modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-06-23 18:27:52
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
492 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-06-23 18:25:26
card
stringlengths
11
1.01M
zhow/sd-class-butterflies-64
zhow
2022-12-16T09:32:19Z
0
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-12-16T09:31:47Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('zhow/sd-class-butterflies-64') image = pipeline().images[0] image ```
snehalyelmati/mt5-hindi-to-english
snehalyelmati
2022-12-16T09:31:09Z
85
6
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "google/mt5-small", "machine_translation", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-12-16T08:32:48Z
--- language: en tags: - google/mt5-small - machine_translation license: apache-2.0 --- # Hindi-English Translation Model Based on the "google/mt5-small" pre-trained model. Fine-tuned it on Hindi to English dataset. ### Parameters - number of epochs = 8 - batch size = 16 - learning rate = 5e-4 - number of batches = int(np.ceil(len(dataset) / batch size)) - n_warmup_steps = int(number of epochs * number of batches * 0.01) ### Training Loss ![loss.png](./h2e_loss.png) ### Examples ![example_1.png](./h2e_example1.png) ![example_2.png](./h2e_example2.png) ![example_3.png](./h2e_example3.png)
lyua1225/clip-huge-zh-75k-steps-bs4096
lyua1225
2022-12-16T09:29:21Z
12
16
transformers
[ "transformers", "pytorch", "clip", "zero-shot-image-classification", "zh", "Chinese", "license:creativeml-openrail-m", "endpoints_compatible", "region:us" ]
zero-shot-image-classification
2022-12-16T06:36:19Z
--- language: zh license: creativeml-openrail-m tags: - clip - zh - Chinese --- # clip-huge-zh-75k-steps-bs4096 ## Brief Introduction 训练该模型的目的是使用中文文本指导stable diffusion 2模型进行生成。冻结[open_clip的CLIP-VIT-H](https://huggingface.co/laion/CLIP-ViT-H-14-laion2B-s32B-b79K)图像编码部分,训练文本编码部分以对齐英文语义空间, 训练样本均来自[LAION-5B](https://laion.ai/blog/laion-5b/)的中文子集 注:由于数据量,bs,step远小于原生clip-h,所以模型远未收敛且远未达到huge模型该有的性能,只是作为stable diffusion 2的文本指导的中间结果, 欢迎基于该模型做二次开发强化其CLIP性能。 The purpose of training this model is to use chinese text guiding stable difussion 2 generation. Freezing only the vision part of [CLIP-VIT-H](https://huggingface.co/laion/CLIP-ViT-H-14-laion2B-s32B-b79K) and train the text encoder can align chinese latent space to the original english latent space. All training samples are from chinese subset of [LAION-5B](https://laion.ai/blog/laion-5b/) Note: Because of smaller dataset size, batch size and steps, this model is still far away from expected performance and convergence. It is only expected as the middle result for stable diffusion 2 text encoder. You are very welcome to do further training based on this model to enhance its 'CLIP' performance. ## Stable Diffusion 2 Guiding Example 赛博朋克风格的城市街道 ![](examples/cyberpunk.jpeg) 一只可爱的柴犬 ![](examples/shiba.jpeg) ## Training Details ### 文本编码器/Text Encoder 文本编码器采用与stable diffusion 2同样的结构:[open_clip的CLIP-VIT-H](https://huggingface.co/laion/CLIP-ViT-H-14-laion2B-s32B-b79K). 为了使中文编码在语义空间内尽量与原来英文编码器的语义距离接近,文本编码器的训练细节如下: 1. 暴力的替换原来英文版本的clip_huge的文本编码器的vocab与tokenizer为chinese roberta的vocab与tokenizer 2. 完整copy原英文编码器的所有权重 3. 冻结图像编码器的全部参数与文本编码器的编码部分与输出映射部分,只训练词嵌入,目的是在保留语义空间尽量不变的情况下,将中文词嵌入对齐英文词嵌入的语义空间。 4. 在训练多个step后,完全解冻文本编码器,使整个文本模型去拟合clip_huge图像编码器的语义空间。 注:训练的loss采用clip loss,数据集采用[LAION-5B](https://laion.ai/blog/laion-5b/)数据集的中文子集部分(由于失效url等原因,共约8500万),模型在4096的batch size下共训练75k步,所以并未完全收敛。 Text encoder is the same structure as [open_clip/CLIP-VIT-H](https://huggingface.co/laion/CLIP-ViT-H-14-laion2B-s32B-b79K) which is used by stable diffusion 2. Our purpose is mapping chinese latent space to the original english one. The training details are listed below: 1. Do brute force in-place vocab substitution: directly use chinese tokened sequence to pick up embedding vectors from the original embedding layer. 2. Copy the original model weights from the text encoder of CLIP-VIT-H 3. Freeze the entire visual model, text encoder layer as well as the text projection layer. Only the text embedding layer is unfrozen. The purpose of this step is to align chinese word embedding with the original english word embedding such that the final projection latent space would not drift far away. 4. After a bunch of steps, unfreeze the entire text encoder for better convergence. Note: We use clip loss to optimize chinese text encoder. Chinese subset of [LAION-5B](https://laion.ai/blog/laion-5b/) are chosen as our training set (around 85M text-image pairs). This model was trained 75k steps with 4096 batch size so it is still far away from convergence. ## 使用 Usage ### Zero-Shot Classification ```py import torch import numpy as np import requests from PIL import Image from transformers import CLIPModel, CLIPFeatureExtractor, AutoTokenizer model_id = "lyua1225/clip-huge-zh-75k-steps-bs4096" model = CLIPModel.from_pretrained(model_id) tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) processor = CLIPFeatureExtractor.from_pretrained(model_id) # online example from OFA-Sys url = "https://clip-cn-beijing.oss-cn-beijing.aliyuncs.com/pokemon.jpeg" image = Image.open(requests.get(url, stream=True).raw).convert("RGB") texts = ["杰尼龟", "妙蛙种子", "皮卡丘", "小火龙"] # compute image feature inputs = torch.from_numpy(processor(image).pixel_values[0]).unsqueeze(0) image_features = model.get_image_features(pixel_values=inputs) image_features = image_features / image_features.norm(p=2, dim=-1, keepdim=True) # compute text features inputs = tokenizer(text=texts, padding="max_length", max_length=77, return_tensors="pt") input_ids, attention_mask = inputs.input_ids, inputs.attention_mask input_dict = dict(input_ids=input_ids, attention_mask=attention_mask) text_features = model.get_text_features(**input_dict) text_features = text_features / text_features.norm(p=2, dim=-1, keepdim=True) # normalize # compute probs for each class logit_scale = model.logit_scale.exp() logits_per_image = logit_scale * image_features @ text_features.t() logits_per_text = logits_per_image.t() probs = logits_per_image.softmax(dim=-1).detach().numpy() print(np.around(probs, 3)) ``` ### Guiding Stable Diffusion V2.1 使用该中文模型可以指导stable diffusion 2 进行生成(在图灵架构或者V100以后的GPU上推荐使用FP16进行推理) ```py import torch from diffusers import StableDiffusionPipeline from transformers import AutoTokenizer, CLIPTextModel clip_id = "lyua1225/clip-huge-zh-75k-steps-bs4096" sd2_id = "stabilityai/stable-diffusion-2-1" text_encoder = CLIPTextModel.from_pretrained(clip_id).half() tokenizer = AutoTokenizer.from_pretrained(clip_id, trust_remote_code=True) pipe = StableDiffusionPipeline.from_pretrained(sd2_id, torch_dtype=torch.float16, revision="fp16", tokenizer=tokenizer, text_encoder=text_encoder) pipe.to("cuda") image = pipe("赛博朋克风格的城市街道", num_inference_steps=20).images[0] image.save("cyberpunk.jpeg") ```
Narsil/layoutlmv2-finetuned-funsd
Narsil
2022-12-16T09:17:12Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "layoutlmv2", "token-classification", "generated_from_trainer", "object-detection", "dataset:funsd", "autotrain_compatible", "endpoints_compatible", "region:us" ]
object-detection
2022-12-16T09:13:33Z
--- tags: - generated_from_trainer datasets: - funsd pipeline_tag: object-detection widget: - src: "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png" example_title: invoice - src: "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/contract.jpeg" example_title: contract model_index: - name: layoutlmv2-finetuned-funsd results: - task: name: Token Classification type: token-classification dataset: name: funsd type: funsd args: funsd duplicated_from: nielsr/layoutlmv2-finetuned-funsd --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlmv2-finetuned-funsd This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) on the funsd dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.9.0.dev0 - Pytorch 1.8.0+cu101 - Datasets 1.9.0 - Tokenizers 0.10.3
JabrilJacobs/q-Taxi-v3
JabrilJacobs
2022-12-16T08:31:43Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-16T08:31:30Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="JabrilJacobs/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
bheshaj/bart-large-cnn-small-billsum-5epochs
bheshaj
2022-12-16T08:06:31Z
4
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "generated_from_trainer", "dataset:billsum", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-12-16T07:39:08Z
--- license: mit tags: - generated_from_trainer datasets: - billsum metrics: - rouge model-index: - name: bart-large-cnn-small-billsum-5epochs results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: billsum type: billsum config: default split: train[:1%] args: default metrics: - name: Rouge1 type: rouge value: 0.5406 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-small-billsum-5epochs This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on the billsum dataset. It achieves the following results on the evaluation set: - Loss: 1.7206 - Rouge1: 0.5406 - Rouge2: 0.312 - Rougel: 0.3945 - Rougelsum: 0.4566 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3.373e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 16 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | 2.3723 | 1.33 | 16 | 1.8534 | 0.5204 | 0.299 | 0.3893 | 0.4441 | | 1.6579 | 2.67 | 32 | 1.7208 | 0.5427 | 0.3143 | 0.3915 | 0.459 | | 1.2397 | 4.0 | 48 | 1.7206 | 0.5406 | 0.312 | 0.3945 | 0.4566 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu117 - Datasets 2.7.1 - Tokenizers 0.13.2
CreativeEvolution/q-FrozenLake-v1-4x4-noSlippery
CreativeEvolution
2022-12-16T07:51:22Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-16T07:51:15Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="CreativeEvolution/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Shunian/mbti-classification-roberta-base
Shunian
2022-12-16T07:37:25Z
13
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-15T21:25:18Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: mbti-classification-roberta-base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbti-classification-roberta-base This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1673 - Accuracy: 0.3031 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 2.1161 | 1.0 | 20490 | 2.0814 | 0.2993 | | 2.0021 | 2.0 | 40980 | 2.0563 | 0.3073 | | 1.8974 | 3.0 | 61470 | 2.0769 | 0.3074 | | 1.8346 | 4.0 | 81960 | 2.1221 | 0.3073 | | 1.7826 | 5.0 | 102450 | 2.1673 | 0.3031 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1+cu102 - Datasets 2.7.1 - Tokenizers 0.13.2
marma/whisper-tiny-sv
marma
2022-12-16T07:35:52Z
7
0
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "generated_from_trainer", "dataset:dataset/riksdagen", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-16T07:20:47Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - dataset/riksdagen metrics: - wer model-index: - name: whisper-tiny-sv results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: dataset/riksdagen audiofolder type: dataset/riksdagen config: audiofolder split: train args: audiofolder metrics: - name: Wer type: wer value: 0.3700987201570632 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-tiny-sv This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the dataset/riksdagen audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 0.6435 - Wer: 0.3701 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 128 - total_eval_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.0032 | 0.08 | 250 | 1.0075 | 0.5063 | | 0.8983 | 0.17 | 500 | 0.8945 | 0.4649 | | 0.8227 | 0.25 | 750 | 0.8336 | 0.4491 | | 0.777 | 0.33 | 1000 | 0.7931 | 0.4314 | | 0.7728 | 0.42 | 1250 | 0.7640 | 0.4217 | | 0.7141 | 0.5 | 1500 | 0.7407 | 0.4134 | | 0.7208 | 0.58 | 1750 | 0.7225 | 0.4023 | | 0.6911 | 0.66 | 2000 | 0.7083 | 0.3942 | | 0.6924 | 0.75 | 2250 | 0.6948 | 0.3911 | | 0.6702 | 0.83 | 2500 | 0.6849 | 0.3884 | | 0.663 | 0.91 | 2750 | 0.6766 | 0.3769 | | 0.6548 | 1.0 | 3000 | 0.6686 | 0.3759 | | 0.638 | 1.08 | 3250 | 0.6627 | 0.3728 | | 0.6222 | 1.16 | 3500 | 0.6574 | 0.3733 | | 0.6323 | 1.25 | 3750 | 0.6528 | 0.3691 | | 0.6192 | 1.33 | 4000 | 0.6498 | 0.3688 | | 0.633 | 1.41 | 4250 | 0.6469 | 0.3677 | | 0.6229 | 1.5 | 4500 | 0.6451 | 0.3681 | | 0.6246 | 1.58 | 4750 | 0.6439 | 0.3706 | | 0.6214 | 1.66 | 5000 | 0.6435 | 0.3701 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.12.0a0+8a1a93a - Datasets 2.7.1 - Tokenizers 0.13.2
BlueRaccoon/whisper-medium-da
BlueRaccoon
2022-12-16T07:30:36Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "da", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-14T16:41:09Z
--- language: - da license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Medium Danish results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 type: mozilla-foundation/common_voice_11_0 config: da split: test args: da metrics: - name: Wer type: wer value: 15.36559705418201 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Medium Danish This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the mozilla-foundation/common_voice_11_0 da dataset. It achieves the following results on the evaluation set: - Loss: 0.5759 - Wer: 15.3656 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.016 | 7.58 | 1000 | 0.4492 | 15.7391 | | 0.0014 | 15.15 | 2000 | 0.5306 | 15.4550 | | 0.0004 | 22.73 | 3000 | 0.5759 | 15.3656 | | 0.0003 | 30.3 | 4000 | 0.5981 | 15.4655 | | 0.0002 | 37.88 | 5000 | 0.6072 | 15.5076 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
SiddharthaM/xlm-roberta-targin-final
SiddharthaM
2022-12-16T07:30:13Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-16T06:44:43Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: xlm-roberta-targin-final results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-targin-final This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8172 - Accuracy: 0.6873 - Precision: 0.6494 - Recall: 0.6422 - F1: 0.6450 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 1.0 | 296 | 0.6065 | 0.6873 | 0.6537 | 0.5833 | 0.5748 | | 0.597 | 2.0 | 592 | 0.5822 | 0.7015 | 0.6652 | 0.6279 | 0.6332 | | 0.597 | 3.0 | 888 | 0.5704 | 0.7015 | 0.6654 | 0.6551 | 0.6589 | | 0.5156 | 4.0 | 1184 | 0.6393 | 0.7044 | 0.6684 | 0.6552 | 0.6597 | | 0.5156 | 5.0 | 1480 | 0.5924 | 0.7082 | 0.6752 | 0.6720 | 0.6735 | | 0.4479 | 6.0 | 1776 | 0.7029 | 0.7006 | 0.6629 | 0.6351 | 0.6408 | | 0.3783 | 7.0 | 2072 | 0.6963 | 0.7072 | 0.6715 | 0.6554 | 0.6606 | | 0.3783 | 8.0 | 2368 | 0.7636 | 0.6987 | 0.6627 | 0.6549 | 0.6579 | | 0.3253 | 9.0 | 2664 | 0.7804 | 0.6901 | 0.6549 | 0.6523 | 0.6535 | | 0.3253 | 10.0 | 2960 | 0.8172 | 0.6873 | 0.6494 | 0.6422 | 0.6450 | ### Framework versions - Transformers 4.24.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.6.1 - Tokenizers 0.13.1
duongkstn/q-FrozenLake-v1-8x8-90000-steps
duongkstn
2022-12-16T07:05:56Z
0
0
null
[ "FrozenLake-v1-8x8", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-16T07:05:44Z
--- tags: - FrozenLake-v1-8x8 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-8x8-90000-steps results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-8x8 type: FrozenLake-v1-8x8 metrics: - type: mean_reward value: 0.18 +/- 0.38 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="duongkstn/q-FrozenLake-v1-8x8-90000-steps", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
huiziy/my_awesome_qa_model
huiziy
2022-12-16T06:23:54Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-12-16T05:50:16Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: my_awesome_qa_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_qa_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an High School Health Science dataset. It achieves the following results on the evaluation set: - Loss: 5.2683 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 3 | 5.6569 | | No log | 2.0 | 6 | 5.3967 | | No log | 3.0 | 9 | 5.2683 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
cleanrl/BreakoutNoFrameskip-v4-dqn_atari_jax-seed1
cleanrl
2022-12-16T05:37:31Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "BreakoutNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-16T05:37:27Z
--- tags: - BreakoutNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: BreakoutNoFrameskip-v4 type: BreakoutNoFrameskip-v4 metrics: - type: mean_reward value: 291.10 +/- 116.43 name: mean_reward verified: false --- # (CleanRL) **DQN** Agent Playing **BreakoutNoFrameskip-v4** This is a trained model of a DQN agent playing BreakoutNoFrameskip-v4. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/dqn_atari_jax.py). ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/BreakoutNoFrameskip-v4-dqn_atari_jax-seed1/raw/main/dqn.py curl -OL https://huggingface.co/cleanrl/BreakoutNoFrameskip-v4-dqn_atari_jax-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/BreakoutNoFrameskip-v4-dqn_atari_jax-seed1/raw/main/poetry.lock poetry install --all-extras python dqn_atari_jax.py --track --capture-video --save-model --upload-model --hf-entity cleanrl --env-id BreakoutNoFrameskip-v4 --seed 1 ``` # Hyperparameters ```python {'batch_size': 32, 'buffer_size': 1000000, 'capture_video': True, 'end_e': 0.01, 'env_id': 'BreakoutNoFrameskip-v4', 'exp_name': 'dqn_atari_jax', 'exploration_fraction': 0.1, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learning_rate': 0.0001, 'learning_starts': 80000, 'save_model': True, 'seed': 1, 'start_e': 1, 'target_network_frequency': 1000, 'total_timesteps': 10000000, 'track': True, 'train_frequency': 4, 'upload_model': True, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
doctorderp/planet_of_the_apes
doctorderp
2022-12-16T05:23:28Z
0
2
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-12-15T06:36:19Z
--- license: creativeml-openrail-m --- Preview Images https://imgur.com/a/vwO6f5A IMPORTANT INSTRUCTIONS!! This model was trained on SD base 1.5 version BUT It does also work for 1.4 as they both share the same Clip encoder. Install instructions. Simply place the chimp.pt file inside the \stable-diffusion-webui\models\hypernetworks folder. Load the model inside the Automatic1111 interface under settings hypernetwork. Use instructions. Use between 0.55-1.0 hypernetwork strength, more strength will give a more real chimpl look while .55 gives a more human form chimp look. I find .7 works well enough. Use DPM++ SDE Karras sampler with 15 steps and CFG of 6.0. Make sure and always include the word chimp somewhere in the prompt. For people always preface the subject with chimp, example "chimp man walking", "chimp girl playing in the backyard", etc... VERY IMPORTANT! Always describe the background in some detail or you WILL get a very generic boring background.. So for example DON'T just say "an old chimp man". DO say "an old chimp man inside a rustic hut". Some fun info. People have been sleeping on hypernetworks and I plan to change that. Hopefully the flexibility of this hypernetwok will show everyone their true potential. Because this model is a hypernetwork it can be used in conjunction with ANY model based on the 1.4 CLIP architecture. That means this model will work on any custom 1.4 or 1.5 model, like the modern disney model, or classic disney, etc… for example, let's say you want to load classic disney as base. Well simply load the classic disney model, make sure and preface every prompt with classic disney. As per instructions of the model. Then follow up with my “chimp” tag as instructed once you have loaded the hypernetwork. So the prompt should look something like this “classic disney. chimp girl playing in the backyard.” Make sure and adjust the hypernetwork strength to .5 for a more cartoon look or .7 for a realistic chimp look. Have fun folks!
taskmasterpeace/autotrain-Consequenv05-WEW6KM47ET-2492376867
taskmasterpeace
2022-12-16T03:39:39Z
0
0
diffusers
[ "diffusers", "autotrain", "stable-diffusion", "text-to-image", "dataset:taskmasterpeace/autotrain-data-Consequenv05-WEW6KM47ET", "co2_eq_emissions", "region:us" ]
text-to-image
2022-12-16T03:18:52Z
--- tags: - autotrain - stable-diffusion - text-to-image datasets: - taskmasterpeace/autotrain-data-Consequenv05-WEW6KM47ET co2_eq_emissions: emissions: 39.499488037662175 --- # Model Trained Using AutoTrain - Problem type: Dreambooth - Model ID: 2492376867 - CO2 Emissions (in grams): 39.4995
NOISK8/laywaxys
NOISK8
2022-12-16T03:01:16Z
1
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2022-12-16T02:56:42Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### laywaxys Dreambooth model trained by NOISK8 with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Or you can run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb) Sample pictures of this concept:
JunHwi/kmhas_binary
JunHwi
2022-12-16T02:53:53Z
5
0
transformers
[ "transformers", "pytorch", "electra", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-16T02:12:57Z
Pretrained K-mHas with binary-label model with "koelectra-v3" You can use tokenizer of this model with "monologg/koelectra-v3-base-discriminator" dataset : https://huggingface.co/datasets/jeanlee/kmhas_korean_hate_speech pretrained_model : https://huggingface.co/monologg/koelectra-base-v3-discriminator label maps are like this. > {0: "not_hate_speech", 1: "hate_speech"}
RazyDave/deberta-v3-base-finetuned-mrpc
RazyDave
2022-12-16T02:49:39Z
3
0
transformers
[ "transformers", "pytorch", "deberta-v2", "text-classification", "generated_from_trainer", "dataset:glue", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-16T02:21:36Z
--- license: mit tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: deberta-v3-base-finetuned-mrpc results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: mrpc split: train args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8921568627450981 - name: F1 type: f1 value: 0.9241379310344827 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-base-finetuned-mrpc This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.3297 - Accuracy: 0.8922 - F1: 0.9241 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 230 | 0.3411 | 0.8725 | 0.9081 | | No log | 2.0 | 460 | 0.3297 | 0.8922 | 0.9241 | | 0.3727 | 3.0 | 690 | 0.4133 | 0.8922 | 0.9236 | | 0.3727 | 4.0 | 920 | 0.5315 | 0.8848 | 0.9174 | | 0.1068 | 5.0 | 1150 | 0.5898 | 0.8848 | 0.9171 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
Valdimarb13/whisper-small-icelandic
Valdimarb13
2022-12-16T02:44:03Z
4
1
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "is", "dataset:language-and-voice-lab/samromur_asr", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-15T15:04:39Z
--- language: - is license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - language-and-voice-lab/samromur_asr metrics: - wer model-index: - name: Whisper Small Icelandic results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: samromur type: language-and-voice-lab/samromur_asr config: samromur_asr split: test args: 'split: test' metrics: - name: Wer type: wer value: 23.040907733651835 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Icelandic This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the samromur dataset. It achieves the following results on the evaluation set: - Loss: 0.2613 - Wer: 23.0409 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.3551 | 0.18 | 1000 | 0.4322 | 35.0421 | | 0.2541 | 0.36 | 2000 | 0.3249 | 27.4721 | | 0.231 | 0.53 | 3000 | 0.2781 | 24.2234 | | 0.2277 | 0.71 | 4000 | 0.2613 | 23.0409 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
RazyDave/deberta-v3-base-finetuned-rte
RazyDave
2022-12-16T02:12:07Z
3
0
transformers
[ "transformers", "pytorch", "deberta-v2", "text-classification", "generated_from_trainer", "dataset:glue", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-16T01:40:02Z
--- license: mit tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: deberta-v3-base-finetuned-rte results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: rte split: train args: rte metrics: - name: Accuracy type: accuracy value: 0.8194945848375451 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-base-finetuned-rte This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8234 - Accuracy: 0.8195 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 156 | 0.5610 | 0.7545 | | No log | 2.0 | 312 | 0.6270 | 0.7617 | | No log | 3.0 | 468 | 0.6565 | 0.7906 | | 0.3919 | 4.0 | 624 | 0.8234 | 0.8195 | | 0.3919 | 5.0 | 780 | 0.9628 | 0.7978 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
ancillaire/ppo-LunarLander-v2
ancillaire
2022-12-16T01:35:06Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-16T01:34:32Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -128.62 +/- 54.34 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Tushybhutt/GlassBiff
Tushybhutt
2022-12-16T01:19:28Z
0
0
null
[ "license:cc-by-sa-4.0", "region:us" ]
null
2022-12-14T15:09:31Z
--- license: cc-by-sa-4.0 --- A stained glass themed embedding that was created with 8 vectors. Textual Inversion Embedding for SD 2.x trained for 500 steps on twenty 768x768 images from various sources. Install by downloading the step embedding, and put it in the \embeddings folder Use keyword: GlassBiff ![Single Samples](https://huggingface.co/Tushybhutt/GlassBiff/resolve/main/frog.png) ![Single Samples](https://huggingface.co/Tushybhutt/GlassBiff/resolve/main/goose.png) ![Single Samples](https://huggingface.co/Tushybhutt/GlassBiff/resolve/main/wolf.png)
suyuanliu/wav2vec2-base-finetuned-stop-classification
suyuanliu
2022-12-16T01:17:27Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "audio-classification", "generated_from_trainer", "dataset:audiofolder", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2022-12-16T00:57:11Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - audiofolder metrics: - accuracy model-index: - name: wav2vec2-base-finetuned-stop-classification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-finetuned-stop-classification This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1647 - Accuracy: 0.9470 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.671 | 0.98 | 26 | 0.5553 | 0.8347 | | 0.3525 | 1.98 | 52 | 0.2647 | 0.9163 | | 0.291 | 2.98 | 78 | 0.2474 | 0.9070 | | 0.2733 | 3.98 | 104 | 0.1729 | 0.9439 | | 0.2467 | 4.98 | 130 | 0.1647 | 0.9470 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0 - Datasets 2.7.1 - Tokenizers 0.13.2
cleanrl/BeamRiderNoFrameskip-v4-dqn_atari_jax-seed1
cleanrl
2022-12-16T00:47:36Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "BeamRiderNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-16T00:47:28Z
--- tags: - BeamRiderNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: BeamRiderNoFrameskip-v4 type: BeamRiderNoFrameskip-v4 metrics: - type: mean_reward value: 5091.00 +/- 1923.97 name: mean_reward verified: false --- # (CleanRL) **DQN** Agent Playing **BeamRiderNoFrameskip-v4** This is a trained model of a DQN agent playing BeamRiderNoFrameskip-v4. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/dqn_atari_jax.py). ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/BeamRiderNoFrameskip-v4-dqn_atari_jax-seed1/raw/main/dqn.py curl -OL https://huggingface.co/cleanrl/BeamRiderNoFrameskip-v4-dqn_atari_jax-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/BeamRiderNoFrameskip-v4-dqn_atari_jax-seed1/raw/main/poetry.lock poetry install --all-extras python dqn_atari_jax.py --track --capture-video --save-model --upload-model --hf-entity cleanrl --env-id BeamRiderNoFrameskip-v4 --seed 1 ``` # Hyperparameters ```python {'batch_size': 32, 'buffer_size': 1000000, 'capture_video': True, 'end_e': 0.01, 'env_id': 'BeamRiderNoFrameskip-v4', 'exp_name': 'dqn_atari_jax', 'exploration_fraction': 0.1, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learning_rate': 0.0001, 'learning_starts': 80000, 'save_model': True, 'seed': 1, 'start_e': 1, 'target_network_frequency': 1000, 'total_timesteps': 10000000, 'track': True, 'train_frequency': 4, 'upload_model': True, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
bitcloud2/q-Taxi-v3-hf-class
bitcloud2
2022-12-16T00:39:55Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-15T23:39:37Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3-hf-class results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="bitcloud2/q-Taxi-v3-hf-class", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
faisalabidi/rare-puppers
faisalabidi
2022-12-16T00:35:12Z
23
1
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-12-16T00:34:54Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: rare-puppers results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.1702127605676651 --- # rare-puppers Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### hyatt drinks ![hyatt drinks](images/hyatt_drinks.jpg) #### hyatt fitness ![hyatt fitness](images/hyatt_fitness.jpg) #### hyatt food ![hyatt food](images/hyatt_food.jpg) #### hyatt guestroom ![hyatt guestroom](images/hyatt_guestroom.jpg) #### hyatt pool ![hyatt pool](images/hyatt_pool.jpg) #### hyatt restaurant ![hyatt restaurant](images/hyatt_restaurant.jpg) #### hyatt suite living room ![hyatt suite living room](images/hyatt_suite_living_room.jpg)
ScrappyCoco666/q-Taxi-v3
ScrappyCoco666
2022-12-16T00:09:00Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-16T00:08:51Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3-6 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="ScrappyCoco666/q-Taxi-v3-6", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
sasha/autotrain-butterfly-similarity-2490576840
sasha
2022-12-16T00:06:07Z
25
0
transformers
[ "transformers", "pytorch", "autotrain", "vision", "image-classification", "dataset:sasha/autotrain-data-butterfly-similarity", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
image-classification
2022-12-15T23:48:47Z
--- tags: - autotrain - vision - image-classification datasets: - sasha/autotrain-data-butterfly-similarity widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace co2_eq_emissions: emissions: 21.263808199884835 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 2490576840 - CO2 Emissions (in grams): 21.2638 ## Validation Metrics - Loss: 1.818 - Accuracy: 0.609 - Macro F1: 0.409 - Micro F1: 0.609 - Weighted F1: 0.559 - Macro Precision: 0.404 - Micro Precision: 0.609 - Weighted Precision: 0.542 - Macro Recall: 0.446 - Micro Recall: 0.609 - Weighted Recall: 0.609
haining/Taxi-v3-500x6
haining
2022-12-15T23:56:36Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-15T23:56:22Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3-500x6 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="haining/Taxi-v3-500x6", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
gagan3012/swin_arocr_tiny
gagan3012
2022-12-15T23:50:37Z
3
0
transformers
[ "transformers", "pytorch", "swinv2", "image-feature-extraction", "masked-image-modeling", "generated_from_trainer", "dataset:hindawi", "endpoints_compatible", "region:us" ]
image-feature-extraction
2022-12-15T23:45:22Z
--- tags: - masked-image-modeling - generated_from_trainer datasets: - hindawi model-index: - name: swinv2_arocr_tiny_encoder results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swinv2_arocr_tiny_encoder This model is a fine-tuned version of [/lustre07/scratch/gagan30/arocr/models/swinv2_arocr_tiny/config.json](https://huggingface.co//lustre07/scratch/gagan30/arocr/models/swinv2_arocr_tiny/config.json) on the /lustre07/scratch/gagan30/arocr/Hindawi dataset. It achieves the following results on the evaluation set: - Loss: 0.0519 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.0891 | 1.0 | 8078 | 0.0628 | | 0.0465 | 2.0 | 16156 | 0.0595 | | 0.0639 | 3.0 | 24234 | 0.0570 | | 0.0608 | 4.0 | 32312 | 0.0548 | | 0.0487 | 5.0 | 40390 | 0.0554 | | 0.059 | 6.0 | 48468 | 0.0533 | | 0.0677 | 7.0 | 56546 | 0.0525 | | 0.0555 | 8.0 | 64624 | 0.0521 | | 0.0502 | 9.0 | 72702 | 0.0520 | | 0.0496 | 10.0 | 80780 | 0.0519 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.12.0 - Datasets 2.7.1 - Tokenizers 0.11.6
DrishtiSharma/whisper-large-v2-lithuanian-400-steps
DrishtiSharma
2022-12-15T23:25:47Z
4
1
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "lt", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-15T21:34:01Z
--- language: - lt license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Large V2 Lithuanian- Drishti Sharma results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: lt split: test args: lt metrics: - name: Wer type: wer value: 26.152380196132924 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Large V2 Lithuanian- Drishti Sharma This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2921 - Wer: 26.1524 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 400 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.2538 | 0.36 | 400 | 0.2921 | 26.1524 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
Seif/ppo-Huggy
Seif
2022-12-15T23:03:45Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2022-12-15T23:03:33Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: Seif/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
ericntay/sd-class-butterflies-32
ericntay
2022-12-15T22:47:05Z
0
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-12-15T22:18:00Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('ericntay/sd-class-butterflies-32') image = pipeline().images[0] image ```
kejian/deliberate-awr
kejian
2022-12-15T22:28:35Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "generated_from_trainer", "en", "dataset:kejian/codeparrot-train-more-filter-3.3b-cleaned", "license:apache-2.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2022-12-15T09:23:40Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - kejian/codeparrot-train-more-filter-3.3b-cleaned model-index: - name: deliberate-awr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deliberate-awr This model was trained from scratch on the kejian/codeparrot-train-more-filter-3.3b-cleaned dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 12589 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.23.0 - Pytorch 1.13.0+cu116 - Datasets 2.0.0 - Tokenizers 0.12.1 # Full config {'dataset': {'datasets': ['kejian/codeparrot-train-more-filter-3.3b-cleaned'], 'is_split_by_sentences': True, 'skip_tokens': 1649934336}, 'generation': {'batch_size': 128, 'every_n_steps': 512, 'force_call_on': [12589], 'metrics_configs': [{}, {'n': 1}, {}], 'scenario_configs': [{'display_as_html': True, 'generate_kwargs': {'do_sample': True, 'eos_token_id': 0, 'max_length': 640, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_hits_threshold': 0, 'num_samples': 2048}, {'display_as_html': True, 'generate_kwargs': {'do_sample': True, 'eos_token_id': 0, 'max_length': 272, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'functions', 'num_hits_threshold': 0, 'num_samples': 2048, 'prompts_path': 'resources/functions_csnet.jsonl', 'use_prompt_for_scoring': True}], 'scorer_config': {}}, 'kl_gpt3_callback': {'every_n_steps': 512, 'force_call_on': [12589], 'gpt3_kwargs': {'model_name': 'code-cushman-001'}, 'max_tokens': 64, 'num_samples': 4096}, 'model': {'from_scratch': False, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'model_kwargs': {'revision': '9b71edc6c769705c1ef1955b6f5cfdd5a7d1b802', 'value_head_config': {'is_detached': False}}, 'path_or_name': 'kejian/spectacular-awr'}, 'objective': {'alpha': 0.05, 'beta': 1, 'name': 'AWR'}, 'tokenizer': {'path_or_name': 'codeparrot/codeparrot-small'}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 128, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'deliberate-awr', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.0005, 'logging_first_step': True, 'logging_steps': 1, 'num_tokens': 3300000000.0, 'output_dir': 'training_output', 'per_device_train_batch_size': 16, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 12589, 'save_strategy': 'steps', 'seed': 42, 'tokens_already_seen': 1649934336, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/kejian/uncategorized/runs/2qh5z2cm
AigizK/bashkir-whisper-small
AigizK
2022-12-15T21:55:26Z
4
0
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "hf-asr-leaderboard", "ba", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-13T12:16:49Z
--- language: - ba license: apache-2.0 tags: - whisper-event - generated_from_trainer - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Bashkir results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 ba type: mozilla-foundation/common_voice_11_0 config: ba split: test args: ba metrics: - name: Wer type: wer value: 15.072300680807968 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Bashkir This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_11_0 ba dataset. It achieves the following results on the evaluation set: - Loss: 0.2589 - Wer: 15.0723 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 30000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 0.1637 | 1.01 | 2000 | 0.2555 | 26.4682 | | 0.1375 | 2.01 | 4000 | 0.2223 | 21.5394 | | 0.0851 | 3.02 | 6000 | 0.2086 | 19.6725 | | 0.0573 | 4.02 | 8000 | 0.2178 | 18.4280 | | 0.036 | 5.03 | 10000 | 0.2312 | 17.8248 | | 0.0238 | 6.04 | 12000 | 0.2621 | 17.4096 | | 0.0733 | 7.04 | 14000 | 0.2120 | 16.5656 | | 0.0111 | 8.05 | 16000 | 0.2682 | 16.2291 | | 0.0155 | 9.05 | 18000 | 0.2677 | 15.9242 | | 0.0041 | 10.06 | 20000 | 0.3178 | 15.9534 | | 0.0023 | 12.01 | 22000 | 0.3218 | 16.0536 | | 0.0621 | 13.01 | 24000 | 0.2313 | 15.6169 | | 0.0022 | 14.02 | 26000 | 0.2887 | 15.1083 | | 0.0199 | 15.02 | 28000 | 0.2553 | 15.1848 | | 0.0083 | 16.03 | 30000 | 0.2589 | 15.0723 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
farsipal/whisper-md-el-intlv-xs
farsipal
2022-12-15T21:54:46Z
16
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "hf-asr-leaderboard", "greek", "el", "dataset:mozilla-foundation/common_voice_11_0", "dataset:google/fleurs", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-14T15:26:42Z
--- language: - el license: apache-2.0 tags: - whisper-event - generated_from_trainer - hf-asr-leaderboard - automatic-speech-recognition - greek datasets: - mozilla-foundation/common_voice_11_0 - google/fleurs metrics: - wer model-index: - name: whisper-md-el-intlv-xs results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 type: mozilla-foundation/common_voice_11_0 config: el split: test metrics: - name: Wer type: wer value: 11.3670 --- # whisper-md-el-intlv-xs This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on interleaved mozilla-foundation/common_voice_11_0 (el) and the google/fleurs (el_gr) datasets. It achieves the following results on the mozilla-foundation/common_voice_11_0 test evaluation set: - Loss: 0.4168 - Wer: 11.3670 ## Model description This model is trained over the two interleaved datasets in the Greek language. Testing used only the common_voice_11_0 (el) test split. ## Intended uses & limitations The model was trained for transcription in Greek ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-06 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 0.0251 | 2.49 | 1000 | 0.2216 | 12.5836 | | 0.0051 | 4.98 | 2000 | 0.2874 | 12.2957 | | 0.0015 | 7.46 | 3000 | 0.3281 | 11.9056 | | 0.0017 | 9.95 | 4000 | 0.3178 | 12.5929 | | 0.0008 | 12.44 | 5000 | 0.3449 | 11.9799 | | 0.0001 | 14.93 | 6000 | 0.3638 | 11.7106 | | 0.0001 | 17.41 | 7000 | 0.3910 | 11.4970 | | 0.0 | 19.9 | 8000 | 0.4042 | 11.3949 | | 0.0 | 22.39 | 9000 | 0.4129 | 11.4134 | | 0.0 | 24.88 | 10000 | 0.4168 | 11.3670 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
GeneralAwareness/Unddep
GeneralAwareness
2022-12-15T21:51:19Z
0
12
null
[ "stable-diffusion", "v2", "text-to-image", "image-to-image", "Embedding", "en", "license:cc-by-nc-sa-4.0", "region:us" ]
text-to-image
2022-12-14T07:54:36Z
--- license: cc-by-nc-sa-4.0 language: - en thumbnail: "https://huggingface.co/GeneralAwareness/Unddep/resolve/main/with-1.png" tags: - stable-diffusion - v2 - text-to-image - image-to-image - Embedding --- Textual Inversion Embedding by General Awareness For SD 2.x trained on 768x768 images from various sources. Install by downloading the .pt embedding, and put it in the \embeddings folder An undersea/underworld themed embedding that was created with 16 vectors. Use keyword: unddep Without this embedding and with this embedding. ![Single Samples](https://huggingface.co/GeneralAwareness/Unddep/resolve/main/without-1.png) ![Single_Samples](https://huggingface.co/GeneralAwareness/Unddep/resolve/main/with-1.png) Without this embedding and with this embedding. ![Single Samples](https://huggingface.co/GeneralAwareness/Unddep/resolve/main/without-2.png) ![Single_Samples](https://huggingface.co/GeneralAwareness/Unddep/resolve/main/with-2.png)
bakisanlan/q-FrozenLake-v1-4x4-noSlippery
bakisanlan
2022-12-15T21:49:13Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-15T21:48:58Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="bakisanlan/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
nefasto/whisper-small-it
nefasto
2022-12-15T21:22:26Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "it", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-14T17:04:58Z
--- language: - it license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Italian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 it type: mozilla-foundation/common_voice_11_0 config: it split: test args: it metrics: - name: Wer type: wer value: 12.303981501169467 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Italian This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_11_0 it dataset. It achieves the following results on the evaluation set: - Loss: 0.2534 - Wer: 12.3040 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-06 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 6000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.2737 | 2.01 | 1000 | 0.2728 | 13.4097 | | 0.1536 | 4.02 | 2000 | 0.2611 | 12.9897 | | 0.0905 | 6.03 | 3000 | 0.2686 | 12.9273 | | 0.1301 | 8.04 | 4000 | 0.2534 | 12.3040 | | 0.096 | 10.05 | 5000 | 0.2727 | 12.6130 | | 0.0604 | 12.06 | 6000 | 0.2698 | 12.5027 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
Conflictx/Kipaki-EgyptianSciFi
Conflictx
2022-12-15T21:17:44Z
0
65
null
[ "text-to-image", "v2.0", "Embedding", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2022-12-01T11:46:45Z
--- license: creativeml-openrail-m tags: - text-to-image - v2.0 - Embedding --- Textual Inversion Embedding by ConflictX For SD 2.0 trained on 768x768 images from midjourney. Install by downloading the step embedding you want, and put it in the \embeddings folder It is slightly overfit on 150 steps so some concepts/keywords will be harder to prompt for (use negatives or weight Kipaki down) but it works amazing for cityscapes, people, gods, and other scifi genres. Very stylized on ancient Egypt, scifi, and orange/blue color scheme but other concepts are definitely possible: More images here: https://imgur.com/a/W2bmBaV Use keyword: Kipaki-xxx xxx is embedding number There are multiple versions, the images below were created with the 150 step version. ![00401-2324710412-a beautiful woman with a biolumenscent mask and glowing eyes, very detailed, best quality, soft lighting, Kipaki style, very de.png](https://s3.amazonaws.com/moonup/production/uploads/1669895566207-6303c53d7373aacccd859bbd.png) ![00404-3141178668-a beautiful woman with a biolumenscent mask and ((glowing eyes)), very detailed, best quality, soft lighting, Kipaki style, ver.png](https://s3.amazonaws.com/moonup/production/uploads/1669895611412-6303c53d7373aacccd859bbd.png) ![00383-4169954247-full view of star wars tie-fighter in space, very detailed, best quality, soft lighting, Kipaki style, very detailed, intricate.png](https://s3.amazonaws.com/moonup/production/uploads/1669895735004-6303c53d7373aacccd859bbd.png) ![00415-2206533630-a cozy modern interior living room, blue lighting, very detailed, best quality, soft lighting, Kipaki style, very detailed, intr.png](https://s3.amazonaws.com/moonup/production/uploads/1669896359595-6303c53d7373aacccd859bbd.png) ![00427-1769024071-a woman in a cozy modern interior swimming pool, blue lighting, very detailed, best quality, soft lighting, stylized Kipaki styl.png](https://s3.amazonaws.com/moonup/production/uploads/1669896638806-6303c53d7373aacccd859bbd.png) ![00414-3392484879-a rocket launching from a launch pad, blue lighting, very detailed, best quality, soft lighting, Kipaki style, very detailed, in.png](https://s3.amazonaws.com/moonup/production/uploads/1669896244606-6303c53d7373aacccd859bbd.png) ![00443-80180354-star wars egyptian storm trooper, stylized (Kipaki _0.65) style, very detailed, dust, 4k high resolution, sharp, fragmenv2, int.png](https://s3.amazonaws.com/moonup/production/uploads/1669899334082-6303c53d7373aacccd859bbd.png) Highres Images: ![00466-1644083345-batman, stylized (Kipaki_1.0) style, very detailed, dust, 4k high resolution, sharp, intricate.png](https://s3.amazonaws.com/moonup/production/uploads/1669901365152-6303c53d7373aacccd859bbd.png) ![00467-1644083345-spiderman, stylized (Kipaki_1.0) style, very detailed, dust, 4k high resolution, sharp, intricate.png](https://s3.amazonaws.com/moonup/production/uploads/1669901409079-6303c53d7373aacccd859bbd.png) ![00466-1644083345-an emerald crown, stylized (Kipaki_1.0) style, very detailed, dust, 4k high resolution, sharp, intricate.png](https://s3.amazonaws.com/moonup/production/uploads/1669901637347-6303c53d7373aacccd859bbd.png) ![00374-2662732015-a robot assembling a car , stylized (Kipaki_1.0) style, very detailed, dust, 4k high resolution, sharp, intricate, by artists.png](https://s3.amazonaws.com/moonup/production/uploads/1669902623798-6303c53d7373aacccd859bbd.png)
alexgeh196/test_model_seminar_alex_123
alexgeh196
2022-12-15T21:08:43Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-14T15:08:15Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: test_model_seminar_alex_123 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test_model_seminar_alex_123 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5472 - Accuracy: 0.7447 - F1: 0.7451 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Tokenizers 0.13.2
miangoar/esm2_t12_35M_UR50D-finetuned-secondary-structure-classification
miangoar
2022-12-15T21:00:11Z
10
0
transformers
[ "transformers", "tf", "esm", "token-classification", "generated_from_keras_callback", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-12-15T20:59:58Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: esm2_t12_35M_UR50D-finetuned-secondary-structure-classification results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # esm2_t12_35M_UR50D-finetuned-secondary-structure-classification This model is a fine-tuned version of [facebook/esm2_t12_35M_UR50D](https://huggingface.co/facebook/esm2_t12_35M_UR50D) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.4076 - Train Masked Accuracy: 0.8342 - Validation Loss: 0.4714 - Validation Masked Accuracy: 0.8060 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.0} - training_precision: float32 ### Training results | Train Loss | Train Masked Accuracy | Validation Loss | Validation Masked Accuracy | Epoch | |:----------:|:---------------------:|:---------------:|:--------------------------:|:-----:| | 0.5874 | 0.7454 | 0.4908 | 0.7962 | 0 | | 0.4503 | 0.8156 | 0.4703 | 0.8043 | 1 | | 0.4076 | 0.8342 | 0.4714 | 0.8060 | 2 | ### Framework versions - Transformers 4.25.1 - TensorFlow 2.9.2 - Datasets 2.7.1 - Tokenizers 0.13.2
fabraz/ppo-LunarLander-v2
fabraz
2022-12-15T20:57:52Z
2
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-15T20:57:28Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 286.59 +/- 20.22 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
LuniLand/dqn-LunarLander-v2
LuniLand
2022-12-15T20:40:47Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-15T20:40:16Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 168.44 +/- 106.68 name: mean_reward verified: false --- # **DQN** Agent playing **LunarLander-v2** This is a trained model of a **DQN** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env LunarLander-v2 -orga LuniLand -f logs/ python enjoy.py --algo dqn --env LunarLander-v2 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env LunarLander-v2 -orga LuniLand -f logs/ rl_zoo3 enjoy --algo dqn --env LunarLander-v2 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env LunarLander-v2 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env LunarLander-v2 -f logs/ -orga LuniLand ``` ## Hyperparameters ```python OrderedDict([('batch_size', 128), ('buffer_size', 50000), ('exploration_final_eps', 0.1), ('exploration_fraction', 0.12), ('gamma', 0.99), ('gradient_steps', -1), ('learning_rate', 0.00063), ('learning_starts', 0), ('n_timesteps', 100000.0), ('policy', 'MlpPolicy'), ('policy_kwargs', 'dict(net_arch=[256, 256])'), ('target_update_interval', 250), ('train_freq', 4), ('normalize', False)]) ```
miangoar/esm2_t12_35M_UR50D-finetuned-cytosol-membrane-classification
miangoar
2022-12-15T20:36:03Z
4
0
transformers
[ "transformers", "tf", "esm", "text-classification", "generated_from_keras_callback", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-15T20:35:45Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: esm2_t12_35M_UR50D-finetuned-cytosol-membrane-classification results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # esm2_t12_35M_UR50D-finetuned-cytosol-membrane-classification This model is a fine-tuned version of [facebook/esm2_t12_35M_UR50D](https://huggingface.co/facebook/esm2_t12_35M_UR50D) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1009 - Train Accuracy: 0.9684 - Validation Loss: 0.2122 - Validation Accuracy: 0.9401 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.0} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.2464 | 0.9228 | 0.1954 | 0.9417 | 0 | | 0.1428 | 0.9565 | 0.1831 | 0.9345 | 1 | | 0.1009 | 0.9684 | 0.2122 | 0.9401 | 2 | ### Framework versions - Transformers 4.25.1 - TensorFlow 2.9.2 - Datasets 2.7.1 - Tokenizers 0.13.2
bayartsogt/whisper-medium-mn-10
bayartsogt
2022-12-15T20:21:04Z
18
1
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "hf-asr-leaderboard", "generated_from_multiple_datasets", "mn", "dataset:mozilla-foundation/common_voice_11_0", "dataset:google/fleurs", "dataset:bayartsogt/ulaanbal-v0", "dataset:bayartsogt/youtube-mongolian-v1", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-13T22:01:42Z
--- language: mn license: apache-2.0 tags: - whisper-event - hf-asr-leaderboard - generated_from_multiple_datasets datasets: - mozilla-foundation/common_voice_11_0 - google/fleurs - bayartsogt/ulaanbal-v0 - bayartsogt/youtube-mongolian-v1 metrics: - wer - cer model-index: - name: whisper-medium-mn-10 results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: mn split: test metrics: - type: wer value: 21.258466244264802 name: Wer - type: cer value: 6.875610660018193 name: Cer --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-medium-mn-10 This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2103 - Wer: 21.2585 - Cer: 6.8756 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 40000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Cer | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:-------:|:---------------:|:-------:| | 0.4197 | 0.09 | 1000 | 19.0947 | 0.4462 | 53.9600 | | 0.3288 | 0.17 | 2000 | 14.8016 | 0.3468 | 44.2102 | | 0.2737 | 0.26 | 3000 | 12.3471 | 0.3020 | 36.1700 | | 0.2558 | 0.35 | 4000 | 11.7171 | 0.2824 | 34.1709 | | 0.2406 | 0.43 | 5000 | 10.3551 | 0.2594 | 31.1230 | | 0.218 | 0.52 | 6000 | 9.7815 | 0.2452 | 29.6865 | | 0.2253 | 0.61 | 7000 | 9.6712 | 0.2344 | 29.2932 | | 0.2071 | 0.69 | 8000 | 9.4261 | 0.2283 | 28.5067 | | 0.2051 | 0.78 | 9000 | 9.0656 | 0.2224 | 27.4033 | | 0.2064 | 0.87 | 10000 | 8.7851 | 0.2138 | 26.7206 | | 0.193 | 0.95 | 11000 | 8.5021 | 0.2089 | 25.5790 | | 0.1577 | 1.04 | 12000 | 8.2873 | 0.2072 | 25.6118 | | 0.1397 | 1.13 | 13000 | 8.2368 | 0.2046 | 25.1147 | | 0.1526 | 1.21 | 14000 | 8.7615 | 0.2065 | 26.4638 | | 0.1497 | 1.3 | 15000 | 0.2004 | 24.4866 | 7.9588 | | 0.1569 | 1.39 | 16000 | 0.1990 | 24.2244 | 7.9554 | | 0.1416 | 1.47 | 17000 | 0.2001 | 24.2298 | 7.8754 | | 0.1371 | 1.56 | 18000 | 0.1932 | 23.6072 | 7.8072 | | 0.1379 | 1.65 | 19000 | 0.1916 | 23.1320 | 7.5452 | | 0.1305 | 1.73 | 20000 | 0.1880 | 23.1101 | 7.4290 | | 0.1395 | 1.82 | 21000 | 0.1877 | 22.9845 | 7.4635 | | 0.1418 | 1.91 | 22000 | 0.1862 | 22.9080 | 7.5907 | | 0.1432 | 1.99 | 23000 | 0.1847 | 22.7114 | 7.4290 | | 0.0965 | 2.08 | 24000 | 0.1931 | 21.7391 | 7.0399 | | 0.0723 | 2.17 | 25000 | 0.1961 | 22.3236 | 7.2698 | | 0.0773 | 2.25 | 26000 | 0.1977 | 22.0505 | 7.0752 | | 0.0862 | 2.34 | 27000 | 0.1959 | 21.9522 | 7.0820 | | 0.0739 | 2.43 | 28000 | 0.1982 | 21.7719 | 7.1494 | | 0.0843 | 2.51 | 29000 | 0.1963 | 21.8921 | 7.1241 | | 0.0734 | 2.6 | 30000 | 0.1980 | 21.7883 | 7.1317 | | 0.0785 | 2.69 | 31000 | 0.1955 | 21.8757 | 7.1948 | | 0.0691 | 2.77 | 32000 | 0.1978 | 21.7446 | 7.0938 | | 0.0834 | 2.86 | 33000 | 0.1953 | 21.3240 | 7.0121 | | 0.0675 | 2.95 | 34000 | 0.1958 | 21.7719 | 7.0769 | | 0.042 | 3.03 | 35000 | 0.2053 | 21.3404 | 6.9624 | | 0.0474 | 3.12 | 36000 | 0.2097 | 21.5534 | 7.0306 | | 0.0428 | 3.21 | 37000 | 0.2107 | 21.3185 | 6.9809 | | 0.0343 | 3.29 | 38000 | 0.2111 | 21.3896 | 6.9514 | | 0.0378 | 3.38 | 39000 | 0.2103 | 21.2585 | 6.8756 | | 0.0361 | 3.47 | 40000 | 0.2106 | 21.3677 | 6.9009 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
Jedalc/ppo-LunarLander-v2
Jedalc
2022-12-15T20:03:55Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-15T20:03:31Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 242.34 +/- 12.29 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
alexamiredjibi/Multimodal-Trajectory-Classifier-30
alexamiredjibi
2022-12-15T20:02:33Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-12-15T19:00:55Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: Multimodal-Trajectory-Classifier-30 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Multimodal-Trajectory-Classifier-30 This model is a fine-tuned version of [alexamiredjibi/Multimodal-Trajectory-Classifier](https://huggingface.co/alexamiredjibi/Multimodal-Trajectory-Classifier) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
hendoo/q-FrozenLake-v1-4x4-noSlippery
hendoo
2022-12-15T20:00:42Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-15T20:00:37Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="hendoo/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
MinaAlmasi/dknews-NB-BERT-AI-classifier
MinaAlmasi
2022-12-15T20:00:10Z
5
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-18T11:16:56Z
--- license: cc-by-4.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: dknews-NB-BERT-AI-classifier results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dknews-NB-BERT-AI-classifier/ This model is a fine-tuned version of [NbAiLab/nb-bert-large](https://huggingface.co/NbAiLab/nb-bert-large) on a custom dataset with Danish News articles either generated by GPT-3 or a Danish journalist from a large Danish news media. The task is then to classify whether the article is written by GPT-3 (label = 0) or human (label = 1) It achieves the following results on the evaluation set (the best model loaded i.e., after 2 epochs) - Loss: 0.1804 - Accuracy: 0.9574 - F1: 0.9574 - Precision: 0.9576 - Recall: 0.9574 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data The model is trained on Danish news articles either generated by a fine-tuned GPT-3 or a Danish Journalist from a large Danish News Media TV2. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 2502 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.696 | 1.0 | 39 | 0.4926 | 0.8262 | 0.8211 | 0.8672 | 0.8262 | | 0.4195 | 2.0 | 78 | 0.1804 | 0.9574 | 0.9574 | 0.9576 | 0.9574 | | 0.1458 | 3.0 | 117 | 0.2810 | 0.9246 | 0.9241 | 0.9344 | 0.9246 | | 0.0424 | 4.0 | 156 | 0.5893 | 0.8852 | 0.8838 | 0.9041 | 0.8852 | | 0.0246 | 5.0 | 195 | 1.4776 | 0.7475 | 0.7301 | 0.8321 | 0.7475 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
daspartho/ppo-Huggy
daspartho
2022-12-15T19:54:06Z
2
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2022-12-15T19:53:56Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: daspartho/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
dzegan/unit2-taxi-Qtable-1
dzegan
2022-12-15T19:46:06Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-15T19:46:01Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: unit2-taxi-Qtable-1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.46 +/- 2.65 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="dzegan/unit2-taxi-Qtable-1", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
deepdml/whisper-medium-mix-fr
deepdml
2022-12-15T19:39:29Z
27
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "fr", "dataset:mozilla-foundation/common_voice_11_0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-13T08:05:00Z
--- language: - fr tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: deepdml/whisper-medium-mix-fr results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 fr type: mozilla-foundation/common_voice_11_0 config: fr split: test args: fr metrics: - name: Wer type: wer value: 11.227820307400155 - name: Cer type: cer value: 4.2141 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: FLEURS ASR type: google/fleurs config: fr_fr split: test args: fr metrics: - name: WER type: wer value: 9.3526 - name: Cer type: cer value: 4.144 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Multilingual LibriSpeech type: facebook/multilingual_librispeech config: french split: test args: language: fr metrics: - name: WER type: wer value: 6.3468 - name: Cer type: cer value: 3.1561 - task: type: Automatic Speech Recognition name: speech-recognition dataset: name: VoxPopuli type: facebook/voxpopuli config: fr split: test args: language: fr metrics: - name: WER type: wer value: 10.0653 - name: Cer type: cer value: 6.5456 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deepdml/whisper-medium-mix-fr This model is a fine-tuned version of [deepdml/whisper-medium-mix-fr](https://huggingface.co/deepdml/whisper-medium-mix-fr) on the mozilla-foundation/common_voice_11_0, google/fleurs, facebook/multilingual_librispeech and facebook/voxpopuli datasets. It achieves the following results on the evaluation set: - Loss: 0.2599 - Wer: 11.2278 Using the [evalutaion script](https://github.com/huggingface/community-events/blob/main/whisper-fine-tuning-event/run_eval_whisper_streaming.py) provided in the Whisper Sprint the model achieves these results on the test sets (WER): - **google/fleurs: 9.3526 %** (python run_eval_whisper_streaming.py --model_id="deepdml/whisper-medium-mix-fr" --dataset="google/fleurs" --config="fr_fr" --device=0 --language="fr") - **facebook/multilingual_librispeech: 6.3468 %** (python run_eval_whisper_streaming.py --model_id="deepdml/whisper-medium-mix-fr" --dataset="facebook/multilingual_librispeech" --config="french" --device=0 --language="fr") - **facebook/voxpopuli: 10.0653 %** (python run_eval_whisper_streaming.py --model_id="deepdml/whisper-medium-mix-fr" --dataset="facebook/voxpopuli" --config="fr" --device=0 --language="fr") ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data Training data used: - **mozilla-foundation/common_voice_11_0:** fr, train+validation - **google/fleurs:** fr_fr, train - **facebook/multilingual_librispeech:** french, train - **facebook/voxpopuli:** fr, train - Evaluating over test split from mozilla-foundation/common_voice_11_0 dataset. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0855 | 0.25 | 1000 | 0.2826 | 12.4230 | | 0.0569 | 0.5 | 2000 | 0.2768 | 11.9577 | | 0.0724 | 0.75 | 3000 | 0.2670 | 11.6106 | | 0.069 | 1.0 | 4000 | 0.2599 | 11.2278 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
Efimov6886/row4_98
Efimov6886
2022-12-15T19:24:08Z
14
0
transformers
[ "transformers", "pytorch", "autotrain", "vision", "image-classification", "dataset:Efimov6886/autotrain-data-onlykaggle", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
image-classification
2022-12-15T19:22:55Z
--- tags: - autotrain - vision - image-classification datasets: - Efimov6886/autotrain-data-onlykaggle widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace co2_eq_emissions: emissions: 1.893737751807574 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 2477076728 - CO2 Emissions (in grams): 1.8937 ## Validation Metrics - Loss: 0.047 - Accuracy: 0.980 - Macro F1: 0.980 - Micro F1: 0.980 - Weighted F1: 0.980 - Macro Precision: 0.980 - Micro Precision: 0.980 - Weighted Precision: 0.980 - Macro Recall: 0.980 - Micro Recall: 0.980 - Weighted Recall: 0.980
LuniLand/ppo-Huggy
LuniLand
2022-12-15T19:23:28Z
29
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2022-12-15T19:23:20Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: LuniLand/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Efimov6886/row4_accu100
Efimov6886
2022-12-15T19:22:21Z
17
0
transformers
[ "transformers", "pytorch", "autotrain", "vision", "image-classification", "dataset:Efimov6886/autotrain-data-onlykaggle", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
image-classification
2022-12-15T19:21:39Z
--- tags: - autotrain - vision - image-classification datasets: - Efimov6886/autotrain-data-onlykaggle widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace co2_eq_emissions: emissions: 0.003935079874008164 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 2477076724 - CO2 Emissions (in grams): 0.0039 ## Validation Metrics - Loss: 0.021 - Accuracy: 0.990 - Macro F1: 0.990 - Micro F1: 0.990 - Weighted F1: 0.990 - Macro Precision: 0.990 - Micro Precision: 0.990 - Weighted Precision: 0.990 - Macro Recall: 0.990 - Micro Recall: 0.990 - Weighted Recall: 0.990
haining/sas_baseline
haining
2022-12-15T19:21:26Z
34
4
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "text2text generation", "en", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-19T04:28:31Z
--- inference: parameters: do_sample: true max_length: 512 top_p: 0.9 repetition_penalty: 1.0 language: - en license: mit metrics: - sacrebleu - bert_score - rouge - meteor - sari - ari - "Automated Readability Index" tags: - "text2text generation" task: name: "scientific abstract simplification" type: "text2text generation" widget: - text: "summarize, simplify, and contextualize: The COVID-19 pandemic presented enormous data challenges in the United States. Policy makers, epidemiological modelers, and health researchers all require up-to-date data on the pandemic and relevant public behavior, ideally at fine spatial and temporal resolution. The COVIDcast API is our attempt to fill this need: Operational since April 2020, it provides open access to both traditional public health surveillance signals (cases, deaths, and hospitalizations) and many auxiliary indicators of COVID-19 activity, such as signals extracted from deidentified medical claims data, massive online surveys, cell phone mobility data, and internet search trends. These are available at a fine geographic resolution (mostly at the county level) and are updated daily. The COVIDcast API also tracks all revisions to historical data, allowing modelers to account for the frequent revisions and backfill that are common for many public health data sources. All of the data are available in a common format through the API and accompanying R and Python software packages. This paper describes the data sources and signals, and provides examples demonstrating that the auxiliary signals in the COVIDcast API present information relevant to tracking COVID activity, augmenting traditional public health reporting and empowering research and decision-making." example_title: "covid-api paper, from PNAS" - text: "summarize, simplify, and contextualize: Potato mop-top virus (PMTV) is considered an emerging threat to potato production in the United States. PMTV is transmitted by a soil-borne protist, Spongospora subterranean. Rapid, accurate, and sensitive detection of PMTV in leaves and tubers is an essential component in PMTV management program. A rapid test that can be adapted to in-field, on-site testing with minimal sample manipulation could help in ensuring the sanitary status of the produce in situations such as certification programs and shipping point inspections. Toward that goal, a rapid and highly sensitive recombinase polymerase amplification (RPA)-based test was developed for PMTV detection in potato tubers. The test combines the convenience of RPA assay with a simple sample extraction procedure, making it amenable to rapid on-site diagnosis of PMTV. Furthermore, the assay was duplexed with a plant internal control to monitor sample extraction and RPA reaction performance. The method described could detect as little as 10 fg of PMTV RNA transcript in various potato tissues, the diagnostic limit of detection (LOQ) similar to that of traditional molecular methods." example_title: "potato paper, from PLOS ONE" - text: "summarize, simplify, and contextualize: One of the most thrilling cultural experiences is to hear live symphony-orchestra music build up from a whispering passage to a monumental fortissimo. The impact of such a crescendo has been thought to depend only on the musicians’ skill, but here we show that interactions between the concert-hall acoustics and listeners’ hearing also play a major role in musical dynamics. These interactions contribute to the shoebox-type concert hall’s established success, but little prior research has been devoted to dynamic expression in this three-part transmission chain as a complete system. More forceful orchestral playing disproportionately excites high frequency harmonics more than those near the note’s fundamental. This effect results in not only more sound energy, but also a different tone color. The concert hall transmits this sound, and the room geometry defines from which directions acoustic reflections arrive at the listener. Binaural directional hearing emphasizes high frequencies more when sound arrives from the sides of the head rather than from the median plane. Simultaneously, these same frequencies are emphasized by higher orchestral-playing dynamics. When the room geometry provides reflections from these directions, the perceived dynamic range is enhanced. Current room-acoustic evaluation methods assume linear behavior and thus neglect this effect. The hypothesis presented here is that the auditory excitation by reflections is emphasized with an orchestra forte most in concert halls with strong lateral reflections. The enhanced dynamic range provides an explanation for the success of rectangularly shaped concert-hall geometry." example_title: "music paper, from PNAS" - text: "summarize, simplify, and contextualize: Children in industrialized cultures typically succeed on Give-N, a test of counting ability, by age 4. On the other hand, counting appears to be learned much later in the Tsimane’, an indigenous group in the Bolivian Amazon. This study tests three hypotheses for what may cause this difference in timing: (a) Tsimane’ children may be shy in providing behavioral responses to number tasks, (b) Tsimane’ children may not memorize the verbal list of number words early in acquisition, and/or (c) home environments may not support mathematical learning in the same way as in US samples, leading Tsimane’ children to primarily acquire mathematics through formalized schooling. Our results suggest that most of our subjects are not inhibited by shyness in responding to experimental tasks. We also find that Tsimane’ children (N = 100, ages 4-11) learn the verbal list later than US children, but even upon acquiring this list, still take time to pass Give-N tasks. We find that performance in counting varies across tasks and is related to formal schooling. These results highlight the importance of formal education, including instruction in the count list, in learning the meanings of the number words." example_title: "given-n paper, from PLOS ONE" --- # TL;DR **Our [full model](https://huggingface.co/haining/scientific_abstract_simplification) is out!🎉🎉🎉 It leverages the power of multi-instruction finetuning and beats the baseline by a margin. Use the [full model](https://huggingface.co/haining/scientific_abstract_simplification) unless the goal is comparison.** Scientific Abstract Simplification rewrites hard-to-read scientific abstracts😵 into simpler yet relevant scientific stories😇. We hope our model can make scientific knowledge accessible for everyone🤗. Try it now with the Hosted inference API on the right. You can choose an existing example or paste in any (perhaps full-of-jargon) abstract. Remember to prepend the instruction to the abstract ("summarize, simplify, and contextualize: "; notice, there is a whitespace after the colon). Local use refers to Section [Usage](#Usage). # Model Details ## Model Description Open science has significantly lowered the barriers to scientific papers. However, reachable research does not mean accessible knowledge. Scientific papers are usually replete with jargon and hard to read. A lay audience would rather trust little stories on social media than read scientific papers. They are not to blame, we human like stories. So why do not we "translate" arcane scientific abstracts into simpler yet relevant scientific stories? Some renowned journals have already taken accessibility into consideration. For example, PNAS asks authors to submit Significance Statements targeting "an undergraduate-educated scientist." Science also includes an editor abstract for a quick dive. We therefore propose to *rewrite scientific abstracts into understandable scientific stories using AI*. To this end, we introduce a new corpus comprising PNAS abstract-significance pairs. We finetune an encoder-decoder Transformer model (a variant of Flan-T5) with the corpus. Our baseline model (SAS-baseline) shows promising capacity in simplifying and summarizing scientific abstracts. We hope our work can pave the last mile of scientific understanding and let people better enjoy the fruits of open science. As an ongoing effort, we are working on re-contextualizating abstracts for better storytelling and avoiding certain jargon tokens during inference time for better readability. <!-- We hypothesize the last mile of scientific understanding is cognitive. --> - **Model type:** Language model - **Developed by:** - PIs: Jason Clark and Hannah McKelvey, Montana State University - Fellow: Haining Wang, Indiana University Bloomington - Collaborator: Zuoyu Tian, Indiana University Bloomington - [LEADING](https://cci.drexel.edu/mrc/leading/) Montana State University Library, Project "TL;DR it": Automating Article Synopses for Search Engine Optimization and Citizen Science - **Language(s) (NLP):** English - **License:** MIT - **Parent Model:** [FLAN-T5-large](https://huggingface.co/google/flan-t5-large) # Usage Use the code below to get started with the model. Remember to prepend the `INSTRUCTION` for best performance. ```python import torch from transformers import AutoTokenizer, AutoModelForSeq2SeqLM INSTRUCTION = "summarize, simplify, and contextualize: " tokenizer = AutoTokenizer.from_pretrained("haining/sas_baseline") model = AutoModelForSeq2SeqLM.from_pretrained("haining/sas_baseline") input_text = "The COVID-19 pandemic presented enormous data challenges in the United States. Policy makers, epidemiological modelers, and health researchers all require up-to-date data on the pandemic and relevant public behavior, ideally at fine spatial and temporal resolution. The COVIDcast API is our attempt to fill this need: Operational since April 2020, it provides open access to both traditional public health surveillance signals (cases, deaths, and hospitalizations) and many auxiliary indicators of COVID-19 activity, such as signals extracted from deidentified medical claims data, massive online surveys, cell phone mobility data, and internet search trends. These are available at a fine geographic resolution (mostly at the county level) and are updated daily. The COVIDcast API also tracks all revisions to historical data, allowing modelers to account for the frequent revisions and backfill that are common for many public health data sources. All of the data are available in a common format through the API and accompanying R and Python software packages. This paper describes the data sources and signals, and provides examples demonstrating that the auxiliary signals in the COVIDcast API present information relevant to tracking COVID activity, augmenting traditional public health reporting and empowering research and decision-making." encoding = tokenizer(INSTRUCTION + input_text, max_length=672, padding='max_length', truncation=True, return_tensors='pt') decoded_ids = model.generate(input_ids=encoding['input_ids'], attention_mask=encoding['attention_mask'], max_length=512, top_p=.9, do_sample=True) print(tokenizer.decode(decoded_ids[0], skip_special_tokens=True)) ``` # Training ## Data For SAS-baseline, we finetuned Flan-T5 model with the Scientific Abstract-Significance (SAS) corpus. | Scientific Abstract-Significance | # Training/Dev/Test Samples | # Training Tokens | # Validation Tokens | # Test Tokens | Automated Readability Index (std.) | |----------------------------------|-----------------------------|-------------------|---------------------|---------------|------------------------------------| | Abstract | 3030/200/200 | 707,071 | 45,697 | 46,985 | 18.68 (2.85) | | Significance | 3030/200/200 | 375,433 | 24,901 | 24,426 | 17.89 (3.05) | ## Setup We finetuned the base model with a standard language modeling objective: the abstracts are sources and the significance statements are targets. We inform the model with a task-spcific prefix ("summarize, simplify, and contextualize: ") during training. The training took roughly 9 hours on two NVIDIA RTX A5000 (24GB memory each) GPUs. We saved the checkpoint with the lowest validation loss for inference. We used the AdamW optimizer and a learning rate of 3e-5 with fully sharded data parallel strategy. The model (\~780M parameter) was trained on Nov. 20, 2022. Notice, the readability of the significance statements is generally lower than the abstracts', but not by a large margin. Our incoming SAS-full model will leverage more corpora for scientific (re)contextualization, summarization, and simplification. # Evaluation The model is evaluated on the SAS test set using the following metrics. ## Metrics - [SacreBLEU](https://huggingface.co/spaces/evaluate-metric/sacrebleu): SacreBLEU provides hassle-free computation of shareable, comparable, and reproducible BLEU scores. Inspired by Rico Sennrich’s multi-bleu-detok.perl, it produces the official WMT scores but works with plain text. It also knows all the standard test sets and handles downloading, processing, and tokenization for you. - [BERTScore](https://huggingface.co/spaces/evaluate-metric/bertscore): BERTScore leverages the pre-trained contextual embeddings from BERT and matches words in candidate and reference sentences by cosine similarity. It has been shown to correlate with human judgment on sentence-level and system-level evaluation. Moreover, BERTScore computes precision, recall, and F1 measure, which can be useful for evaluating different language generation tasks. - [ROUGLE](https://huggingface.co/spaces/evaluate-metric/rouge)-1/2/L: ROUGE is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. - [METEOR](https://huggingface.co/spaces/evaluate-metric/meteor): METEOR, an automatic metric for machine translation evaluation that is based on a generalized concept of unigram matching between the machine-produced translation and human-produced reference translations. Unigrams can be matched based on their surface forms, stemmed forms, and meanings; furthermore, METEOR can be easily extended to include more advanced matching strategies. Once all generalized unigram matches between the two strings have been found, METEOR computes a score for this matching using a combination of unigram-precision, unigram-recall, and a measure of fragmentation that is designed to directly capture how well-ordered the matched words in the machine translation are in relation to the reference. - [SARI](https://huggingface.co/spaces/evaluate-metric/sari): SARI is a metric used for evaluating automatic text simplification systems. The metric compares the predicted simplified sentences against the reference and the source sentences. It explicitly measures the goodness of words that are added, deleted and kept by the system. Sari = (F1_add + F1_keep + P_del) / 3 where F1_add: n-gram F1 score for add operation F1_keep: n-gram F1 score for keep operation P_del: n-gram precision score for delete operation n = 4, as in the original paper. - [The Automated Readability Index (ARI)](https://www.readabilityformulas.com/automated-readability-index.php): ARI is a readability test designed to assess the understandability of a text. Like other popular readability formulas, the ARI formula outputs a number which approximates the grade level needed to comprehend the text. For example, if the ARI outputs the number 10, this equates to a high school student, ages 15-16 years old; a number 3 means students in 3rd grade (ages 8-9 yrs. old) should be able to comprehend the text. Implementations of SacreBLEU, BERT Score, ROUGLE, METEOR, and SARI are from Huggingface [`evaluate`](https://pypi.org/project/evaluate/) v.0.3.0. ARI is from [`py-readability-metrics`](https://pypi.org/project/py-readability-metrics/) v.1.4.5. ## Results We tested our model on the SAS test set (200 samples). We generate 10 lay summaries based on each sample's abstract. During generation, we used top-p sampling with p=0.9. The mean performance is reported below. | Metrics | SAS-baseline | |----------------|-------------------| | SacreBLEU↑ | 18.43 | | BERT Score F1↑ | 89.31 | | ROUGLE-1↑ | 48.14 | | ROUGLE-2↑ | 22.96 | | ROUGLE-L↑ | 32.29 | | METEOR↑ | 39.04 | | SARI↑ | 46.68 | | ARI↓ | 17.27 | Note: 1. Some generated texts are too short (less than 100 words) to calcualte meaningful ARI. We therefore concatenated adjecent five texts and compute ARI for the 400 longer texts (instead of original 2,000 texts). 2. BERT score, ROUGE, and METEOR are multiplied by 100. # Contact Please [contact us](mailto:[email protected]) for any questions or suggestions. # Disclaimer This model is created for making scientific abstracts more accessible. Its outputs should not be used or trusted outside of its scope. There is no guarantee that the generated text is perfectly aligned with the research. Resort to human experts or original papers when a decision is critical. # Acknowledgement This research is supported by the Institute of Museum and Library Services (IMLS) RE-246450-OLS-20.
Herrydaniel/distilbert-base-uncased-finetuned-squad
Herrydaniel
2022-12-15T19:03:46Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-12-15T16:01:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1619 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2251 | 1.0 | 5533 | 1.1670 | | 0.9612 | 2.0 | 11066 | 1.1385 | | 0.758 | 3.0 | 16599 | 1.1619 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
tzvc/1a765cc4-702d-4d60-bdf9-df352c214b7b
tzvc
2022-12-15T19:00:30Z
0
0
diffusers
[ "diffusers", "tensorboard", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2022-12-15T18:30:36Z
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: [V] --- ### training params ```json { "pretrained_model_name_or_path": "runwayml/stable-diffusion-v1-5", "instance_data_dir": "./1a765cc4-702d-4d60-bdf9-df352c214b7b/instance_data", "class_data_dir": "./class_data/a-portrait-of-a-person", "output_dir": "./1a765cc4-702d-4d60-bdf9-df352c214b7b/", "train_text_encoder": true, "with_prior_preservation": false, "prior_loss_weight": 1.0, "instance_prompt": "[V]", "class_prompt": "a portrait of a person", "resolution": 512, "train_batch_size": 1, "gradient_accumulation_steps": 2, "gradient_checkpointing": true, "use_8bit_adam": true, "learning_rate": 2e-06, "lr_scheduler": "polynomial", "lr_warmup_steps": 0, "num_class_images": 200, "max_train_steps": 1190, "mixed_precision": "fp16" } ```
GV05/sd-anime-64
GV05
2022-12-15T18:58:31Z
5
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-12-15T18:57:21Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute ANIME FACES. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(GV05/sd-anime-64) image = pipeline().images[0] image ```
SirVeggie/wlop-nixeu-robutts
SirVeggie
2022-12-15T18:55:39Z
0
6
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-11-03T00:04:02Z
--- license: creativeml-openrail-m --- Artist 1: WLOP\ Patreon: https://www.patreon.com/wlop/posts Artist 2: Nixeu\ Patreon: https://www.patreon.com/nixeu/posts Artist 3: Cutesexyrobutts\ Patreon: https://www.patreon.com/cutesexyrobutts ## Basic explanation Token words are what guide the AI to produce images similar to the trained style/object/character. Include any mix of these words in the prompt to produce verying results, or exclude them to have a less pronounced effect. There is usually at least a slight stylistic effect even without the words, but it is recommended to include at least one. Adding token word/phrase at the start of the prompt produces results most similar to the trained concept, but they can be included elsewhere as well. ## Model info model: wlop-nixeu-robutts\ tokens: m-wlop, m-nixeu, m-robutts\ base: waifu diffusion 1.3-full\
kpriyanshu256/whisper-large-v2-as-75-32-1e-05-bn
kpriyanshu256
2022-12-15T18:48:06Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "as", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-15T17:31:08Z
--- language: - as license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: openai/whisper-large-v2-Assamese results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: as split: test args: as metrics: - name: Wer type: wer value: 60.99981952716116 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # openai/whisper-large-v2-Assamese This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 1.1749 - Wer: 60.9998 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 75 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.2123 | 1.0 | 75 | 1.1749 | 60.9998 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
admarcosai/taxi-v3-qlearning_200
admarcosai
2022-12-15T18:41:14Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-15T18:41:07Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: taxi-v3-qlearning_200 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="dmarcos/taxi-v3-qlearning_200", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
luisgasco/biomedical-roberta-finetuned-cantemist-test
luisgasco
2022-12-15T18:32:51Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "token-classification", "generated_from_trainer", "dataset:cantemist-ner", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-12-15T18:19:23Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - cantemist-ner metrics: - f1 model-index: - name: biomedical-roberta-finetuned-cantemist-test results: - task: name: Token Classification type: token-classification dataset: name: cantemist-ner type: cantemist-ner config: CantemistNer split: train args: CantemistNer metrics: - name: F1 type: f1 value: 0.8379235519946587 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # biomedical-roberta-finetuned-cantemist-test This model is a fine-tuned version of [PlanTL-GOB-ES/bsc-bio-ehr-es-cantemist](https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es-cantemist) on the cantemist-ner dataset. It achieves the following results on the evaluation set: - Loss: 0.0597 - F1: 0.8379 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.0015 | 1.0 | 607 | 0.0597 | 0.8379 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
admarcosai/taxi-v3-qlearning
admarcosai
2022-12-15T18:31:59Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-15T18:31:54Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: taxi-v3-qlearning results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="dmarcos/taxi-v3-qlearning", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
hazrulakmal/ppo-LunarLander-v2
hazrulakmal
2022-12-15T18:31:17Z
2
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-15T18:30:49Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 288.90 +/- 19.59 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
vitorhgomes/q-Taxi-v3-2
vitorhgomes
2022-12-15T18:23:52Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-15T18:23:46Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3-2 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="vitorhgomes/q-Taxi-v3-2", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
admarcosai/q-FrozenLake-v1-4x4-noSlippery
admarcosai
2022-12-15T18:09:28Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-15T18:09:25Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="dmarcos/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
alexamiredjibi/Multimodal-Trajectory-Classifier
alexamiredjibi
2022-12-15T17:17:00Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-12-14T21:37:08Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: Multimodal-Trajectory-Classifier results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Multimodal-Trajectory-Classifier This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
vitorhgomes/q-FrozenLake-v1-4x4-noSlippery
vitorhgomes
2022-12-15T17:16:28Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-15T17:16:23Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="vitorhgomes/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
maxspad/nlp-qual-q1
maxspad
2022-12-15T17:10:17Z
5
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-15T16:55:54Z
# Model Card for nlp-qual-q1 <!-- Provide a quick summary of what the model is/does. [Optional] --> QuAL Score Q1 Subscore # Table of Contents - [Model Card for nlp-qual-q1](#model-card-for--model_id-) - [Table of Contents](#table-of-contents) - [Table of Contents](#table-of-contents-1) - [Model Details](#model-details) - [Model Description](#model-description) - [Uses](#uses) - [Direct Use](#direct-use) - [Downstream Use [Optional]](#downstream-use-optional) - [Out-of-Scope Use](#out-of-scope-use) - [Bias, Risks, and Limitations](#bias-risks-and-limitations) - [Recommendations](#recommendations) - [Training Details](#training-details) - [Training Data](#training-data) - [Training Procedure](#training-procedure) - [Preprocessing](#preprocessing) - [Speeds, Sizes, Times](#speeds-sizes-times) - [Evaluation](#evaluation) - [Testing Data, Factors & Metrics](#testing-data-factors--metrics) - [Testing Data](#testing-data) - [Factors](#factors) - [Metrics](#metrics) - [Results](#results) - [Model Examination](#model-examination) - [Environmental Impact](#environmental-impact) - [Technical Specifications [optional]](#technical-specifications-optional) - [Model Architecture and Objective](#model-architecture-and-objective) - [Compute Infrastructure](#compute-infrastructure) - [Hardware](#hardware) - [Software](#software) - [Citation](#citation) - [Glossary [optional]](#glossary-optional) - [More Information [optional]](#more-information-optional) - [Model Card Authors [optional]](#model-card-authors-optional) - [Model Card Contact](#model-card-contact) - [How to Get Started with the Model](#how-to-get-started-with-the-model) # Model Details ## Model Description <!-- Provide a longer summary of what this model is/does. --> QuAL Score Q1 Subscore - **Developed by:** More information needed - **Shared by [Optional]:** More information needed - **Model type:** Language model - **Language(s) (NLP):** en - **License:** unknown - **Parent Model:** More information needed - **Resources for more information:** More information needed # Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ## Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> <!-- If the user enters content, print that. If not, but they enter a task in the list, use that. If neither, say "more info needed." --> ## Downstream Use [Optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> <!-- If the user enters content, print that. If not, but they enter a task in the list, use that. If neither, say "more info needed." --> ## Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> <!-- If the user enters content, print that. If not, but they enter a task in the list, use that. If neither, say "more info needed." --> # Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups. ## Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> # Training Details ## Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> More information on training data needed ## Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> ### Preprocessing More information needed ### Speeds, Sizes, Times <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> More information needed # Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ## Testing Data, Factors & Metrics ### Testing Data <!-- This should link to a Data Card if possible. --> More information needed ### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> More information needed ### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> More information needed ## Results More information needed # Model Examination More information needed # Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** More information needed - **Hours used:** More information needed - **Cloud Provider:** More information needed - **Compute Region:** More information needed - **Carbon Emitted:** More information needed # Technical Specifications [optional] ## Model Architecture and Objective More information needed ## Compute Infrastructure More information needed ### Hardware More information needed ### Software More information needed # Citation <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** More information needed **APA:** More information needed # Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> More information needed # More Information [optional] More information needed # Model Card Authors [optional] <!-- This section provides another layer of transparency and accountability. Whose views is this model card representing? How many voices were included in its construction? Etc. --> More information needed # Model Card Contact More information needed # How to Get Started with the Model Use the code below to get started with the model. <details> <summary> Click to expand </summary> More information needed </details>
abhishek/autotrain-butterflies-new-17716423
abhishek
2022-12-15T17:04:25Z
15
0
transformers
[ "transformers", "pytorch", "autotrain", "vision", "image-classification", "dataset:abhishek/autotrain-data-butterflies-new", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
image-classification
2022-12-15T14:41:05Z
--- tags: - autotrain - vision - image-classification datasets: - abhishek/autotrain-data-butterflies-new widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace co2_eq_emissions: emissions: 185.36475571171792 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 17716423 - CO2 Emissions (in grams): 185.3648 ## Validation Metrics - Loss: 3.193 - Accuracy: 0.460 - Macro F1: 0.146 - Micro F1: 0.460 - Weighted F1: 0.392 - Macro Precision: 0.145 - Micro Precision: 0.460 - Weighted Precision: 0.360 - Macro Recall: 0.166 - Micro Recall: 0.460 - Weighted Recall: 0.460
AymanMansour/Whisper-Sudanese-Dialect-large-v2
AymanMansour
2022-12-15T16:57:40Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-15T09:45:20Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: openai/whisper-large-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # openai/whisper-large-v2 This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9317 - Wer: 41.0267 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.5167 | 1.08 | 1000 | 0.7033 | 67.2465 | | 0.0886 | 3.04 | 2000 | 0.7730 | 51.1880 | | 0.0808 | 4.12 | 3000 | 0.7812 | 52.5880 | | 0.0232 | 6.08 | 4000 | 0.8798 | 40.8570 | | 0.001 | 8.04 | 5000 | 0.9317 | 41.0267 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
emilios/whisper-medium-el
emilios
2022-12-15T16:55:48Z
51
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "whisper-medium", "mozilla-foundation/common_voice_11_0", "greek", "whisper-event", "generated_from_trainer", "el", "dataset:mozilla-foundation/common_voice_11_0", "dataset:google/fleurs", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-09T11:40:02Z
--- language: - el license: apache-2.0 tags: - hf-asr-leaderboard - whisper-medium - mozilla-foundation/common_voice_11_0 - greek - whisper-event - generated_from_trainer - whisper-event datasets: - mozilla-foundation/common_voice_11_0 - google/fleurs metrics: - wer model-index: - name: Whisper Medium El Greco results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 type: mozilla-foundation/common_voice_11_0 config: el split: test metrics: - name: Wer type: wer value: 10.7448 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Medium El Greco This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - eval_loss: 0.4245 - eval_wer: 10.7448 - eval_runtime: 1107.1212 - eval_samples_per_second: 1.532 - eval_steps_per_second: 0.096 - epoch: 33.98 - step: 7000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 7000 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
abhishek/autotrain-butterflies-new-17716424
abhishek
2022-12-15T16:52:39Z
14
0
transformers
[ "transformers", "pytorch", "autotrain", "vision", "image-classification", "dataset:abhishek/autotrain-data-butterflies-new", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
image-classification
2022-12-15T14:41:02Z
--- tags: - autotrain - vision - image-classification datasets: - abhishek/autotrain-data-butterflies-new widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace co2_eq_emissions: emissions: 111.21012328795237 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 17716424 - CO2 Emissions (in grams): 111.2101 ## Validation Metrics - Loss: 4.305 - Accuracy: 0.317 - Macro F1: 0.043 - Micro F1: 0.317 - Weighted F1: 0.224 - Macro Precision: 0.044 - Micro Precision: 0.317 - Weighted Precision: 0.192 - Macro Recall: 0.053 - Micro Recall: 0.317 - Weighted Recall: 0.317
Graylien/ppo-LunarLander-v2
Graylien
2022-12-15T16:48:00Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-15T16:47:35Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 253.01 +/- 11.43 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
abhishek/autotrain-butterflies-new-17716422
abhishek
2022-12-15T16:40:50Z
14
0
transformers
[ "transformers", "pytorch", "autotrain", "vision", "image-classification", "dataset:abhishek/autotrain-data-butterflies-new", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
image-classification
2022-12-15T14:41:02Z
--- tags: - autotrain - vision - image-classification datasets: - abhishek/autotrain-data-butterflies-new widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace co2_eq_emissions: emissions: 138.53332005624384 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 17716422 - CO2 Emissions (in grams): 138.5333 ## Validation Metrics - Loss: 2.762 - Accuracy: 0.496 - Macro F1: 0.204 - Micro F1: 0.496 - Weighted F1: 0.438 - Macro Precision: 0.199 - Micro Precision: 0.496 - Weighted Precision: 0.409 - Macro Recall: 0.230 - Micro Recall: 0.496 - Weighted Recall: 0.496
Thiefwerty/ppo-LunarLander-v2
Thiefwerty
2022-12-15T16:36:57Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-15T16:15:10Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 222.98 +/- 20.29 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ![](https://media1.giphy.com/media/75yVKTaMD6IMsBFa1V/giphy.gif?cid=790b76111ce2f5f77a3eaf6b1a1cd701aca36ee0fc7a8ecd&rid=giphy.gif&ct=g)
rin2401/ppo-LunarLander-v2
rin2401
2022-12-15T16:33:53Z
2
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-15T16:33:28Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 257.51 +/- 21.87 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
wanxiangche/q-FrozenLake-v1-4x4-noSlippery
wanxiangche
2022-12-15T16:07:53Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-15T16:07:46Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="wanxiangche/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
wooihen/ppo-LunarLander-v2-TEST
wooihen
2022-12-15T16:00:11Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-15T15:59:45Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 262.79 +/- 27.06 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
lnros/Taxi-v3
lnros
2022-12-15T15:58:32Z
0
0
null
[ "Taxi-v3-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-15T15:54:34Z
--- tags: - Taxi-v3-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3-4x4-no_slippery type: Taxi-v3-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="lnros/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
aabayomi/Taxi-v3
aabayomi
2022-12-15T15:56:36Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-15T15:56:10Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="aabayomi/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
greedypiggy/ppo-LunarLander-v2
greedypiggy
2022-12-15T15:56:13Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-15T15:55:42Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 243.78 +/- 26.03 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
harikc456/q-FrozenLake-v1-4x4-noSlippery
harikc456
2022-12-15T15:51:28Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-15T15:49:25Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="harikc456/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
ubiest/ppo-Huggy
ubiest
2022-12-15T15:46:00Z
7
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2022-12-15T15:45:24Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: ubiest/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
cmenasse/ppo-Huggy
cmenasse
2022-12-15T15:42:02Z
12
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2022-12-15T15:41:52Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: cmenasse/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
betbhai9/betbhailogin
betbhai9
2022-12-15T15:36:45Z
0
0
null
[ "region:us" ]
null
2022-12-15T15:35:14Z
[Betbhai 9 login id](https://betbhai9.app/) is a website that has been in business for a long time and provides a variety of services, including [Betbhai 9 login id](https://betbhai9.app/)services. Our site is a great site and we tell you why in this Betbhai 9 login id India review. We also provide a services review, which will show you how convenient and competitive their banking and sports offerings are, as well as how prompt their customer support is.
harikc456/lunar-lander-v2-ppo
harikc456
2022-12-15T15:19:32Z
4
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-15T14:34:30Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 278.85 +/- 18.15 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
clp/setfit-ethos-multilabel-example
clp
2022-12-15T15:18:05Z
5
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-12-15T15:17:52Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 230 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 230, "warmup_steps": 23, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
ntinosmg/taxi-v3
ntinosmg
2022-12-15T15:16:35Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-15T15:16:31Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.54 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="ntinosmg/taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
SuburbanLion/q-FrozenLake-v1-4x4-noSlippery
SuburbanLion
2022-12-15T15:12:56Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-15T15:12:50Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="SuburbanLion/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
dbaibak/q-FrozenLake-v1-4x4-noSlippery
dbaibak
2022-12-15T15:11:57Z
0
1
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-15T15:09:01Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="dbaibak/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
tomekkorbak/stupefied_brattain
tomekkorbak
2022-12-15T15:04:40Z
0
0
null
[ "generated_from_trainer", "en", "dataset:tomekkorbak/pii-pile-chunk3-0-50000", "dataset:tomekkorbak/pii-pile-chunk3-50000-100000", "dataset:tomekkorbak/pii-pile-chunk3-100000-150000", "dataset:tomekkorbak/pii-pile-chunk3-150000-200000", "dataset:tomekkorbak/pii-pile-chunk3-200000-250000", "dataset:tomekkorbak/pii-pile-chunk3-250000-300000", "dataset:tomekkorbak/pii-pile-chunk3-300000-350000", "dataset:tomekkorbak/pii-pile-chunk3-350000-400000", "dataset:tomekkorbak/pii-pile-chunk3-400000-450000", "dataset:tomekkorbak/pii-pile-chunk3-450000-500000", "dataset:tomekkorbak/pii-pile-chunk3-500000-550000", "dataset:tomekkorbak/pii-pile-chunk3-550000-600000", "dataset:tomekkorbak/pii-pile-chunk3-600000-650000", "dataset:tomekkorbak/pii-pile-chunk3-650000-700000", "dataset:tomekkorbak/pii-pile-chunk3-700000-750000", "dataset:tomekkorbak/pii-pile-chunk3-750000-800000", "dataset:tomekkorbak/pii-pile-chunk3-800000-850000", "dataset:tomekkorbak/pii-pile-chunk3-850000-900000", "dataset:tomekkorbak/pii-pile-chunk3-900000-950000", "dataset:tomekkorbak/pii-pile-chunk3-950000-1000000", "dataset:tomekkorbak/pii-pile-chunk3-1000000-1050000", "dataset:tomekkorbak/pii-pile-chunk3-1050000-1100000", "dataset:tomekkorbak/pii-pile-chunk3-1100000-1150000", "dataset:tomekkorbak/pii-pile-chunk3-1150000-1200000", "dataset:tomekkorbak/pii-pile-chunk3-1200000-1250000", "dataset:tomekkorbak/pii-pile-chunk3-1250000-1300000", "dataset:tomekkorbak/pii-pile-chunk3-1300000-1350000", "dataset:tomekkorbak/pii-pile-chunk3-1350000-1400000", "dataset:tomekkorbak/pii-pile-chunk3-1400000-1450000", "dataset:tomekkorbak/pii-pile-chunk3-1450000-1500000", "dataset:tomekkorbak/pii-pile-chunk3-1500000-1550000", "dataset:tomekkorbak/pii-pile-chunk3-1550000-1600000", "dataset:tomekkorbak/pii-pile-chunk3-1600000-1650000", "dataset:tomekkorbak/pii-pile-chunk3-1650000-1700000", "dataset:tomekkorbak/pii-pile-chunk3-1700000-1750000", "dataset:tomekkorbak/pii-pile-chunk3-1750000-1800000", "dataset:tomekkorbak/pii-pile-chunk3-1800000-1850000", "dataset:tomekkorbak/pii-pile-chunk3-1850000-1900000", "dataset:tomekkorbak/pii-pile-chunk3-1900000-1950000", "license:mit", "region:us" ]
null
2022-12-15T15:04:22Z
--- language: - en license: mit tags: - generated_from_trainer datasets: - tomekkorbak/pii-pile-chunk3-0-50000 - tomekkorbak/pii-pile-chunk3-50000-100000 - tomekkorbak/pii-pile-chunk3-100000-150000 - tomekkorbak/pii-pile-chunk3-150000-200000 - tomekkorbak/pii-pile-chunk3-200000-250000 - tomekkorbak/pii-pile-chunk3-250000-300000 - tomekkorbak/pii-pile-chunk3-300000-350000 - tomekkorbak/pii-pile-chunk3-350000-400000 - tomekkorbak/pii-pile-chunk3-400000-450000 - tomekkorbak/pii-pile-chunk3-450000-500000 - tomekkorbak/pii-pile-chunk3-500000-550000 - tomekkorbak/pii-pile-chunk3-550000-600000 - tomekkorbak/pii-pile-chunk3-600000-650000 - tomekkorbak/pii-pile-chunk3-650000-700000 - tomekkorbak/pii-pile-chunk3-700000-750000 - tomekkorbak/pii-pile-chunk3-750000-800000 - tomekkorbak/pii-pile-chunk3-800000-850000 - tomekkorbak/pii-pile-chunk3-850000-900000 - tomekkorbak/pii-pile-chunk3-900000-950000 - tomekkorbak/pii-pile-chunk3-950000-1000000 - tomekkorbak/pii-pile-chunk3-1000000-1050000 - tomekkorbak/pii-pile-chunk3-1050000-1100000 - tomekkorbak/pii-pile-chunk3-1100000-1150000 - tomekkorbak/pii-pile-chunk3-1150000-1200000 - tomekkorbak/pii-pile-chunk3-1200000-1250000 - tomekkorbak/pii-pile-chunk3-1250000-1300000 - tomekkorbak/pii-pile-chunk3-1300000-1350000 - tomekkorbak/pii-pile-chunk3-1350000-1400000 - tomekkorbak/pii-pile-chunk3-1400000-1450000 - tomekkorbak/pii-pile-chunk3-1450000-1500000 - tomekkorbak/pii-pile-chunk3-1500000-1550000 - tomekkorbak/pii-pile-chunk3-1550000-1600000 - tomekkorbak/pii-pile-chunk3-1600000-1650000 - tomekkorbak/pii-pile-chunk3-1650000-1700000 - tomekkorbak/pii-pile-chunk3-1700000-1750000 - tomekkorbak/pii-pile-chunk3-1750000-1800000 - tomekkorbak/pii-pile-chunk3-1800000-1850000 - tomekkorbak/pii-pile-chunk3-1850000-1900000 - tomekkorbak/pii-pile-chunk3-1900000-1950000 model-index: - name: stupefied_brattain results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # stupefied_brattain This model was trained from scratch on the tomekkorbak/pii-pile-chunk3-0-50000, the tomekkorbak/pii-pile-chunk3-50000-100000, the tomekkorbak/pii-pile-chunk3-100000-150000, the tomekkorbak/pii-pile-chunk3-150000-200000, the tomekkorbak/pii-pile-chunk3-200000-250000, the tomekkorbak/pii-pile-chunk3-250000-300000, the tomekkorbak/pii-pile-chunk3-300000-350000, the tomekkorbak/pii-pile-chunk3-350000-400000, the tomekkorbak/pii-pile-chunk3-400000-450000, the tomekkorbak/pii-pile-chunk3-450000-500000, the tomekkorbak/pii-pile-chunk3-500000-550000, the tomekkorbak/pii-pile-chunk3-550000-600000, the tomekkorbak/pii-pile-chunk3-600000-650000, the tomekkorbak/pii-pile-chunk3-650000-700000, the tomekkorbak/pii-pile-chunk3-700000-750000, the tomekkorbak/pii-pile-chunk3-750000-800000, the tomekkorbak/pii-pile-chunk3-800000-850000, the tomekkorbak/pii-pile-chunk3-850000-900000, the tomekkorbak/pii-pile-chunk3-900000-950000, the tomekkorbak/pii-pile-chunk3-950000-1000000, the tomekkorbak/pii-pile-chunk3-1000000-1050000, the tomekkorbak/pii-pile-chunk3-1050000-1100000, the tomekkorbak/pii-pile-chunk3-1100000-1150000, the tomekkorbak/pii-pile-chunk3-1150000-1200000, the tomekkorbak/pii-pile-chunk3-1200000-1250000, the tomekkorbak/pii-pile-chunk3-1250000-1300000, the tomekkorbak/pii-pile-chunk3-1300000-1350000, the tomekkorbak/pii-pile-chunk3-1350000-1400000, the tomekkorbak/pii-pile-chunk3-1400000-1450000, the tomekkorbak/pii-pile-chunk3-1450000-1500000, the tomekkorbak/pii-pile-chunk3-1500000-1550000, the tomekkorbak/pii-pile-chunk3-1550000-1600000, the tomekkorbak/pii-pile-chunk3-1600000-1650000, the tomekkorbak/pii-pile-chunk3-1650000-1700000, the tomekkorbak/pii-pile-chunk3-1700000-1750000, the tomekkorbak/pii-pile-chunk3-1750000-1800000, the tomekkorbak/pii-pile-chunk3-1800000-1850000, the tomekkorbak/pii-pile-chunk3-1850000-1900000 and the tomekkorbak/pii-pile-chunk3-1900000-1950000 datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 12588 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.24.0 - Pytorch 1.11.0+cu113 - Datasets 2.5.1 - Tokenizers 0.11.6 # Full config {'dataset': {'datasets': ['tomekkorbak/pii-pile-chunk3-0-50000', 'tomekkorbak/pii-pile-chunk3-50000-100000', 'tomekkorbak/pii-pile-chunk3-100000-150000', 'tomekkorbak/pii-pile-chunk3-150000-200000', 'tomekkorbak/pii-pile-chunk3-200000-250000', 'tomekkorbak/pii-pile-chunk3-250000-300000', 'tomekkorbak/pii-pile-chunk3-300000-350000', 'tomekkorbak/pii-pile-chunk3-350000-400000', 'tomekkorbak/pii-pile-chunk3-400000-450000', 'tomekkorbak/pii-pile-chunk3-450000-500000', 'tomekkorbak/pii-pile-chunk3-500000-550000', 'tomekkorbak/pii-pile-chunk3-550000-600000', 'tomekkorbak/pii-pile-chunk3-600000-650000', 'tomekkorbak/pii-pile-chunk3-650000-700000', 'tomekkorbak/pii-pile-chunk3-700000-750000', 'tomekkorbak/pii-pile-chunk3-750000-800000', 'tomekkorbak/pii-pile-chunk3-800000-850000', 'tomekkorbak/pii-pile-chunk3-850000-900000', 'tomekkorbak/pii-pile-chunk3-900000-950000', 'tomekkorbak/pii-pile-chunk3-950000-1000000', 'tomekkorbak/pii-pile-chunk3-1000000-1050000', 'tomekkorbak/pii-pile-chunk3-1050000-1100000', 'tomekkorbak/pii-pile-chunk3-1100000-1150000', 'tomekkorbak/pii-pile-chunk3-1150000-1200000', 'tomekkorbak/pii-pile-chunk3-1200000-1250000', 'tomekkorbak/pii-pile-chunk3-1250000-1300000', 'tomekkorbak/pii-pile-chunk3-1300000-1350000', 'tomekkorbak/pii-pile-chunk3-1350000-1400000', 'tomekkorbak/pii-pile-chunk3-1400000-1450000', 'tomekkorbak/pii-pile-chunk3-1450000-1500000', 'tomekkorbak/pii-pile-chunk3-1500000-1550000', 'tomekkorbak/pii-pile-chunk3-1550000-1600000', 'tomekkorbak/pii-pile-chunk3-1600000-1650000', 'tomekkorbak/pii-pile-chunk3-1650000-1700000', 'tomekkorbak/pii-pile-chunk3-1700000-1750000', 'tomekkorbak/pii-pile-chunk3-1750000-1800000', 'tomekkorbak/pii-pile-chunk3-1800000-1850000', 'tomekkorbak/pii-pile-chunk3-1850000-1900000', 'tomekkorbak/pii-pile-chunk3-1900000-1950000'], 'filter_threshold': 0.000286, 'is_split_by_sentences': True, 'skip_tokens': 1649999872}, 'generation': {'force_call_on': [25177], 'metrics_configs': [{}, {'n': 1}, {'n': 2}, {'n': 5}], 'scenario_configs': [{'generate_kwargs': {'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_samples': 2048}], 'scorer_config': {}}, 'kl_gpt3_callback': {'force_call_on': [25177], 'max_tokens': 64, 'num_samples': 4096}, 'model': {'from_scratch': False, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'model_kwargs': {'revision': '9e6c78543a6ff1e4089002c38864d5a9cf71ec90'}, 'path_or_name': 'tomekkorbak/nervous_wozniak'}, 'objective': {'name': 'MLE'}, 'tokenizer': {'path_or_name': 'gpt2'}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 128, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'stupefied_brattain', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.0001, 'logging_first_step': True, 'logging_steps': 1, 'num_tokens': 3300000000, 'output_dir': 'training_output2', 'per_device_train_batch_size': 16, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 25177, 'save_strategy': 'steps', 'seed': 42, 'tokens_already_seen': 1649999872, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/tomekkorbak/apo/runs/1p2767nv
sanjin7/distilbert-base-uncased_proba
sanjin7
2022-12-15T15:04:14Z
4
0
transformers
[ "transformers", "pytorch", "distilbert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-12-15T15:01:16Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased_proba results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased_proba This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.25.1 - Pytorch 1.14.0.dev20221202 - Datasets 2.7.1 - Tokenizers 0.13.2
tayfen/rl_course_1
tayfen
2022-12-15T15:00:59Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-15T15:00:08Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 241.25 +/- 20.45 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
tzvc/b04a0039-8a77-4468-98db-73928b38c382
tzvc
2022-12-15T14:25:48Z
0
0
diffusers
[ "diffusers", "tensorboard", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2022-12-15T13:44:05Z
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: a portrait of [V] --- ### training params ```json { "pretrained_model_name_or_path": "runwayml/stable-diffusion-v1-5", "instance_data_dir": "./b04a0039-8a77-4468-98db-73928b38c382/instance_data", "class_data_dir": "./class_data/a-portrait-of-a-person", "output_dir": "./b04a0039-8a77-4468-98db-73928b38c382/", "train_text_encoder": true, "with_prior_preservation": true, "prior_loss_weight": 1.0, "instance_prompt": "a portrait of [V]", "class_prompt": "a portrait of a person", "resolution": 512, "train_batch_size": 1, "gradient_accumulation_steps": 2, "gradient_checkpointing": true, "use_8bit_adam": true, "learning_rate": 2e-06, "lr_scheduler": "constant", "lr_warmup_steps": 0, "num_class_images": 200, "max_train_steps": 1050, "mixed_precision": "fp16" } ```
kejian/curious-rwr
kejian
2022-12-15T14:12:06Z
1
0
transformers
[ "transformers", "pytorch", "gpt2", "generated_from_trainer", "en", "dataset:kejian/codeparrot-train-more-filter-3.3b-cleaned", "license:apache-2.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2022-12-14T01:24:27Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - kejian/codeparrot-train-more-filter-3.3b-cleaned model-index: - name: curious-rwr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # curious-rwr This model was trained from scratch on the kejian/codeparrot-train-more-filter-3.3b-cleaned dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 12588 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.23.0 - Pytorch 1.13.0+cu116 - Datasets 2.0.0 - Tokenizers 0.12.1 # Full config {'dataset': {'datasets': ['kejian/codeparrot-train-more-filter-3.3b-cleaned'], 'is_split_by_sentences': True, 'skip_tokens': 1649999872}, 'generation': {'batch_size': 128, 'every_n_steps': 512, 'force_call_on': [12588], 'metrics_configs': [{}, {'n': 1}, {}], 'scenario_configs': [{'display_as_html': True, 'generate_kwargs': {'do_sample': True, 'eos_token_id': 0, 'max_length': 640, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_hits_threshold': 0, 'num_samples': 2048}, {'display_as_html': True, 'generate_kwargs': {'do_sample': True, 'eos_token_id': 0, 'max_length': 272, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'functions', 'num_hits_threshold': 0, 'num_samples': 2048, 'prompts_path': 'resources/functions_csnet.jsonl', 'use_prompt_for_scoring': True}], 'scorer_config': {}}, 'kl_gpt3_callback': {'every_n_steps': 512, 'force_call_on': [12588], 'gpt3_kwargs': {'model_name': 'code-cushman-001'}, 'max_tokens': 64, 'num_samples': 4096}, 'model': {'from_scratch': False, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'model_kwargs': {'revision': 'c38e2b6acf17781918d39a310ee1adc4674a8225', 'value_head_config': {'is_detached': False}}, 'path_or_name': 'kejian/mighty-rwr'}, 'objective': {'alpha': 1, 'beta': 10, 'name': 'AWR'}, 'tokenizer': {'path_or_name': 'codeparrot/codeparrot-small'}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 128, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'curious-rwr', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.0005, 'logging_first_step': True, 'logging_steps': 1, 'num_tokens': 3300000000.0, 'output_dir': 'training_output', 'per_device_train_batch_size': 16, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 12588, 'save_strategy': 'steps', 'seed': 42, 'tokens_already_seen': 1649999872, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/kejian/uncategorized/runs/39mf4btg
gpfl/lunarlander
gpfl
2022-12-15T14:07:07Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-15T14:06:20Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 270.23 +/- 16.35 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```