunk3-650000-700000, the tomekkorbak/detoxify-pile-chunk3-700000-750000, the tomekkorbak/detoxify-pile-chunk3-750000-800000, the tomekkorbak/detoxify-pile-chunk3-800000-850000, the tomekkorbak/detoxify-pile-chunk3-850000-900000, the tomekkorbak/detoxify-pile-chunk3-900000-950000, the tomekkorbak/detoxify-pile-chunk3-950000-1000000, the tomekkorbak/detoxify-pile-chunk3-1000000-1050000, the tomekkorbak/detoxify-pile-chunk3-1050000-1100000, the tomekkorbak/detoxify-pile-chunk3-1100000-1150000, the tomekkorbak/detoxify-pile-chunk3-1150000-1200000, the tomekkorbak/detoxify-pile-chunk3-1200000-1250000, the tomekkorbak/detoxify-pile-chunk3-1250000-1300000, the tomekkorbak/detoxify-pile-chunk3-1300000-1350000, the tomekkorbak/detoxify-pile-chunk3-1350000-1400000, the tomekkorbak/detoxify-pile-chunk3-1400000-1450000, the tomekkorbak/detoxify-pile-chunk3-1450000-1500000, the tomekkorbak/detoxify-pile-chunk3-1500000-1550000, the tomekkorbak/detoxify-pile-chunk3-1550000-1600000, the tomekkorbak/detoxify-pile-chunk3-1600000-1650000, the tomekkorbak/detoxify-pile-chunk3-1650000-1700000, the tomekkorbak/detoxify-pile-chunk3-1700000-1750000, the tomekkorbak/detoxify-pile-chunk3-1750000-1800000, the tomekkorbak/detoxify-pile-chunk3-1800000-1850000, the tomekkorbak/detoxify-pile-chunk3-1850000-1900000 and the tomekkorbak/detoxify-pile-chunk3-1900000-1950000 datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 50354 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.5.1 - Tokenizers 0.11.6 # Full config {'dataset': {'datasets': ['tomekkorbak/detoxify-pile-chunk3-0-50000', 'tomekkorbak/detoxify-pile-chunk3-50000-100000', 'tomekkorbak/detoxify-pile-chunk3-100000-150000', 'tomekkorbak/detoxify-pile-chunk3-150000-200000', 'tomekkorbak/detoxify-pile-chunk3-200000-250000', 'tomekkorbak/detoxify-pile-chunk3-250000-300000', 'tomekkorbak/detoxify-pile-chunk3-300000-350000', 'tomekkorbak/detoxify-pile-chunk3-350000-400000', 'tomekkorbak/detoxify-pile-chunk3-400000-450000', 'tomekkorbak/detoxify-pile-chunk3-450000-500000', 'tomekkorbak/detoxify-pile-chunk3-500000-550000', 'tomekkorbak/detoxify-pile-chunk3-550000-600000', 'tomekkorbak/detoxify-pile-chunk3-600000-650000', 'tomekkorbak/detoxify-pile-chunk3-650000-700000', 'tomekkorbak/detoxify-pile-chunk3-700000-750000', 'tomekkorbak/detoxify-pile-chunk3-750000-800000', 'tomekkorbak/detoxify-pile-chunk3-800000-850000', 'tomekkorbak/detoxify-pile-chunk3-850000-900000', 'tomekkorbak/detoxify-pile-chunk3-900000-950000', 'tomekkorbak/detoxify-pile-chunk3-950000-1000000', 'tomekkorbak/detoxify-pile-chunk3-1000000-1050000', 'tomekkorbak/detoxify-pile-chunk3-1050000-1100000', 'tomekkorbak/detoxify-pile-chunk3-1100000-1150000', 'tomekkorbak/detoxify-pile-chunk3-1150000-1200000', 'tomekkorbak/detoxify-pile-chunk3-1200000-1250000', 'tomekkorbak/detoxify-pile-chunk3-1250000-1300000', 'tomekkorbak/detoxify-pile-chunk3-1300000-1350000', 'tomekkorbak/detoxify-pile-chunk3-1350000-1400000', 'tomekkorbak/detoxify-pile-chunk3-1400000-1450000', 'tomekkorbak/detoxify-pile-chunk3-1450000-1500000', 'tomekkorbak/detoxify-pile-chunk3-1500000-1550000', 'tomekkorbak/detoxify-pile-chunk3-1550000-1600000', 'tomekkorbak/detoxify-pile-chunk3-1600000-1650000', 'tomekkorbak/detoxify-pile-chunk3-1650000-1700000', 'tomekkorbak/detoxify-pile-chunk3-1700000-1750000', 'tomekkorbak/detoxify-pile-chunk3-1750000-1800000', 'tomekkorbak/detoxify-pile-chunk3-1800000-1850000', 'tomekkorbak/detoxify-pile-chunk3-1850000-1900000', 'tomekkorbak/detoxify-pile-chunk3-1900000-1950000'], 'filter_threshold': 0.00078, 'is_split_by_sentences': True}, 'generation': {'force_call_on': [25354], 'metrics_configs': [{}, {'n': 1}, {'n': 2}, {'n': 5}], 'scenario_configs': [{'generate_kwargs': {'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_samples': 2048}, {'generate_kwargs': {'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'challenging_rtp', 'num_samples': 2048, 'prompts_path': 'resources/challenging_rtp.jsonl'}], 'scorer_config': {'device': 'cuda:0'}}, 'kl_gpt3_callback': {'force_call_on': [25354], 'max_tokens': 64, 'num_samples': 4096}, 'model': {'from_scratch': True, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'path_or_name': 'gpt2'}, 'objective': {'name': 'MLE'}, 'tokenizer': {'path_or_name': 'gpt2'}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 64, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'zealous_almeida', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.0005, 'logging_first_step': True, 'logging_steps': 1, 'num_tokens': 3300000000, 'output_dir': 'training_output104340', 'per_device_train_batch_size': 16, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 25354, 'save_strategy': 'steps', 'seed': 42, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/tomekkorbak/apo/runs/llhbsik2
cardiffnlp/twitter-roberta-base-offensive
cardiffnlp
2022-11-28T11:36:23Z
35,866
27
transformers
[ "transformers", "pytorch", "tf", "jax", "roberta", "text-classification", "arxiv:2010.12421", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
# Twitter-roBERTa-base for Offensive Language Identification This is a roBERTa-base model trained on ~58M tweets and finetuned for offensive language identification with the TweetEval benchmark. - Paper: [_TweetEval_ benchmark (Findings of EMNLP 2020)](https://arxiv.org/pdf/2010.12421.pdf). - Git Repo: [Tweeteval official repository](https://github.com/cardiffnlp/tweeteval). ## Example of classification ```python from transformers import AutoModelForSequenceClassification from transformers import TFAutoModelForSequenceClassification from transformers import AutoTokenizer import numpy as np from scipy.special import softmax import csv import urllib.request # Preprocess text (username and link placeholders) def preprocess(text): new_text = [] for t in text.split(" "): t = '@user' if t.startswith('@') and len(t) > 1 else t t = 'http' if t.startswith('http') else t new_text.append(t) return " ".join(new_text) # Tasks: # emoji, emotion, hate, irony, offensive, sentiment # stance/abortion, stance/atheism, stance/climate, stance/feminist, stance/hillary task='offensive' MODEL = f"cardiffnlp/twitter-roberta-base-{task}" tokenizer = AutoTokenizer.from_pretrained(MODEL) # download label mapping labels=[] mapping_link = f"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/{task}/mapping.txt" with urllib.request.urlopen(mapping_link) as f: html = f.read().decode('utf-8').split("\n") csvreader = csv.reader(html, delimiter='\t') labels = [row[1] for row in csvreader if len(row) > 1] # PT model = AutoModelForSequenceClassification.from_pretrained(MODEL) model.save_pretrained(MODEL) text = "Good night 😊" text = preprocess(text) encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) scores = output[0][0].detach().numpy() scores = softmax(scores) # # TF # model = TFAutoModelForSequenceClassification.from_pretrained(MODEL) # model.save_pretrained(MODEL) # text = "Good night 😊" # encoded_input = tokenizer(text, return_tensors='tf') # output = model(encoded_input) # scores = output[0][0].numpy() # scores = softmax(scores) ranking = np.argsort(scores) ranking = ranking[::-1] for i in range(scores.shape[0]): l = labels[ranking[i]] s = scores[ranking[i]] print(f"{i+1}) {l} {np.round(float(s), 4)}") ``` Output: ``` 1) not-offensive 0.9073 2) offensive 0.0927 ```
biu-nlp/f-coref
biu-nlp
2022-11-28T11:35:52Z
88,201
18
transformers
[ "transformers", "pytorch", "roberta", "fast", "coreference-resolution", "en", "dataset:multi_news", "dataset:ontonotes", "arxiv:2209.04280", "arxiv:2205.12644", "arxiv:1907.10529", "arxiv:2101.00434", "arxiv:2109.04127", "license:mit", "model-index", "endpoints_compatible", "region:us" ]
null
2022-08-19T12:01:10Z
--- language: - en tags: - fast - coreference-resolution license: mit datasets: - multi_news - ontonotes metrics: - CoNLL task_categories: - coreference-resolution model-index: - name: biu-nlp/f-coref results: - task: type: coreference-resolution name: coreference-resolution dataset: name: ontonotes type: coreference metrics: - name: Avg. F1 type: CoNLL value: 78.5 --- ## F-Coref: Fast, Accurate and Easy to Use Coreference Resolution [F-Coref](https://arxiv.org/abs/2209.04280) allows to process 2.8K OntoNotes documents in 25 seconds on a V100 GPU (compared to 6 minutes for the [LingMess](https://arxiv.org/abs/2205.12644) model, and to 12 minutes of the popular AllenNLP coreference model) with only a modest drop in accuracy. The fast speed is achieved through a combination of distillation of a compact model from the LingMess model, and an efficient batching implementation using a technique we call leftover Please check the [official repository](https://github.com/shon-otmazgin/fastcoref) for more details and updates. #### Experiments | Model | Runtime | Memory | |-----------------------|---------|---------| | [Joshi et al. (2020)](https://arxiv.org/abs/1907.10529) | 12:06 | 27.4 | | [Otmazgin et al. (2022)](https://arxiv.org/abs/2205.12644) | 06:43 | 4.6 | | + Batching | 06:00 | 6.6 | | [Kirstain et al. (2021)](https://arxiv.org/abs/2101.00434) | 04:37 | 4.4 | | [Dobrovolskii (2021)](https://arxiv.org/abs/2109.04127) | 03:49 | 3.5 | | [F-Coref](https://arxiv.org/abs/2209.04280) | 00:45 | 3.3 | | + Batching | 00:35 | 4.5 | | + Leftovers batching | 00:25 | 4.0 | The inference time(Min:Sec) and memory(GiB) for each model on 2.8K documents. Average of 3 runs. Hardware, NVIDIA Tesla V100 SXM2. ### Citation ``` @inproceedings{Otmazgin2022FcorefFA, title={F-coref: Fast, Accurate and Easy to Use Coreference Resolution}, author={Shon Otmazgin and Arie Cattan and Yoav Goldberg}, booktitle={AACL}, year={2022} } ``` [F-coref: Fast, Accurate and Easy to Use Coreference Resolution](https://aclanthology.org/2022.aacl-demo.6) (Otmazgin et al., AACL-IJCNLP 2022)
projecte-aina/roberta-base-ca-v2-cased-wikicat-ca
projecte-aina
2022-11-28T11:03:27Z
106
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "catalan", "text classification", "WikiCAT_ca", "CaText", "Catalan Textual Corpus", "ca", "dataset:projecte-aina/WikiCAT_ca", "arxiv:1907.11692", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-11T12:00:58Z
--- language: - ca license: apache-2.0 tags: - "catalan" - "text classification" - "WikiCAT_ca" - "CaText" - "Catalan Textual Corpus" datasets: - "projecte-aina/WikiCAT_ca" metrics: - f1 model-index: - name: roberta-base-ca-v2-cased-wikicat-ca results: - task: type: text-classification dataset: type: projecte-aina/WikiCAT_ca name: WikiCAT_ca metrics: - name: F1 type: f1 value: 77.823 widget: - text: "La ressonància magnètica és una prova diagnòstica clau per a moltes malalties." - text: "Les tres idees bàsiques del noümen són l'ànima, el món i Déu, i és una continuació de les tres substàncies de Descartes (tot i que el francès anomenava jo o ment l'ànima)." --- # Catalan BERTa-v2 (roberta-base-ca-v2) finetuned for Viquipedia-based Text Classification. ## Table of Contents <details> <summary>Click to expand</summary> - [Model description](#model-description) - [Intended uses and limitations](#intended-uses-and-limitations) - [How to use](#how-to-use) - [Limitations and bias](#limitations-and-bias) - [Training](#training) - [Training data](#training-data) - [Training procedure](#training-procedure) - [Evaluation](#evaluation) - [Variable and metrics](#variable-and-metrics) - [Evaluation results](#evaluation-results) - [Additional information](#additional-information) - [Author](#author) - [Contact information](#contact-information) - [Copyright](#copyright) - [Licensing information](#licensing-information) - [Funding](#funding) - [Disclaimer](#disclaimer) </details> ## Model description The **roberta-base-ca-v2-cased-wikicat-ca** is a Text Classification model for the Catalan language fine-tuned from the [roberta-base-ca-v2](https://huggingface.co/projecte-aina/roberta-base-ca-v2) model, a [RoBERTa](https://arxiv.org/abs/1907.11692) base model pre-trained on a medium-size corpus collected from publicly available corpora and crawlers (check the roberta-base-ca-v2 model card for more details). Dataset used is https://huggingface.co/datasets/projecte-aina/WikiCAT_ca, automatically created from Wikipedia and Wikidata sources ## Intended uses and limitations **roberta-base-ca-v2-cased-wikicat-ca** model can be used to classify texts. The model is limited by its training dataset and may not generalize well for all use cases. ## How to use Here is how to use this model: ```python from transformers import pipeline from pprint import pprint nlp = pipeline("text-classification", model="roberta-base-ca-v2-cased-wikicat-ca") example = "La ressonància magnètica és una prova diagnòstica clau per a moltes malalties." tc_results = nlp(example) pprint(tc_results) ``` ## Limitations and bias At the time of submission, no measures have been taken to estimate the bias embedded in the model. However, we are well aware that our models may be biased since the corpora have been collected using crawling techniques on multiple web sources. We intend to conduct research in these areas in the future, and if completed, this model card will be updated. ## Training ### Training data We used the TC dataset in Catalan called [WikiCAT_ca](https://huggingface.co/datasets/projecte-aina/WikiCAT_ca) for training and evaluation. ### Training procedure The model was trained with a batch size of 16 and three learning rates (1e-5, 3e-5, 5e-5) for 10 epochs. We then selected the best learning rate (3e-5) and checkpoint (epoch 3, step 1857) using the downstream task metric in the corresponding development set. ## Evaluation ### Variable and metrics This model was finetuned maximizing F1 (weighted) score. ### Evaluation results We evaluated the _roberta-base-ca-v2-cased-wikicat-ca_ on the WikiCAT_ca dev set: | Model | WikiCAT_ca (F1)| | ------------|:-------------| | roberta-base-ca-v2-cased-wikicat-ca | 77.823 | For more details, check the fine-tuning and evaluation scripts in the official [GitHub repository](https://github.com/projecte-aina/club). ## Additional information ### Author Text Mining Unit (TeMU) at the Barcelona Supercomputing Center ([email protected]) ### Contact information For further information, send an email to [email protected] ### Copyright Copyright (c) 2022 Text Mining Unit at Barcelona Supercomputing Center ### Licensing information [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0) ### Funding This work was funded by the [Departament de la Vicepresidència i de Polítiques Digitals i Territori de la Generalitat de Catalunya](https://politiquesdigitals.gencat.cat/ca/inici/index.html#googtrans(ca|en) within the framework of [Projecte AINA](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina). ## Disclaimer <details> <summary>Click to expand</summary> The models published in this repository are intended for a generalist purpose and are available to third parties. These models may have bias and/or any other undesirable distortions. When third parties, deploy or provide systems and/or services to other parties using any of these models (or using systems based on these models) or become users of the models, they should note that it is their responsibility to mitigate the risks arising from their use and, in any event, to comply with applicable regulations, including regulations regarding the use of Artificial Intelligence. In no event shall the owner and creator of the models (BSC – Barcelona Supercomputing Center) be liable for any results arising from the use made by third parties of these models.
projecte-aina/roberta-base-ca-v2-cased-tc
projecte-aina
2022-11-28T11:02:09Z
110
1
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "catalan", "text classification", "tecla", "CaText", "Catalan Textual Corpus", "ca", "dataset:projecte-aina/tecla", "arxiv:1907.11692", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-30T07:55:23Z
--- language: - ca tags: - "catalan" - "text classification" - "tecla" - "CaText" - "Catalan Textual Corpus" datasets: - "projecte-aina/tecla" metrics: - accuracy model-index: - name: roberta-base-ca-v2-cased-tc results: - task: type: text-classification dataset: name: TeCla type: projecte-aina/tecla metrics: - name: Accuracy type: accuracy value: 0.8034 widget: - text: "Els Pets presenten el seu nou treball al Palau Sant Jordi." - text: "Els barcelonins incrementen un 23% l’ús del cotxe des de l’inici de la pandèmia." - text: "Retards a quatre línies de Rodalies per una avaria entre Sants i plaça de Catalunya." - text: "Majors de 60 anys i sanitaris començaran a rebre la tercera dosi de la vacuna covid els propers dies." - text: "Els cinemes Verdi estrenen Verdi Classics, un nou canal de televisió." --- # Catalan BERTa-v2 (roberta-base-ca-v2) finetuned for TeCla-based Text Classification. ## Table of Contents <details> <summary>Click to expand</summary> - [Model description](#model-description) - [Intended uses and limitations](#intended-use) - [How to use](#how-to-use) - [Limitations and bias](#limitations-and-bias) - [Training](#training) - [Training data](#training-data) - [Training procedure](#training-procedure) - [Tokenization](#tokenization) - [Hyperparameters](#hyperparameters) - [Evaluation](#evaluation) - [Variable and metrics](#variable-and-metrics) - [Evaluation results](#evaluation-results) - [Additional information](#additional-information) - [Author](#author) - [Contact information](#contact-information) - [Copyright](#copyright) - [Licensing information](#licensing-information) - [Funding](#funding) - [Citing information](#citing-information) - [Disclaimer](#disclaimer) </details> ## Model description The **roberta-base-ca-v2-cased-tc** is a Text Classification (TC) model for the Catalan language fine-tuned from the [roberta-base-ca-v2](https://huggingface.co/projecte-aina/roberta-base-ca-v2) model, a [RoBERTa](https://arxiv.org/abs/1907.11692) base model pre-trained on a medium-size corpus collected from publicly available corpora and crawlers (check the roberta-base-ca-v2 model card for more details). The previous version of this model, which was trained on the old TeCla dataset (v1), can still be accessed through the "v1" tag. ## Intended uses and limitations **roberta-base-ca-v2-cased-tc** model can be used to classify texts. The model is limited by its training dataset and may not generalize well for all use cases. ## How to use Here is how to use this model: ```python from transformers import pipeline from pprint import pprint nlp = pipeline("text-classification", model="projecte-aina/roberta-base-ca-v2-cased-tc") example = "Retards a quatre línies de Rodalies per una avaria entre Sants i plaça de Catalunya." tc_results = nlp(example) pprint(tc_results) ``` ## Limitations and bias At the time of submission, no measures have been taken to estimate the bias embedded in the model. However, we are well aware that our models may be biased since the corpora have been collected using crawling techniques on multiple web sources. We intend to conduct research in these areas in the future, and if completed, this model card will be updated. ## Training ### Training data We used the TC dataset in Catalan called [TeCla](https://huggingface.co/datasets/projecte-aina/tecla) for training and evaluation. Although TeCla includes a coarse-grained ('label1') and a fine-grained categorization ('label2'), only the last one, with 53 classes, was used for the training. ### Training procedure The model was trained with a batch size of 16 and a learning rate of 5e-5 for 5 epochs. We then selected the best checkpoint using the downstream task metric in the corresponding development set and then evaluated it on the test set. ## Evaluation ### Variable and metrics This model was finetuned maximizing F1 (weighted). ## Evaluation results We evaluated the _roberta-base-ca-v2-cased-tc_ on the TeCla test set against standard multilingual and monolingual baselines. The results for 'label1' categories were obtained through a mapping from the fine-grained category ('label2') to the corresponding coarse-grained one ('label1'). | Model | TeCla - label1 (Accuracy) | TeCla - label2 (Accuracy) | | ------------|:-------------|:-------------| | roberta-base-ca-v2 | 96.31 | 80.34 | | roberta-large-ca-v2 | **96.51** | **80.68** | | mBERT | 95.72 | 78.47 | | XLM-RoBERTa | 95.66 | 78.01 | For more details, check the fine-tuning and evaluation scripts in the official [GitHub repository](https://github.com/projecte-aina/club). ## Additional information ### Author Text Mining Unit (TeMU) at the Barcelona Supercomputing Center ([email protected]) ### Contact information For further information, send an email to [email protected] ### Copyright Copyright (c) 2022 Text Mining Unit at Barcelona Supercomputing Center ### Licensing information [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0) ### Funding This work was funded by the [Departament de la Vicepresidència i de Polítiques Digitals i Territori de la Generalitat de Catalunya](https://politiquesdigitals.gencat.cat/ca/inici/index.html#googtrans(ca|en) within the framework of [Projecte AINA](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina). ## Citation Information If you use any of these resources (datasets or models) in your work, please cite our latest paper: ```bibtex @inproceedings{armengol-estape-etal-2021-multilingual, title = "Are Multilingual Models the Best Choice for Moderately Under-resourced Languages? {A} Comprehensive Assessment for {C}atalan", author = "Armengol-Estap{\'e}, Jordi and Carrino, Casimiro Pio and Rodriguez-Penagos, Carlos and de Gibert Bonet, Ona and Armentano-Oller, Carme and Gonzalez-Agirre, Aitor and Melero, Maite and Villegas, Marta", booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021", month = aug, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.findings-acl.437", doi = "10.18653/v1/2021.findings-acl.437", pages = "4933--4946", } ``` ### Disclaimer <details> <summary>Click to expand</summary> The models published in this repository are intended for a generalist purpose and are available to third parties. These models may have bias and/or any other undesirable distortions. When third parties, deploy or provide systems and/or services to other parties using any of these models (or using systems based on these models) or become users of the models, they should note that it is their responsibility to mitigate the risks arising from their use and, in any event, to comply with applicable regulations, including regulations regarding the use of Artificial Intelligence. In no event shall the owner and creator of the models (BSC – Barcelona Supercomputing Center) be liable for any results arising from the use made by third parties of these models.
JapaNLP/t5-efficient-xl-nl6-japanese
JapaNLP
2022-11-28T10:09:07Z
104
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "license:afl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-28T09:58:01Z
--- license: afl-3.0 --- # Overview `t5-efficient-xl-nl6-ja` is a Japanese version of [`google/t5-efficient-xl-nl6`](https://huggingface.co/google/t5-efficient-xl-nl6). # Results - Under construction - If you get some experimental results of this model on downstream tasks, please feel free to make Pull Requests. ## Question Answering ## Others # Acknowledgement Research supported with Cloud TPUs from Google's TPU Research Cloud (TRC)
mn367/radio-mlm
mn367
2022-11-28T09:52:57Z
61
0
transformers
[ "transformers", "tf", "distilbert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-11-28T09:42:20Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: mn367/radio-mlm results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # mn367/radio-mlm This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 4.6630 - Validation Loss: 4.6014 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 39000, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 4.6630 | 4.6014 | 0 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Datasets 2.7.1 - Tokenizers 0.13.2
pkachhad/t5-small-finetuned-parth
pkachhad
2022-11-28T09:19:48Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-28T07:51:00Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: t5-small-finetuned-parth results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-parth This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.9468 - Rouge1: 26.5826 - Rouge2: 21.7867 - Rougel: 25.1629 - Rougelsum: 26.2364 - Gen Len: 16.9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 4 | 3.3692 | 25.2983 | 20.639 | 24.0087 | 25.0732 | 16.2 | | No log | 2.0 | 8 | 3.1818 | 25.4926 | 20.9783 | 24.0651 | 25.2635 | 16.3 | | No log | 3.0 | 12 | 3.0498 | 26.2652 | 21.5076 | 24.8077 | 25.9478 | 16.65 | | No log | 4.0 | 16 | 2.9742 | 26.5826 | 21.7867 | 25.1629 | 26.2364 | 16.9 | | No log | 5.0 | 20 | 2.9468 | 26.5826 | 21.7867 | 25.1629 | 26.2364 | 16.9 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
huggingtweets/bobkerns
huggingtweets
2022-11-28T08:14:20Z
115
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-28T08:14:12Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/3653376550/f40f9602f2e8e185eb7ddce332157ffe_400x400.jpeg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Bob (Moderna #5) Kerns</div> <div style="text-align: center; font-size: 14px;">@bobkerns</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Bob (Moderna #5) Kerns. | Data | Bob (Moderna #5) Kerns | | --- | --- | | Tweets downloaded | 3234 | | Retweets | 315 | | Short tweets | 42 | | Tweets kept | 2877 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/390ksfue/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bobkerns's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3me25qi0) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3me25qi0/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/bobkerns') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
pere/whisper-NST2-unfreeze-constanti-low-lr
pere
2022-11-28T07:41:42Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-23T10:34:53Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-NST2-unfreeze-constanti-low-lr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-NST2-unfreeze-constanti-low-lr This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3562 - Wer: 8.5519 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 96 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 20000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 0.1901 | 0.05 | 1000 | 0.3069 | 14.8233 | | 0.1323 | 0.1 | 2000 | 0.2687 | 11.2885 | | 0.1137 | 0.15 | 3000 | 0.2620 | 10.8324 | | 0.1022 | 0.2 | 4000 | 0.2976 | 9.0080 | | 0.0937 | 0.25 | 5000 | 0.2584 | 9.5781 | | 0.0875 | 0.3 | 6000 | 0.2704 | 20.2965 | | 0.0592 | 1.05 | 7000 | 0.2751 | 9.0080 | | 0.0488 | 1.1 | 8000 | 0.2778 | 8.6659 | | 0.0475 | 1.15 | 9000 | 0.2792 | 9.4641 | | 0.0439 | 1.2 | 10000 | 0.2880 | 8.3238 | | 0.0425 | 1.25 | 11000 | 0.2954 | 8.5519 | | 0.0416 | 1.3 | 12000 | 0.2896 | 20.2965 | | 0.0289 | 2.05 | 13000 | 0.2990 | 7.9818 | | 0.0229 | 2.1 | 14000 | 0.3027 | 7.4116 | | 0.0248 | 2.15 | 15000 | 0.2968 | 8.6659 | | 0.0225 | 2.2 | 16000 | 0.3100 | 8.5519 | | 0.0222 | 2.25 | 17000 | 0.3132 | 9.3501 | | 0.0219 | 2.3 | 18000 | 0.3230 | 7.6397 | | 0.0162 | 3.04 | 19000 | 0.3380 | 9.8062 | | 0.0132 | 3.09 | 20000 | 0.3562 | 8.5519 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.6.1 - Tokenizers 0.13.1
linfuyou/bert-squad-training
linfuyou
2022-11-28T07:41:14Z
117
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "endpoints_compatible", "region:us" ]
question-answering
2022-11-15T09:15:55Z
bert-base-cased-squadv1.1-training
Shubham09/whispertestlocal
Shubham09
2022-11-28T06:40:40Z
77
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-25T09:13:41Z
--- tags: - generated_from_trainer metrics: - wer model-index: - name: whispertestlocal results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whispertestlocal This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4481 - Wer: 46.1754 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.1886 | 1.12 | 100 | 0.4481 | 46.1754 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1 - Datasets 2.7.1 - Tokenizers 0.13.2
amagzari/pegasus-cnn_dailymail-finetuned-samsum-v2
amagzari
2022-11-28T05:20:40Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "pegasus", "text2text-generation", "generated_from_trainer", "dataset:samsum", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-28T03:55:08Z
--- tags: - generated_from_trainer datasets: - samsum metrics: - rouge model-index: - name: pegasus-cnn_dailymail-finetuned-samsum-v2 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: samsum type: samsum config: samsum split: train args: samsum metrics: - name: Rouge1 type: rouge value: 45.3045 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-cnn_dailymail-finetuned-samsum-v2 This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.5218 - Rouge1: 45.3045 - Rouge2: 21.7601 - Rougel: 35.8643 - Rougelsum: 41.6595 - Gen Len: 35.4425 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.6997 | 1.0 | 1841 | 1.5218 | 45.3045 | 21.7601 | 35.8643 | 41.6595 | 35.4425 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
inkoziev/sbert_pq
inkoziev
2022-11-28T04:45:46Z
309
16
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "ru", "license:unlicense", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-10-17T13:27:40Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers language: ru license: unlicense widget: - source_sentence: "Кошка ловит мышку." sentences: ["Кто ловит мышку?", "Где живет кошка?", "Как мышку зовут?"] --- # SBERT_PQ Это [sentence-transformers](https://www.SBERT.net) модель, предназначенная для определения релевантности короткого текста (преимущественно одно предложение длиной до 10-15 слов) и вопроса. Модель вычисляет для текста и вопроса векторы размерностью 312. Косинус угла между этими векторами дает оценку того, содержит ли текст ответ на заданный вопрос. В [проекте диалоговой системы](https://github.com/Koziev/chatbot) она используется для семантического поиска записей в базе фактов по заданному собеседником вопросу. # Скорость и точность Модель основана на [cointegrated/rubert-tiny2](https://huggingface.co/cointegrated/rubert-tiny2). Она имеет очень небольшой размер и быстро выполняет инференс даже на CPU. Максимальное значение метрики cossim_f1 на тестовой выборке (10% датасета) равно **0.986**. При использовании модели sberbank-ai/ruBert-base в качестве базовой, максимум cossim_f1 составляет **0.992**. ## Использование с библиотекой (Sentence-Transformers) Необходимо установить [sentence-transformers](https://www.SBERT.net): ``` pip install -U sentence-transformers ``` Чтобы определить релевантность в одной паре "текст-вопрос", можно использовать такой код: ``` import sentence_transformers sentences = ["Кошка ловит мышку.", "Чем занята кошка?"] model = sentence_transformers.SentenceTransformer('inkoziev/sbert_pq') embeddings = model.encode(sentences) s = sentence_transformers.util.cos_sim(a=embeddings[0], b=embeddings[1]) print('text={} question={} cossim={}'.format(sentences[0], sentences[1], s)) ``` ## Контакты и цитирование ``` @MISC{rugpt_chitchat, author = {Ilya Koziev}, title = {Texts & Questions Relevancy Model}, url = {https://huggingface.co/inkoziev/sbert_pq}, year = 2022 } ```
cavitcakir/swin-tiny-patch4-window7-224-finetuned-eurosat
cavitcakir
2022-11-28T04:30:00Z
206
0
transformers
[ "transformers", "pytorch", "tensorboard", "swin", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-11-28T04:24:46Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5373 - Accuracy: 0.7639 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6855 | 0.98 | 10 | 0.6436 | 0.625 | | 0.6499 | 1.98 | 20 | 0.5745 | 0.7083 | | 0.6021 | 2.98 | 30 | 0.5373 | 0.7639 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
speedrunner/atitanstrawberry
speedrunner
2022-11-28T03:30:00Z
0
4
null
[ "region:us" ]
null
2022-11-28T00:55:15Z
not my work - all credit to original author!
thisisHJLee/wav2vec2-large-xls-r-1b-korean-sample2
thisisHJLee
2022-11-28T02:25:48Z
18
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-25T04:56:38Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-xls-r-1b-korean-sample2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-1b-korean-sample2 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1283 - Cer: 0.0294 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.3415 | 1.0 | 11471 | 0.2666 | 0.0750 | | 0.1997 | 2.0 | 22942 | 0.1617 | 0.0415 | | 0.1153 | 3.0 | 34413 | 0.1283 | 0.0294 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.13.0 - Datasets 2.6.1 - Tokenizers 0.11.0
minimaxir/midjourney_sd_2_0
minimaxir
2022-11-28T02:13:38Z
0
12
null
[ "license:mit", "region:us" ]
null
2022-11-28T02:04:00Z
--- license: mit --- ### Midjourney Style for Stable Diffusion 2.0 A textual inversion embedding for the `<midjourney>` token, adapted for Stable Diffusion 2.0 from [sd-concepts-library/midjourney-style](https://huggingface.co/sd-concepts-library/midjourney-style). It's recommended to use the following as an addition to a prompt: ```txt in the style of <midjourney> ```
huggingtweets/tarunchitra
huggingtweets
2022-11-28T02:11:02Z
115
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-28T02:09:42Z
--- language: en thumbnail: http://www.huggingtweets.com/tarunchitra/1669601459083/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1587539091444432897/Z6_nmrCB_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Tarun Chitra</div> <div style="text-align: center; font-size: 14px;">@tarunchitra</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Tarun Chitra. | Data | Tarun Chitra | | --- | --- | | Tweets downloaded | 3234 | | Retweets | 439 | | Short tweets | 362 | | Tweets kept | 2433 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2ex37piz/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @tarunchitra's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/12p1kbwc) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/12p1kbwc/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/tarunchitra') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
lewispons/large-email-classifier
lewispons
2022-11-28T01:56:52Z
2
1
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-11-26T22:47:23Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{lewispons/large-email-classifier}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 752 with parameters: ``` {'batch_size': 50, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 3, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 2256, "warmup_steps": 226, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
fanpu/final_model_output_subreddit-wallstreetbets_3
fanpu
2022-11-28T01:42:49Z
117
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-27T19:02:43Z
--- tags: - generated_from_trainer model-index: - name: final_model_output_subreddit-wallstreetbets_3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # final_model_output_subreddit-wallstreetbets_3 This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6824 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.2588 | 1.25 | 5000 | 3.6824 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1 - Tokenizers 0.13.2
erkanxyzalaca/turkishReviews-ds-mini
erkanxyzalaca
2022-11-28T01:38:07Z
61
0
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-11-27T22:00:36Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: turkishReviews-ds-mini results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # turkishReviews-ds-mini This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 8.3867 - Validation Loss: 8.3741 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 5e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': -765, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 10.2149 | 9.6891 | 0 | | 9.0695 | 8.7610 | 1 | | 8.3867 | 8.3741 | 2 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.10.1 - Datasets 2.7.1 - Tokenizers 0.13.2
ohrenn/lorepass
ohrenn
2022-11-28T00:28:39Z
0
0
null
[ "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2022-11-28T00:28:39Z
--- license: bigscience-bloom-rail-1.0 ---
Tara2301/PPO-LunarLander-v22
Tara2301
2022-11-27T23:31:17Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-11-27T22:02:04Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 253.24 +/- 19.64 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
wnordmann/klaus_weights
wnordmann
2022-11-27T23:23:06Z
0
0
null
[ "license:openrail", "region:us" ]
null
2022-11-27T18:39:46Z
--- license: openrail --- # Klaus the Cat This is trained on 30+ picture of my Cat Klaus. Klaus has Manx Syndrom which means he has no tail and limited feeling in his legs. He's a super cute yellow kitten my family loves ## Prompt `nord klaus`
jasoneden/BLOOM-560-QuestionAnswering-CDC-Covid19-Tuned
jasoneden
2022-11-27T23:16:23Z
48
1
transformers
[ "transformers", "pytorch", "bloom", "question-answering", "generated_from_trainer", "dataset:dataset", "license:bigscience-bloom-rail-1.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
question-answering
2022-11-24T04:56:03Z
--- license: bigscience-bloom-rail-1.0 tags: - generated_from_trainer datasets: - dataset model-index: - name: cdcmodel_train02 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # cdcmodel_train02 This model is a fine-tuned version of [bigscience/bloom-560m](https://huggingface.co/bigscience/bloom-560m) on the dataset dataset. Currently will not load. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 6 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.24.0.dev0 - Pytorch 1.12.1+cu102 - Datasets 2.6.1 - Tokenizers 0.13.1
Ueumol/Utapri_Style
Ueumol
2022-11-27T22:09:28Z
0
0
null
[ "region:us" ]
null
2022-11-27T21:19:16Z
Need to use prompt - Utapristyle
cmudrc/wave-energy-analysis
cmudrc
2022-11-27T22:08:42Z
12
1
tf-keras
[ "tf-keras", "mechanical-engineering", "simulation", "hydrodynamics", "en", "dataset:cmudrc/wave-energy", "license:mit", "region:us" ]
null
2022-11-27T04:33:25Z
--- license: mit language: en datasets: - cmudrc/wave-energy tags: - mechanical-engineering - simulation - hydrodynamics ---
cmudrc/wave-energy-synthesis
cmudrc
2022-11-27T21:30:39Z
3
1
tf-keras
[ "tf-keras", "en", "dataset:cmudrc/wave-energy", "license:mit", "region:us" ]
null
2022-11-27T04:33:15Z
--- license: mit language: en datasets: - cmudrc/wave-energy ---
ProGamerGov/Object-Taped-To-Wall-Diffusion-V1
ProGamerGov
2022-11-27T21:17:56Z
0
15
null
[ "stable-diffusion", "text-to-image", "dataset:ProGamerGov/StableDiffusion-v1-5-Regularization-Images", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2022-11-24T01:24:34Z
--- license: creativeml-openrail-m tags: - stable-diffusion - text-to-image datasets: - ProGamerGov/StableDiffusion-v1-5-Regularization-Images --- **Object-Taped-To-Wall-Diffusion** This fine-tuned Stable Diffusion v1.5 model was trained for 2000 iterations with a batch size of 4, on a selection of photos of things taped to a wall. Training was performed using [ShivamShrirao/diffusers](https://github.com/ShivamShrirao/diffusers) with full precision, prior-preservation loss, the train-text-encoder feature, and the new [1.5 MSE VAE from Stability AI](https://huggingface.co/stabilityai/sd-vae-ft-mse). A total of 2100 regularization / class images were used from [here](https://huggingface.co/datasets/ProGamerGov/StableDiffusion-v1-5-Regularization-Images). Regularization images were generated using the prompt "artwork style" with 50 DPM++ 2S a Karras steps and a CFG of 7, using the MSE VAE. A negative prompt of "text" was also used for this dataset. Use the tokens **ttw style** in your prompts for the effect. Note that the effect also appears to occur at a much weaker strength on prompts that steer the output towards specific artistic styles. This model will likely not perform well on taping objects that are not traditionally able to be taped to walls. <div align="center"> <img src="https://huggingface.co/ProGamerGov/Object-Taped-To-Wall-Diffusion-V1/resolve/main/v1_size_512x512_t4x8.png"> </div> * [Full Image](https://huggingface.co/ProGamerGov/Object-Taped-To-Wall-Diffusion-V1/resolve/main/v1_size_512x512_t4x8.png) Example images were generated with the v1 2000 iteration model using DPM++ 2S a Karras: ``` ttw style, <object> taped to wall ``` This model was inspired by the 2019 art piece [*Comedian* by Italian artist Maurizio Cattelan](https://en.wikipedia.org/wiki/Comedian_(artwork\)), where a banana was duct taped to a wall.
Davimartins/Farias123
Davimartins
2022-11-27T20:50:51Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2022-11-27T20:50:50Z
--- license: bigscience-openrail-m ---