modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-06-23 12:29:03
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
492 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-06-23 12:24:08
card
stringlengths
11
1.01M
emmanuel17/LunarLander12
emmanuel17
2022-12-07T20:43:20Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-07T20:42:54Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 253.50 +/- 21.93 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Sulroy/PPO-LunarLander-v2
Sulroy
2022-12-07T20:34:58Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-07T17:30:38Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 289.23 +/- 20.16 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
GIanlucaRub/whisper-tiny-it-7
GIanlucaRub
2022-12-07T20:34:20Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "it", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-07T10:55:46Z
--- language: - it license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Tiny it 7 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: it split: test[:10%] args: 'config: it, split: test' metrics: - name: Wer type: wer value: 97.56655574043262) --- # Whisper Tiny it 7 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 2.137834 - Wer: 97.566556 ## Model description This model is the openai whisper small transformer adapted for Italian audio to text transcription. As part of the hyperparameter tuning process weight decay set to 0.1, attention dropout, encoder dropout and decoder dropout have been set to 0.1, the learning rate has been set to 1e-6, the number of decoder attention heads and encoder attention heads have been set to 8 however, it did not improved the performance on the evaluation set. ## Intended uses & limitations The model is available through its [HuggingFace web app](https://huggingface.co/spaces/GIanlucaRub/whisper-it) ## Training and evaluation data Data used for training is the initial 10% of train and validation of [Italian Common Voice](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0/viewer/it/train) 11.0 from Mozilla Foundation. The dataset used for evaluation is the initial 10% of test of Italian Common Voice. ## Training procedure After loading the pre trained model, it has been trained on the dataset. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 1.7353 | 3.82 | 4000 | 2.1378 | 97.5666 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
farsipal/whisper-small-el
farsipal
2022-12-07T20:27:27Z
37
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "el", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-05T01:46:32Z
--- language: - el license: apache-2.0 tags: - whisper-event datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: whisper-small-el results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 el type: mozilla-foundation/common_voice_11_0 config: el split: test args: el metrics: - name: Wer type: wer value: 25.696508172362552 --- # Whisper Small - Greek (el) This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_11_0 el dataset for transcription in Greek. It achieves the following results on the evaluation set: - train_loss: 0.0615 - Wer: 20.2080 ### Training results Upon completion of training the best model was reloaded and tested with the following results extracted from the stdout log: ``` Loading best model from ./whisper-small-el/checkpoint-5000 (score: 20.208023774145616). {'train_runtime': 73232.697, 'train_samples_per_second': 4.37, 'train_steps_per_second': 0.068, 'train_loss': 0.06146362095708027, 'epoch': 94.34} TrainOutput(global_step=5000, training_loss=0.06146362095708027, metrics={'train_runtime': 73232.697, 'train_samples_per_second': 4.37, 'train_steps_per_second': 0.068, 'train_loss': 0.06146362095708027, 'epoch': 94.34}) ``` ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0 - Datasets 2.7.1.dev0 - Tokenizers 0.12.1
graphcore-rahult/gpt2-wikitext2
graphcore-rahult
2022-12-07T20:23:05Z
4
0
transformers
[ "transformers", "pytorch", "optimum_graphcore", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-29T19:12:50Z
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-wikitext2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.0977 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: IPU - gradient_accumulation_steps: 64 - total_train_batch_size: 128 - total_eval_batch_size: 5 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - training precision: Mixed Precision ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.10.0+cpu - Datasets 2.7.1 - Tokenizers 0.12.1
ursus/sd-class-butterflies-32
ursus
2022-12-07T20:13:44Z
2
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-12-07T20:13:15Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class ๐Ÿงจ](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute ๐Ÿฆ‹. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('ursus/sd-class-butterflies-32') image = pipeline().images[0] image ```
Jaster111/ppo-LunarLander-v2
Jaster111
2022-12-07T19:53:30Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-07T19:53:02Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 254.25 +/- 36.89 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
kushal256/ppo-LunarLander-v2
kushal256
2022-12-07T19:44:19Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-07T18:43:43Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 278.25 +/- 15.47 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
graphcore-rahult/vit-base-patch16-224-in21k-finetuned-eurosat
graphcore-rahult
2022-12-07T19:33:53Z
7
0
transformers
[ "transformers", "pytorch", "optimum_graphcore", "vit", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-11-29T20:25:38Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-base-patch16-224-in21k-finetuned-eurosat results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-in21k-finetuned-eurosat This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0581 - Accuracy: 0.9904 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: IPU - gradient_accumulation_steps: 32 - total_train_batch_size: 32 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 - training precision: Mixed Precision ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0804 | 1.0 | 759 | 0.1383 | 0.9741 | | 0.0385 | 2.0 | 1518 | 0.0756 | 0.9859 | | 0.1211 | 3.0 | 2277 | 0.0581 | 0.9904 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.10.0+cpu - Datasets 2.7.1 - Tokenizers 0.12.1
graphcore-rahult/roberta-base-finetuned-cola
graphcore-rahult
2022-12-07T19:31:26Z
9
0
transformers
[ "transformers", "pytorch", "optimum_graphcore", "roberta", "text-classification", "generated_from_trainer", "dataset:glue", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-29T16:50:02Z
--- license: mit tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: roberta-base-finetuned-cola results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-cola This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.5776 - Matthews Correlation: 0.6121 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: IPU - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - total_eval_batch_size: 5 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - training precision: Mixed Precision ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5149 | 1.0 | 534 | 0.4097 | 0.5753 | | 0.3749 | 2.0 | 1068 | 0.4736 | 0.5927 | | 0.1327 | 3.0 | 1602 | 0.4639 | 0.5969 | | 0.2031 | 4.0 | 2136 | 0.5474 | 0.5696 | | 0.1133 | 5.0 | 2670 | 0.5776 | 0.6121 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.10.0+cpu - Datasets 2.7.1 - Tokenizers 0.12.1
alighasemi/fa-t5-base
alighasemi
2022-12-07T19:29:59Z
14
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "farsi/persian", "fa", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-12-06T21:37:20Z
--- language: ["fa", "en"] tags: - farsi/persian --- This is a smaller version of the [google/mt5-base](https://huggingface.co/google/mt5-base) model with only Farsi and some English embeddings left. * The original model has 582M parameters, with 384M of them being input and output embeddings. * After shrinking the `sentencepiece` vocabulary from 250K to 30K (top 10K English and top 20K Russian tokens) the number of model parameters was reduced to 244M parameters, and the model size was reduced from 2.2GB to 0.9GB - 42% of the original one. The creation of this model is described in the post [How to adapt a multilingual T5 model for a single language](https://cointegrated.medium.com/how-to-adapt-a-multilingual-t5-model-for-a-single-language-b9f94f3d9c90) along with the source code.
daripaez/ppo-Huggy
daripaez
2022-12-07T19:25:59Z
23
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2022-12-07T19:25:51Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: daripaez/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
wmingch/distilbert-base-uncased-finetuned-emotion
wmingch
2022-12-07T19:16:28Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-07T18:49:11Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.925 - name: F1 type: f1 value: 0.9249684190735334 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2174 - Accuracy: 0.925 - F1: 0.9250 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8164 | 1.0 | 250 | 0.3181 | 0.9015 | 0.8984 | | 0.2434 | 2.0 | 500 | 0.2174 | 0.925 | 0.9250 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
Gnanesh5/SEF
Gnanesh5
2022-12-07T18:53:01Z
3
0
transformers
[ "transformers", "pytorch", "xlnet", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-04T23:00:34Z
--- license: mit tags: - generated_from_trainer model-index: - name: SEF results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SEF This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
Santi20/LunarLander-v2
Santi20
2022-12-07T18:47:53Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-07T18:47:30Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 256.32 +/- 19.14 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Chemsseddine/bert2gpt2SUMM
Chemsseddine
2022-12-07T18:43:18Z
6
0
transformers
[ "transformers", "pytorch", "encoder-decoder", "text2text-generation", "fr", "dataset:Chemsseddine/autotrain-data-bertSummGpt2", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-14T00:34:06Z
--- language: fr widget: - text: "Your text here" datasets: - Chemsseddine/autotrain-data-bertSummGpt2 co2_eq_emissions: 0.10685501288084795 --- <img src="https://huggingface.co/Chemsseddine/bert2gpt2_med_ml_orange_summ-finetuned_med_sum_new-finetuned_med_sum_new/resolve/main/logobert2gpt2.png" alt="Map of positive probabilities per country." width="200"/> ## This model is used for french summarization - Problem type: Summarization - Model ID: 980832493 - CO2 Emissions (in grams): 0.10685501288084795 ## Validation Metrics - Loss: 4.03749418258667 - Rouge1: 28.8384 - Rouge2: 10.7511 - RougeL: 27.0842 - RougeLsum: 27.5118 - Gen Len: 22.0625 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/Chemsseddine/autotrain-bertSummGpt2-980832493 ```
Gnanesh5/SFF
Gnanesh5
2022-12-07T18:37:49Z
4
0
transformers
[ "transformers", "pytorch", "xlnet", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-04T22:43:46Z
--- license: mit tags: - generated_from_trainer model-index: - name: SFF results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SFF This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
Gnanesh5/SAF
Gnanesh5
2022-12-07T18:22:17Z
3
0
transformers
[ "transformers", "pytorch", "xlnet", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-04T22:36:47Z
--- license: mit tags: - generated_from_trainer model-index: - name: SAF results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SAF This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
hhsavich/accent_determinator
hhsavich
2022-12-07T18:17:59Z
4
2
transformers
[ "transformers", "pytorch", "wav2vec2", "audio-classification", "endpoints_compatible", "region:us" ]
audio-classification
2022-12-07T17:17:22Z
# Model Card for LatAm Accent Determination Wav2Vec2 Model to classify audio based on the accent of the speaker as Puerto Rican, Colombian, Venezuelan, Peruvian, or Chilean # Table of Contents - [Model Card for LatAm Accent Determination](#model-card-for--model_id-) - [Table of Contents](#table-of-contents) - [Model Details](#model-details) - [Model Description](#model-description) - [Uses](#uses) - [Direct Use](#direct-use) - [Out-of-Scope Use](#out-of-scope-use) - [Bias, Risks, and Limitations](#bias-risks-and-limitations) - [Training Details](#training-details) - [Training Data](#training-data) - [Training Procedure](#training-procedure) - [Preprocessing](#preprocessing) - [Speeds, Sizes, Times](#speeds-sizes-times) - [Evaluation](#evaluation) - [Testing Data, Factors & Metrics](#testing-data-factors--metrics) - [Testing Data](#testing-data) - [Factors](#factors) - [Metrics](#metrics) - [Results](#results) - [Model Examination](#model-examination) - [Technical Specs](#technical-specifications) - [Model Architecture and Objective](#model-architecture-and-objective) - [Compute Infrastructure](#compute-infrastructure) - [Hardware](#hardware) - [Software](#software) - [Citation](#citation) - [Model Card Authors](#model-card-authors) - [Model Card Contact](#model-card-contact) - [How to Get Started with the Model](#how-to-get-started-with-the-model) # Model Details ## Model Description Wav2Vec2 Model to classify audio based on the accent of the speaker as Puerto Rican, Colombian, Venezuelan, Peruvian, or Chilean - **Developed by:** Henry Savich - **Shared by [Optional]:** Henry Savich - **Model type:** Language model - **Language(s) (NLP):** es - **License:** openrail - **Parent Model:** Wav2Vec2 Base - **Resources for more information:** - [GitHub Repo](https://github.com/HSavich/dialect_discrimination) # Uses ## Direct Use Classify an audio clip as Puerto Rican, Peruvian, Venezuelan, Colombian, or Chilean Spanish ## Out-of-Scope Use The model was trained on speakers reciting pre-chosen sentences, thus it does not reflect any knowledge of lexical differences between dialects. # Bias, Risks, and Limitations Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups. # Training Details ## Training Data OpenSLR 71,72,73,74,75,76 ## Training Procedure ### Preprocessing Data was Train-Test split on speakers, so as to prevent the model from achieving high test accuracy by matching voices. ### Speeds, Sizes, Times Trained on ~3000 5-second audio clips, Training is lightwegiht taking &lt; 1 hr on using Google Colaboratory Premium GPUs # Evaluation ## Testing Data, Factors & Metrics ### Testing Data OpenSLR 71,72,73,74,75,76 https://huggingface.co/datasets/openslr ### Factors Audio Quality - training and testing data was higher quality than can be expected from found audio ### Metrics Accuracy ## Results ~85% depending on random train-test split # Model Examination Even splitting on speakers, our model achieves excellent accuracy on the testing set. This is interesting because it indicates that accent classification, at least at this granularity, is an easier task than voice identification, which could have just as easily met the training objective. The confusion matrix shows that Basque is the most easily distinguished, which should be expecting as it is the only language that isn&#39;t Spanish. Puerto Rican was the hardest to identify in the testing set, but I think this is more having to do with PR having the least data moreso than something about the accent itself. I think if this same size of dataset was used for this same experiment, but there were more speakers (and so not as much fitting on individual voices), we could expect near perfect accuracy. # Technical Specifications ## Model Architecture and Objective Wav2Vec2 ## Compute Infrastructure Google Colaboratory Pro+ ### Hardware Google Colaboratory Pro+ Premium GPUS ### Software Pytorch via huggingface # Model Card Authors Henry Savich # Model Card Contact [email protected]
abesmon/LunarLander-v2
abesmon
2022-12-07T18:09:46Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-07T18:09:19Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 271.78 +/- 37.66 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Alexao/whisper-tiny-swe
Alexao
2022-12-07T17:48:06Z
5
0
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "swe", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-07T17:45:23Z
--- language: - swe license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 model-index: - name: Whisper Tiny swe - Swedish results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Tiny swe - Swedish This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Common Voice 11.0 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
magleb/ppo-LunarLander-v2-3.1mil
magleb
2022-12-07T17:42:00Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-07T17:41:39Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 276.37 +/- 16.72 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
reaverlee/xlm-roberta-base-finetuned-panx-all
reaverlee
2022-12-07T17:29:54Z
6
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-12-07T17:13:07Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-all results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-all This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1750 - F1: 0.8532 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2999 | 1.0 | 835 | 0.1961 | 0.8018 | | 0.1565 | 2.0 | 1670 | 0.1772 | 0.8465 | | 0.0998 | 3.0 | 2505 | 0.1750 | 0.8532 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.10.0 - Datasets 2.7.1 - Tokenizers 0.12.1
Alexao/whisper-tiny-hi
Alexao
2022-12-07T17:22:07Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "swe", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-07T13:28:29Z
--- language: - swe license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 model-index: - name: Whisper Tiny Hi - Swedish results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Tiny Hi - Swedish This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Common Voice 11.0 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - training_steps: 40 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
TUMxudashuai/testpyramidsrnd
TUMxudashuai
2022-12-07T17:20:26Z
2
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2022-12-07T17:20:19Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: TUMxudashuai/testpyramidsrnd 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
kennethgoodman/ppo-Taxi-v3
kennethgoodman
2022-12-07T17:08:52Z
4
0
stable-baselines3
[ "stable-baselines3", "Taxi-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-07T17:08:41Z
--- library_name: stable-baselines3 tags: - Taxi-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: -200.00 +/- 0.00 name: mean_reward verified: false --- # **PPO** Agent playing **Taxi-v3** This is a trained model of a **PPO** agent playing **Taxi-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
bayartsogt/whisper-small-mn-2
bayartsogt
2022-12-07T17:07:09Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "hf-asr-leaderboard", "generated_from_trainer", "dataset:mozilla-foundation/common_voice_11_0", "dataset:google/fleurs", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-05T04:01:43Z
--- license: apache-2.0 tags: - whisper-event - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 - google/fleurs metrics: - wer model-index: - name: whisper-small-mn-2-bayartsogt results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: mn split: test args: language: mn metrics: - name: Wer type: wer value: 40.87830456630981 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-small-mn-2 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7259 - Wer: 40.8783 - Cer: 13.9617 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 15000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 0.0839 | 4.26 | 1000 | 0.4647 | 45.7286 | 16.0020 | | 0.0093 | 8.51 | 2000 | 0.5434 | 43.9753 | 15.2446 | | 0.0044 | 12.77 | 3000 | 0.6009 | 43.6257 | 15.1717 | | 0.0029 | 17.02 | 4000 | 0.6166 | 43.0031 | 14.7578 | | 0.002 | 21.28 | 5000 | 0.6390 | 42.6098 | 14.7286 | | 0.001 | 25.53 | 6000 | 0.6558 | 41.7468 | 14.3516 | | 0.0021 | 29.79 | 7000 | 0.6714 | 42.3039 | 14.4589 | | 0.0003 | 34.04 | 8000 | 0.6791 | 41.0586 | 13.9506 | | 0.0001 | 38.3 | 9000 | 0.6949 | 41.3808 | 14.1670 | | 0.0013 | 42.55 | 10000 | 0.6875 | 41.4682 | 14.2983 | | 0.0001 | 46.81 | 11000 | 0.6937 | 40.9165 | 13.9549 | | 0.0001 | 51.06 | 12000 | 0.7092 | 40.9275 | 13.9549 | | 0.0 | 55.32 | 13000 | 0.7190 | 40.9657 | 13.9703 | | 0.0 | 59.57 | 14000 | 0.7259 | 40.8783 | 13.9617 | | 0.0 | 63.83 | 15000 | 0.7292 | 40.8838 | 13.9274 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
bayartsogt/whisper-medium-mn-4
bayartsogt
2022-12-07T17:06:08Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "hf-asr-leaderboard", "generated_from_trainer", "dataset:mozilla-foundation/common_voice_11_0", "dataset:google/fleurs", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-05T14:32:16Z
--- license: apache-2.0 tags: - whisper-event - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 - google/fleurs metrics: - wer model-index: - name: whisper-medium-mn-4-bayartsogt results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: mn split: test args: language: mn metrics: - name: Wer type: wer value: 33.029276818876994 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-medium-mn-4 This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6015 - Wer: 33.0293 - Cer: 10.9236 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 15000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 0.0362 | 4.26 | 1000 | 0.4204 | 40.2720 | 13.8389 | | 0.0087 | 8.51 | 2000 | 0.4712 | 37.4918 | 12.9175 | | 0.0044 | 12.77 | 3000 | 0.4893 | 36.3393 | 12.4727 | | 0.0033 | 17.02 | 4000 | 0.5159 | 35.8423 | 12.2933 | | 0.0017 | 21.28 | 5000 | 0.5183 | 35.2797 | 12.1104 | | 0.0016 | 25.53 | 6000 | 0.5422 | 35.4326 | 11.7454 | | 0.0011 | 29.79 | 7000 | 0.5361 | 34.5314 | 11.5196 | | 0.0004 | 34.04 | 8000 | 0.5406 | 34.0998 | 11.3650 | | 0.0006 | 38.3 | 9000 | 0.5540 | 33.8650 | 11.2912 | | 0.0002 | 42.55 | 10000 | 0.5748 | 34.0889 | 11.5333 | | 0.0003 | 46.81 | 11000 | 0.5771 | 34.5641 | 11.4895 | | 0.0 | 51.06 | 12000 | 0.5809 | 33.4335 | 11.2070 | | 0.0 | 55.32 | 13000 | 0.5941 | 33.2095 | 11.0009 | | 0.0 | 59.57 | 14000 | 0.6015 | 33.0293 | 10.9236 | | 0.0 | 63.83 | 15000 | 0.6045 | 33.0347 | 10.9125 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
bayartsogt/whisper-small-mn-3
bayartsogt
2022-12-07T17:05:33Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "hf-asr-leaderboard", "generated_from_trainer", "dataset:mozilla-foundation/common_voice_11_0", "dataset:google/fleurs", "dataset:bayartsogt/ulaanbal-v0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-06T06:21:22Z
--- license: apache-2.0 tags: - whisper-event - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 - google/fleurs - bayartsogt/ulaanbal-v0 metrics: - wer model-index: - name: whisper-small-mn-3-bayartsogt results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: mn split: test args: language: mn metrics: - name: Wer type: wer value: 30.36923749180686 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-small-mn-3 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3277 - Wer: 30.3692 - Cer: 10.9030 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 15000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 0.3408 | 0.61 | 1000 | 0.4062 | 47.6841 | 17.3811 | | 0.2261 | 1.22 | 2000 | 0.3262 | 37.8086 | 13.6466 | | 0.2135 | 1.83 | 3000 | 0.2863 | 33.7175 | 12.2246 | | 0.1643 | 2.43 | 4000 | 0.2803 | 32.5978 | 11.4526 | | 0.1198 | 3.04 | 5000 | 0.2747 | 31.1121 | 11.0533 | | 0.1279 | 3.65 | 6000 | 0.2757 | 30.7243 | 10.8927 | | 0.0891 | 4.26 | 7000 | 0.2878 | 30.9209 | 11.0610 | | 0.0899 | 4.87 | 8000 | 0.2906 | 30.6642 | 11.0799 | | 0.0648 | 5.48 | 9000 | 0.3054 | 30.5986 | 10.9030 | | 0.0436 | 6.09 | 10000 | 0.3184 | 30.5222 | 10.9434 | | 0.0468 | 6.7 | 11000 | 0.3277 | 30.3692 | 10.9030 | | 0.0291 | 7.3 | 12000 | 0.3411 | 30.9810 | 11.1572 | | 0.0275 | 7.91 | 13000 | 0.3476 | 31.0684 | 11.1555 | | 0.0196 | 8.52 | 14000 | 0.3572 | 30.9154 | 11.1065 | | 0.0159 | 9.13 | 15000 | 0.3600 | 31.0356 | 11.2087 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
rchan26/dit_base_binary_task
rchan26
2022-12-07T16:59:18Z
28
0
transformers
[ "transformers", "pytorch", "beit", "image-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-12-07T16:55:55Z
--- tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: dit_base_binary_task results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dit_base_binary_task This model is a fine-tuned version of [microsoft/dit-base](https://huggingface.co/microsoft/dit-base) on the davanstrien/leicester_loaded_annotations_binary dataset. It achieves the following results on the evaluation set: - Loss: 0.0513 - Accuracy: 0.9873 - F1: 0.9600 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 0.87 | 5 | 0.6816 | 0.5 | 0.2476 | | 0.7387 | 1.87 | 10 | 0.5142 | 0.8354 | 0.0 | | 0.7387 | 2.87 | 15 | 0.4690 | 0.8354 | 0.0 | | 0.4219 | 3.87 | 20 | 0.5460 | 0.8354 | 0.0 | | 0.4219 | 4.87 | 25 | 0.4703 | 0.8354 | 0.0 | | 0.3734 | 5.87 | 30 | 0.4371 | 0.8354 | 0.0 | | 0.3734 | 6.87 | 35 | 0.4147 | 0.8354 | 0.0 | | 0.3261 | 7.87 | 40 | 0.4272 | 0.8354 | 0.0 | | 0.3261 | 8.87 | 45 | 0.4038 | 0.8354 | 0.0 | | 0.3078 | 9.87 | 50 | 0.3418 | 0.8354 | 0.0 | | 0.3078 | 10.87 | 55 | 0.3042 | 0.8354 | 0.0 | | 0.2501 | 11.87 | 60 | 0.2799 | 0.8354 | 0.0 | | 0.2501 | 12.87 | 65 | 0.1419 | 0.9367 | 0.7619 | | 0.1987 | 13.87 | 70 | 0.1224 | 0.9494 | 0.8182 | | 0.1987 | 14.87 | 75 | 0.0749 | 0.9747 | 0.9167 | | 0.1391 | 15.87 | 80 | 0.0539 | 0.9810 | 0.9412 | | 0.1391 | 16.87 | 85 | 0.0830 | 0.9873 | 0.9600 | | 0.1085 | 17.87 | 90 | 0.0443 | 0.9873 | 0.9600 | | 0.1085 | 18.87 | 95 | 0.0258 | 0.9937 | 0.9804 | | 0.1039 | 19.87 | 100 | 0.1025 | 0.9684 | 0.8936 | | 0.1039 | 20.87 | 105 | 0.1597 | 0.9684 | 0.8936 | | 0.1217 | 21.87 | 110 | 0.0278 | 0.9937 | 0.9811 | | 0.1217 | 22.87 | 115 | 0.0458 | 0.9873 | 0.9600 | | 0.0609 | 23.87 | 120 | 0.0478 | 0.9937 | 0.9804 | | 0.0609 | 24.87 | 125 | 0.0671 | 0.9747 | 0.9231 | | 0.1031 | 25.87 | 130 | 0.0751 | 0.9873 | 0.9600 | | 0.1031 | 26.87 | 135 | 0.1963 | 0.9557 | 0.8444 | | 0.0601 | 27.87 | 140 | 0.0870 | 0.9747 | 0.9167 | | 0.0601 | 28.87 | 145 | 0.0890 | 0.9747 | 0.9167 | | 0.0799 | 29.87 | 150 | 0.1017 | 0.9747 | 0.9167 | | 0.0799 | 30.87 | 155 | 0.0041 | 1.0 | 1.0 | | 0.0441 | 31.87 | 160 | 0.0332 | 0.9873 | 0.9615 | | 0.0441 | 32.87 | 165 | 0.0839 | 0.9747 | 0.9167 | | 0.0757 | 33.87 | 170 | 0.0722 | 0.9873 | 0.9600 | | 0.0757 | 34.87 | 175 | 0.0168 | 0.9937 | 0.9804 | | 0.0555 | 35.87 | 180 | 0.0443 | 0.9937 | 0.9804 | | 0.0555 | 36.87 | 185 | 0.0227 | 0.9873 | 0.9615 | | 0.0336 | 37.87 | 190 | 0.0128 | 0.9937 | 0.9804 | | 0.0336 | 38.87 | 195 | 0.0169 | 0.9937 | 0.9811 | | 0.0405 | 39.87 | 200 | 0.0193 | 0.9937 | 0.9804 | | 0.0405 | 40.87 | 205 | 0.1216 | 0.9810 | 0.9388 | | 0.0578 | 41.87 | 210 | 0.0307 | 0.9937 | 0.9804 | | 0.0578 | 42.87 | 215 | 0.0539 | 0.9873 | 0.9600 | | 0.0338 | 43.87 | 220 | 0.0573 | 0.9937 | 0.9804 | | 0.0338 | 44.87 | 225 | 0.0086 | 1.0 | 1.0 | | 0.0417 | 45.87 | 230 | 0.0491 | 0.9873 | 0.9600 | | 0.0417 | 46.87 | 235 | 0.0089 | 1.0 | 1.0 | | 0.0538 | 47.87 | 240 | 0.0846 | 0.9810 | 0.9388 | | 0.0538 | 48.87 | 245 | 0.0452 | 0.9810 | 0.9388 | | 0.0364 | 49.87 | 250 | 0.0513 | 0.9873 | 0.9600 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1 - Datasets 2.7.1 - Tokenizers 0.13.1
reaverlee/xlm-roberta-base-finetuned-panx-it
reaverlee
2022-12-07T16:59:17Z
7
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-12-07T16:45:39Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-it results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.it split: train args: PAN-X.it metrics: - name: F1 type: f1 value: 0.8286066584463625 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-it This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2514 - F1: 0.8286 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.8346 | 1.0 | 70 | 0.3343 | 0.7262 | | 0.308 | 2.0 | 140 | 0.2860 | 0.7951 | | 0.1967 | 3.0 | 210 | 0.2514 | 0.8286 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.10.0 - Datasets 2.7.1 - Tokenizers 0.12.1
gemasphi/real-setfit-ss-distiluse-base-multilingual-cased-v1
gemasphi
2022-12-07T16:58:59Z
5
0
sentence-transformers
[ "sentence-transformers", "pytorch", "distilbert", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-12-07T16:58:41Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 512 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 650 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 650, "warmup_steps": 65, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Dense({'in_features': 768, 'out_features': 512, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
npayaresc/lilt-en-funsd
npayaresc
2022-12-07T16:58:48Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "lilt", "token-classification", "generated_from_trainer", "dataset:funsd-layoutlmv3", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-12-07T15:27:38Z
--- license: mit tags: - generated_from_trainer datasets: - funsd-layoutlmv3 model-index: - name: lilt-en-funsd results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lilt-en-funsd This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on the funsd-layoutlmv3 dataset. It achieves the following results on the evaluation set: - Loss: 1.7699 - Answer: {'precision': 0.8906439854191981, 'recall': 0.8971848225214198, 'f1': 0.8939024390243904, 'number': 817} - Header: {'precision': 0.6274509803921569, 'recall': 0.5378151260504201, 'f1': 0.579185520361991, 'number': 119} - Question: {'precision': 0.8778359511343804, 'recall': 0.9340761374187558, 'f1': 0.9050832208726944, 'number': 1077} - Overall Precision: 0.8706 - Overall Recall: 0.8957 - Overall F1: 0.8830 - Overall Accuracy: 0.7973 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 2500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:| | 0.4312 | 10.53 | 200 | 0.9853 | {'precision': 0.8581818181818182, 'recall': 0.8665850673194615, 'f1': 0.8623629719853837, 'number': 817} | {'precision': 0.5625, 'recall': 0.5294117647058824, 'f1': 0.5454545454545455, 'number': 119} | {'precision': 0.8788706739526412, 'recall': 0.8960074280408542, 'f1': 0.8873563218390804, 'number': 1077} | 0.8531 | 0.8624 | 0.8577 | 0.8172 | | 0.0478 | 21.05 | 400 | 1.2825 | {'precision': 0.8571428571428571, 'recall': 0.9033047735618115, 'f1': 0.8796185935637664, 'number': 817} | {'precision': 0.5136986301369864, 'recall': 0.6302521008403361, 'f1': 0.5660377358490567, 'number': 119} | {'precision': 0.8739650413983441, 'recall': 0.8820798514391829, 'f1': 0.878003696857671, 'number': 1077} | 0.8419 | 0.8758 | 0.8585 | 0.8026 | | 0.0127 | 31.58 | 600 | 1.4791 | {'precision': 0.8568075117370892, 'recall': 0.8935128518971848, 'f1': 0.8747753145596165, 'number': 817} | {'precision': 0.5779816513761468, 'recall': 0.5294117647058824, 'f1': 0.5526315789473684, 'number': 119} | {'precision': 0.8909426987060998, 'recall': 0.8950789229340761, 'f1': 0.8930060213061601, 'number': 1077} | 0.8600 | 0.8728 | 0.8664 | 0.7957 | | 0.0073 | 42.11 | 800 | 1.3846 | {'precision': 0.8853046594982079, 'recall': 0.9069767441860465, 'f1': 0.8960096735187424, 'number': 817} | {'precision': 0.5333333333333333, 'recall': 0.6050420168067226, 'f1': 0.5669291338582677, 'number': 119} | {'precision': 0.8932584269662921, 'recall': 0.8857938718662952, 'f1': 0.8895104895104896, 'number': 1077} | 0.8662 | 0.8778 | 0.8719 | 0.8142 | | 0.0023 | 52.63 | 1000 | 1.5955 | {'precision': 0.8430034129692833, 'recall': 0.9069767441860465, 'f1': 0.8738207547169811, 'number': 817} | {'precision': 0.6190476190476191, 'recall': 0.5462184873949579, 'f1': 0.5803571428571429, 'number': 119} | {'precision': 0.8935574229691877, 'recall': 0.8885793871866295, 'f1': 0.8910614525139665, 'number': 1077} | 0.8579 | 0.8758 | 0.8668 | 0.7992 | | 0.0023 | 63.16 | 1200 | 1.6214 | {'precision': 0.8955773955773956, 'recall': 0.8922888616891065, 'f1': 0.8939301042305334, 'number': 817} | {'precision': 0.5882352941176471, 'recall': 0.5882352941176471, 'f1': 0.5882352941176471, 'number': 119} | {'precision': 0.8841354723707665, 'recall': 0.9210770659238626, 'f1': 0.9022282855843565, 'number': 1077} | 0.8715 | 0.8897 | 0.8805 | 0.8057 | | 0.0016 | 73.68 | 1400 | 1.8002 | {'precision': 0.8732394366197183, 'recall': 0.9106487148102815, 'f1': 0.8915518274415818, 'number': 817} | {'precision': 0.5765765765765766, 'recall': 0.5378151260504201, 'f1': 0.5565217391304348, 'number': 119} | {'precision': 0.8892921960072595, 'recall': 0.9099350046425255, 'f1': 0.8994951812758146, 'number': 1077} | 0.8659 | 0.8882 | 0.8769 | 0.7860 | | 0.0013 | 84.21 | 1600 | 1.7699 | {'precision': 0.8906439854191981, 'recall': 0.8971848225214198, 'f1': 0.8939024390243904, 'number': 817} | {'precision': 0.6274509803921569, 'recall': 0.5378151260504201, 'f1': 0.579185520361991, 'number': 119} | {'precision': 0.8778359511343804, 'recall': 0.9340761374187558, 'f1': 0.9050832208726944, 'number': 1077} | 0.8706 | 0.8957 | 0.8830 | 0.7973 | | 0.0008 | 94.74 | 1800 | 1.7824 | {'precision': 0.8733572281959379, 'recall': 0.8947368421052632, 'f1': 0.8839177750906893, 'number': 817} | {'precision': 0.616822429906542, 'recall': 0.5546218487394958, 'f1': 0.5840707964601769, 'number': 119} | {'precision': 0.8901996370235935, 'recall': 0.9108635097493036, 'f1': 0.9004130335016063, 'number': 1077} | 0.8690 | 0.8833 | 0.8761 | 0.8019 | | 0.0005 | 105.26 | 2000 | 1.7894 | {'precision': 0.872791519434629, 'recall': 0.9069767441860465, 'f1': 0.8895558223289316, 'number': 817} | {'precision': 0.6036036036036037, 'recall': 0.5630252100840336, 'f1': 0.582608695652174, 'number': 119} | {'precision': 0.8931506849315068, 'recall': 0.9080779944289693, 'f1': 0.9005524861878452, 'number': 1077} | 0.8691 | 0.8872 | 0.8781 | 0.7940 | | 0.0002 | 115.79 | 2200 | 1.8409 | {'precision': 0.8665893271461717, 'recall': 0.9143206854345165, 'f1': 0.8898153662894581, 'number': 817} | {'precision': 0.6296296296296297, 'recall': 0.5714285714285714, 'f1': 0.5991189427312775, 'number': 119} | {'precision': 0.8978644382544104, 'recall': 0.8978644382544104, 'f1': 0.8978644382544104, 'number': 1077} | 0.8705 | 0.8852 | 0.8778 | 0.7982 | | 0.0002 | 126.32 | 2400 | 1.8311 | {'precision': 0.8709302325581395, 'recall': 0.9167686658506732, 'f1': 0.8932617769827073, 'number': 817} | {'precision': 0.6018518518518519, 'recall': 0.5462184873949579, 'f1': 0.5726872246696034, 'number': 119} | {'precision': 0.893953488372093, 'recall': 0.8922934076137419, 'f1': 0.8931226765799257, 'number': 1077} | 0.8688 | 0.8818 | 0.8752 | 0.7988 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1 - Datasets 2.7.1 - Tokenizers 0.13.2
kennethgoodman/ppo-FrozenLake-v1
kennethgoodman
2022-12-07T16:53:08Z
3
0
stable-baselines3
[ "stable-baselines3", "FrozenLake-v1", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-07T16:06:25Z
--- library_name: stable-baselines3 tags: - FrozenLake-v1 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1 type: FrozenLake-v1 metrics: - type: mean_reward value: 0.20 +/- 0.40 name: mean_reward verified: false --- # **PPO** Agent playing **FrozenLake-v1** This is a trained model of a **PPO** agent playing **FrozenLake-v1** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
reaverlee/xlm-roberta-base-finetuned-panx-fr
reaverlee
2022-12-07T16:45:28Z
8
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-12-07T16:31:26Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-fr results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.fr split: train args: PAN-X.fr metrics: - name: F1 type: f1 value: 0.8350428787624012 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2761 - F1: 0.8350 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.5826 | 1.0 | 191 | 0.3409 | 0.7713 | | 0.2674 | 2.0 | 382 | 0.2889 | 0.8314 | | 0.1738 | 3.0 | 573 | 0.2761 | 0.8350 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.10.0 - Datasets 2.7.1 - Tokenizers 0.12.1
enniorampello/whisper-small-hi
enniorampello
2022-12-07T16:42:22Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "hi", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-03T15:58:00Z
--- language: - hi license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Hi - Swedish results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 split: None args: 'config: hi, split: test' metrics: - name: Wer type: wer value: 19.647226479524615 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Hi - Swedish This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3953 - Wer: 19.6472 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.1331 | 1.29 | 1000 | 0.3014 | 22.3602 | | 0.0537 | 2.59 | 2000 | 0.2988 | 20.8572 | | 0.0217 | 3.88 | 3000 | 0.3093 | 20.5641 | | 0.004 | 5.17 | 4000 | 0.3551 | 20.0479 | | 0.0015 | 6.47 | 5000 | 0.3701 | 20.0022 | | 0.0015 | 7.76 | 6000 | 0.3769 | 19.7386 | | 0.0007 | 9.06 | 7000 | 0.3908 | 19.7010 | | 0.0006 | 10.35 | 8000 | 0.3953 | 19.6472 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.9.0+cu102 - Datasets 2.7.1 - Tokenizers 0.13.2
kalisia/whisper-small-tonga_5hrs
kalisia
2022-12-07T16:41:54Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-06T17:21:33Z
--- widget: - src: https://huggingface.co/datasets/kalisia/TongaASR_Space_Examples/blob/main/220929-200958_toi_97d_elicit_17.wav example_title: Tonga Speech Sample 1 - example_title: toi sample 1 src: https://huggingface.co/datasets/kalisia/TongaASR_Space_Examples/blob/main/220929-200958_toi_97d_elicit_17.wav model-index: - name: whisper-tiny results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Tonga type: tongaspeech_asr config: clean split: test args: language: toi metrics: - name: Test WER type: wer value: 52.59 license: apache-2.0 tags: - automatic-speech-recognition --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-small-tonga_5hrs This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9145 - Wer: 52.2928 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.3353 | 1.45 | 200 | 1.9984 | 113.0627 | | 1.7712 | 2.9 | 400 | 1.2576 | 72.0656 | | 1.1476 | 4.35 | 600 | 1.0129 | 59.8233 | | 1.004 | 5.79 | 800 | 0.9406 | 53.2183 | | 0.9169 | 7.25 | 1000 | 0.9145 | 52.2928 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
reaverlee/xlm-roberta-base-finetuned-panx-de-fr
reaverlee
2022-12-07T16:30:58Z
7
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-12-07T16:14:27Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1621 - F1: 0.8552 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2898 | 1.0 | 715 | 0.1830 | 0.8332 | | 0.1479 | 2.0 | 1430 | 0.1576 | 0.8496 | | 0.0952 | 3.0 | 2145 | 0.1621 | 0.8552 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.10.0 - Datasets 2.7.1 - Tokenizers 0.12.1
sachinshinde/sentiment-model-imdb-small-demo
sachinshinde
2022-12-07T16:22:20Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-07T16:09:19Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: sentiment-model-imdb-small-demo results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: train args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8666666666666667 - name: F1 type: f1 value: 0.8571428571428571 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sentiment-model-imdb-small-demo This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.6147 - Accuracy: 0.8667 - F1: 0.8571 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0 - Datasets 2.7.1 - Tokenizers 0.13.2
MontaR/ppo-LunarLander-v2-TEST
MontaR
2022-12-07T16:10:50Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-06T17:42:36Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 278.73 +/- 12.88 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
midon/dsdsdsd
midon
2022-12-07T16:03:32Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2022-12-07T16:03:32Z
--- license: bigscience-openrail-m ---
motmono/output
motmono
2022-12-07T16:00:46Z
4
0
transformers
[ "transformers", "pytorch", "decision_transformer", "generated_from_trainer", "dataset:decision_transformer_gym_replay", "endpoints_compatible", "region:us" ]
null
2022-12-07T15:58:19Z
--- tags: - generated_from_trainer datasets: - decision_transformer_gym_replay model-index: - name: output results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # output This model is a fine-tuned version of [](https://huggingface.co/) on the decision_transformer_gym_replay dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 120 ### Training results ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
CWhy/q-FrozenLake-v1-4x4-noSlippery
CWhy
2022-12-07T15:42:59Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-05-29T04:37:18Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="CWhy/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
budbudbud/Holiday_Stop_Motion
budbudbud
2022-12-07T15:39:27Z
5
3
diffusers
[ "diffusers", "stable-diffusion", "text-to-image", "en", "license:openrail++", "region:us" ]
text-to-image
2022-12-07T12:56:02Z
--- license: openrail++ language: - en tags: - stable-diffusion - text-to-image - diffusers thumbnail: "https://huggingface.co/budbudbud/Holiday_Stop_Motion/resolve/main/Santa.png" inference: false --- ### Holiday Stop Motion This is the fine-tuned Stable Diffusion 1.5 model trained on classic Christmas stop motion tv specials by Rankin and Bass. Use the tokens `rbsm style` in your prompts for the effect. Trained on Stability.ai's 1.5 model with 768x768 resolution. **Characters rendered with the model:** ![rbsm style christmas sloth, tilt shift](https://huggingface.co/budbudbud/Holiday_Stop_Motion/blob/main/Christmas_Sloth.png) ![img](https://huggingface.co/budbudbud/Holiday_Stop_Motion/resolve/main/Christmas_Sloth.png) ![portrait of a (rbsm style) portrait of model Santa, classic tv, cinematic, ultrafine, colorful, by sony canon nikon f1.8, high quality, Greg Rutkowski, oil on canvas, award winning, trending, fine art photo, octane render, getty, by sony canon nikon f1.8, by Beeple and Justin Gerard, cinematic, ultrafine, colorful, poster, picture](https://huggingface.co/budbudbud/Holiday_Stop_Motion/blob/main/Santa.png) ![img](https://huggingface.co/budbudbud/Holiday_Stop_Motion/resolve/main/Santa.png) ![(rbsm style) happy Christmas cat](https://huggingface.co/budbudbud/Holiday_Stop_Motion/blob/main/Christmas_Cat.png) ![img](https://huggingface.co/budbudbud/Holiday_Stop_Motion/resolve/main/Christmas_Cat.png) ![rbsm style superman, tv still](https://huggingface.co/budbudbud/Holiday_Stop_Motion/blob/main/Superman.png) ![img](https://huggingface.co/budbudbud/Holiday_Stop_Motion/resolve/main/Superman.png) This model was trained using fast-DreamBooth colab by TheLastBen with text_trainer_encoder for 10 and 8000 steps. ## License This model is open access and available to all, with a CreativeML Open RAIL++-M License further specifying rights and usage. [Please read the full license here](https://huggingface.co/stabilityai/stable-diffusion-2/blob/main/LICENSE-MODEL)
kennethgoodman/ppo-CartPole-v1
kennethgoodman
2022-12-07T15:10:43Z
1
0
stable-baselines3
[ "stable-baselines3", "CartPole-v1", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-07T15:10:21Z
--- library_name: stable-baselines3 tags: - CartPole-v1 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **PPO** Agent playing **CartPole-v1** This is a trained model of a **PPO** agent playing **CartPole-v1** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
anuragshas/whisper-small-mr
anuragshas
2022-12-07T15:07:11Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "mr", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-07T12:13:38Z
--- language: - mr license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Marathi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 mr type: mozilla-foundation/common_voice_11_0 config: mr split: test args: mr metrics: - name: Wer type: wer value: 19.71 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Marathi This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_11_0 mr dataset. It achieves the following results on the evaluation set: - Loss: 0.4888 - Wer: 19.71
zyoscovits/sd-class-butterflies-32
zyoscovits
2022-12-07T14:46:53Z
0
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-12-07T14:46:29Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class ๐Ÿงจ](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute ๐Ÿฆ‹. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('zyoscovits/sd-class-butterflies-32') image = pipeline().images[0] image ```
shivkumarganesh/whisper-small-hi
shivkumarganesh
2022-12-07T14:41:35Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "hi", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-06T18:45:23Z
--- language: - hi license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Hi - Shiv Kumar Ganesh results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: hi split: test args: hi metrics: - name: Wer type: wer value: 21.30001146394589 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Hi - Shiv Kumar Ganesh This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.6273 - Wer: 21.3000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0036 | 14.01 | 1000 | 0.4864 | 21.9993 | | 0.001 | 28.01 | 2000 | 0.5495 | 21.9592 | | 0.0001 | 43.01 | 3000 | 0.5957 | 21.2026 | | 0.0 | 57.01 | 4000 | 0.6168 | 21.4032 | | 0.0 | 72.01 | 5000 | 0.6273 | 21.3000 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
ljh1/bert-base-uncased-finetuned-conll2003
ljh1
2022-12-07T14:33:56Z
16
0
transformers
[ "transformers", "tf", "bert", "token-classification", "generated_from_keras_callback", "dataset:conll2003", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-12-07T14:27:56Z
--- license: apache-2.0 tags: - generated_from_keras_callback datasets: - conll2003 model-index: - name: ljh1/bert-base-uncased-finetuned-conll2003 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # ljh1/bert-base-uncased-finetuned-conll2003 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0867 - Validation Loss: 0.0477 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': 1.0, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 1755, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.0867 | 0.0477 | 0 | ### Framework versions - Transformers 4.26.0.dev0 - TensorFlow 2.11.0 - Datasets 2.6.1 - Tokenizers 0.12.1
mistapproach/ppo-LunarLander-v2
mistapproach
2022-12-07T14:33:31Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-07T13:43:11Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 242.28 +/- 18.17 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
NathanaelM/ppo_lunar_lander_v2
NathanaelM
2022-12-07T14:26:36Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-07T14:26:12Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 256.18 +/- 24.93 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
tim-binding/ppo-Huggy
tim-binding
2022-12-07T14:19:41Z
10
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2022-12-07T14:19:35Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: tim-binding/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
manirai91/enlm-roberta-130
manirai91
2022-12-07T14:00:53Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-12-01T12:02:16Z
--- tags: - generated_from_trainer model-index: - name: enlm-roberta-130 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # enlm-roberta-130 This model is a fine-tuned version of [manirai91/enlm-roberta-final](https://huggingface.co/manirai91/enlm-roberta-final) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4113 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 128 - total_train_batch_size: 8192 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-06 - lr_scheduler_type: polynomial - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.5183 | 0.34 | 160 | 1.4159 | | 1.5188 | 0.69 | 320 | 1.4158 | | 1.5205 | 1.03 | 480 | 1.4153 | | 1.5213 | 1.37 | 640 | 1.4162 | | 1.5195 | 1.72 | 800 | 1.4168 | | 1.5194 | 2.06 | 960 | 1.4150 | | 1.5182 | 2.4 | 1120 | 1.4142 | | 1.5182 | 2.75 | 1280 | 1.4131 | | 1.5177 | 3.09 | 1440 | 1.4167 | | 1.5201 | 3.43 | 1600 | 1.4156 | | 1.5173 | 3.78 | 1760 | 1.4111 | | 1.52 | 4.12 | 1920 | 1.4117 | | 1.5184 | 4.46 | 2080 | 1.4151 | | 1.5198 | 4.81 | 2240 | 1.4097 | | 1.5202 | 5.15 | 2400 | 1.4162 | | 1.5166 | 5.49 | 2560 | 1.4130 | | 1.5184 | 5.84 | 2720 | 1.4139 | | 1.5174 | 6.18 | 2880 | 1.4128 | | 1.5161 | 6.52 | 3040 | 1.4126 | | 1.5175 | 6.87 | 3200 | 1.4095 | | 1.5169 | 7.21 | 3360 | 1.4118 | | 1.516 | 7.55 | 3520 | 1.4113 | | 1.5182 | 7.9 | 3680 | 1.4097 | | 1.5195 | 8.24 | 3840 | 1.4118 | | 1.5187 | 8.26 | 4000 | 1.4119 | | 1.5149 | 8.6 | 4160 | 1.4133 | | 1.5183 | 8.94 | 4320 | 1.4097 | | 1.5192 | 9.29 | 4480 | 1.4101 | | 1.5191 | 9.63 | 4640 | 1.4146 | | 1.5192 | 9.97 | 4800 | 1.4165 | | 1.5164 | 10.32 | 4960 | 1.4119 | | 1.5235 | 10.66 | 5120 | 1.4089 | | 1.6571 | 11.0 | 5280 | 1.4121 | | 1.5184 | 11.35 | 5440 | 1.4102 | | 1.5185 | 11.69 | 5600 | 1.4111 | | 1.5172 | 12.03 | 5760 | 1.4142 | | 1.5189 | 12.38 | 5920 | 1.4129 | | 1.5147 | 12.72 | 6080 | 1.4089 | | 1.5177 | 13.06 | 6240 | 1.4098 | | 1.5164 | 13.41 | 6400 | 1.4097 | | 1.5188 | 13.75 | 6560 | 1.4109 | | 1.5158 | 14.09 | 6720 | 1.4134 | | 1.5134 | 14.44 | 6880 | 1.4091 | | 1.5167 | 14.78 | 7040 | 1.4089 | | 1.5163 | 15.12 | 7200 | 1.4140 | | 1.5172 | 15.47 | 7360 | 1.4083 | | 1.5153 | 15.81 | 7520 | 1.4109 | | 1.5164 | 16.15 | 7680 | 1.4093 | | 1.5164 | 16.17 | 7840 | 1.4108 | | 1.515 | 16.51 | 8000 | 1.4102 | | 1.5164 | 16.86 | 8160 | 1.4090 | | 1.5163 | 17.2 | 8320 | 1.4110 | | 1.5142 | 17.54 | 8480 | 1.4122 | | 1.5166 | 17.89 | 8640 | 1.4092 | | 1.5172 | 18.23 | 8800 | 1.4058 | | 1.5153 | 18.57 | 8960 | 1.4112 | | 1.517 | 18.92 | 9120 | 1.4098 | | 1.5163 | 19.26 | 9280 | 1.4113 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.11.0 - Datasets 2.7.0 - Tokenizers 0.13.2
AliMMZ/ppo-LunarLander-v2
AliMMZ
2022-12-07T14:00:14Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-07T13:59:48Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 261.26 +/- 23.97 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Dharkelf/Dharkelf_model_u1
Dharkelf
2022-12-07T13:59:50Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-07T13:32:58Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 288.24 +/- 20.60 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
feabries/testpyramidsrnd
feabries
2022-12-07T13:56:19Z
3
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2022-12-07T13:56:12Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: feabries/testpyramidsrnd 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
Manbearpig01/whisper-small-hi
Manbearpig01
2022-12-07T13:53:30Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "hi", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-02T10:44:42Z
--- language: - hi license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Hi - Swedish results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: sv-SE split: test args: 'config: hi, split: test' metrics: - name: Wer type: wer value: 19.684869995429004 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Hi - Swedish This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3275 - Wer: 19.6849 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.1378 | 1.29 | 1000 | 0.2953 | 21.4165 | | 0.0475 | 2.59 | 2000 | 0.2913 | 20.3275 | | 0.0187 | 3.88 | 3000 | 0.3026 | 19.9000 | | 0.0043 | 5.17 | 4000 | 0.3275 | 19.6849 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
garnagar/whisper-ft-libri-en
garnagar
2022-12-07T13:45:29Z
29
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "dataset:librispeech_asr", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-04T16:30:16Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - librispeech_asr metrics: - wer model-index: - name: whisper-ft-libri-en results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: librispeech_asr type: librispeech_asr config: clean split: test args: clean metrics: - name: Wer type: wer value: 31.616341030195382 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-ft-libri-en This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the librispeech_asr dataset. It achieves the following results on the evaluation set: - Loss: 0.8069 - Wer: 31.6163 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.740176574997311e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-06 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2 - training_steps: 400 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 2.1717 | 0.38 | 5 | 2.1709 | 98.0462 | | 1.2371 | 0.77 | 10 | 1.2719 | 79.9290 | | 0.7577 | 1.15 | 15 | 1.0510 | 35.3464 | | 0.5325 | 1.54 | 20 | 0.9475 | 32.6821 | | 0.5545 | 1.92 | 25 | 0.8607 | 30.3730 | | 0.2957 | 2.31 | 30 | 0.8051 | 33.3925 | | 0.1846 | 2.69 | 35 | 0.7487 | 30.1954 | | 0.0748 | 3.08 | 40 | 0.6882 | 32.1492 | | 0.0709 | 3.46 | 45 | 0.6692 | 31.2611 | | 0.0908 | 3.85 | 50 | 0.6465 | 29.4849 | | 0.0764 | 4.23 | 55 | 0.6578 | 28.9520 | | 0.0259 | 4.62 | 60 | 0.6637 | 30.0178 | | 0.0178 | 5.0 | 65 | 0.6955 | 30.3730 | | 0.0131 | 5.38 | 70 | 0.6869 | 33.2149 | | 0.0162 | 5.77 | 75 | 0.7000 | 32.3268 | | 0.0081 | 6.15 | 80 | 0.6814 | 32.3268 | | 0.0075 | 6.54 | 85 | 0.6897 | 31.0835 | | 0.0069 | 6.92 | 90 | 0.7151 | 32.6821 | | 0.0062 | 7.31 | 95 | 0.7181 | 30.3730 | | 0.0056 | 7.69 | 100 | 0.7173 | 30.0178 | | 0.0052 | 8.08 | 105 | 0.7411 | 31.9716 | | 0.0073 | 8.46 | 110 | 0.7526 | 32.5044 | | 0.0061 | 8.85 | 115 | 0.7467 | 32.8597 | | 0.0034 | 9.23 | 120 | 0.7314 | 31.7940 | | 0.0122 | 9.62 | 125 | 0.7276 | 31.7940 | | 0.0429 | 10.0 | 130 | 0.7417 | 32.5044 | | 0.0032 | 10.38 | 135 | 0.7555 | 31.9716 | | 0.0141 | 10.77 | 140 | 0.7636 | 31.2611 | | 0.0038 | 11.15 | 145 | 0.7607 | 31.9716 | | 0.0038 | 11.54 | 150 | 0.7716 | 33.0373 | | 0.0035 | 11.92 | 155 | 0.7985 | 34.2806 | | 0.0038 | 12.31 | 160 | 0.7797 | 32.1492 | | 0.0036 | 12.69 | 165 | 0.7767 | 31.4387 | | 0.0022 | 13.08 | 170 | 0.7830 | 31.7940 | | 0.0033 | 13.46 | 175 | 0.7992 | 30.7282 | | 0.0019 | 13.85 | 180 | 0.7541 | 30.0178 | | 0.0016 | 14.23 | 185 | 0.7587 | 30.0178 | | 0.0027 | 14.62 | 190 | 0.7766 | 30.3730 | | 0.0016 | 15.0 | 195 | 0.8056 | 32.8597 | | 0.0015 | 15.38 | 200 | 0.8096 | 32.5044 | | 0.0012 | 15.77 | 205 | 0.7931 | 32.6821 | | 0.001 | 16.15 | 210 | 0.7829 | 31.6163 | | 0.0045 | 16.54 | 215 | 0.7774 | 30.9059 | | 0.0009 | 16.92 | 220 | 0.7750 | 30.1954 | | 0.0009 | 17.31 | 225 | 0.7780 | 28.9520 | | 0.0008 | 17.69 | 230 | 0.7803 | 29.1297 | | 0.0007 | 18.08 | 235 | 0.7807 | 29.6625 | | 0.0025 | 18.46 | 240 | 0.7813 | 30.1954 | | 0.0007 | 18.85 | 245 | 0.7840 | 30.0178 | | 0.0006 | 19.23 | 250 | 0.7860 | 30.0178 | | 0.0007 | 19.62 | 255 | 0.7839 | 30.1954 | | 0.0005 | 20.0 | 260 | 0.7834 | 30.1954 | | 0.0006 | 20.38 | 265 | 0.7844 | 30.3730 | | 0.0102 | 20.77 | 270 | 0.7859 | 30.7282 | | 0.0006 | 21.15 | 275 | 0.7901 | 30.7282 | | 0.0006 | 21.54 | 280 | 0.7950 | 30.7282 | | 0.0006 | 21.92 | 285 | 0.7975 | 31.0835 | | 0.0006 | 22.31 | 290 | 0.7984 | 30.7282 | | 0.0006 | 22.69 | 295 | 0.7954 | 30.3730 | | 0.0005 | 23.08 | 300 | 0.7935 | 31.0835 | | 0.0005 | 23.46 | 305 | 0.7928 | 31.0835 | | 0.0005 | 23.85 | 310 | 0.7933 | 31.2611 | | 0.0038 | 24.23 | 315 | 0.7950 | 30.9059 | | 0.0005 | 24.62 | 320 | 0.7976 | 31.6163 | | 0.0004 | 25.0 | 325 | 0.7995 | 31.7940 | | 0.0004 | 25.38 | 330 | 0.8006 | 31.4387 | | 0.0004 | 25.77 | 335 | 0.8005 | 31.6163 | | 0.0005 | 26.15 | 340 | 0.8011 | 31.4387 | | 0.0004 | 26.54 | 345 | 0.8020 | 31.6163 | | 0.0004 | 26.92 | 350 | 0.8024 | 31.4387 | | 0.0017 | 27.31 | 355 | 0.8029 | 31.4387 | | 0.0004 | 27.69 | 360 | 0.8035 | 31.4387 | | 0.0004 | 28.08 | 365 | 0.8045 | 31.4387 | | 0.0004 | 28.46 | 370 | 0.8049 | 31.4387 | | 0.0004 | 28.85 | 375 | 0.8056 | 31.4387 | | 0.0011 | 29.23 | 380 | 0.8060 | 31.4387 | | 0.0004 | 29.62 | 385 | 0.8065 | 31.4387 | | 0.0004 | 30.0 | 390 | 0.8065 | 31.4387 | | 0.0004 | 30.38 | 395 | 0.8068 | 31.4387 | | 0.0004 | 30.77 | 400 | 0.8069 | 31.6163 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
aalsinat/lunar_lander_first
aalsinat
2022-12-07T13:40:40Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-07T12:13:48Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -417.41 +/- 345.44 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
GhifSmile/mt5-base-coba
GhifSmile
2022-12-07T13:38:42Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-12-07T04:07:33Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: mt5-base-coba results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-base-coba This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5870 - Rouge1: 0.4338 - Rouge2: 0.2876 - Rougel: 0.3743 - Rougelsum: 0.409 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-06 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:| | 7.0922 | 1.0 | 7452 | 0.6538 | 0.3566 | 0.239 | 0.3218 | 0.3348 | | 0.9442 | 2.0 | 14904 | 0.6900 | 0.427 | 0.2868 | 0.3711 | 0.402 | | 3.0789 | 3.0 | 22356 | 0.6775 | 0.3808 | 0.2584 | 0.3398 | 0.3567 | | 1.0565 | 4.0 | 29808 | 0.5928 | 0.4348 | 0.2882 | 0.3756 | 0.4096 | | 0.7872 | 5.0 | 37260 | 0.5870 | 0.4338 | 0.2876 | 0.3743 | 0.409 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.9.1 - Datasets 2.7.1 - Tokenizers 0.13.2
ntinosmg/ppo-LunarLander-v2
ntinosmg
2022-12-07T13:30:39Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-07-26T11:30:13Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 249.90 +/- 12.94 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
rchan26/dit_base
rchan26
2022-12-07T13:09:28Z
28
1
transformers
[ "transformers", "pytorch", "beit", "image-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-12-07T12:05:48Z
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: dit_base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dit_base This model is a fine-tuned version of [microsoft/dit-base](https://huggingface.co/microsoft/dit-base) on the davanstrien/leicester_loaded_annotations dataset. It achieves the following results on the evaluation set: - Loss: 0.4527 - Accuracy: 0.8190 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.89 | 6 | 1.7452 | 0.4095 | | 1.8958 | 1.89 | 12 | 1.6185 | 0.4286 | | 1.8958 | 2.89 | 18 | 1.4731 | 0.4857 | | 1.8466 | 3.89 | 24 | 1.3459 | 0.5524 | | 1.445 | 4.89 | 30 | 1.1766 | 0.5810 | | 1.445 | 5.89 | 36 | 1.0902 | 0.6381 | | 1.2077 | 6.89 | 42 | 0.9331 | 0.6762 | | 1.2077 | 7.89 | 48 | 0.8431 | 0.6762 | | 1.0254 | 8.89 | 54 | 0.8657 | 0.6857 | | 0.8275 | 9.89 | 60 | 0.6801 | 0.7429 | | 0.8275 | 10.89 | 66 | 0.6699 | 0.7810 | | 0.8063 | 11.89 | 72 | 0.6296 | 0.7524 | | 0.8063 | 12.89 | 78 | 0.5498 | 0.7905 | | 0.7127 | 13.89 | 84 | 0.4974 | 0.8381 | | 0.6356 | 14.89 | 90 | 0.6715 | 0.7619 | | 0.6356 | 15.89 | 96 | 0.4602 | 0.8095 | | 0.6438 | 16.89 | 102 | 0.4886 | 0.8095 | | 0.6438 | 17.89 | 108 | 0.4332 | 0.8 | | 0.5329 | 18.89 | 114 | 0.4197 | 0.8095 | | 0.4932 | 19.89 | 120 | 0.4168 | 0.8190 | | 0.4932 | 20.89 | 126 | 0.4691 | 0.8 | | 0.4861 | 21.89 | 132 | 0.4263 | 0.8476 | | 0.4861 | 22.89 | 138 | 0.4464 | 0.8190 | | 0.4935 | 23.89 | 144 | 0.4857 | 0.7905 | | 0.433 | 24.89 | 150 | 0.4873 | 0.7810 | | 0.433 | 25.89 | 156 | 0.4641 | 0.8095 | | 0.4289 | 26.89 | 162 | 0.5316 | 0.8 | | 0.4289 | 27.89 | 168 | 0.3389 | 0.8571 | | 0.4204 | 28.89 | 174 | 0.4272 | 0.8 | | 0.3668 | 29.89 | 180 | 0.3493 | 0.8667 | | 0.3668 | 30.89 | 186 | 0.3861 | 0.8571 | | 0.4101 | 31.89 | 192 | 0.4216 | 0.8381 | | 0.4101 | 32.89 | 198 | 0.4258 | 0.8190 | | 0.3614 | 33.89 | 204 | 0.4409 | 0.8571 | | 0.3267 | 34.89 | 210 | 0.4475 | 0.8190 | | 0.3267 | 35.89 | 216 | 0.4316 | 0.8190 | | 0.3423 | 36.89 | 222 | 0.4095 | 0.8381 | | 0.3423 | 37.89 | 228 | 0.4671 | 0.8286 | | 0.3325 | 38.89 | 234 | 0.3994 | 0.8286 | | 0.3326 | 39.89 | 240 | 0.5004 | 0.8190 | | 0.3326 | 40.89 | 246 | 0.4103 | 0.8381 | | 0.2964 | 41.89 | 252 | 0.4469 | 0.8286 | | 0.2964 | 42.89 | 258 | 0.4774 | 0.8286 | | 0.3435 | 43.89 | 264 | 0.3843 | 0.8381 | | 0.3146 | 44.89 | 270 | 0.3710 | 0.8667 | | 0.3146 | 45.89 | 276 | 0.3392 | 0.8667 | | 0.3168 | 46.89 | 282 | 0.3597 | 0.8667 | | 0.3168 | 47.89 | 288 | 0.4143 | 0.8381 | | 0.3081 | 48.89 | 294 | 0.3579 | 0.8571 | | 0.3103 | 49.89 | 300 | 0.4527 | 0.8190 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1 - Datasets 2.7.1 - Tokenizers 0.13.1
Hayoung/my_awesome_ko_en_model
Hayoung
2022-12-07T12:43:13Z
35
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-12-06T15:49:39Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: my_awesome_ko_en_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_ko_en_model This model is a fine-tuned version of [KETI-AIR/ke-t5-small](https://huggingface.co/KETI-AIR/ke-t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: nan - Bleu: 0.0 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:----:|:-------:| | No log | 1.0 | 67 | nan | 0.0 | 19.0 | | No log | 2.0 | 134 | nan | 0.0 | 19.0 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.9.0+cu111 - Datasets 2.7.1 - Tokenizers 0.13.2
kpriyanshu256/whisper-small-as-500-64-1e-05-bn
kpriyanshu256
2022-12-07T12:02:52Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "as", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-07T03:56:24Z
--- language: - as license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: openai/whisper-small-Assamese results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: as split: test args: as metrics: - name: Wer type: wer value: 61.75780545027973 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # openai/whisper-small-Assamese This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 1.3386 - Wer: 61.7578 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3132 | 0.3 | 150 | 1.4029 | 161.4149 | | 0.1888 | 1.08 | 300 | 1.3000 | 61.7217 | | 0.1358 | 1.38 | 450 | 1.3386 | 61.7578 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
alsolera/ppo-LunarLander-v2
alsolera
2022-12-07T11:41:58Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-07T11:41:33Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 271.02 +/- 9.93 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
yip-i/wav2vec2-demo-F04-2
yip-i
2022-12-07T11:38:05Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-19T04:34:23Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-demo-F04-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-demo-F04-2 This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3203 - Wer: 0.5353 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 23.5576 | 0.89 | 500 | 3.3654 | 1.0 | | 3.3953 | 1.79 | 1000 | 3.1729 | 1.0 | | 2.9514 | 2.68 | 1500 | 2.8946 | 1.0 | | 2.84 | 3.57 | 2000 | 2.8386 | 1.0 | | 2.7685 | 4.46 | 2500 | 2.7147 | 1.0 | | 2.5059 | 5.36 | 3000 | 2.1341 | 1.1752 | | 1.8907 | 6.25 | 3500 | 1.3604 | 1.2403 | | 1.3892 | 7.14 | 4000 | 0.8814 | 1.1989 | | 1.0754 | 8.04 | 4500 | 0.6416 | 1.0529 | | 0.8795 | 8.93 | 5000 | 0.5760 | 0.9641 | | 0.7478 | 9.82 | 5500 | 0.4633 | 0.8790 | | 0.6107 | 10.71 | 6000 | 0.3921 | 0.8394 | | 0.5445 | 11.61 | 6500 | 0.3579 | 0.7987 | | 0.4788 | 12.5 | 7000 | 0.3034 | 0.7470 | | 0.4435 | 13.39 | 7500 | 0.2989 | 0.7311 | | 0.4057 | 14.29 | 8000 | 0.3366 | 0.7092 | | 0.3606 | 15.18 | 8500 | 0.2783 | 0.6892 | | 0.343 | 16.07 | 9000 | 0.2593 | 0.6612 | | 0.3189 | 16.96 | 9500 | 0.2780 | 0.6460 | | 0.277 | 17.86 | 10000 | 0.3266 | 0.6277 | | 0.2789 | 18.75 | 10500 | 0.3582 | 0.6253 | | 0.2552 | 19.64 | 11000 | 0.3422 | 0.6156 | | 0.2416 | 20.54 | 11500 | 0.3387 | 0.6016 | | 0.2187 | 21.43 | 12000 | 0.3657 | 0.5845 | | 0.2317 | 22.32 | 12500 | 0.2932 | 0.5845 | | 0.2091 | 23.21 | 13000 | 0.2551 | 0.5614 | | 0.199 | 24.11 | 13500 | 0.3113 | 0.5474 | | 0.1777 | 25.0 | 14000 | 0.2895 | 0.5572 | | 0.1823 | 25.89 | 14500 | 0.3127 | 0.5456 | | 0.179 | 26.79 | 15000 | 0.2945 | 0.5438 | | 0.1596 | 27.68 | 15500 | 0.3052 | 0.5322 | | 0.1671 | 28.57 | 16000 | 0.3119 | 0.5365 | | 0.1564 | 29.46 | 16500 | 0.3203 | 0.5353 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 1.18.3 - Tokenizers 0.13.2
smejak/ppo-LunarLander-v2
smejak
2022-12-07T11:31:33Z
2
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-07T11:31:05Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 240.33 +/- 30.33 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
rifkat/uztext-3Gb-BPE-Roberta
rifkat
2022-12-07T11:13:53Z
74
6
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "mit", "robert", "uzrobert", "uzbek", "cyrillic", "latin", "uz", "doi:10.57967/hf/0210", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: - uz tags: - transformers - mit - robert - uzrobert - uzbek - cyrillic - latin license: apache-2.0 widget: - text: "Kuchli yomgโ€˜irlar tufayli bir qator <mask> kuchli sel oqishi kuzatildi." example_title: "Latin script" - text: "ะะปะธัˆะตั€ ะะฐะฒะพะธะน โ€“ ัƒะปัƒา“ ัžะทะฑะตะบ ะฒะฐ ะฑะพัˆา›ะฐ ั‚ัƒั€ะบะธะน ั…ะฐะปา›ะปะฐั€ะฝะธะฝะณ <mask>, ะผัƒั‚ะฐั„ะฐะบะบะธั€ะธ ะฒะฐ ะดะฐะฒะปะฐั‚ ะฐั€ะฑะพะฑะธ ะฑัžะปะณะฐะฝ." example_title: "Cyrillic script" --- <p><b>UzRoBerta model.</b> Pre-prepared model in Uzbek (Cyrillic and latin script) to model the masked language and predict the next sentences. <p><b>How to use.</b> You can use this model directly with a pipeline for masked language modeling: <pre><code class="language-python"> from transformers import pipeline unmasker = pipeline('fill-mask', model='rifkat/uztext-3Gb-BPE-Roberta') unmasker("ะะปะธัˆะตั€ ะะฐะฒะพะธะน โ€“ ัƒะปัƒา“ ัžะทะฑะตะบ ะฒะฐ ะฑะพัˆา›ะฐ ั‚ัƒั€ะบะธะน ั…ะฐะปา›ะปะฐั€ะฝะธะฝะณ [mask], ะผัƒั‚ะฐั„ะฐะบะบะธั€ะธ ะฒะฐ ะดะฐะฒะปะฐั‚ ะฐั€ะฑะพะฑะธ ะฑัžะปะณะฐะฝ.") [{'score': 0.5902208685874939, 'sequence': 'ะะปะธัˆะตั€ ะะฐะฒะพะธะน โ€“ ัƒะปัƒา“ ัžะทะฑะตะบ ะฒะฐ ะฑะพัˆา›ะฐ ั‚ัƒั€ะบะธะน ั…ะฐะปา›ะปะฐั€ะฝะธะฝะณ ัˆะพะธั€ะธ, ะผัƒั‚ะฐั„ะฐะบะบะธั€ะธ ะฒะฐ ะดะฐะฒะปะฐั‚ ะฐั€ะฑะพะฑะธ ะฑัžะปะณะฐะฝ.', 'token': 28809, 'token_str': ' ัˆะพะธั€ะธ'}, {'score': 0.08303504437208176, 'sequence': 'ะะปะธัˆะตั€ ะะฐะฒะพะธะน โ€“ ัƒะปัƒา“ ัžะทะฑะตะบ ะฒะฐ ะฑะพัˆา›ะฐ ั‚ัƒั€ะบะธะน ั…ะฐะปา›ะปะฐั€ะฝะธะฝะณ ัƒัั‚ะพะทะธ, ะผัƒั‚ะฐั„ะฐะบะบะธั€ะธ ะฒะฐ ะดะฐะฒะปะฐั‚ ะฐั€ะฑะพะฑะธ ะฑัžะปะณะฐะฝ.', 'token': 17484, 'token_str': ' ัƒัั‚ะพะทะธ'}, {'score': 0.035882771015167236, 'sequence': 'ะะปะธัˆะตั€ ะะฐะฒะพะธะน โ€“ ัƒะปัƒา“ ัžะทะฑะตะบ ะฒะฐ ะฑะพัˆา›ะฐ ั‚ัƒั€ะบะธะน ั…ะฐะปา›ะปะฐั€ะฝะธะฝะณ ะฐั€ะฑะพะฑะธ, ะผัƒั‚ะฐั„ะฐะบะบะธั€ะธ ะฒะฐ ะดะฐะฒะปะฐั‚ ะฐั€ะฑะพะฑะธ ะฑัžะปะณะฐะฝ.', 'token': 34552, 'token_str': ' ะฐั€ะฑะพะฑะธ'}, {'score': 0.03447483479976654, 'sequence': 'ะะปะธัˆะตั€ ะะฐะฒะพะธะน โ€“ ัƒะปัƒา“ ัžะทะฑะตะบ ะฒะฐ ะฑะพัˆา›ะฐ ั‚ัƒั€ะบะธะน ั…ะฐะปา›ะปะฐั€ะฝะธะฝะณ ะฐัะพัั‡ะธัะธ, ะผัƒั‚ะฐั„ะฐะบะบะธั€ะธ ะฒะฐ ะดะฐะฒะปะฐั‚ ะฐั€ะฑะพะฑะธ ะฑัžะปะณะฐะฝ.', 'token': 14034, 'token_str': ' ะฐัะพัั‡ะธัะธ'}, {'score': 0.03044942207634449, 'sequence': 'ะะปะธัˆะตั€ ะะฐะฒะพะธะน โ€“ ัƒะปัƒา“ ัžะทะฑะตะบ ะฒะฐ ะฑะพัˆา›ะฐ ั‚ัƒั€ะบะธะน ั…ะฐะปา›ะปะฐั€ะฝะธะฝะณ ะดัžัั‚ะธ, ะผัƒั‚ะฐั„ะฐะบะบะธั€ะธ ะฒะฐ ะดะฐะฒะปะฐั‚ ะฐั€ะฑะพะฑะธ ะฑัžะปะณะฐะฝ.', 'token': 28100, 'token_str': ' ะดัžัั‚ะธ'}] unmasker("Kuchli yomgโ€˜irlar tufayli bir qator [mask] kuchli sel oqishi kuzatildi.") [{'score': 0.410250186920166, 'sequence': 'Kuchli yomgโ€˜irlar tufayli bir qator hududlarda kuchli sel oqishi kuzatildi.', 'token': 11009, 'token_str': ' hududlarda'}, {'score': 0.2023029774427414, 'sequence': 'Kuchli yomgโ€˜irlar tufayli bir qator tumanlarda kuchli sel oqishi kuzatildi.', 'token': 35370, 'token_str': ' tumanlarda'}, {'score': 0.129830002784729, 'sequence': 'Kuchli yomgโ€˜irlar tufayli bir qator viloyatlarda kuchli sel oqishi kuzatildi.', 'token': 33584, 'token_str': ' viloyatlarda'}, {'score': 0.04539087787270546, 'sequence': 'Kuchli yomgโ€˜irlar tufayli bir qator mamlakatlarda kuchli sel oqishi kuzatildi.', 'token': 19315, 'token_str': ' mamlakatlarda'}, {'score': 0.0369882769882679, 'sequence': 'Kuchli yomgโ€˜irlar tufayli bir qator joylarda kuchli sel oqishi kuzatildi.', 'token': 5853, 'token_str': ' joylarda'}] </code></pre> <p><b>Training data.</b> UzBERT model was pretrained on &asymp;2M news articles (&asymp;3Gb). <pre><code class="language-python"> @misc {rifkat_davronov_2022, author = { {Adilova Fatima,Rifkat Davronov, Samariddin Kushmuratov, Ruzmat Safarov} }, title = { uztext-3Gb-BPE-Roberta (Revision 0c87494) }, year = 2022, url = { https://huggingface.co/rifkat/uztext-3Gb-BPE-Roberta }, doi = { 10.57967/hf/0140 }, publisher = { Hugging Face } } </code></pre>
muhtasham/finetuned-self_mlm_medium
muhtasham
2022-12-07T11:07:57Z
3
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-07T09:59:38Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuned-self_mlm_medium results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: train args: plain_text metrics: - name: Accuracy type: accuracy value: 0.91304 - name: F1 type: f1 value: 0.9545435537155521 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-self_mlm_medium This model is a fine-tuned version of [muhtasham/bert-medium-mlm-finetuned-imdb](https://huggingface.co/muhtasham/bert-medium-mlm-finetuned-imdb) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3215 - Accuracy: 0.9130 - F1: 0.9545 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.2916 | 0.64 | 500 | 0.2293 | 0.9087 | 0.9522 | | 0.1969 | 1.28 | 1000 | 0.1605 | 0.9442 | 0.9713 | | 0.1511 | 1.92 | 1500 | 0.1787 | 0.9406 | 0.9694 | | 0.1046 | 2.56 | 2000 | 0.2280 | 0.9379 | 0.9680 | | 0.0852 | 3.2 | 2500 | 0.3215 | 0.9130 | 0.9545 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
ahmeticomadrid/art
ahmeticomadrid
2022-12-07T10:56:46Z
0
0
null
[ "region:us" ]
null
2022-12-07T10:52:48Z
create a black horse splash some pink color torn half of the page fulfill the torned part with roses
Conflictx/CandyPunk
Conflictx
2022-12-07T10:34:52Z
0
34
null
[ "text-to-image", "v2.0", "Embedding", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2022-12-03T20:38:50Z
--- license: creativeml-openrail-m tags: - text-to-image - v2.0 - Embedding --- Textual Inversion Embedding by ConflictX For SD 2.0 trained on 768x768 images from midjourney and other sources. Install by downloading the step embedding, and put it in the \embeddings folder Another themed one, this one is more focused on vibrant and sweet environments. Use keyword: CandyPunk Images: ![00002-149071020-cute room of ocean bottom ,candypunk style.png](https://s3.amazonaws.com/moonup/production/uploads/1670100139191-6303c53d7373aacccd859bbd.png) ![00003-1792127834-cute room of refinery ,candypunk style.png](https://s3.amazonaws.com/moonup/production/uploads/1670100152329-6303c53d7373aacccd859bbd.png) ![00000-3163316236-furious adult woman in a cute room,candypunk style.png](https://s3.amazonaws.com/moonup/production/uploads/1670100158070-6303c53d7373aacccd859bbd.png) ![00001-4197392007-attracted 20 year old man in a cute room,candypunk style.png](https://s3.amazonaws.com/moonup/production/uploads/1670100163583-6303c53d7373aacccd859bbd.png) ![00007-3708365902-cute fluffy dragon on a table ,candypunk style, lovely serene lighting.png](https://s3.amazonaws.com/moonup/production/uploads/1670100309746-6303c53d7373aacccd859bbd.png) ![00006-3014347479-cute fluffy parrot on a table ,candypunk style, lovely serene lighting.png](https://s3.amazonaws.com/moonup/production/uploads/1670100316313-6303c53d7373aacccd859bbd.png)
abbeyalien/abbeyalien
abbeyalien
2022-12-07T10:19:12Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-12-07T10:19:12Z
--- license: creativeml-openrail-m ---
SatCat/ppo-LunarLander-v2
SatCat
2022-12-07T10:08:19Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-07T10:05:35Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 287.31 +/- 20.97 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** No preview (Windows dev.). This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
muhtasham/finetuned-self_mlm_small
muhtasham
2022-12-07T09:58:47Z
4
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-06T22:57:57Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuned-self_mlm_small results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: train args: plain_text metrics: - name: Accuracy type: accuracy value: 0.9372 - name: F1 type: f1 value: 0.9675820772248607 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-self_mlm_small This model is a fine-tuned version of [muhtasham/bert-small-mlm-finetuned-imdb](https://huggingface.co/muhtasham/bert-small-mlm-finetuned-imdb) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3759 - Accuracy: 0.9372 - F1: 0.9676 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.2834 | 1.28 | 500 | 0.2254 | 0.9150 | 0.9556 | | 0.1683 | 2.56 | 1000 | 0.3738 | 0.8694 | 0.9301 | | 0.1069 | 3.84 | 1500 | 0.2102 | 0.9354 | 0.9666 | | 0.0651 | 5.12 | 2000 | 0.2278 | 0.9446 | 0.9715 | | 0.0412 | 6.39 | 2500 | 0.4061 | 0.9156 | 0.9559 | | 0.0316 | 7.67 | 3000 | 0.4371 | 0.9110 | 0.9534 | | 0.0219 | 8.95 | 3500 | 0.3759 | 0.9372 | 0.9676 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
ljh1/mrpc
ljh1
2022-12-07T08:59:45Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-07T08:56:43Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: mrpc results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue config: mrpc split: validation args: mrpc metrics: - name: Accuracy type: accuracy value: 0.6911764705882353 - name: F1 type: f1 value: 0.8157894736842105 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mrpc This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.5611 - Accuracy: 0.6912 - F1: 0.8158 - Combined Score: 0.7535 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 256 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.12.1+cu116 - Datasets 2.6.1 - Tokenizers 0.12.1
smartlens/donut-id-model-525-v1.0
smartlens
2022-12-07T08:54:03Z
15
0
transformers
[ "transformers", "pytorch", "tensorboard", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "license:mit", "endpoints_compatible", "region:us" ]
image-text-to-text
2022-12-07T05:53:02Z
--- license: mit tags: - generated_from_trainer model-index: - name: donut-id-model-525-v1.0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # donut-id-model-525-v1.0 This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
GIanlucaRub/whisper-tiny-it-5
GIanlucaRub
2022-12-07T08:46:09Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "it", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-06T20:26:42Z
--- language: - it license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Tiny it 5 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: it split: test[:10%] args: 'config: it, split: test' metrics: - name: Wer type: wer value: 41.271491957848035 --- # Whisper Tiny it 5 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.760934 - Wer: 41.271492 ## Model description This model is the openai whisper small transformer adapted for Italian audio to text transcription. This model has weight decay set to 0.1 and the learning rate has been set to 1e-4 in the hyperparameter tuning process and it improved the performance on the evaluation set. ## Intended uses & limitations The model is available through its [HuggingFace web app](https://huggingface.co/spaces/GIanlucaRub/whisper-it) ## Training and evaluation data Data used for training is the initial 10% of train and validation of [Italian Common Voice](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0/viewer/it/train) 11.0 from Mozilla Foundation. The dataset used for evaluation is the initial 10% of test of Italian Common Voice. ## Training procedure After loading the pre trained model, it has been trained on the dataset. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-04 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.7015 | 0.95 | 1000 | 0.9463 | 64.4689 | | 0.3579 | 1.91 | 2000 | 0.8363 | 51.7471 | | 0.1388 | 2.86 | 3000 | 0.7766 | 43.6425 | | 0.0403 | 3.82 | 4000 | 0.7609 | 41.2715 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
teacookies/autotrain-07122022-2-exam_cert-2364774382
teacookies
2022-12-07T08:44:08Z
12
0
transformers
[ "transformers", "pytorch", "autotrain", "token-classification", "unk", "dataset:teacookies/autotrain-data-07122022-2-exam_cert", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
token-classification
2022-12-07T08:29:16Z
--- tags: - autotrain - token-classification language: - unk widget: - text: "I love AutoTrain ๐Ÿค—" datasets: - teacookies/autotrain-data-07122022-2-exam_cert co2_eq_emissions: emissions: 24.71153691821318 --- # Model Trained Using AutoTrain - Problem type: Entity Extraction - Model ID: 2364774382 - CO2 Emissions (in grams): 24.7115 ## Validation Metrics - Loss: 0.021 - Accuracy: 0.995 - Precision: 0.917 - Recall: 0.932 - F1: 0.924 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/teacookies/autotrain-07122022-2-exam_cert-2364774382 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("teacookies/autotrain-07122022-2-exam_cert-2364774382", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autotrain-07122022-2-exam_cert-2364774382", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
weiweishi/roc-bert-base-zh
weiweishi
2022-12-07T08:30:15Z
2,187
5
transformers
[ "transformers", "pytorch", "roc_bert", "pretraining", "fill-mask", "zh", "doi:10.57967/hf/0097", "endpoints_compatible", "region:us" ]
fill-mask
2022-10-13T07:03:32Z
--- language: - zh pipeline_tag: "fill-mask" widget: - text: "ba้ปŽ็ณป[MASK]ๅ›ฝ็š„้ฆ–้ƒฝ" example_title: "Adversarial Attack Test" --- # RoCBert ## Introduction RoCBert is a pretrained Chinese language model that is robust under various forms of adversarial attacks proposed by WeChatAI in 2022, More detail: https://aclanthology.org/2022.acl-long.65.pdf Pretrained code: https://github.com/sww9370/RoCBert ## How to use ```Python # pip install transformers>=4.25.1 from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("weiweishi/roc-bert-base-zh") model = AutoModel.from_pretrained("weiweishi/roc-bert-base-zh") ``` ## Citation ```bibtex @inproceedings{su2022rocbert, title={RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining}, author={Su, Hui and Shi, Weiwei and Shen, Xiaoyu and Xiao, Zhou and Ji, Tuo and Fang, Jiarui and Zhou, Jie}, booktitle={Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, pages={921--931}, year={2022} } ```
SantoshUske/my_awesome_wnut_model
SantoshUske
2022-12-07T07:49:18Z
12
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-12-07T07:28:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: my_awesome_wnut_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_wnut_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1+cu113 - Tokenizers 0.13.2
SantoshUske/my_awesome_model
SantoshUske
2022-12-07T07:25:18Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-07T06:57:20Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: my_awesome_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1+cu113 - Tokenizers 0.13.2
anthonyduer/ppo-LunarLander-v2
anthonyduer
2022-12-07T07:20:11Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-07T07:19:40Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 226.55 +/- 49.07 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
gamesxymo10/Tti
gamesxymo10
2022-12-07T06:46:54Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2022-12-07T06:46:54Z
--- license: bigscience-openrail-m ---
Nhat1904/best-120-shot-model
Nhat1904
2022-12-07T06:43:46Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-12-07T06:43:31Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 300 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 300, "warmup_steps": 30, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
kennethgoodman/ppo-LunarLander-v2
kennethgoodman
2022-12-07T06:42:21Z
6
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-06T22:15:59Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 290.77 +/- 23.26 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
jihoonkimharu/bert-base-klue-ynat-finetuned
jihoonkimharu
2022-12-07T05:45:20Z
4
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "mrc", "ko", "dataset:klue", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-07T05:44:13Z
--- language: ko tags: - bert - mrc datasets: - klue license: cc-by-sa-4.0 --- # ์ธํ”„๋Ÿฐ ๊ฐ•์˜์šฉ checkpoint KLUE์˜ YNAT task์— ํŒŒ์ธํŠœ๋‹๋œ ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค.
Shularp/krirk-finetuned-Helsinki-NLP_opus-mt-ar-en
Shularp
2022-12-07T05:41:57Z
4
2
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "translation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-12-07T04:44:26Z
--- license: apache-2.0 tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: krirk-finetuned-Helsinki-NLP_opus-mt-ar-en results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # krirk-finetuned-Helsinki-NLP_opus-mt-ar-en This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ar-en](https://huggingface.co/Helsinki-NLP/opus-mt-ar-en) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3665 - Bleu: 35.0219 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 1.4469 | 1.0 | 32 | 1.3744 | 34.9616 | | 1.2938 | 2.0 | 64 | 1.3674 | 34.9145 | | 1.2582 | 3.0 | 96 | 1.3665 | 35.0219 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
fanzru/t5-small-finetuned-xlsum-concat-multi-news
fanzru
2022-12-07T05:28:52Z
18
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-12-06T16:55:48Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: t5-small-finetuned-xlsum-concat-multi-news results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xlsum-concat-multi-news This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.4230 - Rouge1: 29.1361 - Rouge2: 8.0189 - Rougel: 22.513 - Rougelsum: 22.5598 - Gen Len: 18.8373 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:------:|:---------:|:-------:| | 2.2181 | 1.0 | 20543 | 2.4230 | 29.1361 | 8.0189 | 22.513 | 22.5598 | 18.8373 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1 - Tokenizers 0.13.2
Shularp/finetuned-bert-mrpc
Shularp
2022-12-07T05:17:16Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-07T05:01:49Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: finetuned-bert-mrpc results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: mrpc split: train args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8504901960784313 - name: F1 type: f1 value: 0.8960817717206134 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-bert-mrpc This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.4478 - Accuracy: 0.8505 - F1: 0.8961 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.5323 | 1.0 | 230 | 0.3748 | 0.8480 | 0.8916 | | 0.2969 | 2.0 | 460 | 0.3628 | 0.8603 | 0.9005 | | 0.1535 | 3.0 | 690 | 0.4478 | 0.8505 | 0.8961 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
enzokro/sd-class-butterflies-64
enzokro
2022-12-07T05:16:07Z
10
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-12-07T05:15:52Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class ๐Ÿงจ](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute ๐Ÿฆ‹. The model was trained with Adam parameters from fast.ai. Batch size was also doubled to 64. Learning rate happens over 160 steps, aka 20% of training. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('enzokro/sd-class-butterflies-64') image = pipeline().images[0] image ```
hyorea1/KoT5-test-add-data-from5ep
hyorea1
2022-12-07T04:45:25Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-12-06T08:33:55Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: KoT5-test-add-data-from5ep results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # KoT5-test-add-data-from5ep This model is a fine-tuned version of [hyorea1/KoT5-test](https://huggingface.co/hyorea1/KoT5-test) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1737 - Rouge1: 11.8294 - Rouge2: 3.2314 - Rougel: 11.7891 - Rougelsum: 11.8237 - Gen Len: 35.2824 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 100 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 1.9029 | 0.16 | 400 | 1.1695 | 12.8243 | 3.2659 | 12.7542 | 12.8276 | 35.5743 | | 1.7971 | 0.32 | 800 | 1.1646 | 12.259 | 3.0668 | 12.1254 | 12.1927 | 35.2353 | | 1.4396 | 0.48 | 1200 | 1.1681 | 12.1151 | 3.1908 | 11.9507 | 12.0305 | 35.3125 | | 1.0945 | 0.64 | 1600 | 1.1703 | 12.0576 | 2.9688 | 11.9292 | 11.9792 | 35.0926 | | 1.1924 | 0.8 | 2000 | 1.1667 | 11.7835 | 2.9605 | 11.6755 | 11.7318 | 35.3596 | | 1.3711 | 0.97 | 2400 | 1.1668 | 11.9873 | 3.1107 | 11.9369 | 12.0207 | 34.5309 | | 1.6031 | 1.13 | 2800 | 1.1673 | 11.6049 | 3.1121 | 11.5527 | 11.5976 | 34.6551 | | 1.5254 | 1.29 | 3200 | 1.1693 | 11.6803 | 2.8527 | 11.6116 | 11.6829 | 34.8066 | | 1.641 | 1.45 | 3600 | 1.1737 | 11.8294 | 3.2314 | 11.7891 | 11.8237 | 35.2824 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
Weili/vit-base-patch16-224-finetuned-eurosat
Weili
2022-12-07T04:37:58Z
32
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-12-07T03:45:49Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-base-patch16-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9888888888888889 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-finetuned-eurosat This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0363 - Accuracy: 0.9889 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1667 | 1.0 | 190 | 0.0731 | 0.9756 | | 0.115 | 2.0 | 380 | 0.0426 | 0.9878 | | 0.0903 | 3.0 | 570 | 0.0363 | 0.9889 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
Scrwed/ppo-LunarLander-v2
Scrwed
2022-12-07T04:30:46Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-06T05:10:22Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 253.91 +/- 68.63 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) ```python import gym from huggingface_sb3 import load_from_hub, package_to_hub, push_to_hub from huggingface_hub import notebook_login # To log to our Hugging Face account to be able to upload models to the Hub. from stable_baselines3 import PPO from stable_baselines3.common.evaluation import evaluate_policy from stable_baselines3.common.env_util import make_vec_env # Create the environment env = make_vec_env('LunarLander-v2', n_envs=16) model = PPO( policy = 'MlpPolicy', env = env, n_steps = 1024, batch_size = 64, n_epochs = 8, gamma = 0.995, gae_lambda = 1, ent_coef = 0.001, verbose=1 ) model.learn(total_timesteps=2_000_000, log_interval=25, progress_bar=True) model_name = "ppo-LunarLander-v2" # Evaluate the agent # Create a new environment for evaluation eval_env = gym.make("LunarLander-v2") # Evaluate the model with 10 evaluation episodes and deterministic=True mean_reward, std_reward = evaluate_policy(model, eval_env, n_eval_episodes=10, deterministic=True) # Print the results print(f"mean_reward={mean_reward:.2f} +/- {std_reward}") # Upload to Hugging Face Hub ... ```
aammari/setfit-zero-shot-classification-pbsp-p1
aammari
2022-12-07T04:16:20Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-12-07T04:15:42Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 518 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 518, "warmup_steps": 52, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
shicz86/ppo-LunarLander-v2
shicz86
2022-12-07T04:02:22Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-06T08:05:13Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 241.56 +/- 12.88 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Quaouar/VLP_singleLED-model
Quaouar
2022-12-07T03:46:24Z
14
0
tf-keras
[ "tf-keras", "tensorboard", "license:afl-3.0", "region:us" ]
null
2022-12-06T20:38:09Z
--- license: afl-3.0 --- # VLP Dataset Metadata This dataset was acquired during the dissertation entitled **Optical Camera Communications and Machine Learning for Indoor Visible Light Positioning**. This work was carried out in the academic year 2020/2021 at the Instituto de Telecomunicacoes in Aveiro. The images that constitute this dataset were acquired over a grid with 15 regularly spaced reference points on the floor surface. Table 2 shows the position of these points in relation to the referential defined in the room along with the position of the LED luminaires. During the dataset acquisition, the CMOS image sensor (Sony IMX219) was positioned parallel to the floor at a height of 25.6 cm facing upwards, i.e. with pitch and yaw angles equal to 0. All images were saved as TIFF (Tagged Image File Format) with a resolution of 3264 ร— 2464 pixels and exposure and readout times equal to 9 ยตs and 18 ยตs, respectively.
zlicastro/zl-ppo-Huggy
zlicastro
2022-12-07T03:29:42Z
7
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2022-12-07T03:29:02Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: zlicastro/zl-ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
Kuaaangwen/roberta-base-finetuned-mnli
Kuaaangwen
2022-12-07T03:24:45Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "dataset:glue", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-07T01:11:00Z
--- license: mit tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: roberta-base-finetuned-mnli results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: mnli split: train args: mnli metrics: - name: Accuracy type: accuracy value: 0.865206316861946 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-mnli This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.3914 - Accuracy: 0.8652 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.3982 | 1.0 | 49088 | 0.3914 | 0.8652 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
haining/ppo-huggy
haining
2022-12-07T03:19:31Z
5
1
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2022-12-07T03:19:25Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: haining/ppo-huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
Delcos/Hentai-Diffusion
Delcos
2022-12-07T03:08:01Z
0
202
null
[ "region:us" ]
null
2022-10-03T20:28:35Z
Update: https://huggingface.co/Deltaadams/HentaiDiffusion