modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-06-23 18:27:52
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
492 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-06-23 18:25:26
card
stringlengths
11
1.01M
lenartlola/rick-bot
lenartlola
2022-12-15T14:02:44Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-12-15T14:00:20Z
--- tags: - conversational ---
J3/ppo-Huggy
J3
2022-12-15T13:57:38Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2022-12-15T13:57:27Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: J3/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Tereveni-AI/gpt2-124M-uk-fiction
Tereveni-AI
2022-12-15T13:49:41Z
30
3
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "uk", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: uk widget: - text: "Но зла Юнона, суча дочка, " tags: - text-generation --- Note: **default code snippet above won't work** because we are using `AlbertTokenizer` with `GPT2LMHeadModel`, see [issue](https://github.com/huggingface/transformers/issues/4285). ## GPT2 124M Trained on Ukranian Fiction ### Training details Model was trained on corpus of 4040 fiction books, 2.77 GiB in total. Evaluation on [brown-uk](https://github.com/brown-uk/corpus) gives perplexity of 50.16. ### Example usage: ```python from transformers import AlbertTokenizer, GPT2LMHeadModel tokenizer = AlbertTokenizer.from_pretrained("Tereveni-AI/gpt2-124M-uk-fiction") model = GPT2LMHeadModel.from_pretrained("Tereveni-AI/gpt2-124M-uk-fiction") input_ids = tokenizer.encode("Но зла Юнона, суча дочка,", add_special_tokens=False, return_tensors='pt') outputs = model.generate( input_ids, do_sample=True, num_return_sequences=3, max_length=50 ) for i, out in enumerate(outputs): print("{}: {}".format(i, tokenizer.decode(out))) ``` Prints something like this: ```bash 0: Но зла Юнона, суча дочка, яка затьмарила всі її таємниці: І хто з'їсть її душу, той помре». І, не дочекавшись гніву богів, посунула в пітьму, щоб не бачити перед собою. Але, за 1: Но зла Юнона, суча дочка, і довела мене до божевілля. Але він не знав нічого. Після того як я його побачив, мені стало зле. Я втратив рівновагу. Але в мене не було часу на роздуми. Я вже втратив надію 2: Но зла Юнона, суча дочка, не нарікала нам! — раптом вигукнула Юнона. — Це ти, старий йолопе! — мовила вона, не перестаючи сміятись. — Хіба ти не знаєш, що мені подобається ходити з тобою? ```
andresgtn/ppo-LunarLander-v2
andresgtn
2022-12-15T13:47:07Z
0
1
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-15T13:46:32Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 222.99 +/- 15.34 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
ntinosmg/q-FrozenLake-v1-4x4-noSlippery
ntinosmg
2022-12-15T13:35:08Z
0
0
null
[ "FrozenLake-v1-4x4", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-08-13T18:33:02Z
--- tags: - FrozenLake-v1-4x4 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4 type: FrozenLake-v1-4x4 metrics: - type: mean_reward value: 0.61 +/- 0.49 name: mean_reward verified: false --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="ntinosmg/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
Ari/whisper-small-af-za
Ari
2022-12-15T13:33:47Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "hf-asr-leaderboard", "af", "dataset:google/fleurs", "dataset:openslr/SLR32", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-13T13:37:08Z
--- language: - af license: apache-2.0 tags: - whisper-event - generated_from_trainer - hf-asr-leaderboard datasets: - google/fleurs - openslr/SLR32 model-index: - name: whisper-small-af-za - Ari results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition metrics: - name: Wer type: wer value: 0.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-small-af-za - Ari This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - eval_loss: 0.0002 - eval_wer: 0.0 - eval_runtime: 77.0592 - eval_samples_per_second: 2.569 - eval_steps_per_second: 0.324 - epoch: 14.6 - step: 2000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
tomekkorbak/eloquent_stallman
tomekkorbak
2022-12-15T13:27:52Z
0
0
null
[ "generated_from_trainer", "en", "dataset:tomekkorbak/detoxify-pile-chunk3-0-50000", "dataset:tomekkorbak/detoxify-pile-chunk3-50000-100000", "dataset:tomekkorbak/detoxify-pile-chunk3-100000-150000", "dataset:tomekkorbak/detoxify-pile-chunk3-150000-200000", "dataset:tomekkorbak/detoxify-pile-chunk3-200000-250000", "dataset:tomekkorbak/detoxify-pile-chunk3-250000-300000", "dataset:tomekkorbak/detoxify-pile-chunk3-300000-350000", "dataset:tomekkorbak/detoxify-pile-chunk3-350000-400000", "dataset:tomekkorbak/detoxify-pile-chunk3-400000-450000", "dataset:tomekkorbak/detoxify-pile-chunk3-450000-500000", "dataset:tomekkorbak/detoxify-pile-chunk3-500000-550000", "dataset:tomekkorbak/detoxify-pile-chunk3-550000-600000", "dataset:tomekkorbak/detoxify-pile-chunk3-600000-650000", "dataset:tomekkorbak/detoxify-pile-chunk3-650000-700000", "dataset:tomekkorbak/detoxify-pile-chunk3-700000-750000", "dataset:tomekkorbak/detoxify-pile-chunk3-750000-800000", "dataset:tomekkorbak/detoxify-pile-chunk3-800000-850000", "dataset:tomekkorbak/detoxify-pile-chunk3-850000-900000", "dataset:tomekkorbak/detoxify-pile-chunk3-900000-950000", "dataset:tomekkorbak/detoxify-pile-chunk3-950000-1000000", "dataset:tomekkorbak/detoxify-pile-chunk3-1000000-1050000", "dataset:tomekkorbak/detoxify-pile-chunk3-1050000-1100000", "dataset:tomekkorbak/detoxify-pile-chunk3-1100000-1150000", "dataset:tomekkorbak/detoxify-pile-chunk3-1150000-1200000", "dataset:tomekkorbak/detoxify-pile-chunk3-1200000-1250000", "dataset:tomekkorbak/detoxify-pile-chunk3-1250000-1300000", "dataset:tomekkorbak/detoxify-pile-chunk3-1300000-1350000", "dataset:tomekkorbak/detoxify-pile-chunk3-1350000-1400000", "dataset:tomekkorbak/detoxify-pile-chunk3-1400000-1450000", "dataset:tomekkorbak/detoxify-pile-chunk3-1450000-1500000", "dataset:tomekkorbak/detoxify-pile-chunk3-1500000-1550000", "dataset:tomekkorbak/detoxify-pile-chunk3-1550000-1600000", "dataset:tomekkorbak/detoxify-pile-chunk3-1600000-1650000", "dataset:tomekkorbak/detoxify-pile-chunk3-1650000-1700000", "dataset:tomekkorbak/detoxify-pile-chunk3-1700000-1750000", "dataset:tomekkorbak/detoxify-pile-chunk3-1750000-1800000", "dataset:tomekkorbak/detoxify-pile-chunk3-1800000-1850000", "dataset:tomekkorbak/detoxify-pile-chunk3-1850000-1900000", "dataset:tomekkorbak/detoxify-pile-chunk3-1900000-1950000", "license:mit", "region:us" ]
null
2022-12-15T13:27:41Z
--- language: - en license: mit tags: - generated_from_trainer datasets: - tomekkorbak/detoxify-pile-chunk3-0-50000 - tomekkorbak/detoxify-pile-chunk3-50000-100000 - tomekkorbak/detoxify-pile-chunk3-100000-150000 - tomekkorbak/detoxify-pile-chunk3-150000-200000 - tomekkorbak/detoxify-pile-chunk3-200000-250000 - tomekkorbak/detoxify-pile-chunk3-250000-300000 - tomekkorbak/detoxify-pile-chunk3-300000-350000 - tomekkorbak/detoxify-pile-chunk3-350000-400000 - tomekkorbak/detoxify-pile-chunk3-400000-450000 - tomekkorbak/detoxify-pile-chunk3-450000-500000 - tomekkorbak/detoxify-pile-chunk3-500000-550000 - tomekkorbak/detoxify-pile-chunk3-550000-600000 - tomekkorbak/detoxify-pile-chunk3-600000-650000 - tomekkorbak/detoxify-pile-chunk3-650000-700000 - tomekkorbak/detoxify-pile-chunk3-700000-750000 - tomekkorbak/detoxify-pile-chunk3-750000-800000 - tomekkorbak/detoxify-pile-chunk3-800000-850000 - tomekkorbak/detoxify-pile-chunk3-850000-900000 - tomekkorbak/detoxify-pile-chunk3-900000-950000 - tomekkorbak/detoxify-pile-chunk3-950000-1000000 - tomekkorbak/detoxify-pile-chunk3-1000000-1050000 - tomekkorbak/detoxify-pile-chunk3-1050000-1100000 - tomekkorbak/detoxify-pile-chunk3-1100000-1150000 - tomekkorbak/detoxify-pile-chunk3-1150000-1200000 - tomekkorbak/detoxify-pile-chunk3-1200000-1250000 - tomekkorbak/detoxify-pile-chunk3-1250000-1300000 - tomekkorbak/detoxify-pile-chunk3-1300000-1350000 - tomekkorbak/detoxify-pile-chunk3-1350000-1400000 - tomekkorbak/detoxify-pile-chunk3-1400000-1450000 - tomekkorbak/detoxify-pile-chunk3-1450000-1500000 - tomekkorbak/detoxify-pile-chunk3-1500000-1550000 - tomekkorbak/detoxify-pile-chunk3-1550000-1600000 - tomekkorbak/detoxify-pile-chunk3-1600000-1650000 - tomekkorbak/detoxify-pile-chunk3-1650000-1700000 - tomekkorbak/detoxify-pile-chunk3-1700000-1750000 - tomekkorbak/detoxify-pile-chunk3-1750000-1800000 - tomekkorbak/detoxify-pile-chunk3-1800000-1850000 - tomekkorbak/detoxify-pile-chunk3-1850000-1900000 - tomekkorbak/detoxify-pile-chunk3-1900000-1950000 model-index: - name: eloquent_stallman results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # eloquent_stallman This model was trained from scratch on the tomekkorbak/detoxify-pile-chunk3-0-50000, the tomekkorbak/detoxify-pile-chunk3-50000-100000, the tomekkorbak/detoxify-pile-chunk3-100000-150000, the tomekkorbak/detoxify-pile-chunk3-150000-200000, the tomekkorbak/detoxify-pile-chunk3-200000-250000, the tomekkorbak/detoxify-pile-chunk3-250000-300000, the tomekkorbak/detoxify-pile-chunk3-300000-350000, the tomekkorbak/detoxify-pile-chunk3-350000-400000, the tomekkorbak/detoxify-pile-chunk3-400000-450000, the tomekkorbak/detoxify-pile-chunk3-450000-500000, the tomekkorbak/detoxify-pile-chunk3-500000-550000, the tomekkorbak/detoxify-pile-chunk3-550000-600000, the tomekkorbak/detoxify-pile-chunk3-600000-650000, the tomekkorbak/detoxify-pile-chunk3-650000-700000, the tomekkorbak/detoxify-pile-chunk3-700000-750000, the tomekkorbak/detoxify-pile-chunk3-750000-800000, the tomekkorbak/detoxify-pile-chunk3-800000-850000, the tomekkorbak/detoxify-pile-chunk3-850000-900000, the tomekkorbak/detoxify-pile-chunk3-900000-950000, the tomekkorbak/detoxify-pile-chunk3-950000-1000000, the tomekkorbak/detoxify-pile-chunk3-1000000-1050000, the tomekkorbak/detoxify-pile-chunk3-1050000-1100000, the tomekkorbak/detoxify-pile-chunk3-1100000-1150000, the tomekkorbak/detoxify-pile-chunk3-1150000-1200000, the tomekkorbak/detoxify-pile-chunk3-1200000-1250000, the tomekkorbak/detoxify-pile-chunk3-1250000-1300000, the tomekkorbak/detoxify-pile-chunk3-1300000-1350000, the tomekkorbak/detoxify-pile-chunk3-1350000-1400000, the tomekkorbak/detoxify-pile-chunk3-1400000-1450000, the tomekkorbak/detoxify-pile-chunk3-1450000-1500000, the tomekkorbak/detoxify-pile-chunk3-1500000-1550000, the tomekkorbak/detoxify-pile-chunk3-1550000-1600000, the tomekkorbak/detoxify-pile-chunk3-1600000-1650000, the tomekkorbak/detoxify-pile-chunk3-1650000-1700000, the tomekkorbak/detoxify-pile-chunk3-1700000-1750000, the tomekkorbak/detoxify-pile-chunk3-1750000-1800000, the tomekkorbak/detoxify-pile-chunk3-1800000-1850000, the tomekkorbak/detoxify-pile-chunk3-1850000-1900000 and the tomekkorbak/detoxify-pile-chunk3-1900000-1950000 datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 25000 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.24.0 - Pytorch 1.11.0+cu113 - Datasets 2.5.1 - Tokenizers 0.11.6 # Full config {'dataset': {'datasets': ['tomekkorbak/detoxify-pile-chunk3-0-50000', 'tomekkorbak/detoxify-pile-chunk3-50000-100000', 'tomekkorbak/detoxify-pile-chunk3-100000-150000', 'tomekkorbak/detoxify-pile-chunk3-150000-200000', 'tomekkorbak/detoxify-pile-chunk3-200000-250000', 'tomekkorbak/detoxify-pile-chunk3-250000-300000', 'tomekkorbak/detoxify-pile-chunk3-300000-350000', 'tomekkorbak/detoxify-pile-chunk3-350000-400000', 'tomekkorbak/detoxify-pile-chunk3-400000-450000', 'tomekkorbak/detoxify-pile-chunk3-450000-500000', 'tomekkorbak/detoxify-pile-chunk3-500000-550000', 'tomekkorbak/detoxify-pile-chunk3-550000-600000', 'tomekkorbak/detoxify-pile-chunk3-600000-650000', 'tomekkorbak/detoxify-pile-chunk3-650000-700000', 'tomekkorbak/detoxify-pile-chunk3-700000-750000', 'tomekkorbak/detoxify-pile-chunk3-750000-800000', 'tomekkorbak/detoxify-pile-chunk3-800000-850000', 'tomekkorbak/detoxify-pile-chunk3-850000-900000', 'tomekkorbak/detoxify-pile-chunk3-900000-950000', 'tomekkorbak/detoxify-pile-chunk3-950000-1000000', 'tomekkorbak/detoxify-pile-chunk3-1000000-1050000', 'tomekkorbak/detoxify-pile-chunk3-1050000-1100000', 'tomekkorbak/detoxify-pile-chunk3-1100000-1150000', 'tomekkorbak/detoxify-pile-chunk3-1150000-1200000', 'tomekkorbak/detoxify-pile-chunk3-1200000-1250000', 'tomekkorbak/detoxify-pile-chunk3-1250000-1300000', 'tomekkorbak/detoxify-pile-chunk3-1300000-1350000', 'tomekkorbak/detoxify-pile-chunk3-1350000-1400000', 'tomekkorbak/detoxify-pile-chunk3-1400000-1450000', 'tomekkorbak/detoxify-pile-chunk3-1450000-1500000', 'tomekkorbak/detoxify-pile-chunk3-1500000-1550000', 'tomekkorbak/detoxify-pile-chunk3-1550000-1600000', 'tomekkorbak/detoxify-pile-chunk3-1600000-1650000', 'tomekkorbak/detoxify-pile-chunk3-1650000-1700000', 'tomekkorbak/detoxify-pile-chunk3-1700000-1750000', 'tomekkorbak/detoxify-pile-chunk3-1750000-1800000', 'tomekkorbak/detoxify-pile-chunk3-1800000-1850000', 'tomekkorbak/detoxify-pile-chunk3-1850000-1900000', 'tomekkorbak/detoxify-pile-chunk3-1900000-1950000'], 'filter_threshold': 0.00078, 'is_split_by_sentences': True, 'skip_tokens': 1661599744}, 'generation': {'metrics_configs': [{}, {'n': 1}, {'n': 2}, {'n': 5}], 'scenario_configs': [{'generate_kwargs': {'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_samples': 2048}, {'generate_kwargs': {'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'challenging_rtp', 'num_samples': 2048, 'prompts_path': 'resources/challenging_rtp.jsonl'}], 'scorer_config': {'device': 'cuda:0'}}, 'kl_gpt3_callback': {'max_tokens': 64, 'num_samples': 4096}, 'model': {'from_scratch': False, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'model_kwargs': {'revision': '81a1701e025d2c65ae6e8c2103df559071523ee0'}, 'path_or_name': 'tomekkorbak/goofy_pasteur'}, 'objective': {'name': 'MLE'}, 'tokenizer': {'path_or_name': 'gpt2'}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 64, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'eloquent_stallman', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.0005, 'logging_first_step': True, 'logging_steps': 1, 'num_tokens': 3300000000, 'output_dir': 'training_output104340', 'per_device_train_batch_size': 16, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 25354, 'save_strategy': 'steps', 'seed': 42, 'tokens_already_seen': 1661599744, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/tomekkorbak/apo/runs/3o0evgmf
Dreamoon/ppo-LunarLander-v2
Dreamoon
2022-12-15T13:21:13Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-09T20:34:55Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -64.07 +/- 67.43 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
LucianoDeben/ppo-Huggy
LucianoDeben
2022-12-15T13:10:35Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2022-12-15T13:10:21Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: LucianoDeben/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
gabrieleai/gamindocar-2000-700
gabrieleai
2022-12-15T13:06:17Z
1
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2022-12-15T13:04:11Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### Gamindocar-2000-700 Dreambooth model trained by gabrieleai with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Or you can run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb) Sample pictures of this concept:
ibadrehman/ppo-Huggy-01
ibadrehman
2022-12-15T12:40:16Z
10
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2022-12-15T12:40:09Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: ibadrehman/ppo-Huggy-01 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
bvk1ng/bipedal_walker_ppo
bvk1ng
2022-12-15T12:39:15Z
1
0
stable-baselines3
[ "stable-baselines3", "BipedalWalker-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-15T12:34:54Z
--- library_name: stable-baselines3 tags: - BipedalWalker-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: Proximal Policy Optimisation (PPO) results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: BipedalWalker-v3 type: BipedalWalker-v3 metrics: - type: mean_reward value: 209.63 +/- 82.30 name: mean_reward verified: false --- # **Proximal Policy Optimisation (PPO)** Agent playing **BipedalWalker-v3** This is a trained model of a **Proximal Policy Optimisation (PPO)** agent playing **BipedalWalker-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
SRM47/gpt2-large-paraphraser
SRM47
2022-12-15T12:33:15Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-12-15T10:50:36Z
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2-large-paraphraser results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-large-paraphraser This model is a fine-tuned version of [gpt2-large](https://huggingface.co/gpt2-large) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
scikit-learn/blog-example
scikit-learn
2022-12-15T12:31:24Z
0
0
sklearn
[ "sklearn", "skops", "tabular-classification", "region:us" ]
tabular-classification
2022-12-15T12:21:52Z
--- library_name: sklearn tags: - sklearn - skops - tabular-classification model_file: model.pkl widget: structuredData: area_mean: - 407.4 - 1335.0 - 428.0 area_se: - 26.99 - 77.02 - 17.12 area_worst: - 508.9 - 1946.0 - 546.3 compactness_mean: - 0.05991 - 0.1076 - 0.069 compactness_se: - 0.01065 - 0.01895 - 0.01727 compactness_worst: - 0.1049 - 0.3055 - 0.188 concave points_mean: - 0.02069 - 0.08941 - 0.01393 concave points_se: - 0.009175 - 0.01232 - 0.006747 concave points_worst: - 0.06544 - 0.2112 - 0.06913 concavity_mean: - 0.02638 - 0.1527 - 0.02669 concavity_se: - 0.01245 - 0.02681 - 0.02045 concavity_worst: - 0.08105 - 0.4159 - 0.1471 fractal_dimension_mean: - 0.05934 - 0.05478 - 0.06057 fractal_dimension_se: - 0.001461 - 0.001711 - 0.002922 fractal_dimension_worst: - 0.06487 - 0.07055 - 0.07993 perimeter_mean: - 73.28 - 134.8 - 75.51 perimeter_se: - 2.684 - 4.119 - 1.444 perimeter_worst: - 83.12 - 166.8 - 85.22 radius_mean: - 11.5 - 20.64 - 11.84 radius_se: - 0.3927 - 0.6137 - 0.2222 radius_worst: - 12.97 - 25.37 - 13.3 smoothness_mean: - 0.09345 - 0.09446 - 0.08871 smoothness_se: - 0.00638 - 0.006211 - 0.005517 smoothness_worst: - 0.1183 - 0.1562 - 0.128 symmetry_mean: - 0.1834 - 0.1571 - 0.1533 symmetry_se: - 0.02292 - 0.01276 - 0.01616 symmetry_worst: - 0.274 - 0.2689 - 0.2535 texture_mean: - 18.45 - 17.35 - 18.94 texture_se: - 0.8429 - 0.6575 - 0.8652 texture_worst: - 22.46 - 23.17 - 24.99 --- # Model description This is a Logistic Regression trained on breast cancer dataset. ## Intended uses & limitations This model is trained for educational purposes. ## Training Procedure ### Hyperparameters The model is trained with below hyperparameters. <details> <summary> Click to expand </summary> | Hyperparameter | Value | |--------------------------|-----------------------------------------------------------------| | memory | | | steps | [('scaler', StandardScaler()), ('model', LogisticRegression())] | | verbose | False | | scaler | StandardScaler() | | model | LogisticRegression() | | scaler__copy | True | | scaler__with_mean | True | | scaler__with_std | True | | model__C | 1.0 | | model__class_weight | | | model__dual | False | | model__fit_intercept | True | | model__intercept_scaling | 1 | | model__l1_ratio | | | model__max_iter | 100 | | model__multi_class | auto | | model__n_jobs | | | model__penalty | l2 | | model__random_state | | | model__solver | lbfgs | | model__tol | 0.0001 | | model__verbose | 0 | | model__warm_start | False | </details> ### Model Plot The model plot is below. <style>#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 {color: black;background-color: white;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 pre{padding: 0;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-toggleable {background-color: white;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-estimator:hover {background-color: #d4ebff;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-item {z-index: 1;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-parallel-item:only-child::after {width: 0;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-text-repr-fallback {display: none;}</style><div id="sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;scaler&#x27;, StandardScaler()), (&#x27;model&#x27;, LogisticRegression())])</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="76a688ab-e260-4cf7-a9f2-bf77900be27c" type="checkbox" ><label for="76a688ab-e260-4cf7-a9f2-bf77900be27c" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[(&#x27;scaler&#x27;, StandardScaler()), (&#x27;model&#x27;, LogisticRegression())])</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="6a4fcd10-6b63-40a6-a848-13717b9f7c82" type="checkbox" ><label for="6a4fcd10-6b63-40a6-a848-13717b9f7c82" class="sk-toggleable__label sk-toggleable__label-arrow">StandardScaler</label><div class="sk-toggleable__content"><pre>StandardScaler()</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="974bd93d-19db-4a61-b7ff-66d07e5bbadb" type="checkbox" ><label for="974bd93d-19db-4a61-b7ff-66d07e5bbadb" class="sk-toggleable__label sk-toggleable__label-arrow">LogisticRegression</label><div class="sk-toggleable__content"><pre>LogisticRegression()</pre></div></div></div></div></div></div></div> ## Evaluation Results You can find the details about evaluation process and the evaluation results. | Metric | Value | |----------|----------| | accuracy | 0.965035 | | f1 score | 0.965035 | # How to Get Started with the Model Use the code below to get started with the model. ```python import joblib import json import pandas as pd clf = joblib.load(model.pkl) with open("config.json") as f: config = json.load(f) clf.predict(pd.DataFrame.from_dict(config["sklearn"]["example_input"])) ``` # Additional Content ## Confusion Matrix ![Confusion Matrix](confusion_matrix.png)
MarcusAGray/q-FrozenLake-v1-8x8-noSlippery
MarcusAGray
2022-12-15T12:24:56Z
0
0
null
[ "FrozenLake-v1-8x8-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-15T12:19:13Z
--- tags: - FrozenLake-v1-8x8-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-8x8-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-8x8-no_slippery type: FrozenLake-v1-8x8-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="MarcusAGray/q-FrozenLake-v1-8x8-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
emmashe15/ppo-LunarLander-v2-TEST
emmashe15
2022-12-15T12:10:45Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-15T11:54:29Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 262.61 +/- 21.13 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
supermy/c2m-mt5
supermy
2022-12-15T12:07:27Z
4
3
transformers
[ "transformers", "pytorch", "mt5", "feature-extraction", "zh", "dataset:c2m", "endpoints_compatible", "region:us" ]
feature-extraction
2022-12-15T11:31:14Z
--- language: zh datasets: c2m inference: parameters: max_length: 108 num_return_sequences: 1 do_sample: True widget: - text: "晋太元中,武陵人捕鱼为业。缘溪行,忘路之远近。忽逢桃花林,夹岸数百步,中无杂树,芳草鲜美,落英缤纷。渔人甚异之,复前行,欲穷其林。林尽水源,便得一山,山有小口,仿佛若有光。便舍船,从口入。初极狭,才通人。复行数十步,豁然开朗。土地平旷,屋舍俨然,有良田、美池、桑竹之属。阡陌交通,鸡犬相闻。其中往来种作,男女衣着,悉如外人。黄发垂髫,并怡然自乐。" example_title: "桃花源记" - text: "往者不可谏,来者犹可追。" example_title: "来者犹可追" - text: "逝者如斯夫!不舍昼夜。" example_title: "逝者如斯夫" --- # 文言文 to 现代文 ## Model description ## How to use 使用 pipeline 调用模型: ```python >>> from transformers import pipeline >>> model_checkpoint = "supermy/c2m-mt5" >>> translator = pipeline("translation", model=model_checkpoint, num_return_sequences=1, max_length=52, truncation=True,) >>> translator("往者不可谏,来者犹可追。") [{'translation_text': '过 去 的 事 情 不能 劝 谏 , 未来 的 事 情 还 可以 追 回 来 。 如 果 过 去 的 事 情 不能 劝 谏 , 那 么 , 未来 的 事 情 还 可以 追 回 来 。 如 果 过 去 的 事 情'}] >>> translator("福兮祸所伏,祸兮福所倚。",do_sample=True) [{'translation_text': '幸 福 是 祸 患 所 隐 藏 的 , 灾 祸 是 福 祸 所 依 托 的 。 这 些 都 是 幸 福 所 依 托 的 。 这 些 都 是 幸 福 所 带 来 的 。 幸 福 啊 , 也 是 幸 福'}] >>> translator("成事不说,遂事不谏,既往不咎。", num_return_sequences=1,do_sample=True) [{'translation_text': '事 情 不 高 兴 , 事 情 不 劝 谏 , 过 去 的 事 就 不 会 责 怪 。 事 情 没 有 多 久 了 , 事 情 没 有 多 久 , 事 情 没 有 多 久 了 , 事 情 没 有 多'}] >>> translator("逝者如斯夫!不舍昼夜。",num_return_sequences=1,max_length=30) [{'translation_text': '逝 去 的 人 就 像 这 样 啊 , 不分 昼夜 地 去 追 赶 它 们 。 这 样 的 人 就 不 会 忘 记'}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("supermy/c2m-mt5") model = AutoModelForSeq2SeqLM.from_pretrained("supermy/c2m-mt5") text = "用你喜欢的任何文本替换我。" encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Training data 非常全的文言文(古文)-现代文平行语料,基本涵盖了大部分经典古籍著作。 原始爬取的数据是篇章级对齐,经过脚本分句(按照句号分号感叹号问号划分)以及人工校对,形成共计约96万句对。目录bitext下是文言文-现代文对齐的平行数据。此外,目录source下是文言文单语数据,target下是现代文单语数据,这两个目录下的文件内容按行对齐。 以下为数据统计信息。其中,短篇章中包括了《论语》、《孟子》、《左传》等篇幅较短的古籍,已和《资治通鉴》合并。 |书名|句数 |:--|:--| 短篇章和资治通鉴|348727 元史|21182 北史|25823 北书|10947 南史|13838 南齐书|13137 史记|17701 后汉书|17753 周书|14930 太平广记|59358 宋书|23794 宋史|77853 徐霞客游记|22750 新五代史|10147 新唐书|12359 旧五代史|11377 旧唐书|29185 明史|85179 晋书|21133 梁书|14318 水经注全|11630 汉书|37622 辽史|9278 金史|13758 陈书|7096 隋书|8204 魏书|28178 **总计**|**967257** 《短篇章和资治通鉴》中各书籍统计如下(此部分数据量不完全准确): |书名|句数 |:--|:--| 资治通鉴|7.95w 左传|1.09w 大学章句集注| 86 反经| 4211 公孙龙子| 73 管子| 6266 鬼谷子| 385 韩非子| 4325 淮南子| 2669 黄帝内经| 6162 皇帝四经| 243 将苑| 100 金刚经| 193 孔子家语| 138 老子| 398 了凡四训| 31 礼记| 4917 列子| 1735 六韬| 693 六祖坛经| 949 论语| 988 吕氏春秋| 2473 孟子| 1654 梦溪笔谈| 1280 墨子| 2921 千字文| 82 清史稿| 1604 三字经| 234 山海经| 919 伤寒论| 712 商君书| 916 尚书| 1048 世说新语| 3044 司马法| 132 搜神记| 1963 搜神后记| 540 素书| 61 孙膑兵法| 230 孙子兵法| 338 天工开物| 807 尉缭子| 226 文昌孝经| 194 文心雕龙| 1388 吴子| 136 孝经| 102 笑林广记| 1496 荀子| 3131 颜氏家训| 510 仪礼| 2495 易传| 711 逸周书| 1505 战国策| 3318 贞观政要| 1291 中庸| 206 周礼| 2026 周易| 460 庄子| 1698 百战奇略| 800 论衡| 1.19w 智囊|2165 罗织经|188 朱子家训|31 抱朴子|217 地藏经|547 国语|3841 容斋随笔|2921 幼学琼林|1372 三略|268 围炉夜话|387 冰鉴|120 如果您使用该语料库,请注明出处:https://github.com/NiuTrans/Classical-Modern 感谢为该语料库做出贡献的成员:丁佳鹏、杨文权、刘晓晴、曹润柘、罗应峰。 ``` ``` ## Training procedure 在英伟达16G显卡训练了 4 天整,共计68 次。 [文言文数据集](https://huggingface.co/datasets/supermy/Classical-Modern) 训练数据. 模型 [MT5](google/mt5-small) ``` [INFO|trainer.py:1628] 2022-12-15 16:08:36,696 >> ***** Running training ***** [INFO|trainer.py:1629] 2022-12-15 16:08:36,696 >> Num examples = 967255 [INFO|trainer.py:1630] 2022-12-15 16:08:36,697 >> Num Epochs = 6 [INFO|trainer.py:1631] 2022-12-15 16:08:36,697 >> Instantaneous batch size per device = 12 [INFO|trainer.py:1632] 2022-12-15 16:08:36,697 >> Total train batch size (w. parallel, distributed & accumulation) = 12 [INFO|trainer.py:1633] 2022-12-15 16:08:36,697 >> Gradient Accumulation steps = 1 [INFO|trainer.py:1634] 2022-12-15 16:08:36,697 >> Total optimization steps = 483630 [INFO|trainer.py:1654] 2022-12-15 16:08:36,698 >> Continuing training from checkpoint, will skip to saved global_step [INFO|trainer.py:1655] 2022-12-15 16:08:36,698 >> Continuing training from epoch 5 [INFO|trainer.py:1656] 2022-12-15 16:08:36,698 >> Continuing training from global step 465000 {'loss': 5.2906, 'learning_rate': 1.8743667679837894e-06, 'epoch': 5.78} {'loss': 5.3196, 'learning_rate': 1.8226743584971985e-06, 'epoch': 5.78} {'loss': 5.3467, 'learning_rate': 6.513243595310464e-08, 'epoch': 5.99} {'loss': 5.3363, 'learning_rate': 1.344002646651366e-08, 'epoch': 6.0} {'train_runtime': 6277.5234, 'train_samples_per_second': 924.494, 'train_steps_per_second': 77.042, 'train_loss': 0.2044413571775476, 'epoch': 6.0} ***** train metrics ***** epoch = 6.0 train_loss = 0.2044 train_runtime = 1:44:37.52 train_samples = 967255 train_samples_per_second = 924.494 train_steps_per_second = 77.042 12/15/2022 17:53:23 - INFO - __main__ - *** Evaluate *** [INFO|trainer.py:2920] 2022-12-15 17:53:23,729 >> ***** Running Evaluation ***** [INFO|trainer.py:2922] 2022-12-15 17:53:23,729 >> Num examples = 200 [INFO|trainer.py:2925] 2022-12-15 17:53:23,729 >> Batch size = 12 100%|██████████| 17/17 [00:07<00:00, 2.29it/s] [INFO|modelcard.py:443] 2022-12-15 17:53:32,737 >> Dropping the following result as it does not have all the necessary fields: {'task': {'name': 'Translation', 'type': 'translation'}, 'metrics': [{'name': 'Bleu', 'type': 'bleu', 'value': 0.7225}]} ***** eval metrics ***** epoch = 6.0 eval_bleu = 0.7225 eval_gen_len = 12.285 eval_loss = 6.6782 eval_runtime = 0:00:07.77 eval_samples = 200 eval_samples_per_second = 25.721 eval_steps_per_second = 2.186 ```
Nenma/finetuning-sentiment-model-25k-samples
Nenma
2022-12-15T11:55:52Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-15T10:52:45Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-25k-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: train args: plain_text metrics: - name: Accuracy type: accuracy value: 0.93208 - name: F1 type: f1 value: 0.932183081715792 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-25k-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2198 - Accuracy: 0.9321 - F1: 0.9322 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
odahl/q-FrozenLake-v1-4x4-noSlippery
odahl
2022-12-15T11:44:12Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-15T11:41:11Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="odahl/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
zhiyil/roberta-base-finetuned-cola
zhiyil
2022-12-15T11:40:48Z
3
0
transformers
[ "transformers", "pytorch", "optimum_graphcore", "roberta", "text-classification", "generated_from_trainer", "dataset:glue", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-15T11:11:45Z
--- license: mit tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: roberta-base-finetuned-cola results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-cola This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6074 - Matthews Correlation: 0.6221 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: IPU - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - total_eval_batch_size: 5 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - training precision: Mixed Precision ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.4536 | 1.0 | 534 | 0.4104 | 0.5738 | | 0.4876 | 2.0 | 1068 | 0.5156 | 0.5729 | | 0.1281 | 3.0 | 1602 | 0.5083 | 0.6145 | | 0.0441 | 4.0 | 2136 | 0.5483 | 0.6119 | | 0.2985 | 5.0 | 2670 | 0.6074 | 0.6221 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.10.0+cpu - Datasets 2.7.1 - Tokenizers 0.12.0
tomekkorbak/kind_poitras
tomekkorbak
2022-12-15T11:27:37Z
0
0
null
[ "generated_from_trainer", "en", "dataset:tomekkorbak/detoxify-pile-chunk3-0-50000", "dataset:tomekkorbak/detoxify-pile-chunk3-50000-100000", "dataset:tomekkorbak/detoxify-pile-chunk3-100000-150000", "dataset:tomekkorbak/detoxify-pile-chunk3-150000-200000", "dataset:tomekkorbak/detoxify-pile-chunk3-200000-250000", "dataset:tomekkorbak/detoxify-pile-chunk3-250000-300000", "dataset:tomekkorbak/detoxify-pile-chunk3-300000-350000", "dataset:tomekkorbak/detoxify-pile-chunk3-350000-400000", "dataset:tomekkorbak/detoxify-pile-chunk3-400000-450000", "dataset:tomekkorbak/detoxify-pile-chunk3-450000-500000", "dataset:tomekkorbak/detoxify-pile-chunk3-500000-550000", "dataset:tomekkorbak/detoxify-pile-chunk3-550000-600000", "dataset:tomekkorbak/detoxify-pile-chunk3-600000-650000", "dataset:tomekkorbak/detoxify-pile-chunk3-650000-700000", "dataset:tomekkorbak/detoxify-pile-chunk3-700000-750000", "dataset:tomekkorbak/detoxify-pile-chunk3-750000-800000", "dataset:tomekkorbak/detoxify-pile-chunk3-800000-850000", "dataset:tomekkorbak/detoxify-pile-chunk3-850000-900000", "dataset:tomekkorbak/detoxify-pile-chunk3-900000-950000", "dataset:tomekkorbak/detoxify-pile-chunk3-950000-1000000", "dataset:tomekkorbak/detoxify-pile-chunk3-1000000-1050000", "dataset:tomekkorbak/detoxify-pile-chunk3-1050000-1100000", "dataset:tomekkorbak/detoxify-pile-chunk3-1100000-1150000", "dataset:tomekkorbak/detoxify-pile-chunk3-1150000-1200000", "dataset:tomekkorbak/detoxify-pile-chunk3-1200000-1250000", "dataset:tomekkorbak/detoxify-pile-chunk3-1250000-1300000", "dataset:tomekkorbak/detoxify-pile-chunk3-1300000-1350000", "dataset:tomekkorbak/detoxify-pile-chunk3-1350000-1400000", "dataset:tomekkorbak/detoxify-pile-chunk3-1400000-1450000", "dataset:tomekkorbak/detoxify-pile-chunk3-1450000-1500000", "dataset:tomekkorbak/detoxify-pile-chunk3-1500000-1550000", "dataset:tomekkorbak/detoxify-pile-chunk3-1550000-1600000", "dataset:tomekkorbak/detoxify-pile-chunk3-1600000-1650000", "dataset:tomekkorbak/detoxify-pile-chunk3-1650000-1700000", "dataset:tomekkorbak/detoxify-pile-chunk3-1700000-1750000", "dataset:tomekkorbak/detoxify-pile-chunk3-1750000-1800000", "dataset:tomekkorbak/detoxify-pile-chunk3-1800000-1850000", "dataset:tomekkorbak/detoxify-pile-chunk3-1850000-1900000", "dataset:tomekkorbak/detoxify-pile-chunk3-1900000-1950000", "license:mit", "region:us" ]
null
2022-12-15T11:27:21Z
--- language: - en license: mit tags: - generated_from_trainer datasets: - tomekkorbak/detoxify-pile-chunk3-0-50000 - tomekkorbak/detoxify-pile-chunk3-50000-100000 - tomekkorbak/detoxify-pile-chunk3-100000-150000 - tomekkorbak/detoxify-pile-chunk3-150000-200000 - tomekkorbak/detoxify-pile-chunk3-200000-250000 - tomekkorbak/detoxify-pile-chunk3-250000-300000 - tomekkorbak/detoxify-pile-chunk3-300000-350000 - tomekkorbak/detoxify-pile-chunk3-350000-400000 - tomekkorbak/detoxify-pile-chunk3-400000-450000 - tomekkorbak/detoxify-pile-chunk3-450000-500000 - tomekkorbak/detoxify-pile-chunk3-500000-550000 - tomekkorbak/detoxify-pile-chunk3-550000-600000 - tomekkorbak/detoxify-pile-chunk3-600000-650000 - tomekkorbak/detoxify-pile-chunk3-650000-700000 - tomekkorbak/detoxify-pile-chunk3-700000-750000 - tomekkorbak/detoxify-pile-chunk3-750000-800000 - tomekkorbak/detoxify-pile-chunk3-800000-850000 - tomekkorbak/detoxify-pile-chunk3-850000-900000 - tomekkorbak/detoxify-pile-chunk3-900000-950000 - tomekkorbak/detoxify-pile-chunk3-950000-1000000 - tomekkorbak/detoxify-pile-chunk3-1000000-1050000 - tomekkorbak/detoxify-pile-chunk3-1050000-1100000 - tomekkorbak/detoxify-pile-chunk3-1100000-1150000 - tomekkorbak/detoxify-pile-chunk3-1150000-1200000 - tomekkorbak/detoxify-pile-chunk3-1200000-1250000 - tomekkorbak/detoxify-pile-chunk3-1250000-1300000 - tomekkorbak/detoxify-pile-chunk3-1300000-1350000 - tomekkorbak/detoxify-pile-chunk3-1350000-1400000 - tomekkorbak/detoxify-pile-chunk3-1400000-1450000 - tomekkorbak/detoxify-pile-chunk3-1450000-1500000 - tomekkorbak/detoxify-pile-chunk3-1500000-1550000 - tomekkorbak/detoxify-pile-chunk3-1550000-1600000 - tomekkorbak/detoxify-pile-chunk3-1600000-1650000 - tomekkorbak/detoxify-pile-chunk3-1650000-1700000 - tomekkorbak/detoxify-pile-chunk3-1700000-1750000 - tomekkorbak/detoxify-pile-chunk3-1750000-1800000 - tomekkorbak/detoxify-pile-chunk3-1800000-1850000 - tomekkorbak/detoxify-pile-chunk3-1850000-1900000 - tomekkorbak/detoxify-pile-chunk3-1900000-1950000 model-index: - name: kind_poitras results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kind_poitras This model was trained from scratch on the tomekkorbak/detoxify-pile-chunk3-0-50000, the tomekkorbak/detoxify-pile-chunk3-50000-100000, the tomekkorbak/detoxify-pile-chunk3-100000-150000, the tomekkorbak/detoxify-pile-chunk3-150000-200000, the tomekkorbak/detoxify-pile-chunk3-200000-250000, the tomekkorbak/detoxify-pile-chunk3-250000-300000, the tomekkorbak/detoxify-pile-chunk3-300000-350000, the tomekkorbak/detoxify-pile-chunk3-350000-400000, the tomekkorbak/detoxify-pile-chunk3-400000-450000, the tomekkorbak/detoxify-pile-chunk3-450000-500000, the tomekkorbak/detoxify-pile-chunk3-500000-550000, the tomekkorbak/detoxify-pile-chunk3-550000-600000, the tomekkorbak/detoxify-pile-chunk3-600000-650000, the tomekkorbak/detoxify-pile-chunk3-650000-700000, the tomekkorbak/detoxify-pile-chunk3-700000-750000, the tomekkorbak/detoxify-pile-chunk3-750000-800000, the tomekkorbak/detoxify-pile-chunk3-800000-850000, the tomekkorbak/detoxify-pile-chunk3-850000-900000, the tomekkorbak/detoxify-pile-chunk3-900000-950000, the tomekkorbak/detoxify-pile-chunk3-950000-1000000, the tomekkorbak/detoxify-pile-chunk3-1000000-1050000, the tomekkorbak/detoxify-pile-chunk3-1050000-1100000, the tomekkorbak/detoxify-pile-chunk3-1100000-1150000, the tomekkorbak/detoxify-pile-chunk3-1150000-1200000, the tomekkorbak/detoxify-pile-chunk3-1200000-1250000, the tomekkorbak/detoxify-pile-chunk3-1250000-1300000, the tomekkorbak/detoxify-pile-chunk3-1300000-1350000, the tomekkorbak/detoxify-pile-chunk3-1350000-1400000, the tomekkorbak/detoxify-pile-chunk3-1400000-1450000, the tomekkorbak/detoxify-pile-chunk3-1450000-1500000, the tomekkorbak/detoxify-pile-chunk3-1500000-1550000, the tomekkorbak/detoxify-pile-chunk3-1550000-1600000, the tomekkorbak/detoxify-pile-chunk3-1600000-1650000, the tomekkorbak/detoxify-pile-chunk3-1650000-1700000, the tomekkorbak/detoxify-pile-chunk3-1700000-1750000, the tomekkorbak/detoxify-pile-chunk3-1750000-1800000, the tomekkorbak/detoxify-pile-chunk3-1800000-1850000, the tomekkorbak/detoxify-pile-chunk3-1850000-1900000 and the tomekkorbak/detoxify-pile-chunk3-1900000-1950000 datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 25000 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.24.0 - Pytorch 1.11.0+cu113 - Datasets 2.5.1 - Tokenizers 0.11.6 # Full config {'dataset': {'datasets': ['tomekkorbak/detoxify-pile-chunk3-0-50000', 'tomekkorbak/detoxify-pile-chunk3-50000-100000', 'tomekkorbak/detoxify-pile-chunk3-100000-150000', 'tomekkorbak/detoxify-pile-chunk3-150000-200000', 'tomekkorbak/detoxify-pile-chunk3-200000-250000', 'tomekkorbak/detoxify-pile-chunk3-250000-300000', 'tomekkorbak/detoxify-pile-chunk3-300000-350000', 'tomekkorbak/detoxify-pile-chunk3-350000-400000', 'tomekkorbak/detoxify-pile-chunk3-400000-450000', 'tomekkorbak/detoxify-pile-chunk3-450000-500000', 'tomekkorbak/detoxify-pile-chunk3-500000-550000', 'tomekkorbak/detoxify-pile-chunk3-550000-600000', 'tomekkorbak/detoxify-pile-chunk3-600000-650000', 'tomekkorbak/detoxify-pile-chunk3-650000-700000', 'tomekkorbak/detoxify-pile-chunk3-700000-750000', 'tomekkorbak/detoxify-pile-chunk3-750000-800000', 'tomekkorbak/detoxify-pile-chunk3-800000-850000', 'tomekkorbak/detoxify-pile-chunk3-850000-900000', 'tomekkorbak/detoxify-pile-chunk3-900000-950000', 'tomekkorbak/detoxify-pile-chunk3-950000-1000000', 'tomekkorbak/detoxify-pile-chunk3-1000000-1050000', 'tomekkorbak/detoxify-pile-chunk3-1050000-1100000', 'tomekkorbak/detoxify-pile-chunk3-1100000-1150000', 'tomekkorbak/detoxify-pile-chunk3-1150000-1200000', 'tomekkorbak/detoxify-pile-chunk3-1200000-1250000', 'tomekkorbak/detoxify-pile-chunk3-1250000-1300000', 'tomekkorbak/detoxify-pile-chunk3-1300000-1350000', 'tomekkorbak/detoxify-pile-chunk3-1350000-1400000', 'tomekkorbak/detoxify-pile-chunk3-1400000-1450000', 'tomekkorbak/detoxify-pile-chunk3-1450000-1500000', 'tomekkorbak/detoxify-pile-chunk3-1500000-1550000', 'tomekkorbak/detoxify-pile-chunk3-1550000-1600000', 'tomekkorbak/detoxify-pile-chunk3-1600000-1650000', 'tomekkorbak/detoxify-pile-chunk3-1650000-1700000', 'tomekkorbak/detoxify-pile-chunk3-1700000-1750000', 'tomekkorbak/detoxify-pile-chunk3-1750000-1800000', 'tomekkorbak/detoxify-pile-chunk3-1800000-1850000', 'tomekkorbak/detoxify-pile-chunk3-1850000-1900000', 'tomekkorbak/detoxify-pile-chunk3-1900000-1950000'], 'filter_threshold': 0.00078, 'is_split_by_sentences': True, 'skip_tokens': 1661599744}, 'generation': {'metrics_configs': [{}, {'n': 1}, {'n': 2}, {'n': 5}], 'scenario_configs': [{'generate_kwargs': {'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_samples': 2048}, {'generate_kwargs': {'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'challenging_rtp', 'num_samples': 2048, 'prompts_path': 'resources/challenging_rtp.jsonl'}], 'scorer_config': {'device': 'cuda:0'}}, 'kl_gpt3_callback': {'max_tokens': 64, 'num_samples': 4096}, 'model': {'from_scratch': False, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'model_kwargs': {'revision': '81a1701e025d2c65ae6e8c2103df559071523ee0'}, 'path_or_name': 'tomekkorbak/goofy_pasteur'}, 'objective': {'name': 'MLE'}, 'tokenizer': {'path_or_name': 'gpt2'}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 64, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'kind_poitras', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.0005, 'logging_first_step': True, 'logging_steps': 1, 'num_tokens': 3300000000, 'output_dir': 'training_output104340', 'per_device_train_batch_size': 16, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 25354, 'save_strategy': 'steps', 'seed': 42, 'tokens_already_seen': 1661599744, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/tomekkorbak/apo/runs/1u3qemu1
Kwaku/social_media_sa_finetuned_2
Kwaku
2022-12-15T11:25:09Z
5
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "eng", "dataset:banking77", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-11T17:12:39Z
--- language: eng datasets: - banking77 --- # Social Media Sentiment Analysis Model (Finetuned 2) This is an updated fine-tuned version of the [Social Media Sentiment Analysis Model](https://huggingface.co/Kwaku/social_media_sa) which is a finetuned version of [Distilbert](https://huggingface.co/models?other=distilbert). It's best suited for sentiment-analysis. ## Model Description Social Media Sentiment Analysis Model was trained on the [dataset consisting of tweets](https://www.kaggle.com/code/mohamednabill7/sentiment-analysis-of-twitter-data/data) obtained from Kaggle." ## Intended Uses and Limitations This model is meant for sentiment-analysis. Because it was trained on a corpus of tweets, it is familiar with social media jargons. ### How to use You can use this model directly with a pipeline for text generation: ```python >>>from transformers import pipeline >>> model_name = "Kwaku/social_media_sa_finetuned_2" >>> generator = pipeline("sentiment-analysis", model=model_name) >>> result = generator("I like this model") >>> print(result) Generated output: [{'label': 'positive', 'score': 0.9992923736572266}] ``` ### Limitations and bias This model inherits the bias of its parent, [Distilbert](https://huggingface.co/models?other=distilbert). Besides that, it was trained on only 1000 randomly selected sequences, and thus does not achieve a high probability rate. It does fairly well nonetheless.
GeneralAwareness/Dth
GeneralAwareness
2022-12-15T11:05:02Z
0
6
null
[ "stable-diffusion", "v2", "text-to-image", "image-to-image", "Embedding", "en", "license:cc-by-nc-sa-4.0", "region:us" ]
text-to-image
2022-12-15T11:01:53Z
--- license: cc-by-nc-sa-4.0 language: - en thumbnail: "https://huggingface.co/GeneralAwareness/Dth/resolve/main/an_ancient_bone_legion_dth.png" tags: - stable-diffusion - v2 - text-to-image - image-to-image - Embedding --- Textual Inversion Embedding by General Awareness For SD 2.x trained on 768x768 images from various sources. Install by downloading the .pt embedding, and put it in the \embeddings folder A bones/death/pencil drawing themed embedding that was created with 16 vectors. Using this with my previous Unddep embedding does add colour to water, etc... A good combo to try. Use keyword: dth Without this embedding and with this embedding. ![Single Samples](https://huggingface.co/GeneralAwareness/Dth/resolve/main/without_dth.png) ![Single_Samples](https://huggingface.co/GeneralAwareness/Dth/resolve/main/with_dth.png) Without this embedding and with this embedding. ![Single Samples](https://huggingface.co/GeneralAwareness/Dth/resolve/main/without_dth2.png) ![Single_Samples](https://huggingface.co/GeneralAwareness/Dth/resolve/main/with_dth2.png) Without this embedding and with this embedding. ![Single Samples](https://huggingface.co/GeneralAwareness/Dth/resolve/main/without_dth3.png) ![Single_Samples](https://huggingface.co/GeneralAwareness/Dth/resolve/main/with_dth3.png) A bone house. ![Single_Samples](https://huggingface.co/GeneralAwareness/Dth/resolve/main/a_bone_house_dth.png) The Bone Queen ![Single_Samples](https://huggingface.co/GeneralAwareness/Dth/resolve/main/the_bone_queen_dth.png) The Bone Queen, queen of bones. ![Single_Samples](https://huggingface.co/GeneralAwareness/Dth/resolve/main/the_bone_queen_queen_of_the_bones_dth.png) An ancient bone legion. ![Single_Samples](https://huggingface.co/GeneralAwareness/Dth/resolve/main/an_ancient_bone_legion_dth.png) An abandoned house. ![Single_Samples](https://huggingface.co/GeneralAwareness/Dth/resolve/main/an_abandoned_house_dth.png) A stairway to Heaven ![Single_Samples](https://huggingface.co/GeneralAwareness/Dth/resolve/main/a_stairway_to_Heaven_dth.png) A tall proud tree. ![Single_Samples](https://huggingface.co/GeneralAwareness/Dth/resolve/main/a_tall_proud_tree_dth.png) A beautiful rose ![Single_Samples](https://huggingface.co/GeneralAwareness/Dth/resolve/main/a_beautiful_rose_dth.png)
ArthurinRUC/ppo-Huggy
ArthurinRUC
2022-12-15T10:28:31Z
11
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2022-12-15T10:28:24Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: ArthurinRUC/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
mikmascari/evalita-dm-BERT
mikmascari
2022-12-15T10:21:53Z
4
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-14T16:14:08Z
Model for prerequisite relation inference between wikipedia pages, ITALIAN only, Domain specific for Data mining and coding. Based on the work of NLP-CIC @ PRELEARN eval_accuracy: 0.9176470588235294, eval_f1: 0.8510638297872339, eval_precision: 0.7692307692307693, eval_recall: 0.9523809523809523, Evaluated on EVALITA Prelearn task dataset in-domain DataMining
metga97/ppo-Huggy
metga97
2022-12-15T10:12:42Z
5
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2022-12-15T10:12:31Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: metga97/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
LucianoDeben/ppo-LunarLander-v2
LucianoDeben
2022-12-15T09:57:30Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-15T09:56:57Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 258.91 +/- 19.36 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
tolerantpancake/NegativeLowResolution
tolerantpancake
2022-12-15T09:37:43Z
0
30
null
[ "region:us" ]
null
2022-12-15T09:36:59Z
Here is a **negative prompt** embedding I created in the hopes of using embeddings to eliminate low detailed and low fidelity images.**All 400-2400 step versions work very well to increase detail without losing coherency of the subject when used with other embeddings or large prompts. treat the different training step versions as a detail slider, 100-2400** This is an experiment, but the results are already impressive. Toy around with it, it can make some really cool images! An X/Y matrix is also provided here showing the different versions combined with my other negative embedding, "Negative Mutation".
tolerantpancake/NegativeMutation
tolerantpancake
2022-12-15T09:36:43Z
0
21
null
[ "region:us" ]
null
2022-12-15T09:11:41Z
Here is a **negative prompt** embedding I created in the hopes of using embeddings to eliminate anatomical mutations and disfigurements.** The 400-500 step versions seem to work the best with no positive prompt embeddings**, however you can seemingly use all of them up to 2400 steps with very good results if you are using other embeddings in your positive prompt. This is an experiment, but the results are already impressive. Toy around with it, it can make some really cool images.!
SRM47/gpt2-paraphraser
SRM47
2022-12-15T09:32:21Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-12-15T08:15:12Z
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2-paraphraser results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-paraphraser This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
thisisac/ppo-LunarLander
thisisac
2022-12-15T09:25:05Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-15T09:24:40Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 266.06 +/- 17.74 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
botryan96/GeoBERT_analyzer
botryan96
2022-12-15T09:23:22Z
5
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-21T19:09:38Z
--- tags: - generated_from_keras_callback model-index: - name: GeoBERT results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # GeoBERT_Analyzer GeoBERT_Analyzer is a Text Classification model that was fine-tuned from GeoBERT on the Geoscientific Corpus dataset. The model was trained on the Labeled Geoscientific & Non-Geosceintific Corpus dataset (21416 x 2 sentences). ## Intended uses The train aims to make the Language Model have the ability to distinguish between Geoscience and Non – Geoscience (General) corpus ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 14000, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Framework versions - Transformers 4.22.1 - TensorFlow 2.10.0 - Datasets 2.4.0 - Tokenizers 0.12.1 ## Model performances (metric: seqeval) entity|precision|recall|f1 -|-|-|- General |0.9976|0.9980|0.9978 Geoscience|0.9980|0.9984|0.9982 ## How to use GeoBERT with HuggingFace ##### Load GeoBERT and its sub-word tokenizer : ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("botryan96/GeoBERT_analyzer") model = AutoModelForTokenClassification.from_pretrained("botryan96/GeoBERT_analyzer") #Define the pipeline from transformers import pipeline anlyze_machine=pipeline('text-classification',model = model_checkpoint2) #Define the sentences sentences = ['the average iron and sulfate concentrations were calculated to be 19 . 6 5 . 2 and 426 182 mg / l , respectively .', 'She first gained media attention as a friend and stylist of Paris Hilton'] #Deploy the machine anlyze_machine(sentences) ```
botryan96/GeoBERT
botryan96
2022-12-15T09:20:54Z
224
6
transformers
[ "transformers", "tf", "bert", "token-classification", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-08T09:18:19Z
--- tags: - generated_from_keras_callback model-index: - name: GeoBERT results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # GeoBERT GeoBERT is a NER model that was fine-tuned from SciBERT on the Geoscientific Corpus dataset. The model was trained on the Labeled Geoscientific Corpus dataset (~1 million sentences). ## Intended uses The NER product in this model has a goal to identify four main semantic types or categories related to Geosciences. 1. GeoPetro for any entities that belong to all terms in Geosciences 2. GeoMeth for all tools or methods associated with Geosciences 3. GeoLoc to identify geological locations 4. GeoTime for identifying the geological time scale entities ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 14000, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Framework versions - Transformers 4.22.1 - TensorFlow 2.10.0 - Datasets 2.4.0 - Tokenizers 0.12.1 ## Model performances (metric: seqeval) entity|precision|recall|f1 -|-|-|- GeoLoc |0.9727|0.9591|0.9658 GeoMeth |0.9433|0.9447|0.9445 GeoPetro|0.9767|0.9745|0.9756 GeoTime |0.9695|0.9666|0.9680 ## How to use GeoBERT with HuggingFace ##### Load GeoBERT and its sub-word tokenizer : ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("botryan96/GeoBERT") model = AutoModelForTokenClassification.from_pretrained("botryan96/GeoBERT") #Define the pipeline from transformers import pipeline ner_machine = pipeline('ner',model = models,tokenizer=tokenizer, aggregation_strategy="simple") #Define the sentence sentence = 'In North America, the water storage in the seepage face model is higher than the base case because positive pore pressure is requisite for drainage through a seepage face boundary condition. The result from the resistivity data supports the notion, especially in the northern part of the Sandstone Sediment formation. The active formation of America has a big potential for Oil and Gas based on the seismic section, has been activated since the Paleozoic' #Deploy the NER Machine ner_machine(sentence) ```
Hoax0930/BBC
Hoax0930
2022-12-15T09:07:23Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "summarization", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
summarization
2022-12-15T07:31:53Z
--- license: apache-2.0 tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: BBC results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BBC This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2824 - Rouge1: 18.46 - Rouge2: 17.0488 - Rougel: 18.3552 - Rougelsum: 18.3466 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 0.7104 | 1.0 | 445 | 0.3218 | 17.4866 | 15.2567 | 17.0429 | 17.1216 | | 0.3433 | 2.0 | 890 | 0.3039 | 17.7632 | 15.8878 | 17.4551 | 17.5161 | | 0.3116 | 3.0 | 1335 | 0.2912 | 18.175 | 16.4391 | 17.9597 | 18.0081 | | 0.2908 | 4.0 | 1780 | 0.2869 | 18.2832 | 16.6726 | 18.1187 | 18.1205 | | 0.273 | 5.0 | 2225 | 0.2829 | 18.2807 | 16.7359 | 18.1496 | 18.1621 | | 0.2625 | 6.0 | 2670 | 0.2819 | 18.3845 | 16.8793 | 18.2622 | 18.2561 | | 0.2482 | 7.0 | 3115 | 0.2801 | 18.4748 | 17.0796 | 18.3792 | 18.3672 | | 0.2454 | 8.0 | 3560 | 0.2824 | 18.46 | 17.0488 | 18.3552 | 18.3466 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
nidek/q-Taxi-v3
nidek
2022-12-15T08:30:48Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-15T08:30:41Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="nidek/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
jakeyoo/whisper-small-ja
jakeyoo
2022-12-15T08:25:43Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "ja", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-15T00:39:44Z
--- language: - ja license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Japanese results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 ja type: mozilla-foundation/common_voice_11_0 config: ja split: test args: ja metrics: - name: Wer type: wer value: 68.94594978011065 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Japanese This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_11_0 ja dataset. It achieves the following results on the evaluation set: - Loss: 0.3617 - Wer: 68.9459 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.1938 | 1.09 | 1000 | 0.2841 | 74.6631 | | 0.0466 | 3.06 | 2000 | 0.2996 | 72.0953 | | 0.005 | 5.04 | 3000 | 0.3376 | 70.4355 | | 0.0021 | 7.01 | 4000 | 0.3617 | 68.9459 | | 0.002 | 8.1 | 5000 | 0.3735 | 71.4711 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
wyu1/GenRead-3B-NQ-MergeDPR
wyu1
2022-12-15T08:23:08Z
1
0
transformers
[ "transformers", "pytorch", "t5", "license:cc-by-4.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2022-12-14T08:49:05Z
--- license: cc-by-4.0 --- # GenRead (MergeDPR): FiD model trained on NQ -- This is the model checkpoint of GenRead [2], based on the T5-3B and trained on the NQ dataset [1]. -- Hyperparameters: 8 x 80GB A100 GPUs; batch size 16; AdamW; LR 3e-5; best dev at 19000 steps. References: [1] Natural Questions: A Benchmark for Question Answering Research. TACL 2019. [2] Generate rather than Retrieve: Large Language Models are Strong Context Generators. arXiv 2022 ## Model performance We evaluate it on the TriviaQA dataset, the EM score is 54.38. <a href="https://huggingface.co/exbert/?model=bert-base-uncased"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a> --- license: cc-by-4.0 --- --- license: cc-by-4.0 ---
sd-concepts-library/ahx-model-2
sd-concepts-library
2022-12-15T08:07:36Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-11-05T05:21:10Z
--- license: mit --- # Stable Diffusion Artist Collaboration → Model 2 This is the `<model-2>` concept taught to stable diffusion via textual inversion training. Anyone is free to load this concept into the [stable conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). More information on this collaboration and selected output images can be found here → https://www.astronaut.horse/model-2 Below are the original artworks used as input images. <img style="width: 100%; max-width: 500px;" src="https://huggingface.co/sd-concepts-library/enk-resin-frames/resolve/main/concept_images/2.jpeg"> <img style="width: 100%; max-width: 500px;" src="https://huggingface.co/sd-concepts-library/enk-resin-frames/resolve/main/concept_images/4.jpeg"> <img style="width: 100%; max-width: 500px;" src="https://huggingface.co/sd-concepts-library/enk-resin-frames/resolve/main/concept_images/0.jpeg"> <img style="width: 100%; max-width: 500px;" src="https://huggingface.co/sd-concepts-library/enk-resin-frames/resolve/main/concept_images/1.jpeg"> <img style="width: 100%; max-width: 500px;" src="https://huggingface.co/sd-concepts-library/enk-resin-frames/resolve/main/concept_images/3.jpeg">
wyu1/GenRead-3B-WebQ-MergeDPR
wyu1
2022-12-15T06:55:20Z
2
0
transformers
[ "transformers", "pytorch", "t5", "license:cc-by-4.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2022-12-14T09:06:00Z
--- license: cc-by-4.0 --- # GenRead (MergeDPR): FiD model trained on WebQ -- This is the model checkpoint of GenRead [2], based on the T5-3B and trained on the WebQ dataset [1]. -- Hyperparameters: 8 x 80GB A100 GPUs; batch size 16; AdamW; LR 5e-5; best dev at 18000 steps. References: [1] Semantic parsing on freebase from question-answer pairs. EMNLP 2013. [2] Generate rather than Retrieve: Large Language Models are Strong Context Generators. arXiv 2022 ## Model performance We evaluate it on the WebQ dataset, the EM score is 56.25. <a href="https://huggingface.co/exbert/?model=bert-base-uncased"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a> --- license: cc-by-4.0 --- --- license: cc-by-4.0 ---
J3/PPO-LunarLander
J3
2022-12-15T06:18:49Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-15T05:56:24Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 287.45 +/- 14.49 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Jngai/Known-nothing
Jngai
2022-12-15T06:18:06Z
0
0
null
[ "region:us" ]
null
2022-12-15T06:16:54Z
git lfs install git clone https://huggingface.co/Jngai/Known-nothing
kejian/curious-filtering
kejian
2022-12-15T06:14:55Z
1
0
transformers
[ "transformers", "pytorch", "gpt2", "generated_from_trainer", "en", "dataset:kejian/codeparrot-train-more-filter-3.3b-cleaned", "license:apache-2.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2022-12-14T01:28:47Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - kejian/codeparrot-train-more-filter-3.3b-cleaned model-index: - name: curious-filtering results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # curious-filtering This model was trained from scratch on the kejian/codeparrot-train-more-filter-3.3b-cleaned dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 12588 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.23.0 - Pytorch 1.13.0+cu116 - Datasets 2.0.0 - Tokenizers 0.12.1 # Full config {'dataset': {'datasets': ['kejian/codeparrot-train-more-filter-3.3b-cleaned'], 'filter_threshold': 0.002361, 'is_split_by_sentences': True, 'skip_tokens': 1649999872}, 'generation': {'batch_size': 128, 'every_n_steps': 256, 'force_call_on': [12588], 'metrics_configs': [{}, {'n': 1}, {}], 'scenario_configs': [{'display_as_html': True, 'generate_kwargs': {'do_sample': True, 'eos_token_id': 0, 'max_length': 640, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_hits_threshold': 0, 'num_samples': 2048}, {'display_as_html': True, 'generate_kwargs': {'do_sample': True, 'eos_token_id': 0, 'max_length': 272, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'functions', 'num_hits_threshold': 0, 'num_samples': 2048, 'prompts_path': 'resources/functions_csnet.jsonl', 'use_prompt_for_scoring': True}], 'scorer_config': {}}, 'kl_gpt3_callback': {'every_n_steps': 256, 'force_call_on': [12588], 'gpt3_kwargs': {'model_name': 'code-cushman-001'}, 'max_tokens': 64, 'num_samples': 4096}, 'model': {'from_scratch': False, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'model_kwargs': {'revision': 'e4beb805f2816a9750abbbfe6947ba0c8e7b2d79'}, 'path_or_name': 'kejian/mighty-filtering'}, 'objective': {'name': 'MLE'}, 'tokenizer': {'path_or_name': 'codeparrot/codeparrot-small'}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 128, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'curious-filtering', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.0005, 'logging_first_step': True, 'logging_steps': 1, 'num_tokens': 3300000000.0, 'output_dir': 'training_output', 'per_device_train_batch_size': 16, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 12588, 'save_strategy': 'steps', 'seed': 42, 'tokens_already_seen': 1649999872, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/kejian/uncategorized/runs/3se8ueja
ArthurinRUC/ppo-LunarLander-v2
ArthurinRUC
2022-12-15T05:23:11Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-15T05:22:42Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 238.34 +/- 23.76 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
parambharat/whisper-tiny-ta-example
parambharat
2022-12-15T05:22:33Z
16
0
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "ta", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-15T04:59:05Z
--- language: - ta license: apache-2.0 tags: - whisper-event - generated_from_trainer metrics: - wer model-index: - name: Whisper tiny Ta example - Bharat Ramanathan results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper tiny Ta example - Bharat Ramanathan This model is a fine-tuned version of [parambharat/whisper-tiny-ta](https://huggingface.co/parambharat/whisper-tiny-ta) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4016 - Wer: 36.5217 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 25 - training_steps: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.304 | 12.01 | 25 | 0.3614 | 31.7391 | | 0.1826 | 24.02 | 50 | 0.3851 | 35.2174 | | 0.1346 | 37.01 | 75 | 0.3999 | 37.8261 | | 0.1096 | 49.02 | 100 | 0.4016 | 36.5217 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
cleanrl/MountainCar-v0-dqn_jax-seed1
cleanrl
2022-12-15T04:49:14Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "MountainCar-v0", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-15T04:49:11Z
--- tags: - MountainCar-v0 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: MountainCar-v0 type: MountainCar-v0 metrics: - type: mean_reward value: -164.60 +/- 12.87 name: mean_reward verified: false --- # (CleanRL) **DQN** Agent Playing **MountainCar-v0** This is a trained model of a DQN agent playing MountainCar-v0. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/dqn_jax.py). ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/MountainCar-v0-dqn_jax-seed1/raw/main/dqn.py curl -OL https://huggingface.co/cleanrl/MountainCar-v0-dqn_jax-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/MountainCar-v0-dqn_jax-seed1/raw/main/poetry.lock poetry install --all-extras python dqn_jax.py --track --capture-video --save-model --upload-model --hf-entity cleanrl --env-id MountainCar-v0 --seed 1 ``` # Hyperparameters ```python {'batch_size': 128, 'buffer_size': 10000, 'capture_video': True, 'end_e': 0.05, 'env_id': 'MountainCar-v0', 'exp_name': 'dqn_jax', 'exploration_fraction': 0.5, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learning_rate': 0.00025, 'learning_starts': 10000, 'save_model': True, 'seed': 1, 'start_e': 1, 'target_network_frequency': 500, 'total_timesteps': 500000, 'track': True, 'train_frequency': 10, 'upload_model': True, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
DaydreamerF/bert-finetuned-ViolentSmallFarmers-10
DaydreamerF
2022-12-15T04:46:49Z
4
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "zh", "endpoints_compatible", "region:us" ]
question-answering
2022-12-15T02:30:06Z
--- language: zh widget: - text: "这句话是谁说的?" context: "“老大,你太牛逼了,把敌人军火库都给炸了,我真的佩服的五体投地,我现在忍不住想看看你藏的东西在哪里,我们快点出发吧。”代号零听完郭旭刚刚的讲述笑的拍手一直叫好。" - text: "这句话是谁说的?" context: "“妈,你别哭了,我这不是好着呢吗?”郭旭扶着母亲的肩膀笑着说。" - text: "这句话是谁说的?" context: "“总统先生,看来我们这一次在劫难逃了,大乘期的恐怖,远远超出了我们的想象,我还有一些后手能尽量拖延他一点时间,你们先走,我让我的鬼奴随你们去,去这个地方或许能保你们一线生机!”郭旭说完便偷偷地将黑暗空间的阴阳珠交给了陈天。" - text: "这句话是谁说的?" context: "“也罢,能活一个是一个吧!他还那么年轻?”却是剑傲天摇了摇头无奈的说道。" tags: - generated_from_trainer model-index: - name: bert-finetuned-ViolentSmallFarmers-10 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ViolentSmallFarmers-10 This model is a fine-tuned version of [bert-base-chinese](https://huggingface.co/bert-base-chinese) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results -exact_match:93.99759903961585 -f1:93.99759903961585 ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1 - Datasets 2.7.1 - Tokenizers 0.13.2
cleanrl/Acrobot-v1-dqn-seed1
cleanrl
2022-12-15T04:40:03Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Acrobot-v1", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-15T04:40:01Z
--- tags: - Acrobot-v1 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Acrobot-v1 type: Acrobot-v1 metrics: - type: mean_reward value: -96.80 +/- 21.87 name: mean_reward verified: false --- # (CleanRL) **DQN** Agent Playing **Acrobot-v1** This is a trained model of a DQN agent playing Acrobot-v1. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/dqn.py). ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Acrobot-v1-dqn-seed1/raw/main/dqn.py curl -OL https://huggingface.co/cleanrl/Acrobot-v1-dqn-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Acrobot-v1-dqn-seed1/raw/main/poetry.lock poetry install --all-extras python dqn.py --cuda False --track --capture-video --save-model --upload-model --hf-entity cleanrl --env-id Acrobot-v1 --seed 1 ``` # Hyperparameters ```python {'batch_size': 128, 'buffer_size': 10000, 'capture_video': True, 'cuda': False, 'end_e': 0.05, 'env_id': 'Acrobot-v1', 'exp_name': 'dqn', 'exploration_fraction': 0.5, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learning_rate': 0.00025, 'learning_starts': 10000, 'save_model': True, 'seed': 1, 'start_e': 1, 'target_network_frequency': 500, 'torch_deterministic': True, 'total_timesteps': 500000, 'track': True, 'train_frequency': 10, 'upload_model': True, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
xianbao/distilbert-base-uncased-finetuned-imdb
xianbao
2022-12-15T04:13:29Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-12-15T04:01:01Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4721 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7086 | 1.0 | 157 | 2.4898 | | 2.5796 | 2.0 | 314 | 2.4230 | | 2.5269 | 3.0 | 471 | 2.4354 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
huggingtweets/mattbergwall
huggingtweets
2022-12-15T04:12:54Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-12-15T04:11:31Z
--- language: en thumbnail: http://www.huggingtweets.com/mattbergwall/1671077570136/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1582077511449690142/-6RJk8SE_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Matt Bergwall</div> <div style="text-align: center; font-size: 14px;">@mattbergwall</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Matt Bergwall. | Data | Matt Bergwall | | --- | --- | | Tweets downloaded | 368 | | Retweets | 136 | | Short tweets | 67 | | Tweets kept | 165 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3g1id4cd/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mattbergwall's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/368nfiv3) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/368nfiv3/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mattbergwall') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
sipheiroce/ppo-Huggy
sipheiroce
2022-12-15T03:57:19Z
3
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2022-12-15T03:57:11Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: sipheiroce/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
kurianbenoy/whisper_malayalam_largev2
kurianbenoy
2022-12-15T03:31:12Z
88
3
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "hf-asr-leaderboard", "generated_from_trainer", "ml", "dataset:mozilla-foundation/common_voice_11_0", "doi:10.57967/hf/0192", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-11T13:40:10Z
--- language: - ml license: apache-2.0 tags: - whisper-event - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: whisper_malayalam_largev2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 type: mozilla-foundation/common_voice_11_0 config: ml split: test metrics: - name: Wer type: wer value: 41.69859514687101 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_malayalam_largev2 This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2913 - Wer: 41.6986 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0769 | 2.07 | 1000 | 0.3657 | 53.8314 | | 0.0089 | 4.14 | 2000 | 0.2913 | 41.6986 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1 - Tokenizers 0.13.2
SatCat/q-Taxi-v3
SatCat
2022-12-15T03:30:22Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-15T03:30:07Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="SatCat/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
wanxiangche/ppo-LunarLander-v2
wanxiangche
2022-12-15T03:01:12Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-15T03:00:44Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 249.45 +/- 15.84 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
PrimeQA/nq_tydi-reader-xlmr_large-20221210
PrimeQA
2022-12-15T01:29:15Z
4
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "MRC", "TyDiQA", "Natural Questions", "xlm-roberta-large", "multilingual", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-12-15T01:06:26Z
--- license: apache-2.0 tags: - MRC - TyDiQA - Natural Questions - xlm-roberta-large language: - multilingual --- *Task*: MRC # Model description An XLM-RoBERTa Large reading comprehension model trained from the combination of TyDi and NQ datasets, starting from a fine-tuned [Tydi xlm-roberta-large](https://huggingface.co/PrimeQA/tydiqa-primary-task-xlm-roberta-large) model. ## Intended uses & limitations You can use the raw model for the reading comprehension task. Biases associated with the pre-existing language model, xlm-roberta-large, that we used may be present in our fine-tuned model. ## Usage You can use this model directly with the [PrimeQA](https://github.com/primeqa/primeqa) pipeline for reading comprehension [squad.ipynb](https://github.com/primeqa/primeqa/blob/main/notebooks/mrc/squad.ipynb). ### BibTeX entry and citation info ```bibtex @article{kwiatkowski-etal-2019-natural, title = "Natural Questions: A Benchmark for Question Answering Research", author = "Kwiatkowski, Tom and Palomaki, Jennimaria and Redfield, Olivia and Collins, Michael and Parikh, Ankur and Alberti, Chris and Epstein, Danielle and Polosukhin, Illia and Devlin, Jacob and Lee, Kenton and Toutanova, Kristina and Jones, Llion and Kelcey, Matthew and Chang, Ming-Wei and Dai, Andrew M. and Uszkoreit, Jakob and Le, Quoc and Petrov, Slav", journal = "Transactions of the Association for Computational Linguistics", volume = "7", year = "2019", address = "Cambridge, MA", publisher = "MIT Press", url = "https://aclanthology.org/Q19-1026", doi = "10.1162/tacl_a_00276", pages = "452--466", } ``` ```bibtex @article{clark-etal-2020-tydi, title = "{T}y{D}i {QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages", author = "Clark, Jonathan H. and Choi, Eunsol and Collins, Michael and Garrette, Dan and Kwiatkowski, Tom and Nikolaev, Vitaly and Palomaki, Jennimaria", journal = "Transactions of the Association for Computational Linguistics", volume = "8", year = "2020", address = "Cambridge, MA", publisher = "MIT Press", url = "https://aclanthology.org/2020.tacl-1.30", doi = "10.1162/tacl_a_00317", pages = "454--470", } ```
SatCat/q-FrozenLake-v1-4x4-noSlippery
SatCat
2022-12-15T01:21:30Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-15T01:21:18Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="SatCat/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
research-backup/relbert-roberta-large-semeval2012-v6-mask-prompt-c-nce-0
research-backup
2022-12-15T00:54:49Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity_v6", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-11-26T16:14:12Z
--- datasets: - relbert/semeval2012_relational_similarity_v6 model-index: - name: relbert/relbert-roberta-large-semeval2012-v6-mask-prompt-c-nce-0 results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.31890873015873017 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.23529411764705882 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.2314540059347181 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.26903835464146747 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.274 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.2982456140350877 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.26157407407407407 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.5710411330420371 - name: F1 (macro) type: f1_macro value: 0.4718342368775303 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.7190140845070424 - name: F1 (macro) type: f1_macro value: 0.17486705290574928 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.42524377031419286 - name: F1 (macro) type: f1_macro value: 0.26916204585090897 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.7395145023301106 - name: F1 (macro) type: f1_macro value: 0.5292369713379188 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6367909746161078 - name: F1 (macro) type: f1_macro value: 0.5562730234363212 --- # relbert/relbert-roberta-large-semeval2012-v6-mask-prompt-c-nce-0 RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [relbert/semeval2012_relational_similarity_v6](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v6). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-large-semeval2012-v6-mask-prompt-c-nce-0/raw/main/analogy.json)): - Accuracy on SAT (full): 0.23529411764705882 - Accuracy on SAT: 0.2314540059347181 - Accuracy on BATS: 0.26903835464146747 - Accuracy on U2: 0.2982456140350877 - Accuracy on U4: 0.26157407407407407 - Accuracy on Google: 0.274 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-large-semeval2012-v6-mask-prompt-c-nce-0/raw/main/classification.json)): - Micro F1 score on BLESS: 0.5710411330420371 - Micro F1 score on CogALexV: 0.7190140845070424 - Micro F1 score on EVALution: 0.42524377031419286 - Micro F1 score on K&H+N: 0.7395145023301106 - Micro F1 score on ROOT09: 0.6367909746161078 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-large-semeval2012-v6-mask-prompt-c-nce-0/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.31890873015873017 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/relbert-roberta-large-semeval2012-v6-mask-prompt-c-nce-0") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: mask - data: relbert/semeval2012_relational_similarity_v6 - split: train - split_eval: validation - template_mode: manual - loss_function: nce_logout - classification_loss: False - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 11 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - n_sample: 640 - gradient_accumulation: 8 - relation_level: None The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/relbert-roberta-large-semeval2012-v6-mask-prompt-c-nce-0/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
DrishtiSharma/whisper-large-v2-punjabi-700-steps
DrishtiSharma
2022-12-15T00:31:33Z
149
1
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "pa", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-14T23:34:16Z
--- language: - pa license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Large Punjabi - Drishti Sharma results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: pa-IN split: test args: pa-IN metrics: - name: Wer type: wer value: 24.476386036960985 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Large Punjabi - Drishti Sharma This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2211 - Wer: 24.4764 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 700 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0584 | 5.79 | 700 | 0.2211 | 24.4764 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
DAL12/ppo-LunarLander-v2
DAL12
2022-12-14T23:00:11Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-14T22:59:45Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 237.11 +/- 69.68 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
nudro/ddpm-celebahq-finetuned-butterflies-2epochs
nudro
2022-12-14T22:55:50Z
0
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-12-14T22:55:41Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Example Fine-Tuned Model for Unit 2 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) Describe your model here ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('nudro/ddpm-celebahq-finetuned-butterflies-2epochs') image = pipeline().images[0] image ```
myklicious/q-Taxi-v3
myklicious
2022-12-14T22:55:02Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-14T22:10:07Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="myklicious/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
plegg/q-Taxi-v3-train2000000
plegg
2022-12-14T22:39:53Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-14T22:39:42Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3-train2000000 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="plegg/q-Taxi-v3-train2000000", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
dim/persona_bot_2_28akcwik
dim
2022-12-14T22:20:54Z
7
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "license:cc", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-12-14T21:21:23Z
--- license: cc --- - [wandb metrics](https://wandb.ai/dimweb/persona_bot_2/runs/28akcwik?workspace=user-dimweb)
myklicious/q-FrozenLake-v1-4x4-noSlippery
myklicious
2022-12-14T21:59:19Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-14T21:59:09Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="myklicious/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Segamboam/ppo-LunarLander-v2
Segamboam
2022-12-14T21:42:32Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-12T23:40:50Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 263.54 +/- 20.20 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
kinkpunk/q-Taxi-v3-delivery
kinkpunk
2022-12-14T21:37:58Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-14T21:34:18Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3-delivery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="kinkpunk/q-Taxi-v3-delivery", filename="q-learning.pkl") # Don't forget to create environment env = gym.make("Taxi-v3") ```
sam133/ppo-LunarLander-v2
sam133
2022-12-14T20:56:43Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-14T20:39:36Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 278.90 +/- 21.36 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
tzvc/2cabda5b-4e53-40e9-8fcf-cdba5ea5bd6c
tzvc
2022-12-14T20:55:14Z
2
0
diffusers
[ "diffusers", "tensorboard", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2022-12-14T20:37:09Z
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: a portrait of [V] --- ### training params ```json { "pretrained_model_name_or_path": "runwayml/stable-diffusion-v1-5", "instance_data_dir": "./2cabda5b-4e53-40e9-8fcf-cdba5ea5bd6c/instance_data", "class_data_dir": "./class_data/a-portrait-of-a-person", "output_dir": "./2cabda5b-4e53-40e9-8fcf-cdba5ea5bd6c/", "train_text_encoder": true, "with_prior_preservation": false, "prior_loss_weight": 1.0, "instance_prompt": "a portrait of [V]", "class_prompt": "a portrait of a person", "resolution": 512, "train_batch_size": 1, "gradient_accumulation_steps": 1, "gradient_checkpointing": true, "use_8bit_adam": true, "learning_rate": 5e-06, "lr_scheduler": "constant", "lr_warmup_steps": 0, "num_class_images": 200, "max_train_steps": 1050, "mixed_precision": "fp16" } ```
BartMartin/ddpm-butterflies-128
BartMartin
2022-12-14T20:48:15Z
1
0
diffusers
[ "diffusers", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "region:us" ]
null
2022-12-14T20:42:46Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/BartMartin/ddpm-butterflies-128/tensorboard?#scalars)
cxyz/prynty
cxyz
2022-12-14T20:36:38Z
1
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2022-12-14T20:31:39Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### prynty Dreambooth model trained by cxyz with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Or you can run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb) Sample pictures of this concept:
IntroToProgramming/model
IntroToProgramming
2022-12-14T20:36:12Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-14T18:19:41Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4554 - Accuracy: 0.6971 - F1: 0.7012 - Precision: 0.7069 - Recall: 0.6971 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
kinkpunk/q-FrozenLake-v1-custom-map-Slippery-edition
kinkpunk
2022-12-14T20:33:27Z
0
0
null
[ "FrozenLake-v1-4x4", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-14T20:24:37Z
--- tags: - FrozenLake-v1-4x4 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-custom-map-Slippery-edition results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4 type: FrozenLake-v1-4x4 metrics: - type: mean_reward value: 0.89 +/- 0.31 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="kinkpunk/q-FrozenLake-v1-custom-map-Slippery-edition", filename="q-learning.pkl") # Don't forget to change additional attributes # when you create environment using 4x4 map env = gym.make('FrozenLake-v1', desc=["SFFF", "FHHF", "FFHF", "HFFG"], is_slippery=True) ``` ## Training parameters ```python # Training parameters n_training_episodes = 105000 # Total training episodes learning_rate = 0.8 # Learning rate # Evaluation parameters n_eval_episodes = 100 # Total number of test episodes # Environment parameters env_id = "FrozenLake-v1" # Name of the environment max_steps = 99 # Max steps per episode gamma = 0.98 # Discounting rate eval_seed = [] # The evaluation seed of the environment # Exploration parameters max_epsilon = 0.99 # Exploration probability at start min_epsilon = 0.02 # Minimum exploration probability decay_rate = 0.009 # Exponential decay rate for exploration prob ```
jordanblatter/distilbert-base-uncased-finetuned-imdb
jordanblatter
2022-12-14T20:30:57Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-12-14T03:28:21Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.9125 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.3923 | 1.0 | 2 | 2.1317 | | 2.1662 | 2.0 | 4 | 1.8450 | | 1.9889 | 3.0 | 6 | 1.8227 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
AshtonIsNotHere/xlm-roberta-long-base-4096
AshtonIsNotHere
2022-12-14T20:10:15Z
6
1
transformers
[ "transformers", "pytorch", "longformer", "fill-mask", "xlmr", "XLM-RoBERTa", "multilingual", "dataset:wikitext", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-11-27T21:41:23Z
--- tags: - longformer - xlmr - XLM-RoBERTa language: multilingual license: apache-2.0 datasets: - wikitext --- ## XLM-R Longformer Model This is an XLM-RoBERTa longformer model that was pre-trained from the XLM-RoBERTa checkpoint using the Longformer [pre-training scheme](https://github.com/allenai/longformer/blob/master/scripts/convert_model_to_long.ipynb) on the English WikiText-103 corpus. This model is identical to [markussagen's xlm-r longformer model,](https://huggingface.co/markussagen/xlm-roberta-longformer-base-4096) the difference being that the weights have been transferred to a Longformer model, in order to enable loading with ```AutoModel.from_pretrained()``` without external dependencies. ## Memory Requirements Note that this model requires a considerable amount of memory to run. The heatmap below should give a relative idea of the amount of memory needed at inference for a target batch and sequence length. N.B. data for this plot was generated by running on a single a100 GPU with 40gb of memory. <details> <summary>View Inference Memory Plot</summary> ![Model Image](./inference_gpu_mem_footprint_heatmap.png) </details> ## How to Use The model can be used as expected to fine-tune on a downstream task. For instance for QA. ```python import torch from transformers import AutoModel, AutoTokenizer MAX_SEQUENCE_LENGTH = 4096 MODEL_NAME_OR_PATH = "AshtonIsNotHere/xlm-roberta-long-base-4096" tokenizer = AutoTokenizer.from_pretrained( MODEL_NAME_OR_PATH, max_length=MAX_SEQUENCE_LENGTH, padding="max_length", truncation=True, ) model = AutoModelForQuestionAnswering.from_pretrained( MODEL_NAME_OR_PATH, max_length=MAX_SEQUENCE_LENGTH, ) ```
DrishtiSharma/whisper-large-v2-assamese-700-steps
DrishtiSharma
2022-12-14T19:37:42Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "hi", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-14T18:32:50Z
--- language: - hi license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Large Assamese - Drishti Sharma results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: as split: test args: as metrics: - name: Wer type: wer value: 21.45822053780906 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Large Assamese - Drishti Sharma This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2452 - Wer: 21.4582 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 700 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0109 | 4.32 | 700 | 0.2452 | 21.4582 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
mbertheau/hf-drl-course-2-q-FrozenLake-v1-4x4-no_slippery_1
mbertheau
2022-12-14T19:22:06Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-14T19:20:02Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: hf-drl-course-2-q-FrozenLake-v1-4x4-no_slippery_1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="mbertheau/hf-drl-course-2-q-FrozenLake-v1-4x4-no_slippery_1", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
skandavivek2/roberta-finetuned-subjqa-movies_2
skandavivek2
2022-12-14T19:15:55Z
21
1
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "question-answering", "generated_from_trainer", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
question-answering
2022-12-14T18:50:53Z
--- license: cc-by-4.0 tags: - generated_from_trainer model-index: - name: roberta-finetuned-subjqa-movies_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-finetuned-subjqa-movies_2 This model is a fine-tuned version of [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
anuragshas/whisper-large-v2-mr
anuragshas
2022-12-14T19:05:13Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "mr", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-14T12:24:19Z
--- language: - mr license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Large-v2 Marathi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 mr type: mozilla-foundation/common_voice_11_0 config: mr split: test args: mr metrics: - name: Wer type: wer value: 15.220630647952316 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Large-v2 Marathi This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the mozilla-foundation/common_voice_11_0 mr dataset. It achieves the following results on the evaluation set: - Loss: 0.3108 - Wer: 15.2206 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.1931 | 3.04 | 200 | 0.2491 | 16.9270 | | 0.1108 | 7.03 | 400 | 0.2379 | 15.2711 | | 0.0548 | 11.02 | 600 | 0.2668 | 15.3120 | | 0.0189 | 15.01 | 800 | 0.3108 | 15.2206 | | 0.0078 | 18.05 | 1000 | 0.3499 | 15.5571 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
Casti11/ppo-LunarLander-v2
Casti11
2022-12-14T19:03:38Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-14T17:40:50Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 286.00 +/- 18.28 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
msgerasyov/ppo-Huggy
msgerasyov
2022-12-14T18:59:56Z
2
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2022-12-14T18:59:50Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: msgerasyov/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
marik0/q-FrozenLake-v1-4x4-Slippery
marik0
2022-12-14T18:45:55Z
0
0
null
[ "FrozenLake-v1-4x4", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-14T17:53:45Z
--- tags: - FrozenLake-v1-4x4 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-Slippery results: - metrics: - type: mean_reward value: 0.72 +/- 0.45 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4 type: FrozenLake-v1-4x4 --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="marik0/q-FrozenLake-v1-4x4-Slippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
sgangireddy/whisper-medium-fleurs-tr
sgangireddy
2022-12-14T18:39:10Z
3
1
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "dataset:google/fleurs", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-14T11:28:21Z
--- license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - google/fleurs metrics: - wer model-index: - name: Whisper medium Turkish FLEURS results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: google/fleurs tr_tr type: google/fleurs config: tr_tr split: test args: tr_tr metrics: - name: Wer type: wer value: 11.01835138387485 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper medium Turkish FLEURS This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the google/fleurs tr_tr dataset. It achieves the following results on the evaluation set: - Loss: 0.2581 - Wer: 11.0184 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0003 | 90.01 | 1000 | 0.2581 | 11.0184 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
apzl/whisper-small-ml
apzl
2022-12-14T18:32:23Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "common-voice", "ml", "dataset:common-voice-11", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-10T07:41:55Z
--- language: - ml tags: - whisper-event - common-voice license: "apache-2.0" datasets: - common-voice-11 metrics: - wer = 37.2 - loss = 0.67 ---
albertqueralto/ppo-Huggy
albertqueralto
2022-12-14T18:30:11Z
2
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2022-12-14T17:53:19Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: albertqueralto/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
micole66/autotrain-feet-typelok-2473576411
micole66
2022-12-14T18:19:38Z
18
0
transformers
[ "transformers", "pytorch", "autotrain", "vision", "image-classification", "dataset:micole66/autotrain-data-feet-typelok", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
image-classification
2022-12-14T18:18:58Z
--- tags: - autotrain - vision - image-classification datasets: - micole66/autotrain-data-feet-typelok widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace co2_eq_emissions: emissions: 0.5534616165654265 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 2473576411 - CO2 Emissions (in grams): 0.5535 ## Validation Metrics - Loss: 0.279 - Accuracy: 1.000 - Precision: 1.000 - Recall: 1.000 - AUC: 1.000 - F1: 1.000
ubiest/ppo-LunarLanderr-v2
ubiest
2022-12-14T18:09:17Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-14T17:01:19Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 265.06 +/- 17.82 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
kul-speech-lab/espnet2_asr_conformer_cgn
kul-speech-lab
2022-12-14T18:08:39Z
3
0
null
[ "region:us" ]
null
2022-12-14T17:46:43Z
Pre-tained ESPnet2 ASR model Model: hybrid CTC/attention, 12 enc conformer, 6 dec transformer, fbank+pitch input features Data: trained on CGN all components, VL only Results: cgn-dev 10.75% WER ESPnet version: 0.10.5a1
sgoodfriend/q-Taxi-v3
sgoodfriend
2022-12-14T18:02:49Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-14T17:35:06Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="sgoodfriend/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
tomekkorbak/loving_noyce
tomekkorbak
2022-12-14T17:56:39Z
0
0
null
[ "generated_from_trainer", "en", "dataset:tomekkorbak/detoxify-pile-chunk3-0-50000", "dataset:tomekkorbak/detoxify-pile-chunk3-50000-100000", "dataset:tomekkorbak/detoxify-pile-chunk3-100000-150000", "dataset:tomekkorbak/detoxify-pile-chunk3-150000-200000", "dataset:tomekkorbak/detoxify-pile-chunk3-200000-250000", "dataset:tomekkorbak/detoxify-pile-chunk3-250000-300000", "dataset:tomekkorbak/detoxify-pile-chunk3-300000-350000", "dataset:tomekkorbak/detoxify-pile-chunk3-350000-400000", "dataset:tomekkorbak/detoxify-pile-chunk3-400000-450000", "dataset:tomekkorbak/detoxify-pile-chunk3-450000-500000", "dataset:tomekkorbak/detoxify-pile-chunk3-500000-550000", "dataset:tomekkorbak/detoxify-pile-chunk3-550000-600000", "dataset:tomekkorbak/detoxify-pile-chunk3-600000-650000", "dataset:tomekkorbak/detoxify-pile-chunk3-650000-700000", "dataset:tomekkorbak/detoxify-pile-chunk3-700000-750000", "dataset:tomekkorbak/detoxify-pile-chunk3-750000-800000", "dataset:tomekkorbak/detoxify-pile-chunk3-800000-850000", "dataset:tomekkorbak/detoxify-pile-chunk3-850000-900000", "dataset:tomekkorbak/detoxify-pile-chunk3-900000-950000", "dataset:tomekkorbak/detoxify-pile-chunk3-950000-1000000", "dataset:tomekkorbak/detoxify-pile-chunk3-1000000-1050000", "dataset:tomekkorbak/detoxify-pile-chunk3-1050000-1100000", "dataset:tomekkorbak/detoxify-pile-chunk3-1100000-1150000", "dataset:tomekkorbak/detoxify-pile-chunk3-1150000-1200000", "dataset:tomekkorbak/detoxify-pile-chunk3-1200000-1250000", "dataset:tomekkorbak/detoxify-pile-chunk3-1250000-1300000", "dataset:tomekkorbak/detoxify-pile-chunk3-1300000-1350000", "dataset:tomekkorbak/detoxify-pile-chunk3-1350000-1400000", "dataset:tomekkorbak/detoxify-pile-chunk3-1400000-1450000", "dataset:tomekkorbak/detoxify-pile-chunk3-1450000-1500000", "dataset:tomekkorbak/detoxify-pile-chunk3-1500000-1550000", "dataset:tomekkorbak/detoxify-pile-chunk3-1550000-1600000", "dataset:tomekkorbak/detoxify-pile-chunk3-1600000-1650000", "dataset:tomekkorbak/detoxify-pile-chunk3-1650000-1700000", "dataset:tomekkorbak/detoxify-pile-chunk3-1700000-1750000", "dataset:tomekkorbak/detoxify-pile-chunk3-1750000-1800000", "dataset:tomekkorbak/detoxify-pile-chunk3-1800000-1850000", "dataset:tomekkorbak/detoxify-pile-chunk3-1850000-1900000", "dataset:tomekkorbak/detoxify-pile-chunk3-1900000-1950000", "license:mit", "region:us" ]
null
2022-12-14T17:56:31Z
--- language: - en license: mit tags: - generated_from_trainer datasets: - tomekkorbak/detoxify-pile-chunk3-0-50000 - tomekkorbak/detoxify-pile-chunk3-50000-100000 - tomekkorbak/detoxify-pile-chunk3-100000-150000 - tomekkorbak/detoxify-pile-chunk3-150000-200000 - tomekkorbak/detoxify-pile-chunk3-200000-250000 - tomekkorbak/detoxify-pile-chunk3-250000-300000 - tomekkorbak/detoxify-pile-chunk3-300000-350000 - tomekkorbak/detoxify-pile-chunk3-350000-400000 - tomekkorbak/detoxify-pile-chunk3-400000-450000 - tomekkorbak/detoxify-pile-chunk3-450000-500000 - tomekkorbak/detoxify-pile-chunk3-500000-550000 - tomekkorbak/detoxify-pile-chunk3-550000-600000 - tomekkorbak/detoxify-pile-chunk3-600000-650000 - tomekkorbak/detoxify-pile-chunk3-650000-700000 - tomekkorbak/detoxify-pile-chunk3-700000-750000 - tomekkorbak/detoxify-pile-chunk3-750000-800000 - tomekkorbak/detoxify-pile-chunk3-800000-850000 - tomekkorbak/detoxify-pile-chunk3-850000-900000 - tomekkorbak/detoxify-pile-chunk3-900000-950000 - tomekkorbak/detoxify-pile-chunk3-950000-1000000 - tomekkorbak/detoxify-pile-chunk3-1000000-1050000 - tomekkorbak/detoxify-pile-chunk3-1050000-1100000 - tomekkorbak/detoxify-pile-chunk3-1100000-1150000 - tomekkorbak/detoxify-pile-chunk3-1150000-1200000 - tomekkorbak/detoxify-pile-chunk3-1200000-1250000 - tomekkorbak/detoxify-pile-chunk3-1250000-1300000 - tomekkorbak/detoxify-pile-chunk3-1300000-1350000 - tomekkorbak/detoxify-pile-chunk3-1350000-1400000 - tomekkorbak/detoxify-pile-chunk3-1400000-1450000 - tomekkorbak/detoxify-pile-chunk3-1450000-1500000 - tomekkorbak/detoxify-pile-chunk3-1500000-1550000 - tomekkorbak/detoxify-pile-chunk3-1550000-1600000 - tomekkorbak/detoxify-pile-chunk3-1600000-1650000 - tomekkorbak/detoxify-pile-chunk3-1650000-1700000 - tomekkorbak/detoxify-pile-chunk3-1700000-1750000 - tomekkorbak/detoxify-pile-chunk3-1750000-1800000 - tomekkorbak/detoxify-pile-chunk3-1800000-1850000 - tomekkorbak/detoxify-pile-chunk3-1850000-1900000 - tomekkorbak/detoxify-pile-chunk3-1900000-1950000 model-index: - name: loving_noyce results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # loving_noyce This model was trained from scratch on the tomekkorbak/detoxify-pile-chunk3-0-50000, the tomekkorbak/detoxify-pile-chunk3-50000-100000, the tomekkorbak/detoxify-pile-chunk3-100000-150000, the tomekkorbak/detoxify-pile-chunk3-150000-200000, the tomekkorbak/detoxify-pile-chunk3-200000-250000, the tomekkorbak/detoxify-pile-chunk3-250000-300000, the tomekkorbak/detoxify-pile-chunk3-300000-350000, the tomekkorbak/detoxify-pile-chunk3-350000-400000, the tomekkorbak/detoxify-pile-chunk3-400000-450000, the tomekkorbak/detoxify-pile-chunk3-450000-500000, the tomekkorbak/detoxify-pile-chunk3-500000-550000, the tomekkorbak/detoxify-pile-chunk3-550000-600000, the tomekkorbak/detoxify-pile-chunk3-600000-650000, the tomekkorbak/detoxify-pile-chunk3-650000-700000, the tomekkorbak/detoxify-pile-chunk3-700000-750000, the tomekkorbak/detoxify-pile-chunk3-750000-800000, the tomekkorbak/detoxify-pile-chunk3-800000-850000, the tomekkorbak/detoxify-pile-chunk3-850000-900000, the tomekkorbak/detoxify-pile-chunk3-900000-950000, the tomekkorbak/detoxify-pile-chunk3-950000-1000000, the tomekkorbak/detoxify-pile-chunk3-1000000-1050000, the tomekkorbak/detoxify-pile-chunk3-1050000-1100000, the tomekkorbak/detoxify-pile-chunk3-1100000-1150000, the tomekkorbak/detoxify-pile-chunk3-1150000-1200000, the tomekkorbak/detoxify-pile-chunk3-1200000-1250000, the tomekkorbak/detoxify-pile-chunk3-1250000-1300000, the tomekkorbak/detoxify-pile-chunk3-1300000-1350000, the tomekkorbak/detoxify-pile-chunk3-1350000-1400000, the tomekkorbak/detoxify-pile-chunk3-1400000-1450000, the tomekkorbak/detoxify-pile-chunk3-1450000-1500000, the tomekkorbak/detoxify-pile-chunk3-1500000-1550000, the tomekkorbak/detoxify-pile-chunk3-1550000-1600000, the tomekkorbak/detoxify-pile-chunk3-1600000-1650000, the tomekkorbak/detoxify-pile-chunk3-1650000-1700000, the tomekkorbak/detoxify-pile-chunk3-1700000-1750000, the tomekkorbak/detoxify-pile-chunk3-1750000-1800000, the tomekkorbak/detoxify-pile-chunk3-1800000-1850000, the tomekkorbak/detoxify-pile-chunk3-1850000-1900000 and the tomekkorbak/detoxify-pile-chunk3-1900000-1950000 datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 25000 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.24.0 - Pytorch 1.11.0+cu113 - Datasets 2.5.1 - Tokenizers 0.11.6 # Full config {'dataset': {'conditional_training_config': {'aligned_prefix': '<|aligned|>', 'drop_token_fraction': 0.01, 'misaligned_prefix': '<|misaligned|>', 'threshold': 0.00056}, 'datasets': ['tomekkorbak/detoxify-pile-chunk3-0-50000', 'tomekkorbak/detoxify-pile-chunk3-50000-100000', 'tomekkorbak/detoxify-pile-chunk3-100000-150000', 'tomekkorbak/detoxify-pile-chunk3-150000-200000', 'tomekkorbak/detoxify-pile-chunk3-200000-250000', 'tomekkorbak/detoxify-pile-chunk3-250000-300000', 'tomekkorbak/detoxify-pile-chunk3-300000-350000', 'tomekkorbak/detoxify-pile-chunk3-350000-400000', 'tomekkorbak/detoxify-pile-chunk3-400000-450000', 'tomekkorbak/detoxify-pile-chunk3-450000-500000', 'tomekkorbak/detoxify-pile-chunk3-500000-550000', 'tomekkorbak/detoxify-pile-chunk3-550000-600000', 'tomekkorbak/detoxify-pile-chunk3-600000-650000', 'tomekkorbak/detoxify-pile-chunk3-650000-700000', 'tomekkorbak/detoxify-pile-chunk3-700000-750000', 'tomekkorbak/detoxify-pile-chunk3-750000-800000', 'tomekkorbak/detoxify-pile-chunk3-800000-850000', 'tomekkorbak/detoxify-pile-chunk3-850000-900000', 'tomekkorbak/detoxify-pile-chunk3-900000-950000', 'tomekkorbak/detoxify-pile-chunk3-950000-1000000', 'tomekkorbak/detoxify-pile-chunk3-1000000-1050000', 'tomekkorbak/detoxify-pile-chunk3-1050000-1100000', 'tomekkorbak/detoxify-pile-chunk3-1100000-1150000', 'tomekkorbak/detoxify-pile-chunk3-1150000-1200000', 'tomekkorbak/detoxify-pile-chunk3-1200000-1250000', 'tomekkorbak/detoxify-pile-chunk3-1250000-1300000', 'tomekkorbak/detoxify-pile-chunk3-1300000-1350000', 'tomekkorbak/detoxify-pile-chunk3-1350000-1400000', 'tomekkorbak/detoxify-pile-chunk3-1400000-1450000', 'tomekkorbak/detoxify-pile-chunk3-1450000-1500000', 'tomekkorbak/detoxify-pile-chunk3-1500000-1550000', 'tomekkorbak/detoxify-pile-chunk3-1550000-1600000', 'tomekkorbak/detoxify-pile-chunk3-1600000-1650000', 'tomekkorbak/detoxify-pile-chunk3-1650000-1700000', 'tomekkorbak/detoxify-pile-chunk3-1700000-1750000', 'tomekkorbak/detoxify-pile-chunk3-1750000-1800000', 'tomekkorbak/detoxify-pile-chunk3-1800000-1850000', 'tomekkorbak/detoxify-pile-chunk3-1850000-1900000', 'tomekkorbak/detoxify-pile-chunk3-1900000-1950000'], 'is_split_by_sentences': True, 'skip_tokens': 1661599744}, 'generation': {'force_call_on': [25354], 'metrics_configs': [{}, {'n': 1}, {'n': 2}, {'n': 5}], 'scenario_configs': [{'generate_kwargs': {'bad_words_ids': [[50257], [50258]], 'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_samples': 2048, 'prefix': '<|aligned|>'}, {'generate_kwargs': {'bad_words_ids': [[50257], [50258]], 'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'challenging_rtp', 'num_samples': 2048, 'prefix': '<|aligned|>', 'prompt_before_control': True, 'prompts_path': 'resources/challenging_rtp.jsonl'}], 'scorer_config': {'device': 'cuda:0'}}, 'kl_gpt3_callback': {'force_call_on': [25354], 'max_tokens': 64, 'num_samples': 4096, 'prefix': '<|aligned|>'}, 'model': {'from_scratch': False, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'model_kwargs': {'revision': '81a1701e025d2c65ae6e8c2103df559071523ee0'}, 'num_additional_tokens': 2, 'path_or_name': 'tomekkorbak/goofy_pasteur'}, 'objective': {'name': 'MLE'}, 'tokenizer': {'path_or_name': 'gpt2', 'special_tokens': ['<|aligned|>', '<|misaligned|>']}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 64, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'loving_noyce', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.0005, 'logging_first_step': True, 'logging_steps': 1, 'num_tokens': 3300000000, 'output_dir': 'training_output104340', 'per_device_train_batch_size': 16, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 25354, 'save_strategy': 'steps', 'seed': 42, 'tokens_already_seen': 1661599744, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/tomekkorbak/apo/runs/51j97cgd
nidek/q-FrozenLake-v1-8x8-Slippery
nidek
2022-12-14T17:51:27Z
0
0
null
[ "FrozenLake-v1-8x8", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-14T17:51:22Z
--- tags: - FrozenLake-v1-8x8 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-8x8-Slippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-8x8 type: FrozenLake-v1-8x8 metrics: - type: mean_reward value: 0.61 +/- 0.49 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="nidek/q-FrozenLake-v1-8x8-Slippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
tomekkorbak/dreamy_poitras
tomekkorbak
2022-12-14T17:51:04Z
0
0
null
[ "generated_from_trainer", "en", "dataset:tomekkorbak/pii-pile-chunk3-0-50000", "dataset:tomekkorbak/pii-pile-chunk3-50000-100000", "dataset:tomekkorbak/pii-pile-chunk3-100000-150000", "dataset:tomekkorbak/pii-pile-chunk3-150000-200000", "dataset:tomekkorbak/pii-pile-chunk3-200000-250000", "dataset:tomekkorbak/pii-pile-chunk3-250000-300000", "dataset:tomekkorbak/pii-pile-chunk3-300000-350000", "dataset:tomekkorbak/pii-pile-chunk3-350000-400000", "dataset:tomekkorbak/pii-pile-chunk3-400000-450000", "dataset:tomekkorbak/pii-pile-chunk3-450000-500000", "dataset:tomekkorbak/pii-pile-chunk3-500000-550000", "dataset:tomekkorbak/pii-pile-chunk3-550000-600000", "dataset:tomekkorbak/pii-pile-chunk3-600000-650000", "dataset:tomekkorbak/pii-pile-chunk3-650000-700000", "dataset:tomekkorbak/pii-pile-chunk3-700000-750000", "dataset:tomekkorbak/pii-pile-chunk3-750000-800000", "dataset:tomekkorbak/pii-pile-chunk3-800000-850000", "dataset:tomekkorbak/pii-pile-chunk3-850000-900000", "dataset:tomekkorbak/pii-pile-chunk3-900000-950000", "dataset:tomekkorbak/pii-pile-chunk3-950000-1000000", "dataset:tomekkorbak/pii-pile-chunk3-1000000-1050000", "dataset:tomekkorbak/pii-pile-chunk3-1050000-1100000", "dataset:tomekkorbak/pii-pile-chunk3-1100000-1150000", "dataset:tomekkorbak/pii-pile-chunk3-1150000-1200000", "dataset:tomekkorbak/pii-pile-chunk3-1200000-1250000", "dataset:tomekkorbak/pii-pile-chunk3-1250000-1300000", "dataset:tomekkorbak/pii-pile-chunk3-1300000-1350000", "dataset:tomekkorbak/pii-pile-chunk3-1350000-1400000", "dataset:tomekkorbak/pii-pile-chunk3-1400000-1450000", "dataset:tomekkorbak/pii-pile-chunk3-1450000-1500000", "dataset:tomekkorbak/pii-pile-chunk3-1500000-1550000", "dataset:tomekkorbak/pii-pile-chunk3-1550000-1600000", "dataset:tomekkorbak/pii-pile-chunk3-1600000-1650000", "dataset:tomekkorbak/pii-pile-chunk3-1650000-1700000", "dataset:tomekkorbak/pii-pile-chunk3-1700000-1750000", "dataset:tomekkorbak/pii-pile-chunk3-1750000-1800000", "dataset:tomekkorbak/pii-pile-chunk3-1800000-1850000", "dataset:tomekkorbak/pii-pile-chunk3-1850000-1900000", "dataset:tomekkorbak/pii-pile-chunk3-1900000-1950000", "license:mit", "region:us" ]
null
2022-12-14T17:50:57Z
--- language: - en license: mit tags: - generated_from_trainer datasets: - tomekkorbak/pii-pile-chunk3-0-50000 - tomekkorbak/pii-pile-chunk3-50000-100000 - tomekkorbak/pii-pile-chunk3-100000-150000 - tomekkorbak/pii-pile-chunk3-150000-200000 - tomekkorbak/pii-pile-chunk3-200000-250000 - tomekkorbak/pii-pile-chunk3-250000-300000 - tomekkorbak/pii-pile-chunk3-300000-350000 - tomekkorbak/pii-pile-chunk3-350000-400000 - tomekkorbak/pii-pile-chunk3-400000-450000 - tomekkorbak/pii-pile-chunk3-450000-500000 - tomekkorbak/pii-pile-chunk3-500000-550000 - tomekkorbak/pii-pile-chunk3-550000-600000 - tomekkorbak/pii-pile-chunk3-600000-650000 - tomekkorbak/pii-pile-chunk3-650000-700000 - tomekkorbak/pii-pile-chunk3-700000-750000 - tomekkorbak/pii-pile-chunk3-750000-800000 - tomekkorbak/pii-pile-chunk3-800000-850000 - tomekkorbak/pii-pile-chunk3-850000-900000 - tomekkorbak/pii-pile-chunk3-900000-950000 - tomekkorbak/pii-pile-chunk3-950000-1000000 - tomekkorbak/pii-pile-chunk3-1000000-1050000 - tomekkorbak/pii-pile-chunk3-1050000-1100000 - tomekkorbak/pii-pile-chunk3-1100000-1150000 - tomekkorbak/pii-pile-chunk3-1150000-1200000 - tomekkorbak/pii-pile-chunk3-1200000-1250000 - tomekkorbak/pii-pile-chunk3-1250000-1300000 - tomekkorbak/pii-pile-chunk3-1300000-1350000 - tomekkorbak/pii-pile-chunk3-1350000-1400000 - tomekkorbak/pii-pile-chunk3-1400000-1450000 - tomekkorbak/pii-pile-chunk3-1450000-1500000 - tomekkorbak/pii-pile-chunk3-1500000-1550000 - tomekkorbak/pii-pile-chunk3-1550000-1600000 - tomekkorbak/pii-pile-chunk3-1600000-1650000 - tomekkorbak/pii-pile-chunk3-1650000-1700000 - tomekkorbak/pii-pile-chunk3-1700000-1750000 - tomekkorbak/pii-pile-chunk3-1750000-1800000 - tomekkorbak/pii-pile-chunk3-1800000-1850000 - tomekkorbak/pii-pile-chunk3-1850000-1900000 - tomekkorbak/pii-pile-chunk3-1900000-1950000 model-index: - name: dreamy_poitras results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dreamy_poitras This model was trained from scratch on the tomekkorbak/pii-pile-chunk3-0-50000, the tomekkorbak/pii-pile-chunk3-50000-100000, the tomekkorbak/pii-pile-chunk3-100000-150000, the tomekkorbak/pii-pile-chunk3-150000-200000, the tomekkorbak/pii-pile-chunk3-200000-250000, the tomekkorbak/pii-pile-chunk3-250000-300000, the tomekkorbak/pii-pile-chunk3-300000-350000, the tomekkorbak/pii-pile-chunk3-350000-400000, the tomekkorbak/pii-pile-chunk3-400000-450000, the tomekkorbak/pii-pile-chunk3-450000-500000, the tomekkorbak/pii-pile-chunk3-500000-550000, the tomekkorbak/pii-pile-chunk3-550000-600000, the tomekkorbak/pii-pile-chunk3-600000-650000, the tomekkorbak/pii-pile-chunk3-650000-700000, the tomekkorbak/pii-pile-chunk3-700000-750000, the tomekkorbak/pii-pile-chunk3-750000-800000, the tomekkorbak/pii-pile-chunk3-800000-850000, the tomekkorbak/pii-pile-chunk3-850000-900000, the tomekkorbak/pii-pile-chunk3-900000-950000, the tomekkorbak/pii-pile-chunk3-950000-1000000, the tomekkorbak/pii-pile-chunk3-1000000-1050000, the tomekkorbak/pii-pile-chunk3-1050000-1100000, the tomekkorbak/pii-pile-chunk3-1100000-1150000, the tomekkorbak/pii-pile-chunk3-1150000-1200000, the tomekkorbak/pii-pile-chunk3-1200000-1250000, the tomekkorbak/pii-pile-chunk3-1250000-1300000, the tomekkorbak/pii-pile-chunk3-1300000-1350000, the tomekkorbak/pii-pile-chunk3-1350000-1400000, the tomekkorbak/pii-pile-chunk3-1400000-1450000, the tomekkorbak/pii-pile-chunk3-1450000-1500000, the tomekkorbak/pii-pile-chunk3-1500000-1550000, the tomekkorbak/pii-pile-chunk3-1550000-1600000, the tomekkorbak/pii-pile-chunk3-1600000-1650000, the tomekkorbak/pii-pile-chunk3-1650000-1700000, the tomekkorbak/pii-pile-chunk3-1700000-1750000, the tomekkorbak/pii-pile-chunk3-1750000-1800000, the tomekkorbak/pii-pile-chunk3-1800000-1850000, the tomekkorbak/pii-pile-chunk3-1850000-1900000 and the tomekkorbak/pii-pile-chunk3-1900000-1950000 datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 12588 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.24.0 - Pytorch 1.11.0+cu113 - Datasets 2.5.1 - Tokenizers 0.11.6 # Full config {'dataset': {'conditional_training_config': {'aligned_prefix': '<|aligned|>', 'drop_token_fraction': 0.01, 'misaligned_prefix': '<|misaligned|>', 'threshold': 0.0}, 'datasets': ['tomekkorbak/pii-pile-chunk3-0-50000', 'tomekkorbak/pii-pile-chunk3-50000-100000', 'tomekkorbak/pii-pile-chunk3-100000-150000', 'tomekkorbak/pii-pile-chunk3-150000-200000', 'tomekkorbak/pii-pile-chunk3-200000-250000', 'tomekkorbak/pii-pile-chunk3-250000-300000', 'tomekkorbak/pii-pile-chunk3-300000-350000', 'tomekkorbak/pii-pile-chunk3-350000-400000', 'tomekkorbak/pii-pile-chunk3-400000-450000', 'tomekkorbak/pii-pile-chunk3-450000-500000', 'tomekkorbak/pii-pile-chunk3-500000-550000', 'tomekkorbak/pii-pile-chunk3-550000-600000', 'tomekkorbak/pii-pile-chunk3-600000-650000', 'tomekkorbak/pii-pile-chunk3-650000-700000', 'tomekkorbak/pii-pile-chunk3-700000-750000', 'tomekkorbak/pii-pile-chunk3-750000-800000', 'tomekkorbak/pii-pile-chunk3-800000-850000', 'tomekkorbak/pii-pile-chunk3-850000-900000', 'tomekkorbak/pii-pile-chunk3-900000-950000', 'tomekkorbak/pii-pile-chunk3-950000-1000000', 'tomekkorbak/pii-pile-chunk3-1000000-1050000', 'tomekkorbak/pii-pile-chunk3-1050000-1100000', 'tomekkorbak/pii-pile-chunk3-1100000-1150000', 'tomekkorbak/pii-pile-chunk3-1150000-1200000', 'tomekkorbak/pii-pile-chunk3-1200000-1250000', 'tomekkorbak/pii-pile-chunk3-1250000-1300000', 'tomekkorbak/pii-pile-chunk3-1300000-1350000', 'tomekkorbak/pii-pile-chunk3-1350000-1400000', 'tomekkorbak/pii-pile-chunk3-1400000-1450000', 'tomekkorbak/pii-pile-chunk3-1450000-1500000', 'tomekkorbak/pii-pile-chunk3-1500000-1550000', 'tomekkorbak/pii-pile-chunk3-1550000-1600000', 'tomekkorbak/pii-pile-chunk3-1600000-1650000', 'tomekkorbak/pii-pile-chunk3-1650000-1700000', 'tomekkorbak/pii-pile-chunk3-1700000-1750000', 'tomekkorbak/pii-pile-chunk3-1750000-1800000', 'tomekkorbak/pii-pile-chunk3-1800000-1850000', 'tomekkorbak/pii-pile-chunk3-1850000-1900000', 'tomekkorbak/pii-pile-chunk3-1900000-1950000'], 'is_split_by_sentences': True, 'skip_tokens': 1649999872}, 'generation': {'force_call_on': [25177], 'metrics_configs': [{}, {'n': 1}, {'n': 2}, {'n': 5}], 'scenario_configs': [{'generate_kwargs': {'bad_words_ids': [[50257], [50258]], 'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_samples': 2048, 'prefix': '<|aligned|>'}], 'scorer_config': {}}, 'kl_gpt3_callback': {'force_call_on': [25177], 'max_tokens': 64, 'num_samples': 4096, 'prefix': '<|aligned|>'}, 'model': {'from_scratch': False, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'model_kwargs': {'revision': '9e6c78543a6ff1e4089002c38864d5a9cf71ec90'}, 'num_additional_tokens': 2, 'path_or_name': 'tomekkorbak/nervous_wozniak'}, 'objective': {'name': 'MLE'}, 'tokenizer': {'path_or_name': 'gpt2', 'special_tokens': ['<|aligned|>', '<|misaligned|>']}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 128, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'dreamy_poitras', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.0001, 'logging_first_step': True, 'logging_steps': 1, 'num_tokens': 3300000000, 'output_dir': 'training_output2', 'per_device_train_batch_size': 16, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 25177, 'save_strategy': 'steps', 'seed': 42, 'tokens_already_seen': 1649999872, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/tomekkorbak/apo/runs/1b5oov3g
tomekkorbak/romantic_bose
tomekkorbak
2022-12-14T17:51:03Z
0
0
null
[ "generated_from_trainer", "en", "dataset:tomekkorbak/pii-pile-chunk3-0-50000", "dataset:tomekkorbak/pii-pile-chunk3-50000-100000", "dataset:tomekkorbak/pii-pile-chunk3-100000-150000", "dataset:tomekkorbak/pii-pile-chunk3-150000-200000", "dataset:tomekkorbak/pii-pile-chunk3-200000-250000", "dataset:tomekkorbak/pii-pile-chunk3-250000-300000", "dataset:tomekkorbak/pii-pile-chunk3-300000-350000", "dataset:tomekkorbak/pii-pile-chunk3-350000-400000", "dataset:tomekkorbak/pii-pile-chunk3-400000-450000", "dataset:tomekkorbak/pii-pile-chunk3-450000-500000", "dataset:tomekkorbak/pii-pile-chunk3-500000-550000", "dataset:tomekkorbak/pii-pile-chunk3-550000-600000", "dataset:tomekkorbak/pii-pile-chunk3-600000-650000", "dataset:tomekkorbak/pii-pile-chunk3-650000-700000", "dataset:tomekkorbak/pii-pile-chunk3-700000-750000", "dataset:tomekkorbak/pii-pile-chunk3-750000-800000", "dataset:tomekkorbak/pii-pile-chunk3-800000-850000", "dataset:tomekkorbak/pii-pile-chunk3-850000-900000", "dataset:tomekkorbak/pii-pile-chunk3-900000-950000", "dataset:tomekkorbak/pii-pile-chunk3-950000-1000000", "dataset:tomekkorbak/pii-pile-chunk3-1000000-1050000", "dataset:tomekkorbak/pii-pile-chunk3-1050000-1100000", "dataset:tomekkorbak/pii-pile-chunk3-1100000-1150000", "dataset:tomekkorbak/pii-pile-chunk3-1150000-1200000", "dataset:tomekkorbak/pii-pile-chunk3-1200000-1250000", "dataset:tomekkorbak/pii-pile-chunk3-1250000-1300000", "dataset:tomekkorbak/pii-pile-chunk3-1300000-1350000", "dataset:tomekkorbak/pii-pile-chunk3-1350000-1400000", "dataset:tomekkorbak/pii-pile-chunk3-1400000-1450000", "dataset:tomekkorbak/pii-pile-chunk3-1450000-1500000", "dataset:tomekkorbak/pii-pile-chunk3-1500000-1550000", "dataset:tomekkorbak/pii-pile-chunk3-1550000-1600000", "dataset:tomekkorbak/pii-pile-chunk3-1600000-1650000", "dataset:tomekkorbak/pii-pile-chunk3-1650000-1700000", "dataset:tomekkorbak/pii-pile-chunk3-1700000-1750000", "dataset:tomekkorbak/pii-pile-chunk3-1750000-1800000", "dataset:tomekkorbak/pii-pile-chunk3-1800000-1850000", "dataset:tomekkorbak/pii-pile-chunk3-1850000-1900000", "dataset:tomekkorbak/pii-pile-chunk3-1900000-1950000", "license:mit", "region:us" ]
null
2022-12-14T17:50:56Z
--- language: - en license: mit tags: - generated_from_trainer datasets: - tomekkorbak/pii-pile-chunk3-0-50000 - tomekkorbak/pii-pile-chunk3-50000-100000 - tomekkorbak/pii-pile-chunk3-100000-150000 - tomekkorbak/pii-pile-chunk3-150000-200000 - tomekkorbak/pii-pile-chunk3-200000-250000 - tomekkorbak/pii-pile-chunk3-250000-300000 - tomekkorbak/pii-pile-chunk3-300000-350000 - tomekkorbak/pii-pile-chunk3-350000-400000 - tomekkorbak/pii-pile-chunk3-400000-450000 - tomekkorbak/pii-pile-chunk3-450000-500000 - tomekkorbak/pii-pile-chunk3-500000-550000 - tomekkorbak/pii-pile-chunk3-550000-600000 - tomekkorbak/pii-pile-chunk3-600000-650000 - tomekkorbak/pii-pile-chunk3-650000-700000 - tomekkorbak/pii-pile-chunk3-700000-750000 - tomekkorbak/pii-pile-chunk3-750000-800000 - tomekkorbak/pii-pile-chunk3-800000-850000 - tomekkorbak/pii-pile-chunk3-850000-900000 - tomekkorbak/pii-pile-chunk3-900000-950000 - tomekkorbak/pii-pile-chunk3-950000-1000000 - tomekkorbak/pii-pile-chunk3-1000000-1050000 - tomekkorbak/pii-pile-chunk3-1050000-1100000 - tomekkorbak/pii-pile-chunk3-1100000-1150000 - tomekkorbak/pii-pile-chunk3-1150000-1200000 - tomekkorbak/pii-pile-chunk3-1200000-1250000 - tomekkorbak/pii-pile-chunk3-1250000-1300000 - tomekkorbak/pii-pile-chunk3-1300000-1350000 - tomekkorbak/pii-pile-chunk3-1350000-1400000 - tomekkorbak/pii-pile-chunk3-1400000-1450000 - tomekkorbak/pii-pile-chunk3-1450000-1500000 - tomekkorbak/pii-pile-chunk3-1500000-1550000 - tomekkorbak/pii-pile-chunk3-1550000-1600000 - tomekkorbak/pii-pile-chunk3-1600000-1650000 - tomekkorbak/pii-pile-chunk3-1650000-1700000 - tomekkorbak/pii-pile-chunk3-1700000-1750000 - tomekkorbak/pii-pile-chunk3-1750000-1800000 - tomekkorbak/pii-pile-chunk3-1800000-1850000 - tomekkorbak/pii-pile-chunk3-1850000-1900000 - tomekkorbak/pii-pile-chunk3-1900000-1950000 model-index: - name: romantic_bose results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # romantic_bose This model was trained from scratch on the tomekkorbak/pii-pile-chunk3-0-50000, the tomekkorbak/pii-pile-chunk3-50000-100000, the tomekkorbak/pii-pile-chunk3-100000-150000, the tomekkorbak/pii-pile-chunk3-150000-200000, the tomekkorbak/pii-pile-chunk3-200000-250000, the tomekkorbak/pii-pile-chunk3-250000-300000, the tomekkorbak/pii-pile-chunk3-300000-350000, the tomekkorbak/pii-pile-chunk3-350000-400000, the tomekkorbak/pii-pile-chunk3-400000-450000, the tomekkorbak/pii-pile-chunk3-450000-500000, the tomekkorbak/pii-pile-chunk3-500000-550000, the tomekkorbak/pii-pile-chunk3-550000-600000, the tomekkorbak/pii-pile-chunk3-600000-650000, the tomekkorbak/pii-pile-chunk3-650000-700000, the tomekkorbak/pii-pile-chunk3-700000-750000, the tomekkorbak/pii-pile-chunk3-750000-800000, the tomekkorbak/pii-pile-chunk3-800000-850000, the tomekkorbak/pii-pile-chunk3-850000-900000, the tomekkorbak/pii-pile-chunk3-900000-950000, the tomekkorbak/pii-pile-chunk3-950000-1000000, the tomekkorbak/pii-pile-chunk3-1000000-1050000, the tomekkorbak/pii-pile-chunk3-1050000-1100000, the tomekkorbak/pii-pile-chunk3-1100000-1150000, the tomekkorbak/pii-pile-chunk3-1150000-1200000, the tomekkorbak/pii-pile-chunk3-1200000-1250000, the tomekkorbak/pii-pile-chunk3-1250000-1300000, the tomekkorbak/pii-pile-chunk3-1300000-1350000, the tomekkorbak/pii-pile-chunk3-1350000-1400000, the tomekkorbak/pii-pile-chunk3-1400000-1450000, the tomekkorbak/pii-pile-chunk3-1450000-1500000, the tomekkorbak/pii-pile-chunk3-1500000-1550000, the tomekkorbak/pii-pile-chunk3-1550000-1600000, the tomekkorbak/pii-pile-chunk3-1600000-1650000, the tomekkorbak/pii-pile-chunk3-1650000-1700000, the tomekkorbak/pii-pile-chunk3-1700000-1750000, the tomekkorbak/pii-pile-chunk3-1750000-1800000, the tomekkorbak/pii-pile-chunk3-1800000-1850000, the tomekkorbak/pii-pile-chunk3-1850000-1900000 and the tomekkorbak/pii-pile-chunk3-1900000-1950000 datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 12588 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.24.0 - Pytorch 1.11.0+cu113 - Datasets 2.5.1 - Tokenizers 0.11.6 # Full config {'dataset': {'datasets': ['tomekkorbak/pii-pile-chunk3-0-50000', 'tomekkorbak/pii-pile-chunk3-50000-100000', 'tomekkorbak/pii-pile-chunk3-100000-150000', 'tomekkorbak/pii-pile-chunk3-150000-200000', 'tomekkorbak/pii-pile-chunk3-200000-250000', 'tomekkorbak/pii-pile-chunk3-250000-300000', 'tomekkorbak/pii-pile-chunk3-300000-350000', 'tomekkorbak/pii-pile-chunk3-350000-400000', 'tomekkorbak/pii-pile-chunk3-400000-450000', 'tomekkorbak/pii-pile-chunk3-450000-500000', 'tomekkorbak/pii-pile-chunk3-500000-550000', 'tomekkorbak/pii-pile-chunk3-550000-600000', 'tomekkorbak/pii-pile-chunk3-600000-650000', 'tomekkorbak/pii-pile-chunk3-650000-700000', 'tomekkorbak/pii-pile-chunk3-700000-750000', 'tomekkorbak/pii-pile-chunk3-750000-800000', 'tomekkorbak/pii-pile-chunk3-800000-850000', 'tomekkorbak/pii-pile-chunk3-850000-900000', 'tomekkorbak/pii-pile-chunk3-900000-950000', 'tomekkorbak/pii-pile-chunk3-950000-1000000', 'tomekkorbak/pii-pile-chunk3-1000000-1050000', 'tomekkorbak/pii-pile-chunk3-1050000-1100000', 'tomekkorbak/pii-pile-chunk3-1100000-1150000', 'tomekkorbak/pii-pile-chunk3-1150000-1200000', 'tomekkorbak/pii-pile-chunk3-1200000-1250000', 'tomekkorbak/pii-pile-chunk3-1250000-1300000', 'tomekkorbak/pii-pile-chunk3-1300000-1350000', 'tomekkorbak/pii-pile-chunk3-1350000-1400000', 'tomekkorbak/pii-pile-chunk3-1400000-1450000', 'tomekkorbak/pii-pile-chunk3-1450000-1500000', 'tomekkorbak/pii-pile-chunk3-1500000-1550000', 'tomekkorbak/pii-pile-chunk3-1550000-1600000', 'tomekkorbak/pii-pile-chunk3-1600000-1650000', 'tomekkorbak/pii-pile-chunk3-1650000-1700000', 'tomekkorbak/pii-pile-chunk3-1700000-1750000', 'tomekkorbak/pii-pile-chunk3-1750000-1800000', 'tomekkorbak/pii-pile-chunk3-1800000-1850000', 'tomekkorbak/pii-pile-chunk3-1850000-1900000', 'tomekkorbak/pii-pile-chunk3-1900000-1950000'], 'is_split_by_sentences': True, 'skip_tokens': 1649999872}, 'generation': {'force_call_on': [25177], 'metrics_configs': [{}, {'n': 1}, {'n': 2}, {'n': 5}], 'scenario_configs': [{'generate_kwargs': {'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_samples': 2048}], 'scorer_config': {}}, 'kl_gpt3_callback': {'force_call_on': [25177], 'max_tokens': 64, 'num_samples': 4096}, 'model': {'from_scratch': False, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'model_kwargs': {'revision': '9e6c78543a6ff1e4089002c38864d5a9cf71ec90'}, 'path_or_name': 'tomekkorbak/nervous_wozniak'}, 'objective': {'name': 'MLE'}, 'tokenizer': {'path_or_name': 'gpt2'}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 128, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'romantic_bose', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.0001, 'logging_first_step': True, 'logging_steps': 1, 'num_tokens': 3300000000, 'output_dir': 'training_output2', 'per_device_train_batch_size': 16, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 25177, 'save_strategy': 'steps', 'seed': 42, 'tokens_already_seen': 1649999872, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/tomekkorbak/apo/runs/2aqujp4e
skandavivek2/roberta-finetuned-subjqa-movies_1
skandavivek2
2022-12-14T17:49:56Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "question-answering", "generated_from_trainer", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
question-answering
2022-12-14T17:35:37Z
--- license: cc-by-4.0 tags: - generated_from_trainer model-index: - name: roberta-finetuned-subjqa-movies_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-finetuned-subjqa-movies_1 This model is a fine-tuned version of [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
nidek/q-FrozenLake-v1-4x4-Slippery
nidek
2022-12-14T17:35:46Z
0
0
null
[ "FrozenLake-v1-4x4", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-14T17:35:42Z
--- tags: - FrozenLake-v1-4x4 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-Slippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4 type: FrozenLake-v1-4x4 metrics: - type: mean_reward value: 0.77 +/- 0.42 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="nidek/q-FrozenLake-v1-4x4-Slippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
JosephusCheung/ACertainty
JosephusCheung
2022-12-14T17:29:51Z
61
99
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "en", "doi:10.57967/hf/0200", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2022-12-14T15:36:27Z
--- language: - en license: creativeml-openrail-m tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers inference: true widget: - text: "masterpiece, best quality, 1girl, brown hair, green eyes, colorful, autumn, cumulonimbus clouds, lighting, blue sky, falling leaves, garden" example_title: "example 1girl" - text: "masterpiece, best quality, 1boy, brown hair, green eyes, colorful, autumn, cumulonimbus clouds, lighting, blue sky, falling leaves, garden" example_title: "example 1boy" --- # ACertainty ACertainty is a carefully designed model that is well-suited for further fine-tuning and training for use in dreambooth. It is easier to train than other anime-style Stable Diffusion models, and is less biased and more balanced for further development. This model is less likely to be biased by laion-aesthetic preferences, brought by Stable-Diffusion-v1-4+. This is not the base of ACertainModel, but you can use this model as your new base to train your new dreambooth model about a couple themes or charactors or styles. e.g. **_masterpiece, best quality, 1girl, brown hair, green eyes, colorful, autumn, cumulonimbus clouds, lighting, blue sky, falling leaves, garden_** ## About online preview with Hosted inference API, also generation with this model Parameters are not allowed to be modified, as it seems that it is generated with *Clip skip: 1*, for better performance, it is strongly recommended to use *Clip skip: 2* instead. Here is an example of inference settings, if it is applicable with you on your own server: *Steps: 28, Sampler: Euler a, CFG scale: 11, Clip skip: 2*. ## 🧨 Diffusers This model can be used just like any other Stable Diffusion model. For more information, please have a look at the [Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion). You can also export the model to [ONNX](https://huggingface.co/docs/diffusers/optimization/onnx), [MPS](https://huggingface.co/docs/diffusers/optimization/mps) and/or FLAX/JAX. ```python from diffusers import StableDiffusionPipeline import torch model_id = "JosephusCheung/ACertainty" branch_name= "main" pipe = StableDiffusionPipeline.from_pretrained(model_id, revision=branch_name, torch_dtype=torch.float16) pipe = pipe.to("cuda") prompt = "pikachu" image = pipe(prompt).images[0] image.save("./pikachu.png") ``` ## License This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) [Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license) ## Is it a NovelAI based model? What is the relationship with SD1.2 and SD1.4? See [ASimilarityCalculatior](https://huggingface.co/JosephusCheung/ASimilarityCalculatior)
tzvc/a9054d36-59d1-4374-ab1f-2ca457b539e2
tzvc
2022-12-14T17:22:06Z
6
0
diffusers
[ "diffusers", "tensorboard", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2022-12-14T16:49:36Z
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: a portrait of [V] --- ### training params ```json { "pretrained_model_name_or_path": "CompVis/stable-diffusion-v1-4", "instance_data_dir": "./a9054d36-59d1-4374-ab1f-2ca457b539e2/instance_data", "class_data_dir": "./class_data/a-portrait-of-a-person", "output_dir": "./a9054d36-59d1-4374-ab1f-2ca457b539e2/", "with_prior_preservation": true, "prior_loss_weight": 1.0, "instance_prompt": "a portrait of [V]", "class_prompt": "a portrait of a person", "resolution": 512, "train_batch_size": 1, "gradient_accumulation_steps": 1, "gradient_checkpointing": true, "use_8bit_adam": true, "learning_rate": 5e-06, "lr_scheduler": "constant", "lr_warmup_steps": 0, "num_class_images": 200, "max_train_steps": 1050, "mixed_precision": "fp16" } ```
gonend/ppo-LunarLander-v2
gonend
2022-12-14T17:20:35Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-14T15:57:54Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 257.01 +/- 9.02 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
besa2001/q-FrozenLake-v1-4x4-noSlippery
besa2001
2022-12-14T17:16:48Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-14T17:16:42Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="besa2001/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
jraramhoej/whisper-small-lt
jraramhoej
2022-12-14T17:15:26Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "lt", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-14T08:34:29Z
--- language: - lt license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Lt results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: lt split: test args: lt metrics: - name: Wer type: wer value: 35.859768928415455 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Lt This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.5724 - Wer: 35.8598 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0237 | 6.0 | 1000 | 0.4745 | 37.9839 | | 0.0016 | 12.01 | 2000 | 0.5128 | 35.9749 | | 0.0008 | 18.01 | 3000 | 0.5458 | 35.7843 | | 0.0005 | 24.02 | 4000 | 0.5652 | 35.8240 | | 0.0004 | 30.02 | 5000 | 0.5724 | 35.8598 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
lakssrini/sd-class-living-room-256
lakssrini
2022-12-14T17:12:10Z
0
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-12-14T08:48:13Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute living rooms. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('lakssrini/sd-class-living-room-256') image = pipeline().images[0] image ```
SebLih/whisper-SV
SebLih
2022-12-14T17:11:02Z
5
3
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "sv", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-13T14:39:26Z
--- language: - sv license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer model-index: - name: Whisper Small SV results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small SV This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 200 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2