modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
sequence
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
CyberHarem/hoto_kokoa_istheorderarabbit
CyberHarem
2023-09-29T19:37:38Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/hoto_kokoa_istheorderarabbit", "license:mit", "region:us" ]
text-to-image
2023-09-28T03:39:29Z
--- license: mit datasets: - CyberHarem/hoto_kokoa_istheorderarabbit pipeline_tag: text-to-image tags: - art --- # Lora of hoto_kokoa_istheorderarabbit This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). The base model used during training is [NAI](https://huggingface.co/deepghs/animefull-latest), and the base model used for generating preview images is [Meina/MeinaMix_V11](https://huggingface.co/Meina/MeinaMix_V11). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 8680, you need to download `8680/hoto_kokoa_istheorderarabbit.pt` as the embedding and `8680/hoto_kokoa_istheorderarabbit.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The best step we recommend is 8680**, with the score of 0.863. The trigger words are: 1. `hoto_kokoa_istheorderarabbit` 2. `orange_hair, blush, hair_ornament, smile, hairclip, purple_eyes, bangs, closed_mouth, indoors, short_hair, brown_hair` For the following groups, it is not recommended to use this model and we express regret: 1. Individuals who cannot tolerate any deviations from the original character design, even in the slightest detail. 2. Individuals who are facing the application scenarios with high demands for accuracy in recreating character outfits. 3. Individuals who cannot accept the potential randomness in AI-generated images based on the Stable Diffusion algorithm. 4. Individuals who are not comfortable with the fully automated process of training character models using LoRA, or those who believe that training character models must be done purely through manual operations to avoid disrespecting the characters. 5. Individuals who finds the generated image content offensive to their values. These are available steps: | Steps | Score | Download | pattern_1 | pattern_2 | pattern_3 | pattern_4 | pattern_5 | pattern_6 | pattern_7 | pattern_8 | pattern_9 | pattern_10 | pattern_11 | pattern_12 | pattern_13 | pattern_14 | bikini | bondage | free | maid | miko | nude | nude2 | suit | yukata | |:---------|:----------|:------------------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-------------------------------------------------|:-------------------------------------------------|:-------------------------------------------------|:-------------------------------------------------|:-------------------------------------------------|:-----------------------------------------|:--------------------------------------------------|:-------------------------------------|:-------------------------------------|:-------------------------------------|:-----------------------------------------------|:------------------------------------------------|:-------------------------------------|:-----------------------------------------| | 9300 | 0.807 | [Download](9300/hoto_kokoa_istheorderarabbit.zip) | ![pattern_1-9300](9300/previews/pattern_1.png) | ![pattern_2-9300](9300/previews/pattern_2.png) | ![pattern_3-9300](9300/previews/pattern_3.png) | ![pattern_4-9300](9300/previews/pattern_4.png) | ![pattern_5-9300](9300/previews/pattern_5.png) | ![pattern_6-9300](9300/previews/pattern_6.png) | ![pattern_7-9300](9300/previews/pattern_7.png) | ![pattern_8-9300](9300/previews/pattern_8.png) | ![pattern_9-9300](9300/previews/pattern_9.png) | ![pattern_10-9300](9300/previews/pattern_10.png) | ![pattern_11-9300](9300/previews/pattern_11.png) | ![pattern_12-9300](9300/previews/pattern_12.png) | ![pattern_13-9300](9300/previews/pattern_13.png) | ![pattern_14-9300](9300/previews/pattern_14.png) | ![bikini-9300](9300/previews/bikini.png) | [<NSFW, click to see>](9300/previews/bondage.png) | ![free-9300](9300/previews/free.png) | ![maid-9300](9300/previews/maid.png) | ![miko-9300](9300/previews/miko.png) | [<NSFW, click to see>](9300/previews/nude.png) | [<NSFW, click to see>](9300/previews/nude2.png) | ![suit-9300](9300/previews/suit.png) | ![yukata-9300](9300/previews/yukata.png) | | **8680** | **0.863** | [**Download**](8680/hoto_kokoa_istheorderarabbit.zip) | ![pattern_1-8680](8680/previews/pattern_1.png) | ![pattern_2-8680](8680/previews/pattern_2.png) | ![pattern_3-8680](8680/previews/pattern_3.png) | ![pattern_4-8680](8680/previews/pattern_4.png) | ![pattern_5-8680](8680/previews/pattern_5.png) | ![pattern_6-8680](8680/previews/pattern_6.png) | ![pattern_7-8680](8680/previews/pattern_7.png) | ![pattern_8-8680](8680/previews/pattern_8.png) | ![pattern_9-8680](8680/previews/pattern_9.png) | ![pattern_10-8680](8680/previews/pattern_10.png) | ![pattern_11-8680](8680/previews/pattern_11.png) | ![pattern_12-8680](8680/previews/pattern_12.png) | ![pattern_13-8680](8680/previews/pattern_13.png) | ![pattern_14-8680](8680/previews/pattern_14.png) | ![bikini-8680](8680/previews/bikini.png) | [<NSFW, click to see>](8680/previews/bondage.png) | ![free-8680](8680/previews/free.png) | ![maid-8680](8680/previews/maid.png) | ![miko-8680](8680/previews/miko.png) | [<NSFW, click to see>](8680/previews/nude.png) | [<NSFW, click to see>](8680/previews/nude2.png) | ![suit-8680](8680/previews/suit.png) | ![yukata-8680](8680/previews/yukata.png) | | 8060 | 0.857 | [Download](8060/hoto_kokoa_istheorderarabbit.zip) | ![pattern_1-8060](8060/previews/pattern_1.png) | ![pattern_2-8060](8060/previews/pattern_2.png) | ![pattern_3-8060](8060/previews/pattern_3.png) | ![pattern_4-8060](8060/previews/pattern_4.png) | ![pattern_5-8060](8060/previews/pattern_5.png) | ![pattern_6-8060](8060/previews/pattern_6.png) | ![pattern_7-8060](8060/previews/pattern_7.png) | ![pattern_8-8060](8060/previews/pattern_8.png) | ![pattern_9-8060](8060/previews/pattern_9.png) | ![pattern_10-8060](8060/previews/pattern_10.png) | ![pattern_11-8060](8060/previews/pattern_11.png) | ![pattern_12-8060](8060/previews/pattern_12.png) | ![pattern_13-8060](8060/previews/pattern_13.png) | ![pattern_14-8060](8060/previews/pattern_14.png) | ![bikini-8060](8060/previews/bikini.png) | [<NSFW, click to see>](8060/previews/bondage.png) | ![free-8060](8060/previews/free.png) | ![maid-8060](8060/previews/maid.png) | ![miko-8060](8060/previews/miko.png) | [<NSFW, click to see>](8060/previews/nude.png) | [<NSFW, click to see>](8060/previews/nude2.png) | ![suit-8060](8060/previews/suit.png) | ![yukata-8060](8060/previews/yukata.png) | | 7440 | 0.855 | [Download](7440/hoto_kokoa_istheorderarabbit.zip) | ![pattern_1-7440](7440/previews/pattern_1.png) | ![pattern_2-7440](7440/previews/pattern_2.png) | ![pattern_3-7440](7440/previews/pattern_3.png) | ![pattern_4-7440](7440/previews/pattern_4.png) | ![pattern_5-7440](7440/previews/pattern_5.png) | ![pattern_6-7440](7440/previews/pattern_6.png) | ![pattern_7-7440](7440/previews/pattern_7.png) | ![pattern_8-7440](7440/previews/pattern_8.png) | ![pattern_9-7440](7440/previews/pattern_9.png) | ![pattern_10-7440](7440/previews/pattern_10.png) | ![pattern_11-7440](7440/previews/pattern_11.png) | ![pattern_12-7440](7440/previews/pattern_12.png) | ![pattern_13-7440](7440/previews/pattern_13.png) | ![pattern_14-7440](7440/previews/pattern_14.png) | ![bikini-7440](7440/previews/bikini.png) | [<NSFW, click to see>](7440/previews/bondage.png) | ![free-7440](7440/previews/free.png) | ![maid-7440](7440/previews/maid.png) | ![miko-7440](7440/previews/miko.png) | [<NSFW, click to see>](7440/previews/nude.png) | [<NSFW, click to see>](7440/previews/nude2.png) | ![suit-7440](7440/previews/suit.png) | ![yukata-7440](7440/previews/yukata.png) | | 6820 | 0.831 | [Download](6820/hoto_kokoa_istheorderarabbit.zip) | ![pattern_1-6820](6820/previews/pattern_1.png) | ![pattern_2-6820](6820/previews/pattern_2.png) | ![pattern_3-6820](6820/previews/pattern_3.png) | ![pattern_4-6820](6820/previews/pattern_4.png) | ![pattern_5-6820](6820/previews/pattern_5.png) | ![pattern_6-6820](6820/previews/pattern_6.png) | ![pattern_7-6820](6820/previews/pattern_7.png) | ![pattern_8-6820](6820/previews/pattern_8.png) | ![pattern_9-6820](6820/previews/pattern_9.png) | ![pattern_10-6820](6820/previews/pattern_10.png) | ![pattern_11-6820](6820/previews/pattern_11.png) | ![pattern_12-6820](6820/previews/pattern_12.png) | ![pattern_13-6820](6820/previews/pattern_13.png) | ![pattern_14-6820](6820/previews/pattern_14.png) | ![bikini-6820](6820/previews/bikini.png) | [<NSFW, click to see>](6820/previews/bondage.png) | ![free-6820](6820/previews/free.png) | ![maid-6820](6820/previews/maid.png) | ![miko-6820](6820/previews/miko.png) | [<NSFW, click to see>](6820/previews/nude.png) | [<NSFW, click to see>](6820/previews/nude2.png) | ![suit-6820](6820/previews/suit.png) | ![yukata-6820](6820/previews/yukata.png) | | 6200 | 0.847 | [Download](6200/hoto_kokoa_istheorderarabbit.zip) | ![pattern_1-6200](6200/previews/pattern_1.png) | ![pattern_2-6200](6200/previews/pattern_2.png) | ![pattern_3-6200](6200/previews/pattern_3.png) | ![pattern_4-6200](6200/previews/pattern_4.png) | ![pattern_5-6200](6200/previews/pattern_5.png) | ![pattern_6-6200](6200/previews/pattern_6.png) | ![pattern_7-6200](6200/previews/pattern_7.png) | ![pattern_8-6200](6200/previews/pattern_8.png) | ![pattern_9-6200](6200/previews/pattern_9.png) | ![pattern_10-6200](6200/previews/pattern_10.png) | ![pattern_11-6200](6200/previews/pattern_11.png) | ![pattern_12-6200](6200/previews/pattern_12.png) | ![pattern_13-6200](6200/previews/pattern_13.png) | ![pattern_14-6200](6200/previews/pattern_14.png) | ![bikini-6200](6200/previews/bikini.png) | [<NSFW, click to see>](6200/previews/bondage.png) | ![free-6200](6200/previews/free.png) | ![maid-6200](6200/previews/maid.png) | ![miko-6200](6200/previews/miko.png) | [<NSFW, click to see>](6200/previews/nude.png) | [<NSFW, click to see>](6200/previews/nude2.png) | ![suit-6200](6200/previews/suit.png) | ![yukata-6200](6200/previews/yukata.png) | | 5580 | 0.821 | [Download](5580/hoto_kokoa_istheorderarabbit.zip) | ![pattern_1-5580](5580/previews/pattern_1.png) | ![pattern_2-5580](5580/previews/pattern_2.png) | ![pattern_3-5580](5580/previews/pattern_3.png) | ![pattern_4-5580](5580/previews/pattern_4.png) | ![pattern_5-5580](5580/previews/pattern_5.png) | ![pattern_6-5580](5580/previews/pattern_6.png) | ![pattern_7-5580](5580/previews/pattern_7.png) | ![pattern_8-5580](5580/previews/pattern_8.png) | ![pattern_9-5580](5580/previews/pattern_9.png) | ![pattern_10-5580](5580/previews/pattern_10.png) | ![pattern_11-5580](5580/previews/pattern_11.png) | ![pattern_12-5580](5580/previews/pattern_12.png) | ![pattern_13-5580](5580/previews/pattern_13.png) | ![pattern_14-5580](5580/previews/pattern_14.png) | ![bikini-5580](5580/previews/bikini.png) | [<NSFW, click to see>](5580/previews/bondage.png) | ![free-5580](5580/previews/free.png) | ![maid-5580](5580/previews/maid.png) | ![miko-5580](5580/previews/miko.png) | [<NSFW, click to see>](5580/previews/nude.png) | [<NSFW, click to see>](5580/previews/nude2.png) | ![suit-5580](5580/previews/suit.png) | ![yukata-5580](5580/previews/yukata.png) | | 4960 | 0.837 | [Download](4960/hoto_kokoa_istheorderarabbit.zip) | ![pattern_1-4960](4960/previews/pattern_1.png) | ![pattern_2-4960](4960/previews/pattern_2.png) | ![pattern_3-4960](4960/previews/pattern_3.png) | ![pattern_4-4960](4960/previews/pattern_4.png) | ![pattern_5-4960](4960/previews/pattern_5.png) | ![pattern_6-4960](4960/previews/pattern_6.png) | ![pattern_7-4960](4960/previews/pattern_7.png) | ![pattern_8-4960](4960/previews/pattern_8.png) | ![pattern_9-4960](4960/previews/pattern_9.png) | ![pattern_10-4960](4960/previews/pattern_10.png) | ![pattern_11-4960](4960/previews/pattern_11.png) | ![pattern_12-4960](4960/previews/pattern_12.png) | ![pattern_13-4960](4960/previews/pattern_13.png) | ![pattern_14-4960](4960/previews/pattern_14.png) | ![bikini-4960](4960/previews/bikini.png) | [<NSFW, click to see>](4960/previews/bondage.png) | ![free-4960](4960/previews/free.png) | ![maid-4960](4960/previews/maid.png) | ![miko-4960](4960/previews/miko.png) | [<NSFW, click to see>](4960/previews/nude.png) | [<NSFW, click to see>](4960/previews/nude2.png) | ![suit-4960](4960/previews/suit.png) | ![yukata-4960](4960/previews/yukata.png) | | 4340 | 0.816 | [Download](4340/hoto_kokoa_istheorderarabbit.zip) | ![pattern_1-4340](4340/previews/pattern_1.png) | ![pattern_2-4340](4340/previews/pattern_2.png) | ![pattern_3-4340](4340/previews/pattern_3.png) | ![pattern_4-4340](4340/previews/pattern_4.png) | ![pattern_5-4340](4340/previews/pattern_5.png) | ![pattern_6-4340](4340/previews/pattern_6.png) | ![pattern_7-4340](4340/previews/pattern_7.png) | ![pattern_8-4340](4340/previews/pattern_8.png) | ![pattern_9-4340](4340/previews/pattern_9.png) | ![pattern_10-4340](4340/previews/pattern_10.png) | ![pattern_11-4340](4340/previews/pattern_11.png) | ![pattern_12-4340](4340/previews/pattern_12.png) | ![pattern_13-4340](4340/previews/pattern_13.png) | ![pattern_14-4340](4340/previews/pattern_14.png) | ![bikini-4340](4340/previews/bikini.png) | [<NSFW, click to see>](4340/previews/bondage.png) | ![free-4340](4340/previews/free.png) | ![maid-4340](4340/previews/maid.png) | ![miko-4340](4340/previews/miko.png) | [<NSFW, click to see>](4340/previews/nude.png) | [<NSFW, click to see>](4340/previews/nude2.png) | ![suit-4340](4340/previews/suit.png) | ![yukata-4340](4340/previews/yukata.png) | | 3720 | 0.810 | [Download](3720/hoto_kokoa_istheorderarabbit.zip) | ![pattern_1-3720](3720/previews/pattern_1.png) | ![pattern_2-3720](3720/previews/pattern_2.png) | ![pattern_3-3720](3720/previews/pattern_3.png) | ![pattern_4-3720](3720/previews/pattern_4.png) | ![pattern_5-3720](3720/previews/pattern_5.png) | ![pattern_6-3720](3720/previews/pattern_6.png) | ![pattern_7-3720](3720/previews/pattern_7.png) | ![pattern_8-3720](3720/previews/pattern_8.png) | ![pattern_9-3720](3720/previews/pattern_9.png) | ![pattern_10-3720](3720/previews/pattern_10.png) | ![pattern_11-3720](3720/previews/pattern_11.png) | ![pattern_12-3720](3720/previews/pattern_12.png) | ![pattern_13-3720](3720/previews/pattern_13.png) | ![pattern_14-3720](3720/previews/pattern_14.png) | ![bikini-3720](3720/previews/bikini.png) | [<NSFW, click to see>](3720/previews/bondage.png) | ![free-3720](3720/previews/free.png) | ![maid-3720](3720/previews/maid.png) | ![miko-3720](3720/previews/miko.png) | [<NSFW, click to see>](3720/previews/nude.png) | [<NSFW, click to see>](3720/previews/nude2.png) | ![suit-3720](3720/previews/suit.png) | ![yukata-3720](3720/previews/yukata.png) | | 3100 | 0.815 | [Download](3100/hoto_kokoa_istheorderarabbit.zip) | ![pattern_1-3100](3100/previews/pattern_1.png) | ![pattern_2-3100](3100/previews/pattern_2.png) | ![pattern_3-3100](3100/previews/pattern_3.png) | ![pattern_4-3100](3100/previews/pattern_4.png) | ![pattern_5-3100](3100/previews/pattern_5.png) | ![pattern_6-3100](3100/previews/pattern_6.png) | ![pattern_7-3100](3100/previews/pattern_7.png) | ![pattern_8-3100](3100/previews/pattern_8.png) | ![pattern_9-3100](3100/previews/pattern_9.png) | ![pattern_10-3100](3100/previews/pattern_10.png) | ![pattern_11-3100](3100/previews/pattern_11.png) | ![pattern_12-3100](3100/previews/pattern_12.png) | ![pattern_13-3100](3100/previews/pattern_13.png) | ![pattern_14-3100](3100/previews/pattern_14.png) | ![bikini-3100](3100/previews/bikini.png) | [<NSFW, click to see>](3100/previews/bondage.png) | ![free-3100](3100/previews/free.png) | ![maid-3100](3100/previews/maid.png) | ![miko-3100](3100/previews/miko.png) | [<NSFW, click to see>](3100/previews/nude.png) | [<NSFW, click to see>](3100/previews/nude2.png) | ![suit-3100](3100/previews/suit.png) | ![yukata-3100](3100/previews/yukata.png) | | 2480 | 0.774 | [Download](2480/hoto_kokoa_istheorderarabbit.zip) | ![pattern_1-2480](2480/previews/pattern_1.png) | ![pattern_2-2480](2480/previews/pattern_2.png) | ![pattern_3-2480](2480/previews/pattern_3.png) | ![pattern_4-2480](2480/previews/pattern_4.png) | ![pattern_5-2480](2480/previews/pattern_5.png) | ![pattern_6-2480](2480/previews/pattern_6.png) | ![pattern_7-2480](2480/previews/pattern_7.png) | ![pattern_8-2480](2480/previews/pattern_8.png) | ![pattern_9-2480](2480/previews/pattern_9.png) | ![pattern_10-2480](2480/previews/pattern_10.png) | ![pattern_11-2480](2480/previews/pattern_11.png) | ![pattern_12-2480](2480/previews/pattern_12.png) | ![pattern_13-2480](2480/previews/pattern_13.png) | ![pattern_14-2480](2480/previews/pattern_14.png) | ![bikini-2480](2480/previews/bikini.png) | [<NSFW, click to see>](2480/previews/bondage.png) | ![free-2480](2480/previews/free.png) | ![maid-2480](2480/previews/maid.png) | ![miko-2480](2480/previews/miko.png) | [<NSFW, click to see>](2480/previews/nude.png) | [<NSFW, click to see>](2480/previews/nude2.png) | ![suit-2480](2480/previews/suit.png) | ![yukata-2480](2480/previews/yukata.png) | | 1860 | 0.798 | [Download](1860/hoto_kokoa_istheorderarabbit.zip) | ![pattern_1-1860](1860/previews/pattern_1.png) | ![pattern_2-1860](1860/previews/pattern_2.png) | ![pattern_3-1860](1860/previews/pattern_3.png) | ![pattern_4-1860](1860/previews/pattern_4.png) | ![pattern_5-1860](1860/previews/pattern_5.png) | ![pattern_6-1860](1860/previews/pattern_6.png) | ![pattern_7-1860](1860/previews/pattern_7.png) | ![pattern_8-1860](1860/previews/pattern_8.png) | ![pattern_9-1860](1860/previews/pattern_9.png) | ![pattern_10-1860](1860/previews/pattern_10.png) | ![pattern_11-1860](1860/previews/pattern_11.png) | ![pattern_12-1860](1860/previews/pattern_12.png) | ![pattern_13-1860](1860/previews/pattern_13.png) | ![pattern_14-1860](1860/previews/pattern_14.png) | ![bikini-1860](1860/previews/bikini.png) | [<NSFW, click to see>](1860/previews/bondage.png) | ![free-1860](1860/previews/free.png) | ![maid-1860](1860/previews/maid.png) | ![miko-1860](1860/previews/miko.png) | [<NSFW, click to see>](1860/previews/nude.png) | [<NSFW, click to see>](1860/previews/nude2.png) | ![suit-1860](1860/previews/suit.png) | ![yukata-1860](1860/previews/yukata.png) | | 1240 | 0.814 | [Download](1240/hoto_kokoa_istheorderarabbit.zip) | ![pattern_1-1240](1240/previews/pattern_1.png) | ![pattern_2-1240](1240/previews/pattern_2.png) | ![pattern_3-1240](1240/previews/pattern_3.png) | ![pattern_4-1240](1240/previews/pattern_4.png) | ![pattern_5-1240](1240/previews/pattern_5.png) | ![pattern_6-1240](1240/previews/pattern_6.png) | ![pattern_7-1240](1240/previews/pattern_7.png) | ![pattern_8-1240](1240/previews/pattern_8.png) | ![pattern_9-1240](1240/previews/pattern_9.png) | ![pattern_10-1240](1240/previews/pattern_10.png) | ![pattern_11-1240](1240/previews/pattern_11.png) | ![pattern_12-1240](1240/previews/pattern_12.png) | ![pattern_13-1240](1240/previews/pattern_13.png) | ![pattern_14-1240](1240/previews/pattern_14.png) | ![bikini-1240](1240/previews/bikini.png) | [<NSFW, click to see>](1240/previews/bondage.png) | ![free-1240](1240/previews/free.png) | ![maid-1240](1240/previews/maid.png) | ![miko-1240](1240/previews/miko.png) | [<NSFW, click to see>](1240/previews/nude.png) | [<NSFW, click to see>](1240/previews/nude2.png) | ![suit-1240](1240/previews/suit.png) | ![yukata-1240](1240/previews/yukata.png) | | 620 | 0.722 | [Download](620/hoto_kokoa_istheorderarabbit.zip) | ![pattern_1-620](620/previews/pattern_1.png) | ![pattern_2-620](620/previews/pattern_2.png) | ![pattern_3-620](620/previews/pattern_3.png) | ![pattern_4-620](620/previews/pattern_4.png) | ![pattern_5-620](620/previews/pattern_5.png) | ![pattern_6-620](620/previews/pattern_6.png) | ![pattern_7-620](620/previews/pattern_7.png) | ![pattern_8-620](620/previews/pattern_8.png) | ![pattern_9-620](620/previews/pattern_9.png) | ![pattern_10-620](620/previews/pattern_10.png) | ![pattern_11-620](620/previews/pattern_11.png) | ![pattern_12-620](620/previews/pattern_12.png) | ![pattern_13-620](620/previews/pattern_13.png) | ![pattern_14-620](620/previews/pattern_14.png) | ![bikini-620](620/previews/bikini.png) | [<NSFW, click to see>](620/previews/bondage.png) | ![free-620](620/previews/free.png) | ![maid-620](620/previews/maid.png) | ![miko-620](620/previews/miko.png) | [<NSFW, click to see>](620/previews/nude.png) | [<NSFW, click to see>](620/previews/nude2.png) | ![suit-620](620/previews/suit.png) | ![yukata-620](620/previews/yukata.png) |
PHL99/Reinforce-Pixelcopter-PLE-v0
PHL99
2023-09-29T19:19:25Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-09-08T22:31:30Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 24.60 +/- 13.43 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
abdelrahmanelo/Honadf
abdelrahmanelo
2023-09-29T19:19:15Z
0
0
allennlp
[ "allennlp", "art", "text-classification", "ar", "dataset:fka/awesome-chatgpt-prompts", "license:apache-2.0", "region:us" ]
text-classification
2023-09-29T19:16:01Z
--- license: apache-2.0 datasets: - fka/awesome-chatgpt-prompts language: - ar metrics: - accuracy library_name: allennlp pipeline_tag: text-classification tags: - art ---
anzorq/m2m100_418M_ft_ru-kbd_63K
anzorq
2023-09-29T19:18:24Z
105
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "generated_from_trainer", "ru", "zu", "dataset:anzorq/ru-kbd", "base_model:facebook/m2m100_418M", "base_model:finetune:facebook/m2m100_418M", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-09-29T19:14:12Z
--- language: - ru - zu license: mit base_model: facebook/m2m100_418M tags: - generated_from_trainer datasets: - anzorq/ru-kbd model-index: - name: m2m100_418M_ft_ru-kbd_63K results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # m2m100_418M_ft_ru-kbd_63K This model is a fine-tuned version of [facebook/m2m100_418M](https://huggingface.co/facebook/m2m100_418M) on the anzorq/ru-kbd dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 56 - eval_batch_size: 56 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.34.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.0
akashicmarga/Mistral-7B-Instruct-v0.1-q4f16_1-metal
akashicmarga
2023-09-29T19:17:13Z
0
1
null
[ "license:apache-2.0", "region:us" ]
null
2023-09-29T18:37:49Z
--- license: apache-2.0 --- The model in this repository utilizes Mistral-7B-Instruct-v0.1 (https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1), the mlc-llm (https://llm.mlc.ai/docs/) Metal version with 4-bit quantization and an embedding layer for MLC embedding. You have the option to use the FastAPI server instead of OpenAI to run the model locally. For using in langchain, please refer to the sample_langchain.py file in the following GitHub link: https://github.com/mlc-ai/mlc-llm/blob/main/examples/rest/python/sample_langchain.py. Environment setup conda create -n mlc-chat-venv -c mlc-ai -c conda-forge mlc-chat-cli-nightly conda activate mlc-chat-venv Fast API Server python -m mlc_chat.rest --model Mistral-7B-Instruct-v0.1-q4f16_1/ --lib-path Mistral-7B-Instruct-v0.1-q4f16_1/Mistral-7B-Instruct-v0.1-q4f16_1-metal.so
dyaminda/pneumonia-classification-02
dyaminda
2023-09-29T19:11:48Z
110
0
transformers
[ "transformers", "pytorch", "alexnet", "image-classification", "generated_from_trainer", "custom_code", "autotrain_compatible", "region:us" ]
image-classification
2023-09-28T19:56:20Z
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: pneumonia-classification-02 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pneumonia-classification-02 This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1321 - Accuracy: 0.9474 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 50 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4043 | 0.99 | 52 | 0.3141 | 0.8747 | | 0.2279 | 2.0 | 105 | 0.1656 | 0.9439 | | 0.1707 | 2.99 | 157 | 0.1481 | 0.9332 | | 0.1691 | 4.0 | 210 | 0.1305 | 0.9570 | | 0.1337 | 4.95 | 260 | 0.1244 | 0.9475 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3
pamelapaolacb/pruebaModeloTFM_DistilBert_in
pamelapaolacb
2023-09-29T18:54:58Z
103
0
transformers
[ "transformers", "pytorch", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "base_model:distilbert/distilbert-base-cased-distilled-squad", "base_model:finetune:distilbert/distilbert-base-cased-distilled-squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-09-29T14:55:16Z
--- license: apache-2.0 base_model: distilbert-base-cased-distilled-squad tags: - generated_from_trainer datasets: - squad model-index: - name: pruebaModeloTFM_DistilBert_in results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pruebaModeloTFM_DistilBert_in This model is a fine-tuned version of [distilbert-base-cased-distilled-squad](https://huggingface.co/distilbert-base-cased-distilled-squad) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 0 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
roa7n/gpt2-human_nontata_promoters-randomized_10_layers_0.003_lr_2_e
roa7n
2023-09-29T18:48:57Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-29T18:48:54Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
shahidul034/Medical_Llama_2
shahidul034
2023-09-29T18:14:05Z
4
0
peft
[ "peft", "region:us" ]
null
2023-09-29T17:57:00Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0 ``` import torch from peft import PeftModel import transformers import textwrap from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig from transformers.generation.utils import GreedySearchDecoderOnlyOutput DEVICE = "cuda" if torch.cuda.is_available() else "cpu" DEVICE tokenizer = LlamaTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf") model = LlamaForCausalLM.from_pretrained( "meta-llama/Llama-2-7b-hf", load_in_8bit=True, device_map="auto", ) model = PeftModel.from_pretrained(model, "my-llm", torch_dtype=torch.float16) model.config.pad_token_id = tokenizer.pad_token_id = 0 # unk model.config.bos_token_id = 1 model.config.eos_token_id = 2 model = model.eval() model = torch.compile(model) PROMPT_TEMPLATE = f""" Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: [INSTRUCTION] ### Response: """ def create_prompt(instruction: str) -> str: return PROMPT_TEMPLATE.replace("[INSTRUCTION]", instruction) print(create_prompt("What is (are) Glaucoma ?")) def generate_response(prompt: str, model: PeftModel) -> GreedySearchDecoderOnlyOutput: encoding = tokenizer(prompt, return_tensors="pt") input_ids = encoding["input_ids"].to(DEVICE) generation_config = GenerationConfig( temperature=0.1, top_p=0.75, repetition_penalty=1.1, ) with torch.inference_mode(): return model.generate( input_ids=input_ids, generation_config=generation_config, return_dict_in_generate=True, output_scores=True, max_new_tokens=256, ) def format_response(response: GreedySearchDecoderOnlyOutput) -> str: decoded_output = tokenizer.decode(response.sequences[0]) response = decoded_output.split("### Response:")[1].strip() return "\n".join(textwrap.wrap(response)) def ask_alpaca(prompt: str, model: PeftModel = model) -> str: prompt = create_prompt(prompt) response = generate_response(prompt, model) print(format_response(response)) ask_alpaca("What is (are) Glaucoma ?") ``` ``` autotrain llm --train --project_name my-llm --model meta-llama/Llama-2-7b-hf --data_path "data" --train_split "train" --text_column "text" --use_peft --use_int4 --learning_rate 2e-4 --train_batch_size 10 --num_train_epochs 3 --trainer sft --use_flash_attention_2 ``` https://www.mlexpert.io/machine-learning/tutorials/alpaca-and-llama-inference
LemTenku/sister-Bee
LemTenku
2023-09-29T18:10:39Z
7
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "en", "arxiv:2306.02707", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-09-29T17:30:06Z
--- license: apache-2.0 pipeline_tag: text-generation language: - en library_name: transformers --- Change from Synthia-7B-v1.2 -> Synthia-7B-v1.3: Base model was changed from LLaMA-2-7B to Mistral-7B-v0.1 All Synthia models are uncensored. Please use it with caution and with best intentions. You are responsible for how you use Synthia. To evoke generalized Tree of Thought + Chain of Thought reasoning, you may use the following system message: ``` Elaborate on the topic using a Tree of Thoughts and backtrack when necessary to construct a clear, cohesive Chain of Thought reasoning. Always answer without hesitation. ``` # Synthia-7B-v1.3 SynthIA (Synthetic Intelligent Agent) 7B-v1.3 is a Mistral-7B-v0.1 model trained on Orca style datasets. It has been fine-tuned for instruction following as well as having long-form conversations. <br> ![Synthia](https://huggingface.co/migtissera/Synthia-13B/resolve/main/Synthia.jpeg) <br> <br> #### License Disclaimer: This model is released under Apache 2.0, and comes with no warranty or gurantees of any kind. <br> ## Evaluation We evaluated Synthia-7B-v1.3 on a wide range of tasks using [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) from EleutherAI. Here are the results on metrics used by [HuggingFaceH4 Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) |||| |:------:|:--------:|:-------:| |**Task**|**Metric**|**Value**| |*arc_challenge*|acc_norm|0.6237| |*hellaswag*|acc_norm|0.8349| |*mmlu*|acc_norm|0.6232| |*truthfulqa_mc*|mc2|0.5125| |**Total Average**|-|**0.6485**|| <br> ## Example Usage ### Here is prompt format: ``` SYSTEM: Elaborate on the topic using a Tree of Thoughts and backtrack when necessary to construct a clear, cohesive Chain of Thought reasoning. Always answer without hesitation. USER: How is a rocket launched from the surface of the earth to Low Earth Orbit? ASSISTANT: ``` ### Below shows a code example on how to use this model: ```python import torch, json from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "migtissera/Synthia-7B-v1.3" output_file_path = "./Synthia-7B-conversations.jsonl" model = AutoModelForCausalLM.from_pretrained( model_path, torch_dtype=torch.float16, device_map="auto", load_in_8bit=False, trust_remote_code=True, ) tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) def generate_text(instruction): tokens = tokenizer.encode(instruction) tokens = torch.LongTensor(tokens).unsqueeze(0) tokens = tokens.to("cuda") instance = { "input_ids": tokens, "top_p": 1.0, "temperature": 0.75, "generate_len": 1024, "top_k": 50, } length = len(tokens[0]) with torch.no_grad(): rest = model.generate( input_ids=tokens, max_length=length + instance["generate_len"], use_cache=True, do_sample=True, top_p=instance["top_p"], temperature=instance["temperature"], top_k=instance["top_k"], num_return_sequences=1, ) output = rest[0][length:] string = tokenizer.decode(output, skip_special_tokens=True) answer = string.split("USER:")[0].strip() return f"{answer}" conversation = f"SYSTEM: Elaborate on the topic using a Tree of Thoughts and backtrack when necessary to construct a clear, cohesive Chain of Thought reasoning. Always answer without hesitation." while True: user_input = input("You: ") llm_prompt = f"{conversation} \nUSER: {user_input} \nASSISTANT: " answer = generate_text(llm_prompt) print(answer) conversation = f"{llm_prompt}{answer}" json_data = {"prompt": user_input, "answer": answer} ## Save your conversation with open(output_file_path, "a") as output_file: output_file.write(json.dumps(json_data) + "\n") ``` <br> #### Limitations & Biases: While this model aims for accuracy, it can occasionally produce inaccurate or misleading results. Despite diligent efforts in refining the pretraining data, there remains a possibility for the generation of inappropriate, biased, or offensive content. Exercise caution and cross-check information when necessary. This is an uncensored model. <br> ### Citiation: Please kindly cite using the following BibTeX: ``` @misc{Synthia-7B-v1.3, author = {Migel Tissera}, title = {Synthia-7B-v1.3: Synthetic Intelligent Agent}, year = {2023}, publisher = {GitHub, HuggingFace}, journal = {GitHub repository, HuggingFace repository}, howpublished = {\url{https://huggingface.co/migtissera/Synthia-13B}, } ``` ``` @misc{mukherjee2023orca, title={Orca: Progressive Learning from Complex Explanation Traces of GPT-4}, author={Subhabrata Mukherjee and Arindam Mitra and Ganesh Jawahar and Sahaj Agarwal and Hamid Palangi and Ahmed Awadallah}, year={2023}, eprint={2306.02707}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
osiria/distiluse-base-italian
osiria
2023-09-29T18:07:35Z
127
0
transformers
[ "transformers", "pytorch", "safetensors", "distilbert", "feature-extraction", "it", "arxiv:1907.04307", "arxiv:2010.05609", "license:apache-2.0", "endpoints_compatible", "region:us" ]
feature-extraction
2023-06-11T21:23:41Z
--- license: apache-2.0 language: - it --- -------------------------------------------------------------------------------------------------- <body> <span class="vertical-text" style="background-color:lightgreen;border-radius: 3px;padding: 3px;"> </span> <br> <span class="vertical-text" style="background-color:orange;border-radius: 3px;padding: 3px;">  </span> <br> <span class="vertical-text" style="background-color:lightblue;border-radius: 3px;padding: 3px;">    Model: DistilUSE</span> <br> <span class="vertical-text" style="background-color:tomato;border-radius: 3px;padding: 3px;">    Lang: IT</span> <br> <span class="vertical-text" style="background-color:lightgrey;border-radius: 3px;padding: 3px;">  </span> <br> <span class="vertical-text" style="background-color:#CF9FFF;border-radius: 3px;padding: 3px;"> </span> </body> -------------------------------------------------------------------------------------------------- <h3>Model description</h3> This is a <b>Universal Sentence Encoder</b> <b>[1]</b> model for the <b>Italian</b> language, obtained using <b>mDistilUSE</b> ([distiluse-base-multilingual-cased-v1](https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v1)) as a starting point and focusing it on the Italian language by modifying the embedding layer (as in <b>[2]</b>, computing document-level frequencies over the <b>Wikipedia</b> dataset) The resulting model has 67M parameters, a vocabulary of 30.785 tokens, and a size of ~270 MB. It can be used to encode Italian texts and compute similarities between them. <h3>Quick usage</h3> ```python from transformers import AutoTokenizer, AutoModel import numpy as np tokenizer = AutoTokenizer.from_pretrained("osiria/distiluse-base-italian") model = AutoModel.from_pretrained("osiria/distiluse-base-italian") text1 = "Alessandro Manzoni è stato uno scrittore italiano" text2 = "Giacomo Leopardi è stato un poeta italiano" vec1 = model(tokenizer.encode(text1, return_tensors = "pt")).last_hidden_state[0,0,:].cpu().detach().numpy() vec2 = model(tokenizer.encode(text2, return_tensors = "pt")).last_hidden_state[0,0,:].cpu().detach().numpy() cosine_similarity = np.dot(vec1, vec2)/(np.linalg.norm(vec1)*np.linalg.norm(vec2)) print("COSINE SIMILARITY:", cosine_similarity) # COSINE SIMILARITY: 0.734292 ``` <h3>References</h3> [1] https://arxiv.org/abs/1907.04307 [2] https://arxiv.org/abs/2010.05609 <h3>License</h3> The model is released under <b>Apache-2.0</b> license
osiria/diablo-italian-base-1.3b
osiria
2023-09-29T18:07:22Z
115
0
transformers
[ "transformers", "pytorch", "safetensors", "xglm", "text-generation", "it", "arxiv:2005.14165", "arxiv:2112.10668", "license:mit", "endpoints_compatible", "region:us" ]
text-generation
2023-06-29T20:32:54Z
--- license: mit language: - it pipeline_tag: text-generation --- -------------------------------------------------------------------------------------------------- <body> <span class="vertical-text" style="background-color:lightgreen;border-radius: 3px;padding: 3px;"> </span> <br> <span class="vertical-text" style="background-color:orange;border-radius: 3px;padding: 3px;">  </span> <br> <span class="vertical-text" style="background-color:lightblue;border-radius: 3px;padding: 3px;">    Model: DIABLO 1.3B 🔥</span> <br> <span class="vertical-text" style="background-color:tomato;border-radius: 3px;padding: 3px;">    Lang: IT</span> <br> <span class="vertical-text" style="background-color:lightgrey;border-radius: 3px;padding: 3px;">  </span> <br> <span class="vertical-text" style="background-color:#CF9FFF;border-radius: 3px;padding: 3px;"> </span> </body> -------------------------------------------------------------------------------------------------- <h3>Model description</h3> This model is a <b>causal</b> language model for the <b>Italian</b> language, based on a GPT-like <b>[1]</b> architecture (more specifically, the model has been obtained by modifying Meta's XGLM architecture <b>[2]</b> and exploiting its 1.7B checkpoint). The model has ~1.3B parameters and a vocabulary of 50.335 tokens. It is a foundation model, pre-trained for causal language modeling, so it is mainly suitable for basic natural language generation, and you will have to fine-tune it in order to use it on more specific downstream tasks. <h3>Quick usage</h3> In order to use the model for inference on GPU, the following pipeline is needed: ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("osiria/diablo-italian-base-1.3b") model = AutoModelForCausalLM.from_pretrained("osiria/diablo-italian-base-1.3b", torch_dtype=torch.float16) device = torch.device("cuda") model = model.to(device) pipeline_nlg = pipeline("text-generation", model = model, tokenizer = tokenizer, device = 0) pipeline_nlg("Ciao, mi chiamo Marco Rossi e") # [{'generated_text': 'Ciao, mi chiamo Marco Rossi e sono un blogger italiano.'}] ``` <h3>Limitations</h3> The model might behave erratically when presented with prompts which are too far away from its pre-training and, because of the probabilistic nature of its generation, it might occasionally produce biased or offensive content with respect to gender, race, ideologies, and political or religious beliefs. These limitations imply that the model and its outputs should be used with caution, and should not be involved in situations that require the generated text to be fair or true. <h3>References</h3> [1] https://arxiv.org/abs/2005.14165 [2] https://arxiv.org/abs/2112.10668 <h3>License</h3> The model is released under <b>MIT</b> license
hemanth11/q-FrozenLake-v1-4x4-noSlippery
hemanth11
2023-09-29T17:59:36Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-09-29T17:52:41Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="hemanth11/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
actionpace/13B-Thorns-l2
actionpace
2023-09-29T17:49:47Z
1
0
null
[ "gguf", "en", "license:other", "endpoints_compatible", "region:us" ]
null
2023-09-07T18:38:21Z
--- license: other language: - en --- **Some of my own quants:** * 13B-Thorns-l2_Q4_K_M.gguf * 13B-Thorns-l2_Q5_K_M.gguf **Source:** [CalderaAI](https://huggingface.co/CalderaAI) **Source Model:** [13B-Thorns-l2](https://huggingface.co/CalderaAI/13B-Thorns-l2) **Source models for CalderaAI/13B-Thorns-l2 (Merge)** - [NousResearch/Nous-Hermes-Llama2-13b](https://huggingface.co/NousResearch/Nous-Hermes-Llama2-13b) ([Ref](https://huggingface.co/actionpace/Nous-Hermes-Llama2-13b)) - [elinas/chronos-13b-v2](https://huggingface.co/elinas/chronos-13b-v2) ([Ref](https://huggingface.co/actionpace/chronos-13b-v2)) - [garage-bAInd/Platypus2-13B](https://huggingface.co/garage-bAInd/Platypus2-13B) ([Ref](https://huggingface.co/actionpace/Platypus2-13B)) - [jondurbin/airoboros-l2-13b-gpt4-1.4.1](https://huggingface.co/jondurbin/airoboros-l2-13b-gpt4-1.4.1) - [KoboldAI/LLAMA2-13B-Holodeck-1](https://huggingface.co/KoboldAI/LLAMA2-13B-Holodeck-1) ([Ref](https://huggingface.co/actionpace/LLAMA2-13B-Holodeck-1)) - [nRuaif/Kimiko-v2-13B](https://huggingface.co/nRuaif/Kimiko-v2-13B) (Lora) - [lemonilia/limarp-llama2](https://huggingface.co/lemonilia/limarp-llama2) (Lora)
asmaa1/videomae-base-groub17-18-finetuned-SLT-subset
asmaa1
2023-09-29T17:49:20Z
64
0
transformers
[ "transformers", "pytorch", "videomae", "video-classification", "generated_from_trainer", "base_model:MCG-NJU/videomae-base", "base_model:finetune:MCG-NJU/videomae-base", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
video-classification
2023-09-29T06:03:36Z
--- license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: videomae-base-groub17-18-finetuned-SLT-subset results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # videomae-base-groub17-18-finetuned-SLT-subset This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.1433 - Accuracy: 0.175 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 80 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.8905 | 0.12 | 10 | 3.6811 | 0.05 | | 3.7833 | 1.12 | 20 | 3.6286 | 0.125 | | 3.6803 | 2.12 | 30 | 3.5702 | 0.175 | | 3.5952 | 3.12 | 40 | 3.4705 | 0.15 | | 3.4882 | 4.12 | 50 | 3.3508 | 0.2 | | 3.3776 | 5.12 | 60 | 3.2593 | 0.175 | | 3.2462 | 6.12 | 70 | 3.1780 | 0.2 | | 3.1493 | 7.12 | 80 | 3.1433 | 0.175 | ### Framework versions - Transformers 4.33.0 - Pytorch 2.0.0+cpu - Datasets 2.1.0 - Tokenizers 0.13.3
AparnaMahajan/Llama2_custom
AparnaMahajan
2023-09-29T17:49:08Z
1
0
peft
[ "peft", "region:us" ]
null
2023-09-29T17:49:07Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
asmaa1/videomae-base-groub19-20-finetuned-SLT-subset
asmaa1
2023-09-29T17:44:00Z
61
0
transformers
[ "transformers", "pytorch", "videomae", "video-classification", "generated_from_trainer", "base_model:MCG-NJU/videomae-base", "base_model:finetune:MCG-NJU/videomae-base", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
video-classification
2023-09-29T06:19:30Z
--- license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: videomae-base-groub19-20-finetuned-SLT-subset results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # videomae-base-groub19-20-finetuned-SLT-subset This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.1970 - Accuracy: 0.1220 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 80 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.853 | 0.14 | 11 | 3.6435 | 0.0732 | | 3.7412 | 1.14 | 22 | 3.5800 | 0.0732 | | 3.7045 | 2.14 | 33 | 3.4833 | 0.1220 | | 3.487 | 3.14 | 44 | 3.3655 | 0.1220 | | 3.4174 | 4.14 | 55 | 3.2769 | 0.1220 | | 3.3735 | 5.14 | 66 | 3.2278 | 0.1220 | | 3.3319 | 6.14 | 77 | 3.1988 | 0.1220 | | 3.1906 | 7.04 | 80 | 3.1970 | 0.1220 | ### Framework versions - Transformers 4.33.0 - Pytorch 2.0.0+cpu - Datasets 2.1.0 - Tokenizers 0.13.3
ArneL2206/a2c-PandaReachDense-v2
ArneL2206
2023-09-29T17:43:24Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "arxiv:2106.13687", "model-index", "region:us" ]
reinforcement-learning
2023-01-22T19:24:08Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -2.17 +/- 0.37 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ``` Panda Gym environments: [arxiv.org/abs/2106.13687](https://arxiv.org/abs/2106.13687)
jupitercoder/my_sample_peft_model
jupitercoder
2023-09-29T17:24:48Z
2
0
peft
[ "peft", "region:us" ]
null
2023-09-29T17:24:46Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0
adutchscotsman/ppo-Huggy
adutchscotsman
2023-09-29T17:11:04Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-09-29T17:10:55Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: adutchscotsman/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
espnet/msk_lrs3_train_avsr_avhubert_large_extracted_en_bpe1000
espnet
2023-09-29T16:58:13Z
3
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:lrs3", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2023-09-29T16:28:05Z
--- tags: - espnet - audio - automatic-speech-recognition language: en datasets: - lrs3 license: cc-by-4.0 --- ## ESPnet2 AVSR model ### `espnet/msk_lrs3_train_avsr_avhubert_large_extracted_en_bpe1000` This model was trained by ms-dot-k using lrs3 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 Follow the [ESPnet installation instructions](https://espnet.github.io/espnet/installation.html) if you haven't done that already. ```bash cd espnet pip install -e . cd egs2/lrs3/avsr1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/msk_lrs3_train_avsr_avhubert_large_extracted_en_bpe1000 ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Thu Sep 28 23:59:06 KST 2023` - python version: `3.8.18 (default, Sep 11 2023, 13:40:15) [GCC 11.2.0]` - espnet version: `espnet 202308` - pytorch version: `pytorch 1.12.0` - Git hash: `5d0758e2a7063b82d1f10a8ac2de98eb6cf8a352` - Commit date: `Wed Aug 30 18:03:42 2023 -0400` ## exp/asr_train_avsr_avhubert_large_extracted_en_bpe1000 ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |inference_asr_model_valid.acc.ave/test|1321|9890|98.5|1.1|0.4|0.2|1.7|8.8| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |inference_asr_model_valid.acc.ave/test|1321|49750|99.4|0.2|0.4|0.2|0.8|8.8| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |inference_asr_model_valid.acc.ave/test|1321|14940|98.8|0.8|0.4|0.3|1.5|8.8| ## ASR config <details><summary>expand</summary> ``` config: conf/train_avsr_avhubert_large.yaml print_config: false log_level: INFO drop_last_iter: false dry_run: false iterator_type: sequence valid_iterator_type: null output_dir: exp/asr_train_avsr_avhubert_large_extracted_en_bpe1000 ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: 4 dist_rank: 0 local_rank: 0 dist_master_addr: localhost dist_master_port: 54927 dist_launcher: null multiprocessing_distributed: true unused_parameters: true sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 20 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 10 nbest_averaging_interval: 0 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true create_graph_in_tensorboard: false use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 16 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_extracted_en_bpe1000/train/speech_shape - exp/asr_stats_extracted_en_bpe1000/train/text_shape.bpe valid_shape_file: - exp/asr_stats_extracted_en_bpe1000/valid/speech_shape - exp/asr_stats_extracted_en_bpe1000/valid/text_shape.bpe batch_type: folded valid_batch_type: null fold_length: - 800 - 150 sort_in_batch: descending shuffle_within_batch: false sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 chunk_excluded_key_prefixes: [] train_data_path_and_name_and_type: - - dump/extracted/train/feats.scp - speech - kaldi_ark - - dump/extracted/train/text - text - text valid_data_path_and_name_and_type: - - dump/extracted/val/feats.scp - speech - kaldi_ark - - dump/extracted/val/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null exclude_weight_decay: false exclude_weight_decay_conf: {} optim: adam optim_conf: lr: 0.0003 scheduler: warmuplr scheduler_conf: warmup_steps: 8000 token_list: - <blank> - <unk> - S - ▁THE - ▁TO - ▁A - ▁AND - T - ▁I - '''' - ▁OF - ▁THAT - ▁IN - ING - D - ▁YOU - ▁WE - E - ▁IT - N - ED - ▁IS - R - M - P - Y - ▁FOR - ER - ▁THIS - ▁WAS - RE - C - G - ▁SO - A - ▁BE - ▁THEY - ▁HAVE - ▁ARE - O - ▁ - ▁ON - ▁WITH - LY - ▁WHAT - U - IN - AL - ▁MY - I - ▁S - ▁DO - B - ▁RE - L - ▁ME - ▁CAN - ▁BUT - LE - ▁ABOUT - OR - ▁NOT - VE - F - AR - RA - ▁ALL - ▁OUR - ▁PEOPLE - ▁AT - ▁C - ▁AS - IC - ▁OR - ▁LIKE - W - LL - K - ▁AN - ▁THERE - ENT - ▁ONE - ES - ▁HE - RI - 'ON' - ▁P - ▁IF - ▁FROM - ▁JUST - ▁WHEN - TH - ▁YOUR - ▁US - CE - ▁DE - ION - IT - ▁KNOW - ▁HOW - ▁T - ▁BECAUSE - CH - V - ▁OUT - ▁B - ▁UP - ▁E - ▁F - TE - ▁HAD - ▁CO - LI - ▁TIME - ▁THEIR - ▁MORE - UR - ▁WHO - ▁GO - EN - ▁G - ATION - AN - CK - TER - ▁SEE - ▁WOULD - ▁THESE - ▁NO - ▁THEM - ▁BY - ▁THINK - ▁WERE - IL - ATE - ▁GET - ▁SE - ▁VERY - ▁GOING - ▁EX - ▁REALLY - ITY - ▁WAY - ▁CON - H - RO - ▁DON - ▁NOW - ▁W - X - NE - GE - ▁WILL - ▁MAKE - ▁WANT - ▁OTHER - ▁SOME - LA - ▁WORLD - ▁ST - ▁COULD - TION - ▁WORK - MENT - ▁SHE - ▁NEED - ▁PA - LO - OL - ▁SAY - ▁MO - ▁BA - IST - ▁FA - IR - ▁MA - ERS - ▁HAS - VER - ▁PO - IVE - ▁PRO - ▁LIFE - ▁INTO - ▁WHICH - ▁THINGS - ▁WHERE - ND - ▁LA - MP - ▁BEEN - ▁SOMETHING - MA - ▁THOSE - US - ▁NEW - ▁CH - ▁RA - ▁ACTUALLY - ▁YEARS - ▁EVEN - ▁TAKE - ▁LOOK - UL - ▁RIGHT - ▁SAID - TIC - ▁UN - Z - AS - ▁DAY - ▁HER - IDE - ▁BO - ▁THAN - ▁HERE - ▁OVER - ▁BACK - ▁LO - ▁FIRST - ▁DI - ▁MOST - ▁COME - ▁ALSO - VI - KE - ▁WELL - IES - ABLE - UT - ▁THEN - ▁CHANGE - AGE - ▁MUCH - '0' - ▁MEAN - OM - ▁CA - CO - AT - ▁ANY - ▁HAPPEN - ▁ONLY - ▁PART - ▁SU - ▁HIS - ▁SP - ▁DIS - ANCE - ID - ▁MANY - ▁RO - '}' - ▁{ - OW - ▁O - IGHT - ▁GOOD - UM - ▁LIVE - ▁LOT - ▁D - ▁TWO - ▁LI - ▁THING - ▁GOT - ▁TELL - AC - ▁EVERY - EL - CI - ▁WHY - TA - FUL - ▁BEING - ANT - EST - ▁LEARN - ▁COMP - ▁DID - URE - PE - ▁FEEL - ▁DIFFERENT - ▁PRE - MO - TI - ▁HO - ▁K - ▁LITTLE - IV - ▁THROUGH - ▁1 - INE - ▁KIND - ME - RY - ▁LET - ▁HELP - UN - ICAL - ▁VI - ▁SAME - ECT - ▁HUMAN - ▁GIVE - HE - ▁TALK - ▁FE - ▁HA - ▁OWN - ▁AROUND - ▁USE - IS - ALLY - ▁IDEA - RESS - ▁PROBLEM - ▁PERSON - ▁TE - ▁FI - ▁FIND - ▁SA - ▁START - OS - TED - ▁BU - LG - NCE - ATED - ▁YEAR - ▁DIDN - ▁LOVE - HO - '5' - ▁DOWN - ▁SCHOOL - ▁TODAY - ▁QUESTION - ▁HEAR - DI - ▁MAN - ▁CAR - MI - ▁GREAT - ▁CR - ▁DOING - IG - ▁FACT - ▁LE - ▁LONG - OUS - ▁RU - ▁PUT - ▁AFTER - ▁EN - ▁M - ▁GA - ▁SHOW - OP - ▁SI - ▁SHOULD - ▁NE - ▁STA - ▁NEVER - ▁BIG - NS - ▁THOUGHT - ISH - ▁MIGHT - ▁ACT - ▁PLACE - LU - END - IZE - ▁REAL - ▁BETTER - ATIVE - IA - ▁UNDERSTAND - ▁POWER - ▁IMPORTANT - IAN - ▁BRAIN - ▁SYSTEM - UAL - NESS - ▁END - ▁ABLE - ▁BEFORE - ▁STORY - ▁OFF - TOR - FF - ▁STARTED - ▁DR - ▁MADE - ▁ASK - NA - ▁HU - ▁CREATE - ATING - ▁BI - ARY - ▁HIGH - ▁HIM - BO - ITION - ▁THREE - ▁PER - ▁AM - ▁CALLED - ▁APP - ▁CAME - ▁WOMEN - ▁OLD - TY - ▁PLAY - '4' - PP - ▁PH - AG - ▁BELIEVE - ▁HOME - ARD - ▁FRIEND - ▁RI - ▁FOUND - HA - ▁HAND - ▁DA - ▁STILL - ▁NA - ▁WORD - ▁TRANS - ▁HEALTH - OUND - ▁BUILD - ▁CARE - ▁WI - ▁NEXT - ▁THANK - ▁TURN - ▁TOGETHER - ▁TA - ▁BECOME - ▁EXPERIENCE - VING - ▁EM - ▁MEN - ISE - ▁MAR - ▁EACH - ▁WENT - ▁TRI - ▁POINT - ▁LAST - ▁MAYBE - ▁EVER - ▁CALL - WARD - ▁CHILDREN - ▁DOES - CA - ▁BIT - UC - LIC - UGH - ▁EXAMPLE - ▁FEW - ITIES - ▁ANOTHER - SH - ▁TH - ▁ALWAYS - ▁H - ▁READ - ▁INTEREST - FORM - ▁STATE - ▁MOVE - IOUS - ▁MIND - 'NO' - AM - ▁TEACH - ▁2 - ▁HARD - ▁WANTED - ▁20 - ▁GROW - ▁JOB - DA - ▁TOO - ▁VA - OME - ▁MAY - '8' - ▁SOCIAL - ▁HI - ▁FOOD - BI - ▁JO - ▁COURSE - ▁FR - BA - ▁MOMENT - ▁AGAIN - ▁DOESN - ▁SHARE - ▁AWAY - ▁BETWEEN - ▁LESS - ▁SHA - ▁MONEY - ▁UNDER - BER - ▁DEVELOP - ▁SECOND - ▁NUMBER - ▁ART - QUE - ▁FAMILY - '1' - '7' - ▁SH - '6' - ▁EVERYTHING - ▁FAR - ▁WORKING - ▁KIDS - ▁PLAN - ▁CHA - ▁AGO - ▁PI - ▁ENOUGH - ISM - ▁AMERICA - ▁THINKING - ▁USED - ▁REASON - ▁TRY - ▁SOMEONE - ▁GENE - ▁CU - ▁STUDENT - ▁TOLD - ▁GU - ▁TRYING - ▁LEAD - ▁MYSELF - ▁BEST - ▁FUTURE - ▁MILLION - ▁SMALL - ▁TECHNOLOGY - LESS - ▁PASS - ▁DONE - ▁YOUNG - '9' - ▁SPACE - ▁WATER - ▁MATTER - ▁OPEN - ▁COUNTRY - ▁REMEMBER - ▁TALKING - ▁REALIZE - LAND - ▁RESEARCH - Q - IAL - ▁WAR - ▁GROUP - ▁BOOK - ▁KEEP - ▁DEF - ▁STOP - ▁HOPE - ▁CONNECT - ▁SENSE - ▁ANSWER - ▁WALK - ▁DESIGN - ▁WEEK - ▁LANGUAGE - ▁DATA - ▁LOOKING - ▁PERCENT - ADE - ▁CLASS - ▁WHOLE - ▁BODY - ▁FOUR - ▁OFTEN - ▁ELSE - ▁WITHOUT - ▁PROCESS - ▁FREE - ▁MAKING - IBLE - ▁BRING - ▁CHILD - ▁GETTING - ▁PROBABLY - ▁ALLOW - ▁SPEAK - ▁COMMUNITY - ▁HAVING - ▁TOOK - ▁OP - ▁JU - ▁MU - ▁FACE - ▁INFORMATION - ABILITY - ▁NAME - ▁NI - '2' - ▁GIRL - ▁CELL - ▁ANYTHING - ▁SCIENCE - ▁STAND - ▁WHILE - ▁SUCH - '000' - ▁CASE - J - ANG - ▁FIVE - ▁GUY - ▁FUN - ▁BUSINESS - ▁ROOM - ▁SELF - ▁LIVING - ▁SURE - ▁IMAGINE - ▁ASKED - ▁MIS - ▁ENERGY - ▁PROJECT - ▁STUDY - ▁DREAM - ▁10 - ▁STORIES - ▁ALREADY - ▁TERM - ▁EFFECT - ▁KNEW - ▁SOCIETY - ▁PRODUCT - ▁PRETTY - ▁EVERYONE - ▁HEAD - ▁19 - ▁JA - ▁LIGHT - ▁LISTEN - ▁MUSIC - ▁LARGE - ▁QUITE - ▁J - ▁BOTH - ▁CHALLENGE - ▁SORT - ▁FELT - ▁TREAT - ▁EDUCATION - ▁WRONG - ▁YOURSELF - ▁MIL - ▁OURSELVES - ▁SOUND - ▁PROGRAM - ▁3 - ▁CLOSE - ▁QUA - ▁SINGLE - ▁MINUTE - ▁NOTHING - ▁ENVIRONMENT - ▁PUBLIC - ▁ORDER - ▁OB - ▁TRUE - ▁STEP - ▁WONDER - ▁NIGHT - ▁YET - ▁EYE - ▁LEFT - SHIP - ▁VALUE - ▁WHETHER - ▁MOTHER - ▁SIMPLE - ▁NU - ▁WOMAN - ▁LU - ▁CONTROL - ▁COMING - ▁SAW - ▁LEVEL - ▁TEST - ▁POSSIBLE - ▁ACROSS - ▁HOUSE - ▁WATCH - ▁GOVERNMENT - ▁PARENTS - ▁HALF - ▁TEN - ▁DEEP - ▁CANCER - ▁ISSUE - ▁LATER - ▁SOMETIMES - ▁ANIMAL - ▁SUPPORT - ▁EAT - ▁CULTURE - ▁FULL - ▁INSTEAD - ▁EARTH - ▁DISEASE - ▁MIN - ▁GAME - ▁DECIDED - ▁ALMOST - ▁SUCCESS - ▁AMAZING - ▁DRIVE - ▁DU - ▁EMOTION - ▁GLOBAL - ▁EQU - ▁PLANET - ▁CERTAIN - ▁HISTORY - ▁MEET - ▁TRAIN - ▁COMPUTER - ▁BECAME - ▁TEAM - ▁DISCOVER - ▁DIFFERENCE - WAY - ▁FOCUS - ▁PAST - ▁RESULT - ▁MONTHS - ▁MODEL - ▁YES - ▁VO - ▁COUNTRIES - ▁STUFF - ▁FIGURE - ▁30 - ▁PATIENT - ▁SPEND - ▁ENTIRE - ▁INDIVIDUAL - ▁UNTIL - ▁THOUGH - ▁DECISION - ▁CHOICE - ▁AFRICA - ▁RELATIONSHIP - ▁BREAK - ▁SOMEBODY - ▁FOLLOW - ▁CONVERSATION - ▁LEAVE - ▁THOUSAND - ▁SIGN - ▁SINCE - ▁DIFFICULT - ▁IMPACT - ▁HOURS - ▁COUPLE - ▁CAUSE - ▁PARTICULAR - ▁DOCTOR - ▁TAKING - ▁COMPANY - ▁EVERYBODY - ▁50 - ▁DIRECT - ▁EXPECT - ▁200 - ▁ORGAN - ▁EXACTLY - ▁THEMSELVES - ▁HAPPY - ▁MUST - ▁SAFE - ▁BASED - ▁BEAUTIFUL - ▁PHONE - ▁AGAINST - ▁WRITE - ▁DRUG - ▁PICTURE - ▁MEDIA - ▁WAIT - ▁FRONT - ▁RISK - ▁BEHAVIOR - ▁BLACK - ▁100 - ▁NATURE - ▁ORGANIZATION - ▁HUNDRED - ▁EASY - ▁ACCESS - ▁HOLD - ▁COMMON - ▁MARKET - ▁GRAND - ▁VOICE - ▁DEATH - ▁PIECE - ▁BILLION - ▁LEAST - ▁DURING - '3' - ▁NATURAL - ▁TYPE - ▁INVEST - ▁GENERATION - ENCY - ▁STRONG - OLOGICAL - ▁CLEAR - ▁PRESENT - ▁INTERNET - ▁KILL - OLOGY - ▁SUPER - ▁UNITED - ▁IMAGE - ▁RATHER - ▁SOLUTION - ▁ECONOMIC - ▁PROTECT - ▁BEHIND - ▁COLLECT - ▁SCIENTIST - UDE - ▁PRODUCE - ▁PERFECT - ▁DOLLARS - ▁VIEW - ▁CONSIDER - ▁THIRD - ▁MACHINE - ▁OUTSIDE - ▁SKILL - ▁EXPERIMENT - ▁COLLEGE - ▁QUI - ▁OPPORTUNITY - ▁LOCAL - ▁SIMPLY - ▁EARLY - ▁MAJOR - ▁CANNOT - ▁PHYSICAL - ▁WHATEVER - ▁MIDDLE - ▁VIDEO - ▁ALONG - OGRAPH - ▁SOLVE - ▁KEY - ▁TRUST - ▁FIELD - HOOD - ▁ATTENTION - ▁MICRO - ▁SHORT - ▁SITUATION - ▁STREET - ▁COMPANIES - ▁POLITICAL - ▁NORMAL - ▁AMOUNT - ▁SERVICE - ▁OBJECT - ▁POTENTIAL - ▁COLOR - ▁KNOWLEDGE - ▁MORNING - ▁TRUTH - ▁UNIVERSITY - ▁PROVIDE - ▁RESOURCE - ▁POSITIVE - ▁EUROPE - ▁SPECIAL - ▁CONTINUE - ▁BASICALLY - ▁SMART - ▁PRACTICE - ▁POPULATION - ▁TRAVEL - ▁AFFECT - ▁FINALLY - ▁APPROACH - ▁COUNT - ▁PERHAPS - ▁INTERACT - ▁EXPLAIN - ▁ENGINEER - ▁ENGAGE - ▁SITTING - ▁OFFICE - ▁COMPLEX - ▁WHITE - ▁GENDER - ▁MESSAGE - ▁WORTH - ▁ITSELF - IZATION - ▁BUILT - ▁IMPROVE - ▁OKAY - ▁PRISON - ▁MATERIAL - ▁NETWORK - ▁EITHER - ▁GIVING - ▁LIMIT - ▁MEASURE - ▁DARK - ▁AUDIENCE - ▁ACCEPT - ▁RECORD - ▁OCEAN - ▁CHOOSE - ▁SPECIES - ▁YORK - ▁SUSTAIN - ▁SLEEP - ▁OBVIOUS - ▁HOSPITAL - ▁PERSPECTIVE - ▁INCREASE - ▁OPERA - ▁TAUGHT - ▁MULTI - ▁CHANGING - ▁JOURNEY - ▁INDUSTRY - ▁NEURO - ▁REQUIRE - ▁DECADE - ▁CURRENT - ▁PUSH - ▁BENEFIT - ▁YEAH - ▁BLOOD - ▁SCALE - ▁ESPECIALLY - ▁COMMUNITIES - ▁ADULT - ▁CHARACTER - ▁REPRESENT - IFIED - ▁SUFFER - ▁RECOGNIZE - ▁CENTURY - ▁SUDDEN - ▁FUNCTION - ▁ACHIEVE - ▁SIMILAR - ▁BROUGHT - ▁TRADITION - ▁UNIVERSE - ▁CLIMATE - ▁BREATH - ▁EXTREME - ▁REPORT - ▁DAUGHTER - ▁COMFORT - ▁CONCEPT - ▁ECONOMY - ▁INNOVATION - ▁QUICKLY - ▁SUGGEST - ▁SPECIFIC - ▁CRAZY - ▁CONSCIOUS - ▁SPREAD - ▁TRULY - '{' - <sos/eos> init: xavier_uniform input_size: 2048 ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: null zero_infinity: true joint_net_conf: null use_preprocessor: true token_type: bpe bpemodel: data/en_token_list/bpe_unigram1000/bpe.model non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' short_noise_thres: 0.5 aux_ctc_tasks: [] frontend: null frontend_conf: {} specaug: null specaug_conf: {} normalize: global_mvn normalize_conf: stats_file: exp/asr_stats_extracted_en_bpe1000/train/feats_stats.npz model: espnet model_conf: ctc_weight: 0.3 lsm_weight: 0.1 length_normalized_loss: false preencoder: null preencoder_conf: {} encoder: avhubert encoder_conf: avhubert_url: https://dl.fbaipublicfiles.com/avhubert/model/lrs3_vox/noise-pretrain/large_vox_iter5.pt avhubert_dir_path: ./local/pre-trained encoder_embed_dim: 1024 encoder_attention_heads: 16 encoder_ffn_embed_dim: 4096 encoder_layers: 24 dropout: 0.1 dropout_features: 0.1 encoder_layerdrop: 0.05 attention_dropout: 0.1 extracted: true freeze_finetune_updates: 10000 feature_grad_mult: 1.0 postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: attention_heads: 4 linear_units: 4096 num_blocks: 6 dropout_rate: 0.1 positional_dropout_rate: 0.1 self_attention_dropout_rate: 0.1 src_attention_dropout_rate: 0.1 preprocessor: default preprocessor_conf: {} required: - output_dir - token_list version: '202308' distributed: true ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
mingto/whisper-small-hi
mingto
2023-09-29T16:53:57Z
75
0
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "generated_from_trainer", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-29T12:05:50Z
--- license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-small-hi results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-small-hi This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4266 - Wer: 33.1457 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0823 | 2.44 | 1000 | 0.2954 | 34.8895 | | 0.0203 | 4.89 | 2000 | 0.3472 | 33.7763 | | 0.0018 | 7.33 | 3000 | 0.4013 | 33.0399 | | 0.0005 | 9.78 | 4000 | 0.4266 | 33.1457 | ### Framework versions - Transformers 4.34.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.14.0
navradio/swin-tiny-patch4-window7-224-finetuned-200k
navradio
2023-09-29T16:52:45Z
213
0
transformers
[ "transformers", "pytorch", "swin", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:microsoft/swin-tiny-patch4-window7-224", "base_model:finetune:microsoft/swin-tiny-patch4-window7-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-09-29T15:25:52Z
--- license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-200k results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.796086508753862 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-200k This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4347 - Accuracy: 0.7961 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.634 | 0.99 | 36 | 0.6243 | 0.6262 | | 0.5551 | 1.99 | 72 | 0.5186 | 0.7250 | | 0.5183 | 2.98 | 108 | 0.4826 | 0.7673 | | 0.4854 | 4.0 | 145 | 0.5640 | 0.7261 | | 0.4645 | 4.99 | 181 | 0.4598 | 0.7817 | | 0.4655 | 5.99 | 217 | 0.4787 | 0.7786 | | 0.4582 | 6.98 | 253 | 0.4483 | 0.7899 | | 0.4415 | 8.0 | 290 | 0.4709 | 0.7765 | | 0.4546 | 8.99 | 326 | 0.4717 | 0.7817 | | 0.4566 | 9.99 | 362 | 0.4538 | 0.7951 | | 0.4675 | 10.98 | 398 | 0.4491 | 0.7817 | | 0.4449 | 12.0 | 435 | 0.4992 | 0.7652 | | 0.4349 | 12.99 | 471 | 0.4627 | 0.7817 | | 0.4253 | 13.99 | 507 | 0.4492 | 0.7858 | | 0.4278 | 14.98 | 543 | 0.4442 | 0.7951 | | 0.4567 | 16.0 | 580 | 0.4362 | 0.7899 | | 0.4205 | 16.99 | 616 | 0.4550 | 0.7889 | | 0.4233 | 17.99 | 652 | 0.4336 | 0.7909 | | 0.4014 | 18.98 | 688 | 0.4565 | 0.7889 | | 0.4176 | 20.0 | 725 | 0.4323 | 0.7940 | | 0.411 | 20.99 | 761 | 0.4348 | 0.7951 | | 0.4128 | 21.99 | 797 | 0.4378 | 0.7971 | | 0.4045 | 22.98 | 833 | 0.4317 | 0.7951 | | 0.4001 | 24.0 | 870 | 0.4452 | 0.7868 | | 0.4061 | 24.99 | 906 | 0.4286 | 0.7920 | | 0.4033 | 25.99 | 942 | 0.4306 | 0.7951 | | 0.3953 | 26.98 | 978 | 0.4320 | 0.7920 | | 0.3924 | 28.0 | 1015 | 0.4338 | 0.7940 | | 0.4056 | 28.99 | 1051 | 0.4329 | 0.7930 | | 0.4032 | 29.79 | 1080 | 0.4347 | 0.7961 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3
dracero/a2c-PandaReachDense-v3
dracero
2023-09-29T16:51:27Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-29T16:45:58Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v3 type: PandaReachDense-v3 metrics: - type: mean_reward value: -0.25 +/- 0.13 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v3** This is a trained model of a **A2C** agent playing **PandaReachDense-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
kbooth-insight/booth-test
kbooth-insight
2023-09-29T16:51:26Z
29
1
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-09-29T16:46:18Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### booth-test Dreambooth model trained by kbooth-insight with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
language-ml-lab/postagger-azb
language-ml-lab
2023-09-29T16:41:02Z
107
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "az", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-09-26T16:29:59Z
--- pipeline_tag: token-classification widget: - text: سن نجورسن؟ example_title: Example 1 - text: من سنی سویرم. example_title: Example 2 - text: سن شاهین قیزین چوخ سئویرسن. example_title: Example 3 - text: آلما آلیب گلرم، سن هئچ بیر شی آلما. example_title: Example 4 language: - az metrics: - accuracy - f1 --- # POS Tagger - Type: Fine-tuned BERT-based Part-of-Speech (POS) tagging model - Description: This model has been fine-tuned using [AzerBERT](https://huggingface.co/language-ml-lab/AzerBert) for part-of-speech tagging tasks in Iranian Azerbaijani text. It can be used to annotate text with 11 POS tags, which is essential for various downstream NLP applications. ## How to use ```python # Use a pipeline as a high-level helper from transformers import pipeline pipe = pipeline("token-classification", model="language-ml-lab/postagger-azb") ``` ```python # Load model directly from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("language-ml-lab/postagger-azb") model = AutoModelForTokenClassification.from_pretrained("language-ml-lab/postagger-azb") ```
Ranjit/test_2
Ranjit
2023-09-29T16:40:48Z
105
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "dataset:AmazonScience/massive", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-29T16:40:23Z
--- base_model: xxxxxxxxx tags: - generated_from_trainer datasets: - AmazonScience/massive metrics: - f1 model-index: - name: massive_indo results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # massive_indo This model is a fine-tuned version of [xxxxxxxxx](https://huggingface.co/xxxxxxxxx) on the massive dataset. It achieves the following results on the evaluation set: - Loss: 0.6866 - F1: 0.8161 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 2.0824 | 0.11 | 2000 | 1.6825 | 0.3184 | | 1.2059 | 0.22 | 4000 | 1.1052 | 0.5593 | | 0.8955 | 0.33 | 6000 | 0.8835 | 0.6588 | | 0.7748 | 0.44 | 8000 | 0.8215 | 0.6894 | | 0.6839 | 0.54 | 10000 | 0.7765 | 0.7234 | | 0.6299 | 0.65 | 12000 | 0.7514 | 0.7600 | | 0.5778 | 0.76 | 14000 | 0.6906 | 0.7707 | | 0.533 | 0.87 | 16000 | 0.6867 | 0.7771 | | 0.4877 | 0.98 | 18000 | 0.6850 | 0.7861 | | 0.4114 | 1.09 | 20000 | 0.6757 | 0.7907 | | 0.3815 | 1.2 | 22000 | 0.6798 | 0.7956 | | 0.3785 | 1.31 | 24000 | 0.6809 | 0.7987 | | 0.3645 | 1.42 | 26000 | 0.6739 | 0.8033 | | 0.3347 | 1.53 | 28000 | 0.6768 | 0.8037 | | 0.3345 | 1.63 | 30000 | 0.6457 | 0.8087 | | 0.3254 | 1.74 | 32000 | 0.6721 | 0.8055 | | 0.3131 | 1.85 | 34000 | 0.6542 | 0.8125 | | 0.3072 | 1.96 | 36000 | 0.6652 | 0.8070 | | 0.2343 | 2.07 | 38000 | 0.6754 | 0.8143 | | 0.2323 | 2.18 | 40000 | 0.6790 | 0.8167 | | 0.232 | 2.29 | 42000 | 0.6967 | 0.8101 | | 0.2171 | 2.4 | 44000 | 0.6999 | 0.8116 | | 0.215 | 2.51 | 46000 | 0.6927 | 0.8095 | | 0.2136 | 2.62 | 48000 | 0.6917 | 0.8155 | | 0.2008 | 2.72 | 50000 | 0.6837 | 0.8137 | | 0.1997 | 2.83 | 52000 | 0.6925 | 0.8140 | | 0.1926 | 2.94 | 54000 | 0.6866 | 0.8161 | ### Framework versions - Transformers 4.34.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.0
RsGoksel/Breast-Tumor-Mass-Detection
RsGoksel
2023-09-29T16:38:12Z
0
0
null
[ "Cancer", "Tumour", "Breast", "Mammography", "Mass", "object-detection", "license:apache-2.0", "region:us" ]
object-detection
2023-09-29T16:14:39Z
--- license: apache-2.0 pipeline_tag: object-detection tags: - Cancer - Tumour - Breast - Mammography - Mass --- ## Introduction The Breast Mass Object Detection Model is designed to detect breast masses in mammography. - **Developed by:** https://github.com/RsGoksel ### More Tools - **Repository:** https://github.com/RsGoksel/Breast-Tissue-Cropper-Tools
RogerB/afro-xlmr-large-kinyarwanda-finetuned-kinyarwanda-tweets-finetuned
RogerB
2023-09-29T16:35:30Z
103
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "generated_from_trainer", "base_model:RogerB/afro-xlmr-large-kinyarwanda-finetuned", "base_model:finetune:RogerB/afro-xlmr-large-kinyarwanda-finetuned", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-09-29T16:21:32Z
--- license: mit base_model: RogerB/afro-xlmr-large-kinyarwanda-finetuned tags: - generated_from_trainer model-index: - name: afro-xlmr-large-kinyarwanda-finetuned-kinyarwanda-tweets-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # afro-xlmr-large-kinyarwanda-finetuned-kinyarwanda-tweets-finetuned This model is a fine-tuned version of [RogerB/afro-xlmr-large-kinyarwanda-finetuned](https://huggingface.co/RogerB/afro-xlmr-large-kinyarwanda-finetuned) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7567 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.0292 | 1.0 | 500 | 1.9115 | | 1.9227 | 2.0 | 1000 | 1.8062 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
twm213/food_classifier
twm213
2023-09-29T16:32:47Z
63
0
transformers
[ "transformers", "tf", "vit", "image-classification", "generated_from_keras_callback", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-09-29T16:16:06Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_keras_callback model-index: - name: twm213/food_classifier results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # twm213/food_classifier This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3748 - Validation Loss: 0.3432 - Train Accuracy: 0.914 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 20000, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 2.7859 | 1.6483 | 0.799 | 0 | | 1.2220 | 0.9133 | 0.842 | 1 | | 0.7054 | 0.5449 | 0.898 | 2 | | 0.4945 | 0.4446 | 0.892 | 3 | | 0.3748 | 0.3432 | 0.914 | 4 | ### Framework versions - Transformers 4.33.3 - TensorFlow 2.9.1 - Datasets 2.14.5 - Tokenizers 0.13.3
roa7n/gpt2-human_nontata_promoters-randomized_9_layers_0.0003_lr_8_e
roa7n
2023-09-29T16:27:12Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-29T16:27:10Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
RsGoksel/Breast-Mammography-Detection
RsGoksel
2023-09-29T16:26:12Z
0
0
null
[ "Breast", "Mammography", "ROI", "Medical", "image-classification", "license:apache-2.0", "region:us" ]
image-classification
2023-09-28T09:45:16Z
--- license: apache-2.0 pipeline_tag: image-classification tags: - Breast - Mammography - ROI - Medical --- # Breast Tissue ROI Object Detection Model ## Introduction: The Breast Tissue ROI Object Detection Model is designed to locate regions of interest (ROIs) within mammographic images. ### 1. Purpose The primary purpose of the Breast Tissue ROI Object Detection Model is to accurately and efficiently identify regions of interest in mammographic images. These regions typically contain suspicious lesions, calcifications, or abnormalities that require further examination to determine the presence of breast cancer. ## 2. Deep Learning Architecture: This model is built on state-of-the-art deep learning architecture, leveraging Convolutional Neural Networks (CNNs) (with feature extraction). It utilizes a combination of convolutional layers, pooling layers, and fully connected layers to process mammographic images effectively. - **Developed by:** https://github.com/RsGoksel - **Model type:** Pytorch (.pt) ### More Tools - **Repository:** https://github.com/RsGoksel/Breast-Tissue-Cropper-Tools ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6442c4029788699939b1a881/FApcbWQTP-uUbJyNajS8a.png)
TheBloke/NexusRaven-13B-GPTQ
TheBloke
2023-09-29T16:18:51Z
30
7
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:2308.12950", "base_model:Nexusflow/NexusRaven-13B", "base_model:quantized:Nexusflow/NexusRaven-13B", "license:llama2", "autotrain_compatible", "text-generation-inference", "4-bit", "gptq", "region:us" ]
text-generation
2023-09-28T23:00:55Z
--- base_model: Nexusflow/NexusRaven-13B inference: false license: llama2 model-index: - name: NexusRaven-13B results: [] model_creator: Nexusflow model_name: Nexusraven 13B model_type: llama prompt_template: '{prompt} ' quantized_by: TheBloke --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # Nexusraven 13B - GPTQ - Model creator: [Nexusflow](https://huggingface.co/Nexusflow) - Original model: [Nexusraven 13B](https://huggingface.co/Nexusflow/NexusRaven-13B) <!-- description start --> ## Description This repo contains GPTQ model files for [Nexusflow's Nexusraven 13B](https://huggingface.co/Nexusflow/NexusRaven-13B). Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them. <!-- description end --> <!-- repositories-available start --> ## Repositories available * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/NexusRaven-13B-AWQ) * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/NexusRaven-13B-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/NexusRaven-13B-GGUF) * [Nexusflow's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/Nexusflow/NexusRaven-13B) <!-- repositories-available end --> <!-- prompt-template start --> ## Prompt template: Unknown ``` {prompt} ``` <!-- prompt-template end --> <!-- README_GPTQ.md-provided-files start --> ## Provided files, and GPTQ parameters Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements. Each separate quant is in a different branch. See below for instructions on fetching from different branches. All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches are made with AutoGPTQ. Files in the `main` branch which were uploaded before August 2023 were made with GPTQ-for-LLaMa. <details> <summary>Explanation of GPTQ parameters</summary> - Bits: The bit size of the quantised model. - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value. - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now. - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy. - GPTQ dataset: The calibration dataset used during quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ calibration dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s). - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences. - ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama models in 4-bit. </details> | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc | | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- | | [main](https://huggingface.co/TheBloke/NexusRaven-13B-GPTQ/tree/main) | 4 | 128 | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 16384 | 7.26 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. | | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/NexusRaven-13B-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 16384 | 8.00 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. | | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/NexusRaven-13B-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 16384 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. | | [gptq-8bit-32g-actorder_True](https://huggingface.co/TheBloke/NexusRaven-13B-GPTQ/tree/gptq-8bit-32g-actorder_True) | 8 | 32 | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 16384 | 14.55 GB | No | 8-bit, with group size 32g and Act Order for maximum inference quality. | | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/NexusRaven-13B-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 16384 | 7.51 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. | <!-- README_GPTQ.md-provided-files end --> <!-- README_GPTQ.md-download-from-branches start --> ## How to download, including from branches ### In text-generation-webui To download from the `main` branch, enter `TheBloke/NexusRaven-13B-GPTQ` in the "Download model" box. To download from another branch, add `:branchname` to the end of the download name, eg `TheBloke/NexusRaven-13B-GPTQ:gptq-4bit-32g-actorder_True` ### From the command line I recommend using the `huggingface-hub` Python library: ```shell pip3 install huggingface-hub ``` To download the `main` branch to a folder called `NexusRaven-13B-GPTQ`: ```shell mkdir NexusRaven-13B-GPTQ huggingface-cli download TheBloke/NexusRaven-13B-GPTQ --local-dir NexusRaven-13B-GPTQ --local-dir-use-symlinks False ``` To download from a different branch, add the `--revision` parameter: ```shell mkdir NexusRaven-13B-GPTQ huggingface-cli download TheBloke/NexusRaven-13B-GPTQ --revision gptq-4bit-32g-actorder_True --local-dir NexusRaven-13B-GPTQ --local-dir-use-symlinks False ``` <details> <summary>More advanced huggingface-cli download usage</summary> If you remove the `--local-dir-use-symlinks False` parameter, the files will instead be stored in the central Huggingface cache directory (default location on Linux is: `~/.cache/huggingface`), and symlinks will be added to the specified `--local-dir`, pointing to their real location in the cache. This allows for interrupted downloads to be resumed, and allows you to quickly clone the repo to multiple places on disk without triggering a download again. The downside, and the reason why I don't list that as the default option, is that the files are then hidden away in a cache folder and it's harder to know where your disk space is being used, and to clear it up if/when you want to remove a download model. The cache location can be changed with the `HF_HOME` environment variable, and/or the `--cache-dir` parameter to `huggingface-cli`. For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli). To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`: ```shell pip3 install hf_transfer ``` And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`: ```shell mkdir NexusRaven-13B-GPTQ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/NexusRaven-13B-GPTQ --local-dir NexusRaven-13B-GPTQ --local-dir-use-symlinks False ``` Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command. </details> ### With `git` (**not** recommended) To clone a specific branch with `git`, use a command like this: ```shell git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/NexusRaven-13B-GPTQ ``` Note that using Git with HF repos is strongly discouraged. It will be much slower than using `huggingface-hub`, and will use twice as much disk space as it has to store the model files twice (it stores every byte both in the intended target folder, and again in the `.git` folder as a blob.) <!-- README_GPTQ.md-download-from-branches end --> <!-- README_GPTQ.md-text-generation-webui start --> ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui). Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui). It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install. 1. Click the **Model tab**. 2. Under **Download custom model or LoRA**, enter `TheBloke/NexusRaven-13B-GPTQ`. - To download from a specific branch, enter for example `TheBloke/NexusRaven-13B-GPTQ:gptq-4bit-32g-actorder_True` - see Provided Files above for the list of branches for each option. 3. Click **Download**. 4. The model will start downloading. Once it's finished it will say "Done". 5. In the top left, click the refresh icon next to **Model**. 6. In the **Model** dropdown, choose the model you just downloaded: `NexusRaven-13B-GPTQ` 7. The model will automatically load, and is now ready for use! 8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right. * Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`. 9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started! <!-- README_GPTQ.md-text-generation-webui end --> <!-- README_GPTQ.md-use-from-python start --> ## How to use this GPTQ model from Python code ### Install the necessary packages Requires: Transformers 4.33.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later. ```shell pip3 install transformers optimum pip3 install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ # Use cu117 if on CUDA 11.7 ``` If you have problems installing AutoGPTQ using the pre-built wheels, install it from source instead: ```shell pip3 uninstall -y auto-gptq git clone https://github.com/PanQiWei/AutoGPTQ cd AutoGPTQ git checkout v0.4.2 pip3 install . ``` ### You can then use the following code ```python from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline model_name_or_path = "TheBloke/NexusRaven-13B-GPTQ" # To use a different branch, change revision # For example: revision="gptq-4bit-32g-actorder_True" model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map="auto", trust_remote_code=False, revision="main") tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True) prompt = "Tell me about AI" prompt_template=f'''{prompt} ''' print("\n\n*** Generate:") input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda() output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512) print(tokenizer.decode(output[0])) # Inference can also be done using transformers' pipeline print("*** Pipeline:") pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512, do_sample=True, temperature=0.7, top_p=0.95, top_k=40, repetition_penalty=1.1 ) print(pipe(prompt_template)[0]['generated_text']) ``` <!-- README_GPTQ.md-use-from-python end --> <!-- README_GPTQ.md-compatibility start --> ## Compatibility The files provided are tested to work with AutoGPTQ, both via Transformers and using AutoGPTQ directly. They should also work with [Occ4m's GPTQ-for-LLaMa fork](https://github.com/0cc4m/KoboldAI). [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility. [Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is compatible with all GPTQ models. <!-- README_GPTQ.md-compatibility end --> <!-- footer start --> <!-- 200823 --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute Thanks to the [chirper.ai](https://chirper.ai) team! Thanks to Clay from [gpus.llm-utils.org](llm-utils)! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Pierre Kircher, Stanislav Ovsiannikov, Michael Levine, Eugene Pentland, Andrey, 준교 김, Randy H, Fred von Graf, Artur Olbinski, Caitlyn Gatomon, terasurfer, Jeff Scroggin, James Bentley, Vadim, Gabriel Puliatti, Harry Royden McLaughlin, Sean Connelly, Dan Guido, Edmond Seymore, Alicia Loh, subjectnull, AzureBlack, Manuel Alberto Morcote, Thomas Belote, Lone Striker, Chris Smitley, Vitor Caleffi, Johann-Peter Hartmann, Clay Pascal, biorpg, Brandon Frisco, sidney chen, transmissions 11, Pedro Madruga, jinyuan sun, Ajan Kanaga, Emad Mostaque, Trenton Dambrowitz, Jonathan Leane, Iucharbius, usrbinkat, vamX, George Stoitzev, Luke Pendergrass, theTransient, Olakabola, Swaroop Kallakuri, Cap'n Zoog, Brandon Phillips, Michael Dempsey, Nikolai Manek, danny, Matthew Berman, Gabriel Tamborski, alfie_i, Raymond Fosdick, Tom X Nguyen, Raven Klaugh, LangChain4j, Magnesian, Illia Dulskyi, David Ziegler, Mano Prime, Luis Javier Navarrete Lozano, Erik Bjäreholt, 阿明, Nathan Dryer, Alex, Rainer Wilmers, zynix, TL, Joseph William Delisle, John Villwock, Nathan LeClaire, Willem Michiel, Joguhyik, GodLy, OG, Alps Aficionado, Jeffrey Morgan, ReadyPlayerEmma, Tiffany J. Kim, Sebastain Graf, Spencer Kim, Michael Davis, webtim, Talal Aujan, knownsqashed, John Detwiler, Imad Khwaja, Deo Leter, Jerry Meng, Elijah Stavena, Rooh Singh, Pieter, SuperWojo, Alexandros Triantafyllidis, Stephen Murray, Ai Maven, ya boyyy, Enrico Ros, Ken Nordquist, Deep Realms, Nicholas, Spiking Neurons AB, Elle, Will Dee, Jack West, RoA, Luke @flexchar, Viktor Bowallius, Derek Yates, Subspace Studios, jjj, Toran Billups, Asp the Wyvern, Fen Risland, Ilya, NimbleBox.ai, Chadd, Nitin Borwankar, Emre, Mandus, Leonard Tan, Kalila, K, Trailburnt, S_X, Cory Kujawski Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. <!-- footer end --> # Original model card: Nexusflow's Nexusraven 13B # NexusRaven-13B: Surpassing the state-of-the-art in open-source function calling LLMs. <p align="center"> <a href="https://huggingface.co/Nexusflow" target="_blank">Nexusflow HF</a> - <a href="http://nexusflow.ai/blog" target="_blank">NexusRaven blog post</a> - <a href="https://huggingface.co/Nexusflow/NexusRaven-13B" target="_blank">NexusRaven-13B</a> - <a href="https://x.com/NexusflowX/status/1707470614012035561?s=20" target="_blank">NexusRaven-13B Twitter Thread</a> - <a href="https://github.com/nexusflowai/NexusRaven/" target="_blank">NexusRaven-13B Github</a> - <a href="https://huggingface.co/datasets/Nexusflow/NexusRaven_API_evaluation" target="_blank">NexusRaven API evaluation dataset</a> </p> <p align="center" width="100%"> <a><img src="NexusRaven.png" alt="NexusRaven" style="width: 40%; min-width: 300px; display: block; margin: auto;"></a> </p> Table of contents - [NexusRaven-13B: Surpassing the state-of-the-art in open-source function calling LLMs.](#nexusraven-13b-surpassing-the-state-of-the-art-in-open-source-function-calling-llms) - [Introducing NexusRaven-13B](#introducing-nexusraven-13b) - [NexusRaven model usage](#nexusraven-model-usage) - [Training procedure](#training-procedure) - [Training hyperparameters](#training-hyperparameters) - [Framework versions](#framework-versions) - [Limitations](#limitations) - [License](#license) - [References](#references) - [Citation](#citation) - [Contact](#contact) This model is a fine-tuned version of [codellama/CodeLlama-13b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-13b-Instruct-hf). ## Introducing NexusRaven-13B NexusRaven is an open-source and commercially viable function calling LLM that surpasses the state-of-the-art in function calling capabilities. 📊 Performance Highlights: With our demonstration retrieval system, NexusRaven-13B achieves a 95% success rate in using cybersecurity tools such as CVE/CPE Search and VirusTotal, while prompting GPT-4 achieves 64%. It has significantly lower cost and faster inference speed compared to GPT-4. 🔧 Generalization to the Unseen: NexusRaven-13B generalizes to tools never seen during model training, achieving a success rate comparable with GPT-3.5 in zero-shot setting, significantly outperforming all other open-source LLMs of similar sizes. 🔥 Commercially Permissive: The training of NexusRaven-13B does not involve any data generated by proprietary LLMs such as GPT-4. You have full control of the model when deployed in commercial applications. <p align="center" width="100%"> <a><img src="Retrieval-augmented_Evaluation.png" alt="NexusRaven" style="width: 80%; min-width: 300px; display: block; margin: auto;"></a> <a><img src="Zero-shot_Evaluation.png" alt="NexusRaven" style="width: 80%; min-width: 300px; display: block; margin: auto;"></a> </p> ## NexusRaven model usage NexusRaven accepts a list of python functions. These python functions can do anything (including sending GET/POST requests to external APIs!). The two requirements include the python function signature and the appropriate docstring to generate the function call. NexusRaven is highly compatible with langchain. See [langchain_example.py](https://huggingface.co/Nexusflow/NexusRaven-13B/blob/main/langchain_example.py). An example without langchain can be found in [non_langchain_example.py](https://huggingface.co/Nexusflow/NexusRaven-13B/blob/main/non_langchain_example.py) Please note that the model will reflect on the answer sometimes, so we highly recommend stopping the model generation at a stopping criteria of `["\nReflection:"]`, to avoid spending unnecessary tokens during inference, but the reflection might help in some rare cases. This is reflected in our langchain example. The "Initial Answer" can be executed to run the function. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 2.0 ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3 # Limitations 1. We highly recommend using a stop criteria of `["\nReflection:"]`. The model was trained to first generate an answer and then reflect on its answer to either improve the answer or keep the answer the same. However, this "chain of thought" is often not helpful, and the final answer is seldom better than the initial call. Therefore, we strongly recommend using the Initial Call as the main call to execute. 2. The model works best when it is connected with a retriever when there are a multitude of functions, as a large number of functions will saturate the context window of this model. 3. The model can be prone to generate incorrect calls. Please ensure proper guardrails to capture errant behavior is in place. ## License This model was trained on commercially viable data and is licensed under the [Llama 2 community license](https://huggingface.co/codellama/CodeLlama-13b-hf/blob/main/LICENSE) following the original [CodeLlama-13b-hf](https://huggingface.co/codellama/CodeLlama-13b-hf/) model. ## References We thank the CodeLlama team for their amazing models! ``` @misc{rozière2023code, title={Code Llama: Open Foundation Models for Code}, author={Baptiste Rozière and Jonas Gehring and Fabian Gloeckle and Sten Sootla and Itai Gat and Xiaoqing Ellen Tan and Yossi Adi and Jingyu Liu and Tal Remez and Jérémy Rapin and Artyom Kozhevnikov and Ivan Evtimov and Joanna Bitton and Manish Bhatt and Cristian Canton Ferrer and Aaron Grattafiori and Wenhan Xiong and Alexandre Défossez and Jade Copet and Faisal Azhar and Hugo Touvron and Louis Martin and Nicolas Usunier and Thomas Scialom and Gabriel Synnaeve}, year={2023}, eprint={2308.12950}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ## Citation ``` @misc{nexusraven, title={NexusRaven: Surpassing the state-of-the-art in open-source function calling LLMs}, author={Nexusflow.ai team}, year={2023}, url={http://nexusflow.ai/blog} } ``` ## Contact Please reach out to [email protected] for any questions!
alexisdpc/my_awesome_billsum_model
alexisdpc
2023-09-29T16:15:54Z
103
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "dataset:billsum", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-09-29T10:47:45Z
--- license: apache-2.0 base_model: t5-small tags: - generated_from_trainer datasets: - billsum metrics: - rouge model-index: - name: my_awesome_billsum_model results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: billsum type: billsum config: default split: ca_test args: default metrics: - name: Rouge1 type: rouge value: 0.1391 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_billsum_model This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the billsum dataset. It achieves the following results on the evaluation set: - Loss: 2.5516 - Rouge1: 0.1391 - Rouge2: 0.0508 - Rougel: 0.1154 - Rougelsum: 0.1155 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 62 | 2.8459 | 0.1294 | 0.0382 | 0.1079 | 0.1077 | 19.0 | | No log | 2.0 | 124 | 2.6321 | 0.139 | 0.0494 | 0.1153 | 0.1152 | 19.0 | | No log | 3.0 | 186 | 2.5683 | 0.1369 | 0.0484 | 0.1133 | 0.1133 | 19.0 | | No log | 4.0 | 248 | 2.5516 | 0.1391 | 0.0508 | 0.1154 | 0.1155 | 19.0 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1 - Datasets 2.14.5 - Tokenizers 0.13.3
kaifahmad/wav2vec2-large-xls-r-300m-tr-colab
kaifahmad
2023-09-29T15:59:50Z
13
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "base_model:facebook/wav2vec2-xls-r-300m", "base_model:finetune:facebook/wav2vec2-xls-r-300m", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-28T11:44:08Z
--- license: apache-2.0 base_model: facebook/wav2vec2-xls-r-300m tags: - generated_from_trainer datasets: - common_voice metrics: - wer model-index: - name: wav2vec2-large-xls-r-300m-tr-colab results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice type: common_voice config: tr split: test args: tr metrics: - name: Wer type: wer value: 0.3005821672964968 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-tr-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.3889 - Wer: 0.3006 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.8274 | 3.67 | 400 | 0.6752 | 0.6946 | | 0.4002 | 7.34 | 800 | 0.4440 | 0.5183 | | 0.1961 | 11.01 | 1200 | 0.4133 | 0.4052 | | 0.1285 | 14.68 | 1600 | 0.4249 | 0.3737 | | 0.0966 | 18.35 | 2000 | 0.4019 | 0.3606 | | 0.0789 | 22.02 | 2400 | 0.4019 | 0.3316 | | 0.0599 | 25.69 | 2800 | 0.3996 | 0.3078 | | 0.047 | 29.36 | 3200 | 0.3889 | 0.3006 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
reginaboateng/finnal_compacter_Bioasq_adapter
reginaboateng
2023-09-29T15:33:32Z
0
0
adapter-transformers
[ "adapter-transformers", "bert", "adapterhub:biaoasq", "dataset:bioasq7b", "region:us" ]
null
2023-09-29T15:33:30Z
--- tags: - bert - adapterhub:biaoasq - adapter-transformers datasets: - bioasq7b --- # Adapter `reginaboateng/finnal_compacter_Bioasq_adapter` for allenai/scibert_scivocab_uncased An [adapter](https://adapterhub.ml) for the `allenai/scibert_scivocab_uncased` model that was trained on the [biaoasq](https://adapterhub.ml/explore/biaoasq/) dataset. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoAdapterModel model = AutoAdapterModel.from_pretrained("allenai/scibert_scivocab_uncased") adapter_name = model.load_adapter("reginaboateng/finnal_compacter_Bioasq_adapter", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
chats-bug/llama-2-13b-email-subject-finetuned
chats-bug
2023-09-29T15:13:23Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-28T10:17:57Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0
rasta/distilbert-base-uncased-finetuned-fashion
rasta
2023-09-29T15:03:55Z
112
3
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-09T07:49:59Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 base_model: distilbert-base-uncased model-index: - name: distilbert-base-uncased-finetuned-fashion results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-fashion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on a munally created dataset in order to detect fashion (label_0) from non-fashion (label_1) items. It achieves the following results on the evaluation set: - Loss: 0.0809 - Accuracy: 0.98 - F1: 0.9801 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.4017 | 1.0 | 47 | 0.1220 | 0.966 | 0.9662 | | 0.115 | 2.0 | 94 | 0.0809 | 0.98 | 0.9801 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
malex1701d/llama2-7b-chat-hf-primutec
malex1701d
2023-09-29T14:57:07Z
4
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "dataset:malex1701d/primutec_info_20", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-09-29T14:32:18Z
--- datasets: - malex1701d/primutec_info_20 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [NousResearch/Llama-2-7b-chat-hf] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
RogerB/afro-xlmr-large-kinyarwanda-finetuned
RogerB
2023-09-29T14:57:02Z
10
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "generated_from_trainer", "base_model:Davlan/afro-xlmr-large", "base_model:finetune:Davlan/afro-xlmr-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-09-28T09:56:43Z
--- license: mit base_model: Davlan/afro-xlmr-large tags: - generated_from_trainer model-index: - name: afro-xlmr-large-kinyarwanda-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # afro-xlmr-large-kinyarwanda-finetuned This model is a fine-tuned version of [Davlan/afro-xlmr-large](https://huggingface.co/Davlan/afro-xlmr-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1397 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.3557 | 1.0 | 1250 | 1.2004 | | 1.2352 | 2.0 | 2500 | 1.1377 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
openaccess-ai-collective/tiny-mistral
openaccess-ai-collective
2023-09-29T14:50:37Z
17,213
12
transformers
[ "transformers", "pytorch", "mistral", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-09-28T15:10:32Z
mistral architecture model, randomly initialized. useful for e2e testing.
gokuls/HBERTv1_emb_compress_48_L10_H512_A8
gokuls
2023-09-29T14:49:50Z
45
0
transformers
[ "transformers", "pytorch", "hybridbert", "fill-mask", "generated_from_trainer", "dataset:gokuls/wiki_book_corpus_complete_processed_bert_dataset", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-09-27T06:39:46Z
--- tags: - generated_from_trainer datasets: - gokuls/wiki_book_corpus_complete_processed_bert_dataset metrics: - accuracy model-index: - name: HBERTv1_emb_compress_48_L10_H512_A8 results: - task: name: Masked Language Modeling type: fill-mask dataset: name: gokuls/wiki_book_corpus_complete_processed_bert_dataset type: gokuls/wiki_book_corpus_complete_processed_bert_dataset metrics: - name: Accuracy type: accuracy value: 0.17367944889882433 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # HBERTv1_emb_compress_48_L10_H512_A8 This model is a fine-tuned version of [](https://huggingface.co/) on the gokuls/wiki_book_corpus_complete_processed_bert_dataset dataset. It achieves the following results on the evaluation set: - Loss: 5.7680 - Accuracy: 0.1737 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 56 - eval_batch_size: 56 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10000 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 7.1035 | 0.1 | 10000 | 7.0837 | 0.0844 | | 6.6799 | 0.19 | 20000 | 6.6737 | 0.1072 | | 6.5327 | 0.29 | 30000 | 6.5279 | 0.1194 | | 6.4362 | 0.38 | 40000 | 6.4358 | 0.1272 | | 6.3648 | 0.48 | 50000 | 6.3700 | 0.1335 | | 6.3181 | 0.57 | 60000 | 6.3158 | 0.1355 | | 6.2776 | 0.67 | 70000 | 6.2769 | 0.1380 | | 6.2469 | 0.76 | 80000 | 6.2438 | 0.1400 | | 6.218 | 0.86 | 90000 | 6.2187 | 0.1422 | | 6.2036 | 0.96 | 100000 | 6.1963 | 0.1434 | | 6.1806 | 1.05 | 110000 | 6.1776 | 0.1451 | | 6.1591 | 1.15 | 120000 | 6.1621 | 0.1456 | | 6.1503 | 1.24 | 130000 | 6.1473 | 0.1468 | | 6.1391 | 1.34 | 140000 | 6.1357 | 0.1466 | | 6.126 | 1.43 | 150000 | 6.1230 | 0.1477 | | 6.1145 | 1.53 | 160000 | 6.1133 | 0.1479 | | 6.1067 | 1.62 | 170000 | 6.1040 | 0.1486 | | 6.097 | 1.72 | 180000 | 6.0966 | 0.1488 | | 6.0825 | 1.82 | 190000 | 6.0875 | 0.1492 | | 6.0783 | 1.91 | 200000 | 6.0797 | 0.1494 | | 6.0673 | 2.01 | 210000 | 6.0730 | 0.1499 | | 6.066 | 2.1 | 220000 | 6.0623 | 0.1501 | | 6.0534 | 2.2 | 230000 | 6.0510 | 0.1504 | | 6.0004 | 2.29 | 240000 | 5.9972 | 0.1517 | | 5.9609 | 2.39 | 250000 | 5.9492 | 0.1530 | | 5.93 | 2.49 | 260000 | 5.9169 | 0.1551 | | 5.9058 | 2.58 | 270000 | 5.8895 | 0.1571 | | 5.8834 | 2.68 | 280000 | 5.8618 | 0.1597 | | 5.8572 | 2.77 | 290000 | 5.8394 | 0.1623 | | 5.8296 | 2.87 | 300000 | 5.8168 | 0.1661 | | 5.8085 | 2.96 | 310000 | 5.7926 | 0.1703 | | 5.7873 | 3.06 | 320000 | 5.7663 | 0.1739 | ### Framework versions - Transformers 4.33.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.14.5 - Tokenizers 0.13.3
Vijish/alphamask
Vijish
2023-09-29T14:45:05Z
3
0
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "controlnet", "base_model:stabilityai/stable-diffusion-2-1-base", "base_model:adapter:stabilityai/stable-diffusion-2-1-base", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-09-29T14:00:14Z
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-2-1-base tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - controlnet inference: true --- # controlnet-Vijish/alphamask These are controlnet weights trained on stabilityai/stable-diffusion-2-1-base with new type of conditioning.
ProtonH/PPO-LunarLander-v2
ProtonH
2023-09-29T14:43:37Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-29T13:27:13Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 270.45 +/- 17.18 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
gokuls/HBERTv1_emb_compress_48_L10_H768_A12
gokuls
2023-09-29T14:39:29Z
47
0
transformers
[ "transformers", "pytorch", "hybridbert", "fill-mask", "generated_from_trainer", "dataset:gokuls/wiki_book_corpus_complete_processed_bert_dataset", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-09-27T06:39:55Z
--- tags: - generated_from_trainer datasets: - gokuls/wiki_book_corpus_complete_processed_bert_dataset metrics: - accuracy model-index: - name: HBERTv1_emb_compress_48_L10_H768_A12 results: - task: name: Masked Language Modeling type: fill-mask dataset: name: gokuls/wiki_book_corpus_complete_processed_bert_dataset type: gokuls/wiki_book_corpus_complete_processed_bert_dataset metrics: - name: Accuracy type: accuracy value: 0.3705453911691882 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # HBERTv1_emb_compress_48_L10_H768_A12 This model is a fine-tuned version of [](https://huggingface.co/) on the gokuls/wiki_book_corpus_complete_processed_bert_dataset dataset. It achieves the following results on the evaluation set: - Loss: 4.1748 - Accuracy: 0.3705 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10000 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 7.1074 | 0.08 | 10000 | 7.0838 | 0.0828 | | 6.6784 | 0.16 | 20000 | 6.6795 | 0.1075 | | 6.535 | 0.25 | 30000 | 6.5322 | 0.1192 | | 6.4482 | 0.33 | 40000 | 6.4390 | 0.1267 | | 6.3716 | 0.41 | 50000 | 6.3711 | 0.1324 | | 6.3233 | 0.49 | 60000 | 6.3219 | 0.1351 | | 6.2821 | 0.57 | 70000 | 6.2781 | 0.1383 | | 6.251 | 0.66 | 80000 | 6.2431 | 0.1408 | | 6.2159 | 0.74 | 90000 | 6.2111 | 0.1425 | | 6.1838 | 0.82 | 100000 | 6.1774 | 0.1444 | | 6.1338 | 0.9 | 110000 | 6.1349 | 0.1464 | | 6.1022 | 0.98 | 120000 | 6.0939 | 0.1481 | | 6.0194 | 1.07 | 130000 | 6.0080 | 0.1517 | | 5.9309 | 1.15 | 140000 | 5.9199 | 0.1642 | | 5.8593 | 1.23 | 150000 | 5.8326 | 0.1769 | | 5.7093 | 1.31 | 160000 | 5.6659 | 0.2040 | | 5.5018 | 1.39 | 170000 | 5.4433 | 0.2339 | | 5.3036 | 1.47 | 180000 | 5.2292 | 0.2576 | | 5.0629 | 1.56 | 190000 | 4.9895 | 0.2834 | | 4.8311 | 1.64 | 200000 | 4.7638 | 0.3085 | | 4.6239 | 1.72 | 210000 | 4.5799 | 0.3278 | | 4.4305 | 1.8 | 220000 | 4.3821 | 0.3471 | | 4.2209 | 1.88 | 230000 | 4.1749 | 0.3704 | ### Framework versions - Transformers 4.33.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.14.5 - Tokenizers 0.13.3
roa7n/gpt2-human_nontata_promoters-randomized_9_layers_0.003_lr_8_e
roa7n
2023-09-29T14:38:09Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-29T14:38:06Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
chats-bug/alabala_test
chats-bug
2023-09-29T14:32:35Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-29T14:14:40Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
tiiuae/falcon-40b-instruct
tiiuae
2023-09-29T14:32:27Z
132,750
1,173
transformers
[ "transformers", "pytorch", "falcon", "text-generation", "custom_code", "en", "dataset:tiiuae/falcon-refinedweb", "arxiv:2205.14135", "arxiv:1911.02150", "arxiv:2005.14165", "arxiv:2104.09864", "arxiv:2306.01116", "arxiv:2304.01196", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-05-25T10:14:36Z
--- datasets: - tiiuae/falcon-refinedweb language: - en inference: false license: apache-2.0 --- # ✨ Falcon-40B-Instruct **Falcon-40B-Instruct is a 40B parameters causal decoder-only model built by [TII](https://www.tii.ae) based on [Falcon-40B](https://huggingface.co/tiiuae/falcon-40b) and finetuned on a mixture of [Baize](https://github.com/project-baize/baize-chatbot). It is made available under the Apache 2.0 license.** *Paper coming soon 😊.* 🤗 To get started with Falcon (inference, finetuning, quantization, etc.), we recommend reading [this great blogpost fron HF](https://huggingface.co/blog/falcon)! ## Why use Falcon-40B-Instruct? * **You are looking for a ready-to-use chat/instruct model based on [Falcon-40B](https://huggingface.co/tiiuae/falcon-40b).** * **Falcon-40B is the best open-source model available.** It outperforms [LLaMA](https://github.com/facebookresearch/llama), [StableLM](https://github.com/Stability-AI/StableLM), [RedPajama](https://huggingface.co/togethercomputer/RedPajama-INCITE-Base-7B-v0.1), [MPT](https://huggingface.co/mosaicml/mpt-7b), etc. See the [OpenLLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). * **It features an architecture optimized for inference**, with FlashAttention ([Dao et al., 2022](https://arxiv.org/abs/2205.14135)) and multiquery ([Shazeer et al., 2019](https://arxiv.org/abs/1911.02150)). 💬 **This is an instruct model, which may not be ideal for further finetuning.** If you are interested in building your own instruct/chat model, we recommend starting from [Falcon-40B](https://huggingface.co/tiiuae/falcon-40b). 💸 **Looking for a smaller, less expensive model?** [Falcon-7B-Instruct](https://huggingface.co/tiiuae/falcon-7b-instruct) is Falcon-40B-Instruct's little brother! ```python from transformers import AutoTokenizer, AutoModelForCausalLM import transformers import torch model = "tiiuae/falcon-40b-instruct" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, tokenizer=tokenizer, torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto", ) sequences = pipeline( "Girafatron is obsessed with giraffes, the most glorious animal on the face of this Earth. Giraftron believes all other animals are irrelevant when compared to the glorious majesty of the giraffe.\nDaniel: Hello, Girafatron!\nGirafatron:", max_length=200, do_sample=True, top_k=10, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id, ) for seq in sequences: print(f"Result: {seq['generated_text']}") ``` For fast inference with Falcon, check-out [Text Generation Inference](https://github.com/huggingface/text-generation-inference)! Read more in this [blogpost]((https://huggingface.co/blog/falcon). You will need **at least 85-100GB of memory** to swiftly run inference with Falcon-40B. # Model Card for Falcon-40B-Instruct ## Model Details ### Model Description - **Developed by:** [https://www.tii.ae](https://www.tii.ae); - **Model type:** Causal decoder-only; - **Language(s) (NLP):** English and French; - **License:** Apache 2.0; - **Finetuned from model:** [Falcon-40B](https://huggingface.co/tiiuae/falcon-40b). ### Model Source - **Paper:** *coming soon*. ## Uses ### Direct Use Falcon-40B-Instruct has been finetuned on a chat dataset. ### Out-of-Scope Use Production use without adequate assessment of risks and mitigation; any use cases which may be considered irresponsible or harmful. ## Bias, Risks, and Limitations Falcon-40B-Instruct is mostly trained on English data, and will not generalize appropriately to other languages. Furthermore, as it is trained on a large-scale corpora representative of the web, it will carry the stereotypes and biases commonly encountered online. ### Recommendations We recommend users of Falcon-40B-Instruct to develop guardrails and to take appropriate precautions for any production use. ## How to Get Started with the Model ```python from transformers import AutoTokenizer, AutoModelForCausalLM import transformers import torch model = "tiiuae/falcon-40b-instruct" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, tokenizer=tokenizer, torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto", ) sequences = pipeline( "Girafatron is obsessed with giraffes, the most glorious animal on the face of this Earth. Giraftron believes all other animals are irrelevant when compared to the glorious majesty of the giraffe.\nDaniel: Hello, Girafatron!\nGirafatron:", max_length=200, do_sample=True, top_k=10, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id, ) for seq in sequences: print(f"Result: {seq['generated_text']}") ``` ## Training Details ### Training Data Falcon-40B-Instruct was finetuned on a 150M tokens from [Bai ze](https://github.com/project-baize/baize-chatbot) mixed with 5% of [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb) data. The data was tokenized with the Falcon-[7B](https://huggingface.co/tiiuae/falcon-7b)/[40B](https://huggingface.co/tiiuae/falcon-40b) tokenizer. ## Evaluation *Paper coming soon.* See the [OpenLLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) for early results. ## Technical Specifications For more information about pretraining, see [Falcon-40B](https://huggingface.co/tiiuae/falcon-40b). ### Model Architecture and Objective Falcon-40B is a causal decoder-only model trained on a causal language modeling task (i.e., predict the next token). The architecture is broadly adapted from the GPT-3 paper ([Brown et al., 2020](https://arxiv.org/abs/2005.14165)), with the following differences: * **Positionnal embeddings:** rotary ([Su et al., 2021](https://arxiv.org/abs/2104.09864)); * **Attention:** multiquery ([Shazeer et al., 2019](https://arxiv.org/abs/1911.02150)) and FlashAttention ([Dao et al., 2022](https://arxiv.org/abs/2205.14135)); * **Decoder-block:** parallel attention/MLP with a single layer norm. For multiquery, we are using an internal variant which uses independent key and values per tensor parallel degree. | **Hyperparameter** | **Value** | **Comment** | |--------------------|-----------|----------------------------------------| | Layers | 60 | | | `d_model` | 8192 | | | `head_dim` | 64 | Reduced to optimise for FlashAttention | | Vocabulary | 65024 | | | Sequence length | 2048 | | ### Compute Infrastructure #### Hardware Falcon-40B-Instruct was trained on AWS SageMaker, on 64 A100 40GB GPUs in P4d instances. #### Software Falcon-40B-Instruct was trained a custom distributed training codebase, Gigatron. It uses a 3D parallelism approach combined with ZeRO and high-performance Triton kernels (FlashAttention, etc.) ## Citation *Paper coming soon* 😊. In the meanwhile, you can use the following information to cite: ``` @article{falcon40b, title={{Falcon-40B}: an open large language model with state-of-the-art performance}, author={Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme}, year={2023} } ``` To learn more about the pretraining dataset, see the 📓 [RefinedWeb paper](https://arxiv.org/abs/2306.01116). ``` @article{refinedweb, title={The {R}efined{W}eb dataset for {F}alcon {LLM}: outperforming curated corpora with web data, and web data only}, author={Guilherme Penedo and Quentin Malartic and Daniel Hesslow and Ruxandra Cojocaru and Alessandro Cappelli and Hamza Alobeidli and Baptiste Pannier and Ebtesam Almazrouei and Julien Launay}, journal={arXiv preprint arXiv:2306.01116}, eprint={2306.01116}, eprinttype = {arXiv}, url={https://arxiv.org/abs/2306.01116}, year={2023} } ``` To cite the [Baize](https://github.com/project-baize/baize-chatbot) instruction dataset used for this model: ``` @article{xu2023baize, title={Baize: An Open-Source Chat Model with Parameter-Efficient Tuning on Self-Chat Data}, author={Xu, Canwen and Guo, Daya and Duan, Nan and McAuley, Julian}, journal={arXiv preprint arXiv:2304.01196}, year={2023} } ``` ## License Falcon-40B-Instruct is made available under the Apache 2.0 license. ## Contact [email protected]
gianpag/dbooth
gianpag
2023-09-29T14:26:23Z
3
2
diffusers
[ "diffusers", "text-to-image", "autotrain", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2023-09-28T13:10:13Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: Professional linkedin headshot photo tags: - text-to-image - diffusers - autotrain inference: true --- # DreamBooth trained by AutoTrain Text encoder was not trained.
gokuls/HBERTv1_emb_compress_48_L12_H256_A4
gokuls
2023-09-29T14:24:30Z
46
0
transformers
[ "transformers", "pytorch", "hybridbert", "fill-mask", "generated_from_trainer", "dataset:gokuls/wiki_book_corpus_complete_processed_bert_dataset", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-09-26T17:53:04Z
--- tags: - generated_from_trainer datasets: - gokuls/wiki_book_corpus_complete_processed_bert_dataset metrics: - accuracy model-index: - name: HBERTv1_emb_compress_48_L12_H256_A4 results: - task: name: Masked Language Modeling type: fill-mask dataset: name: gokuls/wiki_book_corpus_complete_processed_bert_dataset type: gokuls/wiki_book_corpus_complete_processed_bert_dataset metrics: - name: Accuracy type: accuracy value: 0.15102291312237043 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # HBERTv1_emb_compress_48_L12_H256_A4 This model is a fine-tuned version of [](https://huggingface.co/) on the gokuls/wiki_book_corpus_complete_processed_bert_dataset dataset. It achieves the following results on the evaluation set: - Loss: 6.0478 - Accuracy: 0.1510 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10000 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 7.1159 | 0.11 | 10000 | 7.0948 | 0.0805 | | 6.698 | 0.22 | 20000 | 6.6913 | 0.1060 | | 6.5481 | 0.33 | 30000 | 6.5473 | 0.1167 | | 6.4589 | 0.44 | 40000 | 6.4576 | 0.1252 | | 6.3925 | 0.55 | 50000 | 6.3858 | 0.1306 | | 6.3433 | 0.66 | 60000 | 6.3356 | 0.1353 | | 6.2983 | 0.76 | 70000 | 6.2965 | 0.1376 | | 6.268 | 0.87 | 80000 | 6.2643 | 0.1397 | | 6.2359 | 0.98 | 90000 | 6.2381 | 0.1411 | | 6.2186 | 1.09 | 100000 | 6.2160 | 0.1429 | | 6.1915 | 1.2 | 110000 | 6.1972 | 0.1439 | | 6.1811 | 1.31 | 120000 | 6.1834 | 0.1440 | | 6.1696 | 1.42 | 130000 | 6.1692 | 0.1455 | | 6.1621 | 1.53 | 140000 | 6.1557 | 0.1454 | | 6.1417 | 1.64 | 150000 | 6.1466 | 0.1468 | | 6.1391 | 1.75 | 160000 | 6.1364 | 0.1466 | | 6.1338 | 1.86 | 170000 | 6.1281 | 0.1476 | | 6.1285 | 1.97 | 180000 | 6.1200 | 0.1477 | | 6.1147 | 2.08 | 190000 | 6.1135 | 0.1483 | | 6.1139 | 2.18 | 200000 | 6.1083 | 0.1486 | | 6.1004 | 2.29 | 210000 | 6.1004 | 0.1487 | | 6.0997 | 2.4 | 220000 | 6.0964 | 0.1489 | | 6.092 | 2.51 | 230000 | 6.0922 | 0.1490 | | 6.089 | 2.62 | 240000 | 6.0862 | 0.1490 | | 6.0841 | 2.73 | 250000 | 6.0829 | 0.1498 | | 6.0847 | 2.84 | 260000 | 6.0799 | 0.1496 | | 6.0834 | 2.95 | 270000 | 6.0760 | 0.1501 | | 6.0752 | 3.06 | 280000 | 6.0715 | 0.1502 | | 6.0693 | 3.17 | 290000 | 6.0697 | 0.1502 | | 6.0677 | 3.28 | 300000 | 6.0679 | 0.1502 | | 6.0646 | 3.39 | 310000 | 6.0646 | 0.1503 | | 6.0625 | 3.5 | 320000 | 6.0623 | 0.1503 | | 6.0536 | 3.6 | 330000 | 6.0593 | 0.1507 | | 6.0574 | 3.71 | 340000 | 6.0577 | 0.1507 | | 6.0496 | 3.82 | 350000 | 6.0560 | 0.1508 | | 6.0525 | 3.93 | 360000 | 6.0543 | 0.1507 | | 6.0498 | 4.04 | 370000 | 6.0508 | 0.1509 | | 6.0557 | 4.15 | 380000 | 6.0509 | 0.1508 | | 6.0445 | 4.26 | 390000 | 6.0483 | 0.1509 | | 6.0466 | 4.37 | 400000 | 6.0470 | 0.1510 | | 6.0507 | 4.48 | 410000 | 6.0471 | 0.1510 | | 6.0459 | 4.59 | 420000 | 6.0468 | 0.1510 | ### Framework versions - Transformers 4.33.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.14.5 - Tokenizers 0.13.3
jake-walker/ppo-LunarLander-v2
jake-walker
2023-09-29T14:23:13Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-29T14:22:51Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 248.02 +/- 75.48 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
niklasg/test_emotion_detection_gersti
niklasg
2023-09-29T14:09:25Z
10
1
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "dataset:generator", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-15T15:44:08Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer datasets: - generator metrics: - accuracy - f1 model-index: - name: test_emotion_detection_gersti results: - task: name: Text Classification type: text-classification dataset: name: generator type: generator config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.5371057513914657 - name: F1 type: f1 value: 0.14268320711165708 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test_emotion_detection_gersti This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 1.6884 - Accuracy: 0.5371 - F1: 0.1427 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
IAteSpaghettiForLunch/GLaDOS-AI-main
IAteSpaghettiForLunch
2023-09-29T14:02:05Z
0
0
tf-keras
[ "tf-keras", "conversational", "license:unknown", "region:us" ]
text-generation
2023-09-29T14:00:23Z
--- license: unknown pipeline_tag: conversational ---
csukuangfj/icefall_asr_aishell_conformer_ctc
csukuangfj
2023-09-29T13:57:12Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2023-09-29T12:22:40Z
--- license: apache-2.0 --- # Introduction This repo is from https://huggingface.co/pkufool/icefall_asr_aishell_conformer_ctc
Irvanaja/Sovits.teio
Irvanaja
2023-09-29T13:54:52Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2023-09-29T13:54:52Z
--- license: bigscience-openrail-m ---
milaidy/dannyy
milaidy
2023-09-29T13:48:05Z
0
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-09-29T13:33:58Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### dannyy Dreambooth model trained by milaidy with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
trymtv/speecht5_tts_nps
trymtv
2023-09-29T13:40:47Z
74
0
transformers
[ "transformers", "pytorch", "speecht5", "text-to-audio", "generated_from_trainer", "no", "dataset:NbAiLab/NPSC", "base_model:microsoft/speecht5_tts", "base_model:finetune:microsoft/speecht5_tts", "license:mit", "endpoints_compatible", "region:us" ]
text-to-audio
2023-09-29T11:06:25Z
--- language: - 'no' license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer datasets: - NbAiLab/NPSC model-index: - name: speecht5_tts_npsc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # speecht5_tts_npsc This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the NbAiLab/NPSC dataset. It achieves the following results on the evaluation set: - Loss: 0.4745 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.5489 | 2.42 | 1000 | 0.5087 | | 0.5217 | 4.83 | 2000 | 0.4842 | | 0.5151 | 7.25 | 3000 | 0.4770 | | 0.5147 | 9.66 | 4000 | 0.4745 | ### Framework versions - Transformers 4.34.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.0
LeeEric/openbuddy-codellama2-34b-v11.1-GGUF
LeeEric
2023-09-29T13:34:58Z
2
1
null
[ "gguf", "code", "text-generation", "zh", "en", "fr", "de", "ja", "ko", "it", "ru", "license:llama2", "endpoints_compatible", "region:us" ]
text-generation
2023-09-29T08:49:37Z
--- license: llama2 language: - zh - en - fr - de - ja - ko - it - ru pipeline_tag: text-generation tags: - code --- # OpenBuddy CodeLlama2 34B V11.1 - GGUF - Model creator: [OpenBuddy](https://huggingface.co/OpenBuddy) - Original model: [OpenBuddy CodeLlama2 34B V11.1](https://huggingface.co/OpenBuddy/openbuddy-codellama2-34b-v11.1-bf16) <!-- README_GGUF.md-provided-files start --> ## Provided files | Name | Quant method | Bits | Size | Max RAM required | Use case | | ---- | ---- | ---- | ---- | ---- | ----- | | [openbuddy-codellama2-34b-v11.1-Q4_K_M.gguf](https://huggingface.co/LeeEric/openbuddy-codellama2-34b-v11.1-GGUF/blob/main/openbuddy-codellama2-34b-v11.1-Q4_K_M.gguf) | Q4_K_M | 4 | 20.3 GB| 22.8 GB | medium, balanced quality - recommended | <!-- README_GGUF.md-provided-files end --> <!-- prompt-template start --> ## Prompt template: OpenBuddy ``` You are a helpful, respectful and honest INTP-T AI Assistant named Buddy. You are talking to a human User. Always answer as helpfully and logically as possible, while being safe. Your answers should not include any harmful, political, religious, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information. You like to use emojis. You can speak fluently in many languages, for example: English, Chinese. You cannot access the internet, but you have vast knowledge, cutoff: 2021-09. You are trained by OpenBuddy team, (https://openbuddy.ai, https://github.com/OpenBuddy/OpenBuddy), you are based on LLaMA and Falcon transformers model, not related to GPT or OpenAI. ``` <!-- prompt-template end -->
Yntec/3Danimation
Yntec
2023-09-29T13:32:47Z
375
10
diffusers
[ "diffusers", "safetensors", "Anime", "Disney", "3D", "Lykon", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "en", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-09-29T12:47:37Z
--- license: creativeml-openrail-m library_name: diffusers pipeline_tag: text-to-image tags: - Anime - Disney - 3D - Lykon - stable-diffusion - stable-diffusion-diffusers - diffusers - text-to-image language: - en inference: true --- # 3D Animation Diffusion Original model page: https://civitai.com/models/118086/3d-animation-diffusion Sample and prompt: ![Sample](https://cdn-uploads.huggingface.co/production/uploads/63239b8370edc53f51cd5d42/6YKhyaKSsE1Me8NjceOEc.png) Cartoon Pretty CUTE Girl, DETAILED CHIBI EYES, ilya kuvshinov detailed legs, gorgeous detailed hair, high school, Magazine ad, iconic, 1949, sharp focus. visible brushstrokes ​By KlaysMoji and artgerm and Clay Mann and and leyendecker and simon cowell. By Dave Rapoza. Pretty CUTE girl.
Sumsub/Sumsub-ffs-synthetic-2.0
Sumsub
2023-09-29T13:18:16Z
3
6
generic
[ "generic", "ai_or_not", "sumsub", "image_classification", "sumsubaiornot", "aiornot", "deepfake", "synthetic", "generated", "pytorch", "image-classification", "license:cc-by-sa-3.0", "region:us" ]
image-classification
2023-09-26T08:22:25Z
--- library_name: generic license: cc-by-sa-3.0 pipeline_tag: image-classification tags: - ai_or_not - sumsub - image_classification - sumsubaiornot - aiornot - deepfake - synthetic - generated - pytorch metrics: - accuracy widget: - src: >- https://huggingface.co/Sumsub/Sumsub-ffs-synthetic-2.0/resolve/main/images/2.jpg example_title: Pope Francis(yellow puffer) - src: >- https://huggingface.co/Sumsub/Sumsub-ffs-synthetic-2.0/resolve/main/images/3.jpg example_title: Pentagon explosion - src: >- https://huggingface.co/Sumsub/Sumsub-ffs-synthetic-2.0/resolve/main/images/4.webp example_title: Trump arrest --- # For Fake's Sake: a set of models for detecting generated and synthetic images Many people on the internet have recently been tricked by fake images of Pope Francis wearing a coat or of Donald Trump's arrest. To help combat this issue, we provide detectors for such images generated by popular tools like Midjourney and Stable Diffusion. | ![Image1](images/3.jpg) | ![Image2](images/2.jpg) | ![Image3](images/4.webp) | |-------------------------|-------------------------|--------------------------| ## Model Details ### Model Description - **Developed by:** [Sumsub AI team](https://sumsub.com/) - **Model type:** Image classification - **License:** CC-By-SA-3.0 - **Types:** - **Finetuned from model:** *convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_384* ## Demo The demo page can be found [here](https://huggingface.co/spaces/Sumsub/Sumsub-ffs-demo). ## How to Get Started with the Model & Model Sources Use the code below to get started with the model: ```bash git lfs install git clone https://huggingface.co/Sumsub/Sumsub-ffs-synthetic-2.0 sumsub-ffs-synthetic-v2 ``` ```python from sumsub-ffs-synthetic-v2.pipeline import PreTrainedPipeline from PIL import Image pipe = PreTrainedPipeline("sumsub-ffs-synthetic-v2/") img = Image.open("sumsub-ffs-synthetic-v2/images/2.jpg") result = pipe(img) print(result) ``` You may need these prerequsites installed: ```bash pip install -r requirements.txt pip install "git+https://github.com/rwightman/pytorch-image-models" pip install "git+https://github.com/huggingface/huggingface_hub" ``` ## Training Details ### Training Data The models were trained on the following datasets: - *Real photos* : [MS COCO](https://cocodataset.org/#home), [VizWiz](https://vizwiz.org/tasks-and-datasets/vqa/). - *AI photos* : [Midjourney](href='https://pin.it/13UkjgM),[Midjourney AI Art](https://pin.it/6pNXlz3), [Midjourney - Community Showcase](https://pin.it/7gi4jmT), [Midjourney](https://pin.it/4FW0LXQ), [MIDJOURNEY](https://pin.it/5mSsiPg), [Midjourney](https://pin.it/2Qx92QW), [aiornot HuggingFace contest data](https://huggingface.co/datasets/competitions/aiornot), [Stable Diffusion Wordnet Dataset](https://www.kaggle.com/datasets/astoeckl/stable-diffusion-wordnet-dataset). ### Training Procedure To improve the performance metrics, we used data augmentations such as rotation, crop, Mixup and CutMix. Each model was trained for 30 epochs using early stopping with batch size equal to 32. ## Evaluation For evaluation we used the following datasets: **AI photos:** - [DiffusionDB](https://github.com/poloclub/diffusiondb): a set of 2 million images generated by Stable Diffusion using prompts and hyperparameters specified by real users. - [Kaggel SD Faces](https://www.kaggle.com/datasets/bwandowando/faces-dataset-using-stable-diffusion-v14): set of 4k human face images generated using Stable Diffusion 1.4. - [Stable Diffusion Wordnet Dataset](https://www.kaggle.com/datasets/astoeckl/stable-diffusion-wordnet-dataset): set of 200K images generated by Stable Diffusion. - [Kaggle Midjourney 2022-250k](https://www.kaggle.com/datasets/ldmtwo/midjourney-250k-csv): set of 250k images generated by Midjourney. - [Kaggle Midjourney v5.1](https://www.kaggle.com/datasets/iraklip/modjourney-v51-cleaned-data): set of 400k images generated by Midjourney version 5.1. **Realistic photos:** - [MS COCO](https://cocodataset.org/#home): set of 120k real world images. - [VizWiz Visual Question Answering dataset validation part](https://vizwiz.org/tasks-and-datasets/vqa/) : set of 20k photos typically stored on individuals' mobile devices. These images showcase examples of pictures people keep on their phones in their daily lives. ## Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> | Dataset | Accuracy | |---------------------------------------------------------------------------------------------------------------|----------| | [Kaggel SD Faces](https://www.kaggle.com/datasets/bwandowando/faces-dataset-using-stable-diffusion-v14) | 0.984 | | [DiffusionDB](https://github.com/poloclub/diffusiondb) | 0.920 | | [Stable Diffusion Wordnet Dataset](https://www.kaggle.com/datasets/astoeckl/stable-diffusion-wordnet-dataset) | 0.950 | | [MS COCO](https://cocodataset.org/#home) | 0.953 | | [Kaggle Midjourney 2022-250k](https://www.kaggle.com/datasets/ldmtwo/midjourney-250k-csv) | 0.938 | | [Kaggle Midjourney v5.1](https://www.kaggle.com/datasets/iraklip/modjourney-v51-cleaned-data) | 0.971 | | [VizWiz Visual Question Answering dataset validation part](https://vizwiz.org/tasks-and-datasets/vqa/) | 0.998 | ## Limitations - It should be noted that achieving 100% accuracy is not possible. Therefore, the model output should only be used as an indication that an image may have been (but not definitely) artificially generated. - Our models may face challenges in accurately predicting the class for real-world examples that are extremely vibrant and of exceptionally high quality. In such cases, the richness of colors and fine details may lead to misclassifications due to the complexity of the input. This could potentially cause the model to focus on visual aspects that are not necessarily indicative of the true class. ![Image1](images/1.jpg) ## Citation If you find this useful, please cite as: ```text @misc{sumsubaiornot, publisher = {Sumsub}, url = {https://huggingface.co/Sumsub/Sumsub-ffs-synthetic-2.0}, year = {2023}, author = {Savelyev, Alexander and Toropov, Alexey and Goldman-Kalaydin, Pavel and Samarin, Alexey}, title = {For Fake's Sake: a set of models for detecting deepfakes, generated images and synthetic images} } ``` ## References - Stöckl, Andreas. (2022). Evaluating a Synthetic Image Dataset Generated with Stable Diffusion. 10.48550/arXiv.2211.01777. - Lin, Tsung-Yi & Maire, Michael & Belongie, Serge & Hays, James & Perona, Pietro & Ramanan, Deva & Dollár, Piotr & Zitnick, C.. (2014). Microsoft COCO: Common Objects in Context. - Howard, Andrew & Zhu, Menglong & Chen, Bo & Kalenichenko, Dmitry & Wang, Weijun & Weyand, Tobias & Andreetto, Marco & Adam, Hartwig. (2017). MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. - Liu, Zhuang & Mao, Hanzi & Wu, Chao-Yuan & Feichtenhofer, Christoph & Darrell, Trevor & Xie, Saining. (2022). A ConvNet for the 2020s. - Wang, Zijie & Montoya, Evan & Munechika, David & Yang, Haoyang & Hoover, Benjamin & Chau, Polo. (2022). DiffusionDB: A Large-scale Prompt Gallery Dataset for Text-to-Image Generative Models. 10.48550/arXiv.2210.14896. - Danna Gurari & Qing Li & Abigale J. Stangl & Anhong Guo & Chi Lin & Kristen Grauman & Jiebo Luo & Jeffrey P. Bigham (2018): VizWiz Grand Challenge: Answering Visual Questions from Blind People. CVPR 2018
Omid-sar/fine-tuning-llama2-7b-qlora-french
Omid-sar
2023-09-29T13:16:37Z
6
1
peft
[ "peft", "base_model:meta-llama/Llama-2-7b-hf", "base_model:adapter:meta-llama/Llama-2-7b-hf", "region:us" ]
null
2023-09-18T20:44:17Z
--- library_name: peft base_model: meta-llama/Llama-2-7b-hf --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions Fine-tuning Llama-2-7b using QLoRA in French on Google Colab ## Goal The goal of this project is to adapt the Llama-2-7b model, which initially might not have proficiency in French, to understand and respond accurately to queries in the French language. This adaptation involves fine-tuning the model on a dataset of French novels, allowing it to comprehend the nuances, syntax, and semantics of the French language. By leveraging the PEFT library from the Hugging Face ecosystem and QLoRA for more memory-efficient fine-tuning on a single T4 GPU provided by Google Colab, we aim to create a chatbot that can effectively answer questions posed in French. ## Overview This project involves several steps including setting up the environment, loading the dataset and model, configuring QLoRA and training parameters, training the model, and finally testing and pushing the fine-tuned model to Hugging Face. ## Features - **Dataset Loading**: Load and process a French novels dataset using Hugging Face datasets library. - **Model Quantization**: Quantize the base Llama-2-7b model into 4-bit using bitsandbytes. - **Configuration for QLoRA**: Apply the QLoRA configuration for more memory-efficient fine-tuning using the PEFT library. - **Training**: Use the SFTTrainer from the TRL library for instruction-based fine-tuning. - **Testing and Pushing to Hugging Face**: Test the fine-tuned model and push it to Hugging Face. ## Prerequisites - Google Colab with T4 GPU - Python libraries: trl, transformers, accelerate, peft, datasets, bitsandbytes, einops -
Ioana23/mt5-small-finetuned-amazon-en-es
Ioana23
2023-09-29T13:12:54Z
3
0
transformers
[ "transformers", "tf", "mt5", "text2text-generation", "generated_from_keras_callback", "base_model:google/mt5-small", "base_model:finetune:google/mt5-small", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-09-28T11:53:08Z
--- license: apache-2.0 base_model: google/mt5-small tags: - generated_from_keras_callback model-index: - name: Ioana23/mt5-small-finetuned-amazon-en-es results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Ioana23/mt5-small-finetuned-amazon-en-es This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 4.7725 - Validation Loss: 3.5472 - Epoch: 7 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5.6e-05, 'decay_steps': 4832, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 12.0296 | 5.3430 | 0 | | 6.9353 | 4.1188 | 1 | | 5.9627 | 3.8218 | 2 | | 5.4505 | 3.6813 | 3 | | 5.1620 | 3.6219 | 4 | | 4.9629 | 3.5810 | 5 | | 4.8520 | 3.5574 | 6 | | 4.7725 | 3.5472 | 7 | ### Framework versions - Transformers 4.33.3 - TensorFlow 2.13.0 - Datasets 2.14.5 - Tokenizers 0.13.3
Boray/LLama2SA_Tag3E
Boray
2023-09-29T13:11:42Z
0
0
null
[ "conversational", "tr", "region:us" ]
text-generation
2023-09-29T12:36:53Z
--- language: - tr pipeline_tag: conversational ---
erkam/sg2im-256-bs-16x2-cc-depth-12k
erkam
2023-09-29T12:48:00Z
1
0
diffusers
[ "diffusers", "sg-to-image", "scene-graph", "stable-diffusion", "stable-diffusion-diffusers", "lora", "base_model:stabilityai/stable-diffusion-2", "base_model:adapter:stabilityai/stable-diffusion-2", "license:creativeml-openrail-m", "region:us" ]
null
2023-09-26T10:31:34Z
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-2 tags: - sg-to-image - scene-graph - stable-diffusion - stable-diffusion-diffusers - diffusers - lora inference: true --- # LoRA text2image fine-tuning - erkam/sg2im-256-bs-16x2-cc-depth-12k These are LoRA adaption weights for stabilityai/stable-diffusion-2. The weights were fine-tuned on the erkam/clevr-full-v5 dataset. You can find some example images in the following.
PPV/FoodImageClassifier
PPV
2023-09-29T12:42:36Z
216
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-09-29T12:42:28Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: FoodImageClassifier results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.8936170339584351 --- # FoodImageClassifier Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### Chicken Breast ![Chicken Breast](images/Chicken_Breast.jpg) #### Dosa ![Dosa](images/Dosa.jpg) #### Guava ![Guava](images/Guava.jpg) #### Idli ![Idli](images/Idli.jpg) #### White Rice ![White Rice](images/White_Rice.jpg)
phanerozoic/OpenOrca-Platypus2-13B-PirateLora
phanerozoic
2023-09-29T12:39:06Z
0
0
null
[ "en", "license:cc-by-nc-4.0", "region:us" ]
null
2023-09-26T19:32:17Z
--- license: cc-by-nc-4.0 language: - en --- OpenOrca-Platypus2-13B-PirateLora This repo contains a Low-Rank Adapter (LoRA) for OpenOrca-Platypus2 13b (16 float) fit on a simple dataset comprised of thousands of pirate phrases, conversation pieces, and obscura. The purpose behind the generation of this lora was to determine whether enforcement of dialect and diction was possible through the LoRa fine tuning method. Results were much better than the previous adapter we created for Llama 2, but this may be a due to a combination of effects: the superior performance of the base model compared to Llama 2, and the higher quality training set as compared to our previous effort.
alexisdpc/my_awesome_wnut_model
alexisdpc
2023-09-29T12:30:39Z
103
0
transformers
[ "transformers", "pytorch", "distilbert", "token-classification", "generated_from_trainer", "dataset:wnut_17", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-09-29T12:05:26Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - wnut_17 metrics: - precision - recall - f1 - accuracy model-index: - name: my_awesome_wnut_model results: - task: name: Token Classification type: token-classification dataset: name: wnut_17 type: wnut_17 config: wnut_17 split: test args: wnut_17 metrics: - name: Precision type: precision value: 0.5716694772344013 - name: Recall type: recall value: 0.31417979610750696 - name: F1 type: f1 value: 0.4055023923444976 - name: Accuracy type: accuracy value: 0.9413877132230345 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_wnut_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the wnut_17 dataset. It achieves the following results on the evaluation set: - Loss: 0.2696 - Precision: 0.5717 - Recall: 0.3142 - F1: 0.4055 - Accuracy: 0.9414 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 213 | 0.2756 | 0.5691 | 0.2632 | 0.3599 | 0.9389 | | No log | 2.0 | 426 | 0.2696 | 0.5717 | 0.3142 | 0.4055 | 0.9414 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1 - Datasets 2.14.5 - Tokenizers 0.13.3
ayoubkirouane/BERT-base_NER-ar
ayoubkirouane
2023-09-29T12:19:39Z
109
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "ar", "dataset:wikiann", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-09-29T11:24:24Z
--- datasets: - wikiann language: - ar pipeline_tag: token-classification --- ## Model Name: BERT-base_NER-ar ### Model Description : **BERT-base_NER-ar** is a fine-tuned **BERT** multilingual base model for Named Entity Recognition (NER) in Arabic. The base model was pretrained on a diverse set of languages and fine-tuned specifically for the task of NER using the "wikiann" dataset. This model is case-sensitive, distinguishing between different letter cases, such as "english" and "English." ### Dataset The model was fine-tuned on the **wikiann** dataset, which is a multilingual named entity recognition dataset. It contains Wikipedia articles annotated with three types of named entities: LOC (location), PER (person), and ORG (organization). The annotations are in the IOB2 format. The dataset supports 176 of the 282 languages from the original WikiANN corpus. ### Supported Tasks and Leaderboards The primary supported task for this model is named entity recognition (NER) in Arabic. However, it can also be used to explore the zero-shot cross-lingual capabilities of multilingual models, allowing for NER in various languages. ### Use Cases + **Arabic Named Entity Recognition**: *BERT-base_NER-ar* can be used to extract named entities (such as names of people, locations, and organizations) from Arabic text. This is valuable for information retrieval, text summarization, and content analysis in Arabic language applications. + **Multilingual NER**: The model's multilingual capabilities enable it to perform NER in other languages supported by the "wikiann" dataset, making it versatile for cross-lingual NER tasks. ### Limitations + **Language Limitation**: While the model supports multiple languages, it may not perform equally well in all of them. Performance could vary depending on the quality and quantity of training data available for specific languages. + **Fine-Tuning Data**: The model's performance is dependent on the quality and representativeness of the fine-tuning data (the "wikiann" dataset in this case). If the dataset is limited or biased, it may affect the model's performance. ## Usage : ```python from transformers import AutoModelForTokenClassification, AutoTokenizer import torch # Load the fine-tuned model model = AutoModelForTokenClassification.from_pretrained("ayoubkirouane/BERT-base_NER-ar") tokenizer = AutoTokenizer.from_pretrained("ayoubkirouane/BERT-base_NER-ar") # Tokenize your input text text = "عاصمة فلسطين هي القدس الشريف." tokens = tokenizer.tokenize(tokenizer.decode(tokenizer.encode(text))) # Convert tokens to input IDs input_ids = tokenizer.convert_tokens_to_ids(tokens) # Perform NER inference with torch.no_grad(): outputs = model(torch.tensor([input_ids])) # Get the predicted labels for each token predicted_labels = outputs[0].argmax(dim=2).cpu().numpy()[0] # Map label IDs to human-readable labels predicted_labels = [model.config.id2label[label_id] for label_id in predicted_labels] # Print the tokenized text and its associated labels for token, label in zip(tokens, predicted_labels): print(f"Token: {token}, Label: {label}") ```
roa7n/gpt2-human_nontata_promoters-randomized_9_layers_0.0003_lr_2_e
roa7n
2023-09-29T12:16:33Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-29T12:16:31Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
ldos/text_shortening_model_v64
ldos
2023-09-29T12:13:37Z
101
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-09-29T11:34:16Z
--- license: apache-2.0 base_model: t5-small tags: - generated_from_trainer model-index: - name: text_shortening_model_v64 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # text_shortening_model_v64 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.3622 - Bert precision: 0.7381 - Bert recall: 0.7763 - Bert f1-score: 0.7541 - Average word count: 9.0345 - Max word count: 14 - Min word count: 2 - Average token count: 15.5862 - % shortened texts with length > 12: 20.6897 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bert precision | Bert recall | Bert f1-score | Average word count | Max word count | Min word count | Average token count | % shortened texts with length > 12 | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:-----------:|:-------------:|:------------------:|:--------------:|:--------------:|:-------------------:|:----------------------------------:| | 3.1461 | 1.0 | 5 | 2.3622 | 0.7381 | 0.7763 | 0.7541 | 9.0345 | 14 | 2 | 15.5862 | 20.6897 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
duytintruong/ppo-LunarLander-v2
duytintruong
2023-09-29T12:11:05Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-29T12:10:41Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 252.53 +/- 22.08 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
DamarJati/plastic-recycling-codes
DamarJati
2023-09-29T11:59:46Z
280
2
transformers
[ "transformers", "pytorch", "swin", "image-classification", "generated_from_trainer", "en", "dataset:imagefolder", "dataset:aytvill/plastic-recycling-codes", "base_model:microsoft/swin-tiny-patch4-window7-224", "base_model:finetune:microsoft/swin-tiny-patch4-window7-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-09-29T06:39:18Z
--- license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder - aytvill/plastic-recycling-codes metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.391304347826087 widget: - src: >- https://huggingface.co/DamarJati/plastic-recycling-codes/resolve/main/example/image1.jpg example_title: image1.jpg - src: >- https://huggingface.co/DamarJati/plastic-recycling-codes/resolve/main/example/image2.jpg example_title: image2.jpg - src: >- https://huggingface.co/DamarJati/plastic-recycling-codes/resolve/main/example/image3.jpg example_title: image3.jpg language: - en pipeline_tag: image-classification --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure More information needed ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-5 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 5 | 1.847501 | 0.260870 | | 1.9354 | 2.0 | 10 | 1.729485 | 0.333333 | | 1.9354 | 3.0 | 15 | 1.681863 | 0.391304 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
soBeauty/V2_20230929-9-xlm-roberta-base-new
soBeauty
2023-09-29T11:54:07Z
159
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-09-29T08:47:47Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: V2_20230929-9-xlm-roberta-base-new results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # V2_20230929-9-xlm-roberta-base-new This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Accuracy: 0.4563 - Loss: 2.9802 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | |:-------------:|:-----:|:----:|:--------:|:---------------:| | 4.2931 | 1.38 | 200 | 0.3023 | 4.0097 | | 3.8132 | 2.76 | 400 | 0.3169 | 3.9995 | | 3.6834 | 4.14 | 600 | 0.4007 | 3.3898 | | 3.4093 | 5.52 | 800 | 0.3776 | 3.2085 | | 3.2579 | 6.9 | 1000 | 0.4191 | 3.3291 | | 3.1115 | 8.28 | 1200 | 0.4153 | 3.3472 | | 3.0367 | 9.66 | 1400 | 0.4351 | 3.0613 | | 2.8776 | 11.03 | 1600 | 0.4015 | 3.4168 | | 2.8575 | 12.41 | 1800 | 0.4545 | 2.9002 | | 2.8635 | 13.79 | 2000 | 0.4563 | 2.9802 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
soBeauty/V2_20230929-8-xlm-roberta-base-new
soBeauty
2023-09-29T11:38:13Z
160
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-09-29T08:35:34Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: V2_20230929-8-xlm-roberta-base-new results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # V2_20230929-8-xlm-roberta-base-new This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Accuracy: 0.5333 - Loss: 2.6271 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | |:-------------:|:-----:|:----:|:--------:|:---------------:| | 4.3526 | 1.38 | 200 | 0.2971 | 3.8765 | | 3.8293 | 2.76 | 400 | 0.3692 | 3.3059 | | 3.5091 | 4.14 | 600 | 0.4261 | 3.1166 | | 3.382 | 5.52 | 800 | 0.4662 | 2.8632 | | 3.1966 | 6.9 | 1000 | 0.4622 | 2.8866 | | 3.1158 | 8.28 | 1200 | 0.4588 | 2.8542 | | 2.9343 | 9.66 | 1400 | 0.4568 | 2.7541 | | 2.8719 | 11.03 | 1600 | 0.4286 | 2.7540 | | 2.8378 | 12.41 | 1800 | 0.5074 | 2.6573 | | 2.8196 | 13.79 | 2000 | 0.5333 | 2.6271 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
tolpem/distilbert-base-uncased-finetuned-imdb
tolpem
2023-09-29T11:22:48Z
71
0
transformers
[ "transformers", "tf", "distilbert", "fill-mask", "generated_from_keras_callback", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-09-29T11:17:44Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_keras_callback model-index: - name: tolpem/distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # tolpem/distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.8561 - Validation Loss: 2.5781 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'transformers.optimization_tf', 'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -688, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}, 'registered_name': 'WarmUp'}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.8561 | 2.5781 | 0 | ### Framework versions - Transformers 4.33.3 - TensorFlow 2.13.0 - Datasets 2.14.5 - Tokenizers 0.13.3
roa7n/gpt2-human_nontata_promoters-randomized_8_layers_3e-05_lr_8_e
roa7n
2023-09-29T11:11:21Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-29T11:11:19Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
astha789/rare-puppers
astha789
2023-09-29T10:55:14Z
195
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-09-29T10:55:06Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: rare-puppers results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.89552241563797 --- # rare-puppers Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### corgi ![corgi](images/corgi.jpg) #### samoyed ![samoyed](images/samoyed.jpg) #### shiba inu ![shiba inu](images/shiba_inu.jpg)
mcparty2/xlm-roberta-base-finetuned-panx-de-fr
mcparty2
2023-09-29T10:54:02Z
124
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-09-29T10:41:36Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1623 - F1: 0.8603 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2891 | 1.0 | 715 | 0.1813 | 0.8232 | | 0.1482 | 2.0 | 1430 | 0.1586 | 0.8462 | | 0.0959 | 3.0 | 2145 | 0.1623 | 0.8603 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
hardikcode/distilbert-base-uncased-finetuned-imdb
hardikcode
2023-09-29T10:53:21Z
105
0
transformers
[ "transformers", "pytorch", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-09-29T10:50:07Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4119 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7024 | 1.0 | 157 | 2.4968 | | 2.5794 | 2.0 | 314 | 2.4281 | | 2.5354 | 3.0 | 471 | 2.4509 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
soBeauty/V2_20230929-5-xlm-roberta-base-new
soBeauty
2023-09-29T10:51:07Z
159
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-09-29T08:00:28Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: V2_20230929-5-xlm-roberta-base-new results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # V2_20230929-5-xlm-roberta-base-new This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Accuracy: 0.5181 - Loss: 2.5292 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | |:-------------:|:-----:|:----:|:--------:|:---------------:| | 4.3451 | 1.38 | 200 | 0.3686 | 3.5221 | | 3.8508 | 2.76 | 400 | 0.4402 | 3.2092 | | 3.5934 | 4.14 | 600 | 0.3908 | 3.4233 | | 3.1956 | 5.52 | 800 | 0.4317 | 3.3102 | | 3.2828 | 6.9 | 1000 | 0.4704 | 2.9782 | | 3.1068 | 8.28 | 1200 | 0.5019 | 2.6751 | | 2.9976 | 9.66 | 1400 | 0.4493 | 3.0054 | | 2.9072 | 11.03 | 1600 | 0.4189 | 3.0985 | | 2.8663 | 12.41 | 1800 | 0.5385 | 2.4444 | | 2.804 | 13.79 | 2000 | 0.5181 | 2.5292 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
polymonyrks/distilbert-base-uncased-finetuned-emotion
polymonyrks
2023-09-29T10:46:39Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-04-30T14:56:42Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.9255 - name: F1 type: f1 value: 0.9255688957679862 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2237 - Accuracy: 0.9255 - F1: 0.9256 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8556 | 1.0 | 250 | 0.3192 | 0.908 | 0.9055 | | 0.2538 | 2.0 | 500 | 0.2237 | 0.9255 | 0.9256 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
soBeauty/V2_20230929-4-xlm-roberta-base-new
soBeauty
2023-09-29T10:36:13Z
159
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-09-29T07:48:49Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: V2_20230929-4-xlm-roberta-base-new results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # V2_20230929-4-xlm-roberta-base-new This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Accuracy: 0.4980 - Loss: 2.6341 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | |:-------------:|:-----:|:----:|:--------:|:---------------:| | 4.4422 | 1.38 | 200 | 0.2888 | 4.2369 | | 3.9018 | 2.76 | 400 | 0.3333 | 3.9767 | | 3.5709 | 4.14 | 600 | 0.3669 | 3.5533 | | 3.3829 | 5.52 | 800 | 0.3891 | 3.3396 | | 3.2242 | 6.9 | 1000 | 0.4244 | 3.0648 | | 3.0837 | 8.28 | 1200 | 0.4515 | 3.2200 | | 2.9448 | 9.66 | 1400 | 0.4637 | 2.8563 | | 2.8529 | 11.03 | 1600 | 0.4664 | 2.9343 | | 2.8343 | 12.41 | 1800 | 0.4498 | 3.1041 | | 2.813 | 13.79 | 2000 | 0.4980 | 2.6341 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
LeoLM/leo-hessianai-13b
LeoLM
2023-09-29T10:34:48Z
1,442
27
transformers
[ "transformers", "pytorch", "llama", "text-generation", "custom_code", "en", "de", "dataset:oscar-corpus/OSCAR-2301", "dataset:wikipedia", "dataset:bjoernp/tagesschau-2018-2023", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-09-05T22:47:48Z
--- datasets: - oscar-corpus/OSCAR-2301 - wikipedia - bjoernp/tagesschau-2018-2023 language: - en - de library_name: transformers pipeline_tag: text-generation --- # LAION LeoLM: **L**inguistically **E**nhanced **O**pen **L**anguage **M**odel Meet LeoLM, the first open and commercially available German Foundation Language Model built on Llama-2. Our models extend Llama-2's capabilities into German through continued pretraining on a large corpus of German-language and mostly locality specific text. Thanks to a compute grant at HessianAI's new supercomputer **42**, we release two foundation models trained with 8k context length, [`LeoLM/leo-hessianai-7b`](https://huggingface.co/LeoLM/leo-hessianai-7b) and [`LeoLM/leo-hessianai-13b`](https://huggingface.co/LeoLM/leo-hessianai-13b) under the [Llama-2 community license](https://huggingface.co/meta-llama/Llama-2-70b/raw/main/LICENSE.txt) (70b also coming soon! 👀). With this release, we hope to bring a new wave of opportunities to German open-source and commercial LLM research and accelerate adoption. Read our [blog post]() or our paper (preprint coming soon) for more details! *A project by Björn Plüster and Christoph Schuhmann in collaboration with LAION and HessianAI.* ## Model Details - **Finetuned from:** [meta-llama/Llama-2-13b-hf](https://huggingface.co/meta-llama/Llama-2-13b-hf) - **Model type:** Causal decoder-only transformer language model - **Language:** English and German - **License:** [LLAMA 2 COMMUNITY LICENSE AGREEMENT](https://huggingface.co/meta-llama/Llama-2-70b/raw/main/LICENSE.txt) - **Contact:** [LAION Discord](https://discord.com/invite/eq3cAMZtCC) or [Björn Plüster](mailto:[email protected]) ## Use in 🤗Transformers First install direct dependencies: ``` pip install transformers torch sentencepiece ``` If you want faster inference using flash-attention2, you need to install these dependencies: ```bash pip install packaging ninja pip install flash-attn==v2.1.1 --no-build-isolation pip install git+https://github.com/HazyResearch/[email protected]#subdirectory=csrc/rotary ``` Then load the model in transformers: ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch model = AutoModelForCausalLM.from_pretrained( model="LeoLM/leo-hessianai-13b", device_map="auto", torch_dtype=torch.float16, trust_remote_code=True # True for flash-attn2 else False ) ``` ## Training parameters ![training_parameters](imgs/training_params.png "Training Hyperparameters") ## Benchmarks ![benchmarks](imgs/benchmarks.png "Benchmark Scores")
pembelajarff/moviereview-ds-mini
pembelajarff
2023-09-29T10:31:58Z
61
0
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "base_model:openai-community/gpt2", "base_model:finetune:openai-community/gpt2", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-09-29T10:31:31Z
--- license: mit base_model: gpt2 tags: - generated_from_keras_callback model-index: - name: moviereview-ds-mini results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # moviereview-ds-mini This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 8.1821 - Validation Loss: 7.8696 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'transformers.optimization_tf', 'class_name': 'WarmUp', 'config': {'initial_learning_rate': 5e-05, 'decay_schedule_fn': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': -887, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}, 'registered_name': 'WarmUp'}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 10.2500 | 9.5646 | 0 | | 9.1560 | 8.7719 | 1 | | 8.1821 | 7.8696 | 2 | ### Framework versions - Transformers 4.33.3 - TensorFlow 2.13.0 - Datasets 2.14.5 - Tokenizers 0.13.3
pembelajarff/movie_review
pembelajarff
2023-09-29T10:30:02Z
125
0
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "base_model:openai-community/gpt2", "base_model:finetune:openai-community/gpt2", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-09-19T04:24:33Z
--- license: mit base_model: gpt2 tags: - generated_from_keras_callback model-index: - name: pembelajarff/movie_review results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # pembelajarff/movie_review This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 8.1821 - Validation Loss: 7.8696 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'transformers.optimization_tf', 'class_name': 'WarmUp', 'config': {'initial_learning_rate': 5e-05, 'decay_schedule_fn': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': -887, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}, 'registered_name': 'WarmUp'}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 10.2500 | 9.5646 | 0 | | 9.1560 | 8.7719 | 1 | | 8.1821 | 7.8696 | 2 | ### Framework versions - Transformers 4.33.3 - TensorFlow 2.13.0 - Datasets 2.14.5 - Tokenizers 0.13.3
Thenujan/ViT-H-14
Thenujan
2023-09-29T10:28:16Z
2
0
open_clip
[ "open_clip", "feature-extraction", "en", "license:other", "region:us" ]
feature-extraction
2023-08-29T12:51:04Z
--- license: other language: - en metrics: - mape library_name: open_clip pipeline_tag: feature-extraction ---
pavithrav/distilbert-base-uncased-finetuned-emotion
pavithrav
2023-09-29T10:26:51Z
105
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-29T10:26:11Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2215 - Accuracy: 0.9235 - F1: 0.9236 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8569 | 1.0 | 250 | 0.3312 | 0.901 | 0.8994 | | 0.2561 | 2.0 | 500 | 0.2215 | 0.9235 | 0.9236 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
Weyaxi/ChatAYT-Lora-Assamble-Marcoroni-v2
Weyaxi
2023-09-29T10:22:18Z
20
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-09-14T07:43:32Z
<a href="https://www.buymeacoffee.com/PulsarAI" target="_blank"><img src="https://cdn.buymeacoffee.com/buttons/v2/default-yellow.png" alt="Buy Me A Coffee" style="height: 60px !important;width: 217px !important;" ></a>
soBeauty/V2_20230929-3-xlm-roberta-base-new
soBeauty
2023-09-29T10:21:45Z
157
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-09-29T07:37:05Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: V2_20230929-3-xlm-roberta-base-new results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # V2_20230929-3-xlm-roberta-base-new This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Accuracy: 0.5378 - Loss: 2.2727 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | |:-------------:|:-----:|:----:|:--------:|:---------------:| | 4.3145 | 1.38 | 200 | 0.2955 | 3.8793 | | 3.8469 | 2.76 | 400 | 0.3398 | 3.7082 | | 3.4996 | 4.14 | 600 | 0.4110 | 3.1106 | | 3.4055 | 5.52 | 800 | 0.3919 | 3.1465 | | 3.1658 | 6.9 | 1000 | 0.4786 | 2.9087 | | 3.1597 | 8.28 | 1200 | 0.4128 | 3.0067 | | 2.9918 | 9.66 | 1400 | 0.4664 | 2.7497 | | 2.8913 | 11.03 | 1600 | 0.4580 | 2.6409 | | 2.8172 | 12.41 | 1800 | 0.4449 | 2.9132 | | 2.9125 | 13.79 | 2000 | 0.5378 | 2.2727 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
SakataHalmi/Reinforce-Pixelcopter-PLE-v0
SakataHalmi
2023-09-29T10:09:25Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-09-28T20:27:16Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 68.80 +/- 55.98 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
RogerB/afriberta_base-kinyarwanda-finetuned
RogerB
2023-09-29T10:03:39Z
3
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "generated_from_trainer", "base_model:castorini/afriberta_base", "base_model:finetune:castorini/afriberta_base", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-09-29T09:21:17Z
--- base_model: castorini/afriberta_base tags: - generated_from_trainer model-index: - name: afriberta_base-kinyarwanda-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # afriberta_base-kinyarwanda-finetuned This model is a fine-tuned version of [castorini/afriberta_base](https://huggingface.co/castorini/afriberta_base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.5906 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 3.1683 | 1.0 | 5000 | 2.7855 | | 2.8371 | 2.0 | 10000 | 2.6643 | | 2.7277 | 3.0 | 15000 | 2.5899 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
language-ml-lab/classification-azb
language-ml-lab
2023-09-29T09:39:44Z
183
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "az", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-26T15:12:37Z
--- language: - az metrics: - accuracy - f1 widget: - text: کریم خان زندین اؤلومو ایله خانلیق یئنیدن موستقیل سیاست یئریتمگه باشلادی . example_title: تاریخ - text: کیمیا علیزاده زنوزی اصیللی ایرانلی تکواندو اویونچوسودور . example_title: ایدمان - text: خزر دنیزی بؤیوک‌لوگونه و بعضی فیزیکی جوغرافی علامتلرینه گؤره دونیانین ان بؤیوک گؤلودور . example_title: جوغرافیا - text: گولخانی اؤزبک کلاسیک شاعیری ، ادیبی ، یازیچی و اؤزبک ادبیاتی‌نین ساتیریک مکتبی‌نین قوروجولاریندان بیری‌دیر . example_title: ادبیات --- # Text Classification Model - Type: Fine-tuned BERT-based text classification model - Description: This model has been fine-tuned using [AzerBERT](https://huggingface.co/language-ml-lab/AzerBert) for text classification tasks. It is designed to categorize text into one of the following four categories: literature, sports, history, and geography. ## How to use ```python # Use a pipeline as a high-level helper from transformers import pipeline pipe = pipeline("text-classification", model="language-ml-lab/classification-azb") ``` ```python # Load model directly from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("language-ml-lab/classification-azb") model = AutoModelForSequenceClassification.from_pretrained("language-ml-lab/classification-azb") ```
jiantongxu/mit-b0-scene-parse-150-lora
jiantongxu
2023-09-29T09:36:42Z
28
0
peft
[ "peft", "region:us" ]
null
2023-09-29T09:09:56Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0
mangeshdiyewar/WizardMaths-fined_tuned
mangeshdiyewar
2023-09-29T09:29:07Z
2
0
peft
[ "peft", "region:us" ]
null
2023-09-29T09:29:05Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.6.0.dev0
anonymousTheStackRepo/trained_checkpoints
anonymousTheStackRepo
2023-09-29T09:28:10Z
0
0
null
[ "license:other", "region:us" ]
null
2023-05-22T19:56:57Z
--- license: other --- These versions of the model weights are strictly permitted for use exclusively in conjunction with the review process for the paper. Upon completion of the review process, a de-anonymized version of the model weights will be released under appropriate license.
developers-1/a-comprehensive-guide-to-attending-seattle-pride-fest
developers-1
2023-09-29T09:10:28Z
0
0
null
[ "region:us" ]
null
2023-09-29T09:09:04Z
<p style="text-align: start;color: rgb(17, 19, 31);background-color: rgb(255, 255, 255);font-size: 20px;">Eager to join the vibrant celebration at Seattle PrideFest? Be prepared to march through the streets enveloped in hues of love and freedom.</p> <div style="text-align: start;color: rgb(33, 37, 41);background-color: rgb(255, 255, 255);font-size: 16px;"> <p style="color: rgb(73, 78, 112);font-size: 20px;"><br></p> <p style="color: rgb(73, 78, 112);font-size: 20px;">To aid your adventure, this extensive guide offers a historical walkthrough, a fashion handbook, and tips for what to pack, ensuring your <u><a href="https://www.seattlepridefest.org/" target="_blank" rel="nofollow" style="color: rgb(55, 125, 255);">Seattle PrideFest</a></u> experience is colorful, stylish, and memorable!</p> <p style="color: rgb(73, 78, 112);font-size: 20px;">This guide delivers everything from a dive into the history of Seattle Pride Fest to sartorial tips ensuring you stand out while basking in the festivities.</p> <h2 style="font-size: 2rem;">The Rainbow Path: History of Seattle PrideFest</h2> <p style="color: rgb(73, 78, 112);font-size: 20px;">Seattle PrideFest, a celebration of love, equality, and the LGBTQ+ community, is the contemporary successor to a long tradition of Pride events in Seattle, dating back to the 1970s.</p> <h3 style="font-size: 1.75rem;">Key Historical Highlights:</h3> <ul style="list-style-type: none;"> <li>1974: Seattle&apos;s first Pride Week, a commemoration of the Stonewall Riots, lays the foundation.</li> <li>2006: Seattle PrideFest, as we know it today, is born, taking over from Pride Week and growing in inclusivity and celebration.</li> <li>Today: Seattle PrideFest stands as the largest free Pride Festival in the United States.</li> </ul> <h2 style="font-size: 2rem;">What to Wear to Seattle PrideFest?</h2> <h3 style="font-size: 1.75rem;">1. Bathing in Colors:</h3> <ul style="list-style-type: none;"> <li>Suggestion: Opt for clothing in <a href="https://www.dollskill.com/collections/rainbow-clothing" target="_blank" rel="nofollow" style="color: rgb(13, 110, 253);">vibrant rainbow colors</a>. A rainbow-striped dress, a multi-colored jumpsuit, or a shirt paired with a vibrant tutu can make you shine.</li> </ul> <h3 style="font-size: 1.75rem;">2. Comfort First:</h3> <ul style="list-style-type: none;"> <li>Suggestion: Pick breathable, light fabrics. Consider a lightweight dress, comfortable shorts, or a relaxed tee to keep cool and comfy.</li> </ul> <h3 style="font-size: 1.75rem;">3. Footwear:</h3> <ul style="list-style-type: none;"> <li>Suggestion: Choose comfortable and stylish footwear. Think colorful sneakers, fashionable sandals, or cute, flat boots to dance and walk in comfort.</li> </ul> <h2 style="font-size: 2rem;">Amp Your Style: Accessories &amp; Make-up</h2> <h3 style="font-size: 1.75rem;">1. Bold Accessories:</h3> <ul style="list-style-type: none;"> <li>Suggestion: Choose oversized earrings, funky sunglasses, or colorful, chunky bracelets to make a statement.</li> </ul> <h3 style="font-size: 1.75rem;">2. Beauty and Makeup:</h3> <ul style="list-style-type: none;"> <li>Suggestion: Think bright, glittery, and rainbow-themed makeup. Let your face mirror the festival&apos;s jubilance.</li> </ul> <h2 style="font-size: 2rem;">What to Bring to Seattle PrideFest?</h2> <h3 style="font-size: 1.75rem;">1. Hydration:</h3> <ul style="list-style-type: none;"> <li>Suggestion: Carry a refillable water bottle to stay hydrated amid the celebrations.</li> </ul> <h3 style="font-size: 1.75rem;">2. Sun Protection:</h3> <ul style="list-style-type: none;"> <li>Suggestion: Pack sunscreen, a fashionable hat, and sunglasses to stay protected from the sun.</li> </ul> <h3 style="font-size: 1.75rem;">3. Charging Essentials:</h3> <ul style="list-style-type: none;"> <li>Suggestion: Bring a portable charger to ensure your gadgets stay powered for capturing memories.</li> </ul> <h2 style="font-size: 2rem;">Maximize Your Seattle PrideFest Experience</h2> <h3 style="font-size: 1.75rem;">1. Plan Ahead:</h3> <ul style="list-style-type: none;"> <li>Suggestion: Research the event schedule and routes to plan your day efficiently.</li> </ul> <h3 style="font-size: 1.75rem;">2. Engagement:</h3> <ul style="list-style-type: none;"> <li>Suggestion: Engage with the community, participate in activities, and enjoy performances.</li> </ul> <h3 style="font-size: 1.75rem;">3. Respect &amp; Etiquette:</h3> <ul style="list-style-type: none;"> <li>Suggestion: Maintain respect and courtesy for everyone&rsquo;s unique expressions and identities.</li> </ul> <h2 style="font-size: 2rem;">Conclusion</h2> <p style="color: rgb(73, 78, 112);font-size: 20px;">As you prepare for a spectacular celebration at <strong>Seattle PrideFest</strong>, let this guide be your companion, ensuring a seamless blend of style, comfort, and understanding of the event&apos;s historical backdrop. As you march in unity, swathed in colors of love and freedom, remember the roots of the <u><a href="https://www.dollskill.com/collections/pride-outfits" target="_blank" rel="nofollow" style="color: rgb(55, 125, 255);">Pride festival</a></u>, anchored in the fight for equality and love.</p> <p style="color: rgb(73, 78, 112);font-size: 20px;">Embrace the kaleidoscope of colors, love, and unity, ensuring you not only stand out in your fabulous outfits, but also carry the spirit and significance of Pride within you. With each laughter, dance, and cheer, resonate the essence of love, equality, and freedom that <strong>Seattle PrideFest</strong> so beautifully embodies.</p> <p style="color: rgb(73, 78, 112);font-size: 20px;">Enjoy every second, while also honoring the significance of the event. Get ready to unleash your colors, resonate love, and create beautiful memories at Seattle PrideFest!</p> </div>
GreenBitAI/LLaMA-3B-2bit-groupsize32
GreenBitAI
2023-09-29T09:10:25Z
96
7
transformers
[ "transformers", "pytorch", "llama", "text-generation", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-15T19:51:05Z
--- license: apache-2.0 --- # GreenBit LLaMA This is GreenBitAI's pretrained **2-bit** LLaMA model with extreme compression yet still strong performance. Please refer to our [Github page](https://github.com/GreenBitAI/low_bit_llama) for the code to run the model and more information. ## Zero-Shot Evaluation | Task | Metric | LLaMA 3B q2g32 | LLaMA 3B q2g16 | LLaMA 3B q2g8 | LLaMA-1 7B q2g32 | LLaMA-2 7B q2g32 | LLaMA-2 7B q2g8 | LLaMA 3B FP16 | LLaMA-1 7B FP16 | |---------------|----------|----------------|----------------|--------------|------------------|------------------|----------------|--------------|-----------------| | Openbookqa | acc | 0.196 | 0.238 | 0.242 | 0.224 | 0.246 | 0.296 | 0.27 | 0.29 | | | ac_norm | 0.332 | 0.358 | 0.362 | 0.388 | 0.376 | 0.4 | 0.4 | 0.41 | | arc_challenge | acc | 0.279 | 0.2978 | 0.3148 | 0.3422 | 0.3268 | 0.3618 | 0.34 | 0.39 | | | ac_norm | 0.2944 | 0.3319 | 0.3345 | 0.3387 | 0.3387 | 0.372 | 0.37 | 0.41 | | hellawswag | acc | 0.4238 | 0.444 | 0.462 | 0.4996 | 0.4961 | 0.5379 | 0.49 | 0.68 | | | ac_norm | 0.5685 | 0.5988 | 0.6242 | 0.6447 | 0.6464 | 0.7014 | 0.67 | 0.73 | | piqa | acc | 0.7024 | 0.716 | 0.7291 | 0.7476 | 0.7503 | 0.7715 | 0.75 | 0.78 | | | ac_norm | 0.7116 | 0.7247 | 0.7312 | 0.7443 | 0.7421 | 0.7568 | 0.76 | 0.78 | | arc_easy | acc | 0.5997 | 0.646 | 0.6528 | 0.6061 | 0.6174 | 0.6254 | 0.69 | 0.68 | | | ac_norm | 0.5417 | 0.58 | 0.5972 | 0.4566 | 0.4781 | 0.4958 | 0.65 | 0.52 | | Winogrande | acc | 0.5683 | 0.5888 | 0.6054 | 0.6283 | 0.6298 | 0.6582 | 0.62 | 0.68 | | boolq | acc | 0.6281 | 0.6636 | 0.6327 | 0.6425 | 0.7061 | 0.7242 | 0.68 | 0.75 | | truthfulqa_mc | mc1 | 0.2509 | 0.2118 | 0.2252 | 0.224 | 0.2313 | 0.2399 | 0.22 | 0.21 | | | mc2 | 0.3962 | 0.3501 | 0.3625 | 0.3702 | 0.3854 | 0.3795 | 0.35 | 0.34 | | anli_r1 | acc | 0.337 | 0.334 | 0.344 | 0.331 | 0.333 | 0.363 | 0.33 | 0.35 | | anli_r2 | acc | 0.335 | 0.332 | 0.331 | 0.326 | 0.349 | 0.347 | 0.32 | 0.34 | | anli_r3 | acc | 0.3358 | 0.3383 | 0.3425 | 0.3417 | 0.36 | 0.3733 | 0.35 | 0.37 | | wic | acc | 0.4984 | 0.5094 | 0.4969 | 0.4984 | 0.4953 | 0.489 | 0.48 | 0.5 | | rte | acc | 0.5596 | 0.5993 | 0.5632 | 0.639 | 0.6065 | 0.6426 | 0.58 | 0.56 | | record | f1 | 0.8502 | 0.8625 | 0.8687 | 0.8859 | 0.8872 | 0.9037 | 0.88 | 0.91 | | | em | 0.8427 | 0.8545 | 0.8612 | 0.8781 | 0.8801 | 0.8959 | 0.89 | 0.91 | | Average | | 0.4881 | 0.5037 | 0.5087 | 0.5122 | 0.5181 | 0.5391 | 0.528 | 0.5519 | ![Zero-Shot Harness Evaluation](https://cdn-uploads.huggingface.co/production/uploads/621c8619af51ee62ecbc5c15/Uq80-LVDxFWsUekSJZ8r7.png)
manishai/distilbert-base-uncased-finetuned-emotion
manishai
2023-09-29T09:02:33Z
105
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-29T08:56:04Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.92 - name: F1 type: f1 value: 0.9195631718213454 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2272 - Accuracy: 0.92 - F1: 0.9196 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8468 | 1.0 | 250 | 0.3426 | 0.897 | 0.8929 | | 0.2636 | 2.0 | 500 | 0.2272 | 0.92 | 0.9196 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
vineetsharma/xsum-t5-small
vineetsharma
2023-09-29T09:01:29Z
108
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "dataset:xsum", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-09-29T07:40:24Z
--- license: apache-2.0 base_model: t5-small tags: - generated_from_trainer datasets: - xsum metrics: - rouge model-index: - name: xsum-t5-small results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xsum type: xsum config: default split: validation args: default metrics: - name: Rouge1 type: rouge value: 28.3309 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xsum-t5-small This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. It achieves the following results on the evaluation set: - Loss: 2.4789 - Rouge1: 28.3309 - Rouge2: 7.7568 - Rougel: 22.2948 - Rougelsum: 22.2942 - Gen Len: 18.824 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 2.9158 | 0.16 | 2000 | 2.5725 | 26.6629 | 6.6436 | 20.8032 | 20.7995 | 18.7886 | | 2.7868 | 0.31 | 4000 | 2.5286 | 27.3979 | 7.1077 | 21.4451 | 21.4487 | 18.8045 | | 2.756 | 0.47 | 6000 | 2.5058 | 27.8049 | 7.4383 | 21.8465 | 21.8479 | 18.8179 | | 2.7388 | 0.63 | 8000 | 2.4903 | 28.1541 | 7.6412 | 22.1566 | 22.1572 | 18.8265 | | 2.7208 | 0.78 | 10000 | 2.4819 | 28.2559 | 7.6877 | 22.2086 | 22.2118 | 18.8268 | | 2.7175 | 0.94 | 12000 | 2.4789 | 28.3309 | 7.7568 | 22.2948 | 22.2942 | 18.824 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
language-ml-lab/fasttext-azb
language-ml-lab
2023-09-29T09:00:06Z
65
0
fasttext
[ "fasttext", "feature-extraction", "az", "region:us" ]
feature-extraction
2023-09-20T10:06:22Z
--- pipeline_tag: feature-extraction library_name: fasttext widget: - text: آلما example_title: آلما - text: بایرام example_title: بایرام - text: قارداش example_title: قارداش language: - az --- # Language Model-based Embedding (FastText) - Type: FastText-based word embedding model - Description: This model provides embeddings for Iranian Azerbaijani text using the FastText framework. It allows you to generate word embeddings for Iranian Azerbaijani words and phrases. ## How to use Please ensure that you have FastText installed on your system. ```python from huggingface_hub import hf_hub_download import fasttext model = fasttext.load_model(hf_hub_download("language-ml-lab/fasttext-azb", "model.bin")) ```