modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
list
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
RicaldeNelmo/clone-nelmo-ia
RicaldeNelmo
2025-03-18T01:12:33Z
0
0
null
[ "license:other", "region:us" ]
null
2025-03-18T00:34:10Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md ---
NickKolok/trgnfs-20250301-03-pony-1girl
NickKolok
2025-03-18T01:10:34Z
0
0
null
[ "license:other", "region:us" ]
null
2025-03-14T20:54:11Z
--- license: other license_name: other license_link: LICENSE --- A LoRA found... somewhere. The LoRA trainer clearly refuses to put any restrictions on it, and either do I. Trigger word: `trgnfs`. It produces a strange hybrid of Meryl and Milly from the goog old Trigun anime.
albertus-sussex/veriscrape-book-test-sbert-bs64_lr0.0002_ep5_euclidean_snTrue_spFalse_hn1
albertus-sussex
2025-03-18T01:09:35Z
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "new", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:84524", "loss:AttributeTripletLoss", "custom_code", "arxiv:1908.10084", "arxiv:1703.07737", "base_model:Alibaba-NLP/gte-base-en-v1.5", "base_model:finetune:Alibaba-NLP/gte-base-en-v1.5", "model-index", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-03-18T01:09:16Z
--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:84524 - loss:AttributeTripletLoss base_model: Alibaba-NLP/gte-base-en-v1.5 widget: - source_sentence: Don Piper sentences: - Tommy Nelson - Kate Walbert - publisher - author - source_sentence: The Luxe sentences: - '1999' - publication_date - title - 'Critical Care, Mercy Hospital Series #1' - source_sentence: Bram Stoker sentences: - author - Michael J. Pangio - '9781598871012' - isbn_13 - source_sentence: '9780385340557' sentences: - BBC Books - '9780399208539' - author - isbn_13 - source_sentence: Midnight sentences: - The Bone Parade - 12/01/2005 - publication_date - title pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - cosine_accuracy - silhouette_cosine - silhouette_euclidean model-index: - name: SentenceTransformer based on Alibaba-NLP/gte-base-en-v1.5 results: - task: type: triplet name: Triplet dataset: name: Unknown type: unknown metrics: - type: cosine_accuracy value: 0.1492759734392166 name: Cosine Accuracy - type: cosine_accuracy value: 0.15005749464035034 name: Cosine Accuracy - task: type: silhouette name: Silhouette dataset: name: Unknown type: unknown metrics: - type: silhouette_cosine value: 0.0 name: Silhouette Cosine - type: silhouette_euclidean value: -0.20105557143688202 name: Silhouette Euclidean - type: silhouette_cosine value: -0.00044717005221173167 name: Silhouette Cosine - type: silhouette_euclidean value: -0.22267667949199677 name: Silhouette Euclidean --- # SentenceTransformer based on Alibaba-NLP/gte-base-en-v1.5 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-base-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [Alibaba-NLP/gte-base-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5) <!-- at revision a829fd0e060bb84554da0dfd354d0de0f7712b7f --> - **Maximum Sequence Length:** 8192 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity <!-- - **Training Dataset:** Unknown --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("albertus-sussex/veriscrape-book-test-sbert-bs64_lr0.0002_ep5_euclidean_snTrue_spFalse_hn1") # Run inference sentences = [ 'Midnight', 'The Bone Parade', '12/01/2005', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Triplet * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) | Metric | Value | |:--------------------|:-----------| | **cosine_accuracy** | **0.1493** | #### Silhouette * Evaluated with <code>veriscrape.training.SilhouetteEvaluator</code> | Metric | Value | |:----------------------|:--------| | **silhouette_cosine** | **0.0** | | silhouette_euclidean | -0.2011 | #### Triplet * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) | Metric | Value | |:--------------------|:-----------| | **cosine_accuracy** | **0.1501** | #### Silhouette * Evaluated with <code>veriscrape.training.SilhouetteEvaluator</code> | Metric | Value | |:----------------------|:------------| | **silhouette_cosine** | **-0.0004** | | silhouette_euclidean | -0.2227 | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 84,524 training samples * Columns: <code>anchor</code>, <code>positive</code>, <code>negative</code>, <code>pos_attr_name</code>, and <code>neg_attr_name</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | negative | pos_attr_name | neg_attr_name | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:-------------------------------------------------------------------------------| | type | string | string | string | string | string | | details | <ul><li>min: 3 tokens</li><li>mean: 6.97 tokens</li><li>max: 37 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 7.09 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 6.31 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.77 tokens</li><li>max: 5 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.8 tokens</li><li>max: 5 tokens</li></ul> | * Samples: | anchor | positive | negative | pos_attr_name | neg_attr_name | |:---------------------------|:---------------------------|:------------------------------------------|:------------------------------|:-----------------------| | <code>09/01/1997</code> | <code>12/01/1977</code> | <code>2010</code> | <code>publication_date</code> | <code>title</code> | | <code>9780060275730</code> | <code>9780829748772</code> | <code>HarperCollins Publishers Ltd</code> | <code>isbn_13</code> | <code>publisher</code> | | <code>9780609809648</code> | <code>9780764551956</code> | <code>HarperCollins Publishers</code> | <code>isbn_13</code> | <code>author</code> | * Loss: <code>veriscrape.training.AttributeTripletLoss</code> with these parameters: ```json { "distance_metric": "TripletDistanceMetric.EUCLIDEAN", "triplet_margin": 5 } ``` ### Evaluation Dataset #### Unnamed Dataset * Size: 9,392 evaluation samples * Columns: <code>anchor</code>, <code>positive</code>, <code>negative</code>, <code>pos_attr_name</code>, and <code>neg_attr_name</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | negative | pos_attr_name | neg_attr_name | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:-------------------------------------------------------------------------------| | type | string | string | string | string | string | | details | <ul><li>min: 3 tokens</li><li>mean: 6.85 tokens</li><li>max: 27 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 6.98 tokens</li><li>max: 44 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 6.08 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.75 tokens</li><li>max: 5 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.8 tokens</li><li>max: 5 tokens</li></ul> | * Samples: | anchor | positive | negative | pos_attr_name | neg_attr_name | |:-------------------------------|:-----------------------------|:---------------------------|:-----------------------|:------------------------------| | <code>9780764200564</code> | <code>: 9780590458467</code> | <code>1984</code> | <code>isbn_13</code> | <code>publication_date</code> | | <code>Penguin Group USA</code> | <code>Signet</code> | <code>9781600243912</code> | <code>publisher</code> | <code>isbn_13</code> | | <code>Alphabet Juice</code> | <code>Space</code> | <code>9780807871133</code> | <code>title</code> | <code>isbn_13</code> | * Loss: <code>veriscrape.training.AttributeTripletLoss</code> with these parameters: ```json { "distance_metric": "TripletDistanceMetric.EUCLIDEAN", "triplet_margin": 5 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `learning_rate`: 0.0002 - `num_train_epochs`: 5 - `warmup_ratio`: 0.1 #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 0.0002 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 5 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | Validation Loss | cosine_accuracy | silhouette_cosine | |:-----:|:----:|:-------------:|:---------------:|:---------------:|:-----------------:| | -1 | -1 | - | - | 0.4283 | 0.1492 | | 1.0 | 1321 | 0.6483 | 3.4269 | 0.9019 | 0.0595 | | 2.0 | 2642 | 3.1188 | 3.0181 | 0.5564 | -0.1520 | | 3.0 | 3963 | 3.1704 | 3.0180 | 0.5139 | -0.0101 | | 4.0 | 5284 | 4.7916 | 5.0000 | 0.2123 | -0.4084 | | 5.0 | 6605 | 4.9963 | 5.0000 | 0.1493 | 0.0 | | -1 | -1 | - | - | 0.1501 | -0.0004 | ### Framework Versions - Python: 3.10.16 - Sentence Transformers: 3.4.1 - Transformers: 4.45.2 - PyTorch: 2.5.1+cu124 - Accelerate: 1.5.2 - Datasets: 3.1.0 - Tokenizers: 0.20.3 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### AttributeTripletLoss ```bibtex @misc{hermans2017defense, title={In Defense of the Triplet Loss for Person Re-Identification}, author={Alexander Hermans and Lucas Beyer and Bastian Leibe}, year={2017}, eprint={1703.07737}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
texanrangee/9d700d47-2469-46a3-8f6d-cac0a34cbce6
texanrangee
2025-03-18T01:08:28Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-03-17T20:21:35Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Benzonah6/alexis-2
Benzonah6
2025-03-18T01:00:28Z
0
0
diffusers
[ "diffusers", "text-to-image", "flux", "lora", "template:sd-lora", "fluxgym", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-03-18T01:00:19Z
--- tags: - text-to-image - flux - lora - diffusers - template:sd-lora - fluxgym widget: - output: url: sample/alexis-2_001680_00_20250318004908.png text: a woman wearing a fuzzy sweater, holding a coffee base_model: black-forest-labs/FLUX.1-dev license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md --- # Alexis 2 A Flux LoRA trained on a local computer with [Fluxgym](https://github.com/cocktailpeanut/fluxgym) <Gallery /> ## Trigger words No trigger words defined. ## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, Forge, etc. Weights for this model are available in Safetensors format.
erincozgur/M7BTrChatbotv3
erincozgur
2025-03-18T00:55:54Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-03-17T17:11:23Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
lesso08/cbf2fea1-8cc9-43d6-9e96-2b554a42dd44
lesso08
2025-03-18T00:55:22Z
0
0
peft
[ "peft", "safetensors", "phi3", "axolotl", "generated_from_trainer", "custom_code", "base_model:numind/NuExtract-1.5", "base_model:adapter:numind/NuExtract-1.5", "license:mit", "region:us" ]
null
2025-03-17T20:18:57Z
--- library_name: peft license: mit base_model: numind/NuExtract-v1.5 tags: - axolotl - generated_from_trainer model-index: - name: cbf2fea1-8cc9-43d6-9e96-2b554a42dd44 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: numind/NuExtract-v1.5 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 01a5f4337526bb62_train_data.json ds_type: json format: custom path: /workspace/input_data/01a5f4337526bb62_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null do_eval: true early_stopping_patience: 3 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 500 evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 8 gradient_checkpointing: true group_by_length: true hub_model_id: lesso08/cbf2fea1-8cc9-43d6-9e96-2b554a42dd44 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.000208 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 50 lora_alpha: 128 lora_dropout: 0.15 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 2000 micro_batch_size: 4 mlflow_experiment_name: /tmp/01a5f4337526bb62_train_data.json model_type: AutoModelForCausalLM num_epochs: 10 optimizer: adamw_torch_fused output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 500 saves_per_epoch: null seed: 80 sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: bc4dc511-2172-4f5a-881d-d4261bb6efd7 wandb_project: 08a wandb_run: your_name wandb_runid: bc4dc511-2172-4f5a-881d-d4261bb6efd7 warmup_steps: 100 weight_decay: 0.0 xformers_attention: null ``` </details><br> # cbf2fea1-8cc9-43d6-9e96-2b554a42dd44 This model is a fine-tuned version of [numind/NuExtract-v1.5](https://huggingface.co/numind/NuExtract-v1.5) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7532 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000208 - train_batch_size: 4 - eval_batch_size: 4 - seed: 80 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 2000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0003 | 1 | 1.1654 | | 6.2506 | 0.1525 | 500 | 0.8151 | | 6.0736 | 0.3050 | 1000 | 0.7755 | | 5.9722 | 0.4575 | 1500 | 0.7558 | | 5.9383 | 0.6100 | 2000 | 0.7532 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
GhostScientist/distilgpt2-int8-browser-completion
GhostScientist
2025-03-18T00:52:41Z
0
0
null
[ "onnx", "gpt2", "base_model:distilbert/distilgpt2", "base_model:quantized:distilbert/distilgpt2", "license:apache-2.0", "region:us" ]
null
2025-03-18T00:45:32Z
--- license: apache-2.0 base_model: - distilbert/distilgpt2 --- This is a quantized version of DistilGPT-2 optimized for browser deployment. Smaller file size (120MB compared to 317MB original model)
sukatune/Qwen2.5-Coder-7B-Instruct-Java-lora-v2.0
sukatune
2025-03-18T00:52:37Z
0
0
null
[ "safetensors", "unsloth", "license:apache-2.0", "region:us" ]
null
2025-03-18T00:11:17Z
--- license: apache-2.0 tags: - unsloth ---
Novaciano/Sphynx-3.2-1B-Q6_K-GGUF
Novaciano
2025-03-18T00:52:17Z
0
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "llama-cpp", "gguf-my-repo", "base_model:Novaciano/Sphynx-3.2-1B", "base_model:quantized:Novaciano/Sphynx-3.2-1B", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-18T00:52:08Z
--- base_model: Novaciano/Sphynx-3.2-1B library_name: transformers tags: - mergekit - merge - llama-cpp - gguf-my-repo --- # Novaciano/Sphynx-3.2-1B-Q6_K-GGUF This model was converted to GGUF format from [`Novaciano/Sphynx-3.2-1B`](https://huggingface.co/Novaciano/Sphynx-3.2-1B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Novaciano/Sphynx-3.2-1B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Novaciano/Sphynx-3.2-1B-Q6_K-GGUF --hf-file sphynx-3.2-1b-q6_k.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Novaciano/Sphynx-3.2-1B-Q6_K-GGUF --hf-file sphynx-3.2-1b-q6_k.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Novaciano/Sphynx-3.2-1B-Q6_K-GGUF --hf-file sphynx-3.2-1b-q6_k.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Novaciano/Sphynx-3.2-1B-Q6_K-GGUF --hf-file sphynx-3.2-1b-q6_k.gguf -c 2048 ```
genki10/Version27NewTestASAP_FineTuningBERT_AugV27_k3_task1_organization_k3_k3_fold4
genki10
2025-03-18T00:51:29Z
0
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-03-18T00:27:52Z
--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer model-index: - name: Version27NewTestASAP_FineTuningBERT_AugV27_k3_task1_organization_k3_k3_fold4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Version27NewTestASAP_FineTuningBERT_AugV27_k3_task1_organization_k3_k3_fold4 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6529 - Qwk: 0.5648 - Mse: 0.6529 - Rmse: 0.8080 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 150 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:------:| | No log | 1.0 | 2 | 14.6314 | 0.0 | 14.6314 | 3.8251 | | No log | 2.0 | 4 | 12.2692 | 0.0 | 12.2692 | 3.5027 | | No log | 3.0 | 6 | 9.9737 | 0.0066 | 9.9737 | 3.1581 | | No log | 4.0 | 8 | 7.7158 | 0.0018 | 7.7158 | 2.7777 | | No log | 5.0 | 10 | 5.5404 | 0.0686 | 5.5404 | 2.3538 | | No log | 6.0 | 12 | 3.7990 | 0.0079 | 3.7990 | 1.9491 | | No log | 7.0 | 14 | 2.6051 | 0.0040 | 2.6051 | 1.6140 | | No log | 8.0 | 16 | 2.0976 | 0.1616 | 2.0976 | 1.4483 | | No log | 9.0 | 18 | 1.4779 | 0.0420 | 1.4779 | 1.2157 | | No log | 10.0 | 20 | 1.1374 | 0.0316 | 1.1374 | 1.0665 | | No log | 11.0 | 22 | 0.9740 | 0.0316 | 0.9740 | 0.9869 | | No log | 12.0 | 24 | 0.8095 | 0.3480 | 0.8095 | 0.8997 | | No log | 13.0 | 26 | 0.7346 | 0.4054 | 0.7346 | 0.8571 | | No log | 14.0 | 28 | 0.6515 | 0.3743 | 0.6515 | 0.8071 | | No log | 15.0 | 30 | 0.6759 | 0.5030 | 0.6759 | 0.8221 | | No log | 16.0 | 32 | 0.5668 | 0.5061 | 0.5668 | 0.7529 | | No log | 17.0 | 34 | 0.6652 | 0.5390 | 0.6652 | 0.8156 | | No log | 18.0 | 36 | 0.5753 | 0.5364 | 0.5753 | 0.7585 | | No log | 19.0 | 38 | 0.7934 | 0.5319 | 0.7934 | 0.8907 | | No log | 20.0 | 40 | 0.5839 | 0.5388 | 0.5839 | 0.7641 | | No log | 21.0 | 42 | 0.6019 | 0.5666 | 0.6019 | 0.7758 | | No log | 22.0 | 44 | 0.6716 | 0.5794 | 0.6716 | 0.8195 | | No log | 23.0 | 46 | 0.6197 | 0.5773 | 0.6197 | 0.7872 | | No log | 24.0 | 48 | 0.6649 | 0.5924 | 0.6649 | 0.8154 | | No log | 25.0 | 50 | 0.6998 | 0.5919 | 0.6998 | 0.8365 | | No log | 26.0 | 52 | 0.7202 | 0.5988 | 0.7202 | 0.8486 | | No log | 27.0 | 54 | 0.6556 | 0.6124 | 0.6556 | 0.8097 | | No log | 28.0 | 56 | 0.6501 | 0.6360 | 0.6501 | 0.8063 | | No log | 29.0 | 58 | 0.6210 | 0.6175 | 0.6210 | 0.7880 | | No log | 30.0 | 60 | 0.6323 | 0.6200 | 0.6323 | 0.7952 | | No log | 31.0 | 62 | 0.7047 | 0.6289 | 0.7047 | 0.8395 | | No log | 32.0 | 64 | 0.7298 | 0.5938 | 0.7298 | 0.8543 | | No log | 33.0 | 66 | 0.6589 | 0.6181 | 0.6589 | 0.8117 | | No log | 34.0 | 68 | 0.9631 | 0.4715 | 0.9631 | 0.9814 | | No log | 35.0 | 70 | 0.6021 | 0.6107 | 0.6021 | 0.7759 | | No log | 36.0 | 72 | 1.0091 | 0.4968 | 1.0091 | 1.0045 | | No log | 37.0 | 74 | 0.7669 | 0.5514 | 0.7669 | 0.8757 | | No log | 38.0 | 76 | 0.7919 | 0.4929 | 0.7919 | 0.8899 | | No log | 39.0 | 78 | 1.1351 | 0.4040 | 1.1351 | 1.0654 | | No log | 40.0 | 80 | 0.6510 | 0.5434 | 0.6510 | 0.8068 | | No log | 41.0 | 82 | 0.7800 | 0.5383 | 0.7800 | 0.8832 | | No log | 42.0 | 84 | 0.6956 | 0.5422 | 0.6956 | 0.8340 | | No log | 43.0 | 86 | 0.6248 | 0.5949 | 0.6248 | 0.7905 | | No log | 44.0 | 88 | 0.6024 | 0.6077 | 0.6024 | 0.7761 | | No log | 45.0 | 90 | 0.7641 | 0.5473 | 0.7641 | 0.8741 | | No log | 46.0 | 92 | 0.6522 | 0.6054 | 0.6522 | 0.8076 | | No log | 47.0 | 94 | 0.6301 | 0.6252 | 0.6301 | 0.7938 | | No log | 48.0 | 96 | 0.6111 | 0.6011 | 0.6111 | 0.7818 | | No log | 49.0 | 98 | 0.6311 | 0.6391 | 0.6311 | 0.7944 | | No log | 50.0 | 100 | 0.6264 | 0.6378 | 0.6264 | 0.7915 | | No log | 51.0 | 102 | 0.7371 | 0.5658 | 0.7371 | 0.8586 | | No log | 52.0 | 104 | 0.6154 | 0.6375 | 0.6154 | 0.7845 | | No log | 53.0 | 106 | 0.5999 | 0.6386 | 0.5999 | 0.7745 | | No log | 54.0 | 108 | 0.6246 | 0.5881 | 0.6246 | 0.7903 | | No log | 55.0 | 110 | 0.6091 | 0.6443 | 0.6091 | 0.7805 | | No log | 56.0 | 112 | 0.6166 | 0.6469 | 0.6166 | 0.7853 | | No log | 57.0 | 114 | 0.6502 | 0.5956 | 0.6502 | 0.8063 | | No log | 58.0 | 116 | 0.6416 | 0.6296 | 0.6416 | 0.8010 | | No log | 59.0 | 118 | 0.6357 | 0.6364 | 0.6357 | 0.7973 | | No log | 60.0 | 120 | 0.6444 | 0.5893 | 0.6444 | 0.8027 | | No log | 61.0 | 122 | 0.6188 | 0.6114 | 0.6188 | 0.7866 | | No log | 62.0 | 124 | 0.6086 | 0.6270 | 0.6086 | 0.7801 | | No log | 63.0 | 126 | 0.6231 | 0.5971 | 0.6231 | 0.7894 | | No log | 64.0 | 128 | 0.6033 | 0.6395 | 0.6033 | 0.7767 | | No log | 65.0 | 130 | 0.6151 | 0.5909 | 0.6151 | 0.7843 | | No log | 66.0 | 132 | 0.8197 | 0.5413 | 0.8197 | 0.9054 | | No log | 67.0 | 134 | 0.6625 | 0.5574 | 0.6625 | 0.8140 | | No log | 68.0 | 136 | 0.5979 | 0.6156 | 0.5979 | 0.7733 | | No log | 69.0 | 138 | 0.5935 | 0.6142 | 0.5935 | 0.7704 | | No log | 70.0 | 140 | 0.7617 | 0.5431 | 0.7617 | 0.8727 | | No log | 71.0 | 142 | 0.6538 | 0.5874 | 0.6538 | 0.8086 | | No log | 72.0 | 144 | 0.6414 | 0.6287 | 0.6414 | 0.8009 | | No log | 73.0 | 146 | 0.6242 | 0.6249 | 0.6242 | 0.7900 | | No log | 74.0 | 148 | 0.7411 | 0.5817 | 0.7411 | 0.8609 | | No log | 75.0 | 150 | 0.6433 | 0.6032 | 0.6433 | 0.8021 | | No log | 76.0 | 152 | 0.6520 | 0.6034 | 0.6520 | 0.8075 | | No log | 77.0 | 154 | 0.6063 | 0.6243 | 0.6063 | 0.7787 | | No log | 78.0 | 156 | 0.6537 | 0.5777 | 0.6537 | 0.8085 | | No log | 79.0 | 158 | 0.6023 | 0.6062 | 0.6023 | 0.7761 | | No log | 80.0 | 160 | 0.6262 | 0.6339 | 0.6262 | 0.7913 | | No log | 81.0 | 162 | 0.6174 | 0.6231 | 0.6174 | 0.7857 | | No log | 82.0 | 164 | 0.7510 | 0.5747 | 0.7510 | 0.8666 | | No log | 83.0 | 166 | 0.6830 | 0.5980 | 0.6830 | 0.8264 | | No log | 84.0 | 168 | 0.6389 | 0.6301 | 0.6389 | 0.7993 | | No log | 85.0 | 170 | 0.6124 | 0.6231 | 0.6124 | 0.7826 | | No log | 86.0 | 172 | 0.6529 | 0.5648 | 0.6529 | 0.8080 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.3.1 - Tokenizers 0.21.0
llm-jp/llm-jp-3-1.8b-sae-l12-k32-16x-c10
llm-jp
2025-03-18T00:48:22Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-03-18T00:48:22Z
--- license: apache-2.0 ---
Swephoenix/phi2-lora-pbhsahxt-1742255413
Swephoenix
2025-03-18T00:48:09Z
0
0
peft
[ "peft", "safetensors", "generated_from_trainer", "base_model:microsoft/phi-2", "base_model:adapter:microsoft/phi-2", "license:mit", "region:us" ]
null
2025-03-17T23:50:43Z
--- license: mit base_model: microsoft/phi-2 tags: - generated_from_trainer library_name: peft model-index: - name: phi2-lora-pbhsahxt-1742255413 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # phi2-lora-pbhsahxt-1742255413 This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 3 ### Training results ### Framework versions - PEFT 0.7.1 - Transformers 4.36.2 - Pytorch 2.5.1+cu121 - Datasets 3.3.1 - Tokenizers 0.15.2
llm-jp/llm-jp-3-1.8b-sae-l12-k32-16x-c10000
llm-jp
2025-03-18T00:47:49Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-03-18T00:47:49Z
--- license: apache-2.0 ---
llm-jp/llm-jp-3-1.8b-sae-l12-k32-16x-c100000
llm-jp
2025-03-18T00:47:36Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-03-18T00:47:36Z
--- license: apache-2.0 ---
mradermacher/aimo-model-1.5B-GGUF
mradermacher
2025-03-18T00:45:36Z
0
0
transformers
[ "transformers", "gguf", "generated_from_trainer", "trl", "sft", "en", "base_model:accountblabla/aimo-model-1.5B", "base_model:quantized:accountblabla/aimo-model-1.5B", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-18T00:33:35Z
--- base_model: accountblabla/aimo-model-1.5B language: - en library_name: transformers model_name: aimo-model-1.5B quantized_by: mradermacher tags: - generated_from_trainer - trl - sft --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/accountblabla/aimo-model-1.5B <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/aimo-model-1.5B-GGUF/resolve/main/aimo-model-1.5B.Q2_K.gguf) | Q2_K | 0.9 | | | [GGUF](https://huggingface.co/mradermacher/aimo-model-1.5B-GGUF/resolve/main/aimo-model-1.5B.Q3_K_S.gguf) | Q3_K_S | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/aimo-model-1.5B-GGUF/resolve/main/aimo-model-1.5B.Q3_K_M.gguf) | Q3_K_M | 1.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/aimo-model-1.5B-GGUF/resolve/main/aimo-model-1.5B.Q3_K_L.gguf) | Q3_K_L | 1.1 | | | [GGUF](https://huggingface.co/mradermacher/aimo-model-1.5B-GGUF/resolve/main/aimo-model-1.5B.IQ4_XS.gguf) | IQ4_XS | 1.1 | | | [GGUF](https://huggingface.co/mradermacher/aimo-model-1.5B-GGUF/resolve/main/aimo-model-1.5B.Q4_K_S.gguf) | Q4_K_S | 1.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/aimo-model-1.5B-GGUF/resolve/main/aimo-model-1.5B.Q4_K_M.gguf) | Q4_K_M | 1.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/aimo-model-1.5B-GGUF/resolve/main/aimo-model-1.5B.Q5_K_S.gguf) | Q5_K_S | 1.4 | | | [GGUF](https://huggingface.co/mradermacher/aimo-model-1.5B-GGUF/resolve/main/aimo-model-1.5B.Q5_K_M.gguf) | Q5_K_M | 1.4 | | | [GGUF](https://huggingface.co/mradermacher/aimo-model-1.5B-GGUF/resolve/main/aimo-model-1.5B.Q6_K.gguf) | Q6_K | 1.6 | very good quality | | [GGUF](https://huggingface.co/mradermacher/aimo-model-1.5B-GGUF/resolve/main/aimo-model-1.5B.Q8_0.gguf) | Q8_0 | 2.0 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/aimo-model-1.5B-GGUF/resolve/main/aimo-model-1.5B.f16.gguf) | f16 | 3.7 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
Zolotomeo/Denismodel6
Zolotomeo
2025-03-18T00:44:50Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-03-18T00:36:56Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: jimaSM --- # Denismodel6 <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `jimaSM` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('Zolotomeo/Denismodel6', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
MagedSaeed/APCD-Plus-meter-classification-model
MagedSaeed
2025-03-18T00:44:00Z
0
0
null
[ "safetensors", "model_hub_mixin", "pytorch_model_hub_mixin", "text-classification", "license:mit", "region:us" ]
text-classification
2025-03-17T19:16:12Z
--- license: mit pipeline_tag: text-classification tags: - model_hub_mixin - pytorch_model_hub_mixin --- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration: - Library: APCD-Plus-meter-classification-model - Docs: [More Information Needed]
tollea1234/llava1.6-7b-cropped_city-lora
tollea1234
2025-03-18T00:42:40Z
0
0
null
[ "safetensors", "llava_llama", "license:apache-2.0", "region:us" ]
null
2025-03-18T00:06:59Z
--- license: apache-2.0 ---
Triangle104/Cydonia-24B-v2.1-Q4_K_M-GGUF
Triangle104
2025-03-18T00:41:18Z
0
0
null
[ "gguf", "llama-cpp", "gguf-my-repo", "base_model:TheDrummer/Cydonia-24B-v2.1", "base_model:quantized:TheDrummer/Cydonia-24B-v2.1", "license:other", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-18T00:35:51Z
--- base_model: TheDrummer/Cydonia-24B-v2.1 license: other tags: - llama-cpp - gguf-my-repo --- # Triangle104/Cydonia-24B-v2.1-Q4_K_M-GGUF This model was converted to GGUF format from [`TheDrummer/Cydonia-24B-v2.1`](https://huggingface.co/TheDrummer/Cydonia-24B-v2.1) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/TheDrummer/Cydonia-24B-v2.1) for more details on the model. --- Supported Chat Templates - Mistral v7 Tekken (recommended) Metharme (may require some patching) Alpaca (worth a try for story) Description - Cydonia 24B v2.1 is a finetune of Mistral's latest 'Small' model (2501). Further tuning was done to improve prose, foster creativity, and tone down positivity. --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Cydonia-24B-v2.1-Q4_K_M-GGUF --hf-file cydonia-24b-v2.1-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Cydonia-24B-v2.1-Q4_K_M-GGUF --hf-file cydonia-24b-v2.1-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Cydonia-24B-v2.1-Q4_K_M-GGUF --hf-file cydonia-24b-v2.1-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Cydonia-24B-v2.1-Q4_K_M-GGUF --hf-file cydonia-24b-v2.1-q4_k_m.gguf -c 2048 ```
pmoharana/Dhruv-27B-Mixed
pmoharana
2025-03-18T00:40:49Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "gemma3", "trl", "en", "base_model:unsloth/gemma-3-27b-it-unsloth-bnb-4bit", "base_model:finetune:unsloth/gemma-3-27b-it-unsloth-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-03-18T00:40:31Z
--- base_model: unsloth/gemma-3-27b-it-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gemma3 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** pmoharana - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-3-27b-it-unsloth-bnb-4bit This gemma3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Triangle104/Cydonia-24B-v2.1-Q3_K_L-GGUF
Triangle104
2025-03-18T00:39:55Z
0
0
null
[ "gguf", "llama-cpp", "gguf-my-repo", "base_model:TheDrummer/Cydonia-24B-v2.1", "base_model:quantized:TheDrummer/Cydonia-24B-v2.1", "license:other", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-17T23:22:04Z
--- base_model: TheDrummer/Cydonia-24B-v2.1 license: other tags: - llama-cpp - gguf-my-repo --- # Triangle104/Cydonia-24B-v2.1-Q3_K_L-GGUF This model was converted to GGUF format from [`TheDrummer/Cydonia-24B-v2.1`](https://huggingface.co/TheDrummer/Cydonia-24B-v2.1) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/TheDrummer/Cydonia-24B-v2.1) for more details on the model. --- Supported Chat Templates - Mistral v7 Tekken (recommended) Metharme (may require some patching) Alpaca (worth a try for story) Description - Cydonia 24B v2.1 is a finetune of Mistral's latest 'Small' model (2501). Further tuning was done to improve prose, foster creativity, and tone down positivity. --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Cydonia-24B-v2.1-Q3_K_L-GGUF --hf-file cydonia-24b-v2.1-q3_k_l.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Cydonia-24B-v2.1-Q3_K_L-GGUF --hf-file cydonia-24b-v2.1-q3_k_l.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Cydonia-24B-v2.1-Q3_K_L-GGUF --hf-file cydonia-24b-v2.1-q3_k_l.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Cydonia-24B-v2.1-Q3_K_L-GGUF --hf-file cydonia-24b-v2.1-q3_k_l.gguf -c 2048 ```
nmcco/14-llama3.2-3b-balanced_vs_hp
nmcco
2025-03-18T00:36:21Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:nmcco/llama-3.2-3b-speakertokens", "base_model:finetune:nmcco/llama-3.2-3b-speakertokens", "endpoints_compatible", "region:us" ]
null
2025-03-17T20:34:17Z
--- base_model: nmcco/llama-3.2-3b-speakertokens library_name: transformers model_name: 14-llama3.2-3b-balanced_vs_hp tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for 14-llama3.2-3b-balanced_vs_hp This model is a fine-tuned version of [nmcco/llama-3.2-3b-speakertokens](https://huggingface.co/nmcco/llama-3.2-3b-speakertokens). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="nmcco/14-llama3.2-3b-balanced_vs_hp", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/hwerzog-huh/huggingface/runs/3guxi481) This model was trained with SFT. ### Framework versions - TRL: 0.14.0 - Transformers: 4.48.2 - Pytorch: 2.4.1 - Datasets: 3.2.0 - Tokenizers: 0.21.0 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
jiinking/17_first_MQA_llama3B_model
jiinking
2025-03-18T00:36:04Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-17T23:23:12Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
SantiagoGr/Santiago
SantiagoGr
2025-03-18T00:33:01Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2025-03-18T00:33:01Z
--- license: creativeml-openrail-m ---
mradermacher/Radomir_Gemma_4B-GGUF
mradermacher
2025-03-18T00:31:12Z
0
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "gemma3", "en", "base_model:KoDer123/Radomir_Gemma_4B", "base_model:quantized:KoDer123/Radomir_Gemma_4B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-18T00:06:03Z
--- base_model: KoDer123/Radomir_Gemma_4B language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - text-generation-inference - transformers - unsloth - gemma3 --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/KoDer123/Radomir_Gemma_4B <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Radomir_Gemma_4B-GGUF/resolve/main/Radomir_Gemma_4B.Q2_K.gguf) | Q2_K | 1.8 | | | [GGUF](https://huggingface.co/mradermacher/Radomir_Gemma_4B-GGUF/resolve/main/Radomir_Gemma_4B.Q3_K_S.gguf) | Q3_K_S | 2.0 | | | [GGUF](https://huggingface.co/mradermacher/Radomir_Gemma_4B-GGUF/resolve/main/Radomir_Gemma_4B.Q3_K_M.gguf) | Q3_K_M | 2.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Radomir_Gemma_4B-GGUF/resolve/main/Radomir_Gemma_4B.Q3_K_L.gguf) | Q3_K_L | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/Radomir_Gemma_4B-GGUF/resolve/main/Radomir_Gemma_4B.IQ4_XS.gguf) | IQ4_XS | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/Radomir_Gemma_4B-GGUF/resolve/main/Radomir_Gemma_4B.Q4_K_S.gguf) | Q4_K_S | 2.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Radomir_Gemma_4B-GGUF/resolve/main/Radomir_Gemma_4B.Q4_K_M.gguf) | Q4_K_M | 2.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Radomir_Gemma_4B-GGUF/resolve/main/Radomir_Gemma_4B.Q5_K_S.gguf) | Q5_K_S | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/Radomir_Gemma_4B-GGUF/resolve/main/Radomir_Gemma_4B.Q5_K_M.gguf) | Q5_K_M | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/Radomir_Gemma_4B-GGUF/resolve/main/Radomir_Gemma_4B.Q6_K.gguf) | Q6_K | 3.3 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Radomir_Gemma_4B-GGUF/resolve/main/Radomir_Gemma_4B.Q8_0.gguf) | Q8_0 | 4.2 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Radomir_Gemma_4B-GGUF/resolve/main/Radomir_Gemma_4B.f16.gguf) | f16 | 7.9 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
MelisaO/modelo_clasificacion_violencia3
MelisaO
2025-03-18T00:30:45Z
0
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:MelisaO/modelo_clasificacion_violencia3", "base_model:finetune:MelisaO/modelo_clasificacion_violencia3", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-03-17T23:23:36Z
--- library_name: transformers license: apache-2.0 base_model: MelisaO/modelo_clasificacion_violencia3 tags: - generated_from_trainer model-index: - name: modelo_clasificacion_violencia3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # modelo_clasificacion_violencia3 This model is a fine-tuned version of [MelisaO/modelo_clasificacion_violencia3](https://huggingface.co/MelisaO/modelo_clasificacion_violencia3) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 27 | 0.0000 | | No log | 2.0 | 54 | 0.0000 | | No log | 3.0 | 81 | 0.0006 | | No log | 4.0 | 108 | 0.0000 | | No log | 5.0 | 135 | 0.0000 | | No log | 6.0 | 162 | 0.0000 | | No log | 7.0 | 189 | 0.0000 | | No log | 8.0 | 216 | 0.0000 | | No log | 9.0 | 243 | 0.0000 | | No log | 10.0 | 270 | 0.0000 | | No log | 11.0 | 297 | 0.0000 | | No log | 12.0 | 324 | 0.0000 | | No log | 13.0 | 351 | 0.0000 | | No log | 14.0 | 378 | 0.0000 | | No log | 15.0 | 405 | 0.0000 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.6.0+cu124 - Datasets 3.4.1 - Tokenizers 0.21.1
SpongeEngine/MT-Gen9-gemma-2-9B-i1-GGUF
SpongeEngine
2025-03-18T00:28:21Z
0
0
null
[ "gguf", "SpongeQuant", "i1-GGUF", "en", "base_model:zelk12/MT-Gen9-gemma-2-9B", "base_model:quantized:zelk12/MT-Gen9-gemma-2-9B", "license:mit", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-03-17T21:11:36Z
--- base_model: zelk12/MT-Gen9-gemma-2-9B language: - en license: mit quantized_by: SpongeQuant tags: - SpongeQuant - i1-GGUF --- Quantized to `i1-GGUF` using [SpongeQuant](https://github.com/SpongeEngine/SpongeQuant), the Oobabooga of LLM quantization. <div style="display: flex; gap: 20px; align-items: center; margin-top:0;"> <a href="https://github.com/SpongeEngine/SpongeQuant"> <img src="https://huggingface.co/spaces/SpongeEngine/README/resolve/main/github-button.png" width="173"> </a> <a href="https://discord.gg/azNmr2Gdgy"> <img src="https://huggingface.co/spaces/SpongeEngine/README/resolve/main/discord-button.png" width="173"> </a> </div> *** <figure> <img src="https://huggingface.co/spaces/SpongeEngine/README/resolve/main/099.png" alt="X-ray of hand"> <figcaption>X-ray of hand</figcaption> </figure> <figure> <audio controls> <source src="https://huggingface.co/spaces/SpongeEngine/README/resolve/main/012.mp3" type="audio/mp3"> Your browser does not support the audio element. </audio> <figcaption>El Cascabel – Antonio Maciel and Los Aguilillas with Mariachi México de Pepe Villa / Rafael Carrión (Mexico, Unknown)</figcaption> </figure> *** ### What is a GGUF? GGUF is a file format used for running large language models (LLMs) on different types of computers. It supports both regular processors (CPUs) and graphics cards (GPUs), making it easier to run models across a wide range of hardware. Many LLMs require powerful and expensive GPUs, but GGUF improves compatibility and efficiency by optimizing how models are loaded and executed. If a GPU doesn't have enough memory, GGUF can offload parts of the model to the CPU, allowing it to run even when GPU resources are limited. GGUF is designed to work well with quantized models, which use less memory and run faster, making them ideal for lower-end hardware. However, it can also store full-precision models when needed. Thanks to these optimizations, GGUF allows LLMs to run efficiently on everything from high-end GPUs to laptops and even CPU-only systems. ### What is an i1-GGUF? i1-GGUF is an enhanced type of GGUF model that uses imatrix quantization—a smarter way of reducing model size while preserving key details. Instead of shrinking everything equally, it analyzes the importance of different model components and keeps the most crucial parts more accurate. Like standard GGUF, i1-GGUF allows LLMs to run on various hardware, including CPUs and lower-end GPUs. However, because it prioritizes important weights, i1-GGUF models deliver better responses than traditional GGUF models while maintaining efficiency.
genki10/Version27NewTestASAP_FineTuningBERT_AugV27_k3_task1_organization_k3_k3_fold3
genki10
2025-03-18T00:27:46Z
0
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-03-18T00:03:35Z
--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer model-index: - name: Version27NewTestASAP_FineTuningBERT_AugV27_k3_task1_organization_k3_k3_fold3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Version27NewTestASAP_FineTuningBERT_AugV27_k3_task1_organization_k3_k3_fold3 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7726 - Qwk: 0.5170 - Mse: 0.7736 - Rmse: 0.8795 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 150 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:------:| | No log | 1.0 | 2 | 11.4364 | 0.0111 | 11.4342 | 3.3814 | | No log | 2.0 | 4 | 10.2559 | 0.0 | 10.2538 | 3.2022 | | No log | 3.0 | 6 | 8.5685 | 0.0 | 8.5668 | 2.9269 | | No log | 4.0 | 8 | 6.7098 | 0.0 | 6.7084 | 2.5901 | | No log | 5.0 | 10 | 4.6561 | 0.0227 | 4.6550 | 2.1575 | | No log | 6.0 | 12 | 3.4481 | 0.0038 | 3.4469 | 1.8566 | | No log | 7.0 | 14 | 2.4119 | 0.1247 | 2.4112 | 1.5528 | | No log | 8.0 | 16 | 1.9670 | 0.1009 | 1.9664 | 1.4023 | | No log | 9.0 | 18 | 1.2446 | 0.0365 | 1.2441 | 1.1154 | | No log | 10.0 | 20 | 1.0547 | 0.0365 | 1.0542 | 1.0268 | | No log | 11.0 | 22 | 0.8682 | 0.2674 | 0.8680 | 0.9316 | | No log | 12.0 | 24 | 0.8306 | 0.3271 | 0.8305 | 0.9113 | | No log | 13.0 | 26 | 0.7557 | 0.4016 | 0.7557 | 0.8693 | | No log | 14.0 | 28 | 0.6190 | 0.4619 | 0.6190 | 0.7868 | | No log | 15.0 | 30 | 0.6399 | 0.5154 | 0.6401 | 0.8001 | | No log | 16.0 | 32 | 1.0329 | 0.3237 | 1.0332 | 1.0165 | | No log | 17.0 | 34 | 0.7372 | 0.4558 | 0.7375 | 0.8588 | | No log | 18.0 | 36 | 0.6971 | 0.4792 | 0.6975 | 0.8352 | | No log | 19.0 | 38 | 0.9070 | 0.4000 | 0.9076 | 0.9527 | | No log | 20.0 | 40 | 0.8033 | 0.4495 | 0.8040 | 0.8967 | | No log | 21.0 | 42 | 0.5771 | 0.5728 | 0.5778 | 0.7601 | | No log | 22.0 | 44 | 0.8935 | 0.4541 | 0.8944 | 0.9457 | | No log | 23.0 | 46 | 0.8029 | 0.4980 | 0.8039 | 0.8966 | | No log | 24.0 | 48 | 0.9154 | 0.4615 | 0.9164 | 0.9573 | | No log | 25.0 | 50 | 0.9065 | 0.4611 | 0.9076 | 0.9527 | | No log | 26.0 | 52 | 0.9981 | 0.4246 | 0.9992 | 0.9996 | | No log | 27.0 | 54 | 1.4498 | 0.3364 | 1.4510 | 1.2046 | | No log | 28.0 | 56 | 0.8700 | 0.5031 | 0.8711 | 0.9333 | | No log | 29.0 | 58 | 0.9759 | 0.4554 | 0.9771 | 0.9885 | | No log | 30.0 | 60 | 1.3913 | 0.3361 | 1.3925 | 1.1801 | | No log | 31.0 | 62 | 0.8301 | 0.4870 | 0.8313 | 0.9118 | | No log | 32.0 | 64 | 0.6153 | 0.5754 | 0.6163 | 0.7850 | | No log | 33.0 | 66 | 0.7778 | 0.4971 | 0.7789 | 0.8826 | | No log | 34.0 | 68 | 1.0342 | 0.4076 | 1.0354 | 1.0176 | | No log | 35.0 | 70 | 0.6708 | 0.5369 | 0.6719 | 0.8197 | | No log | 36.0 | 72 | 0.6765 | 0.5329 | 0.6776 | 0.8232 | | No log | 37.0 | 74 | 0.9024 | 0.4322 | 0.9036 | 0.9506 | | No log | 38.0 | 76 | 0.6662 | 0.5459 | 0.6673 | 0.8169 | | No log | 39.0 | 78 | 0.7022 | 0.5332 | 0.7033 | 0.8386 | | No log | 40.0 | 80 | 0.8924 | 0.4613 | 0.8936 | 0.9453 | | No log | 41.0 | 82 | 0.6731 | 0.5485 | 0.6742 | 0.8211 | | No log | 42.0 | 84 | 0.6859 | 0.5555 | 0.6868 | 0.8288 | | No log | 43.0 | 86 | 0.8955 | 0.4796 | 0.8966 | 0.9469 | | No log | 44.0 | 88 | 0.7649 | 0.5184 | 0.7659 | 0.8752 | | No log | 45.0 | 90 | 0.8957 | 0.4791 | 0.8968 | 0.9470 | | No log | 46.0 | 92 | 0.7932 | 0.5181 | 0.7943 | 0.8912 | | No log | 47.0 | 94 | 0.6668 | 0.6129 | 0.6677 | 0.8171 | | No log | 48.0 | 96 | 0.7689 | 0.5112 | 0.7699 | 0.8775 | | No log | 49.0 | 98 | 1.1397 | 0.4099 | 1.1408 | 1.0681 | | No log | 50.0 | 100 | 0.9710 | 0.4301 | 0.9721 | 0.9860 | | No log | 51.0 | 102 | 0.6383 | 0.6153 | 0.6391 | 0.7994 | | No log | 52.0 | 104 | 0.6474 | 0.6029 | 0.6481 | 0.8050 | | No log | 53.0 | 106 | 0.6312 | 0.6021 | 0.6321 | 0.7950 | | No log | 54.0 | 108 | 0.8651 | 0.4515 | 0.8661 | 0.9307 | | No log | 55.0 | 110 | 0.8007 | 0.4845 | 0.8016 | 0.8953 | | No log | 56.0 | 112 | 0.6133 | 0.6200 | 0.6141 | 0.7837 | | No log | 57.0 | 114 | 0.6142 | 0.5947 | 0.6150 | 0.7842 | | No log | 58.0 | 116 | 0.7456 | 0.5245 | 0.7465 | 0.8640 | | No log | 59.0 | 118 | 0.8565 | 0.4670 | 0.8575 | 0.9260 | | No log | 60.0 | 120 | 0.6868 | 0.5303 | 0.6877 | 0.8293 | | No log | 61.0 | 122 | 0.7016 | 0.5274 | 0.7025 | 0.8382 | | No log | 62.0 | 124 | 0.9015 | 0.4624 | 0.9026 | 0.9500 | | No log | 63.0 | 126 | 0.8409 | 0.4958 | 0.8420 | 0.9176 | | No log | 64.0 | 128 | 0.6834 | 0.5756 | 0.6844 | 0.8273 | | No log | 65.0 | 130 | 0.7287 | 0.5269 | 0.7298 | 0.8543 | | No log | 66.0 | 132 | 0.7592 | 0.5254 | 0.7603 | 0.8719 | | No log | 67.0 | 134 | 0.6600 | 0.5821 | 0.6609 | 0.8130 | | No log | 68.0 | 136 | 0.7104 | 0.5427 | 0.7113 | 0.8434 | | No log | 69.0 | 138 | 0.7274 | 0.5253 | 0.7283 | 0.8534 | | No log | 70.0 | 140 | 0.6830 | 0.5537 | 0.6838 | 0.8270 | | No log | 71.0 | 142 | 0.7903 | 0.5101 | 0.7913 | 0.8896 | | No log | 72.0 | 144 | 0.7517 | 0.5146 | 0.7527 | 0.8676 | | No log | 73.0 | 146 | 0.7884 | 0.5110 | 0.7894 | 0.8885 | | No log | 74.0 | 148 | 0.7918 | 0.5098 | 0.7928 | 0.8904 | | No log | 75.0 | 150 | 0.6654 | 0.5457 | 0.6662 | 0.8162 | | No log | 76.0 | 152 | 0.6960 | 0.5339 | 0.6968 | 0.8348 | | No log | 77.0 | 154 | 0.7676 | 0.5131 | 0.7684 | 0.8766 | | No log | 78.0 | 156 | 0.7083 | 0.5426 | 0.7091 | 0.8421 | | No log | 79.0 | 158 | 0.8075 | 0.4989 | 0.8084 | 0.8991 | | No log | 80.0 | 160 | 0.8297 | 0.4966 | 0.8307 | 0.9114 | | No log | 81.0 | 162 | 0.7005 | 0.5482 | 0.7014 | 0.8375 | | No log | 82.0 | 164 | 0.6833 | 0.5636 | 0.6842 | 0.8272 | | No log | 83.0 | 166 | 0.6876 | 0.5652 | 0.6885 | 0.8298 | | No log | 84.0 | 168 | 0.6562 | 0.5779 | 0.6571 | 0.8106 | | No log | 85.0 | 170 | 0.6447 | 0.5964 | 0.6456 | 0.8035 | | No log | 86.0 | 172 | 0.7726 | 0.5170 | 0.7736 | 0.8795 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.3.1 - Tokenizers 0.21.0
hZzy/qwen2.5-1.5b-sft3-25-3
hZzy
2025-03-18T00:27:01Z
0
0
null
[ "safetensors", "qwen2", "alignment-handbook", "trl", "sft", "generated_from_trainer", "dataset:hZzy/SFT_new_full2", "base_model:Qwen/Qwen2.5-1.5B", "base_model:finetune:Qwen/Qwen2.5-1.5B", "license:apache-2.0", "region:us" ]
null
2025-03-17T22:25:20Z
--- license: apache-2.0 base_model: Qwen/Qwen2.5-1.5B tags: - alignment-handbook - trl - sft - generated_from_trainer - trl - sft - generated_from_trainer datasets: - hZzy/SFT_new_full2 model-index: - name: qwen2.5-1.5b-sft3-25-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/zhiyuzha-university-of-florida/huggingface/runs/pt6pvjen) # qwen2.5-1.5b-sft3-25-3 This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B](https://huggingface.co/Qwen/Qwen2.5-1.5B) on the hZzy/SFT_new_full2 dataset. It achieves the following results on the evaluation set: - Loss: 2.1614 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 8 - total_train_batch_size: 320 - total_eval_batch_size: 40 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.9732 | 0.2439 | 5 | 2.9550 | | 2.9685 | 0.4878 | 10 | 2.9329 | | 2.9341 | 0.7317 | 15 | 2.8866 | | 2.8788 | 0.9756 | 20 | 2.8079 | | 2.8082 | 1.2195 | 25 | 2.7484 | | 2.7341 | 1.4634 | 30 | 2.6838 | | 2.6784 | 1.7073 | 35 | 2.6335 | | 2.6326 | 1.9512 | 40 | 2.5951 | | 2.5934 | 2.1951 | 45 | 2.5594 | | 2.5543 | 2.4390 | 50 | 2.5217 | | 2.513 | 2.6829 | 55 | 2.4829 | | 2.4712 | 2.9268 | 60 | 2.4461 | | 2.4365 | 3.1707 | 65 | 2.4138 | | 2.4066 | 3.4146 | 70 | 2.3859 | | 2.375 | 3.6585 | 75 | 2.3606 | | 2.3415 | 3.9024 | 80 | 2.3369 | | 2.3225 | 4.1463 | 85 | 2.3143 | | 2.2989 | 4.3902 | 90 | 2.2927 | | 2.2748 | 4.6341 | 95 | 2.2732 | | 2.2513 | 4.8780 | 100 | 2.2562 | | 2.2401 | 5.1220 | 105 | 2.2412 | | 2.2172 | 5.3659 | 110 | 2.2282 | | 2.204 | 5.6098 | 115 | 2.2168 | | 2.1893 | 5.8537 | 120 | 2.2069 | | 2.1784 | 6.0976 | 125 | 2.1984 | | 2.1646 | 6.3415 | 130 | 2.1914 | | 2.1673 | 6.5854 | 135 | 2.1852 | | 2.1555 | 6.8293 | 140 | 2.1801 | | 2.1599 | 7.0732 | 145 | 2.1757 | | 2.145 | 7.3171 | 150 | 2.1721 | | 2.1359 | 7.5610 | 155 | 2.1692 | | 2.1391 | 7.8049 | 160 | 2.1668 | | 2.1274 | 8.0488 | 165 | 2.1650 | | 2.1342 | 8.2927 | 170 | 2.1637 | | 2.1272 | 8.5366 | 175 | 2.1627 | | 2.133 | 8.7805 | 180 | 2.1621 | | 2.1286 | 9.0244 | 185 | 2.1617 | | 2.1296 | 9.2683 | 190 | 2.1615 | | 2.1256 | 9.5122 | 195 | 2.1614 | | 2.1267 | 9.7561 | 200 | 2.1614 | ### Framework versions - Transformers 4.42.0 - Pytorch 2.6.0+cu124 - Datasets 3.2.0 - Tokenizers 0.19.1
Yntec/NextPhoton
Yntec
2025-03-18T00:26:56Z
7,787
1
diffusers
[ "diffusers", "safetensors", "Base Model", "Style", "Photo", "Easy", "Photorealistic", "Clothes", "bigbeanboiler", "Photographer", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "base_model:digiplay/NextPhoto_v2", "base_model:merge:digiplay/NextPhoto_v2", "base_model:digiplay/Photon_v1", "base_model:merge:digiplay/Photon_v1", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-09-15T03:57:08Z
--- license: creativeml-openrail-m library_name: diffusers pipeline_tag: text-to-image tags: - Base Model - Style - Photo - Easy - Photorealistic - Clothes - bigbeanboiler - Photographer - stable-diffusion - stable-diffusion-diffusers - diffusers - text-to-image base_model: - digiplay/Photon_v1 - digiplay/NextPhoto_v2 base_model_relation: merge inference: true --- # Next Photon Next Photo 2 merged with Photon to make them real! Samples and prompts (all use seed 9119): ![A well lit photograph of a girl having fun with her boyfriend and friends at the bar. Coke can. Midjourney prompts](https://cdn-uploads.huggingface.co/production/uploads/63239b8370edc53f51cd5d42/CX-YThG-HePegL-92N3Lk.png) A well lit photograph of a girl having fun with her boyfriend and friends at the bar. Coke can. ![An abandoned amusement park reclaimed by nature, with rusted roller coasters and a carousel frozen in time. Flux prompts](https://cdn-uploads.huggingface.co/production/uploads/63239b8370edc53f51cd5d42/U3t1gNxnrTA50vAFpH843.png) An abandoned amusement park reclaimed by nature, with rusted roller coasters and a carousel frozen in time. ![A well lit candid closeup street photograph of a normal, yet beautiful girl posing in the club. AI prompts](https://cdn-uploads.huggingface.co/production/uploads/63239b8370edc53f51cd5d42/utk9hhVpvCnS8B6Bd9mTE.png) A well lit candid closeup street photograph of a normal, yet beautiful girl posing in the club ![A photo of a steampunk-inspired airship soaring through the sky, propelled by a magnificent array of gears and turbines. Best online AI image generators](https://cdn-uploads.huggingface.co/production/uploads/63239b8370edc53f51cd5d42/S7INaYAUsZgEZytqtpSHy.png) A photo of a steampunk-inspired airship soaring through the sky, propelled by a magnificent array of gears and turbines. Original pages: https://civitai.com/models/84728/photon https://civitai.com/models/84335?modelVersionId=109819 (Next Photo 2) # Recipe: - SuperMerger Weight Sum use MBW 1,0,0,0,0,0,0,0,0,0,1,1,1,0,1,1,1,1,1,1,0,0,0,1,1,1 Model A: Next Photo 2 Model B: Photon Output: NextPhoton
Zolotomeo/Denismodel5
Zolotomeo
2025-03-18T00:24:20Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-03-18T00:18:51Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: ZKDD --- # Denismodel5 <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `ZKDD` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('Zolotomeo/Denismodel5', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
Maryam-Faisal-Viral-Video-news/Maryam.Faisal.Viral.Video.Original.Link.Tiktok.Instagram.Twitter
Maryam-Faisal-Viral-Video-news
2025-03-18T00:22:56Z
0
0
null
[ "region:us" ]
null
2025-03-18T00:22:28Z
<animated-image data-catalyst=""><a href="https://alltvsteam.com/viral-video/?v=news-es-tvdf" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
FluxiIA/Qwen_7b-tool_call_on_reasonin-Q6_K-GGUF
FluxiIA
2025-03-18T00:15:00Z
0
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "qwen2", "trl", "sft", "llama-cpp", "gguf-my-repo", "en", "base_model:FluxiIA/Qwen_7b-tool_call_on_reasonin", "base_model:quantized:FluxiIA/Qwen_7b-tool_call_on_reasonin", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-17T20:56:41Z
--- base_model: FluxiIA/Qwen_7b-tool_call_on_reasonin language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - qwen2 - trl - sft - llama-cpp - gguf-my-repo --- # FluxiIA/Qwen_7b-tool_call_on_reasonin-Q6_K-GGUF This model was converted to GGUF format from [`FluxiIA/Qwen_7b-tool_call_on_reasonin`](https://huggingface.co/FluxiIA/Qwen_7b-tool_call_on_reasonin) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/FluxiIA/Qwen_7b-tool_call_on_reasonin) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo FluxiIA/Qwen_7b-tool_call_on_reasonin-Q6_K-GGUF --hf-file qwen_7b-tool_call_on_reasonin-q6_k.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo FluxiIA/Qwen_7b-tool_call_on_reasonin-Q6_K-GGUF --hf-file qwen_7b-tool_call_on_reasonin-q6_k.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo FluxiIA/Qwen_7b-tool_call_on_reasonin-Q6_K-GGUF --hf-file qwen_7b-tool_call_on_reasonin-q6_k.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo FluxiIA/Qwen_7b-tool_call_on_reasonin-Q6_K-GGUF --hf-file qwen_7b-tool_call_on_reasonin-q6_k.gguf -c 2048 ```
YOYO-AI/Qwen2.5-32B-YOYO-reasoning-v2-Q4_K_M-GGUF
YOYO-AI
2025-03-18T00:12:16Z
0
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "llama-cpp", "gguf-my-repo", "base_model:YOYO-AI/Qwen2.5-32B-YOYO-reasoning-v2", "base_model:quantized:YOYO-AI/Qwen2.5-32B-YOYO-reasoning-v2", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-18T00:10:45Z
--- base_model: YOYO-AI/Qwen2.5-32B-YOYO-reasoning-v2 library_name: transformers tags: - mergekit - merge - llama-cpp - gguf-my-repo --- # YOYO-AI/Qwen2.5-32B-YOYO-reasoning-v2-Q4_K_M-GGUF This model was converted to GGUF format from [`YOYO-AI/Qwen2.5-32B-YOYO-reasoning-v2`](https://huggingface.co/YOYO-AI/Qwen2.5-32B-YOYO-reasoning-v2) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/YOYO-AI/Qwen2.5-32B-YOYO-reasoning-v2) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo YOYO-AI/Qwen2.5-32B-YOYO-reasoning-v2-Q4_K_M-GGUF --hf-file qwen2.5-32b-yoyo-reasoning-v2-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo YOYO-AI/Qwen2.5-32B-YOYO-reasoning-v2-Q4_K_M-GGUF --hf-file qwen2.5-32b-yoyo-reasoning-v2-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo YOYO-AI/Qwen2.5-32B-YOYO-reasoning-v2-Q4_K_M-GGUF --hf-file qwen2.5-32b-yoyo-reasoning-v2-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo YOYO-AI/Qwen2.5-32B-YOYO-reasoning-v2-Q4_K_M-GGUF --hf-file qwen2.5-32b-yoyo-reasoning-v2-q4_k_m.gguf -c 2048 ```
kpokhrel007/fine-tuned-DeepSeek-R1-Distill-1.5B-CGA_Base
kpokhrel007
2025-03-18T00:10:28Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-classification
2025-03-18T00:06:05Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Zolotomeo/Denismodel4
Zolotomeo
2025-03-18T00:09:29Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-03-17T23:51:20Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: GIBB --- # Denismodel4 <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `GIBB` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('Zolotomeo/Denismodel4', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
Uthar/John6666_unlimited-porn-xreal-sdxl
Uthar
2025-03-18T00:09:27Z
0
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "stable-diffusion-xl", "anime", "hentai", "realistic", "photorealistic", "pony", "en", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2025-03-18T00:09:26Z
--- license: other license_name: faipl-1.0-sd license_link: https://freedevproject.org/faipl-1.0-sd/ language: - en library_name: diffusers pipeline_tag: text-to-image tags: - text-to-image - stable-diffusion - stable-diffusion-xl - anime - hentai - realistic - photorealistic - pony --- Original model is [here](https://civitai.com/models/722566?modelVersionId=858718). This model created by [advokat](https://civitai.com/user/advokat).
Grogros/dmWM-llama-3.2-1B-Instruct-KGWB-OWT_WMBoundary-OWT-WB-v2
Grogros
2025-03-18T00:08:28Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "conversational", "dataset:openwebtext", "base_model:meta-llama/Llama-3.2-1B-Instruct", "base_model:finetune:meta-llama/Llama-3.2-1B-Instruct", "license:llama3.2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-17T16:52:40Z
--- library_name: transformers license: llama3.2 base_model: meta-llama/Llama-3.2-1B-Instruct tags: - generated_from_trainer datasets: - openwebtext model-index: - name: dmWM-llama-3.2-1B-Instruct-KGWB-OWT_WMBoundary-OWT-WB-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dmWM-llama-3.2-1B-Instruct-KGWB-OWT_WMBoundary-OWT-WB-v2 This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on the openwebtext dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAFACTOR and the args are: No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - training_steps: 5000 ### Training results ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1.post303 - Datasets 3.2.0 - Tokenizers 0.20.3
Uthar/John6666_true-amateur-feeling-xl-v1-sdxl
Uthar
2025-03-18T00:06:59Z
0
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "stable-diffusion-xl", "realistic", "photorealistic", "amateur", "true amateur feeling", "en", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2025-03-18T00:06:58Z
--- license: creativeml-openrail-m language: - en library_name: diffusers pipeline_tag: text-to-image tags: - text-to-image - stable-diffusion - stable-diffusion-xl - realistic - photorealistic - amateur - true amateur feeling --- Original model is [here](https://civitai.com/models/645007/true-amateur-feeling-xl?modelVersionId=721527).
drewbenson/DeepSeek-R1-Distill-Llama-8B-4bit-MLX
drewbenson
2025-03-18T00:06:08Z
17
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mlx", "conversational", "base_model:deepseek-ai/DeepSeek-R1-Distill-Llama-8B", "base_model:quantized:deepseek-ai/DeepSeek-R1-Distill-Llama-8B", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "region:us" ]
text-generation
2025-03-11T03:21:58Z
--- license: mit library_name: transformers tags: - mlx base_model: deepseek-ai/DeepSeek-R1-Distill-Llama-8B --- # drewbenson/DeepSeek-R1-Distill-Llama-8B-4bit-MLX The Model [drewbenson/DeepSeek-R1-Distill-Llama-8B-4bit-MLX](https://huggingface.co/drewbenson/DeepSeek-R1-Distill-Llama-8B-4bit-MLX) was converted to MLX format from [deepseek-ai/DeepSeek-R1-Distill-Llama-8B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B) using mlx-lm version **0.21.5**. On M4 Max, this runs 40%-50% faster than the GGUF. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("drewbenson/DeepSeek-R1-Distill-Llama-8B-4bit-MLX") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
Uthar/John6666_fennfoto-pony-v3-sdxl
Uthar
2025-03-18T00:05:35Z
0
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "stable-diffusion-xl", "realistic", "photorealistic", "overwatch", "pony", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2025-03-18T00:05:35Z
--- license: other license_name: faipl-1.0-sd license_link: https://freedevproject.org/faipl-1.0-sd/ tags: - text-to-image - stable-diffusion - stable-diffusion-xl - realistic - photorealistic - overwatch - pony --- Original model is [here](https://civitai.com/models/503537/fennfoto-pony?modelVersionId=676770).
Asap7772/smollm2_lr1e4_10ep_binned_sft
Asap7772
2025-03-18T00:02:52Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-18T00:01:47Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Uthar/John6666_ultra-v5-sdxl
Uthar
2025-03-18T00:02:06Z
0
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "stable-diffusion-xl", "realistic", "photorealistic", "beautiful", "pony", "en", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2025-03-18T00:02:04Z
--- license: other license_name: faipl-1.0-sd license_link: https://freedevproject.org/faipl-1.0-sd/ language: - en library_name: diffusers pipeline_tag: text-to-image tags: - text-to-image - stable-diffusion - stable-diffusion-xl - realistic - photorealistic - beautiful - pony --- Original model is [here](https://civitai.com/models/228525?modelVersionId=877221). This model created by [AIA_civit](https://civitai.com/user/AIA_civit).
Asap7772/smollm2_lr1e4_7ep_binned_sft
Asap7772
2025-03-18T00:01:38Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-18T00:00:55Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Uthar/John6666_stoiqo-new-reality-sdxl-xlpro-sdxl
Uthar
2025-03-18T00:01:30Z
0
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "stable-diffusion-xl", "realistic", "photorealistic", "photo", "en", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2025-03-18T00:01:28Z
--- license: creativeml-openrail-m language: - en library_name: diffusers pipeline_tag: text-to-image tags: - text-to-image - stable-diffusion - stable-diffusion-xl - realistic - photorealistic - photo --- Original model is [here](https://civitai.com/models/161068/stoiqo-newreality-or-sd-xl-lightning?modelVersionId=690310). This model created by [ALIENHAZE](https://civitai.com/user/ALIENHAZE).
devmgck/bert-department-classification
devmgck
2025-03-18T00:01:05Z
0
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-03-18T00:00:30Z
--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-department-classification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-department-classification This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0003 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.0006 | 3.1746 | 200 | 0.0003 | 1.0 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.6.0+cpu - Datasets 3.3.2 - Tokenizers 0.20.3
Asap7772/smollm2_lr1e4_5ep_binned_sft
Asap7772
2025-03-18T00:00:43Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-17T23:59:36Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
camilla-araujo-viral-video-news/camilla.araujo.viral.video.on.social.media.x.twitter.telegram
camilla-araujo-viral-video-news
2025-03-18T00:00:42Z
0
0
null
[ "region:us" ]
null
2025-03-18T00:00:08Z
<animated-image data-catalyst=""><a href="https://alltvsteam.com/viral-video/?v=news-es-tvdf" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
4ddigital/moniqueclone1
4ddigital
2025-03-18T00:00:23Z
0
0
null
[ "license:other", "region:us" ]
null
2025-03-17T22:55:55Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md ---
Uthar/John6666_mklan-aio-nsfw-aio-nextgen-xlv2-sdxl
Uthar
2025-03-17T23:59:49Z
0
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "stable-diffusion-xl", "realistic", "photorealistic", "anime", "game", "animals", "en", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2025-03-17T23:59:48Z
--- license: other license_name: faipl-1.0-sd license_link: https://freedevproject.org/faipl-1.0-sd/ language: - en library_name: diffusers pipeline_tag: text-to-image tags: - text-to-image - stable-diffusion - stable-diffusion-xl - realistic - photorealistic - anime - game - animals --- Original model is [here](https://civitai.com/models/319953/mklan-aio-nsfw?modelVersionId=836616). This model created by [mskiller51](https://civitai.com/user/mskiller51).
JuliaBotAI/Juliette-32B-16bit-Med
JuliaBotAI
2025-03-17T23:59:08Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-03-17T23:58:57Z
--- base_model: unsloth/qwq-32b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** JuliaBotAI - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwq-32b-unsloth-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Asap7772/smollm2_lr5e5_10ep_binned_sft
Asap7772
2025-03-17T23:58:28Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-17T23:57:51Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Asap7772/smollm2_lr5e5_7ep_binned_sft
Asap7772
2025-03-17T23:57:42Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-17T23:57:04Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
TongZheng1999/gemma-2-9b-it-star-mixed_unique_conclusion-OP-final_10-2-3Rounds-iter-1
TongZheng1999
2025-03-17T23:57:06Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "gemma2", "text-generation", "generated_from_trainer", "alignment-handbook", "trl", "sft", "conversational", "base_model:google/gemma-2-9b-it", "base_model:finetune:google/gemma-2-9b-it", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-17T21:46:17Z
--- base_model: google/gemma-2-9b-it library_name: transformers model_name: gemma-2-9b-it-star-mixed_unique_conclusion-OP-final_10-2-3Rounds-iter-1 tags: - generated_from_trainer - alignment-handbook - trl - sft licence: license --- # Model Card for gemma-2-9b-it-star-mixed_unique_conclusion-OP-final_10-2-3Rounds-iter-1 This model is a fine-tuned version of [google/gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="TongZheng1999/gemma-2-9b-it-star-mixed_unique_conclusion-OP-final_10-2-3Rounds-iter-1", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/kidzheng/huggingface/runs/z8uurlew) This model was trained with SFT. ### Framework versions - TRL: 0.12.0 - Transformers: 4.46.0 - Pytorch: 2.6.0 - Datasets: 3.3.1 - Tokenizers: 0.20.3 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
nakshatra44/17mar_incremental_v9_2epoches
nakshatra44
2025-03-17T23:54:59Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:unsloth/mistral-7b-v0.3-bnb-4bit", "base_model:adapter:unsloth/mistral-7b-v0.3-bnb-4bit", "region:us" ]
null
2025-03-17T23:54:44Z
--- base_model: unsloth/mistral-7b-v0.3-bnb-4bit library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.14.0
alelisita/brunom
alelisita
2025-03-17T23:54:50Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-03-17T23:44:24Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: TOK --- # Brunom <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `TOK` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('alelisita/brunom', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
MrRobotoAI/248-Q4_K_M-GGUF
MrRobotoAI
2025-03-17T23:54:23Z
0
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "llama-cpp", "gguf-my-repo", "base_model:MrRobotoAI/248", "base_model:quantized:MrRobotoAI/248", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-17T23:53:56Z
--- base_model: MrRobotoAI/248 library_name: transformers tags: - mergekit - merge - llama-cpp - gguf-my-repo --- # MrRobotoAI/248-Q4_K_M-GGUF This model was converted to GGUF format from [`MrRobotoAI/248`](https://huggingface.co/MrRobotoAI/248) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/MrRobotoAI/248) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo MrRobotoAI/248-Q4_K_M-GGUF --hf-file 248-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo MrRobotoAI/248-Q4_K_M-GGUF --hf-file 248-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo MrRobotoAI/248-Q4_K_M-GGUF --hf-file 248-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo MrRobotoAI/248-Q4_K_M-GGUF --hf-file 248-q4_k_m.gguf -c 2048 ```
mouseyy/best_model_copy
mouseyy
2025-03-17T23:51:38Z
0
0
transformers
[ "transformers", "safetensors", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice_17_0", "base_model:facebook/wav2vec2-xls-r-300m", "base_model:finetune:facebook/wav2vec2-xls-r-300m", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-03-17T22:49:19Z
--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-xls-r-300m tags: - generated_from_trainer datasets: - common_voice_17_0 metrics: - wer model-index: - name: result_data-1 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_17_0 type: common_voice_17_0 config: uk split: test args: uk metrics: - name: Wer type: wer value: 0.36512878573450325 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # result_data-1 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_17_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2220 - Wer: 0.3651 - Cer: 0.1691 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6.532628754904162e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 206 - num_epochs: 7.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:------:|:----:|:---------------:|:------:|:------:| | 0.6324 | 0.9099 | 1000 | 0.5004 | 0.6083 | 0.2381 | | 0.3497 | 1.8198 | 2000 | 0.3087 | 0.4650 | 0.1965 | | 0.2642 | 2.7298 | 3000 | 0.2636 | 0.4249 | 0.1841 | | 0.2328 | 3.6397 | 4000 | 0.2431 | 0.3960 | 0.1789 | | 0.1933 | 4.5496 | 5000 | 0.2289 | 0.3773 | 0.1732 | | 0.1783 | 5.4595 | 6000 | 0.2300 | 0.3728 | 0.1711 | | 0.1617 | 6.3694 | 7000 | 0.2233 | 0.3637 | 0.1700 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.6.0+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0
jkazdan/results
jkazdan
2025-03-17T23:50:56Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:meta-llama/Llama-3.3-70B-Instruct", "base_model:finetune:meta-llama/Llama-3.3-70B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-03-17T23:49:17Z
--- base_model: meta-llama/Llama-3.3-70B-Instruct library_name: transformers model_name: results tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for results This model is a fine-tuned version of [meta-llama/Llama-3.3-70B-Instruct](https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="jkazdan/results", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.15.2 - Transformers: 4.49.0 - Pytorch: 2.5.1 - Datasets: 3.3.2 - Tokenizers: 0.21.0 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
genki10/Version27NewTestASAP_FineTuningBERT_AugV27_k3_task1_organization_k3_k3_fold1
genki10
2025-03-17T23:49:35Z
0
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-03-17T23:24:10Z
--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer model-index: - name: Version27NewTestASAP_FineTuningBERT_AugV27_k3_task1_organization_k3_k3_fold1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Version27NewTestASAP_FineTuningBERT_AugV27_k3_task1_organization_k3_k3_fold1 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6094 - Qwk: 0.5813 - Mse: 0.6093 - Rmse: 0.7806 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 150 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | No log | 1.0 | 2 | 9.6178 | 0.0037 | 9.6151 | 3.1008 | | No log | 2.0 | 4 | 7.1481 | 0.0 | 7.1457 | 2.6731 | | No log | 3.0 | 6 | 5.5481 | 0.0664 | 5.5459 | 2.3550 | | No log | 4.0 | 8 | 4.4128 | 0.0215 | 4.4107 | 2.1002 | | No log | 5.0 | 10 | 3.4918 | 0.0 | 3.4897 | 1.8681 | | No log | 6.0 | 12 | 2.7932 | 0.0 | 2.7914 | 1.6707 | | No log | 7.0 | 14 | 2.1173 | 0.1711 | 2.1156 | 1.4545 | | No log | 8.0 | 16 | 1.6283 | 0.0545 | 1.6267 | 1.2754 | | No log | 9.0 | 18 | 1.3013 | 0.0 | 1.2998 | 1.1401 | | No log | 10.0 | 20 | 1.0254 | 0.0 | 1.0241 | 1.0120 | | No log | 11.0 | 22 | 0.8896 | 0.1202 | 0.8883 | 0.9425 | | No log | 12.0 | 24 | 0.7839 | 0.3258 | 0.7827 | 0.8847 | | No log | 13.0 | 26 | 0.6986 | 0.5222 | 0.6975 | 0.8352 | | No log | 14.0 | 28 | 0.7605 | 0.3804 | 0.7595 | 0.8715 | | No log | 15.0 | 30 | 0.5577 | 0.5076 | 0.5568 | 0.7462 | | No log | 16.0 | 32 | 0.7155 | 0.4582 | 0.7146 | 0.8453 | | No log | 17.0 | 34 | 0.6854 | 0.5193 | 0.6846 | 0.8274 | | No log | 18.0 | 36 | 0.4660 | 0.5858 | 0.4654 | 0.6822 | | No log | 19.0 | 38 | 0.4696 | 0.5843 | 0.4692 | 0.6850 | | No log | 20.0 | 40 | 0.8539 | 0.4823 | 0.8535 | 0.9238 | | No log | 21.0 | 42 | 0.5500 | 0.5523 | 0.5497 | 0.7414 | | No log | 22.0 | 44 | 0.5815 | 0.5791 | 0.5813 | 0.7624 | | No log | 23.0 | 46 | 0.6415 | 0.4940 | 0.6414 | 0.8008 | | No log | 24.0 | 48 | 0.6223 | 0.5947 | 0.6220 | 0.7887 | | No log | 25.0 | 50 | 0.6499 | 0.5848 | 0.6497 | 0.8061 | | No log | 26.0 | 52 | 0.6527 | 0.5473 | 0.6526 | 0.8078 | | No log | 27.0 | 54 | 0.6759 | 0.5781 | 0.6757 | 0.8220 | | No log | 28.0 | 56 | 0.6447 | 0.5961 | 0.6445 | 0.8028 | | No log | 29.0 | 58 | 0.6411 | 0.5873 | 0.6411 | 0.8007 | | No log | 30.0 | 60 | 0.6868 | 0.5708 | 0.6866 | 0.8286 | | No log | 31.0 | 62 | 0.6310 | 0.5885 | 0.6309 | 0.7943 | | No log | 32.0 | 64 | 0.6166 | 0.5809 | 0.6165 | 0.7852 | | No log | 33.0 | 66 | 0.6781 | 0.5824 | 0.6781 | 0.8235 | | No log | 34.0 | 68 | 0.6434 | 0.5970 | 0.6433 | 0.8021 | | No log | 35.0 | 70 | 0.5922 | 0.5710 | 0.5921 | 0.7695 | | No log | 36.0 | 72 | 0.7697 | 0.5253 | 0.7697 | 0.8773 | | No log | 37.0 | 74 | 0.7347 | 0.5427 | 0.7347 | 0.8571 | | No log | 38.0 | 76 | 0.6191 | 0.5620 | 0.6190 | 0.7868 | | No log | 39.0 | 78 | 0.6645 | 0.5745 | 0.6645 | 0.8152 | | No log | 40.0 | 80 | 0.6294 | 0.6046 | 0.6295 | 0.7934 | | No log | 41.0 | 82 | 0.6357 | 0.5431 | 0.6357 | 0.7973 | | No log | 42.0 | 84 | 0.6209 | 0.5798 | 0.6209 | 0.7880 | | No log | 43.0 | 86 | 0.8206 | 0.5009 | 0.8206 | 0.9059 | | No log | 44.0 | 88 | 0.6068 | 0.5912 | 0.6068 | 0.7790 | | No log | 45.0 | 90 | 0.6311 | 0.5909 | 0.6312 | 0.7945 | | No log | 46.0 | 92 | 0.8113 | 0.5113 | 0.8115 | 0.9009 | | No log | 47.0 | 94 | 0.6313 | 0.5829 | 0.6315 | 0.7947 | | No log | 48.0 | 96 | 0.6293 | 0.5975 | 0.6295 | 0.7934 | | No log | 49.0 | 98 | 0.7054 | 0.5525 | 0.7055 | 0.8399 | | No log | 50.0 | 100 | 0.5931 | 0.5547 | 0.5930 | 0.7701 | | No log | 51.0 | 102 | 0.6022 | 0.5544 | 0.6022 | 0.7760 | | No log | 52.0 | 104 | 0.6822 | 0.5726 | 0.6822 | 0.8260 | | No log | 53.0 | 106 | 0.6220 | 0.5808 | 0.6221 | 0.7887 | | No log | 54.0 | 108 | 0.6423 | 0.5833 | 0.6424 | 0.8015 | | No log | 55.0 | 110 | 0.7235 | 0.5382 | 0.7236 | 0.8507 | | No log | 56.0 | 112 | 0.6421 | 0.5675 | 0.6421 | 0.8013 | | No log | 57.0 | 114 | 0.6715 | 0.5632 | 0.6714 | 0.8194 | | No log | 58.0 | 116 | 0.6326 | 0.5904 | 0.6326 | 0.7954 | | No log | 59.0 | 118 | 0.6067 | 0.5950 | 0.6067 | 0.7789 | | No log | 60.0 | 120 | 0.6829 | 0.5825 | 0.6830 | 0.8264 | | No log | 61.0 | 122 | 0.5733 | 0.6186 | 0.5733 | 0.7572 | | No log | 62.0 | 124 | 0.6243 | 0.6010 | 0.6243 | 0.7901 | | No log | 63.0 | 126 | 0.7012 | 0.5699 | 0.7013 | 0.8374 | | No log | 64.0 | 128 | 0.5974 | 0.5937 | 0.5975 | 0.7730 | | No log | 65.0 | 130 | 0.6103 | 0.5757 | 0.6104 | 0.7813 | | No log | 66.0 | 132 | 0.7307 | 0.5422 | 0.7308 | 0.8549 | | No log | 67.0 | 134 | 0.7870 | 0.5283 | 0.7871 | 0.8872 | | No log | 68.0 | 136 | 0.6104 | 0.5833 | 0.6104 | 0.7813 | | No log | 69.0 | 138 | 0.6012 | 0.5779 | 0.6011 | 0.7753 | | No log | 70.0 | 140 | 0.7370 | 0.5416 | 0.7370 | 0.8585 | | No log | 71.0 | 142 | 0.7227 | 0.5469 | 0.7227 | 0.8501 | | No log | 72.0 | 144 | 0.6079 | 0.5926 | 0.6079 | 0.7796 | | No log | 73.0 | 146 | 0.6619 | 0.5836 | 0.6619 | 0.8136 | | No log | 74.0 | 148 | 0.6296 | 0.5978 | 0.6296 | 0.7935 | | No log | 75.0 | 150 | 0.6014 | 0.5885 | 0.6014 | 0.7755 | | No log | 76.0 | 152 | 0.6589 | 0.5753 | 0.6590 | 0.8118 | | No log | 77.0 | 154 | 0.6361 | 0.5965 | 0.6361 | 0.7976 | | No log | 78.0 | 156 | 0.6696 | 0.5707 | 0.6697 | 0.8183 | | No log | 79.0 | 158 | 0.6077 | 0.5957 | 0.6077 | 0.7795 | | No log | 80.0 | 160 | 0.6884 | 0.5569 | 0.6885 | 0.8297 | | No log | 81.0 | 162 | 0.6634 | 0.5658 | 0.6635 | 0.8145 | | No log | 82.0 | 164 | 0.6121 | 0.5876 | 0.6121 | 0.7824 | | No log | 83.0 | 166 | 0.6568 | 0.5843 | 0.6570 | 0.8105 | | No log | 84.0 | 168 | 0.6403 | 0.5878 | 0.6404 | 0.8003 | | No log | 85.0 | 170 | 0.6185 | 0.6159 | 0.6186 | 0.7865 | | No log | 86.0 | 172 | 0.6397 | 0.5901 | 0.6398 | 0.7999 | | No log | 87.0 | 174 | 0.6039 | 0.6085 | 0.6039 | 0.7771 | | No log | 88.0 | 176 | 0.6378 | 0.5893 | 0.6378 | 0.7986 | | No log | 89.0 | 178 | 0.5903 | 0.5920 | 0.5903 | 0.7683 | | No log | 90.0 | 180 | 0.5860 | 0.5990 | 0.5858 | 0.7654 | | No log | 91.0 | 182 | 0.6094 | 0.5813 | 0.6093 | 0.7806 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.3.1 - Tokenizers 0.21.0
Asap7772/smollm2_lr5e6_7ep_binned_sft
Asap7772
2025-03-17T23:48:56Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-17T23:47:46Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
MrRobotoAI/248
MrRobotoAI
2025-03-17T23:48:22Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "arxiv:2203.05482", "base_model:Blackroot/Llama-3-LongStory-LORA", "base_model:merge:Blackroot/Llama-3-LongStory-LORA", "base_model:MrRobotoAI/106", "base_model:merge:MrRobotoAI/106", "base_model:MrRobotoAI/212", "base_model:merge:MrRobotoAI/212", "base_model:MrRobotoAI/236", "base_model:merge:MrRobotoAI/236", "base_model:MrRobotoAI/237", "base_model:merge:MrRobotoAI/237", "base_model:MrRobotoAI/238", "base_model:merge:MrRobotoAI/238", "base_model:MrRobotoAI/240", "base_model:merge:MrRobotoAI/240", "base_model:MrRobotoAI/242", "base_model:merge:MrRobotoAI/242", "base_model:MrRobotoAI/246", "base_model:merge:MrRobotoAI/246", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-17T23:41:55Z
--- base_model: - MrRobotoAI/212 - MrRobotoAI/238 - MrRobotoAI/246 - MrRobotoAI/237 - MrRobotoAI/240 - MrRobotoAI/106 - MrRobotoAI/236 - MrRobotoAI/242 - Blackroot/Llama-3-LongStory-LORA library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [Linear](https://arxiv.org/abs/2203.05482) merge method. ### Models Merged The following models were included in the merge: * [MrRobotoAI/212](https://huggingface.co/MrRobotoAI/212) * [MrRobotoAI/238](https://huggingface.co/MrRobotoAI/238) * [MrRobotoAI/246](https://huggingface.co/MrRobotoAI/246) * [MrRobotoAI/237](https://huggingface.co/MrRobotoAI/237) * [MrRobotoAI/240](https://huggingface.co/MrRobotoAI/240) * [MrRobotoAI/106](https://huggingface.co/MrRobotoAI/106) * [MrRobotoAI/236](https://huggingface.co/MrRobotoAI/236) * [MrRobotoAI/242](https://huggingface.co/MrRobotoAI/242) + [Blackroot/Llama-3-LongStory-LORA](https://huggingface.co/Blackroot/Llama-3-LongStory-LORA) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: MrRobotoAI/106 - model: MrRobotoAI/212 - model: MrRobotoAI/236 - model: MrRobotoAI/237 - model: MrRobotoAI/238 - model: MrRobotoAI/240 - model: MrRobotoAI/242+Blackroot/Llama-3-LongStory-LORA - model: MrRobotoAI/246 parameters: weight: 1.0 merge_method: linear dtype: float16 ```
Asap7772/smollm2_lr5e6_2ep_binned_sft
Asap7772
2025-03-17T23:46:29Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-17T23:45:49Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
FluxiIA/Qwen_7b-tool_call_on_reasonin
FluxiIA
2025-03-17T23:45:39Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "base_model:unsloth/Qwen2.5-7B-Instruct", "base_model:finetune:unsloth/Qwen2.5-7B-Instruct", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-03-17T19:54:56Z
--- base_model: unsloth/Qwen2.5-7B-Instruct tags: - text-generation-inference - transformers - unsloth - qwen2 - trl - sft license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** FluxiIA - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen2.5-7B-Instruct This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
mradermacher/HPGPT-DeepSeek-R1-Distill-Qwen-7B-R-GGUF
mradermacher
2025-03-17T23:42:10Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:ABrain/HPGPT-DeepSeek-R1-Distill-Qwen-7B-R", "base_model:quantized:ABrain/HPGPT-DeepSeek-R1-Distill-Qwen-7B-R", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-17T23:26:13Z
--- base_model: ABrain/HPGPT-DeepSeek-R1-Distill-Qwen-7B-R language: - en library_name: transformers license: mit quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/ABrain/HPGPT-DeepSeek-R1-Distill-Qwen-7B-R <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/HPGPT-DeepSeek-R1-Distill-Qwen-7B-R-GGUF/resolve/main/HPGPT-DeepSeek-R1-Distill-Qwen-7B-R.Q2_K.gguf) | Q2_K | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/HPGPT-DeepSeek-R1-Distill-Qwen-7B-R-GGUF/resolve/main/HPGPT-DeepSeek-R1-Distill-Qwen-7B-R.Q3_K_S.gguf) | Q3_K_S | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/HPGPT-DeepSeek-R1-Distill-Qwen-7B-R-GGUF/resolve/main/HPGPT-DeepSeek-R1-Distill-Qwen-7B-R.Q3_K_M.gguf) | Q3_K_M | 3.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/HPGPT-DeepSeek-R1-Distill-Qwen-7B-R-GGUF/resolve/main/HPGPT-DeepSeek-R1-Distill-Qwen-7B-R.Q3_K_L.gguf) | Q3_K_L | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/HPGPT-DeepSeek-R1-Distill-Qwen-7B-R-GGUF/resolve/main/HPGPT-DeepSeek-R1-Distill-Qwen-7B-R.IQ4_XS.gguf) | IQ4_XS | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/HPGPT-DeepSeek-R1-Distill-Qwen-7B-R-GGUF/resolve/main/HPGPT-DeepSeek-R1-Distill-Qwen-7B-R.Q4_K_S.gguf) | Q4_K_S | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/HPGPT-DeepSeek-R1-Distill-Qwen-7B-R-GGUF/resolve/main/HPGPT-DeepSeek-R1-Distill-Qwen-7B-R.Q4_K_M.gguf) | Q4_K_M | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/HPGPT-DeepSeek-R1-Distill-Qwen-7B-R-GGUF/resolve/main/HPGPT-DeepSeek-R1-Distill-Qwen-7B-R.Q5_K_S.gguf) | Q5_K_S | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/HPGPT-DeepSeek-R1-Distill-Qwen-7B-R-GGUF/resolve/main/HPGPT-DeepSeek-R1-Distill-Qwen-7B-R.Q5_K_M.gguf) | Q5_K_M | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/HPGPT-DeepSeek-R1-Distill-Qwen-7B-R-GGUF/resolve/main/HPGPT-DeepSeek-R1-Distill-Qwen-7B-R.Q6_K.gguf) | Q6_K | 6.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/HPGPT-DeepSeek-R1-Distill-Qwen-7B-R-GGUF/resolve/main/HPGPT-DeepSeek-R1-Distill-Qwen-7B-R.Q8_0.gguf) | Q8_0 | 8.2 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/HPGPT-DeepSeek-R1-Distill-Qwen-7B-R-GGUF/resolve/main/HPGPT-DeepSeek-R1-Distill-Qwen-7B-R.f16.gguf) | f16 | 15.3 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/Qwen2.5-7B-Instruct-medical_summary_latest-i1-GGUF
mradermacher
2025-03-17T23:42:10Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:hendra01/Qwen2.5-7B-Instruct-medical_summary_latest", "base_model:quantized:hendra01/Qwen2.5-7B-Instruct-medical_summary_latest", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-03-17T21:06:03Z
--- base_model: hendra01/Qwen2.5-7B-Instruct-medical_summary_latest language: - en library_name: transformers quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/hendra01/Qwen2.5-7B-Instruct-medical_summary_latest <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-medical_summary_latest-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-medical_summary_latest-i1-GGUF/resolve/main/Qwen2.5-7B-Instruct-medical_summary_latest.i1-IQ1_S.gguf) | i1-IQ1_S | 2.0 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-medical_summary_latest-i1-GGUF/resolve/main/Qwen2.5-7B-Instruct-medical_summary_latest.i1-IQ1_M.gguf) | i1-IQ1_M | 2.1 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-medical_summary_latest-i1-GGUF/resolve/main/Qwen2.5-7B-Instruct-medical_summary_latest.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-medical_summary_latest-i1-GGUF/resolve/main/Qwen2.5-7B-Instruct-medical_summary_latest.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.6 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-medical_summary_latest-i1-GGUF/resolve/main/Qwen2.5-7B-Instruct-medical_summary_latest.i1-IQ2_S.gguf) | i1-IQ2_S | 2.7 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-medical_summary_latest-i1-GGUF/resolve/main/Qwen2.5-7B-Instruct-medical_summary_latest.i1-IQ2_M.gguf) | i1-IQ2_M | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-medical_summary_latest-i1-GGUF/resolve/main/Qwen2.5-7B-Instruct-medical_summary_latest.i1-Q2_K_S.gguf) | i1-Q2_K_S | 2.9 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-medical_summary_latest-i1-GGUF/resolve/main/Qwen2.5-7B-Instruct-medical_summary_latest.i1-Q2_K.gguf) | i1-Q2_K | 3.1 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-medical_summary_latest-i1-GGUF/resolve/main/Qwen2.5-7B-Instruct-medical_summary_latest.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 3.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-medical_summary_latest-i1-GGUF/resolve/main/Qwen2.5-7B-Instruct-medical_summary_latest.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-medical_summary_latest-i1-GGUF/resolve/main/Qwen2.5-7B-Instruct-medical_summary_latest.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.6 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-medical_summary_latest-i1-GGUF/resolve/main/Qwen2.5-7B-Instruct-medical_summary_latest.i1-IQ3_S.gguf) | i1-IQ3_S | 3.6 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-medical_summary_latest-i1-GGUF/resolve/main/Qwen2.5-7B-Instruct-medical_summary_latest.i1-IQ3_M.gguf) | i1-IQ3_M | 3.7 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-medical_summary_latest-i1-GGUF/resolve/main/Qwen2.5-7B-Instruct-medical_summary_latest.i1-Q3_K_M.gguf) | i1-Q3_K_M | 3.9 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-medical_summary_latest-i1-GGUF/resolve/main/Qwen2.5-7B-Instruct-medical_summary_latest.i1-Q3_K_L.gguf) | i1-Q3_K_L | 4.2 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-medical_summary_latest-i1-GGUF/resolve/main/Qwen2.5-7B-Instruct-medical_summary_latest.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.3 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-medical_summary_latest-i1-GGUF/resolve/main/Qwen2.5-7B-Instruct-medical_summary_latest.i1-IQ4_NL.gguf) | i1-IQ4_NL | 4.5 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-medical_summary_latest-i1-GGUF/resolve/main/Qwen2.5-7B-Instruct-medical_summary_latest.i1-Q4_0.gguf) | i1-Q4_0 | 4.5 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-medical_summary_latest-i1-GGUF/resolve/main/Qwen2.5-7B-Instruct-medical_summary_latest.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.6 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-medical_summary_latest-i1-GGUF/resolve/main/Qwen2.5-7B-Instruct-medical_summary_latest.i1-Q4_K_M.gguf) | i1-Q4_K_M | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-medical_summary_latest-i1-GGUF/resolve/main/Qwen2.5-7B-Instruct-medical_summary_latest.i1-Q4_1.gguf) | i1-Q4_1 | 5.0 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-medical_summary_latest-i1-GGUF/resolve/main/Qwen2.5-7B-Instruct-medical_summary_latest.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-medical_summary_latest-i1-GGUF/resolve/main/Qwen2.5-7B-Instruct-medical_summary_latest.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-medical_summary_latest-i1-GGUF/resolve/main/Qwen2.5-7B-Instruct-medical_summary_latest.i1-Q6_K.gguf) | i1-Q6_K | 6.4 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
HOT-Gul-Chahat-Viral-Video-news/Gul.Chahat.leaked.Video.on.social.media.trending
HOT-Gul-Chahat-Viral-Video-news
2025-03-17T23:41:13Z
0
0
null
[ "region:us" ]
null
2025-03-17T23:40:52Z
<animated-image data-catalyst=""><a href="https://alltvsteam.com/viral-video/?v=news-es-tvdf" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
JennyGan/grpo_output
JennyGan
2025-03-17T23:39:44Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "unsloth", "trl", "sft", "grpo", "arxiv:2402.03300", "endpoints_compatible", "region:us" ]
null
2025-03-17T21:40:52Z
--- base_model: unsloth/meta-llama-3.1-8b-instruct-unsloth-bnb-4bit library_name: transformers model_name: grpo_output tags: - generated_from_trainer - unsloth - trl - sft - grpo licence: license --- # Model Card for grpo_output This model is a fine-tuned version of [unsloth/meta-llama-3.1-8b-instruct-unsloth-bnb-4bit](https://huggingface.co/unsloth/meta-llama-3.1-8b-instruct-unsloth-bnb-4bit). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="JennyGan/grpo_output", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.49.0 - Pytorch: 2.5.1 - Datasets: 3.3.2 - Tokenizers: 0.21.0 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
prodm93/img_twitter_test
prodm93
2025-03-17T23:37:03Z
0
0
transformers
[ "transformers", "safetensors", "resnet", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:microsoft/resnet-50", "base_model:finetune:microsoft/resnet-50", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-03-17T21:24:18Z
--- library_name: transformers license: apache-2.0 base_model: microsoft/resnet-50 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: img_twitter_test results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.3603696098562628 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # img_twitter_test This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.0959 - Accuracy: 0.3604 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.1 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1706 | 1.0 | 61 | 1.1410 | 0.3737 | | 1.108 | 2.0 | 122 | 1.0930 | 0.3470 | | 1.1057 | 3.0 | 183 | 1.1984 | 0.3439 | | 1.0956 | 4.0 | 244 | 1.0968 | 0.3491 | | 1.0959 | 5.0 | 305 | 1.0959 | 0.3604 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.5.1+cu121 - Datasets 3.4.1 - Tokenizers 0.21.1
albertus-sussex/veriscrape-book-test-sbert-bs64_lr0.0002_ep3_euclidean_snTrue_spFalse_hn1
albertus-sussex
2025-03-17T23:33:32Z
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "new", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:84524", "loss:AttributeTripletLoss", "custom_code", "arxiv:1908.10084", "arxiv:1703.07737", "base_model:Alibaba-NLP/gte-base-en-v1.5", "base_model:finetune:Alibaba-NLP/gte-base-en-v1.5", "model-index", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-03-17T23:33:18Z
--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:84524 - loss:AttributeTripletLoss base_model: Alibaba-NLP/gte-base-en-v1.5 widget: - source_sentence: Don Piper sentences: - Tommy Nelson - Kate Walbert - publisher - author - source_sentence: The Luxe sentences: - '1999' - publication_date - title - 'Critical Care, Mercy Hospital Series #1' - source_sentence: Bram Stoker sentences: - author - Michael J. Pangio - '9781598871012' - isbn_13 - source_sentence: '9780385340557' sentences: - BBC Books - '9780399208539' - author - isbn_13 - source_sentence: Midnight sentences: - The Bone Parade - 12/01/2005 - publication_date - title pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - cosine_accuracy - silhouette_cosine - silhouette_euclidean model-index: - name: SentenceTransformer based on Alibaba-NLP/gte-base-en-v1.5 results: - task: type: triplet name: Triplet dataset: name: Unknown type: unknown metrics: - type: cosine_accuracy value: 0.22721464931964874 name: Cosine Accuracy - type: cosine_accuracy value: 0.2183786928653717 name: Cosine Accuracy - task: type: silhouette name: Silhouette dataset: name: Unknown type: unknown metrics: - type: silhouette_cosine value: -0.3543417453765869 name: Silhouette Cosine - type: silhouette_euclidean value: -0.03605387732386589 name: Silhouette Euclidean - type: silhouette_cosine value: -0.35699161887168884 name: Silhouette Cosine - type: silhouette_euclidean value: -0.03691111132502556 name: Silhouette Euclidean --- # SentenceTransformer based on Alibaba-NLP/gte-base-en-v1.5 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-base-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [Alibaba-NLP/gte-base-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5) <!-- at revision a829fd0e060bb84554da0dfd354d0de0f7712b7f --> - **Maximum Sequence Length:** 8192 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity <!-- - **Training Dataset:** Unknown --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("albertus-sussex/veriscrape-book-test-sbert-bs64_lr0.0002_ep3_euclidean_snTrue_spFalse_hn1") # Run inference sentences = [ 'Midnight', 'The Bone Parade', '12/01/2005', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Triplet * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) | Metric | Value | |:--------------------|:-----------| | **cosine_accuracy** | **0.2272** | #### Silhouette * Evaluated with <code>veriscrape.training.SilhouetteEvaluator</code> | Metric | Value | |:----------------------|:------------| | **silhouette_cosine** | **-0.3543** | | silhouette_euclidean | -0.0361 | #### Triplet * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) | Metric | Value | |:--------------------|:-----------| | **cosine_accuracy** | **0.2184** | #### Silhouette * Evaluated with <code>veriscrape.training.SilhouetteEvaluator</code> | Metric | Value | |:----------------------|:-----------| | **silhouette_cosine** | **-0.357** | | silhouette_euclidean | -0.0369 | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 84,524 training samples * Columns: <code>anchor</code>, <code>positive</code>, <code>negative</code>, <code>pos_attr_name</code>, and <code>neg_attr_name</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | negative | pos_attr_name | neg_attr_name | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:-------------------------------------------------------------------------------| | type | string | string | string | string | string | | details | <ul><li>min: 3 tokens</li><li>mean: 6.97 tokens</li><li>max: 37 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 7.09 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 6.31 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.77 tokens</li><li>max: 5 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.8 tokens</li><li>max: 5 tokens</li></ul> | * Samples: | anchor | positive | negative | pos_attr_name | neg_attr_name | |:---------------------------|:---------------------------|:------------------------------------------|:------------------------------|:-----------------------| | <code>09/01/1997</code> | <code>12/01/1977</code> | <code>2010</code> | <code>publication_date</code> | <code>title</code> | | <code>9780060275730</code> | <code>9780829748772</code> | <code>HarperCollins Publishers Ltd</code> | <code>isbn_13</code> | <code>publisher</code> | | <code>9780609809648</code> | <code>9780764551956</code> | <code>HarperCollins Publishers</code> | <code>isbn_13</code> | <code>author</code> | * Loss: <code>veriscrape.training.AttributeTripletLoss</code> with these parameters: ```json { "distance_metric": "TripletDistanceMetric.EUCLIDEAN", "triplet_margin": 5 } ``` ### Evaluation Dataset #### Unnamed Dataset * Size: 9,392 evaluation samples * Columns: <code>anchor</code>, <code>positive</code>, <code>negative</code>, <code>pos_attr_name</code>, and <code>neg_attr_name</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | negative | pos_attr_name | neg_attr_name | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:-------------------------------------------------------------------------------| | type | string | string | string | string | string | | details | <ul><li>min: 3 tokens</li><li>mean: 6.85 tokens</li><li>max: 27 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 6.98 tokens</li><li>max: 44 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 6.08 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.75 tokens</li><li>max: 5 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.8 tokens</li><li>max: 5 tokens</li></ul> | * Samples: | anchor | positive | negative | pos_attr_name | neg_attr_name | |:-------------------------------|:-----------------------------|:---------------------------|:-----------------------|:------------------------------| | <code>9780764200564</code> | <code>: 9780590458467</code> | <code>1984</code> | <code>isbn_13</code> | <code>publication_date</code> | | <code>Penguin Group USA</code> | <code>Signet</code> | <code>9781600243912</code> | <code>publisher</code> | <code>isbn_13</code> | | <code>Alphabet Juice</code> | <code>Space</code> | <code>9780807871133</code> | <code>title</code> | <code>isbn_13</code> | * Loss: <code>veriscrape.training.AttributeTripletLoss</code> with these parameters: ```json { "distance_metric": "TripletDistanceMetric.EUCLIDEAN", "triplet_margin": 5 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `learning_rate`: 0.0002 - `warmup_ratio`: 0.1 #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 0.0002 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 3 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | Validation Loss | cosine_accuracy | silhouette_cosine | |:-----:|:----:|:-------------:|:---------------:|:---------------:|:-----------------:| | -1 | -1 | - | - | 0.4283 | 0.1492 | | 1.0 | 1321 | 2.503 | 5.0 | 0.2072 | -0.2569 | | 2.0 | 2642 | 5.0029 | 5.0000 | 0.1431 | -0.1032 | | 3.0 | 3963 | 5.0045 | 5.0000 | 0.2272 | -0.3543 | | -1 | -1 | - | - | 0.2184 | -0.3570 | ### Framework Versions - Python: 3.10.16 - Sentence Transformers: 3.4.1 - Transformers: 4.45.2 - PyTorch: 2.5.1+cu124 - Accelerate: 1.5.2 - Datasets: 3.1.0 - Tokenizers: 0.20.3 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### AttributeTripletLoss ```bibtex @misc{hermans2017defense, title={In Defense of the Triplet Loss for Person Re-Identification}, author={Alexander Hermans and Lucas Beyer and Bastian Leibe}, year={2017}, eprint={1703.07737}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
CovaDax/starbunk-ai
CovaDax
2025-03-17T23:29:15Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-03-17T23:29:15Z
--- license: apache-2.0 ---
TongZheng1999/Qwen2.5-7B-Instruct-star-mixed_unique_conclusion-OP-final_10-2-3Rounds-iter-2
TongZheng1999
2025-03-17T23:28:07Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "alignment-handbook", "trl", "sft", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-17T23:20:21Z
--- library_name: transformers model_name: Qwen2.5-7B-Instruct-star-mixed_unique_conclusion-OP-final_10-2-3Rounds-iter-2 tags: - generated_from_trainer - alignment-handbook - trl - sft licence: license --- # Model Card for Qwen2.5-7B-Instruct-star-mixed_unique_conclusion-OP-final_10-2-3Rounds-iter-2 This model is a fine-tuned version of [None](https://huggingface.co/None). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="TongZheng1999/Qwen2.5-7B-Instruct-star-mixed_unique_conclusion-OP-final_10-2-3Rounds-iter-2", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/kidzheng/huggingface/runs/mgdsjuzk) This model was trained with SFT. ### Framework versions - TRL: 0.12.0 - Transformers: 4.46.0 - Pytorch: 2.6.0 - Datasets: 3.3.1 - Tokenizers: 0.20.3 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
summerstars/Soar_adapter
summerstars
2025-03-17T23:27:59Z
0
0
peft
[ "peft", "safetensors", "base_model:HuggingFaceTB/SmolLM2-360M-Instruct", "base_model:adapter:HuggingFaceTB/SmolLM2-360M-Instruct", "region:us" ]
null
2025-03-17T22:34:39Z
--- base_model: HuggingFaceTB/SmolLM2-360M-Instruct library_name: peft --- # SOAR Model with PEFT (Parameter-Efficient Fine-Tuning) ## 📌 概要 このドキュメントでは、SOARモデルにPEFT(パラメータ効率的ファインチューニング)を適用した実装方法を紹介します。PEFTは大規模な言語モデルを効率よく微調整するための手法で、SOARモデルにこの技術を適用することにより、少ないパラメータで効果的に適応させることができます。 ## 🚀 必要なライブラリ - **transformers**: Hugging Face Transformersライブラリ - **peft**: PEFT用のライブラリ 以下のコマンドでライブラリをインストールします。 ```bash pip install transformers peft ``` --- ## 🔧 モデルの準備 以下のコードを使用して、SOARモデルをPEFTを使ってロードします。 ```python from peft import PeftModel from transformers import AutoModelForCausalLM # ベースモデルのロード base_model = AutoModelForCausalLM.from_pretrained("HuggingFaceTB/SmolLM2-360M-Instruct") # SOAR用のアダプターを適用 model = PeftModel.from_pretrained(base_model, "summerstars/Soar_adapter") ``` このコードは、Hugging Faceから事前訓練済みの`SmolLM2-360M-Instruct`をベースにし、`summerstars/Soar_adapter`というPEFTアダプターを適用するものです。 --- ## 💬 推論の実行 モデルをロードした後、推論を実行するコードは以下の通りです。 ```python from transformers import pipeline # パイプラインの設定 soar_pipeline = pipeline( "text-generation", model=model, tokenizer=base_model.tokenizer # ベースモデルのトークナイザーを使用 ) # 推論関数の定義 def generate_soar_text(prompt, max_length=200, temperature=0.7, top_p=0.95, top_k=50): response = soar_pipeline(prompt, max_length=max_length, temperature=temperature, top_p=top_p, top_k=top_k, do_sample=True) return response[0]["generated_text"] # 例: 推論の実行 soar_prompt = "What is the future of AI?" print("【SOAR Model Output】") print(generate_soar_text(soar_prompt)) ``` --- ## ⚠ 免責事項 - **このコードは研究目的で作成されたものであり、商用利用を意図していません。** - **PEFTを適用したモデルの最適化にはさらに調整が必要な場合があります。** --- ## 🧠 参考文献 - Laird, J. E. (2012). *The SOAR Cognitive Architecture*. MIT Press. - PEFT論文: *Parameter-Efficient Fine-Tuning* by Houlsby et al. (2019) --- ## 📜 ライセンス このプロジェクトは `Apache 2.0` ライセンスのもとで公開されています。
wATCH-Mar-Urista-Viral-Video-news/Mar.Urista.Viral.Video.on.social.media.trending
wATCH-Mar-Urista-Viral-Video-news
2025-03-17T23:26:25Z
0
0
null
[ "region:us" ]
null
2025-03-17T23:26:00Z
<animated-image data-catalyst=""><a href="https://alltvsteam.com/viral-video/?v=news-es-tvdf" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
genki10/Version27NewTestASAP_FineTuningBERT_AugV27_k3_task1_organization_k3_k3_fold0
genki10
2025-03-17T23:24:04Z
0
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-03-17T23:01:35Z
--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer model-index: - name: Version27NewTestASAP_FineTuningBERT_AugV27_k3_task1_organization_k3_k3_fold0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Version27NewTestASAP_FineTuningBERT_AugV27_k3_task1_organization_k3_k3_fold0 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5111 - Qwk: 0.5724 - Mse: 0.5111 - Rmse: 0.7149 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 150 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | No log | 1.0 | 2 | 9.0978 | 0.0 | 9.0978 | 3.0163 | | No log | 2.0 | 4 | 7.6464 | 0.0 | 7.6464 | 2.7652 | | No log | 3.0 | 6 | 6.8538 | 0.0 | 6.8538 | 2.6180 | | No log | 4.0 | 8 | 5.9710 | 0.0077 | 5.9710 | 2.4436 | | No log | 5.0 | 10 | 5.1529 | 0.0115 | 5.1529 | 2.2700 | | No log | 6.0 | 12 | 4.3112 | 0.0039 | 4.3112 | 2.0763 | | No log | 7.0 | 14 | 3.5502 | 0.0 | 3.5502 | 1.8842 | | No log | 8.0 | 16 | 2.8166 | 0.0 | 2.8166 | 1.6783 | | No log | 9.0 | 18 | 2.1379 | 0.0689 | 2.1379 | 1.4622 | | No log | 10.0 | 20 | 1.6280 | 0.0316 | 1.6280 | 1.2759 | | No log | 11.0 | 22 | 1.2950 | 0.0316 | 1.2950 | 1.1380 | | No log | 12.0 | 24 | 1.0457 | 0.0316 | 1.0457 | 1.0226 | | No log | 13.0 | 26 | 0.8458 | 0.2120 | 0.8458 | 0.9197 | | No log | 14.0 | 28 | 0.7155 | 0.4564 | 0.7155 | 0.8459 | | No log | 15.0 | 30 | 0.6717 | 0.4756 | 0.6717 | 0.8195 | | No log | 16.0 | 32 | 0.6747 | 0.4666 | 0.6747 | 0.8214 | | No log | 17.0 | 34 | 0.7902 | 0.4505 | 0.7902 | 0.8889 | | No log | 18.0 | 36 | 0.6376 | 0.5314 | 0.6376 | 0.7985 | | No log | 19.0 | 38 | 0.6446 | 0.5368 | 0.6446 | 0.8029 | | No log | 20.0 | 40 | 0.4853 | 0.5498 | 0.4853 | 0.6966 | | No log | 21.0 | 42 | 0.6914 | 0.4992 | 0.6914 | 0.8315 | | No log | 22.0 | 44 | 0.6922 | 0.4122 | 0.6922 | 0.8320 | | No log | 23.0 | 46 | 0.6597 | 0.4342 | 0.6597 | 0.8122 | | No log | 24.0 | 48 | 0.7140 | 0.4703 | 0.7140 | 0.8450 | | No log | 25.0 | 50 | 0.6447 | 0.5186 | 0.6447 | 0.8030 | | No log | 26.0 | 52 | 0.6133 | 0.5468 | 0.6133 | 0.7831 | | No log | 27.0 | 54 | 0.5730 | 0.5887 | 0.5730 | 0.7570 | | No log | 28.0 | 56 | 0.5659 | 0.5808 | 0.5659 | 0.7522 | | No log | 29.0 | 58 | 0.5524 | 0.6264 | 0.5524 | 0.7432 | | No log | 30.0 | 60 | 0.5736 | 0.5485 | 0.5736 | 0.7574 | | No log | 31.0 | 62 | 0.5155 | 0.5898 | 0.5155 | 0.7180 | | No log | 32.0 | 64 | 0.5369 | 0.5745 | 0.5369 | 0.7328 | | No log | 33.0 | 66 | 0.6155 | 0.5906 | 0.6155 | 0.7845 | | No log | 34.0 | 68 | 0.5593 | 0.5717 | 0.5593 | 0.7479 | | No log | 35.0 | 70 | 0.5347 | 0.5869 | 0.5347 | 0.7312 | | No log | 36.0 | 72 | 0.5053 | 0.5677 | 0.5053 | 0.7108 | | No log | 37.0 | 74 | 0.5184 | 0.5951 | 0.5184 | 0.7200 | | No log | 38.0 | 76 | 0.4983 | 0.5736 | 0.4983 | 0.7059 | | No log | 39.0 | 78 | 0.5442 | 0.6163 | 0.5442 | 0.7377 | | No log | 40.0 | 80 | 0.5326 | 0.6145 | 0.5326 | 0.7298 | | No log | 41.0 | 82 | 0.5938 | 0.6204 | 0.5938 | 0.7706 | | No log | 42.0 | 84 | 0.5005 | 0.6206 | 0.5005 | 0.7074 | | No log | 43.0 | 86 | 0.4915 | 0.6186 | 0.4915 | 0.7011 | | No log | 44.0 | 88 | 0.7338 | 0.5657 | 0.7338 | 0.8566 | | No log | 45.0 | 90 | 0.4974 | 0.6156 | 0.4974 | 0.7053 | | No log | 46.0 | 92 | 0.4870 | 0.5851 | 0.4870 | 0.6979 | | No log | 47.0 | 94 | 0.5614 | 0.6046 | 0.5614 | 0.7493 | | No log | 48.0 | 96 | 0.5689 | 0.6097 | 0.5689 | 0.7542 | | No log | 49.0 | 98 | 0.4942 | 0.5862 | 0.4942 | 0.7030 | | No log | 50.0 | 100 | 0.5885 | 0.6055 | 0.5885 | 0.7671 | | No log | 51.0 | 102 | 0.5477 | 0.6386 | 0.5477 | 0.7401 | | No log | 52.0 | 104 | 0.6121 | 0.5868 | 0.6121 | 0.7824 | | No log | 53.0 | 106 | 0.4958 | 0.6094 | 0.4958 | 0.7041 | | No log | 54.0 | 108 | 0.5003 | 0.6069 | 0.5003 | 0.7073 | | No log | 55.0 | 110 | 0.5284 | 0.6372 | 0.5284 | 0.7269 | | No log | 56.0 | 112 | 0.5261 | 0.6183 | 0.5261 | 0.7254 | | No log | 57.0 | 114 | 0.5281 | 0.6169 | 0.5281 | 0.7267 | | No log | 58.0 | 116 | 0.5180 | 0.6073 | 0.5180 | 0.7197 | | No log | 59.0 | 118 | 0.4784 | 0.5941 | 0.4784 | 0.6917 | | No log | 60.0 | 120 | 0.5140 | 0.6198 | 0.5140 | 0.7169 | | No log | 61.0 | 122 | 0.4902 | 0.5770 | 0.4902 | 0.7002 | | No log | 62.0 | 124 | 0.5271 | 0.6144 | 0.5271 | 0.7260 | | No log | 63.0 | 126 | 0.5197 | 0.5872 | 0.5197 | 0.7209 | | No log | 64.0 | 128 | 0.5144 | 0.6140 | 0.5144 | 0.7172 | | No log | 65.0 | 130 | 0.5632 | 0.5969 | 0.5632 | 0.7505 | | No log | 66.0 | 132 | 0.4763 | 0.6083 | 0.4763 | 0.6901 | | No log | 67.0 | 134 | 0.4788 | 0.6003 | 0.4788 | 0.6919 | | No log | 68.0 | 136 | 0.5189 | 0.6090 | 0.5189 | 0.7204 | | No log | 69.0 | 138 | 0.4946 | 0.5889 | 0.4946 | 0.7033 | | No log | 70.0 | 140 | 0.5042 | 0.6029 | 0.5042 | 0.7101 | | No log | 71.0 | 142 | 0.5998 | 0.5972 | 0.5998 | 0.7744 | | No log | 72.0 | 144 | 0.5327 | 0.6210 | 0.5327 | 0.7299 | | No log | 73.0 | 146 | 0.5071 | 0.5712 | 0.5071 | 0.7121 | | No log | 74.0 | 148 | 0.4953 | 0.5975 | 0.4953 | 0.7038 | | No log | 75.0 | 150 | 0.6276 | 0.5859 | 0.6276 | 0.7922 | | No log | 76.0 | 152 | 0.5511 | 0.6059 | 0.5511 | 0.7424 | | No log | 77.0 | 154 | 0.4990 | 0.6015 | 0.4990 | 0.7064 | | No log | 78.0 | 156 | 0.5112 | 0.6107 | 0.5112 | 0.7150 | | No log | 79.0 | 158 | 0.5918 | 0.5978 | 0.5918 | 0.7693 | | No log | 80.0 | 160 | 0.5203 | 0.6061 | 0.5203 | 0.7213 | | No log | 81.0 | 162 | 0.5111 | 0.5724 | 0.5111 | 0.7149 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.3.1 - Tokenizers 0.21.0
CromonZhang/English-1B
CromonZhang
2025-03-17T23:23:40Z
0
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-17T23:23:20Z
--- base_model: unsloth/llama-3.2-1b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** CromonZhang - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-1b-instruct-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
jiinking/16_first_MQA_llama3B_model
jiinking
2025-03-17T23:22:33Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-17T22:09:41Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
wATCH-Mar-Urista-Viral-Video-news/Mar.Urista.Viral.official.Video.tutorial
wATCH-Mar-Urista-Viral-Video-news
2025-03-17T23:22:04Z
0
0
null
[ "region:us" ]
null
2025-03-17T23:21:39Z
<animated-image data-catalyst=""><a href="https://alltvsteam.com/viral-video/?v=news-es-tvdf" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
stojchet/kto6
stojchet
2025-03-17T23:21:43Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "trl", "kto", "generated_from_trainer", "base_model:deepseek-ai/deepseek-coder-1.3b-base", "base_model:finetune:deepseek-ai/deepseek-coder-1.3b-base", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-17T22:11:00Z
--- library_name: transformers license: other base_model: deepseek-ai/deepseek-coder-1.3b-base tags: - trl - kto - generated_from_trainer model-index: - name: kto6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kto6 This model is a fine-tuned version of [deepseek-ai/deepseek-coder-1.3b-base](https://huggingface.co/deepseek-ai/deepseek-coder-1.3b-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5 - Eval/rewards/chosen: -448.8974 - Eval/logps/chosen: -4526.3562 - Eval/rewards/rejected: -433.3957 - Eval/logps/rejected: -4408.4109 - Eval/rewards/margins: -15.5017 - Eval/kl: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - lr_scheduler_warmup_steps: 200 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | | |:-------------:|:------:|:----:|:---------------:|:---:| | 0.5029 | 1.1552 | 100 | 0.5028 | 0.0 | | 0.502 | 2.3105 | 200 | 0.5000 | 0.0 | | 0.4998 | 3.4657 | 300 | 0.5000 | 0.0 | | 0.5002 | 4.6209 | 400 | 0.5000 | 0.0 | | 0.501 | 5.7762 | 500 | 0.5000 | 0.0 | | 0.4994 | 6.9314 | 600 | 0.5000 | 0.0 | | 0.4998 | 8.0866 | 700 | 0.5000 | 0.0 | | 0.501 | 9.2419 | 800 | 0.5 | 0.0 | ### Framework versions - Transformers 4.45.0 - Pytorch 2.5.1+cu124 - Datasets 2.19.2 - Tokenizers 0.20.3
mradermacher/Qwen2.5-7B-Instruct-medical_summary_latest-GGUF
mradermacher
2025-03-17T23:20:08Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:hendra01/Qwen2.5-7B-Instruct-medical_summary_latest", "base_model:quantized:hendra01/Qwen2.5-7B-Instruct-medical_summary_latest", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-17T17:01:32Z
--- base_model: hendra01/Qwen2.5-7B-Instruct-medical_summary_latest language: - en library_name: transformers quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/hendra01/Qwen2.5-7B-Instruct-medical_summary_latest <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-medical_summary_latest-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-medical_summary_latest-GGUF/resolve/main/Qwen2.5-7B-Instruct-medical_summary_latest.Q2_K.gguf) | Q2_K | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-medical_summary_latest-GGUF/resolve/main/Qwen2.5-7B-Instruct-medical_summary_latest.Q3_K_S.gguf) | Q3_K_S | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-medical_summary_latest-GGUF/resolve/main/Qwen2.5-7B-Instruct-medical_summary_latest.Q3_K_M.gguf) | Q3_K_M | 3.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-medical_summary_latest-GGUF/resolve/main/Qwen2.5-7B-Instruct-medical_summary_latest.Q3_K_L.gguf) | Q3_K_L | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-medical_summary_latest-GGUF/resolve/main/Qwen2.5-7B-Instruct-medical_summary_latest.IQ4_XS.gguf) | IQ4_XS | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-medical_summary_latest-GGUF/resolve/main/Qwen2.5-7B-Instruct-medical_summary_latest.Q4_K_S.gguf) | Q4_K_S | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-medical_summary_latest-GGUF/resolve/main/Qwen2.5-7B-Instruct-medical_summary_latest.Q4_K_M.gguf) | Q4_K_M | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-medical_summary_latest-GGUF/resolve/main/Qwen2.5-7B-Instruct-medical_summary_latest.Q5_K_S.gguf) | Q5_K_S | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-medical_summary_latest-GGUF/resolve/main/Qwen2.5-7B-Instruct-medical_summary_latest.Q5_K_M.gguf) | Q5_K_M | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-medical_summary_latest-GGUF/resolve/main/Qwen2.5-7B-Instruct-medical_summary_latest.Q6_K.gguf) | Q6_K | 6.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-medical_summary_latest-GGUF/resolve/main/Qwen2.5-7B-Instruct-medical_summary_latest.Q8_0.gguf) | Q8_0 | 8.2 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-medical_summary_latest-GGUF/resolve/main/Qwen2.5-7B-Instruct-medical_summary_latest.f16.gguf) | f16 | 15.3 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
medmekk/kek
medmekk
2025-03-17T23:18:22Z
0
0
null
[ "safetensors", "qwen2", "base_model:medmekk/kek", "base_model:quantized:medmekk/kek", "4-bit", "bitsandbytes", "region:us" ]
null
2025-03-17T23:18:14Z
--- base_model: - medmekk/kek --- # medmekk/kek (Quantized) ## Description This model is a quantized version of the original model `medmekk/kek`. It has been quantized using int4 quantization with bitsandbytes. ## Quantization Details - **Quantization Type**: int4 - **bnb_4bit_quant_type**: nf4 - **bnb_4bit_use_double_quant**: True - **bnb_4bit_compute_dtype**: bfloat16 - **bnb_4bit_quant_storage**: uint8 ## Usage You can use this model in your applications by loading it directly from the Hugging Face Hub: ```python from transformers import AutoModel model = AutoModel.from_pretrained("medmekk/kek")
MrRobotoAI/247-Q4_K_M-GGUF
MrRobotoAI
2025-03-17T23:14:38Z
0
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "llama-cpp", "gguf-my-repo", "base_model:MrRobotoAI/247", "base_model:quantized:MrRobotoAI/247", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-17T23:14:15Z
--- base_model: MrRobotoAI/247 library_name: transformers tags: - mergekit - merge - llama-cpp - gguf-my-repo --- # MrRobotoAI/247-Q4_K_M-GGUF This model was converted to GGUF format from [`MrRobotoAI/247`](https://huggingface.co/MrRobotoAI/247) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/MrRobotoAI/247) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo MrRobotoAI/247-Q4_K_M-GGUF --hf-file 247-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo MrRobotoAI/247-Q4_K_M-GGUF --hf-file 247-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo MrRobotoAI/247-Q4_K_M-GGUF --hf-file 247-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo MrRobotoAI/247-Q4_K_M-GGUF --hf-file 247-q4_k_m.gguf -c 2048 ```
vozachudo2004/crisjoven2
vozachudo2004
2025-03-17T23:13:52Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-03-17T23:03:42Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: crisjoven2 --- # Crisjoven2 <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `crisjoven2` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('vozachudo2004/crisjoven2', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
taleef/liberta_finetuned
taleef
2025-03-17T23:11:50Z
0
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-03-17T23:09:40Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Sophie-Rain-SpiderMan-viral-news/Sophie.Rain.SpiderMan.leaked.Video.x.twitter.telegram
Sophie-Rain-SpiderMan-viral-news
2025-03-17T23:09:00Z
0
0
null
[ "region:us" ]
null
2025-03-17T23:08:33Z
<animated-image data-catalyst=""><a href="https://alltvsteam.com/viral-video/?v=news-es-tvdf" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
colaguo/bert-uncased_RF_finetunefeb24
colaguo
2025-03-17T23:06:13Z
0
0
null
[ "safetensors", "model_hub_mixin", "pytorch_model_hub_mixin", "region:us" ]
null
2025-03-17T23:05:55Z
--- tags: - model_hub_mixin - pytorch_model_hub_mixin --- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration: - Library: [More Information Needed] - Docs: [More Information Needed]
hanwenzhu/all-MiniLM-L12-v2-lr2e-4-bs256-nneg3-ml-ne5-mar17
hanwenzhu
2025-03-17T23:05:59Z
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:5817740", "loss:MaskedCachedMultipleNegativesRankingLoss", "arxiv:1908.10084", "arxiv:2101.06983", "base_model:sentence-transformers/all-MiniLM-L12-v2", "base_model:finetune:sentence-transformers/all-MiniLM-L12-v2", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-03-17T23:05:52Z
--- base_model: sentence-transformers/all-MiniLM-L12-v2 library_name: sentence-transformers pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:5817740 - loss:MaskedCachedMultipleNegativesRankingLoss widget: - source_sentence: Mathlib.Data.Finset.Option#52 sentences: - neg_inj - CategoryTheory.Limits.HasCokernels.has_colimit - Finset.mem_image - source_sentence: Mathlib.Analysis.Calculus.FDeriv.Mul#68 sentences: - eq_of_heq - Option.some.injEq - Fin.le_last - source_sentence: Mathlib.Data.Finset.Option#52 sentences: - Set.biInter_and' - Int.natCast_dvd_natCast - Finset.mem_erase - source_sentence: Mathlib.Algebra.GCDMonoid.Finset#74 sentences: - gcd_zero_left - HasFDerivWithinAt.uniqueDiffWithinAt - Polynomial.Monic.map - source_sentence: Mathlib.Algebra.Polynomial.HasseDeriv#31 sentences: - Set.mem_inter_iff - Polynomial.hasseDeriv_coeff - HomologicalComplex.isZero_X_of_isStrictlySupported --- # SentenceTransformer based on sentence-transformers/all-MiniLM-L12-v2 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [sentence-transformers/all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2) <!-- at revision c004d8e3e901237d8fa7e9fff12774962e391ce5 --> - **Maximum Sequence Length:** 128 tokens - **Output Dimensionality:** 384 tokens - **Similarity Function:** Cosine Similarity <!-- - **Training Dataset:** Unknown --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("hanwenzhu/all-MiniLM-L12-v2-lr2e-4-bs256-nneg3-ml-ne5-mar17") # Run inference sentences = [ 'Mathlib.Algebra.Polynomial.HasseDeriv#31', 'Polynomial.hasseDeriv_coeff', 'HomologicalComplex.isZero_X_of_isStrictlySupported', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 384] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 5,817,740 training samples * Columns: <code>state_name</code> and <code>premise_name</code> * Approximate statistics based on the first 1000 samples: | | state_name | premise_name | |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 11 tokens</li><li>mean: 16.2 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 11.26 tokens</li><li>max: 36 tokens</li></ul> | * Samples: | state_name | premise_name | |:----------------------------------------------|:-----------------------------------| | <code>Mathlib.Algebra.Field.IsField#12</code> | <code>Classical.choose_spec</code> | | <code>Mathlib.Algebra.Field.IsField#12</code> | <code>IsField.mul_comm</code> | | <code>Mathlib.Algebra.Field.IsField#12</code> | <code>eq_of_heq</code> | * Loss: <code>loss.MaskedCachedMultipleNegativesRankingLoss</code> with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Evaluation Dataset #### Unnamed Dataset * Size: 1,959 evaluation samples * Columns: <code>state_name</code> and <code>premise_name</code> * Approximate statistics based on the first 1000 samples: | | state_name | premise_name | |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 10 tokens</li><li>mean: 15.97 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 11.48 tokens</li><li>max: 35 tokens</li></ul> | * Samples: | state_name | premise_name | |:-------------------------------------------------------------|:----------------------------------------------------------| | <code>Mathlib.Algebra.Algebra.Hom#80</code> | <code>AlgHom.commutes</code> | | <code>Mathlib.Algebra.Algebra.NonUnitalSubalgebra#237</code> | <code>NonUnitalAlgHom.instNonUnitalAlgSemiHomClass</code> | | <code>Mathlib.Algebra.Algebra.NonUnitalSubalgebra#237</code> | <code>NonUnitalAlgebra.mem_top</code> | * Loss: <code>loss.MaskedCachedMultipleNegativesRankingLoss</code> with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 256 - `per_device_eval_batch_size`: 64 - `learning_rate`: 0.0002 - `num_train_epochs`: 5.0 - `lr_scheduler_type`: cosine - `warmup_ratio`: 0.03 - `bf16`: True - `dataloader_num_workers`: 4 #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 256 - `per_device_eval_batch_size`: 64 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 0.0002 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 5.0 - `max_steps`: -1 - `lr_scheduler_type`: cosine - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.03 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 4 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs <details><summary>Click to expand</summary> | Epoch | Step | Training Loss | loss | |:------:|:------:|:-------------:|:------:| | 0.0004 | 10 | 6.2321 | - | | 0.0009 | 20 | 6.1869 | - | | 0.0013 | 30 | 5.9732 | - | | 0.0018 | 40 | 5.664 | - | | 0.0022 | 50 | 5.5547 | - | | 0.0026 | 60 | 5.444 | - | | 0.0031 | 70 | 5.3214 | - | | 0.0035 | 80 | 5.2506 | - | | 0.0040 | 90 | 5.1097 | - | | 0.0044 | 100 | 5.044 | - | | 0.0048 | 110 | 5.001 | - | | 0.0053 | 120 | 5.0118 | - | | 0.0057 | 130 | 4.8318 | - | | 0.0062 | 140 | 4.8274 | - | | 0.0066 | 150 | 4.7683 | - | | 0.0070 | 160 | 4.7065 | - | | 0.0075 | 170 | 4.6916 | - | | 0.0079 | 180 | 4.6859 | - | | 0.0084 | 190 | 4.641 | - | | 0.0088 | 200 | 4.6174 | - | | 0.0092 | 210 | 4.6516 | - | | 0.0097 | 220 | 4.6408 | - | | 0.0101 | 230 | 4.5452 | - | | 0.0106 | 240 | 4.4376 | - | | 0.0110 | 250 | 4.4505 | - | | 0.0114 | 260 | 4.4188 | - | | 0.0119 | 270 | 4.5416 | - | | 0.0123 | 280 | 4.4036 | - | | 0.0128 | 290 | 4.3716 | - | | 0.0132 | 300 | 4.4278 | - | | 0.0136 | 310 | 4.4089 | - | | 0.0141 | 320 | 4.3297 | - | | 0.0145 | 330 | 4.3806 | - | | 0.0150 | 340 | 4.1996 | - | | 0.0154 | 350 | 4.301 | - | | 0.0158 | 360 | 4.2606 | - | | 0.0163 | 370 | 4.254 | - | | 0.0167 | 380 | 4.212 | - | | 0.0172 | 390 | 4.2467 | - | | 0.0176 | 400 | 4.1584 | - | | 0.0180 | 410 | 4.2136 | - | | 0.0185 | 420 | 4.2396 | - | | 0.0189 | 430 | 4.2378 | - | | 0.0194 | 440 | 4.2007 | - | | 0.0198 | 450 | 4.1394 | - | | 0.0202 | 460 | 4.2282 | - | | 0.0207 | 470 | 4.1912 | - | | 0.0211 | 480 | 4.2879 | - | | 0.0216 | 490 | 4.106 | - | | 0.0220 | 500 | 4.1463 | - | | 0.0224 | 510 | 4.1244 | - | | 0.0229 | 520 | 4.1425 | - | | 0.0233 | 530 | 4.1112 | - | | 0.0238 | 540 | 4.1122 | - | | 0.0242 | 550 | 4.057 | - | | 0.0246 | 560 | 4.1289 | - | | 0.0251 | 570 | 4.0986 | - | | 0.0255 | 580 | 4.0424 | - | | 0.0260 | 590 | 4.0662 | - | | 0.0264 | 600 | 4.0743 | - | | 0.0268 | 610 | 4.0151 | - | | 0.0273 | 620 | 3.9671 | - | | 0.0277 | 630 | 4.013 | - | | 0.0282 | 640 | 4.108 | - | | 0.0286 | 650 | 4.0448 | - | | 0.0290 | 660 | 4.0378 | - | | 0.0295 | 670 | 4.0244 | - | | 0.0299 | 680 | 3.9739 | - | | 0.0304 | 690 | 4.0087 | - | | 0.0308 | 700 | 3.9205 | - | | 0.0312 | 710 | 3.9618 | - | | 0.0317 | 720 | 3.9158 | - | | 0.0321 | 730 | 3.9446 | - | | 0.0326 | 740 | 3.8831 | - | | 0.0330 | 750 | 3.9462 | - | | 0.0334 | 760 | 3.9076 | - | | 0.0339 | 770 | 3.9135 | - | | 0.0343 | 780 | 3.9326 | - | | 0.0348 | 790 | 3.9661 | - | | 0.0352 | 800 | 3.9789 | - | | 0.0356 | 810 | 3.821 | - | | 0.0361 | 820 | 3.9227 | - | | 0.0365 | 830 | 3.8306 | - | | 0.0370 | 840 | 3.914 | - | | 0.0374 | 850 | 3.7688 | - | | 0.0378 | 860 | 3.872 | - | | 0.0383 | 870 | 3.7765 | - | | 0.0387 | 880 | 3.8352 | - | | 0.0392 | 890 | 3.8048 | - | | 0.0396 | 900 | 3.7835 | - | | 0.0400 | 910 | 3.7257 | - | | 0.0405 | 920 | 3.8683 | - | | 0.0409 | 930 | 3.7596 | - | | 0.0414 | 940 | 3.8021 | - | | 0.0418 | 950 | 3.8071 | - | | 0.0422 | 960 | 3.8436 | - | | 0.0427 | 970 | 3.8086 | - | | 0.0431 | 980 | 3.7806 | - | | 0.0436 | 990 | 3.8124 | - | | 0.0440 | 1000 | 3.8011 | - | | 0.0444 | 1010 | 3.7173 | - | | 0.0449 | 1020 | 3.7175 | - | | 0.0453 | 1030 | 3.8145 | - | | 0.0458 | 1040 | 3.7478 | - | | 0.0462 | 1050 | 3.7432 | - | | 0.0466 | 1060 | 3.77 | - | | 0.0471 | 1070 | 3.8071 | - | | 0.0475 | 1080 | 3.6848 | - | | 0.0480 | 1090 | 3.7451 | - | | 0.0484 | 1100 | 3.7065 | - | | 0.0488 | 1110 | 3.7122 | - | | 0.0493 | 1120 | 3.6611 | - | | 0.0497 | 1130 | 3.7198 | - | | 0.0500 | 1137 | - | 1.9881 | | 0.0502 | 1140 | 3.7097 | - | | 0.0506 | 1150 | 3.7886 | - | | 0.0510 | 1160 | 3.7134 | - | | 0.0515 | 1170 | 3.6009 | - | | 0.0519 | 1180 | 3.743 | - | | 0.0524 | 1190 | 3.6948 | - | | 0.0528 | 1200 | 3.5993 | - | | 0.0532 | 1210 | 3.6945 | - | | 0.0537 | 1220 | 3.6236 | - | | 0.0541 | 1230 | 3.61 | - | | 0.0546 | 1240 | 3.6753 | - | | 0.0550 | 1250 | 3.6376 | - | | 0.0554 | 1260 | 3.5882 | - | | 0.0559 | 1270 | 3.6905 | - | | 0.0563 | 1280 | 3.5454 | - | | 0.0568 | 1290 | 3.6019 | - | | 0.0572 | 1300 | 3.6338 | - | | 0.0576 | 1310 | 3.7021 | - | | 0.0581 | 1320 | 3.5602 | - | | 0.0585 | 1330 | 3.6088 | - | | 0.0590 | 1340 | 3.5783 | - | | 0.0594 | 1350 | 3.6099 | - | | 0.0598 | 1360 | 3.6671 | - | | 0.0603 | 1370 | 3.6 | - | | 0.0607 | 1380 | 3.6125 | - | | 0.0612 | 1390 | 3.63 | - | | 0.0616 | 1400 | 3.5842 | - | | 0.0620 | 1410 | 3.4877 | - | | 0.0625 | 1420 | 3.6062 | - | | 0.0629 | 1430 | 3.6039 | - | | 0.0634 | 1440 | 3.52 | - | | 0.0638 | 1450 | 3.5671 | - | | 0.0642 | 1460 | 3.6287 | - | | 0.0647 | 1470 | 3.5789 | - | | 0.0651 | 1480 | 3.4494 | - | | 0.0656 | 1490 | 3.6117 | - | | 0.0660 | 1500 | 3.5354 | - | | 0.0664 | 1510 | 3.54 | - | | 0.0669 | 1520 | 3.5309 | - | | 0.0673 | 1530 | 3.5197 | - | | 0.0678 | 1540 | 3.5321 | - | | 0.0682 | 1550 | 3.5214 | - | | 0.0686 | 1560 | 3.5533 | - | | 0.0691 | 1570 | 3.4996 | - | | 0.0695 | 1580 | 3.6056 | - | | 0.0700 | 1590 | 3.5286 | - | | 0.0704 | 1600 | 3.5519 | - | | 0.0708 | 1610 | 3.5282 | - | | 0.0713 | 1620 | 3.5485 | - | | 0.0717 | 1630 | 3.544 | - | | 0.0722 | 1640 | 3.5892 | - | | 0.0726 | 1650 | 3.5002 | - | | 0.0730 | 1660 | 3.4184 | - | | 0.0735 | 1670 | 3.5317 | - | | 0.0739 | 1680 | 3.4487 | - | | 0.0744 | 1690 | 3.4431 | - | | 0.0748 | 1700 | 3.5365 | - | | 0.0752 | 1710 | 3.4642 | - | | 0.0757 | 1720 | 3.4115 | - | | 0.0761 | 1730 | 3.456 | - | | 0.0766 | 1740 | 3.4662 | - | | 0.0770 | 1750 | 3.4666 | - | | 0.0774 | 1760 | 3.5115 | - | | 0.0779 | 1770 | 3.4323 | - | | 0.0783 | 1780 | 3.4221 | - | | 0.0788 | 1790 | 3.4998 | - | | 0.0792 | 1800 | 3.5024 | - | | 0.0796 | 1810 | 3.4714 | - | | 0.0801 | 1820 | 3.3843 | - | | 0.0805 | 1830 | 3.4754 | - | | 0.0810 | 1840 | 3.4148 | - | | 0.0814 | 1850 | 3.3943 | - | | 0.0818 | 1860 | 3.4642 | - | | 0.0823 | 1870 | 3.5303 | - | | 0.0827 | 1880 | 3.4522 | - | | 0.0832 | 1890 | 3.4357 | - | | 0.0836 | 1900 | 3.4872 | - | | 0.0840 | 1910 | 3.4548 | - | | 0.0845 | 1920 | 3.5129 | - | | 0.0849 | 1930 | 3.3739 | - | | 0.0854 | 1940 | 3.3893 | - | | 0.0858 | 1950 | 3.4615 | - | | 0.0862 | 1960 | 3.4024 | - | | 0.0867 | 1970 | 3.4489 | - | | 0.0871 | 1980 | 3.407 | - | | 0.0876 | 1990 | 3.4463 | - | | 0.0880 | 2000 | 3.374 | - | | 0.0884 | 2010 | 3.4189 | - | | 0.0889 | 2020 | 3.4141 | - | | 0.0893 | 2030 | 3.4273 | - | | 0.0898 | 2040 | 3.4397 | - | | 0.0902 | 2050 | 3.4994 | - | | 0.0906 | 2060 | 3.3854 | - | | 0.0911 | 2070 | 3.4111 | - | | 0.0915 | 2080 | 3.4001 | - | | 0.0920 | 2090 | 3.3708 | - | | 0.0924 | 2100 | 3.4405 | - | | 0.0928 | 2110 | 3.4141 | - | | 0.0933 | 2120 | 3.3916 | - | | 0.0937 | 2130 | 3.36 | - | | 0.0942 | 2140 | 3.4311 | - | | 0.0946 | 2150 | 3.3726 | - | | 0.0950 | 2160 | 3.3535 | - | | 0.0955 | 2170 | 3.4069 | - | | 0.0959 | 2180 | 3.4195 | - | | 0.0964 | 2190 | 3.3888 | - | | 0.0968 | 2200 | 3.2911 | - | | 0.0972 | 2210 | 3.3258 | - | | 0.0977 | 2220 | 3.3438 | - | | 0.0981 | 2230 | 3.4223 | - | | 0.0986 | 2240 | 3.3433 | - | | 0.0990 | 2250 | 3.3387 | - | | 0.0994 | 2260 | 3.3545 | - | | 0.0999 | 2270 | 3.2985 | - | | 0.1001 | 2274 | - | 1.8921 | | 0.1003 | 2280 | 3.2899 | - | | 0.1008 | 2290 | 3.3553 | - | | 0.1012 | 2300 | 3.3363 | - | | 0.1016 | 2310 | 3.3067 | - | | 0.1021 | 2320 | 3.3432 | - | | 0.1025 | 2330 | 3.2771 | - | | 0.1030 | 2340 | 3.3382 | - | | 0.1034 | 2350 | 3.3449 | - | | 0.1038 | 2360 | 3.3152 | - | | 0.1043 | 2370 | 3.3884 | - | | 0.1047 | 2380 | 3.3377 | - | | 0.1052 | 2390 | 3.4296 | - | | 0.1056 | 2400 | 3.3408 | - | | 0.1060 | 2410 | 3.3298 | - | | 0.1065 | 2420 | 3.2049 | - | | 0.1069 | 2430 | 3.2954 | - | | 0.1074 | 2440 | 3.3515 | - | | 0.1078 | 2450 | 3.4093 | - | | 0.1082 | 2460 | 3.2805 | - | | 0.1087 | 2470 | 3.3148 | - | | 0.1091 | 2480 | 3.3447 | - | | 0.1096 | 2490 | 3.299 | - | | 0.1100 | 2500 | 3.331 | - | | 0.1104 | 2510 | 3.3101 | - | | 0.1109 | 2520 | 3.307 | - | | 0.1113 | 2530 | 3.2985 | - | | 0.1118 | 2540 | 3.2943 | - | | 0.1122 | 2550 | 3.2054 | - | | 0.1126 | 2560 | 3.2247 | - | | 0.1131 | 2570 | 3.3231 | - | | 0.1135 | 2580 | 3.31 | - | | 0.1140 | 2590 | 3.1949 | - | | 0.1144 | 2600 | 3.2993 | - | | 0.1148 | 2610 | 3.3238 | - | | 0.1153 | 2620 | 3.2747 | - | | 0.1157 | 2630 | 3.2343 | - | | 0.1162 | 2640 | 3.1709 | - | | 0.1166 | 2650 | 3.226 | - | | 0.1170 | 2660 | 3.1823 | - | | 0.1175 | 2670 | 3.3017 | - | | 0.1179 | 2680 | 3.2518 | - | | 0.1184 | 2690 | 3.267 | - | | 0.1188 | 2700 | 3.2721 | - | | 0.1192 | 2710 | 3.2388 | - | | 0.1197 | 2720 | 3.2943 | - | | 0.1201 | 2730 | 3.2847 | - | | 0.1206 | 2740 | 3.2357 | - | | 0.1210 | 2750 | 3.2395 | - | | 0.1214 | 2760 | 3.2844 | - | | 0.1219 | 2770 | 3.2426 | - | | 0.1223 | 2780 | 3.2321 | - | | 0.1228 | 2790 | 3.2434 | - | | 0.1232 | 2800 | 3.2678 | - | | 0.1236 | 2810 | 3.2168 | - | | 0.1241 | 2820 | 3.2612 | - | | 0.1245 | 2830 | 3.2129 | - | | 0.1250 | 2840 | 3.323 | - | | 0.1254 | 2850 | 3.2474 | - | | 0.1258 | 2860 | 3.2582 | - | | 0.1263 | 2870 | 3.2707 | - | | 0.1267 | 2880 | 3.1792 | - | | 0.1272 | 2890 | 3.248 | - | | 0.1276 | 2900 | 3.1511 | - | | 0.1280 | 2910 | 3.1873 | - | | 0.1285 | 2920 | 3.2937 | - | | 0.1289 | 2930 | 3.329 | - | | 0.1294 | 2940 | 3.2944 | - | | 0.1298 | 2950 | 3.277 | - | | 0.1302 | 2960 | 3.2229 | - | | 0.1307 | 2970 | 3.2448 | - | | 0.1311 | 2980 | 3.1787 | - | | 0.1316 | 2990 | 3.1463 | - | | 0.1320 | 3000 | 3.2104 | - | | 0.1324 | 3010 | 3.169 | - | | 0.1329 | 3020 | 3.2585 | - | | 0.1333 | 3030 | 3.2772 | - | | 0.1338 | 3040 | 3.1355 | - | | 0.1342 | 3050 | 3.1807 | - | | 0.1346 | 3060 | 3.1542 | - | | 0.1351 | 3070 | 3.2317 | - | | 0.1355 | 3080 | 3.1524 | - | | 0.1360 | 3090 | 3.1785 | - | | 0.1364 | 3100 | 3.2429 | - | | 0.1368 | 3110 | 3.2291 | - | | 0.1373 | 3120 | 3.2127 | - | | 0.1377 | 3130 | 3.2158 | - | | 0.1382 | 3140 | 3.1747 | - | | 0.1386 | 3150 | 3.1273 | - | | 0.1390 | 3160 | 3.1862 | - | | 0.1395 | 3170 | 3.215 | - | | 0.1399 | 3180 | 3.2133 | - | | 0.1404 | 3190 | 3.1247 | - | | 0.1408 | 3200 | 3.1276 | - | | 0.1412 | 3210 | 3.1264 | - | | 0.1417 | 3220 | 3.1814 | - | | 0.1421 | 3230 | 3.1948 | - | | 0.1426 | 3240 | 3.1955 | - | | 0.1430 | 3250 | 3.1975 | - | | 0.1434 | 3260 | 3.2944 | - | | 0.1439 | 3270 | 3.2601 | - | | 0.1443 | 3280 | 3.2299 | - | | 0.1448 | 3290 | 3.2304 | - | | 0.1452 | 3300 | 3.2761 | - | | 0.1456 | 3310 | 3.2344 | - | | 0.1461 | 3320 | 3.15 | - | | 0.1465 | 3330 | 3.1618 | - | | 0.1470 | 3340 | 3.1848 | - | | 0.1474 | 3350 | 3.2541 | - | | 0.1478 | 3360 | 3.2181 | - | | 0.1483 | 3370 | 3.1528 | - | | 0.1487 | 3380 | 3.1594 | - | | 0.1492 | 3390 | 3.2499 | - | | 0.1496 | 3400 | 3.1627 | - | | 0.1500 | 3410 | 3.1068 | - | | 0.1501 | 3411 | - | 1.8237 | | 0.1505 | 3420 | 3.1432 | - | | 0.1509 | 3430 | 3.1234 | - | | 0.1514 | 3440 | 3.135 | - | | 0.1518 | 3450 | 3.2263 | - | | 0.1522 | 3460 | 3.2149 | - | | 0.1527 | 3470 | 3.2167 | - | | 0.1531 | 3480 | 3.2188 | - | | 0.1536 | 3490 | 3.1786 | - | | 0.1540 | 3500 | 3.1897 | - | | 0.1544 | 3510 | 3.1668 | - | | 0.1549 | 3520 | 3.1545 | - | | 0.1553 | 3530 | 3.1791 | - | | 0.1558 | 3540 | 3.1333 | - | | 0.1562 | 3550 | 3.2027 | - | | 0.1566 | 3560 | 3.1903 | - | | 0.1571 | 3570 | 3.2083 | - | | 0.1575 | 3580 | 3.1571 | - | | 0.1580 | 3590 | 3.0979 | - | | 0.1584 | 3600 | 3.1939 | - | | 0.1588 | 3610 | 3.2419 | - | | 0.1593 | 3620 | 3.2895 | - | | 0.1597 | 3630 | 3.1006 | - | | 0.1602 | 3640 | 3.1691 | - | | 0.1606 | 3650 | 3.1694 | - | | 0.1610 | 3660 | 3.2381 | - | | 0.1615 | 3670 | 3.246 | - | | 0.1619 | 3680 | 3.1835 | - | | 0.1624 | 3690 | 3.0894 | - | | 0.1628 | 3700 | 3.1258 | - | | 0.1632 | 3710 | 3.2302 | - | | 0.1637 | 3720 | 3.1929 | - | | 0.1641 | 3730 | 3.2028 | - | | 0.1646 | 3740 | 3.1922 | - | | 0.1650 | 3750 | 3.1843 | - | | 0.1654 | 3760 | 3.1302 | - | | 0.1659 | 3770 | 3.1583 | - | | 0.1663 | 3780 | 3.2058 | - | | 0.1668 | 3790 | 3.0715 | - | | 0.1672 | 3800 | 3.0977 | - | | 0.1676 | 3810 | 3.0988 | - | | 0.1681 | 3820 | 3.0889 | - | | 0.1685 | 3830 | 3.1694 | - | | 0.1690 | 3840 | 3.1043 | - | | 0.1694 | 3850 | 3.1153 | - | | 0.1698 | 3860 | 3.1379 | - | | 0.1703 | 3870 | 3.1722 | - | | 0.1707 | 3880 | 3.1078 | - | | 0.1712 | 3890 | 3.0635 | - | | 0.1716 | 3900 | 3.1154 | - | | 0.1720 | 3910 | 3.1195 | - | | 0.1725 | 3920 | 3.094 | - | | 0.1729 | 3930 | 3.087 | - | | 0.1734 | 3940 | 3.1612 | - | | 0.1738 | 3950 | 3.1344 | - | | 0.1742 | 3960 | 3.234 | - | | 0.1747 | 3970 | 3.5787 | - | | 0.1751 | 3980 | 3.1878 | - | | 0.1756 | 3990 | 3.0841 | - | | 0.1760 | 4000 | 3.1308 | - | | 0.1764 | 4010 | 3.0583 | - | | 0.1769 | 4020 | 3.0529 | - | | 0.1773 | 4030 | 3.1005 | - | | 0.1778 | 4040 | 3.1302 | - | | 0.1782 | 4050 | 3.0867 | - | | 0.1787 | 4060 | 3.0806 | - | | 0.1791 | 4070 | 3.1313 | - | | 0.1795 | 4080 | 3.0209 | - | | 0.1800 | 4090 | 3.1377 | - | | 0.1804 | 4100 | 3.0006 | - | | 0.1809 | 4110 | 3.1011 | - | | 0.1813 | 4120 | 3.1383 | - | | 0.1817 | 4130 | 3.0499 | - | | 0.1822 | 4140 | 3.0779 | - | | 0.1826 | 4150 | 3.0954 | - | | 0.1831 | 4160 | 3.0676 | - | | 0.1835 | 4170 | 3.0457 | - | | 0.1839 | 4180 | 3.068 | - | | 0.1844 | 4190 | 3.1466 | - | | 0.1848 | 4200 | 3.0883 | - | | 0.1853 | 4210 | 3.0638 | - | | 0.1857 | 4220 | 3.071 | - | | 0.1861 | 4230 | 3.0264 | - | | 0.1866 | 4240 | 3.0557 | - | | 0.1870 | 4250 | 3.0106 | - | | 0.1875 | 4260 | 3.0173 | - | | 0.1879 | 4270 | 2.9711 | - | | 0.1883 | 4280 | 3.1116 | - | | 0.1888 | 4290 | 3.057 | - | | 0.1892 | 4300 | 3.0097 | - | | 0.1897 | 4310 | 3.0541 | - | | 0.1901 | 4320 | 2.9574 | - | | 0.1905 | 4330 | 3.0306 | - | | 0.1910 | 4340 | 3.0747 | - | | 0.1914 | 4350 | 3.0136 | - | | 0.1919 | 4360 | 3.0541 | - | | 0.1923 | 4370 | 3.0284 | - | | 0.1927 | 4380 | 3.0468 | - | | 0.1932 | 4390 | 3.0191 | - | | 0.1936 | 4400 | 3.0012 | - | | 0.1941 | 4410 | 2.9889 | - | | 0.1945 | 4420 | 3.067 | - | | 0.1949 | 4430 | 3.0595 | - | | 0.1954 | 4440 | 3.0287 | - | | 0.1958 | 4450 | 3.0727 | - | | 0.1963 | 4460 | 3.0399 | - | | 0.1967 | 4470 | 2.9577 | - | | 0.1971 | 4480 | 3.0587 | - | | 0.1976 | 4490 | 2.9597 | - | | 0.1980 | 4500 | 3.01 | - | | 0.1985 | 4510 | 3.0442 | - | | 0.1989 | 4520 | 2.9393 | - | | 0.1993 | 4530 | 3.0278 | - | | 0.1998 | 4540 | 2.8901 | - | | 0.2001 | 4548 | - | 1.7955 | | 0.2002 | 4550 | 2.955 | - | | 0.2007 | 4560 | 3.0005 | - | | 0.2011 | 4570 | 2.9045 | - | | 0.2015 | 4580 | 3.0159 | - | | 0.2020 | 4590 | 2.9778 | - | | 0.2024 | 4600 | 2.9194 | - | | 0.2029 | 4610 | 2.9819 | - | | 0.2033 | 4620 | 2.8893 | - | | 0.2037 | 4630 | 2.9904 | - | | 0.2042 | 4640 | 2.9846 | - | | 0.2046 | 4650 | 3.028 | - | | 0.2051 | 4660 | 3.047 | - | | 0.2055 | 4670 | 3.0462 | - | | 0.2059 | 4680 | 2.9082 | - | | 0.2064 | 4690 | 3.0016 | - | | 0.2068 | 4700 | 2.9611 | - | | 0.2073 | 4710 | 2.8786 | - | | 0.2077 | 4720 | 2.9202 | - | | 0.2081 | 4730 | 2.9133 | - | | 0.2086 | 4740 | 3.0017 | - | | 0.2090 | 4750 | 2.8931 | - | | 0.2095 | 4760 | 2.9423 | - | | 0.2099 | 4770 | 2.9565 | - | | 0.2103 | 4780 | 2.912 | - | | 0.2108 | 4790 | 2.9542 | - | | 0.2112 | 4800 | 2.9813 | - | | 0.2117 | 4810 | 2.9214 | - | | 0.2121 | 4820 | 2.9468 | - | | 0.2125 | 4830 | 2.9535 | - | | 0.2130 | 4840 | 2.9539 | - | | 0.2134 | 4850 | 2.9748 | - | | 0.2139 | 4860 | 2.9134 | - | | 0.2143 | 4870 | 2.8876 | - | | 0.2147 | 4880 | 2.8892 | - | | 0.2152 | 4890 | 2.8991 | - | | 0.2156 | 4900 | 2.9633 | - | | 0.2161 | 4910 | 2.9377 | - | | 0.2165 | 4920 | 2.9128 | - | | 0.2169 | 4930 | 2.9323 | - | | 0.2174 | 4940 | 2.9083 | - | | 0.2178 | 4950 | 2.9329 | - | | 0.2183 | 4960 | 2.8861 | - | | 0.2187 | 4970 | 2.9136 | - | | 0.2191 | 4980 | 2.9142 | - | | 0.2196 | 4990 | 2.8903 | - | | 0.2200 | 5000 | 2.8701 | - | | 0.2205 | 5010 | 2.8072 | - | | 0.2209 | 5020 | 2.8508 | - | | 0.2213 | 5030 | 2.9698 | - | | 0.2218 | 5040 | 2.9334 | - | | 0.2222 | 5050 | 2.9368 | - | | 0.2227 | 5060 | 2.917 | - | | 0.2231 | 5070 | 2.9023 | - | | 0.2235 | 5080 | 2.9141 | - | | 0.2240 | 5090 | 2.9003 | - | | 0.2244 | 5100 | 2.8847 | - | | 0.2249 | 5110 | 2.8319 | - | | 0.2253 | 5120 | 2.854 | - | | 0.2257 | 5130 | 2.8788 | - | | 0.2262 | 5140 | 2.8399 | - | | 0.2266 | 5150 | 2.8667 | - | | 0.2271 | 5160 | 2.8935 | - | | 0.2275 | 5170 | 2.85 | - | | 0.2279 | 5180 | 2.8874 | - | | 0.2284 | 5190 | 2.9649 | - | | 0.2288 | 5200 | 2.8439 | - | | 0.2293 | 5210 | 2.9177 | - | | 0.2297 | 5220 | 2.8992 | - | | 0.2301 | 5230 | 2.8711 | - | | 0.2306 | 5240 | 2.799 | - | | 0.2310 | 5250 | 2.9185 | - | | 0.2315 | 5260 | 2.8427 | - | | 0.2319 | 5270 | 2.7905 | - | | 0.2323 | 5280 | 2.883 | - | | 0.2328 | 5290 | 2.8292 | - | | 0.2332 | 5300 | 2.8618 | - | | 0.2337 | 5310 | 2.8175 | - | | 0.2341 | 5320 | 2.8074 | - | | 0.2345 | 5330 | 2.8245 | - | | 0.2350 | 5340 | 2.8974 | - | | 0.2354 | 5350 | 2.841 | - | | 0.2359 | 5360 | 2.8983 | - | | 0.2363 | 5370 | 2.8141 | - | | 0.2367 | 5380 | 2.7842 | - | | 0.2372 | 5390 | 2.7849 | - | | 0.2376 | 5400 | 2.7416 | - | | 0.2381 | 5410 | 2.86 | - | | 0.2385 | 5420 | 2.8711 | - | | 0.2389 | 5430 | 2.839 | - | | 0.2394 | 5440 | 2.8244 | - | | 0.2398 | 5450 | 2.7942 | - | | 0.2403 | 5460 | 2.8173 | - | | 0.2407 | 5470 | 2.8413 | - | | 0.2411 | 5480 | 2.8185 | - | | 0.2416 | 5490 | 2.8404 | - | | 0.2420 | 5500 | 2.7627 | - | | 0.2425 | 5510 | 2.8237 | - | | 0.2429 | 5520 | 2.8416 | - | | 0.2433 | 5530 | 2.8288 | - | | 0.2438 | 5540 | 2.8932 | - | | 0.2442 | 5550 | 2.8916 | - | | 0.2447 | 5560 | 2.864 | - | | 0.2451 | 5570 | 2.7919 | - | | 0.2455 | 5580 | 2.8545 | - | | 0.2460 | 5590 | 2.8298 | - | | 0.2464 | 5600 | 2.7542 | - | | 0.2469 | 5610 | 2.7379 | - | | 0.2473 | 5620 | 2.8381 | - | | 0.2477 | 5630 | 2.9065 | - | | 0.2482 | 5640 | 2.7571 | - | | 0.2486 | 5650 | 2.7824 | - | | 0.2491 | 5660 | 2.8318 | - | | 0.2495 | 5670 | 2.7792 | - | | 0.2499 | 5680 | 2.7935 | - | | 0.2502 | 5685 | - | 1.7503 | | 0.2504 | 5690 | 2.8 | - | | 0.2508 | 5700 | 2.7359 | - | | 0.2513 | 5710 | 2.8177 | - | | 0.2517 | 5720 | 2.7953 | - | | 0.2521 | 5730 | 2.7641 | - | | 0.2526 | 5740 | 2.8042 | - | | 0.2530 | 5750 | 2.738 | - | | 0.2535 | 5760 | 2.761 | - | | 0.2539 | 5770 | 2.7126 | - | | 0.2543 | 5780 | 2.7502 | - | | 0.2548 | 5790 | 2.7546 | - | | 0.2552 | 5800 | 2.789 | - | | 0.2557 | 5810 | 2.8448 | - | | 0.2561 | 5820 | 2.779 | - | | 0.2565 | 5830 | 2.7048 | - | | 0.2570 | 5840 | 2.6868 | - | | 0.2574 | 5850 | 2.727 | - | | 0.2579 | 5860 | 2.7836 | - | | 0.2583 | 5870 | 2.7101 | - | | 0.2587 | 5880 | 2.7093 | - | | 0.2592 | 5890 | 2.734 | - | | 0.2596 | 5900 | 2.7864 | - | | 0.2601 | 5910 | 2.7053 | - | | 0.2605 | 5920 | 2.7824 | - | | 0.2609 | 5930 | 2.8109 | - | | 0.2614 | 5940 | 2.7778 | - | | 0.2618 | 5950 | 2.6806 | - | | 0.2623 | 5960 | 2.7973 | - | | 0.2627 | 5970 | 2.7844 | - | | 0.2631 | 5980 | 2.7301 | - | | 0.2636 | 5990 | 2.7691 | - | | 0.2640 | 6000 | 2.6653 | - | | 0.2645 | 6010 | 2.7424 | - | | 0.2649 | 6020 | 2.7406 | - | | 0.2653 | 6030 | 2.7018 | - | | 0.2658 | 6040 | 2.741 | - | | 0.2662 | 6050 | 2.7459 | - | | 0.2667 | 6060 | 2.7394 | - | | 0.2671 | 6070 | 2.7859 | - | | 0.2675 | 6080 | 2.675 | - | | 0.2680 | 6090 | 2.7465 | - | | 0.2684 | 6100 | 2.8133 | - | | 0.2689 | 6110 | 2.768 | - | | 0.2693 | 6120 | 2.7792 | - | | 0.2697 | 6130 | 2.7898 | - | | 0.2702 | 6140 | 2.7046 | - | | 0.2706 | 6150 | 2.7425 | - | | 0.2711 | 6160 | 2.7018 | - | | 0.2715 | 6170 | 2.7993 | - | | 0.2719 | 6180 | 2.7209 | - | | 0.2724 | 6190 | 2.7522 | - | | 0.2728 | 6200 | 2.7158 | - | | 0.2733 | 6210 | 2.6777 | - | | 0.2737 | 6220 | 2.7328 | - | | 0.2741 | 6230 | 2.7566 | - | | 0.2746 | 6240 | 2.6412 | - | | 0.2750 | 6250 | 2.7031 | - | | 0.2755 | 6260 | 2.6709 | - | | 0.2759 | 6270 | 2.7575 | - | | 0.2763 | 6280 | 2.6936 | - | | 0.2768 | 6290 | 2.7016 | - | | 0.2772 | 6300 | 2.7334 | - | | 0.2777 | 6310 | 2.7926 | - | | 0.2781 | 6320 | 2.7459 | - | | 0.2785 | 6330 | 2.6771 | - | | 0.2790 | 6340 | 2.6905 | - | | 0.2794 | 6350 | 2.6922 | - | | 0.2799 | 6360 | 2.6975 | - | | 0.2803 | 6370 | 2.7242 | - | | 0.2807 | 6380 | 2.6617 | - | | 0.2812 | 6390 | 2.7189 | - | | 0.2816 | 6400 | 2.7561 | - | | 0.2821 | 6410 | 2.6875 | - | | 0.2825 | 6420 | 2.6702 | - | | 0.2829 | 6430 | 2.677 | - | | 0.2834 | 6440 | 2.6384 | - | | 0.2838 | 6450 | 2.7081 | - | | 0.2843 | 6460 | 2.7128 | - | | 0.2847 | 6470 | 2.7018 | - | | 0.2851 | 6480 | 2.6551 | - | | 0.2856 | 6490 | 2.6997 | - | | 0.2860 | 6500 | 2.7075 | - | | 0.2865 | 6510 | 2.7774 | - | | 0.2869 | 6520 | 2.6615 | - | | 0.2873 | 6530 | 2.7677 | - | | 0.2878 | 6540 | 2.7219 | - | | 0.2882 | 6550 | 2.7515 | - | | 0.2887 | 6560 | 2.761 | - | | 0.2891 | 6570 | 2.6382 | - | | 0.2895 | 6580 | 2.6545 | - | | 0.2900 | 6590 | 2.6677 | - | | 0.2904 | 6600 | 2.6469 | - | | 0.2909 | 6610 | 2.679 | - | | 0.2913 | 6620 | 2.6645 | - | | 0.2917 | 6630 | 2.7476 | - | | 0.2922 | 6640 | 2.599 | - | | 0.2926 | 6650 | 2.6616 | - | | 0.2931 | 6660 | 2.6904 | - | | 0.2935 | 6670 | 2.6197 | - | | 0.2939 | 6680 | 2.6739 | - | | 0.2944 | 6690 | 2.6517 | - | | 0.2948 | 6700 | 2.7092 | - | | 0.2953 | 6710 | 2.6325 | - | | 0.2957 | 6720 | 2.7366 | - | | 0.2961 | 6730 | 2.5898 | - | | 0.2966 | 6740 | 2.6748 | - | | 0.2970 | 6750 | 2.7128 | - | | 0.2975 | 6760 | 2.5639 | - | | 0.2979 | 6770 | 2.7254 | - | | 0.2983 | 6780 | 2.5829 | - | | 0.2988 | 6790 | 2.6725 | - | | 0.2992 | 6800 | 2.66 | - | | 0.2997 | 6810 | 2.6256 | - | | 0.3001 | 6820 | 2.5548 | - | | 0.3002 | 6822 | - | 1.7512 | | 0.3005 | 6830 | 2.6259 | - | | 0.3010 | 6840 | 2.7273 | - | | 0.3014 | 6850 | 2.6848 | - | | 0.3019 | 6860 | 2.5811 | - | | 0.3023 | 6870 | 2.643 | - | | 0.3027 | 6880 | 2.5756 | - | | 0.3032 | 6890 | 2.648 | - | | 0.3036 | 6900 | 2.5769 | - | | 0.3041 | 6910 | 2.5854 | - | | 0.3045 | 6920 | 2.589 | - | | 0.3049 | 6930 | 2.6698 | - | | 0.3054 | 6940 | 2.5703 | - | | 0.3058 | 6950 | 2.6519 | - | | 0.3063 | 6960 | 2.5974 | - | | 0.3067 | 6970 | 2.6398 | - | | 0.3071 | 6980 | 2.6566 | - | | 0.3076 | 6990 | 2.6383 | - | | 0.3080 | 7000 | 2.6297 | - | | 0.3085 | 7010 | 2.5817 | - | | 0.3089 | 7020 | 2.632 | - | | 0.3093 | 7030 | 2.6536 | - | | 0.3098 | 7040 | 2.6606 | - | | 0.3102 | 7050 | 2.5936 | - | | 0.3107 | 7060 | 2.605 | - | | 0.3111 | 7070 | 2.5671 | - | | 0.3115 | 7080 | 2.6172 | - | | 0.3120 | 7090 | 2.5917 | - | | 0.3124 | 7100 | 2.6574 | - | | 0.3129 | 7110 | 2.61 | - | | 0.3133 | 7120 | 2.6355 | - | | 0.3137 | 7130 | 2.5853 | - | | 0.3142 | 7140 | 2.5879 | - | | 0.3146 | 7150 | 2.6295 | - | | 0.3151 | 7160 | 2.5929 | - | | 0.3155 | 7170 | 2.5144 | - | | 0.3159 | 7180 | 2.6094 | - | | 0.3164 | 7190 | 2.6053 | - | | 0.3168 | 7200 | 2.6508 | - | | 0.3173 | 7210 | 2.4983 | - | | 0.3177 | 7220 | 2.6363 | - | | 0.3181 | 7230 | 2.5806 | - | | 0.3186 | 7240 | 2.5851 | - | | 0.3190 | 7250 | 2.5634 | - | | 0.3195 | 7260 | 2.5874 | - | | 0.3199 | 7270 | 2.5645 | - | | 0.3203 | 7280 | 2.5303 | - | | 0.3208 | 7290 | 2.6154 | - | | 0.3212 | 7300 | 2.5939 | - | | 0.3217 | 7310 | 2.4914 | - | | 0.3221 | 7320 | 2.5836 | - | | 0.3225 | 7330 | 2.6024 | - | | 0.3230 | 7340 | 2.5512 | - | | 0.3234 | 7350 | 2.5706 | - | | 0.3239 | 7360 | 2.5158 | - | | 0.3243 | 7370 | 2.5128 | - | | 0.3247 | 7380 | 2.5767 | - | | 0.3252 | 7390 | 2.5246 | - | | 0.3256 | 7400 | 2.5595 | - | | 0.3261 | 7410 | 2.532 | - | | 0.3265 | 7420 | 2.528 | - | | 0.3269 | 7430 | 2.4752 | - | | 0.3274 | 7440 | 2.5033 | - | | 0.3278 | 7450 | 2.6272 | - | | 0.3283 | 7460 | 2.527 | - | | 0.3287 | 7470 | 2.4914 | - | | 0.3291 | 7480 | 2.6452 | - | | 0.3296 | 7490 | 2.5193 | - | | 0.3300 | 7500 | 2.4932 | - | | 0.3305 | 7510 | 2.5131 | - | | 0.3309 | 7520 | 2.5443 | - | | 0.3313 | 7530 | 2.5736 | - | | 0.3318 | 7540 | 2.5781 | - | | 0.3322 | 7550 | 2.597 | - | | 0.3327 | 7560 | 2.5257 | - | | 0.3331 | 7570 | 2.5796 | - | | 0.3335 | 7580 | 2.5578 | - | | 0.3340 | 7590 | 2.5428 | - | | 0.3344 | 7600 | 2.4747 | - | | 0.3349 | 7610 | 2.5069 | - | | 0.3353 | 7620 | 2.4651 | - | | 0.3357 | 7630 | 2.5747 | - | | 0.3362 | 7640 | 2.5984 | - | | 0.3366 | 7650 | 2.5524 | - | | 0.3371 | 7660 | 2.5248 | - | | 0.3375 | 7670 | 2.5376 | - | | 0.3379 | 7680 | 2.5771 | - | | 0.3384 | 7690 | 2.5508 | - | | 0.3388 | 7700 | 2.6057 | - | | 0.3393 | 7710 | 2.4919 | - | | 0.3397 | 7720 | 2.5062 | - | | 0.3401 | 7730 | 2.472 | - | | 0.3406 | 7740 | 2.5702 | - | | 0.3410 | 7750 | 2.5309 | - | | 0.3415 | 7760 | 2.5172 | - | | 0.3419 | 7770 | 2.5355 | - | | 0.3423 | 7780 | 2.5452 | - | | 0.3428 | 7790 | 2.4959 | - | | 0.3432 | 7800 | 2.5822 | - | | 0.3437 | 7810 | 2.4648 | - | | 0.3441 | 7820 | 2.4875 | - | | 0.3445 | 7830 | 2.488 | - | | 0.3450 | 7840 | 2.504 | - | | 0.3454 | 7850 | 2.4502 | - | | 0.3459 | 7860 | 2.4832 | - | | 0.3463 | 7870 | 2.5333 | - | | 0.3467 | 7880 | 2.5148 | - | | 0.3472 | 7890 | 2.4968 | - | | 0.3476 | 7900 | 2.5114 | - | | 0.3481 | 7910 | 2.6032 | - | | 0.3485 | 7920 | 2.4245 | - | | 0.3489 | 7930 | 2.4944 | - | | 0.3494 | 7940 | 2.5364 | - | | 0.3498 | 7950 | 2.5045 | - | | 0.3502 | 7959 | - | 1.6867 | | 0.3503 | 7960 | 2.4544 | - | | 0.3507 | 7970 | 2.432 | - | | 0.3511 | 7980 | 2.4295 | - | | 0.3516 | 7990 | 2.4436 | - | | 0.3520 | 8000 | 2.524 | - | | 0.3525 | 8010 | 2.5537 | - | | 0.3529 | 8020 | 2.4655 | - | | 0.3533 | 8030 | 2.4661 | - | | 0.3538 | 8040 | 2.4245 | - | | 0.3542 | 8050 | 2.5014 | - | | 0.3547 | 8060 | 2.5844 | - | | 0.3551 | 8070 | 2.5683 | - | | 0.3555 | 8080 | 2.4476 | - | | 0.3560 | 8090 | 2.5325 | - | | 0.3564 | 8100 | 2.5194 | - | | 0.3569 | 8110 | 2.5057 | - | | 0.3573 | 8120 | 2.5139 | - | | 0.3577 | 8130 | 2.5152 | - | | 0.3582 | 8140 | 2.4537 | - | | 0.3586 | 8150 | 2.4896 | - | | 0.3591 | 8160 | 2.445 | - | | 0.3595 | 8170 | 2.5446 | - | | 0.3599 | 8180 | 2.5018 | - | | 0.3604 | 8190 | 2.3995 | - | | 0.3608 | 8200 | 2.4249 | - | | 0.3613 | 8210 | 2.4941 | - | | 0.3617 | 8220 | 2.618 | - | | 0.3621 | 8230 | 2.7269 | - | | 0.3626 | 8240 | 2.5891 | - | | 0.3630 | 8250 | 2.5098 | - | | 0.3635 | 8260 | 2.4639 | - | | 0.3639 | 8270 | 2.4344 | - | | 0.3643 | 8280 | 2.4849 | - | | 0.3648 | 8290 | 2.4547 | - | | 0.3652 | 8300 | 2.4509 | - | | 0.3657 | 8310 | 2.4289 | - | | 0.3661 | 8320 | 2.5457 | - | | 0.3665 | 8330 | 2.4892 | - | | 0.3670 | 8340 | 2.488 | - | | 0.3674 | 8350 | 2.4313 | - | | 0.3679 | 8360 | 2.4311 | - | | 0.3683 | 8370 | 2.448 | - | | 0.3687 | 8380 | 2.4468 | - | | 0.3692 | 8390 | 2.497 | - | | 0.3696 | 8400 | 2.4236 | - | | 0.3701 | 8410 | 2.476 | - | | 0.3705 | 8420 | 2.5083 | - | | 0.3709 | 8430 | 2.4692 | - | | 0.3714 | 8440 | 2.5016 | - | | 0.3718 | 8450 | 2.4872 | - | | 0.3723 | 8460 | 2.4453 | - | | 0.3727 | 8470 | 2.4229 | - | | 0.3731 | 8480 | 2.4482 | - | | 0.3736 | 8490 | 2.4095 | - | | 0.3740 | 8500 | 2.4221 | - | | 0.3745 | 8510 | 2.4073 | - | | 0.3749 | 8520 | 2.4462 | - | | 0.3753 | 8530 | 2.4278 | - | | 0.3758 | 8540 | 2.4804 | - | | 0.3762 | 8550 | 2.4622 | - | | 0.3767 | 8560 | 2.4626 | - | | 0.3771 | 8570 | 2.3896 | - | | 0.3775 | 8580 | 2.4613 | - | | 0.3780 | 8590 | 2.372 | - | | 0.3784 | 8600 | 2.4439 | - | | 0.3789 | 8610 | 2.4185 | - | | 0.3793 | 8620 | 2.4153 | - | | 0.3797 | 8630 | 2.4377 | - | | 0.3802 | 8640 | 2.4831 | - | | 0.3806 | 8650 | 2.5059 | - | | 0.3811 | 8660 | 2.3586 | - | | 0.3815 | 8670 | 2.4187 | - | | 0.3819 | 8680 | 2.4521 | - | | 0.3824 | 8690 | 2.3921 | - | | 0.3828 | 8700 | 2.3381 | - | | 0.3833 | 8710 | 2.3365 | - | | 0.3837 | 8720 | 2.4051 | - | | 0.3841 | 8730 | 2.4808 | - | | 0.3846 | 8740 | 2.4048 | - | | 0.3850 | 8750 | 2.4582 | - | | 0.3855 | 8760 | 2.4336 | - | | 0.3859 | 8770 | 2.4465 | - | | 0.3863 | 8780 | 2.3616 | - | | 0.3868 | 8790 | 2.4262 | - | | 0.3872 | 8800 | 2.3956 | - | | 0.3877 | 8810 | 2.3254 | - | | 0.3881 | 8820 | 2.3583 | - | | 0.3885 | 8830 | 2.3967 | - | | 0.3890 | 8840 | 2.4775 | - | | 0.3894 | 8850 | 2.4321 | - | | 0.3899 | 8860 | 2.4225 | - | | 0.3903 | 8870 | 2.3912 | - | | 0.3907 | 8880 | 2.4729 | - | | 0.3912 | 8890 | 2.4833 | - | | 0.3916 | 8900 | 2.4556 | - | | 0.3921 | 8910 | 2.4182 | - | | 0.3925 | 8920 | 2.5093 | - | | 0.3929 | 8930 | 2.3859 | - | | 0.3934 | 8940 | 2.4626 | - | | 0.3938 | 8950 | 2.4321 | - | | 0.3943 | 8960 | 2.4709 | - | | 0.3947 | 8970 | 2.424 | - | | 0.3951 | 8980 | 2.343 | - | | 0.3956 | 8990 | 2.4043 | - | | 0.3960 | 9000 | 2.4239 | - | | 0.3965 | 9010 | 2.3272 | - | | 0.3969 | 9020 | 2.4332 | - | | 0.3973 | 9030 | 2.3799 | - | | 0.3978 | 9040 | 2.4098 | - | | 0.3982 | 9050 | 2.3606 | - | | 0.3987 | 9060 | 2.3919 | - | | 0.3991 | 9070 | 2.3603 | - | | 0.3995 | 9080 | 2.4018 | - | | 0.4000 | 9090 | 2.3785 | - | | 0.4002 | 9096 | - | 1.6704 | | 0.4004 | 9100 | 2.3531 | - | | 0.4009 | 9110 | 2.4391 | - | | 0.4013 | 9120 | 2.441 | - | | 0.4017 | 9130 | 2.4498 | - | | 0.4022 | 9140 | 2.3853 | - | | 0.4026 | 9150 | 2.3781 | - | | 0.4031 | 9160 | 2.2869 | - | | 0.4035 | 9170 | 2.4228 | - | | 0.4039 | 9180 | 2.3155 | - | | 0.4044 | 9190 | 2.3749 | - | | 0.4048 | 9200 | 2.4039 | - | | 0.4053 | 9210 | 2.4326 | - | | 0.4057 | 9220 | 2.428 | - | | 0.4061 | 9230 | 2.3993 | - | | 0.4066 | 9240 | 2.3684 | - | | 0.4070 | 9250 | 2.398 | - | | 0.4075 | 9260 | 2.3256 | - | | 0.4079 | 9270 | 2.384 | - | | 0.4083 | 9280 | 2.3798 | - | | 0.4088 | 9290 | 2.4522 | - | | 0.4092 | 9300 | 2.3099 | - | | 0.4097 | 9310 | 2.4492 | - | | 0.4101 | 9320 | 2.3989 | - | | 0.4105 | 9330 | 2.4296 | - | | 0.4110 | 9340 | 2.3987 | - | | 0.4114 | 9350 | 2.4239 | - | | 0.4119 | 9360 | 2.3676 | - | | 0.4123 | 9370 | 2.4248 | - | | 0.4127 | 9380 | 2.4128 | - | | 0.4132 | 9390 | 2.3812 | - | | 0.4136 | 9400 | 2.4627 | - | | 0.4141 | 9410 | 2.4025 | - | | 0.4145 | 9420 | 2.4162 | - | | 0.4149 | 9430 | 2.4433 | - | | 0.4154 | 9440 | 2.3259 | - | | 0.4158 | 9450 | 2.3521 | - | | 0.4163 | 9460 | 2.4114 | - | | 0.4167 | 9470 | 2.3829 | - | | 0.4171 | 9480 | 2.402 | - | | 0.4176 | 9490 | 2.3171 | - | | 0.4180 | 9500 | 2.3291 | - | | 0.4185 | 9510 | 2.4218 | - | | 0.4189 | 9520 | 2.4103 | - | | 0.4193 | 9530 | 2.4138 | - | | 0.4198 | 9540 | 2.3116 | - | | 0.4202 | 9550 | 2.3739 | - | | 0.4207 | 9560 | 2.3966 | - | | 0.4211 | 9570 | 2.3498 | - | | 0.4215 | 9580 | 2.38 | - | | 0.4220 | 9590 | 2.3787 | - | | 0.4224 | 9600 | 2.3443 | - | | 0.4229 | 9610 | 2.2764 | - | | 0.4233 | 9620 | 2.3685 | - | | 0.4237 | 9630 | 2.4038 | - | | 0.4242 | 9640 | 2.3309 | - | | 0.4246 | 9650 | 2.2911 | - | | 0.4251 | 9660 | 2.3556 | - | | 0.4255 | 9670 | 2.3092 | - | | 0.4259 | 9680 | 2.3333 | - | | 0.4264 | 9690 | 2.3105 | - | | 0.4268 | 9700 | 2.3896 | - | | 0.4273 | 9710 | 2.3765 | - | | 0.4277 | 9720 | 2.3597 | - | | 0.4281 | 9730 | 2.3789 | - | | 0.4286 | 9740 | 2.3524 | - | | 0.4290 | 9750 | 2.3307 | - | | 0.4295 | 9760 | 2.3434 | - | | 0.4299 | 9770 | 2.3482 | - | | 0.4303 | 9780 | 2.3302 | - | | 0.4308 | 9790 | 2.385 | - | | 0.4312 | 9800 | 2.3721 | - | | 0.4317 | 9810 | 2.3453 | - | | 0.4321 | 9820 | 2.3311 | - | | 0.4325 | 9830 | 2.3464 | - | | 0.4330 | 9840 | 2.3301 | - | | 0.4334 | 9850 | 2.3336 | - | | 0.4339 | 9860 | 2.3392 | - | | 0.4343 | 9870 | 2.353 | - | | 0.4347 | 9880 | 2.3181 | - | | 0.4352 | 9890 | 2.3395 | - | | 0.4356 | 9900 | 2.3888 | - | | 0.4361 | 9910 | 2.3445 | - | | 0.4365 | 9920 | 2.3776 | - | | 0.4369 | 9930 | 2.3673 | - | | 0.4374 | 9940 | 2.2807 | - | | 0.4378 | 9950 | 2.3448 | - | | 0.4383 | 9960 | 2.3262 | - | | 0.4387 | 9970 | 2.3342 | - | | 0.4391 | 9980 | 2.3457 | - | | 0.4396 | 9990 | 2.3395 | - | | 0.4400 | 10000 | 2.3014 | - | | 0.4405 | 10010 | 2.2837 | - | | 0.4409 | 10020 | 2.3655 | - | | 0.4413 | 10030 | 2.3199 | - | | 0.4418 | 10040 | 2.2369 | - | | 0.4422 | 10050 | 2.2882 | - | | 0.4427 | 10060 | 2.2339 | - | | 0.4431 | 10070 | 2.328 | - | | 0.4435 | 10080 | 2.3068 | - | | 0.4440 | 10090 | 2.2645 | - | | 0.4444 | 10100 | 2.3818 | - | | 0.4449 | 10110 | 2.3856 | - | | 0.4453 | 10120 | 2.2961 | - | | 0.4457 | 10130 | 2.3333 | - | | 0.4462 | 10140 | 2.3428 | - | | 0.4466 | 10150 | 2.2594 | - | | 0.4471 | 10160 | 2.3017 | - | | 0.4475 | 10170 | 2.308 | - | | 0.4479 | 10180 | 2.3405 | - | | 0.4484 | 10190 | 2.2267 | - | | 0.4488 | 10200 | 2.3015 | - | | 0.4493 | 10210 | 2.3121 | - | | 0.4497 | 10220 | 2.2587 | - | | 0.4501 | 10230 | 2.3268 | - | | 0.4503 | 10233 | - | 1.6561 | | 0.4506 | 10240 | 2.298 | - | | 0.4510 | 10250 | 2.3505 | - | | 0.4515 | 10260 | 2.3892 | - | | 0.4519 | 10270 | 2.458 | - | | 0.4523 | 10280 | 2.2556 | - | | 0.4528 | 10290 | 2.2891 | - | | 0.4532 | 10300 | 2.2728 | - | | 0.4537 | 10310 | 2.2892 | - | | 0.4541 | 10320 | 2.2953 | - | | 0.4545 | 10330 | 2.3029 | - | | 0.4550 | 10340 | 2.2345 | - | | 0.4554 | 10350 | 2.2552 | - | | 0.4559 | 10360 | 2.3035 | - | | 0.4563 | 10370 | 2.3488 | - | | 0.4567 | 10380 | 2.276 | - | | 0.4572 | 10390 | 2.239 | - | | 0.4576 | 10400 | 2.2913 | - | | 0.4581 | 10410 | 2.3284 | - | | 0.4585 | 10420 | 2.2491 | - | | 0.4589 | 10430 | 2.2429 | - | | 0.4594 | 10440 | 2.2715 | - | | 0.4598 | 10450 | 2.2351 | - | | 0.4603 | 10460 | 2.3041 | - | | 0.4607 | 10470 | 2.2778 | - | | 0.4611 | 10480 | 2.3156 | - | | 0.4616 | 10490 | 2.3188 | - | | 0.4620 | 10500 | 2.2925 | - | | 0.4625 | 10510 | 2.2567 | - | | 0.4629 | 10520 | 2.2646 | - | | 0.4633 | 10530 | 2.2575 | - | | 0.4638 | 10540 | 2.2581 | - | | 0.4642 | 10550 | 2.2815 | - | | 0.4647 | 10560 | 2.297 | - | | 0.4651 | 10570 | 2.3325 | - | | 0.4655 | 10580 | 2.4611 | - | | 0.4660 | 10590 | 2.423 | - | | 0.4664 | 10600 | 2.2807 | - | | 0.4669 | 10610 | 2.2093 | - | | 0.4673 | 10620 | 2.2237 | - | | 0.4677 | 10630 | 2.2129 | - | | 0.4682 | 10640 | 2.2596 | - | | 0.4686 | 10650 | 2.1446 | - | | 0.4691 | 10660 | 2.243 | - | | 0.4695 | 10670 | 2.2383 | - | | 0.4699 | 10680 | 2.233 | - | | 0.4704 | 10690 | 2.1491 | - | | 0.4708 | 10700 | 2.1095 | - | | 0.4713 | 10710 | 2.2765 | - | | 0.4717 | 10720 | 2.1988 | - | | 0.4721 | 10730 | 2.2385 | - | | 0.4726 | 10740 | 2.2018 | - | | 0.4730 | 10750 | 2.2159 | - | | 0.4735 | 10760 | 2.1915 | - | | 0.4739 | 10770 | 2.2963 | - | | 0.4743 | 10780 | 2.2944 | - | | 0.4748 | 10790 | 2.2749 | - | | 0.4752 | 10800 | 2.2491 | - | | 0.4757 | 10810 | 2.2406 | - | | 0.4761 | 10820 | 2.236 | - | | 0.4765 | 10830 | 2.2486 | - | | 0.4770 | 10840 | 2.2538 | - | | 0.4774 | 10850 | 2.2362 | - | | 0.4779 | 10860 | 2.2184 | - | | 0.4783 | 10870 | 2.258 | - | | 0.4787 | 10880 | 2.2502 | - | | 0.4792 | 10890 | 2.2279 | - | | 0.4796 | 10900 | 2.2452 | - | | 0.4801 | 10910 | 2.2283 | - | | 0.4805 | 10920 | 2.279 | - | | 0.4809 | 10930 | 2.1799 | - | | 0.4814 | 10940 | 2.1493 | - | | 0.4818 | 10950 | 2.243 | - | | 0.4823 | 10960 | 2.1814 | - | | 0.4827 | 10970 | 2.1648 | - | | 0.4831 | 10980 | 2.2533 | - | | 0.4836 | 10990 | 2.2699 | - | | 0.4840 | 11000 | 2.2254 | - | | 0.4845 | 11010 | 2.2608 | - | | 0.4849 | 11020 | 2.2266 | - | | 0.4853 | 11030 | 2.2175 | - | | 0.4858 | 11040 | 2.2818 | - | | 0.4862 | 11050 | 2.2912 | - | | 0.4867 | 11060 | 2.2326 | - | | 0.4871 | 11070 | 2.2147 | - | | 0.4875 | 11080 | 2.261 | - | | 0.4880 | 11090 | 2.1797 | - | | 0.4884 | 11100 | 2.2339 | - | | 0.4889 | 11110 | 2.2218 | - | | 0.4893 | 11120 | 2.2002 | - | | 0.4897 | 11130 | 2.2522 | - | | 0.4902 | 11140 | 2.2338 | - | | 0.4906 | 11150 | 2.2076 | - | | 0.4911 | 11160 | 2.2865 | - | | 0.4915 | 11170 | 2.2799 | - | | 0.4919 | 11180 | 2.2942 | - | | 0.4924 | 11190 | 2.2318 | - | | 0.4928 | 11200 | 2.2683 | - | | 0.4933 | 11210 | 2.3292 | - | | 0.4937 | 11220 | 2.1199 | - | | 0.4941 | 11230 | 2.3099 | - | | 0.4946 | 11240 | 2.3124 | - | | 0.4950 | 11250 | 2.2397 | - | | 0.4955 | 11260 | 2.1843 | - | | 0.4959 | 11270 | 2.2832 | - | | 0.4963 | 11280 | 2.2853 | - | | 0.4968 | 11290 | 2.2136 | - | | 0.4972 | 11300 | 2.2506 | - | | 0.4977 | 11310 | 2.2309 | - | | 0.4981 | 11320 | 2.2485 | - | | 0.4985 | 11330 | 2.2212 | - | | 0.4990 | 11340 | 2.288 | - | | 0.4994 | 11350 | 2.2405 | - | | 0.4999 | 11360 | 2.2229 | - | | 0.5003 | 11370 | 2.2243 | 1.6550 | | 0.5007 | 11380 | 2.223 | - | | 0.5012 | 11390 | 2.2095 | - | | 0.5016 | 11400 | 2.229 | - | | 0.5021 | 11410 | 2.1573 | - | | 0.5025 | 11420 | 2.1874 | - | | 0.5029 | 11430 | 2.2178 | - | | 0.5034 | 11440 | 2.2216 | - | | 0.5038 | 11450 | 2.1874 | - | | 0.5043 | 11460 | 2.2173 | - | | 0.5047 | 11470 | 2.2863 | - | | 0.5051 | 11480 | 2.2291 | - | | 0.5056 | 11490 | 2.2277 | - | | 0.5060 | 11500 | 2.2268 | - | | 0.5065 | 11510 | 2.1924 | - | | 0.5069 | 11520 | 2.1803 | - | | 0.5073 | 11530 | 2.3353 | - | | 0.5078 | 11540 | 2.2135 | - | | 0.5082 | 11550 | 2.2166 | - | | 0.5087 | 11560 | 2.1964 | - | | 0.5091 | 11570 | 2.2717 | - | | 0.5095 | 11580 | 2.1799 | - | | 0.5100 | 11590 | 2.2374 | - | | 0.5104 | 11600 | 2.2552 | - | | 0.5109 | 11610 | 2.2522 | - | | 0.5113 | 11620 | 2.1857 | - | | 0.5117 | 11630 | 2.2299 | - | | 0.5122 | 11640 | 2.2373 | - | | 0.5126 | 11650 | 2.1962 | - | | 0.5131 | 11660 | 2.1974 | - | | 0.5135 | 11670 | 2.2282 | - | | 0.5139 | 11680 | 2.1123 | - | | 0.5144 | 11690 | 2.2021 | - | | 0.5148 | 11700 | 2.2147 | - | | 0.5153 | 11710 | 2.21 | - | | 0.5157 | 11720 | 2.242 | - | | 0.5161 | 11730 | 2.2442 | - | | 0.5166 | 11740 | 2.4435 | - | | 0.5170 | 11750 | 2.3149 | - | | 0.5175 | 11760 | 2.1625 | - | | 0.5179 | 11770 | 2.1468 | - | | 0.5183 | 11780 | 2.2297 | - | | 0.5188 | 11790 | 2.2598 | - | | 0.5192 | 11800 | 2.1902 | - | | 0.5197 | 11810 | 2.279 | - | | 0.5201 | 11820 | 2.2105 | - | | 0.5205 | 11830 | 2.1977 | - | | 0.5210 | 11840 | 2.2536 | - | | 0.5214 | 11850 | 2.2721 | - | | 0.5219 | 11860 | 2.1815 | - | | 0.5223 | 11870 | 2.1553 | - | | 0.5227 | 11880 | 2.2374 | - | | 0.5232 | 11890 | 2.2503 | - | | 0.5236 | 11900 | 2.1831 | - | | 0.5241 | 11910 | 2.1795 | - | | 0.5245 | 11920 | 2.2131 | - | | 0.5249 | 11930 | 2.1808 | - | | 0.5254 | 11940 | 2.1749 | - | | 0.5258 | 11950 | 2.1886 | - | | 0.5263 | 11960 | 2.2023 | - | | 0.5267 | 11970 | 2.2045 | - | | 0.5271 | 11980 | 2.1567 | - | | 0.5276 | 11990 | 2.2009 | - | | 0.5280 | 12000 | 2.2441 | - | | 0.5285 | 12010 | 2.1719 | - | | 0.5289 | 12020 | 2.2189 | - | | 0.5293 | 12030 | 2.2646 | - | | 0.5298 | 12040 | 2.1829 | - | | 0.5302 | 12050 | 2.1665 | - | | 0.5307 | 12060 | 2.2014 | - | | 0.5311 | 12070 | 2.168 | - | | 0.5315 | 12080 | 2.2505 | - | | 0.5320 | 12090 | 2.1841 | - | | 0.5324 | 12100 | 2.1454 | - | | 0.5329 | 12110 | 2.1997 | - | | 0.5333 | 12120 | 2.1324 | - | | 0.5337 | 12130 | 2.1821 | - | | 0.5342 | 12140 | 2.218 | - | | 0.5346 | 12150 | 2.1542 | - | | 0.5351 | 12160 | 2.2036 | - | | 0.5355 | 12170 | 2.1698 | - | | 0.5360 | 12180 | 2.1889 | - | | 0.5364 | 12190 | 2.1638 | - | | 0.5368 | 12200 | 2.243 | - | | 0.5373 | 12210 | 2.1579 | - | | 0.5377 | 12220 | 2.1528 | - | | 0.5382 | 12230 | 2.1191 | - | | 0.5386 | 12240 | 2.1055 | - | | 0.5390 | 12250 | 2.1879 | - | | 0.5395 | 12260 | 2.2033 | - | | 0.5399 | 12270 | 2.1998 | - | | 0.5404 | 12280 | 2.1193 | - | | 0.5408 | 12290 | 2.1746 | - | | 0.5412 | 12300 | 2.1963 | - | | 0.5417 | 12310 | 2.1488 | - | | 0.5421 | 12320 | 2.134 | - | | 0.5426 | 12330 | 2.2197 | - | | 0.5430 | 12340 | 2.202 | - | | 0.5434 | 12350 | 2.2213 | - | | 0.5439 | 12360 | 2.178 | - | | 0.5443 | 12370 | 2.2152 | - | | 0.5448 | 12380 | 2.2245 | - | | 0.5452 | 12390 | 2.1241 | - | | 0.5456 | 12400 | 2.1852 | - | | 0.5461 | 12410 | 2.1504 | - | | 0.5465 | 12420 | 2.1495 | - | | 0.5470 | 12430 | 2.2413 | - | | 0.5474 | 12440 | 2.2526 | - | | 0.5478 | 12450 | 2.1368 | - | | 0.5483 | 12460 | 2.0786 | - | | 0.5487 | 12470 | 2.1458 | - | | 0.5492 | 12480 | 2.2687 | - | | 0.5496 | 12490 | 2.1685 | - | | 0.5500 | 12500 | 2.1937 | - | | 0.5503 | 12507 | - | 1.6362 | | 0.5505 | 12510 | 2.1266 | - | | 0.5509 | 12520 | 2.195 | - | | 0.5514 | 12530 | 2.2274 | - | | 0.5518 | 12540 | 2.1123 | - | | 0.5522 | 12550 | 2.1506 | - | | 0.5527 | 12560 | 2.151 | - | | 0.5531 | 12570 | 2.1655 | - | | 0.5536 | 12580 | 2.1755 | - | | 0.5540 | 12590 | 2.1225 | - | | 0.5544 | 12600 | 2.1871 | - | | 0.5549 | 12610 | 2.1216 | - | | 0.5553 | 12620 | 2.2259 | - | | 0.5558 | 12630 | 2.1567 | - | | 0.5562 | 12640 | 2.1801 | - | | 0.5566 | 12650 | 2.0892 | - | | 0.5571 | 12660 | 2.2128 | - | | 0.5575 | 12670 | 2.152 | - | | 0.5580 | 12680 | 2.0692 | - | | 0.5584 | 12690 | 2.2158 | - | | 0.5588 | 12700 | 2.1783 | - | | 0.5593 | 12710 | 2.0882 | - | | 0.5597 | 12720 | 2.1339 | - | | 0.5602 | 12730 | 2.1556 | - | | 0.5606 | 12740 | 2.1334 | - | | 0.5610 | 12750 | 2.1542 | - | | 0.5615 | 12760 | 2.182 | - | | 0.5619 | 12770 | 2.2081 | - | | 0.5624 | 12780 | 2.054 | - | | 0.5628 | 12790 | 2.0703 | - | | 0.5632 | 12800 | 2.0711 | - | | 0.5637 | 12810 | 2.102 | - | | 0.5641 | 12820 | 2.1622 | - | | 0.5646 | 12830 | 2.1172 | - | | 0.5650 | 12840 | 2.12 | - | | 0.5654 | 12850 | 2.1486 | - | | 0.5659 | 12860 | 2.1639 | - | | 0.5663 | 12870 | 2.0938 | - | | 0.5668 | 12880 | 2.0924 | - | | 0.5672 | 12890 | 2.1483 | - | | 0.5676 | 12900 | 2.1407 | - | | 0.5681 | 12910 | 2.1205 | - | | 0.5685 | 12920 | 2.1487 | - | | 0.5690 | 12930 | 2.0719 | - | | 0.5694 | 12940 | 2.1413 | - | | 0.5698 | 12950 | 2.1933 | - | | 0.5703 | 12960 | 2.1017 | - | | 0.5707 | 12970 | 2.0898 | - | | 0.5712 | 12980 | 2.1855 | - | | 0.5716 | 12990 | 2.0927 | - | | 0.5720 | 13000 | 2.1754 | - | | 0.5725 | 13010 | 2.0582 | - | | 0.5729 | 13020 | 2.0855 | - | | 0.5734 | 13030 | 2.1287 | - | | 0.5738 | 13040 | 2.1392 | - | | 0.5742 | 13050 | 2.0965 | - | | 0.5747 | 13060 | 2.0605 | - | | 0.5751 | 13070 | 2.0129 | - | | 0.5756 | 13080 | 2.1665 | - | | 0.5760 | 13090 | 2.1176 | - | | 0.5764 | 13100 | 2.1114 | - | | 0.5769 | 13110 | 2.1687 | - | | 0.5773 | 13120 | 2.1031 | - | | 0.5778 | 13130 | 2.0653 | - | | 0.5782 | 13140 | 2.0488 | - | | 0.5786 | 13150 | 2.0589 | - | | 0.5791 | 13160 | 2.1508 | - | | 0.5795 | 13170 | 2.0854 | - | | 0.5800 | 13180 | 2.1213 | - | | 0.5804 | 13190 | 2.1037 | - | | 0.5808 | 13200 | 2.0336 | - | | 0.5813 | 13210 | 2.0623 | - | | 0.5817 | 13220 | 2.0997 | - | | 0.5822 | 13230 | 2.1145 | - | | 0.5826 | 13240 | 2.0546 | - | | 0.5830 | 13250 | 2.086 | - | | 0.5835 | 13260 | 2.1133 | - | | 0.5839 | 13270 | 2.084 | - | | 0.5844 | 13280 | 2.018 | - | | 0.5848 | 13290 | 2.029 | - | | 0.5852 | 13300 | 2.0729 | - | | 0.5857 | 13310 | 2.1447 | - | | 0.5861 | 13320 | 2.0465 | - | | 0.5866 | 13330 | 2.0705 | - | | 0.5870 | 13340 | 2.1098 | - | | 0.5874 | 13350 | 2.0671 | - | | 0.5879 | 13360 | 2.0269 | - | | 0.5883 | 13370 | 2.0774 | - | | 0.5888 | 13380 | 2.0891 | - | | 0.5892 | 13390 | 2.0304 | - | | 0.5896 | 13400 | 2.0746 | - | | 0.5901 | 13410 | 2.1342 | - | | 0.5905 | 13420 | 2.1643 | - | | 0.5910 | 13430 | 2.1895 | - | | 0.5914 | 13440 | 2.0432 | - | | 0.5918 | 13450 | 2.096 | - | | 0.5923 | 13460 | 2.1885 | - | | 0.5927 | 13470 | 2.1114 | - | | 0.5932 | 13480 | 2.0138 | - | | 0.5936 | 13490 | 2.0943 | - | | 0.5940 | 13500 | 2.0797 | - | | 0.5945 | 13510 | 2.1222 | - | | 0.5949 | 13520 | 2.0857 | - | | 0.5954 | 13530 | 1.9979 | - | | 0.5958 | 13540 | 2.1758 | - | | 0.5962 | 13550 | 2.1357 | - | | 0.5967 | 13560 | 2.0915 | - | | 0.5971 | 13570 | 2.0796 | - | | 0.5976 | 13580 | 2.0367 | - | | 0.5980 | 13590 | 2.0731 | - | | 0.5984 | 13600 | 2.0627 | - | | 0.5989 | 13610 | 2.0705 | - | | 0.5993 | 13620 | 2.032 | - | | 0.5998 | 13630 | 2.0704 | - | | 0.6002 | 13640 | 2.0142 | - | | 0.6004 | 13644 | - | 1.6511 | | 0.6006 | 13650 | 2.0328 | - | | 0.6011 | 13660 | 2.1207 | - | | 0.6015 | 13670 | 2.0918 | - | | 0.6020 | 13680 | 2.0111 | - | | 0.6024 | 13690 | 1.9967 | - | | 0.6028 | 13700 | 2.0118 | - | | 0.6033 | 13710 | 2.1229 | - | | 0.6037 | 13720 | 2.0852 | - | | 0.6042 | 13730 | 2.0507 | - | | 0.6046 | 13740 | 2.1564 | - | | 0.6050 | 13750 | 2.0733 | - | | 0.6055 | 13760 | 2.0436 | - | | 0.6059 | 13770 | 2.0325 | - | | 0.6064 | 13780 | 2.03 | - | | 0.6068 | 13790 | 2.0208 | - | | 0.6072 | 13800 | 2.0705 | - | | 0.6077 | 13810 | 2.0254 | - | | 0.6081 | 13820 | 2.0847 | - | | 0.6086 | 13830 | 2.0665 | - | | 0.6090 | 13840 | 2.0908 | - | | 0.6094 | 13850 | 2.0369 | - | | 0.6099 | 13860 | 2.0613 | - | | 0.6103 | 13870 | 2.0114 | - | | 0.6108 | 13880 | 2.0728 | - | | 0.6112 | 13890 | 2.0345 | - | | 0.6116 | 13900 | 2.0463 | - | | 0.6121 | 13910 | 2.0384 | - | | 0.6125 | 13920 | 1.9778 | - | | 0.6130 | 13930 | 2.0623 | - | | 0.6134 | 13940 | 2.0866 | - | | 0.6138 | 13950 | 2.122 | - | | 0.6143 | 13960 | 2.0427 | - | | 0.6147 | 13970 | 1.9975 | - | | 0.6152 | 13980 | 2.0792 | - | | 0.6156 | 13990 | 2.0742 | - | | 0.6160 | 14000 | 2.1509 | - | | 0.6165 | 14010 | 2.0977 | - | | 0.6169 | 14020 | 2.1102 | - | | 0.6174 | 14030 | 2.0786 | - | | 0.6178 | 14040 | 2.0859 | - | | 0.6182 | 14050 | 2.0782 | - | | 0.6187 | 14060 | 2.0807 | - | | 0.6191 | 14070 | 2.0981 | - | | 0.6196 | 14080 | 2.1078 | - | | 0.6200 | 14090 | 2.0824 | - | | 0.6204 | 14100 | 2.1259 | - | | 0.6209 | 14110 | 2.0759 | - | | 0.6213 | 14120 | 2.0787 | - | | 0.6218 | 14130 | 2.072 | - | | 0.6222 | 14140 | 2.1007 | - | | 0.6226 | 14150 | 2.0283 | - | | 0.6231 | 14160 | 2.0858 | - | | 0.6235 | 14170 | 2.0461 | - | | 0.6240 | 14180 | 2.0836 | - | | 0.6244 | 14190 | 2.0531 | - | | 0.6248 | 14200 | 2.0524 | - | | 0.6253 | 14210 | 1.9935 | - | | 0.6257 | 14220 | 2.0489 | - | | 0.6262 | 14230 | 2.0534 | - | | 0.6266 | 14240 | 2.0831 | - | | 0.6270 | 14250 | 2.0905 | - | | 0.6275 | 14260 | 2.118 | - | | 0.6279 | 14270 | 2.1405 | - | | 0.6284 | 14280 | 1.9983 | - | | 0.6288 | 14290 | 2.0557 | - | | 0.6292 | 14300 | 2.0508 | - | | 0.6297 | 14310 | 2.0976 | - | | 0.6301 | 14320 | 2.0394 | - | | 0.6306 | 14330 | 2.0523 | - | | 0.6310 | 14340 | 2.0442 | - | | 0.6314 | 14350 | 2.0912 | - | | 0.6319 | 14360 | 2.0054 | - | | 0.6323 | 14370 | 2.037 | - | | 0.6328 | 14380 | 2.0602 | - | | 0.6332 | 14390 | 2.1039 | - | | 0.6336 | 14400 | 2.0973 | - | | 0.6341 | 14410 | 2.0182 | - | | 0.6345 | 14420 | 2.0342 | - | | 0.6350 | 14430 | 1.9848 | - | | 0.6354 | 14440 | 2.0139 | - | | 0.6358 | 14450 | 2.0791 | - | | 0.6363 | 14460 | 1.9974 | - | | 0.6367 | 14470 | 2.0795 | - | | 0.6372 | 14480 | 1.9788 | - | | 0.6376 | 14490 | 2.0217 | - | | 0.6380 | 14500 | 2.0575 | - | | 0.6385 | 14510 | 2.0404 | - | | 0.6389 | 14520 | 1.9974 | - | | 0.6394 | 14530 | 2.0637 | - | | 0.6398 | 14540 | 2.0414 | - | | 0.6402 | 14550 | 2.0391 | - | | 0.6407 | 14560 | 2.0205 | - | | 0.6411 | 14570 | 2.1212 | - | | 0.6416 | 14580 | 2.0613 | - | | 0.6420 | 14590 | 1.9789 | - | | 0.6424 | 14600 | 2.0583 | - | | 0.6429 | 14610 | 2.0416 | - | | 0.6433 | 14620 | 2.0329 | - | | 0.6438 | 14630 | 2.0317 | - | | 0.6442 | 14640 | 2.0492 | - | | 0.6446 | 14650 | 1.98 | - | | 0.6451 | 14660 | 2.0339 | - | | 0.6455 | 14670 | 2.0109 | - | | 0.6460 | 14680 | 1.9918 | - | | 0.6464 | 14690 | 2.055 | - | | 0.6468 | 14700 | 2.0407 | - | | 0.6473 | 14710 | 2.0258 | - | | 0.6477 | 14720 | 2.0004 | - | | 0.6482 | 14730 | 1.968 | - | | 0.6486 | 14740 | 2.0799 | - | | 0.6490 | 14750 | 1.9926 | - | | 0.6495 | 14760 | 2.0861 | - | | 0.6499 | 14770 | 2.0119 | - | | 0.6504 | 14780 | 1.9994 | - | | 0.6504 | 14781 | - | 1.6550 | | 0.6508 | 14790 | 2.0513 | - | | 0.6512 | 14800 | 1.9457 | - | | 0.6517 | 14810 | 2.0068 | - | | 0.6521 | 14820 | 2.0122 | - | | 0.6526 | 14830 | 1.9853 | - | | 0.6530 | 14840 | 2.1078 | - | | 0.6534 | 14850 | 2.0112 | - | | 0.6539 | 14860 | 2.0081 | - | | 0.6543 | 14870 | 1.9741 | - | | 0.6548 | 14880 | 2.0818 | - | | 0.6552 | 14890 | 2.0318 | - | | 0.6556 | 14900 | 2.0212 | - | | 0.6561 | 14910 | 2.0054 | - | | 0.6565 | 14920 | 2.0354 | - | | 0.6570 | 14930 | 1.9928 | - | | 0.6574 | 14940 | 2.0121 | - | | 0.6578 | 14950 | 2.0528 | - | | 0.6583 | 14960 | 2.0699 | - | | 0.6587 | 14970 | 2.0456 | - | | 0.6592 | 14980 | 2.0132 | - | | 0.6596 | 14990 | 2.0044 | - | | 0.6600 | 15000 | 1.9857 | - | | 0.6605 | 15010 | 1.9661 | - | | 0.6609 | 15020 | 1.9975 | - | | 0.6614 | 15030 | 1.9892 | - | | 0.6618 | 15040 | 2.003 | - | | 0.6622 | 15050 | 1.985 | - | | 0.6627 | 15060 | 2.0688 | - | | 0.6631 | 15070 | 1.999 | - | | 0.6636 | 15080 | 2.022 | - | | 0.6640 | 15090 | 1.9856 | - | | 0.6644 | 15100 | 1.9467 | - | | 0.6649 | 15110 | 2.0101 | - | | 0.6653 | 15120 | 2.023 | - | | 0.6658 | 15130 | 2.0124 | - | | 0.6662 | 15140 | 1.966 | - | | 0.6666 | 15150 | 1.9288 | - | | 0.6671 | 15160 | 2.0111 | - | | 0.6675 | 15170 | 2.0144 | - | | 0.6680 | 15180 | 2.0381 | - | | 0.6684 | 15190 | 2.0387 | - | | 0.6688 | 15200 | 2.0242 | - | | 0.6693 | 15210 | 2.0189 | - | | 0.6697 | 15220 | 1.9769 | - | | 0.6702 | 15230 | 2.0003 | - | | 0.6706 | 15240 | 1.9428 | - | | 0.6710 | 15250 | 1.9705 | - | | 0.6715 | 15260 | 2.0487 | - | | 0.6719 | 15270 | 1.9851 | - | | 0.6724 | 15280 | 1.9971 | - | | 0.6728 | 15290 | 2.0047 | - | | 0.6732 | 15300 | 1.9591 | - | | 0.6737 | 15310 | 2.0125 | - | | 0.6741 | 15320 | 1.9697 | - | | 0.6746 | 15330 | 1.9648 | - | | 0.6750 | 15340 | 1.9851 | - | | 0.6754 | 15350 | 1.9928 | - | | 0.6759 | 15360 | 1.9712 | - | | 0.6763 | 15370 | 2.0227 | - | | 0.6768 | 15380 | 1.9951 | - | | 0.6772 | 15390 | 1.9646 | - | | 0.6776 | 15400 | 1.9851 | - | | 0.6781 | 15410 | 2.039 | - | | 0.6785 | 15420 | 1.9756 | - | | 0.6790 | 15430 | 2.0222 | - | | 0.6794 | 15440 | 2.004 | - | | 0.6798 | 15450 | 2.0234 | - | | 0.6803 | 15460 | 1.969 | - | | 0.6807 | 15470 | 2.0091 | - | | 0.6812 | 15480 | 1.9971 | - | | 0.6816 | 15490 | 1.952 | - | | 0.6820 | 15500 | 1.9685 | - | | 0.6825 | 15510 | 2.0028 | - | | 0.6829 | 15520 | 1.9674 | - | | 0.6834 | 15530 | 2.0195 | - | | 0.6838 | 15540 | 2.0071 | - | | 0.6842 | 15550 | 2.0386 | - | | 0.6847 | 15560 | 1.9654 | - | | 0.6851 | 15570 | 1.9931 | - | | 0.6856 | 15580 | 1.9381 | - | | 0.6860 | 15590 | 1.9591 | - | | 0.6864 | 15600 | 1.9999 | - | | 0.6869 | 15610 | 1.9987 | - | | 0.6873 | 15620 | 1.9122 | - | | 0.6878 | 15630 | 1.9122 | - | | 0.6882 | 15640 | 1.9859 | - | | 0.6886 | 15650 | 1.956 | - | | 0.6891 | 15660 | 1.9345 | - | | 0.6895 | 15670 | 1.9804 | - | | 0.6900 | 15680 | 2.0369 | - | | 0.6904 | 15690 | 1.9414 | - | | 0.6908 | 15700 | 1.9851 | - | | 0.6913 | 15710 | 1.9641 | - | | 0.6917 | 15720 | 1.9742 | - | | 0.6922 | 15730 | 2.0284 | - | | 0.6926 | 15740 | 2.0152 | - | | 0.6930 | 15750 | 1.9432 | - | | 0.6935 | 15760 | 1.9695 | - | | 0.6939 | 15770 | 1.9856 | - | | 0.6944 | 15780 | 1.969 | - | | 0.6948 | 15790 | 2.0506 | - | | 0.6952 | 15800 | 1.9368 | - | | 0.6957 | 15810 | 1.9805 | - | | 0.6961 | 15820 | 1.9444 | - | | 0.6966 | 15830 | 1.9975 | - | | 0.6970 | 15840 | 1.9759 | - | | 0.6974 | 15850 | 1.9677 | - | | 0.6979 | 15860 | 1.9686 | - | | 0.6983 | 15870 | 2.0063 | - | | 0.6988 | 15880 | 1.9882 | - | | 0.6992 | 15890 | 1.9475 | - | | 0.6996 | 15900 | 2.0128 | - | | 0.7001 | 15910 | 1.9166 | - | | 0.7004 | 15918 | - | 1.6010 | | 0.7005 | 15920 | 1.9738 | - | | 0.7010 | 15930 | 2.0058 | - | | 0.7014 | 15940 | 1.9684 | - | | 0.7018 | 15950 | 1.9108 | - | | 0.7023 | 15960 | 1.906 | - | | 0.7027 | 15970 | 1.9673 | - | | 0.7032 | 15980 | 1.9322 | - | | 0.7036 | 15990 | 1.9514 | - | | 0.7040 | 16000 | 1.9381 | - | | 0.7045 | 16010 | 2.0138 | - | | 0.7049 | 16020 | 1.9438 | - | | 0.7054 | 16030 | 1.9595 | - | | 0.7058 | 16040 | 1.9554 | - | | 0.7062 | 16050 | 1.996 | - | | 0.7067 | 16060 | 1.9162 | - | | 0.7071 | 16070 | 1.9143 | - | | 0.7076 | 16080 | 1.9857 | - | | 0.7080 | 16090 | 1.934 | - | | 0.7084 | 16100 | 1.9765 | - | | 0.7089 | 16110 | 1.9235 | - | | 0.7093 | 16120 | 1.9736 | - | | 0.7098 | 16130 | 2.0085 | - | | 0.7102 | 16140 | 1.9905 | - | | 0.7106 | 16150 | 1.9611 | - | | 0.7111 | 16160 | 1.9799 | - | | 0.7115 | 16170 | 1.9702 | - | | 0.7120 | 16180 | 1.9908 | - | | 0.7124 | 16190 | 1.9414 | - | | 0.7128 | 16200 | 1.9245 | - | | 0.7133 | 16210 | 1.9649 | - | | 0.7137 | 16220 | 1.9114 | - | | 0.7142 | 16230 | 1.9446 | - | | 0.7146 | 16240 | 1.9302 | - | | 0.7150 | 16250 | 1.9114 | - | | 0.7155 | 16260 | 1.9277 | - | | 0.7159 | 16270 | 1.9506 | - | | 0.7164 | 16280 | 1.8981 | - | | 0.7168 | 16290 | 1.8898 | - | | 0.7172 | 16300 | 1.9163 | - | | 0.7177 | 16310 | 1.9316 | - | | 0.7181 | 16320 | 1.9798 | - | | 0.7186 | 16330 | 1.9602 | - | | 0.7190 | 16340 | 1.977 | - | | 0.7194 | 16350 | 1.9393 | - | | 0.7199 | 16360 | 1.9012 | - | | 0.7203 | 16370 | 1.9297 | - | | 0.7208 | 16380 | 1.9149 | - | | 0.7212 | 16390 | 1.9086 | - | | 0.7216 | 16400 | 1.9328 | - | | 0.7221 | 16410 | 1.9112 | - | | 0.7225 | 16420 | 1.9349 | - | | 0.7230 | 16430 | 1.9219 | - | | 0.7234 | 16440 | 1.9194 | - | | 0.7238 | 16450 | 1.9173 | - | | 0.7243 | 16460 | 1.9888 | - | | 0.7247 | 16470 | 1.9171 | - | | 0.7252 | 16480 | 1.9196 | - | | 0.7256 | 16490 | 1.9456 | - | | 0.7260 | 16500 | 2.0132 | - | | 0.7265 | 16510 | 1.905 | - | | 0.7269 | 16520 | 1.9018 | - | | 0.7274 | 16530 | 1.9402 | - | | 0.7278 | 16540 | 1.8879 | - | | 0.7282 | 16550 | 1.9636 | - | | 0.7287 | 16560 | 1.9084 | - | | 0.7291 | 16570 | 1.8942 | - | | 0.7296 | 16580 | 1.9532 | - | | 0.7300 | 16590 | 1.8728 | - | | 0.7304 | 16600 | 1.9016 | - | | 0.7309 | 16610 | 1.923 | - | | 0.7313 | 16620 | 1.8552 | - | | 0.7318 | 16630 | 1.9149 | - | | 0.7322 | 16640 | 1.9013 | - | | 0.7326 | 16650 | 1.9101 | - | | 0.7331 | 16660 | 1.94 | - | | 0.7335 | 16670 | 1.886 | - | | 0.7340 | 16680 | 1.9479 | - | | 0.7344 | 16690 | 1.8639 | - | | 0.7348 | 16700 | 1.8938 | - | | 0.7353 | 16710 | 1.9004 | - | | 0.7357 | 16720 | 1.9364 | - | | 0.7362 | 16730 | 1.9731 | - | | 0.7366 | 16740 | 1.9131 | - | | 0.7370 | 16750 | 1.8727 | - | | 0.7375 | 16760 | 1.8715 | - | | 0.7379 | 16770 | 1.9839 | - | | 0.7384 | 16780 | 2.0026 | - | | 0.7388 | 16790 | 1.8844 | - | | 0.7392 | 16800 | 1.892 | - | | 0.7397 | 16810 | 1.9367 | - | | 0.7401 | 16820 | 1.9039 | - | | 0.7406 | 16830 | 1.9148 | - | | 0.7410 | 16840 | 1.9005 | - | | 0.7414 | 16850 | 1.859 | - | | 0.7419 | 16860 | 1.9244 | - | | 0.7423 | 16870 | 1.9186 | - | | 0.7428 | 16880 | 1.9045 | - | | 0.7432 | 16890 | 1.8995 | - | | 0.7436 | 16900 | 1.925 | - | | 0.7441 | 16910 | 1.8795 | - | | 0.7445 | 16920 | 1.9001 | - | | 0.7450 | 16930 | 1.9489 | - | | 0.7454 | 16940 | 1.8565 | - | | 0.7458 | 16950 | 1.914 | - | | 0.7463 | 16960 | 1.8759 | - | | 0.7467 | 16970 | 1.8933 | - | | 0.7472 | 16980 | 1.9254 | - | | 0.7476 | 16990 | 1.9349 | - | | 0.7480 | 17000 | 1.9387 | - | | 0.7485 | 17010 | 1.9317 | - | | 0.7489 | 17020 | 1.8703 | - | | 0.7494 | 17030 | 1.8994 | - | | 0.7498 | 17040 | 1.9459 | - | | 0.7502 | 17050 | 1.9336 | - | | 0.7505 | 17055 | - | 1.5676 | | 0.7507 | 17060 | 1.9267 | - | | 0.7511 | 17070 | 1.9571 | - | | 0.7516 | 17080 | 1.9209 | - | | 0.7520 | 17090 | 1.8401 | - | | 0.7524 | 17100 | 1.8811 | - | | 0.7529 | 17110 | 1.9583 | - | | 0.7533 | 17120 | 1.8986 | - | | 0.7538 | 17130 | 1.9402 | - | | 0.7542 | 17140 | 1.9505 | - | | 0.7546 | 17150 | 1.8932 | - | | 0.7551 | 17160 | 1.9286 | - | | 0.7555 | 17170 | 1.8711 | - | | 0.7560 | 17180 | 1.8566 | - | | 0.7564 | 17190 | 1.9541 | - | | 0.7568 | 17200 | 1.9216 | - | | 0.7573 | 17210 | 1.9025 | - | | 0.7577 | 17220 | 1.8562 | - | | 0.7582 | 17230 | 1.8582 | - | | 0.7586 | 17240 | 1.8472 | - | | 0.7590 | 17250 | 1.8236 | - | | 0.7595 | 17260 | 1.8478 | - | | 0.7599 | 17270 | 1.9184 | - | | 0.7604 | 17280 | 1.9134 | - | | 0.7608 | 17290 | 1.9225 | - | | 0.7612 | 17300 | 1.945 | - | | 0.7617 | 17310 | 1.88 | - | | 0.7621 | 17320 | 1.8459 | - | | 0.7626 | 17330 | 1.9136 | - | | 0.7630 | 17340 | 1.9802 | - | | 0.7634 | 17350 | 1.8634 | - | | 0.7639 | 17360 | 1.8658 | - | | 0.7643 | 17370 | 1.8964 | - | | 0.7648 | 17380 | 1.9211 | - | | 0.7652 | 17390 | 1.8278 | - | | 0.7656 | 17400 | 1.9097 | - | | 0.7661 | 17410 | 1.8214 | - | | 0.7665 | 17420 | 1.8737 | - | | 0.7670 | 17430 | 1.899 | - | | 0.7674 | 17440 | 1.846 | - | | 0.7678 | 17450 | 1.8559 | - | | 0.7683 | 17460 | 1.82 | - | | 0.7687 | 17470 | 1.8828 | - | | 0.7692 | 17480 | 1.8555 | - | | 0.7696 | 17490 | 1.9132 | - | | 0.7700 | 17500 | 1.8653 | - | | 0.7705 | 17510 | 1.9059 | - | | 0.7709 | 17520 | 1.8282 | - | | 0.7714 | 17530 | 1.8079 | - | | 0.7718 | 17540 | 1.8216 | - | | 0.7722 | 17550 | 1.8722 | - | | 0.7727 | 17560 | 1.8364 | - | | 0.7731 | 17570 | 1.8671 | - | | 0.7736 | 17580 | 1.8983 | - | | 0.7740 | 17590 | 1.8 | - | | 0.7744 | 17600 | 1.8803 | - | | 0.7749 | 17610 | 1.8154 | - | | 0.7753 | 17620 | 1.8628 | - | | 0.7758 | 17630 | 1.8952 | - | | 0.7762 | 17640 | 1.8616 | - | | 0.7766 | 17650 | 1.8972 | - | | 0.7771 | 17660 | 1.8594 | - | | 0.7775 | 17670 | 1.8395 | - | | 0.7780 | 17680 | 1.8249 | - | | 0.7784 | 17690 | 1.8314 | - | | 0.7788 | 17700 | 1.8972 | - | | 0.7793 | 17710 | 1.9091 | - | | 0.7797 | 17720 | 1.9162 | - | | 0.7802 | 17730 | 1.9065 | - | | 0.7806 | 17740 | 1.9435 | - | | 0.7810 | 17750 | 1.7767 | - | | 0.7815 | 17760 | 1.8404 | - | | 0.7819 | 17770 | 1.8216 | - | | 0.7824 | 17780 | 1.8375 | - | | 0.7828 | 17790 | 1.8618 | - | | 0.7832 | 17800 | 1.9264 | - | | 0.7837 | 17810 | 1.7724 | - | | 0.7841 | 17820 | 1.8157 | - | | 0.7846 | 17830 | 1.8692 | - | | 0.7850 | 17840 | 1.8779 | - | | 0.7854 | 17850 | 1.8358 | - | | 0.7859 | 17860 | 1.7702 | - | | 0.7863 | 17870 | 1.9372 | - | | 0.7868 | 17880 | 1.8435 | - | | 0.7872 | 17890 | 1.8384 | - | | 0.7876 | 17900 | 1.7599 | - | | 0.7881 | 17910 | 1.8393 | - | | 0.7885 | 17920 | 1.7924 | - | | 0.7890 | 17930 | 1.8769 | - | | 0.7894 | 17940 | 1.8373 | - | | 0.7898 | 17950 | 1.8418 | - | | 0.7903 | 17960 | 1.8635 | - | | 0.7907 | 17970 | 1.8744 | - | | 0.7912 | 17980 | 1.8571 | - | | 0.7916 | 17990 | 1.8606 | - | | 0.7920 | 18000 | 1.8856 | - | | 0.7925 | 18010 | 1.8458 | - | | 0.7929 | 18020 | 1.8481 | - | | 0.7934 | 18030 | 1.8172 | - | | 0.7938 | 18040 | 1.8137 | - | | 0.7942 | 18050 | 1.9036 | - | | 0.7947 | 18060 | 1.9114 | - | | 0.7951 | 18070 | 1.7782 | - | | 0.7956 | 18080 | 1.8684 | - | | 0.7960 | 18090 | 1.8765 | - | | 0.7964 | 18100 | 1.8754 | - | | 0.7969 | 18110 | 1.8458 | - | | 0.7973 | 18120 | 1.833 | - | | 0.7978 | 18130 | 1.8893 | - | | 0.7982 | 18140 | 1.8447 | - | | 0.7986 | 18150 | 1.8001 | - | | 0.7991 | 18160 | 1.9099 | - | | 0.7995 | 18170 | 1.8267 | - | | 0.8000 | 18180 | 1.8753 | - | | 0.8004 | 18190 | 1.8016 | - | | 0.8005 | 18192 | - | 1.5615 | | 0.8008 | 18200 | 1.7541 | - | | 0.8013 | 18210 | 1.8432 | - | | 0.8017 | 18220 | 1.8485 | - | | 0.8022 | 18230 | 1.8694 | - | | 0.8026 | 18240 | 1.8499 | - | | 0.8030 | 18250 | 1.8036 | - | | 0.8035 | 18260 | 1.8616 | - | | 0.8039 | 18270 | 1.8231 | - | | 0.8044 | 18280 | 1.752 | - | | 0.8048 | 18290 | 1.8418 | - | | 0.8052 | 18300 | 1.8482 | - | | 0.8057 | 18310 | 1.8448 | - | | 0.8061 | 18320 | 1.8132 | - | | 0.8066 | 18330 | 1.8637 | - | | 0.8070 | 18340 | 1.7586 | - | | 0.8074 | 18350 | 1.7852 | - | | 0.8079 | 18360 | 1.8291 | - | | 0.8083 | 18370 | 1.8388 | - | | 0.8088 | 18380 | 1.8504 | - | | 0.8092 | 18390 | 1.7731 | - | | 0.8096 | 18400 | 1.9129 | - | | 0.8101 | 18410 | 1.8155 | - | | 0.8105 | 18420 | 1.7654 | - | | 0.8110 | 18430 | 1.8348 | - | | 0.8114 | 18440 | 1.7973 | - | | 0.8118 | 18450 | 1.8052 | - | | 0.8123 | 18460 | 1.8421 | - | | 0.8127 | 18470 | 1.7896 | - | | 0.8132 | 18480 | 1.8636 | - | | 0.8136 | 18490 | 1.7796 | - | | 0.8140 | 18500 | 1.9163 | - | | 0.8145 | 18510 | 1.7897 | - | | 0.8149 | 18520 | 1.8253 | - | | 0.8154 | 18530 | 1.8305 | - | | 0.8158 | 18540 | 1.9007 | - | | 0.8162 | 18550 | 1.8168 | - | | 0.8167 | 18560 | 1.8045 | - | | 0.8171 | 18570 | 1.8646 | - | | 0.8176 | 18580 | 1.8861 | - | | 0.8180 | 18590 | 1.8134 | - | | 0.8184 | 18600 | 1.7831 | - | | 0.8189 | 18610 | 1.8707 | - | | 0.8193 | 18620 | 1.8086 | - | | 0.8198 | 18630 | 1.7648 | - | | 0.8202 | 18640 | 1.8225 | - | | 0.8206 | 18650 | 1.8026 | - | | 0.8211 | 18660 | 1.8861 | - | | 0.8215 | 18670 | 1.8046 | - | | 0.8220 | 18680 | 1.8015 | - | | 0.8224 | 18690 | 1.7553 | - | | 0.8228 | 18700 | 1.7537 | - | | 0.8233 | 18710 | 1.7866 | - | | 0.8237 | 18720 | 1.7797 | - | | 0.8242 | 18730 | 1.8398 | - | | 0.8246 | 18740 | 1.8304 | - | | 0.8250 | 18750 | 1.8695 | - | | 0.8255 | 18760 | 1.8135 | - | | 0.8259 | 18770 | 1.8341 | - | | 0.8264 | 18780 | 1.775 | - | | 0.8268 | 18790 | 1.8677 | - | | 0.8272 | 18800 | 1.7496 | - | | 0.8277 | 18810 | 1.7449 | - | | 0.8281 | 18820 | 1.8395 | - | | 0.8286 | 18830 | 1.8641 | - | | 0.8290 | 18840 | 1.7987 | - | | 0.8294 | 18850 | 1.7412 | - | | 0.8299 | 18860 | 1.774 | - | | 0.8303 | 18870 | 1.8424 | - | | 0.8308 | 18880 | 1.7948 | - | | 0.8312 | 18890 | 1.8334 | - | | 0.8316 | 18900 | 1.888 | - | | 0.8321 | 18910 | 1.7935 | - | | 0.8325 | 18920 | 1.8035 | - | | 0.8330 | 18930 | 1.792 | - | | 0.8334 | 18940 | 1.7599 | - | | 0.8338 | 18950 | 1.7776 | - | | 0.8343 | 18960 | 1.7618 | - | | 0.8347 | 18970 | 1.7845 | - | | 0.8352 | 18980 | 1.7669 | - | | 0.8356 | 18990 | 1.8069 | - | | 0.8360 | 19000 | 1.7698 | - | | 0.8365 | 19010 | 1.8179 | - | | 0.8369 | 19020 | 1.7678 | - | | 0.8374 | 19030 | 1.7974 | - | | 0.8378 | 19040 | 1.7848 | - | | 0.8382 | 19050 | 1.8098 | - | | 0.8387 | 19060 | 1.8252 | - | | 0.8391 | 19070 | 1.7918 | - | | 0.8396 | 19080 | 1.8026 | - | | 0.8400 | 19090 | 1.8011 | - | | 0.8404 | 19100 | 1.7617 | - | | 0.8409 | 19110 | 1.8422 | - | | 0.8413 | 19120 | 1.841 | - | | 0.8418 | 19130 | 1.7515 | - | | 0.8422 | 19140 | 1.7376 | - | | 0.8426 | 19150 | 1.7447 | - | | 0.8431 | 19160 | 1.733 | - | | 0.8435 | 19170 | 1.7957 | - | | 0.8440 | 19180 | 1.81 | - | | 0.8444 | 19190 | 1.7999 | - | | 0.8448 | 19200 | 1.8028 | - | | 0.8453 | 19210 | 1.8225 | - | | 0.8457 | 19220 | 1.7875 | - | | 0.8462 | 19230 | 1.8472 | - | | 0.8466 | 19240 | 1.7315 | - | | 0.8470 | 19250 | 1.7722 | - | | 0.8475 | 19260 | 1.7764 | - | | 0.8479 | 19270 | 1.7705 | - | | 0.8484 | 19280 | 1.7843 | - | | 0.8488 | 19290 | 1.807 | - | | 0.8492 | 19300 | 1.8111 | - | | 0.8497 | 19310 | 1.8147 | - | | 0.8501 | 19320 | 1.8467 | - | | 0.8505 | 19329 | - | 1.5148 | | 0.8506 | 19330 | 1.7413 | - | | 0.8510 | 19340 | 1.837 | - | | 0.8514 | 19350 | 1.727 | - | | 0.8519 | 19360 | 1.7782 | - | | 0.8523 | 19370 | 1.7197 | - | | 0.8528 | 19380 | 1.7461 | - | | 0.8532 | 19390 | 1.7826 | - | | 0.8536 | 19400 | 1.8417 | - | | 0.8541 | 19410 | 1.8094 | - | | 0.8545 | 19420 | 1.7443 | - | | 0.8550 | 19430 | 1.7668 | - | | 0.8554 | 19440 | 1.7869 | - | | 0.8558 | 19450 | 1.7792 | - | | 0.8563 | 19460 | 1.7712 | - | | 0.8567 | 19470 | 1.8001 | - | | 0.8572 | 19480 | 1.7587 | - | | 0.8576 | 19490 | 1.7809 | - | | 0.8580 | 19500 | 1.7866 | - | | 0.8585 | 19510 | 1.8188 | - | | 0.8589 | 19520 | 1.7744 | - | | 0.8594 | 19530 | 1.7683 | - | | 0.8598 | 19540 | 1.7473 | - | | 0.8602 | 19550 | 1.8089 | - | | 0.8607 | 19560 | 1.817 | - | | 0.8611 | 19570 | 1.7317 | - | | 0.8616 | 19580 | 1.739 | - | | 0.8620 | 19590 | 1.7309 | - | | 0.8624 | 19600 | 1.8112 | - | | 0.8629 | 19610 | 1.7462 | - | | 0.8633 | 19620 | 1.8007 | - | | 0.8638 | 19630 | 1.7153 | - | | 0.8642 | 19640 | 1.7704 | - | | 0.8646 | 19650 | 1.7318 | - | | 0.8651 | 19660 | 1.7531 | - | | 0.8655 | 19670 | 1.7946 | - | | 0.8660 | 19680 | 1.7935 | - | | 0.8664 | 19690 | 1.7794 | - | | 0.8668 | 19700 | 1.7703 | - | | 0.8673 | 19710 | 1.7383 | - | | 0.8677 | 19720 | 1.764 | - | | 0.8682 | 19730 | 1.7786 | - | | 0.8686 | 19740 | 1.726 | - | | 0.8690 | 19750 | 1.7793 | - | | 0.8695 | 19760 | 1.7449 | - | | 0.8699 | 19770 | 1.7471 | - | | 0.8704 | 19780 | 1.7321 | - | | 0.8708 | 19790 | 1.7575 | - | | 0.8712 | 19800 | 1.8125 | - | | 0.8717 | 19810 | 1.812 | - | | 0.8721 | 19820 | 1.752 | - | | 0.8726 | 19830 | 1.7595 | - | | 0.8730 | 19840 | 1.7412 | - | | 0.8734 | 19850 | 1.7724 | - | | 0.8739 | 19860 | 1.7666 | - | | 0.8743 | 19870 | 1.7528 | - | | 0.8748 | 19880 | 1.7338 | - | | 0.8752 | 19890 | 1.798 | - | | 0.8756 | 19900 | 1.8185 | - | | 0.8761 | 19910 | 1.7647 | - | | 0.8765 | 19920 | 1.7295 | - | | 0.8770 | 19930 | 1.7924 | - | | 0.8774 | 19940 | 1.7428 | - | | 0.8778 | 19950 | 1.8205 | - | | 0.8783 | 19960 | 1.8204 | - | | 0.8787 | 19970 | 1.7778 | - | | 0.8792 | 19980 | 1.7698 | - | | 0.8796 | 19990 | 1.7181 | - | | 0.8800 | 20000 | 1.7802 | - | | 0.8805 | 20010 | 1.7699 | - | | 0.8809 | 20020 | 1.7082 | - | | 0.8814 | 20030 | 1.7828 | - | | 0.8818 | 20040 | 1.7598 | - | | 0.8822 | 20050 | 1.7002 | - | | 0.8827 | 20060 | 1.7462 | - | | 0.8831 | 20070 | 1.7514 | - | | 0.8836 | 20080 | 1.7615 | - | | 0.8840 | 20090 | 1.7357 | - | | 0.8844 | 20100 | 1.7724 | - | | 0.8849 | 20110 | 1.781 | - | | 0.8853 | 20120 | 1.7107 | - | | 0.8858 | 20130 | 1.7392 | - | | 0.8862 | 20140 | 1.6857 | - | | 0.8866 | 20150 | 1.738 | - | | 0.8871 | 20160 | 1.7456 | - | | 0.8875 | 20170 | 1.7181 | - | | 0.8880 | 20180 | 1.728 | - | | 0.8884 | 20190 | 1.7524 | - | | 0.8888 | 20200 | 1.757 | - | | 0.8893 | 20210 | 1.7756 | - | | 0.8897 | 20220 | 1.7904 | - | | 0.8902 | 20230 | 1.7905 | - | | 0.8906 | 20240 | 1.7341 | - | | 0.8910 | 20250 | 1.7457 | - | | 0.8915 | 20260 | 1.7085 | - | | 0.8919 | 20270 | 1.7183 | - | | 0.8924 | 20280 | 1.7952 | - | | 0.8928 | 20290 | 1.7555 | - | | 0.8933 | 20300 | 1.7643 | - | | 0.8937 | 20310 | 1.7575 | - | | 0.8941 | 20320 | 1.8018 | - | | 0.8946 | 20330 | 1.6861 | - | | 0.8950 | 20340 | 1.7434 | - | | 0.8955 | 20350 | 1.7578 | - | | 0.8959 | 20360 | 1.784 | - | | 0.8963 | 20370 | 1.6991 | - | | 0.8968 | 20380 | 1.7822 | - | | 0.8972 | 20390 | 1.7359 | - | | 0.8977 | 20400 | 1.7536 | - | | 0.8981 | 20410 | 1.685 | - | | 0.8985 | 20420 | 1.7435 | - | | 0.8990 | 20430 | 1.74 | - | | 0.8994 | 20440 | 1.6932 | - | | 0.8999 | 20450 | 1.7326 | - | | 0.9003 | 20460 | 1.7389 | - | | 0.9006 | 20466 | - | 1.5659 | | 0.9007 | 20470 | 1.7049 | - | | 0.9012 | 20480 | 1.7546 | - | | 0.9016 | 20490 | 1.75 | - | | 0.9021 | 20500 | 1.7242 | - | | 0.9025 | 20510 | 1.7383 | - | | 0.9029 | 20520 | 1.8238 | - | | 0.9034 | 20530 | 1.7249 | - | | 0.9038 | 20540 | 1.7586 | - | | 0.9043 | 20550 | 1.7213 | - | | 0.9047 | 20560 | 1.7271 | - | | 0.9051 | 20570 | 1.7467 | - | | 0.9056 | 20580 | 1.6756 | - | | 0.9060 | 20590 | 1.7365 | - | | 0.9065 | 20600 | 1.7897 | - | | 0.9069 | 20610 | 1.7548 | - | | 0.9073 | 20620 | 1.7865 | - | | 0.9078 | 20630 | 1.6873 | - | | 0.9082 | 20640 | 1.6873 | - | | 0.9087 | 20650 | 1.7292 | - | | 0.9091 | 20660 | 1.7395 | - | | 0.9095 | 20670 | 1.7688 | - | | 0.9100 | 20680 | 1.7188 | - | | 0.9104 | 20690 | 1.7244 | - | | 0.9109 | 20700 | 1.7362 | - | | 0.9113 | 20710 | 1.7803 | - | | 0.9117 | 20720 | 1.6902 | - | | 0.9122 | 20730 | 1.79 | - | | 0.9126 | 20740 | 1.7739 | - | | 0.9131 | 20750 | 1.735 | - | | 0.9135 | 20760 | 1.6805 | - | | 0.9139 | 20770 | 1.7446 | - | | 0.9144 | 20780 | 1.7967 | - | | 0.9148 | 20790 | 1.7478 | - | | 0.9153 | 20800 | 1.777 | - | | 0.9157 | 20810 | 1.756 | - | | 0.9161 | 20820 | 1.7738 | - | | 0.9166 | 20830 | 1.7288 | - | | 0.9170 | 20840 | 1.6982 | - | | 0.9175 | 20850 | 1.707 | - | | 0.9179 | 20860 | 1.748 | - | | 0.9183 | 20870 | 1.7194 | - | | 0.9188 | 20880 | 1.7428 | - | | 0.9192 | 20890 | 1.716 | - | | 0.9197 | 20900 | 1.7279 | - | | 0.9201 | 20910 | 1.7387 | - | | 0.9205 | 20920 | 1.7488 | - | | 0.9210 | 20930 | 1.701 | - | | 0.9214 | 20940 | 1.7126 | - | | 0.9219 | 20950 | 1.7416 | - | | 0.9223 | 20960 | 1.7723 | - | | 0.9227 | 20970 | 1.7044 | - | | 0.9232 | 20980 | 1.7429 | - | | 0.9236 | 20990 | 1.7344 | - | | 0.9241 | 21000 | 1.7799 | - | | 0.9245 | 21010 | 1.7437 | - | | 0.9249 | 21020 | 1.7143 | - | | 0.9254 | 21030 | 1.7263 | - | | 0.9258 | 21040 | 1.6835 | - | | 0.9263 | 21050 | 1.684 | - | | 0.9267 | 21060 | 1.7164 | - | | 0.9271 | 21070 | 1.7237 | - | | 0.9276 | 21080 | 1.733 | - | | 0.9280 | 21090 | 1.6971 | - | | 0.9285 | 21100 | 1.7094 | - | | 0.9289 | 21110 | 1.7141 | - | | 0.9293 | 21120 | 1.6635 | - | | 0.9298 | 21130 | 1.6956 | - | | 0.9302 | 21140 | 1.6918 | - | | 0.9307 | 21150 | 1.768 | - | | 0.9311 | 21160 | 1.7473 | - | | 0.9315 | 21170 | 1.7332 | - | | 0.9320 | 21180 | 1.7504 | - | | 0.9324 | 21190 | 1.7022 | - | | 0.9329 | 21200 | 1.6398 | - | | 0.9333 | 21210 | 1.6898 | - | | 0.9337 | 21220 | 1.745 | - | | 0.9342 | 21230 | 1.7418 | - | | 0.9346 | 21240 | 1.7308 | - | | 0.9351 | 21250 | 1.7091 | - | | 0.9355 | 21260 | 1.7052 | - | | 0.9359 | 21270 | 1.6847 | - | | 0.9364 | 21280 | 1.7309 | - | | 0.9368 | 21290 | 1.7568 | - | | 0.9373 | 21300 | 1.6818 | - | | 0.9377 | 21310 | 1.6938 | - | | 0.9381 | 21320 | 1.7351 | - | | 0.9386 | 21330 | 1.6788 | - | | 0.9390 | 21340 | 1.6727 | - | | 0.9395 | 21350 | 1.6749 | - | | 0.9399 | 21360 | 1.6577 | - | | 0.9403 | 21370 | 1.7146 | - | | 0.9408 | 21380 | 1.6958 | - | | 0.9412 | 21390 | 1.705 | - | | 0.9417 | 21400 | 1.6555 | - | | 0.9421 | 21410 | 1.732 | - | | 0.9425 | 21420 | 1.739 | - | | 0.9430 | 21430 | 1.7517 | - | | 0.9434 | 21440 | 1.7185 | - | | 0.9439 | 21450 | 1.6613 | - | | 0.9443 | 21460 | 1.7243 | - | | 0.9447 | 21470 | 1.7739 | - | | 0.9452 | 21480 | 1.6779 | - | | 0.9456 | 21490 | 1.6934 | - | | 0.9461 | 21500 | 1.7542 | - | | 0.9465 | 21510 | 1.7099 | - | | 0.9469 | 21520 | 1.7137 | - | | 0.9474 | 21530 | 1.7286 | - | | 0.9478 | 21540 | 1.7231 | - | | 0.9483 | 21550 | 1.7182 | - | | 0.9487 | 21560 | 1.6938 | - | | 0.9491 | 21570 | 1.7649 | - | | 0.9496 | 21580 | 1.7201 | - | | 0.9500 | 21590 | 1.6845 | - | | 0.9505 | 21600 | 1.6983 | - | | 0.9506 | 21603 | - | 1.5557 | | 0.9509 | 21610 | 1.6874 | - | | 0.9513 | 21620 | 1.6564 | - | | 0.9518 | 21630 | 1.6851 | - | | 0.9522 | 21640 | 1.6712 | - | | 0.9527 | 21650 | 1.6958 | - | | 0.9531 | 21660 | 1.6831 | - | | 0.9535 | 21670 | 1.7378 | - | | 0.9540 | 21680 | 1.742 | - | | 0.9544 | 21690 | 1.7139 | - | | 0.9549 | 21700 | 1.783 | - | | 0.9553 | 21710 | 1.7006 | - | | 0.9557 | 21720 | 1.7022 | - | | 0.9562 | 21730 | 1.5912 | - | | 0.9566 | 21740 | 1.7013 | - | | 0.9571 | 21750 | 1.6654 | - | | 0.9575 | 21760 | 1.7027 | - | | 0.9579 | 21770 | 1.6858 | - | | 0.9584 | 21780 | 1.6601 | - | | 0.9588 | 21790 | 1.6907 | - | | 0.9593 | 21800 | 1.7123 | - | | 0.9597 | 21810 | 1.6935 | - | | 0.9601 | 21820 | 1.702 | - | | 0.9606 | 21830 | 1.6678 | - | | 0.9610 | 21840 | 1.7244 | - | | 0.9615 | 21850 | 1.7523 | - | | 0.9619 | 21860 | 1.6928 | - | | 0.9623 | 21870 | 1.6641 | - | | 0.9628 | 21880 | 1.6427 | - | | 0.9632 | 21890 | 1.6817 | - | | 0.9637 | 21900 | 1.6663 | - | | 0.9641 | 21910 | 1.7587 | - | | 0.9645 | 21920 | 1.6881 | - | | 0.9650 | 21930 | 1.7287 | - | | 0.9654 | 21940 | 1.7327 | - | | 0.9659 | 21950 | 1.7048 | - | | 0.9663 | 21960 | 1.6799 | - | | 0.9667 | 21970 | 1.6927 | - | | 0.9672 | 21980 | 1.725 | - | | 0.9676 | 21990 | 1.6678 | - | | 0.9681 | 22000 | 1.7152 | - | | 0.9685 | 22010 | 1.6702 | - | | 0.9689 | 22020 | 1.7111 | - | | 0.9694 | 22030 | 1.7045 | - | | 0.9698 | 22040 | 1.7205 | - | | 0.9703 | 22050 | 1.7132 | - | | 0.9707 | 22060 | 1.683 | - | | 0.9711 | 22070 | 1.6894 | - | | 0.9716 | 22080 | 1.6673 | - | | 0.9720 | 22090 | 1.6615 | - | | 0.9725 | 22100 | 1.676 | - | | 0.9729 | 22110 | 1.682 | - | | 0.9733 | 22120 | 1.6953 | - | | 0.9738 | 22130 | 1.6266 | - | | 0.9742 | 22140 | 1.7501 | - | | 0.9747 | 22150 | 1.7364 | - | | 0.9751 | 22160 | 1.683 | - | | 0.9755 | 22170 | 1.7098 | - | | 0.9760 | 22180 | 1.6807 | - | | 0.9764 | 22190 | 1.6944 | - | | 0.9769 | 22200 | 1.6351 | - | | 0.9773 | 22210 | 1.7202 | - | | 0.9777 | 22220 | 1.6849 | - | | 0.9782 | 22230 | 1.6461 | - | | 0.9786 | 22240 | 1.6318 | - | | 0.9791 | 22250 | 1.6644 | - | | 0.9795 | 22260 | 1.6302 | - | | 0.9799 | 22270 | 1.6398 | - | | 0.9804 | 22280 | 1.7222 | - | | 0.9808 | 22290 | 1.7678 | - | | 0.9813 | 22300 | 1.6438 | - | | 0.9817 | 22310 | 1.6607 | - | | 0.9821 | 22320 | 1.6955 | - | | 0.9826 | 22330 | 1.6424 | - | | 0.9830 | 22340 | 1.6555 | - | | 0.9835 | 22350 | 1.6481 | - | | 0.9839 | 22360 | 1.6649 | - | | 0.9843 | 22370 | 1.7239 | - | | 0.9848 | 22380 | 1.7024 | - | | 0.9852 | 22390 | 1.6426 | - | | 0.9857 | 22400 | 1.7082 | - | | 0.9861 | 22410 | 1.6465 | - | | 0.9865 | 22420 | 1.7059 | - | | 0.9870 | 22430 | 1.6484 | - | | 0.9874 | 22440 | 1.7004 | - | | 0.9879 | 22450 | 1.682 | - | | 0.9883 | 22460 | 1.663 | - | | 0.9887 | 22470 | 1.7186 | - | | 0.9892 | 22480 | 1.6622 | - | | 0.9896 | 22490 | 1.6895 | - | | 0.9901 | 22500 | 1.6893 | - | | 0.9905 | 22510 | 1.6527 | - | | 0.9909 | 22520 | 1.6462 | - | | 0.9914 | 22530 | 1.7192 | - | | 0.9918 | 22540 | 1.6883 | - | | 0.9923 | 22550 | 1.6261 | - | | 0.9927 | 22560 | 1.6477 | - | | 0.9931 | 22570 | 1.6856 | - | | 0.9936 | 22580 | 1.6427 | - | | 0.9940 | 22590 | 1.6723 | - | | 0.9945 | 22600 | 1.6706 | - | | 0.9949 | 22610 | 1.6391 | - | | 0.9953 | 22620 | 1.6861 | - | | 0.9958 | 22630 | 1.6388 | - | | 0.9962 | 22640 | 1.6668 | - | | 0.9967 | 22650 | 1.6732 | - | | 0.9971 | 22660 | 1.7444 | - | | 0.9975 | 22670 | 1.6241 | - | | 0.9980 | 22680 | 1.673 | - | | 0.9984 | 22690 | 1.6565 | - | | 0.9989 | 22700 | 1.6076 | - | | 0.9993 | 22710 | 1.5716 | - | | 0.9997 | 22720 | 1.656 | - | | 1.0002 | 22730 | 1.5846 | - | | 1.0006 | 22740 | 1.6155 | 1.5586 | | 1.0011 | 22750 | 1.5894 | - | | 1.0015 | 22760 | 1.664 | - | | 1.0019 | 22770 | 1.6272 | - | | 1.0024 | 22780 | 1.5798 | - | | 1.0028 | 22790 | 1.6216 | - | | 1.0033 | 22800 | 1.6389 | - | | 1.0037 | 22810 | 1.6825 | - | | 1.0041 | 22820 | 1.6871 | - | | 1.0046 | 22830 | 1.6127 | - | | 1.0050 | 22840 | 1.6145 | - | | 1.0055 | 22850 | 1.6165 | - | | 1.0059 | 22860 | 1.6061 | - | | 1.0063 | 22870 | 1.6167 | - | | 1.0068 | 22880 | 1.6383 | - | | 1.0072 | 22890 | 1.626 | - | | 1.0077 | 22900 | 1.5837 | - | | 1.0081 | 22910 | 1.595 | - | | 1.0085 | 22920 | 1.6577 | - | | 1.0090 | 22930 | 1.6312 | - | | 1.0094 | 22940 | 1.6584 | - | | 1.0099 | 22950 | 1.6219 | - | | 1.0103 | 22960 | 1.5435 | - | | 1.0107 | 22970 | 1.6176 | - | | 1.0112 | 22980 | 1.5628 | - | | 1.0116 | 22990 | 1.6404 | - | | 1.0121 | 23000 | 1.6436 | - | | 1.0125 | 23010 | 1.6794 | - | | 1.0129 | 23020 | 1.5755 | - | | 1.0134 | 23030 | 1.633 | - | | 1.0138 | 23040 | 1.6051 | - | | 1.0143 | 23050 | 1.5989 | - | | 1.0147 | 23060 | 1.6019 | - | | 1.0151 | 23070 | 1.6456 | - | | 1.0156 | 23080 | 1.6421 | - | | 1.0160 | 23090 | 1.5864 | - | | 1.0165 | 23100 | 1.5927 | - | | 1.0169 | 23110 | 1.5462 | - | | 1.0173 | 23120 | 1.5672 | - | | 1.0178 | 23130 | 1.6073 | - | | 1.0182 | 23140 | 1.637 | - | | 1.0187 | 23150 | 1.609 | - | | 1.0191 | 23160 | 1.6224 | - | | 1.0195 | 23170 | 1.6331 | - | | 1.0200 | 23180 | 1.5989 | - | | 1.0204 | 23190 | 1.6537 | - | | 1.0209 | 23200 | 1.5852 | - | | 1.0213 | 23210 | 1.5784 | - | | 1.0217 | 23220 | 1.6571 | - | | 1.0222 | 23230 | 1.5607 | - | | 1.0226 | 23240 | 1.5708 | - | | 1.0231 | 23250 | 1.638 | - | | 1.0235 | 23260 | 1.6183 | - | | 1.0239 | 23270 | 1.6298 | - | | 1.0244 | 23280 | 1.6077 | - | | 1.0248 | 23290 | 1.6341 | - | | 1.0253 | 23300 | 1.5449 | - | | 1.0257 | 23310 | 1.5858 | - | | 1.0261 | 23320 | 1.6523 | - | | 1.0266 | 23330 | 1.5675 | - | | 1.0270 | 23340 | 1.5781 | - | | 1.0275 | 23350 | 1.5752 | - | | 1.0279 | 23360 | 1.6639 | - | | 1.0283 | 23370 | 1.6219 | - | | 1.0288 | 23380 | 1.6102 | - | | 1.0292 | 23390 | 1.5822 | - | | 1.0297 | 23400 | 1.5894 | - | | 1.0301 | 23410 | 1.6236 | - | | 1.0305 | 23420 | 1.6078 | - | | 1.0310 | 23430 | 1.5646 | - | | 1.0314 | 23440 | 1.5686 | - | | 1.0319 | 23450 | 1.6226 | - | | 1.0323 | 23460 | 1.6077 | - | | 1.0327 | 23470 | 1.6261 | - | | 1.0332 | 23480 | 1.5964 | - | | 1.0336 | 23490 | 1.5754 | - | | 1.0341 | 23500 | 1.6041 | - | | 1.0345 | 23510 | 1.6038 | - | | 1.0349 | 23520 | 1.6242 | - | | 1.0354 | 23530 | 1.6389 | - | | 1.0358 | 23540 | 1.6102 | - | | 1.0363 | 23550 | 1.6563 | - | | 1.0367 | 23560 | 1.6206 | - | | 1.0371 | 23570 | 1.6093 | - | | 1.0376 | 23580 | 1.58 | - | | 1.0380 | 23590 | 1.6329 | - | | 1.0385 | 23600 | 1.6063 | - | | 1.0389 | 23610 | 1.5582 | - | | 1.0393 | 23620 | 1.6299 | - | | 1.0398 | 23630 | 1.5943 | - | | 1.0402 | 23640 | 1.5983 | - | | 1.0407 | 23650 | 1.5919 | - | | 1.0411 | 23660 | 1.6356 | - | | 1.0415 | 23670 | 1.6778 | - | | 1.0420 | 23680 | 1.6047 | - | | 1.0424 | 23690 | 1.6156 | - | | 1.0429 | 23700 | 1.6299 | - | | 1.0433 | 23710 | 1.5966 | - | | 1.0437 | 23720 | 1.5609 | - | | 1.0442 | 23730 | 1.5333 | - | | 1.0446 | 23740 | 1.5445 | - | | 1.0451 | 23750 | 1.6083 | - | | 1.0455 | 23760 | 1.5686 | - | | 1.0459 | 23770 | 1.6096 | - | | 1.0464 | 23780 | 1.5213 | - | | 1.0468 | 23790 | 1.5709 | - | | 1.0473 | 23800 | 1.6091 | - | | 1.0477 | 23810 | 1.6004 | - | | 1.0481 | 23820 | 1.571 | - | | 1.0486 | 23830 | 1.6229 | - | | 1.0490 | 23840 | 1.6111 | - | | 1.0495 | 23850 | 1.6658 | - | | 1.0499 | 23860 | 1.6398 | - | | 1.0503 | 23870 | 1.5838 | - | | 1.0506 | 23877 | - | 1.5838 | | 1.0508 | 23880 | 1.6513 | - | | 1.0512 | 23890 | 1.5825 | - | | 1.0517 | 23900 | 1.5546 | - | | 1.0521 | 23910 | 1.661 | - | | 1.0525 | 23920 | 1.5327 | - | | 1.0530 | 23930 | 1.5597 | - | | 1.0534 | 23940 | 1.6161 | - | | 1.0539 | 23950 | 1.5688 | - | | 1.0543 | 23960 | 1.4822 | - | | 1.0547 | 23970 | 1.5688 | - | | 1.0552 | 23980 | 1.5853 | - | | 1.0556 | 23990 | 1.5897 | - | | 1.0561 | 24000 | 1.58 | - | | 1.0565 | 24010 | 1.6115 | - | | 1.0569 | 24020 | 1.5621 | - | | 1.0574 | 24030 | 1.5731 | - | | 1.0578 | 24040 | 1.6084 | - | | 1.0583 | 24050 | 1.5941 | - | | 1.0587 | 24060 | 1.636 | - | | 1.0591 | 24070 | 1.6195 | - | | 1.0596 | 24080 | 1.5591 | - | | 1.0600 | 24090 | 1.5727 | - | | 1.0605 | 24100 | 1.6293 | - | | 1.0609 | 24110 | 1.5979 | - | | 1.0613 | 24120 | 1.6034 | - | | 1.0618 | 24130 | 1.5808 | - | | 1.0622 | 24140 | 1.5912 | - | | 1.0627 | 24150 | 1.5821 | - | | 1.0631 | 24160 | 1.5517 | - | | 1.0635 | 24170 | 1.5667 | - | | 1.0640 | 24180 | 1.6848 | - | | 1.0644 | 24190 | 1.6575 | - | | 1.0649 | 24200 | 1.6135 | - | | 1.0653 | 24210 | 1.577 | - | | 1.0657 | 24220 | 1.6022 | - | | 1.0662 | 24230 | 1.6088 | - | | 1.0666 | 24240 | 1.5619 | - | | 1.0671 | 24250 | 1.609 | - | | 1.0675 | 24260 | 1.5263 | - | | 1.0679 | 24270 | 1.6639 | - | | 1.0684 | 24280 | 1.529 | - | | 1.0688 | 24290 | 1.5617 | - | | 1.0693 | 24300 | 1.6523 | - | | 1.0697 | 24310 | 1.6064 | - | | 1.0701 | 24320 | 1.6213 | - | | 1.0706 | 24330 | 1.5709 | - | | 1.0710 | 24340 | 1.558 | - | | 1.0715 | 24350 | 1.6251 | - | | 1.0719 | 24360 | 1.567 | - | | 1.0723 | 24370 | 1.5582 | - | | 1.0728 | 24380 | 1.571 | - | | 1.0732 | 24390 | 1.5574 | - | | 1.0737 | 24400 | 1.5773 | - | | 1.0741 | 24410 | 1.5377 | - | | 1.0745 | 24420 | 1.5495 | - | | 1.0750 | 24430 | 1.6313 | - | | 1.0754 | 24440 | 1.5946 | - | | 1.0759 | 24450 | 1.5544 | - | | 1.0763 | 24460 | 1.5671 | - | | 1.0767 | 24470 | 1.6169 | - | | 1.0772 | 24480 | 1.5978 | - | | 1.0776 | 24490 | 1.547 | - | | 1.0781 | 24500 | 1.593 | - | | 1.0785 | 24510 | 1.5184 | - | | 1.0789 | 24520 | 1.5649 | - | | 1.0794 | 24530 | 1.6023 | - | | 1.0798 | 24540 | 1.539 | - | | 1.0803 | 24550 | 1.5698 | - | | 1.0807 | 24560 | 1.6108 | - | | 1.0811 | 24570 | 1.538 | - | | 1.0816 | 24580 | 1.5991 | - | | 1.0820 | 24590 | 1.5727 | - | | 1.0825 | 24600 | 1.5733 | - | | 1.0829 | 24610 | 1.5921 | - | | 1.0833 | 24620 | 1.5663 | - | | 1.0838 | 24630 | 1.5519 | - | | 1.0842 | 24640 | 1.5981 | - | | 1.0847 | 24650 | 1.6053 | - | | 1.0851 | 24660 | 1.6398 | - | | 1.0855 | 24670 | 1.6241 | - | | 1.0860 | 24680 | 1.5833 | - | | 1.0864 | 24690 | 1.5416 | - | | 1.0869 | 24700 | 1.5838 | - | | 1.0873 | 24710 | 1.5521 | - | | 1.0877 | 24720 | 1.5813 | - | | 1.0882 | 24730 | 1.6061 | - | | 1.0886 | 24740 | 1.5673 | - | | 1.0891 | 24750 | 1.5791 | - | | 1.0895 | 24760 | 1.6384 | - | | 1.0899 | 24770 | 1.5555 | - | | 1.0904 | 24780 | 1.5682 | - | | 1.0908 | 24790 | 1.5832 | - | | 1.0913 | 24800 | 1.5829 | - | | 1.0917 | 24810 | 1.6027 | - | | 1.0921 | 24820 | 1.6238 | - | | 1.0926 | 24830 | 1.578 | - | | 1.0930 | 24840 | 1.5684 | - | | 1.0935 | 24850 | 1.5562 | - | | 1.0939 | 24860 | 1.5686 | - | | 1.0943 | 24870 | 1.5537 | - | | 1.0948 | 24880 | 1.5987 | - | | 1.0952 | 24890 | 1.5808 | - | | 1.0957 | 24900 | 1.5316 | - | | 1.0961 | 24910 | 1.573 | - | | 1.0965 | 24920 | 1.5939 | - | | 1.0970 | 24930 | 1.6022 | - | | 1.0974 | 24940 | 1.5498 | - | | 1.0979 | 24950 | 1.5125 | - | | 1.0983 | 24960 | 1.5304 | - | | 1.0987 | 24970 | 1.5748 | - | | 1.0992 | 24980 | 1.563 | - | | 1.0996 | 24990 | 1.5458 | - | | 1.1001 | 25000 | 1.5121 | - | | 1.1005 | 25010 | 1.5332 | - | | 1.1007 | 25014 | - | 1.5314 | | 1.1009 | 25020 | 1.5743 | - | | 1.1014 | 25030 | 1.5818 | - | | 1.1018 | 25040 | 1.5752 | - | | 1.1023 | 25050 | 1.5558 | - | | 1.1027 | 25060 | 1.5288 | - | | 1.1031 | 25070 | 1.6382 | - | | 1.1036 | 25080 | 1.6479 | - | | 1.1040 | 25090 | 1.595 | - | | 1.1045 | 25100 | 1.508 | - | | 1.1049 | 25110 | 1.5791 | - | | 1.1053 | 25120 | 1.5317 | - | | 1.1058 | 25130 | 1.6043 | - | | 1.1062 | 25140 | 1.5714 | - | | 1.1067 | 25150 | 1.539 | - | | 1.1071 | 25160 | 1.5765 | - | | 1.1075 | 25170 | 1.5377 | - | | 1.1080 | 25180 | 1.5805 | - | | 1.1084 | 25190 | 1.5595 | - | | 1.1089 | 25200 | 1.5551 | - | | 1.1093 | 25210 | 1.5584 | - | | 1.1097 | 25220 | 1.55 | - | | 1.1102 | 25230 | 1.5349 | - | | 1.1106 | 25240 | 1.442 | - | | 1.1111 | 25250 | 1.5366 | - | | 1.1115 | 25260 | 1.5484 | - | | 1.1119 | 25270 | 1.5347 | - | | 1.1124 | 25280 | 1.5725 | - | | 1.1128 | 25290 | 1.5698 | - | | 1.1133 | 25300 | 1.6015 | - | | 1.1137 | 25310 | 1.5378 | - | | 1.1141 | 25320 | 1.5662 | - | | 1.1146 | 25330 | 1.5458 | - | | 1.1150 | 25340 | 1.539 | - | | 1.1155 | 25350 | 1.5545 | - | | 1.1159 | 25360 | 1.4799 | - | | 1.1163 | 25370 | 1.5101 | - | | 1.1168 | 25380 | 1.5322 | - | | 1.1172 | 25390 | 1.5509 | - | | 1.1177 | 25400 | 1.6249 | - | | 1.1181 | 25410 | 1.5188 | - | | 1.1185 | 25420 | 1.5324 | - | | 1.1190 | 25430 | 1.5394 | - | | 1.1194 | 25440 | 1.5214 | - | | 1.1199 | 25450 | 1.5182 | - | | 1.1203 | 25460 | 1.5995 | - | | 1.1207 | 25470 | 1.5705 | - | | 1.1212 | 25480 | 1.5038 | - | | 1.1216 | 25490 | 1.5399 | - | | 1.1221 | 25500 | 1.5695 | - | | 1.1225 | 25510 | 1.5111 | - | | 1.1229 | 25520 | 1.553 | - | | 1.1234 | 25530 | 1.5808 | - | | 1.1238 | 25540 | 1.5617 | - | | 1.1243 | 25550 | 1.6142 | - | | 1.1247 | 25560 | 1.5168 | - | | 1.1251 | 25570 | 1.5328 | - | | 1.1256 | 25580 | 1.5462 | - | | 1.1260 | 25590 | 1.5271 | - | | 1.1265 | 25600 | 1.6445 | - | | 1.1269 | 25610 | 1.5348 | - | | 1.1273 | 25620 | 1.5479 | - | | 1.1278 | 25630 | 1.5485 | - | | 1.1282 | 25640 | 1.5601 | - | | 1.1287 | 25650 | 1.5352 | - | | 1.1291 | 25660 | 1.5161 | - | | 1.1295 | 25670 | 1.5358 | - | | 1.1300 | 25680 | 1.5807 | - | | 1.1304 | 25690 | 1.6604 | - | | 1.1309 | 25700 | 1.5012 | - | | 1.1313 | 25710 | 1.5671 | - | | 1.1317 | 25720 | 1.5661 | - | | 1.1322 | 25730 | 1.5375 | - | | 1.1326 | 25740 | 1.5744 | - | | 1.1331 | 25750 | 1.5689 | - | | 1.1335 | 25760 | 1.5973 | - | | 1.1339 | 25770 | 1.5024 | - | | 1.1344 | 25780 | 1.5421 | - | | 1.1348 | 25790 | 1.5502 | - | | 1.1353 | 25800 | 1.5725 | - | | 1.1357 | 25810 | 1.6019 | - | | 1.1361 | 25820 | 1.5618 | - | | 1.1366 | 25830 | 1.5758 | - | | 1.1370 | 25840 | 1.5102 | - | | 1.1375 | 25850 | 1.5665 | - | | 1.1379 | 25860 | 1.5621 | - | | 1.1383 | 25870 | 1.5545 | - | | 1.1388 | 25880 | 1.5682 | - | | 1.1392 | 25890 | 1.5397 | - | | 1.1397 | 25900 | 1.5156 | - | | 1.1401 | 25910 | 1.4805 | - | | 1.1405 | 25920 | 1.508 | - | | 1.1410 | 25930 | 1.5694 | - | | 1.1414 | 25940 | 1.5639 | - | | 1.1419 | 25950 | 1.5375 | - | | 1.1423 | 25960 | 1.5747 | - | | 1.1427 | 25970 | 1.5025 | - | | 1.1432 | 25980 | 1.5259 | - | | 1.1436 | 25990 | 1.5286 | - | | 1.1441 | 26000 | 1.4884 | - | | 1.1445 | 26010 | 1.5334 | - | | 1.1449 | 26020 | 1.5859 | - | | 1.1454 | 26030 | 1.6257 | - | | 1.1458 | 26040 | 1.552 | - | | 1.1463 | 26050 | 1.5315 | - | | 1.1467 | 26060 | 1.558 | - | | 1.1471 | 26070 | 1.5516 | - | | 1.1476 | 26080 | 1.5276 | - | | 1.1480 | 26090 | 1.5249 | - | | 1.1485 | 26100 | 1.5358 | - | | 1.1489 | 26110 | 1.5064 | - | | 1.1493 | 26120 | 1.5066 | - | | 1.1498 | 26130 | 1.5581 | - | | 1.1502 | 26140 | 1.5587 | - | | 1.1507 | 26150 | 1.5254 | - | | 1.1507 | 26151 | - | 1.5403 | | 1.1511 | 26160 | 1.5899 | - | | 1.1515 | 26170 | 1.6296 | - | | 1.1520 | 26180 | 1.5497 | - | | 1.1524 | 26190 | 1.6028 | - | | 1.1529 | 26200 | 1.5345 | - | | 1.1533 | 26210 | 1.5784 | - | | 1.1537 | 26220 | 1.5382 | - | | 1.1542 | 26230 | 1.5197 | - | | 1.1546 | 26240 | 1.604 | - | | 1.1551 | 26250 | 1.5698 | - | | 1.1555 | 26260 | 1.5455 | - | | 1.1559 | 26270 | 1.538 | - | | 1.1564 | 26280 | 1.5195 | - | | 1.1568 | 26290 | 1.5518 | - | | 1.1573 | 26300 | 1.5052 | - | | 1.1577 | 26310 | 1.5586 | - | | 1.1581 | 26320 | 1.5595 | - | | 1.1586 | 26330 | 1.5454 | - | | 1.1590 | 26340 | 1.6054 | - | | 1.1595 | 26350 | 1.5232 | - | | 1.1599 | 26360 | 1.5796 | - | | 1.1603 | 26370 | 1.5537 | - | | 1.1608 | 26380 | 1.5197 | - | | 1.1612 | 26390 | 1.5146 | - | | 1.1617 | 26400 | 1.4997 | - | | 1.1621 | 26410 | 1.5534 | - | | 1.1625 | 26420 | 1.5527 | - | | 1.1630 | 26430 | 1.5386 | - | | 1.1634 | 26440 | 1.5212 | - | | 1.1639 | 26450 | 1.5005 | - | | 1.1643 | 26460 | 1.5312 | - | | 1.1647 | 26470 | 1.5638 | - | | 1.1652 | 26480 | 1.4781 | - | | 1.1656 | 26490 | 1.5198 | - | | 1.1661 | 26500 | 1.5852 | - | | 1.1665 | 26510 | 1.5192 | - | | 1.1669 | 26520 | 1.5029 | - | | 1.1674 | 26530 | 1.4692 | - | | 1.1678 | 26540 | 1.4464 | - | | 1.1683 | 26550 | 1.5214 | - | | 1.1687 | 26560 | 1.46 | - | | 1.1691 | 26570 | 1.5423 | - | | 1.1696 | 26580 | 1.5396 | - | | 1.1700 | 26590 | 1.5609 | - | | 1.1705 | 26600 | 1.5281 | - | | 1.1709 | 26610 | 1.5499 | - | | 1.1713 | 26620 | 1.594 | - | | 1.1718 | 26630 | 1.5283 | - | | 1.1722 | 26640 | 1.5919 | - | | 1.1727 | 26650 | 1.5299 | - | | 1.1731 | 26660 | 1.5332 | - | | 1.1735 | 26670 | 1.5466 | - | | 1.1740 | 26680 | 1.5043 | - | | 1.1744 | 26690 | 1.5474 | - | | 1.1749 | 26700 | 1.4992 | - | | 1.1753 | 26710 | 1.5334 | - | | 1.1757 | 26720 | 1.4716 | - | | 1.1762 | 26730 | 1.5314 | - | | 1.1766 | 26740 | 1.5406 | - | | 1.1771 | 26750 | 1.517 | - | | 1.1775 | 26760 | 1.4782 | - | | 1.1779 | 26770 | 1.5761 | - | | 1.1784 | 26780 | 1.5395 | - | | 1.1788 | 26790 | 1.5022 | - | | 1.1793 | 26800 | 1.4723 | - | | 1.1797 | 26810 | 1.5059 | - | | 1.1801 | 26820 | 1.5512 | - | | 1.1806 | 26830 | 1.472 | - | | 1.1810 | 26840 | 1.5354 | - | | 1.1815 | 26850 | 1.5695 | - | | 1.1819 | 26860 | 1.4729 | - | | 1.1823 | 26870 | 1.4322 | - | | 1.1828 | 26880 | 1.519 | - | | 1.1832 | 26890 | 1.5342 | - | | 1.1837 | 26900 | 1.5213 | - | | 1.1841 | 26910 | 1.4996 | - | | 1.1845 | 26920 | 1.524 | - | | 1.1850 | 26930 | 1.5831 | - | | 1.1854 | 26940 | 1.4951 | - | | 1.1859 | 26950 | 1.4982 | - | | 1.1863 | 26960 | 1.4833 | - | | 1.1867 | 26970 | 1.5268 | - | | 1.1872 | 26980 | 1.557 | - | | 1.1876 | 26990 | 1.5278 | - | | 1.1881 | 27000 | 1.5375 | - | | 1.1885 | 27010 | 1.5099 | - | | 1.1889 | 27020 | 1.5191 | - | | 1.1894 | 27030 | 1.5206 | - | | 1.1898 | 27040 | 1.4592 | - | | 1.1903 | 27050 | 1.5455 | - | | 1.1907 | 27060 | 1.5448 | - | | 1.1911 | 27070 | 1.5377 | - | | 1.1916 | 27080 | 1.5127 | - | | 1.1920 | 27090 | 1.5417 | - | | 1.1925 | 27100 | 1.5707 | - | | 1.1929 | 27110 | 1.5224 | - | | 1.1933 | 27120 | 1.4661 | - | | 1.1938 | 27130 | 1.5125 | - | | 1.1942 | 27140 | 1.5433 | - | | 1.1947 | 27150 | 1.5019 | - | | 1.1951 | 27160 | 1.5221 | - | | 1.1955 | 27170 | 1.4745 | - | | 1.1960 | 27180 | 1.4602 | - | | 1.1964 | 27190 | 1.5021 | - | | 1.1969 | 27200 | 1.5022 | - | | 1.1973 | 27210 | 1.5399 | - | | 1.1977 | 27220 | 1.4776 | - | | 1.1982 | 27230 | 1.4812 | - | | 1.1986 | 27240 | 1.5186 | - | | 1.1991 | 27250 | 1.5503 | - | | 1.1995 | 27260 | 1.5308 | - | | 1.1999 | 27270 | 1.5146 | - | | 1.2004 | 27280 | 1.483 | - | | 1.2007 | 27288 | - | 1.5249 | | 1.2008 | 27290 | 1.4959 | - | | 1.2013 | 27300 | 1.5327 | - | | 1.2017 | 27310 | 1.5524 | - | | 1.2021 | 27320 | 1.51 | - | | 1.2026 | 27330 | 1.4816 | - | | 1.2030 | 27340 | 1.5598 | - | | 1.2035 | 27350 | 1.4903 | - | | 1.2039 | 27360 | 1.5492 | - | | 1.2043 | 27370 | 1.5216 | - | | 1.2048 | 27380 | 1.5226 | - | | 1.2052 | 27390 | 1.5485 | - | | 1.2057 | 27400 | 1.5003 | - | | 1.2061 | 27410 | 1.4854 | - | | 1.2065 | 27420 | 1.459 | - | | 1.2070 | 27430 | 1.4907 | - | | 1.2074 | 27440 | 1.4451 | - | | 1.2079 | 27450 | 1.4867 | - | | 1.2083 | 27460 | 1.5078 | - | | 1.2087 | 27470 | 1.5509 | - | | 1.2092 | 27480 | 1.5315 | - | | 1.2096 | 27490 | 1.4643 | - | | 1.2101 | 27500 | 1.4728 | - | | 1.2105 | 27510 | 1.4716 | - | | 1.2109 | 27520 | 1.5411 | - | | 1.2114 | 27530 | 1.499 | - | | 1.2118 | 27540 | 1.5291 | - | | 1.2123 | 27550 | 1.5318 | - | | 1.2127 | 27560 | 1.5371 | - | | 1.2131 | 27570 | 1.5087 | - | | 1.2136 | 27580 | 1.5023 | - | | 1.2140 | 27590 | 1.4815 | - | | 1.2145 | 27600 | 1.5566 | - | | 1.2149 | 27610 | 1.5223 | - | | 1.2153 | 27620 | 1.5145 | - | | 1.2158 | 27630 | 1.5318 | - | | 1.2162 | 27640 | 1.4781 | - | | 1.2167 | 27650 | 1.4755 | - | | 1.2171 | 27660 | 1.4004 | - | | 1.2175 | 27670 | 1.4974 | - | | 1.2180 | 27680 | 1.5118 | - | | 1.2184 | 27690 | 1.5281 | - | | 1.2189 | 27700 | 1.5068 | - | | 1.2193 | 27710 | 1.4435 | - | | 1.2197 | 27720 | 1.4722 | - | | 1.2202 | 27730 | 1.4818 | - | | 1.2206 | 27740 | 1.4994 | - | | 1.2211 | 27750 | 1.4888 | - | | 1.2215 | 27760 | 1.4943 | - | | 1.2219 | 27770 | 1.5474 | - | | 1.2224 | 27780 | 1.4982 | - | | 1.2228 | 27790 | 1.5354 | - | | 1.2233 | 27800 | 1.5473 | - | | 1.2237 | 27810 | 1.5395 | - | | 1.2241 | 27820 | 1.5548 | - | | 1.2246 | 27830 | 1.518 | - | | 1.2250 | 27840 | 1.4738 | - | | 1.2255 | 27850 | 1.4477 | - | | 1.2259 | 27860 | 1.5478 | - | | 1.2263 | 27870 | 1.5161 | - | | 1.2268 | 27880 | 1.5016 | - | | 1.2272 | 27890 | 1.4857 | - | | 1.2277 | 27900 | 1.5142 | - | | 1.2281 | 27910 | 1.4935 | - | | 1.2285 | 27920 | 1.5488 | - | | 1.2290 | 27930 | 1.4733 | - | | 1.2294 | 27940 | 1.4386 | - | | 1.2299 | 27950 | 1.5798 | - | | 1.2303 | 27960 | 1.4593 | - | | 1.2307 | 27970 | 1.5343 | - | | 1.2312 | 27980 | 1.4595 | - | | 1.2316 | 27990 | 1.4699 | - | | 1.2321 | 28000 | 1.5538 | - | | 1.2325 | 28010 | 1.4872 | - | | 1.2329 | 28020 | 1.5248 | - | | 1.2334 | 28030 | 1.4839 | - | | 1.2338 | 28040 | 1.486 | - | | 1.2343 | 28050 | 1.4502 | - | | 1.2347 | 28060 | 1.4716 | - | | 1.2351 | 28070 | 1.4728 | - | | 1.2356 | 28080 | 1.461 | - | | 1.2360 | 28090 | 1.489 | - | | 1.2365 | 28100 | 1.4606 | - | | 1.2369 | 28110 | 1.4919 | - | | 1.2373 | 28120 | 1.5063 | - | | 1.2378 | 28130 | 1.4836 | - | | 1.2382 | 28140 | 1.4986 | - | | 1.2387 | 28150 | 1.451 | - | | 1.2391 | 28160 | 1.5152 | - | | 1.2395 | 28170 | 1.5438 | - | | 1.2400 | 28180 | 1.4313 | - | | 1.2404 | 28190 | 1.5188 | - | | 1.2409 | 28200 | 1.5321 | - | | 1.2413 | 28210 | 1.4912 | - | | 1.2417 | 28220 | 1.505 | - | | 1.2422 | 28230 | 1.5087 | - | | 1.2426 | 28240 | 1.4345 | - | | 1.2431 | 28250 | 1.4074 | - | | 1.2435 | 28260 | 1.5118 | - | | 1.2439 | 28270 | 1.4833 | - | | 1.2444 | 28280 | 1.4951 | - | | 1.2448 | 28290 | 1.4328 | - | | 1.2453 | 28300 | 1.5184 | - | | 1.2457 | 28310 | 1.4643 | - | | 1.2461 | 28320 | 1.4246 | - | | 1.2466 | 28330 | 1.4355 | - | | 1.2470 | 28340 | 1.5257 | - | | 1.2475 | 28350 | 1.4811 | - | | 1.2479 | 28360 | 1.4853 | - | | 1.2483 | 28370 | 1.4736 | - | | 1.2488 | 28380 | 1.4907 | - | | 1.2492 | 28390 | 1.4797 | - | | 1.2497 | 28400 | 1.4412 | - | | 1.2501 | 28410 | 1.4927 | - | | 1.2506 | 28420 | 1.4616 | - | | 1.2508 | 28425 | - | 1.5616 | | 1.2510 | 28430 | 1.5473 | - | | 1.2514 | 28440 | 1.4752 | - | | 1.2519 | 28450 | 1.4587 | - | | 1.2523 | 28460 | 1.4909 | - | | 1.2528 | 28470 | 1.5132 | - | | 1.2532 | 28480 | 1.4678 | - | | 1.2536 | 28490 | 1.4836 | - | | 1.2541 | 28500 | 1.3888 | - | | 1.2545 | 28510 | 1.5269 | - | | 1.2550 | 28520 | 1.5596 | - | | 1.2554 | 28530 | 1.4718 | - | | 1.2558 | 28540 | 1.514 | - | | 1.2563 | 28550 | 1.5507 | - | | 1.2567 | 28560 | 1.4828 | - | | 1.2572 | 28570 | 1.4465 | - | | 1.2576 | 28580 | 1.518 | - | | 1.2580 | 28590 | 1.4096 | - | | 1.2585 | 28600 | 1.443 | - | | 1.2589 | 28610 | 1.4665 | - | | 1.2594 | 28620 | 1.4606 | - | | 1.2598 | 28630 | 1.4536 | - | | 1.2602 | 28640 | 1.4904 | - | | 1.2607 | 28650 | 1.5067 | - | | 1.2611 | 28660 | 1.4778 | - | | 1.2616 | 28670 | 1.4444 | - | | 1.2620 | 28680 | 1.5134 | - | | 1.2624 | 28690 | 1.4689 | - | | 1.2629 | 28700 | 1.4615 | - | | 1.2633 | 28710 | 1.459 | - | | 1.2638 | 28720 | 1.4847 | - | | 1.2642 | 28730 | 1.4464 | - | | 1.2646 | 28740 | 1.4751 | - | | 1.2651 | 28750 | 1.4457 | - | | 1.2655 | 28760 | 1.5031 | - | | 1.2660 | 28770 | 1.4892 | - | | 1.2664 | 28780 | 1.4987 | - | | 1.2668 | 28790 | 1.4357 | - | | 1.2673 | 28800 | 1.4605 | - | | 1.2677 | 28810 | 1.4296 | - | | 1.2682 | 28820 | 1.4824 | - | | 1.2686 | 28830 | 1.5143 | - | | 1.2690 | 28840 | 1.5263 | - | | 1.2695 | 28850 | 1.4121 | - | | 1.2699 | 28860 | 1.4294 | - | | 1.2704 | 28870 | 1.4982 | - | | 1.2708 | 28880 | 1.4588 | - | | 1.2712 | 28890 | 1.5023 | - | | 1.2717 | 28900 | 1.5302 | - | | 1.2721 | 28910 | 1.433 | - | | 1.2726 | 28920 | 1.5513 | - | | 1.2730 | 28930 | 1.5006 | - | | 1.2734 | 28940 | 1.504 | - | | 1.2739 | 28950 | 1.5437 | - | | 1.2743 | 28960 | 1.4158 | - | | 1.2748 | 28970 | 1.4281 | - | | 1.2752 | 28980 | 1.4614 | - | | 1.2756 | 28990 | 1.4756 | - | | 1.2761 | 29000 | 1.4751 | - | | 1.2765 | 29010 | 1.5179 | - | | 1.2770 | 29020 | 1.5211 | - | | 1.2774 | 29030 | 1.5066 | - | | 1.2778 | 29040 | 1.4433 | - | | 1.2783 | 29050 | 1.478 | - | | 1.2787 | 29060 | 1.4996 | - | | 1.2792 | 29070 | 1.4917 | - | | 1.2796 | 29080 | 1.4517 | - | | 1.2800 | 29090 | 1.4831 | - | | 1.2805 | 29100 | 1.438 | - | | 1.2809 | 29110 | 1.5083 | - | | 1.2814 | 29120 | 1.4198 | - | | 1.2818 | 29130 | 1.5313 | - | | 1.2822 | 29140 | 1.407 | - | | 1.2827 | 29150 | 1.4461 | - | | 1.2831 | 29160 | 1.4957 | - | | 1.2836 | 29170 | 1.4194 | - | | 1.2840 | 29180 | 1.4736 | - | | 1.2844 | 29190 | 1.5035 | - | | 1.2849 | 29200 | 1.5077 | - | | 1.2853 | 29210 | 1.4619 | - | | 1.2858 | 29220 | 1.4465 | - | | 1.2862 | 29230 | 1.4893 | - | | 1.2866 | 29240 | 1.4712 | - | | 1.2871 | 29250 | 1.4198 | - | | 1.2875 | 29260 | 1.4918 | - | | 1.2880 | 29270 | 1.444 | - | | 1.2884 | 29280 | 1.4696 | - | | 1.2888 | 29290 | 1.5026 | - | | 1.2893 | 29300 | 1.547 | - | | 1.2897 | 29310 | 1.4942 | - | | 1.2902 | 29320 | 1.5173 | - | | 1.2906 | 29330 | 1.5094 | - | | 1.2910 | 29340 | 1.4719 | - | | 1.2915 | 29350 | 1.5285 | - | | 1.2919 | 29360 | 1.4899 | - | | 1.2924 | 29370 | 1.4835 | - | | 1.2928 | 29380 | 1.4602 | - | | 1.2932 | 29390 | 1.4235 | - | | 1.2937 | 29400 | 1.4728 | - | | 1.2941 | 29410 | 1.4136 | - | | 1.2946 | 29420 | 1.4531 | - | | 1.2950 | 29430 | 1.4931 | - | | 1.2954 | 29440 | 1.5204 | - | | 1.2959 | 29450 | 1.4199 | - | | 1.2963 | 29460 | 1.4358 | - | | 1.2968 | 29470 | 1.4562 | - | | 1.2972 | 29480 | 1.4586 | - | | 1.2976 | 29490 | 1.4555 | - | | 1.2981 | 29500 | 1.5062 | - | | 1.2985 | 29510 | 1.4603 | - | | 1.2990 | 29520 | 1.4835 | - | | 1.2994 | 29530 | 1.5371 | - | | 1.2998 | 29540 | 1.4801 | - | | 1.3003 | 29550 | 1.4872 | - | | 1.3007 | 29560 | 1.4703 | - | | 1.3008 | 29562 | - | 1.5516 | | 1.3012 | 29570 | 1.422 | - | | 1.3016 | 29580 | 1.4933 | - | | 1.3020 | 29590 | 1.4693 | - | | 1.3025 | 29600 | 1.4436 | - | | 1.3029 | 29610 | 1.4722 | - | | 1.3034 | 29620 | 1.4921 | - | | 1.3038 | 29630 | 1.4925 | - | | 1.3042 | 29640 | 1.4363 | - | | 1.3047 | 29650 | 1.4369 | - | | 1.3051 | 29660 | 1.5419 | - | | 1.3056 | 29670 | 1.5535 | - | | 1.3060 | 29680 | 1.5036 | - | | 1.3064 | 29690 | 1.5064 | - | | 1.3069 | 29700 | 1.5199 | - | | 1.3073 | 29710 | 1.4914 | - | | 1.3078 | 29720 | 1.4679 | - | | 1.3082 | 29730 | 1.5185 | - | | 1.3086 | 29740 | 1.4846 | - | | 1.3091 | 29750 | 1.4736 | - | | 1.3095 | 29760 | 1.4547 | - | | 1.3100 | 29770 | 1.4409 | - | | 1.3104 | 29780 | 1.4611 | - | | 1.3108 | 29790 | 1.4541 | - | | 1.3113 | 29800 | 1.4389 | - | | 1.3117 | 29810 | 1.4575 | - | | 1.3122 | 29820 | 1.456 | - | | 1.3126 | 29830 | 1.4267 | - | | 1.3130 | 29840 | 1.4144 | - | | 1.3135 | 29850 | 1.4896 | - | | 1.3139 | 29860 | 1.4689 | - | | 1.3144 | 29870 | 1.5245 | - | | 1.3148 | 29880 | 1.4615 | - | | 1.3152 | 29890 | 1.3983 | - | | 1.3157 | 29900 | 1.4807 | - | | 1.3161 | 29910 | 1.4559 | - | | 1.3166 | 29920 | 1.4581 | - | | 1.3170 | 29930 | 1.4965 | - | | 1.3174 | 29940 | 1.4369 | - | | 1.3179 | 29950 | 1.4024 | - | | 1.3183 | 29960 | 1.4185 | - | | 1.3188 | 29970 | 1.4499 | - | | 1.3192 | 29980 | 1.4757 | - | | 1.3196 | 29990 | 1.4864 | - | | 1.3201 | 30000 | 1.4493 | - | | 1.3205 | 30010 | 1.4121 | - | | 1.3210 | 30020 | 1.5093 | - | | 1.3214 | 30030 | 1.4136 | - | | 1.3218 | 30040 | 1.5351 | - | | 1.3223 | 30050 | 1.4663 | - | | 1.3227 | 30060 | 1.547 | - | | 1.3232 | 30070 | 1.5368 | - | | 1.3236 | 30080 | 1.495 | - | | 1.3240 | 30090 | 1.5057 | - | | 1.3245 | 30100 | 1.4947 | - | | 1.3249 | 30110 | 1.5306 | - | | 1.3254 | 30120 | 1.463 | - | | 1.3258 | 30130 | 1.4811 | - | | 1.3262 | 30140 | 1.5036 | - | | 1.3267 | 30150 | 1.4564 | - | | 1.3271 | 30160 | 1.4994 | - | | 1.3276 | 30170 | 1.481 | - | | 1.3280 | 30180 | 1.3895 | - | | 1.3284 | 30190 | 1.4379 | - | | 1.3289 | 30200 | 1.4851 | - | | 1.3293 | 30210 | 1.4769 | - | | 1.3298 | 30220 | 1.4344 | - | | 1.3302 | 30230 | 1.3751 | - | | 1.3306 | 30240 | 1.4441 | - | | 1.3311 | 30250 | 1.4067 | - | | 1.3315 | 30260 | 1.4614 | - | | 1.3320 | 30270 | 1.4679 | - | | 1.3324 | 30280 | 1.4541 | - | | 1.3328 | 30290 | 1.4269 | - | | 1.3333 | 30300 | 1.4585 | - | | 1.3337 | 30310 | 1.417 | - | | 1.3342 | 30320 | 1.4897 | - | | 1.3346 | 30330 | 1.4732 | - | | 1.3350 | 30340 | 1.5293 | - | | 1.3355 | 30350 | 1.5201 | - | | 1.3359 | 30360 | 1.4786 | - | | 1.3364 | 30370 | 1.4912 | - | | 1.3368 | 30380 | 1.4941 | - | | 1.3372 | 30390 | 1.4435 | - | | 1.3377 | 30400 | 1.4619 | - | | 1.3381 | 30410 | 1.5254 | - | | 1.3386 | 30420 | 1.4483 | - | | 1.3390 | 30430 | 1.435 | - | | 1.3394 | 30440 | 1.4577 | - | | 1.3399 | 30450 | 1.4673 | - | | 1.3403 | 30460 | 1.4702 | - | | 1.3408 | 30470 | 1.5189 | - | | 1.3412 | 30480 | 1.4202 | - | | 1.3416 | 30490 | 1.4301 | - | | 1.3421 | 30500 | 1.4342 | - | | 1.3425 | 30510 | 1.4259 | - | | 1.3430 | 30520 | 1.4098 | - | | 1.3434 | 30530 | 1.4739 | - | | 1.3438 | 30540 | 1.4157 | - | | 1.3443 | 30550 | 1.425 | - | | 1.3447 | 30560 | 1.4457 | - | | 1.3452 | 30570 | 1.466 | - | | 1.3456 | 30580 | 1.4505 | - | | 1.3460 | 30590 | 1.467 | - | | 1.3465 | 30600 | 1.4269 | - | | 1.3469 | 30610 | 1.4521 | - | | 1.3474 | 30620 | 1.3804 | - | | 1.3478 | 30630 | 1.4376 | - | | 1.3482 | 30640 | 1.4688 | - | | 1.3487 | 30650 | 1.4699 | - | | 1.3491 | 30660 | 1.4475 | - | | 1.3496 | 30670 | 1.4432 | - | | 1.3500 | 30680 | 1.3884 | - | | 1.3504 | 30690 | 1.4259 | - | | 1.3508 | 30699 | - | 1.5375 | | 1.3509 | 30700 | 1.423 | - | | 1.3513 | 30710 | 1.4643 | - | | 1.3518 | 30720 | 1.5106 | - | | 1.3522 | 30730 | 1.3689 | - | | 1.3526 | 30740 | 1.4726 | - | | 1.3531 | 30750 | 1.445 | - | | 1.3535 | 30760 | 1.4754 | - | | 1.3540 | 30770 | 1.4361 | - | | 1.3544 | 30780 | 1.4291 | - | | 1.3548 | 30790 | 1.4508 | - | | 1.3553 | 30800 | 1.407 | - | | 1.3557 | 30810 | 1.4611 | - | | 1.3562 | 30820 | 1.5086 | - | | 1.3566 | 30830 | 1.3813 | - | | 1.3570 | 30840 | 1.4546 | - | | 1.3575 | 30850 | 1.4563 | - | | 1.3579 | 30860 | 1.425 | - | | 1.3584 | 30870 | 1.4243 | - | | 1.3588 | 30880 | 1.4077 | - | | 1.3592 | 30890 | 1.4478 | - | | 1.3597 | 30900 | 1.4448 | - | | 1.3601 | 30910 | 1.4987 | - | | 1.3606 | 30920 | 1.446 | - | | 1.3610 | 30930 | 1.4446 | - | | 1.3614 | 30940 | 1.4492 | - | | 1.3619 | 30950 | 1.4461 | - | | 1.3623 | 30960 | 1.4964 | - | | 1.3628 | 30970 | 1.4406 | - | | 1.3632 | 30980 | 1.3926 | - | | 1.3636 | 30990 | 1.3516 | - | | 1.3641 | 31000 | 1.4007 | - | | 1.3645 | 31010 | 1.4494 | - | | 1.3650 | 31020 | 1.4517 | - | | 1.3654 | 31030 | 1.4383 | - | | 1.3658 | 31040 | 1.3785 | - | | 1.3663 | 31050 | 1.3953 | - | | 1.3667 | 31060 | 1.4111 | - | | 1.3672 | 31070 | 1.4596 | - | | 1.3676 | 31080 | 1.4139 | - | | 1.3680 | 31090 | 1.494 | - | | 1.3685 | 31100 | 1.4054 | - | | 1.3689 | 31110 | 1.434 | - | | 1.3694 | 31120 | 1.526 | - | | 1.3698 | 31130 | 1.4363 | - | | 1.3702 | 31140 | 1.4937 | - | | 1.3707 | 31150 | 1.5342 | - | | 1.3711 | 31160 | 1.4656 | - | | 1.3716 | 31170 | 1.419 | - | | 1.3720 | 31180 | 1.4149 | - | | 1.3724 | 31190 | 1.4163 | - | | 1.3729 | 31200 | 1.4471 | - | | 1.3733 | 31210 | 1.4444 | - | | 1.3738 | 31220 | 1.4594 | - | | 1.3742 | 31230 | 1.4987 | - | | 1.3746 | 31240 | 1.4017 | - | | 1.3751 | 31250 | 1.4853 | - | | 1.3755 | 31260 | 1.4265 | - | | 1.3760 | 31270 | 1.4342 | - | | 1.3764 | 31280 | 1.4531 | - | | 1.3768 | 31290 | 1.3976 | - | | 1.3773 | 31300 | 1.4358 | - | | 1.3777 | 31310 | 1.4285 | - | | 1.3782 | 31320 | 1.4515 | - | | 1.3786 | 31330 | 1.4661 | - | | 1.3790 | 31340 | 1.4068 | - | | 1.3795 | 31350 | 1.4413 | - | | 1.3799 | 31360 | 1.4188 | - | | 1.3804 | 31370 | 1.4789 | - | | 1.3808 | 31380 | 1.4218 | - | | 1.3812 | 31390 | 1.4364 | - | | 1.3817 | 31400 | 1.4808 | - | | 1.3821 | 31410 | 1.4445 | - | | 1.3826 | 31420 | 1.4203 | - | | 1.3830 | 31430 | 1.4232 | - | | 1.3834 | 31440 | 1.4258 | - | | 1.3839 | 31450 | 1.4519 | - | | 1.3843 | 31460 | 1.3884 | - | | 1.3848 | 31470 | 1.4784 | - | | 1.3852 | 31480 | 1.4862 | - | | 1.3856 | 31490 | 1.4771 | - | | 1.3861 | 31500 | 1.4906 | - | | 1.3865 | 31510 | 1.4823 | - | | 1.3870 | 31520 | 1.4671 | - | | 1.3874 | 31530 | 1.4223 | - | | 1.3878 | 31540 | 1.5021 | - | | 1.3883 | 31550 | 1.4529 | - | | 1.3887 | 31560 | 1.4673 | - | | 1.3892 | 31570 | 1.437 | - | | 1.3896 | 31580 | 1.4135 | - | | 1.3900 | 31590 | 1.4692 | - | | 1.3905 | 31600 | 1.504 | - | | 1.3909 | 31610 | 1.5138 | - | | 1.3914 | 31620 | 1.4028 | - | | 1.3918 | 31630 | 1.4777 | - | | 1.3922 | 31640 | 1.4307 | - | | 1.3927 | 31650 | 1.4268 | - | | 1.3931 | 31660 | 1.4285 | - | | 1.3936 | 31670 | 1.4967 | - | | 1.3940 | 31680 | 1.3859 | - | | 1.3944 | 31690 | 1.4597 | - | | 1.3949 | 31700 | 1.4589 | - | | 1.3953 | 31710 | 1.4324 | - | | 1.3958 | 31720 | 1.4262 | - | | 1.3962 | 31730 | 1.4637 | - | | 1.3966 | 31740 | 1.4423 | - | | 1.3971 | 31750 | 1.4639 | - | | 1.3975 | 31760 | 1.4815 | - | | 1.3980 | 31770 | 1.4165 | - | | 1.3984 | 31780 | 1.4625 | - | | 1.3988 | 31790 | 1.4542 | - | | 1.3993 | 31800 | 1.5103 | - | | 1.3997 | 31810 | 1.4058 | - | | 1.4002 | 31820 | 1.4236 | - | | 1.4006 | 31830 | 1.4415 | - | | 1.4009 | 31836 | - | 1.5173 | | 1.4010 | 31840 | 1.4424 | - | | 1.4015 | 31850 | 1.514 | - | | 1.4019 | 31860 | 1.4359 | - | | 1.4024 | 31870 | 1.4775 | - | | 1.4028 | 31880 | 1.4655 | - | | 1.4032 | 31890 | 1.445 | - | | 1.4037 | 31900 | 1.4292 | - | | 1.4041 | 31910 | 1.4133 | - | | 1.4046 | 31920 | 1.4819 | - | | 1.4050 | 31930 | 1.4687 | - | | 1.4054 | 31940 | 1.4853 | - | | 1.4059 | 31950 | 1.4179 | - | | 1.4063 | 31960 | 1.4208 | - | | 1.4068 | 31970 | 1.4276 | - | | 1.4072 | 31980 | 1.4781 | - | | 1.4076 | 31990 | 1.457 | - | | 1.4081 | 32000 | 1.4884 | - | | 1.4085 | 32010 | 1.4736 | - | | 1.4090 | 32020 | 1.4949 | - | | 1.4094 | 32030 | 1.4637 | - | | 1.4098 | 32040 | 1.4376 | - | | 1.4103 | 32050 | 1.5201 | - | | 1.4107 | 32060 | 1.4423 | - | | 1.4112 | 32070 | 1.4462 | - | | 1.4116 | 32080 | 1.4215 | - | | 1.4120 | 32090 | 1.4986 | - | | 1.4125 | 32100 | 1.4338 | - | | 1.4129 | 32110 | 1.4201 | - | | 1.4134 | 32120 | 1.5362 | - | | 1.4138 | 32130 | 1.384 | - | | 1.4142 | 32140 | 1.422 | - | | 1.4147 | 32150 | 1.4682 | - | | 1.4151 | 32160 | 1.4023 | - | | 1.4156 | 32170 | 1.4667 | - | | 1.4160 | 32180 | 1.4361 | - | | 1.4164 | 32190 | 1.4294 | - | | 1.4169 | 32200 | 1.4949 | - | | 1.4173 | 32210 | 1.4581 | - | | 1.4178 | 32220 | 1.4963 | - | | 1.4182 | 32230 | 1.4472 | - | | 1.4186 | 32240 | 1.4342 | - | | 1.4191 | 32250 | 1.4754 | - | | 1.4195 | 32260 | 1.4537 | - | | 1.4200 | 32270 | 1.38 | - | | 1.4204 | 32280 | 1.4453 | - | | 1.4208 | 32290 | 1.4655 | - | | 1.4213 | 32300 | 1.4839 | - | | 1.4217 | 32310 | 1.4261 | - | | 1.4222 | 32320 | 1.4918 | - | | 1.4226 | 32330 | 1.4522 | - | | 1.4230 | 32340 | 1.4189 | - | | 1.4235 | 32350 | 1.4805 | - | | 1.4239 | 32360 | 1.4076 | - | | 1.4244 | 32370 | 1.4667 | - | | 1.4248 | 32380 | 1.4184 | - | | 1.4252 | 32390 | 1.4804 | - | | 1.4257 | 32400 | 1.4851 | - | | 1.4261 | 32410 | 1.3915 | - | | 1.4266 | 32420 | 1.483 | - | | 1.4270 | 32430 | 1.3958 | - | | 1.4274 | 32440 | 1.4061 | - | | 1.4279 | 32450 | 1.4916 | - | | 1.4283 | 32460 | 1.4498 | - | | 1.4288 | 32470 | 1.4841 | - | | 1.4292 | 32480 | 1.4422 | - | | 1.4296 | 32490 | 1.4627 | - | | 1.4301 | 32500 | 1.4495 | - | | 1.4305 | 32510 | 1.4268 | - | | 1.4310 | 32520 | 1.4045 | - | | 1.4314 | 32530 | 1.4712 | - | | 1.4318 | 32540 | 1.3766 | - | | 1.4323 | 32550 | 1.4567 | - | | 1.4327 | 32560 | 1.4588 | - | | 1.4332 | 32570 | 1.4375 | - | | 1.4336 | 32580 | 1.4189 | - | | 1.4340 | 32590 | 1.4421 | - | | 1.4345 | 32600 | 1.3936 | - | | 1.4349 | 32610 | 1.4688 | - | | 1.4354 | 32620 | 1.4066 | - | | 1.4358 | 32630 | 1.3836 | - | | 1.4362 | 32640 | 1.3809 | - | | 1.4367 | 32650 | 1.4437 | - | | 1.4371 | 32660 | 1.4769 | - | | 1.4376 | 32670 | 1.4882 | - | | 1.4380 | 32680 | 1.4066 | - | | 1.4384 | 32690 | 1.441 | - | | 1.4389 | 32700 | 1.446 | - | | 1.4393 | 32710 | 1.4381 | - | | 1.4398 | 32720 | 1.4302 | - | | 1.4402 | 32730 | 1.4484 | - | | 1.4406 | 32740 | 1.4216 | - | | 1.4411 | 32750 | 1.4218 | - | | 1.4415 | 32760 | 1.426 | - | | 1.4420 | 32770 | 1.4466 | - | | 1.4424 | 32780 | 1.3842 | - | | 1.4428 | 32790 | 1.4083 | - | | 1.4433 | 32800 | 1.4575 | - | | 1.4437 | 32810 | 1.4426 | - | | 1.4442 | 32820 | 1.4689 | - | | 1.4446 | 32830 | 1.4371 | - | | 1.4450 | 32840 | 1.4762 | - | | 1.4455 | 32850 | 1.3859 | - | | 1.4459 | 32860 | 1.4748 | - | | 1.4464 | 32870 | 1.5154 | - | | 1.4468 | 32880 | 1.423 | - | | 1.4472 | 32890 | 1.3968 | - | | 1.4477 | 32900 | 1.4136 | - | | 1.4481 | 32910 | 1.3942 | - | | 1.4486 | 32920 | 1.4826 | - | | 1.4490 | 32930 | 1.4253 | - | | 1.4494 | 32940 | 1.4486 | - | | 1.4499 | 32950 | 1.386 | - | | 1.4503 | 32960 | 1.4604 | - | | 1.4508 | 32970 | 1.4225 | - | | 1.4509 | 32973 | - | 1.4685 | | 1.4512 | 32980 | 1.368 | - | | 1.4516 | 32990 | 1.4771 | - | | 1.4521 | 33000 | 1.44 | - | | 1.4525 | 33010 | 1.3619 | - | | 1.4530 | 33020 | 1.3897 | - | | 1.4534 | 33030 | 1.4355 | - | | 1.4538 | 33040 | 1.4098 | - | | 1.4543 | 33050 | 1.44 | - | | 1.4547 | 33060 | 1.4174 | - | | 1.4552 | 33070 | 1.4406 | - | | 1.4556 | 33080 | 1.4348 | - | | 1.4560 | 33090 | 1.4444 | - | | 1.4565 | 33100 | 1.4101 | - | | 1.4569 | 33110 | 1.3728 | - | | 1.4574 | 33120 | 1.372 | - | | 1.4578 | 33130 | 1.3701 | - | | 1.4582 | 33140 | 1.4877 | - | | 1.4587 | 33150 | 1.4265 | - | | 1.4591 | 33160 | 1.4123 | - | | 1.4596 | 33170 | 1.3918 | - | | 1.4600 | 33180 | 1.4163 | - | | 1.4604 | 33190 | 1.3888 | - | | 1.4609 | 33200 | 1.4784 | - | | 1.4613 | 33210 | 1.4037 | - | | 1.4618 | 33220 | 1.4427 | - | | 1.4622 | 33230 | 1.3532 | - | | 1.4626 | 33240 | 1.4689 | - | | 1.4631 | 33250 | 1.389 | - | | 1.4635 | 33260 | 1.4426 | - | | 1.4640 | 33270 | 1.4039 | - | | 1.4644 | 33280 | 1.4403 | - | | 1.4648 | 33290 | 1.4117 | - | | 1.4653 | 33300 | 1.4155 | - | | 1.4657 | 33310 | 1.4407 | - | | 1.4662 | 33320 | 1.4255 | - | | 1.4666 | 33330 | 1.392 | - | | 1.4670 | 33340 | 1.4496 | - | | 1.4675 | 33350 | 1.4077 | - | | 1.4679 | 33360 | 1.383 | - | | 1.4684 | 33370 | 1.3814 | - | | 1.4688 | 33380 | 1.4055 | - | | 1.4692 | 33390 | 1.4011 | - | | 1.4697 | 33400 | 1.3996 | - | | 1.4701 | 33410 | 1.4197 | - | | 1.4706 | 33420 | 1.4212 | - | | 1.4710 | 33430 | 1.4135 | - | | 1.4714 | 33440 | 1.3899 | - | | 1.4719 | 33450 | 1.4703 | - | | 1.4723 | 33460 | 1.3748 | - | | 1.4728 | 33470 | 1.3894 | - | | 1.4732 | 33480 | 1.4071 | - | | 1.4736 | 33490 | 1.3926 | - | | 1.4741 | 33500 | 1.3902 | - | | 1.4745 | 33510 | 1.4212 | - | | 1.4750 | 33520 | 1.3856 | - | | 1.4754 | 33530 | 1.4449 | - | | 1.4758 | 33540 | 1.3777 | - | | 1.4763 | 33550 | 1.4336 | - | | 1.4767 | 33560 | 1.3527 | - | | 1.4772 | 33570 | 1.3741 | - | | 1.4776 | 33580 | 1.3706 | - | | 1.4780 | 33590 | 1.383 | - | | 1.4785 | 33600 | 1.3662 | - | | 1.4789 | 33610 | 1.3727 | - | | 1.4794 | 33620 | 1.3678 | - | | 1.4798 | 33630 | 1.4044 | - | | 1.4802 | 33640 | 1.3741 | - | | 1.4807 | 33650 | 1.3866 | - | | 1.4811 | 33660 | 1.3784 | - | | 1.4816 | 33670 | 1.3974 | - | | 1.4820 | 33680 | 1.401 | - | | 1.4824 | 33690 | 1.4117 | - | | 1.4829 | 33700 | 1.4046 | - | | 1.4833 | 33710 | 1.3722 | - | | 1.4838 | 33720 | 1.3855 | - | | 1.4842 | 33730 | 1.3862 | - | | 1.4846 | 33740 | 1.4105 | - | | 1.4851 | 33750 | 1.4511 | - | | 1.4855 | 33760 | 1.4656 | - | | 1.4860 | 33770 | 1.3674 | - | | 1.4864 | 33780 | 1.3601 | - | | 1.4868 | 33790 | 1.3655 | - | | 1.4873 | 33800 | 1.336 | - | | 1.4877 | 33810 | 1.3911 | - | | 1.4882 | 33820 | 1.4271 | - | | 1.4886 | 33830 | 1.4148 | - | | 1.4890 | 33840 | 1.4187 | - | | 1.4895 | 33850 | 1.3551 | - | | 1.4899 | 33860 | 1.3764 | - | | 1.4904 | 33870 | 1.4137 | - | | 1.4908 | 33880 | 1.4367 | - | | 1.4912 | 33890 | 1.4422 | - | | 1.4917 | 33900 | 1.3986 | - | | 1.4921 | 33910 | 1.366 | - | | 1.4926 | 33920 | 1.3926 | - | | 1.4930 | 33930 | 1.4395 | - | | 1.4934 | 33940 | 1.3947 | - | | 1.4939 | 33950 | 1.3706 | - | | 1.4943 | 33960 | 1.3473 | - | | 1.4948 | 33970 | 1.3924 | - | | 1.4952 | 33980 | 1.3652 | - | | 1.4956 | 33990 | 1.4336 | - | | 1.4961 | 34000 | 1.3858 | - | | 1.4965 | 34010 | 1.3208 | - | | 1.4970 | 34020 | 1.3603 | - | | 1.4974 | 34030 | 1.3871 | - | | 1.4978 | 34040 | 1.3966 | - | | 1.4983 | 34050 | 1.3969 | - | | 1.4987 | 34060 | 1.4145 | - | | 1.4992 | 34070 | 1.4456 | - | | 1.4996 | 34080 | 1.3761 | - | | 1.5000 | 34090 | 1.4099 | - | | 1.5005 | 34100 | 1.3718 | - | | 1.5009 | 34110 | 1.4387 | 1.5171 | | 1.5014 | 34120 | 1.3529 | - | | 1.5018 | 34130 | 1.3963 | - | | 1.5022 | 34140 | 1.3716 | - | | 1.5027 | 34150 | 1.4132 | - | | 1.5031 | 34160 | 1.4204 | - | | 1.5036 | 34170 | 1.4007 | - | | 1.5040 | 34180 | 1.3992 | - | | 1.5044 | 34190 | 1.3007 | - | | 1.5049 | 34200 | 1.3684 | - | | 1.5053 | 34210 | 1.3756 | - | | 1.5058 | 34220 | 1.3825 | - | | 1.5062 | 34230 | 1.3781 | - | | 1.5066 | 34240 | 1.4243 | - | | 1.5071 | 34250 | 1.3829 | - | | 1.5075 | 34260 | 1.3598 | - | | 1.5080 | 34270 | 1.3877 | - | | 1.5084 | 34280 | 1.4243 | - | | 1.5088 | 34290 | 1.3623 | - | | 1.5093 | 34300 | 1.3672 | - | | 1.5097 | 34310 | 1.3651 | - | | 1.5102 | 34320 | 1.3242 | - | | 1.5106 | 34330 | 1.4086 | - | | 1.5110 | 34340 | 1.3607 | - | | 1.5115 | 34350 | 1.3874 | - | | 1.5119 | 34360 | 1.3329 | - | | 1.5124 | 34370 | 1.3803 | - | | 1.5128 | 34380 | 1.3551 | - | | 1.5132 | 34390 | 1.3438 | - | | 1.5137 | 34400 | 1.3584 | - | | 1.5141 | 34410 | 1.3543 | - | | 1.5146 | 34420 | 1.3898 | - | | 1.5150 | 34430 | 1.4326 | - | | 1.5154 | 34440 | 1.3848 | - | | 1.5159 | 34450 | 1.357 | - | | 1.5163 | 34460 | 1.3477 | - | | 1.5168 | 34470 | 1.3912 | - | | 1.5172 | 34480 | 1.3611 | - | | 1.5176 | 34490 | 1.3536 | - | | 1.5181 | 34500 | 1.3641 | - | | 1.5185 | 34510 | 1.3474 | - | | 1.5190 | 34520 | 1.4305 | - | | 1.5194 | 34530 | 1.3871 | - | | 1.5198 | 34540 | 1.4021 | - | | 1.5203 | 34550 | 1.385 | - | | 1.5207 | 34560 | 1.3894 | - | | 1.5212 | 34570 | 1.3683 | - | | 1.5216 | 34580 | 1.3821 | - | | 1.5220 | 34590 | 1.3537 | - | | 1.5225 | 34600 | 1.3898 | - | | 1.5229 | 34610 | 1.3776 | - | | 1.5234 | 34620 | 1.3898 | - | | 1.5238 | 34630 | 1.4633 | - | | 1.5242 | 34640 | 1.425 | - | | 1.5247 | 34650 | 1.3891 | - | | 1.5251 | 34660 | 1.419 | - | | 1.5256 | 34670 | 1.3916 | - | | 1.5260 | 34680 | 1.3952 | - | | 1.5264 | 34690 | 1.3997 | - | | 1.5269 | 34700 | 1.4075 | - | | 1.5273 | 34710 | 1.3383 | - | | 1.5278 | 34720 | 1.3208 | - | | 1.5282 | 34730 | 1.401 | - | | 1.5286 | 34740 | 1.3741 | - | | 1.5291 | 34750 | 1.4139 | - | | 1.5295 | 34760 | 1.3547 | - | | 1.5300 | 34770 | 1.3665 | - | | 1.5304 | 34780 | 1.3704 | - | | 1.5308 | 34790 | 1.3962 | - | | 1.5313 | 34800 | 1.3951 | - | | 1.5317 | 34810 | 1.3904 | - | | 1.5322 | 34820 | 1.4821 | - | | 1.5326 | 34830 | 1.3537 | - | | 1.5330 | 34840 | 1.4081 | - | | 1.5335 | 34850 | 1.3727 | - | | 1.5339 | 34860 | 1.361 | - | | 1.5344 | 34870 | 1.382 | - | | 1.5348 | 34880 | 1.3657 | - | | 1.5352 | 34890 | 1.3817 | - | | 1.5357 | 34900 | 1.3815 | - | | 1.5361 | 34910 | 1.3716 | - | | 1.5366 | 34920 | 1.3518 | - | | 1.5370 | 34930 | 1.3634 | - | | 1.5374 | 34940 | 1.356 | - | | 1.5379 | 34950 | 1.4058 | - | | 1.5383 | 34960 | 1.3794 | - | | 1.5388 | 34970 | 1.3868 | - | | 1.5392 | 34980 | 1.3747 | - | | 1.5396 | 34990 | 1.3963 | - | | 1.5401 | 35000 | 1.3372 | - | | 1.5405 | 35010 | 1.3554 | - | | 1.5410 | 35020 | 1.4119 | - | | 1.5414 | 35030 | 1.339 | - | | 1.5418 | 35040 | 1.3991 | - | | 1.5423 | 35050 | 1.3651 | - | | 1.5427 | 35060 | 1.3831 | - | | 1.5432 | 35070 | 1.3874 | - | | 1.5436 | 35080 | 1.3419 | - | | 1.5440 | 35090 | 1.3315 | - | | 1.5445 | 35100 | 1.3522 | - | | 1.5449 | 35110 | 1.3695 | - | | 1.5454 | 35120 | 1.3761 | - | | 1.5458 | 35130 | 1.3638 | - | | 1.5462 | 35140 | 1.3587 | - | | 1.5467 | 35150 | 1.3645 | - | | 1.5471 | 35160 | 1.4011 | - | | 1.5476 | 35170 | 1.339 | - | | 1.5480 | 35180 | 1.3691 | - | | 1.5484 | 35190 | 1.3782 | - | | 1.5489 | 35200 | 1.3139 | - | | 1.5493 | 35210 | 1.4535 | - | | 1.5498 | 35220 | 1.3693 | - | | 1.5502 | 35230 | 1.3761 | - | | 1.5506 | 35240 | 1.4011 | - | | 1.5510 | 35247 | - | 1.4452 | | 1.5511 | 35250 | 1.3455 | - | | 1.5515 | 35260 | 1.3339 | - | | 1.5520 | 35270 | 1.3719 | - | | 1.5524 | 35280 | 1.3886 | - | | 1.5528 | 35290 | 1.3132 | - | | 1.5533 | 35300 | 1.3281 | - | | 1.5537 | 35310 | 1.3487 | - | | 1.5542 | 35320 | 1.3508 | - | | 1.5546 | 35330 | 1.3815 | - | | 1.5550 | 35340 | 1.3565 | - | | 1.5555 | 35350 | 1.3429 | - | | 1.5559 | 35360 | 1.3834 | - | | 1.5564 | 35370 | 1.3467 | - | | 1.5568 | 35380 | 1.3858 | - | | 1.5572 | 35390 | 1.3668 | - | | 1.5577 | 35400 | 1.3752 | - | | 1.5581 | 35410 | 1.3116 | - | | 1.5586 | 35420 | 1.3333 | - | | 1.5590 | 35430 | 1.3632 | - | | 1.5594 | 35440 | 1.3869 | - | | 1.5599 | 35450 | 1.4063 | - | | 1.5603 | 35460 | 1.3449 | - | | 1.5608 | 35470 | 1.2758 | - | | 1.5612 | 35480 | 1.3168 | - | | 1.5616 | 35490 | 1.349 | - | | 1.5621 | 35500 | 1.3952 | - | | 1.5625 | 35510 | 1.3774 | - | | 1.5630 | 35520 | 1.3626 | - | | 1.5634 | 35530 | 1.3864 | - | | 1.5638 | 35540 | 1.3479 | - | | 1.5643 | 35550 | 1.3595 | - | | 1.5647 | 35560 | 1.3419 | - | | 1.5652 | 35570 | 1.3131 | - | | 1.5656 | 35580 | 1.3659 | - | | 1.5660 | 35590 | 1.3311 | - | | 1.5665 | 35600 | 1.3641 | - | | 1.5669 | 35610 | 1.3609 | - | | 1.5674 | 35620 | 1.4058 | - | | 1.5678 | 35630 | 1.3501 | - | | 1.5682 | 35640 | 1.3229 | - | | 1.5687 | 35650 | 1.3944 | - | | 1.5691 | 35660 | 1.3538 | - | | 1.5696 | 35670 | 1.3918 | - | | 1.5700 | 35680 | 1.3621 | - | | 1.5704 | 35690 | 1.3647 | - | | 1.5709 | 35700 | 1.3474 | - | | 1.5713 | 35710 | 1.3752 | - | | 1.5718 | 35720 | 1.3477 | - | | 1.5722 | 35730 | 1.3532 | - | | 1.5726 | 35740 | 1.3555 | - | | 1.5731 | 35750 | 1.3016 | - | | 1.5735 | 35760 | 1.3628 | - | | 1.5740 | 35770 | 1.3422 | - | | 1.5744 | 35780 | 1.4055 | - | | 1.5748 | 35790 | 1.3899 | - | | 1.5753 | 35800 | 1.3259 | - | | 1.5757 | 35810 | 1.3425 | - | | 1.5762 | 35820 | 1.3506 | - | | 1.5766 | 35830 | 1.3508 | - | | 1.5770 | 35840 | 1.3463 | - | | 1.5775 | 35850 | 1.3699 | - | | 1.5779 | 35860 | 1.4086 | - | | 1.5784 | 35870 | 1.3903 | - | | 1.5788 | 35880 | 1.3239 | - | | 1.5792 | 35890 | 1.3654 | - | | 1.5797 | 35900 | 1.3551 | - | | 1.5801 | 35910 | 1.3387 | - | | 1.5806 | 35920 | 1.3195 | - | | 1.5810 | 35930 | 1.3475 | - | | 1.5814 | 35940 | 1.4056 | - | | 1.5819 | 35950 | 1.3778 | - | | 1.5823 | 35960 | 1.3608 | - | | 1.5828 | 35970 | 1.3798 | - | | 1.5832 | 35980 | 1.3783 | - | | 1.5836 | 35990 | 1.3499 | - | | 1.5841 | 36000 | 1.357 | - | | 1.5845 | 36010 | 1.3316 | - | | 1.5850 | 36020 | 1.3914 | - | | 1.5854 | 36030 | 1.3479 | - | | 1.5858 | 36040 | 1.3668 | - | | 1.5863 | 36050 | 1.3575 | - | | 1.5867 | 36060 | 1.3702 | - | | 1.5872 | 36070 | 1.3942 | - | | 1.5876 | 36080 | 1.3626 | - | | 1.5880 | 36090 | 1.36 | - | | 1.5885 | 36100 | 1.4056 | - | | 1.5889 | 36110 | 1.3489 | - | | 1.5894 | 36120 | 1.3008 | - | | 1.5898 | 36130 | 1.3453 | - | | 1.5902 | 36140 | 1.3681 | - | | 1.5907 | 36150 | 1.3671 | - | | 1.5911 | 36160 | 1.3215 | - | | 1.5916 | 36170 | 1.3786 | - | | 1.5920 | 36180 | 1.3952 | - | | 1.5924 | 36190 | 1.3789 | - | | 1.5929 | 36200 | 1.3122 | - | | 1.5933 | 36210 | 1.411 | - | | 1.5938 | 36220 | 1.4002 | - | | 1.5942 | 36230 | 1.3526 | - | | 1.5946 | 36240 | 1.3371 | - | | 1.5951 | 36250 | 1.3647 | - | | 1.5955 | 36260 | 1.3341 | - | | 1.5960 | 36270 | 1.3821 | - | | 1.5964 | 36280 | 1.3211 | - | | 1.5968 | 36290 | 1.3498 | - | | 1.5973 | 36300 | 1.3154 | - | | 1.5977 | 36310 | 1.3773 | - | | 1.5982 | 36320 | 1.3265 | - | | 1.5986 | 36330 | 1.3147 | - | | 1.5990 | 36340 | 1.3306 | - | | 1.5995 | 36350 | 1.3801 | - | | 1.5999 | 36360 | 1.369 | - | | 1.6004 | 36370 | 1.3631 | - | | 1.6008 | 36380 | 1.3392 | - | | 1.6010 | 36384 | - | 1.4795 | | 1.6012 | 36390 | 1.3487 | - | | 1.6017 | 36400 | 1.2972 | - | | 1.6021 | 36410 | 1.3496 | - | | 1.6026 | 36420 | 1.3831 | - | | 1.6030 | 36430 | 1.3394 | - | | 1.6034 | 36440 | 1.2754 | - | | 1.6039 | 36450 | 1.3626 | - | | 1.6043 | 36460 | 1.3347 | - | | 1.6048 | 36470 | 1.3791 | - | | 1.6052 | 36480 | 1.3726 | - | | 1.6056 | 36490 | 1.3044 | - | | 1.6061 | 36500 | 1.3179 | - | | 1.6065 | 36510 | 1.3817 | - | | 1.6070 | 36520 | 1.3042 | - | | 1.6074 | 36530 | 1.3323 | - | | 1.6079 | 36540 | 1.3289 | - | | 1.6083 | 36550 | 1.3554 | - | | 1.6087 | 36560 | 1.2904 | - | | 1.6092 | 36570 | 1.3331 | - | | 1.6096 | 36580 | 1.3505 | - | | 1.6101 | 36590 | 1.3379 | - | | 1.6105 | 36600 | 1.2795 | - | | 1.6109 | 36610 | 1.3004 | - | | 1.6114 | 36620 | 1.3028 | - | | 1.6118 | 36630 | 1.2873 | - | | 1.6123 | 36640 | 1.3664 | - | | 1.6127 | 36650 | 1.3386 | - | | 1.6131 | 36660 | 1.3274 | - | | 1.6136 | 36670 | 1.2951 | - | | 1.6140 | 36680 | 1.3477 | - | | 1.6145 | 36690 | 1.3391 | - | | 1.6149 | 36700 | 1.3411 | - | | 1.6153 | 36710 | 1.3573 | - | | 1.6158 | 36720 | 1.3317 | - | | 1.6162 | 36730 | 1.3542 | - | | 1.6167 | 36740 | 1.3624 | - | | 1.6171 | 36750 | 1.369 | - | | 1.6175 | 36760 | 1.3739 | - | | 1.6180 | 36770 | 1.3 | - | | 1.6184 | 36780 | 1.3238 | - | | 1.6189 | 36790 | 1.3121 | - | | 1.6193 | 36800 | 1.3508 | - | | 1.6197 | 36810 | 1.3816 | - | | 1.6202 | 36820 | 1.3426 | - | | 1.6206 | 36830 | 1.3112 | - | | 1.6211 | 36840 | 1.3271 | - | | 1.6215 | 36850 | 1.3058 | - | | 1.6219 | 36860 | 1.3741 | - | | 1.6224 | 36870 | 1.3358 | - | | 1.6228 | 36880 | 1.3056 | - | | 1.6233 | 36890 | 1.2963 | - | | 1.6237 | 36900 | 1.3259 | - | | 1.6241 | 36910 | 1.306 | - | | 1.6246 | 36920 | 1.3082 | - | | 1.6250 | 36930 | 1.3215 | - | | 1.6255 | 36940 | 1.3326 | - | | 1.6259 | 36950 | 1.3172 | - | | 1.6263 | 36960 | 1.3569 | - | | 1.6268 | 36970 | 1.3187 | - | | 1.6272 | 36980 | 1.3302 | - | | 1.6277 | 36990 | 1.2998 | - | | 1.6281 | 37000 | 1.3204 | - | | 1.6285 | 37010 | 1.3552 | - | | 1.6290 | 37020 | 1.2758 | - | | 1.6294 | 37030 | 1.3735 | - | | 1.6299 | 37040 | 1.313 | - | | 1.6303 | 37050 | 1.3223 | - | | 1.6307 | 37060 | 1.4062 | - | | 1.6312 | 37070 | 1.3215 | - | | 1.6316 | 37080 | 1.3357 | - | | 1.6321 | 37090 | 1.3752 | - | | 1.6325 | 37100 | 1.3157 | - | | 1.6329 | 37110 | 1.3816 | - | | 1.6334 | 37120 | 1.2821 | - | | 1.6338 | 37130 | 1.3352 | - | | 1.6343 | 37140 | 1.3531 | - | | 1.6347 | 37150 | 1.3309 | - | | 1.6351 | 37160 | 1.3267 | - | | 1.6356 | 37170 | 1.2928 | - | | 1.6360 | 37180 | 1.3384 | - | | 1.6365 | 37190 | 1.3476 | - | | 1.6369 | 37200 | 1.3066 | - | | 1.6373 | 37210 | 1.3049 | - | | 1.6378 | 37220 | 1.3607 | - | | 1.6382 | 37230 | 1.327 | - | | 1.6387 | 37240 | 1.3513 | - | | 1.6391 | 37250 | 1.2971 | - | | 1.6395 | 37260 | 1.308 | - | | 1.6400 | 37270 | 1.3102 | - | | 1.6404 | 37280 | 1.3196 | - | | 1.6409 | 37290 | 1.317 | - | | 1.6413 | 37300 | 1.3555 | - | | 1.6417 | 37310 | 1.3757 | - | | 1.6422 | 37320 | 1.3467 | - | | 1.6426 | 37330 | 1.3165 | - | | 1.6431 | 37340 | 1.3345 | - | | 1.6435 | 37350 | 1.3636 | - | | 1.6439 | 37360 | 1.2672 | - | | 1.6444 | 37370 | 1.3093 | - | | 1.6448 | 37380 | 1.3344 | - | | 1.6453 | 37390 | 1.2783 | - | | 1.6457 | 37400 | 1.3032 | - | | 1.6461 | 37410 | 1.2973 | - | | 1.6466 | 37420 | 1.3667 | - | | 1.6470 | 37430 | 1.3193 | - | | 1.6475 | 37440 | 1.2588 | - | | 1.6479 | 37450 | 1.3357 | - | | 1.6483 | 37460 | 1.2927 | - | | 1.6488 | 37470 | 1.3269 | - | | 1.6492 | 37480 | 1.3212 | - | | 1.6497 | 37490 | 1.286 | - | | 1.6501 | 37500 | 1.3447 | - | | 1.6505 | 37510 | 1.3217 | - | | 1.6510 | 37520 | 1.2734 | - | | 1.6510 | 37521 | - | 1.4744 | | 1.6514 | 37530 | 1.3382 | - | | 1.6519 | 37540 | 1.3124 | - | | 1.6523 | 37550 | 1.3377 | - | | 1.6527 | 37560 | 1.3469 | - | | 1.6532 | 37570 | 1.3995 | - | | 1.6536 | 37580 | 1.3455 | - | | 1.6541 | 37590 | 1.2808 | - | | 1.6545 | 37600 | 1.3253 | - | | 1.6549 | 37610 | 1.2796 | - | | 1.6554 | 37620 | 1.3247 | - | | 1.6558 | 37630 | 1.3332 | - | | 1.6563 | 37640 | 1.301 | - | | 1.6567 | 37650 | 1.3142 | - | | 1.6571 | 37660 | 1.3662 | - | | 1.6576 | 37670 | 1.3525 | - | | 1.6580 | 37680 | 1.3062 | - | | 1.6585 | 37690 | 1.3014 | - | | 1.6589 | 37700 | 1.3002 | - | | 1.6593 | 37710 | 1.3124 | - | | 1.6598 | 37720 | 1.3232 | - | | 1.6602 | 37730 | 1.3047 | - | | 1.6607 | 37740 | 1.2943 | - | | 1.6611 | 37750 | 1.3032 | - | | 1.6615 | 37760 | 1.3117 | - | | 1.6620 | 37770 | 1.3134 | - | | 1.6624 | 37780 | 1.3203 | - | | 1.6629 | 37790 | 1.3367 | - | | 1.6633 | 37800 | 1.3214 | - | | 1.6637 | 37810 | 1.3116 | - | | 1.6642 | 37820 | 1.3177 | - | | 1.6646 | 37830 | 1.3749 | - | | 1.6651 | 37840 | 1.2592 | - | | 1.6655 | 37850 | 1.3063 | - | | 1.6659 | 37860 | 1.3416 | - | | 1.6664 | 37870 | 1.3413 | - | | 1.6668 | 37880 | 1.3657 | - | | 1.6673 | 37890 | 1.3429 | - | | 1.6677 | 37900 | 1.2744 | - | | 1.6681 | 37910 | 1.2726 | - | | 1.6686 | 37920 | 1.2935 | - | | 1.6690 | 37930 | 1.3384 | - | | 1.6695 | 37940 | 1.3414 | - | | 1.6699 | 37950 | 1.2987 | - | | 1.6703 | 37960 | 1.3402 | - | | 1.6708 | 37970 | 1.3191 | - | | 1.6712 | 37980 | 1.3505 | - | | 1.6717 | 37990 | 1.3213 | - | | 1.6721 | 38000 | 1.285 | - | | 1.6725 | 38010 | 1.3031 | - | | 1.6730 | 38020 | 1.3696 | - | | 1.6734 | 38030 | 1.3121 | - | | 1.6739 | 38040 | 1.2937 | - | | 1.6743 | 38050 | 1.2887 | - | | 1.6747 | 38060 | 1.2651 | - | | 1.6752 | 38070 | 1.2658 | - | | 1.6756 | 38080 | 1.2811 | - | | 1.6761 | 38090 | 1.2794 | - | | 1.6765 | 38100 | 1.3276 | - | | 1.6769 | 38110 | 1.2781 | - | | 1.6774 | 38120 | 1.2967 | - | | 1.6778 | 38130 | 1.2884 | - | | 1.6783 | 38140 | 1.3171 | - | | 1.6787 | 38150 | 1.2997 | - | | 1.6791 | 38160 | 1.2994 | - | | 1.6796 | 38170 | 1.2623 | - | | 1.6800 | 38180 | 1.2913 | - | | 1.6805 | 38190 | 1.3678 | - | | 1.6809 | 38200 | 1.2382 | - | | 1.6813 | 38210 | 1.3296 | - | | 1.6818 | 38220 | 1.2841 | - | | 1.6822 | 38230 | 1.3364 | - | | 1.6827 | 38240 | 1.319 | - | | 1.6831 | 38250 | 1.284 | - | | 1.6835 | 38260 | 1.2789 | - | | 1.6840 | 38270 | 1.3435 | - | | 1.6844 | 38280 | 1.369 | - | | 1.6849 | 38290 | 1.3483 | - | | 1.6853 | 38300 | 1.3325 | - | | 1.6857 | 38310 | 1.2701 | - | | 1.6862 | 38320 | 1.3629 | - | | 1.6866 | 38330 | 1.2818 | - | | 1.6871 | 38340 | 1.3419 | - | | 1.6875 | 38350 | 1.348 | - | | 1.6879 | 38360 | 1.3292 | - | | 1.6884 | 38370 | 1.2962 | - | | 1.6888 | 38380 | 1.2869 | - | | 1.6893 | 38390 | 1.2968 | - | | 1.6897 | 38400 | 1.3004 | - | | 1.6901 | 38410 | 1.3068 | - | | 1.6906 | 38420 | 1.3223 | - | | 1.6910 | 38430 | 1.2944 | - | | 1.6915 | 38440 | 1.2811 | - | | 1.6919 | 38450 | 1.286 | - | | 1.6923 | 38460 | 1.3072 | - | | 1.6928 | 38470 | 1.2918 | - | | 1.6932 | 38480 | 1.2844 | - | | 1.6937 | 38490 | 1.2914 | - | | 1.6941 | 38500 | 1.2862 | - | | 1.6945 | 38510 | 1.349 | - | | 1.6950 | 38520 | 1.3202 | - | | 1.6954 | 38530 | 1.3505 | - | | 1.6959 | 38540 | 1.2953 | - | | 1.6963 | 38550 | 1.314 | - | | 1.6967 | 38560 | 1.3213 | - | | 1.6972 | 38570 | 1.3299 | - | | 1.6976 | 38580 | 1.28 | - | | 1.6981 | 38590 | 1.3027 | - | | 1.6985 | 38600 | 1.2801 | - | | 1.6989 | 38610 | 1.3062 | - | | 1.6994 | 38620 | 1.2529 | - | | 1.6998 | 38630 | 1.3008 | - | | 1.7003 | 38640 | 1.237 | - | | 1.7007 | 38650 | 1.2875 | - | | 1.7010 | 38658 | - | 1.4439 | | 1.7011 | 38660 | 1.3599 | - | | 1.7016 | 38670 | 1.2927 | - | | 1.7020 | 38680 | 1.3287 | - | | 1.7025 | 38690 | 1.3365 | - | | 1.7029 | 38700 | 1.3176 | - | | 1.7033 | 38710 | 1.2767 | - | | 1.7038 | 38720 | 1.2953 | - | | 1.7042 | 38730 | 1.3177 | - | | 1.7047 | 38740 | 1.2676 | - | | 1.7051 | 38750 | 1.3263 | - | | 1.7055 | 38760 | 1.3145 | - | | 1.7060 | 38770 | 1.3307 | - | | 1.7064 | 38780 | 1.2984 | - | | 1.7069 | 38790 | 1.2774 | - | | 1.7073 | 38800 | 1.3795 | - | | 1.7077 | 38810 | 1.3124 | - | | 1.7082 | 38820 | 1.2482 | - | | 1.7086 | 38830 | 1.3279 | - | | 1.7091 | 38840 | 1.3301 | - | | 1.7095 | 38850 | 1.338 | - | | 1.7099 | 38860 | 1.2698 | - | | 1.7104 | 38870 | 1.3295 | - | | 1.7108 | 38880 | 1.2979 | - | | 1.7113 | 38890 | 1.2969 | - | | 1.7117 | 38900 | 1.2877 | - | | 1.7121 | 38910 | 1.2817 | - | | 1.7126 | 38920 | 1.3678 | - | | 1.7130 | 38930 | 1.2811 | - | | 1.7135 | 38940 | 1.32 | - | | 1.7139 | 38950 | 1.3134 | - | | 1.7143 | 38960 | 1.3522 | - | | 1.7148 | 38970 | 1.2835 | - | | 1.7152 | 38980 | 1.2715 | - | | 1.7157 | 38990 | 1.3048 | - | | 1.7161 | 39000 | 1.2977 | - | | 1.7165 | 39010 | 1.2831 | - | | 1.7170 | 39020 | 1.2592 | - | | 1.7174 | 39030 | 1.3096 | - | | 1.7179 | 39040 | 1.2818 | - | | 1.7183 | 39050 | 1.3058 | - | | 1.7187 | 39060 | 1.2605 | - | | 1.7192 | 39070 | 1.2797 | - | | 1.7196 | 39080 | 1.3339 | - | | 1.7201 | 39090 | 1.3171 | - | | 1.7205 | 39100 | 1.307 | - | | 1.7209 | 39110 | 1.2682 | - | | 1.7214 | 39120 | 1.2777 | - | | 1.7218 | 39130 | 1.2587 | - | | 1.7223 | 39140 | 1.3123 | - | | 1.7227 | 39150 | 1.3383 | - | | 1.7231 | 39160 | 1.3378 | - | | 1.7236 | 39170 | 1.3259 | - | | 1.7240 | 39180 | 1.29 | - | | 1.7245 | 39190 | 1.3329 | - | | 1.7249 | 39200 | 1.3614 | - | | 1.7253 | 39210 | 1.3194 | - | | 1.7258 | 39220 | 1.2633 | - | | 1.7262 | 39230 | 1.2659 | - | | 1.7267 | 39240 | 1.284 | - | | 1.7271 | 39250 | 1.3738 | - | | 1.7275 | 39260 | 1.2807 | - | | 1.7280 | 39270 | 1.2669 | - | | 1.7284 | 39280 | 1.3196 | - | | 1.7289 | 39290 | 1.2416 | - | | 1.7293 | 39300 | 1.31 | - | | 1.7297 | 39310 | 1.3092 | - | | 1.7302 | 39320 | 1.2877 | - | | 1.7306 | 39330 | 1.3224 | - | | 1.7311 | 39340 | 1.2594 | - | | 1.7315 | 39350 | 1.2513 | - | | 1.7319 | 39360 | 1.2798 | - | | 1.7324 | 39370 | 1.3012 | - | | 1.7328 | 39380 | 1.242 | - | | 1.7333 | 39390 | 1.2914 | - | | 1.7337 | 39400 | 1.2309 | - | | 1.7341 | 39410 | 1.301 | - | | 1.7346 | 39420 | 1.3049 | - | | 1.7350 | 39430 | 1.2755 | - | | 1.7355 | 39440 | 1.3232 | - | | 1.7359 | 39450 | 1.3349 | - | | 1.7363 | 39460 | 1.3445 | - | | 1.7368 | 39470 | 1.3255 | - | | 1.7372 | 39480 | 1.2528 | - | | 1.7377 | 39490 | 1.3223 | - | | 1.7381 | 39500 | 1.3106 | - | | 1.7385 | 39510 | 1.3059 | - | | 1.7390 | 39520 | 1.3232 | - | | 1.7394 | 39530 | 1.2773 | - | | 1.7399 | 39540 | 1.3 | - | | 1.7403 | 39550 | 1.29 | - | | 1.7407 | 39560 | 1.3774 | - | | 1.7412 | 39570 | 1.2872 | - | | 1.7416 | 39580 | 1.3088 | - | | 1.7421 | 39590 | 1.3069 | - | | 1.7425 | 39600 | 1.2943 | - | | 1.7429 | 39610 | 1.2882 | - | | 1.7434 | 39620 | 1.2522 | - | | 1.7438 | 39630 | 1.2971 | - | | 1.7443 | 39640 | 1.3618 | - | | 1.7447 | 39650 | 1.2953 | - | | 1.7451 | 39660 | 1.3362 | - | | 1.7456 | 39670 | 1.328 | - | | 1.7460 | 39680 | 1.2736 | - | | 1.7465 | 39690 | 1.2702 | - | | 1.7469 | 39700 | 1.2804 | - | | 1.7473 | 39710 | 1.3029 | - | | 1.7478 | 39720 | 1.3195 | - | | 1.7482 | 39730 | 1.3179 | - | | 1.7487 | 39740 | 1.3247 | - | | 1.7491 | 39750 | 1.2466 | - | | 1.7495 | 39760 | 1.2645 | - | | 1.7500 | 39770 | 1.2483 | - | | 1.7504 | 39780 | 1.3118 | - | | 1.7509 | 39790 | 1.3171 | - | | 1.7511 | 39795 | - | 1.4577 | | 1.7513 | 39800 | 1.3596 | - | | 1.7517 | 39810 | 1.307 | - | | 1.7522 | 39820 | 1.2593 | - | | 1.7526 | 39830 | 1.2823 | - | | 1.7531 | 39840 | 1.2841 | - | | 1.7535 | 39850 | 1.3379 | - | | 1.7539 | 39860 | 1.3044 | - | | 1.7544 | 39870 | 1.3106 | - | | 1.7548 | 39880 | 1.3573 | - | | 1.7553 | 39890 | 1.2856 | - | | 1.7557 | 39900 | 1.2396 | - | | 1.7561 | 39910 | 1.3224 | - | | 1.7566 | 39920 | 1.2987 | - | | 1.7570 | 39930 | 1.2695 | - | | 1.7575 | 39940 | 1.2958 | - | | 1.7579 | 39950 | 1.3007 | - | | 1.7583 | 39960 | 1.3856 | - | | 1.7588 | 39970 | 1.3228 | - | | 1.7592 | 39980 | 1.2999 | - | | 1.7597 | 39990 | 1.2838 | - | | 1.7601 | 40000 | 1.2745 | - | | 1.7605 | 40010 | 1.3075 | - | | 1.7610 | 40020 | 1.2669 | - | | 1.7614 | 40030 | 1.3372 | - | | 1.7619 | 40040 | 1.2743 | - | | 1.7623 | 40050 | 1.2726 | - | | 1.7627 | 40060 | 1.3105 | - | | 1.7632 | 40070 | 1.3208 | - | | 1.7636 | 40080 | 1.3161 | - | | 1.7641 | 40090 | 1.356 | - | | 1.7645 | 40100 | 1.3236 | - | | 1.7649 | 40110 | 1.2555 | - | | 1.7654 | 40120 | 1.305 | - | | 1.7658 | 40130 | 1.3069 | - | | 1.7663 | 40140 | 1.2842 | - | | 1.7667 | 40150 | 1.357 | - | | 1.7671 | 40160 | 1.3035 | - | | 1.7676 | 40170 | 1.3396 | - | | 1.7680 | 40180 | 1.2742 | - | | 1.7685 | 40190 | 1.2874 | - | | 1.7689 | 40200 | 1.2624 | - | | 1.7693 | 40210 | 1.2686 | - | | 1.7698 | 40220 | 1.282 | - | | 1.7702 | 40230 | 1.3201 | - | | 1.7707 | 40240 | 1.2513 | - | | 1.7711 | 40250 | 1.2451 | - | | 1.7715 | 40260 | 1.29 | - | | 1.7720 | 40270 | 1.2484 | - | | 1.7724 | 40280 | 1.2779 | - | | 1.7729 | 40290 | 1.2476 | - | | 1.7733 | 40300 | 1.3332 | - | | 1.7737 | 40310 | 1.2769 | - | | 1.7742 | 40320 | 1.2951 | - | | 1.7746 | 40330 | 1.3006 | - | | 1.7751 | 40340 | 1.3085 | - | | 1.7755 | 40350 | 1.2817 | - | | 1.7759 | 40360 | 1.3635 | - | | 1.7764 | 40370 | 1.3447 | - | | 1.7768 | 40380 | 1.2821 | - | | 1.7773 | 40390 | 1.3464 | - | | 1.7777 | 40400 | 1.2702 | - | | 1.7781 | 40410 | 1.2609 | - | | 1.7786 | 40420 | 1.2936 | - | | 1.7790 | 40430 | 1.2659 | - | | 1.7795 | 40440 | 1.2988 | - | | 1.7799 | 40450 | 1.295 | - | | 1.7803 | 40460 | 1.2822 | - | | 1.7808 | 40470 | 1.265 | - | | 1.7812 | 40480 | 1.3371 | - | | 1.7817 | 40490 | 1.235 | - | | 1.7821 | 40500 | 1.2849 | - | | 1.7825 | 40510 | 1.3149 | - | | 1.7830 | 40520 | 1.2928 | - | | 1.7834 | 40530 | 1.2107 | - | | 1.7839 | 40540 | 1.2943 | - | | 1.7843 | 40550 | 1.2458 | - | | 1.7847 | 40560 | 1.2286 | - | | 1.7852 | 40570 | 1.2862 | - | | 1.7856 | 40580 | 1.3167 | - | | 1.7861 | 40590 | 1.2586 | - | | 1.7865 | 40600 | 1.3258 | - | | 1.7869 | 40610 | 1.2607 | - | | 1.7874 | 40620 | 1.295 | - | | 1.7878 | 40630 | 1.2956 | - | | 1.7883 | 40640 | 1.2517 | - | | 1.7887 | 40650 | 1.3354 | - | | 1.7891 | 40660 | 1.2984 | - | | 1.7896 | 40670 | 1.3375 | - | | 1.7900 | 40680 | 1.2492 | - | | 1.7905 | 40690 | 1.2533 | - | | 1.7909 | 40700 | 1.2438 | - | | 1.7913 | 40710 | 1.2809 | - | | 1.7918 | 40720 | 1.2617 | - | | 1.7922 | 40730 | 1.3062 | - | | 1.7927 | 40740 | 1.3145 | - | | 1.7931 | 40750 | 1.3021 | - | | 1.7935 | 40760 | 1.3429 | - | | 1.7940 | 40770 | 1.2653 | - | | 1.7944 | 40780 | 1.3146 | - | | 1.7949 | 40790 | 1.3172 | - | | 1.7953 | 40800 | 1.3324 | - | | 1.7957 | 40810 | 1.3086 | - | | 1.7962 | 40820 | 1.2807 | - | | 1.7966 | 40830 | 1.332 | - | | 1.7971 | 40840 | 1.282 | - | | 1.7975 | 40850 | 1.2264 | - | | 1.7979 | 40860 | 1.2751 | - | | 1.7984 | 40870 | 1.2984 | - | | 1.7988 | 40880 | 1.2982 | - | | 1.7993 | 40890 | 1.3141 | - | | 1.7997 | 40900 | 1.2978 | - | | 1.8001 | 40910 | 1.285 | - | | 1.8006 | 40920 | 1.3283 | - | | 1.8010 | 40930 | 1.2851 | - | | 1.8011 | 40932 | - | 1.4573 | | 1.8015 | 40940 | 1.28 | - | | 1.8019 | 40950 | 1.3295 | - | | 1.8023 | 40960 | 1.2422 | - | | 1.8028 | 40970 | 1.2969 | - | | 1.8032 | 40980 | 1.2788 | - | | 1.8037 | 40990 | 1.2599 | - | | 1.8041 | 41000 | 1.2756 | - | | 1.8045 | 41010 | 1.2465 | - | | 1.8050 | 41020 | 1.2603 | - | | 1.8054 | 41030 | 1.3453 | - | | 1.8059 | 41040 | 1.316 | - | | 1.8063 | 41050 | 1.2454 | - | | 1.8067 | 41060 | 1.276 | - | | 1.8072 | 41070 | 1.2824 | - | | 1.8076 | 41080 | 1.2363 | - | | 1.8081 | 41090 | 1.3011 | - | | 1.8085 | 41100 | 1.3058 | - | | 1.8089 | 41110 | 1.2903 | - | | 1.8094 | 41120 | 1.287 | - | | 1.8098 | 41130 | 1.2791 | - | | 1.8103 | 41140 | 1.2922 | - | | 1.8107 | 41150 | 1.3072 | - | | 1.8111 | 41160 | 1.2815 | - | | 1.8116 | 41170 | 1.2355 | - | | 1.8120 | 41180 | 1.3552 | - | | 1.8125 | 41190 | 1.2498 | - | | 1.8129 | 41200 | 1.2513 | - | | 1.8133 | 41210 | 1.2513 | - | | 1.8138 | 41220 | 1.3102 | - | | 1.8142 | 41230 | 1.3082 | - | | 1.8147 | 41240 | 1.2696 | - | | 1.8151 | 41250 | 1.2875 | - | | 1.8155 | 41260 | 1.2797 | - | | 1.8160 | 41270 | 1.2979 | - | | 1.8164 | 41280 | 1.2518 | - | | 1.8169 | 41290 | 1.2806 | - | | 1.8173 | 41300 | 1.2553 | - | | 1.8177 | 41310 | 1.2684 | - | | 1.8182 | 41320 | 1.2654 | - | | 1.8186 | 41330 | 1.2622 | - | | 1.8191 | 41340 | 1.2704 | - | | 1.8195 | 41350 | 1.2026 | - | | 1.8199 | 41360 | 1.253 | - | | 1.8204 | 41370 | 1.2779 | - | | 1.8208 | 41380 | 1.2343 | - | | 1.8213 | 41390 | 1.2653 | - | | 1.8217 | 41400 | 1.2272 | - | | 1.8221 | 41410 | 1.2933 | - | | 1.8226 | 41420 | 1.2514 | - | | 1.8230 | 41430 | 1.2548 | - | | 1.8235 | 41440 | 1.2223 | - | | 1.8239 | 41450 | 1.2742 | - | | 1.8243 | 41460 | 1.2604 | - | | 1.8248 | 41470 | 1.2647 | - | | 1.8252 | 41480 | 1.261 | - | | 1.8257 | 41490 | 1.2152 | - | | 1.8261 | 41500 | 1.271 | - | | 1.8265 | 41510 | 1.2544 | - | | 1.8270 | 41520 | 1.2887 | - | | 1.8274 | 41530 | 1.2867 | - | | 1.8279 | 41540 | 1.2604 | - | | 1.8283 | 41550 | 1.2833 | - | | 1.8287 | 41560 | 1.2497 | - | | 1.8292 | 41570 | 1.2885 | - | | 1.8296 | 41580 | 1.2847 | - | | 1.8301 | 41590 | 1.2649 | - | | 1.8305 | 41600 | 1.3126 | - | | 1.8309 | 41610 | 1.2479 | - | | 1.8314 | 41620 | 1.2969 | - | | 1.8318 | 41630 | 1.2361 | - | | 1.8323 | 41640 | 1.2906 | - | | 1.8327 | 41650 | 1.2385 | - | | 1.8331 | 41660 | 1.2781 | - | | 1.8336 | 41670 | 1.243 | - | | 1.8340 | 41680 | 1.2267 | - | | 1.8345 | 41690 | 1.277 | - | | 1.8349 | 41700 | 1.2748 | - | | 1.8353 | 41710 | 1.2984 | - | | 1.8358 | 41720 | 1.2669 | - | | 1.8362 | 41730 | 1.2356 | - | | 1.8367 | 41740 | 1.3332 | - | | 1.8371 | 41750 | 1.2548 | - | | 1.8375 | 41760 | 1.2564 | - | | 1.8380 | 41770 | 1.2341 | - | | 1.8384 | 41780 | 1.2982 | - | | 1.8389 | 41790 | 1.2592 | - | | 1.8393 | 41800 | 1.3252 | - | | 1.8397 | 41810 | 1.2408 | - | | 1.8402 | 41820 | 1.3018 | - | | 1.8406 | 41830 | 1.2611 | - | | 1.8411 | 41840 | 1.2669 | - | | 1.8415 | 41850 | 1.2219 | - | | 1.8419 | 41860 | 1.2903 | - | | 1.8424 | 41870 | 1.2382 | - | | 1.8428 | 41880 | 1.2862 | - | | 1.8433 | 41890 | 1.2575 | - | | 1.8437 | 41900 | 1.2199 | - | | 1.8441 | 41910 | 1.2695 | - | | 1.8446 | 41920 | 1.3006 | - | | 1.8450 | 41930 | 1.2234 | - | | 1.8455 | 41940 | 1.3298 | - | | 1.8459 | 41950 | 1.2137 | - | | 1.8463 | 41960 | 1.2433 | - | | 1.8468 | 41970 | 1.2399 | - | | 1.8472 | 41980 | 1.2762 | - | | 1.8477 | 41990 | 1.3331 | - | | 1.8481 | 42000 | 1.2446 | - | | 1.8485 | 42010 | 1.2489 | - | | 1.8490 | 42020 | 1.241 | - | | 1.8494 | 42030 | 1.2126 | - | | 1.8499 | 42040 | 1.2485 | - | | 1.8503 | 42050 | 1.2745 | - | | 1.8507 | 42060 | 1.2937 | - | | 1.8511 | 42069 | - | 1.4229 | | 1.8512 | 42070 | 1.2472 | - | | 1.8516 | 42080 | 1.2725 | - | | 1.8521 | 42090 | 1.2441 | - | | 1.8525 | 42100 | 1.3102 | - | | 1.8529 | 42110 | 1.2773 | - | | 1.8534 | 42120 | 1.2628 | - | | 1.8538 | 42130 | 1.2595 | - | | 1.8543 | 42140 | 1.3287 | - | | 1.8547 | 42150 | 1.2748 | - | | 1.8551 | 42160 | 1.2809 | - | | 1.8556 | 42170 | 1.2611 | - | | 1.8560 | 42180 | 1.2392 | - | | 1.8565 | 42190 | 1.2604 | - | | 1.8569 | 42200 | 1.3052 | - | | 1.8573 | 42210 | 1.212 | - | | 1.8578 | 42220 | 1.2544 | - | | 1.8582 | 42230 | 1.2485 | - | | 1.8587 | 42240 | 1.2703 | - | | 1.8591 | 42250 | 1.284 | - | | 1.8595 | 42260 | 1.2966 | - | | 1.8600 | 42270 | 1.301 | - | | 1.8604 | 42280 | 1.2412 | - | | 1.8609 | 42290 | 1.2585 | - | | 1.8613 | 42300 | 1.2882 | - | | 1.8617 | 42310 | 1.243 | - | | 1.8622 | 42320 | 1.2556 | - | | 1.8626 | 42330 | 1.2515 | - | | 1.8631 | 42340 | 1.2196 | - | | 1.8635 | 42350 | 1.261 | - | | 1.8639 | 42360 | 1.2633 | - | | 1.8644 | 42370 | 1.2165 | - | | 1.8648 | 42380 | 1.2253 | - | | 1.8653 | 42390 | 1.2358 | - | | 1.8657 | 42400 | 1.2548 | - | | 1.8661 | 42410 | 1.258 | - | | 1.8666 | 42420 | 1.2522 | - | | 1.8670 | 42430 | 1.2694 | - | | 1.8675 | 42440 | 1.279 | - | | 1.8679 | 42450 | 1.2432 | - | | 1.8683 | 42460 | 1.2929 | - | | 1.8688 | 42470 | 1.2578 | - | | 1.8692 | 42480 | 1.2543 | - | | 1.8697 | 42490 | 1.298 | - | | 1.8701 | 42500 | 1.2227 | - | | 1.8705 | 42510 | 1.2647 | - | | 1.8710 | 42520 | 1.2929 | - | | 1.8714 | 42530 | 1.2756 | - | | 1.8719 | 42540 | 1.2361 | - | | 1.8723 | 42550 | 1.3049 | - | | 1.8727 | 42560 | 1.2007 | - | | 1.8732 | 42570 | 1.2228 | - | | 1.8736 | 42580 | 1.2409 | - | | 1.8741 | 42590 | 1.2427 | - | | 1.8745 | 42600 | 1.2336 | - | | 1.8749 | 42610 | 1.2435 | - | | 1.8754 | 42620 | 1.2307 | - | | 1.8758 | 42630 | 1.2713 | - | | 1.8763 | 42640 | 1.3075 | - | | 1.8767 | 42650 | 1.289 | - | | 1.8771 | 42660 | 1.2015 | - | | 1.8776 | 42670 | 1.225 | - | | 1.8780 | 42680 | 1.263 | - | | 1.8785 | 42690 | 1.2587 | - | | 1.8789 | 42700 | 1.2727 | - | | 1.8793 | 42710 | 1.2524 | - | | 1.8798 | 42720 | 1.2238 | - | | 1.8802 | 42730 | 1.2543 | - | | 1.8807 | 42740 | 1.2365 | - | | 1.8811 | 42750 | 1.2244 | - | | 1.8815 | 42760 | 1.2655 | - | | 1.8820 | 42770 | 1.2615 | - | | 1.8824 | 42780 | 1.1978 | - | | 1.8829 | 42790 | 1.1973 | - | | 1.8833 | 42800 | 1.2177 | - | | 1.8837 | 42810 | 1.2504 | - | | 1.8842 | 42820 | 1.2827 | - | | 1.8846 | 42830 | 1.2368 | - | | 1.8851 | 42840 | 1.2813 | - | | 1.8855 | 42850 | 1.2547 | - | | 1.8859 | 42860 | 1.261 | - | | 1.8864 | 42870 | 1.2139 | - | | 1.8868 | 42880 | 1.2461 | - | | 1.8873 | 42890 | 1.2092 | - | | 1.8877 | 42900 | 1.2279 | - | | 1.8881 | 42910 | 1.2957 | - | | 1.8886 | 42920 | 1.2341 | - | | 1.8890 | 42930 | 1.2043 | - | | 1.8895 | 42940 | 1.2911 | - | | 1.8899 | 42950 | 1.2113 | - | | 1.8903 | 42960 | 1.2178 | - | | 1.8908 | 42970 | 1.2258 | - | | 1.8912 | 42980 | 1.2747 | - | | 1.8917 | 42990 | 1.2478 | - | | 1.8921 | 43000 | 1.2408 | - | | 1.8925 | 43010 | 1.2478 | - | | 1.8930 | 43020 | 1.221 | - | | 1.8934 | 43030 | 1.2284 | - | | 1.8939 | 43040 | 1.2927 | - | | 1.8943 | 43050 | 1.2314 | - | | 1.8947 | 43060 | 1.2726 | - | | 1.8952 | 43070 | 1.2121 | - | | 1.8956 | 43080 | 1.2661 | - | | 1.8961 | 43090 | 1.2714 | - | | 1.8965 | 43100 | 1.2025 | - | | 1.8969 | 43110 | 1.2645 | - | | 1.8974 | 43120 | 1.2225 | - | | 1.8978 | 43130 | 1.1991 | - | | 1.8983 | 43140 | 1.237 | - | | 1.8987 | 43150 | 1.2331 | - | | 1.8991 | 43160 | 1.1902 | - | | 1.8996 | 43170 | 1.2081 | - | | 1.9000 | 43180 | 1.2319 | - | | 1.9005 | 43190 | 1.2096 | - | | 1.9009 | 43200 | 1.2294 | - | | 1.9012 | 43206 | - | 1.4650 | | 1.9013 | 43210 | 1.2718 | - | | 1.9018 | 43220 | 1.2537 | - | | 1.9022 | 43230 | 1.2556 | - | | 1.9027 | 43240 | 1.2786 | - | | 1.9031 | 43250 | 1.2505 | - | | 1.9035 | 43260 | 1.2189 | - | | 1.9040 | 43270 | 1.26 | - | | 1.9044 | 43280 | 1.293 | - | | 1.9049 | 43290 | 1.2441 | - | | 1.9053 | 43300 | 1.2659 | - | | 1.9057 | 43310 | 1.234 | - | | 1.9062 | 43320 | 1.2432 | - | | 1.9066 | 43330 | 1.2626 | - | | 1.9071 | 43340 | 1.2532 | - | | 1.9075 | 43350 | 1.2517 | - | | 1.9079 | 43360 | 1.2673 | - | | 1.9084 | 43370 | 1.2305 | - | | 1.9088 | 43380 | 1.2711 | - | | 1.9093 | 43390 | 1.2272 | - | | 1.9097 | 43400 | 1.2367 | - | | 1.9101 | 43410 | 1.2215 | - | | 1.9106 | 43420 | 1.2298 | - | | 1.9110 | 43430 | 1.2569 | - | | 1.9115 | 43440 | 1.1759 | - | | 1.9119 | 43450 | 1.2203 | - | | 1.9123 | 43460 | 1.2429 | - | | 1.9128 | 43470 | 1.2088 | - | | 1.9132 | 43480 | 1.2465 | - | | 1.9137 | 43490 | 1.2587 | - | | 1.9141 | 43500 | 1.2091 | - | | 1.9145 | 43510 | 1.2183 | - | | 1.9150 | 43520 | 1.2518 | - | | 1.9154 | 43530 | 1.275 | - | | 1.9159 | 43540 | 1.228 | - | | 1.9163 | 43550 | 1.2183 | - | | 1.9167 | 43560 | 1.2786 | - | | 1.9172 | 43570 | 1.2444 | - | | 1.9176 | 43580 | 1.1888 | - | | 1.9181 | 43590 | 1.2629 | - | | 1.9185 | 43600 | 1.2104 | - | | 1.9189 | 43610 | 1.2146 | - | | 1.9194 | 43620 | 1.1956 | - | | 1.9198 | 43630 | 1.2573 | - | | 1.9203 | 43640 | 1.2178 | - | | 1.9207 | 43650 | 1.2567 | - | | 1.9211 | 43660 | 1.2283 | - | | 1.9216 | 43670 | 1.2332 | - | | 1.9220 | 43680 | 1.2694 | - | | 1.9225 | 43690 | 1.2485 | - | | 1.9229 | 43700 | 1.2436 | - | | 1.9233 | 43710 | 1.2344 | - | | 1.9238 | 43720 | 1.2543 | - | | 1.9242 | 43730 | 1.2306 | - | | 1.9247 | 43740 | 1.205 | - | | 1.9251 | 43750 | 1.2398 | - | | 1.9255 | 43760 | 1.1984 | - | | 1.9260 | 43770 | 1.2118 | - | | 1.9264 | 43780 | 1.1936 | - | | 1.9269 | 43790 | 1.2391 | - | | 1.9273 | 43800 | 1.1831 | - | | 1.9277 | 43810 | 1.2139 | - | | 1.9282 | 43820 | 1.2443 | - | | 1.9286 | 43830 | 1.2328 | - | | 1.9291 | 43840 | 1.2027 | - | | 1.9295 | 43850 | 1.2173 | - | | 1.9299 | 43860 | 1.3188 | - | | 1.9304 | 43870 | 1.2375 | - | | 1.9308 | 43880 | 1.2259 | - | | 1.9313 | 43890 | 1.3048 | - | | 1.9317 | 43900 | 1.2067 | - | | 1.9321 | 43910 | 1.2558 | - | | 1.9326 | 43920 | 1.2306 | - | | 1.9330 | 43930 | 1.3222 | - | | 1.9335 | 43940 | 1.1926 | - | | 1.9339 | 43950 | 1.2498 | - | | 1.9343 | 43960 | 1.2325 | - | | 1.9348 | 43970 | 1.2411 | - | | 1.9352 | 43980 | 1.2125 | - | | 1.9357 | 43990 | 1.2426 | - | | 1.9361 | 44000 | 1.2147 | - | | 1.9365 | 44010 | 1.2195 | - | | 1.9370 | 44020 | 1.2321 | - | | 1.9374 | 44030 | 1.2523 | - | | 1.9379 | 44040 | 1.1595 | - | | 1.9383 | 44050 | 1.2679 | - | | 1.9387 | 44060 | 1.2489 | - | | 1.9392 | 44070 | 1.2034 | - | | 1.9396 | 44080 | 1.1912 | - | | 1.9401 | 44090 | 1.2504 | - | | 1.9405 | 44100 | 1.2502 | - | | 1.9409 | 44110 | 1.1937 | - | | 1.9414 | 44120 | 1.2048 | - | | 1.9418 | 44130 | 1.27 | - | | 1.9423 | 44140 | 1.2108 | - | | 1.9427 | 44150 | 1.269 | - | | 1.9431 | 44160 | 1.1876 | - | | 1.9436 | 44170 | 1.2537 | - | | 1.9440 | 44180 | 1.265 | - | | 1.9445 | 44190 | 1.2449 | - | | 1.9449 | 44200 | 1.2249 | - | | 1.9453 | 44210 | 1.1842 | - | | 1.9458 | 44220 | 1.2124 | - | | 1.9462 | 44230 | 1.2052 | - | | 1.9467 | 44240 | 1.2232 | - | | 1.9471 | 44250 | 1.2927 | - | | 1.9475 | 44260 | 1.2284 | - | | 1.9480 | 44270 | 1.2425 | - | | 1.9484 | 44280 | 1.2172 | - | | 1.9489 | 44290 | 1.221 | - | | 1.9493 | 44300 | 1.1802 | - | | 1.9497 | 44310 | 1.2276 | - | | 1.9502 | 44320 | 1.209 | - | | 1.9506 | 44330 | 1.2081 | - | | 1.9511 | 44340 | 1.191 | - | | 1.9512 | 44343 | - | 1.4393 | | 1.9515 | 44350 | 1.1747 | - | | 1.9519 | 44360 | 1.2651 | - | | 1.9524 | 44370 | 1.2358 | - | | 1.9528 | 44380 | 1.2293 | - | | 1.9533 | 44390 | 1.2077 | - | | 1.9537 | 44400 | 1.1746 | - | | 1.9541 | 44410 | 1.1921 | - | | 1.9546 | 44420 | 1.2008 | - | | 1.9550 | 44430 | 1.1774 | - | | 1.9555 | 44440 | 1.2157 | - | | 1.9559 | 44450 | 1.2056 | - | | 1.9563 | 44460 | 1.2213 | - | | 1.9568 | 44470 | 1.1978 | - | | 1.9572 | 44480 | 1.2311 | - | | 1.9577 | 44490 | 1.2527 | - | | 1.9581 | 44500 | 1.24 | - | | 1.9585 | 44510 | 1.192 | - | | 1.9590 | 44520 | 1.2173 | - | | 1.9594 | 44530 | 1.2202 | - | | 1.9599 | 44540 | 1.2196 | - | | 1.9603 | 44550 | 1.2162 | - | | 1.9607 | 44560 | 1.2352 | - | | 1.9612 | 44570 | 1.1828 | - | | 1.9616 | 44580 | 1.1828 | - | | 1.9621 | 44590 | 1.2272 | - | | 1.9625 | 44600 | 1.2181 | - | | 1.9629 | 44610 | 1.2246 | - | | 1.9634 | 44620 | 1.1387 | - | | 1.9638 | 44630 | 1.2135 | - | | 1.9643 | 44640 | 1.2216 | - | | 1.9647 | 44650 | 1.1748 | - | | 1.9652 | 44660 | 1.2193 | - | | 1.9656 | 44670 | 1.2107 | - | | 1.9660 | 44680 | 1.226 | - | | 1.9665 | 44690 | 1.193 | - | | 1.9669 | 44700 | 1.2014 | - | | 1.9674 | 44710 | 1.2137 | - | | 1.9678 | 44720 | 1.149 | - | | 1.9682 | 44730 | 1.2528 | - | | 1.9687 | 44740 | 1.2081 | - | | 1.9691 | 44750 | 1.1579 | - | | 1.9696 | 44760 | 1.2146 | - | | 1.9700 | 44770 | 1.2108 | - | | 1.9704 | 44780 | 1.2441 | - | | 1.9709 | 44790 | 1.2371 | - | | 1.9713 | 44800 | 1.1517 | - | | 1.9718 | 44810 | 1.2325 | - | | 1.9722 | 44820 | 1.195 | - | | 1.9726 | 44830 | 1.1587 | - | | 1.9731 | 44840 | 1.1637 | - | | 1.9735 | 44850 | 1.1501 | - | | 1.9740 | 44860 | 1.2464 | - | | 1.9744 | 44870 | 1.2132 | - | | 1.9748 | 44880 | 1.191 | - | | 1.9753 | 44890 | 1.2337 | - | | 1.9757 | 44900 | 1.2 | - | | 1.9762 | 44910 | 1.2284 | - | | 1.9766 | 44920 | 1.204 | - | | 1.9770 | 44930 | 1.2139 | - | | 1.9775 | 44940 | 1.2 | - | | 1.9779 | 44950 | 1.2382 | - | | 1.9784 | 44960 | 1.2091 | - | | 1.9788 | 44970 | 1.1872 | - | | 1.9792 | 44980 | 1.2054 | - | | 1.9797 | 44990 | 1.216 | - | | 1.9801 | 45000 | 1.1583 | - | | 1.9806 | 45010 | 1.2521 | - | | 1.9810 | 45020 | 1.1383 | - | | 1.9814 | 45030 | 1.2627 | - | | 1.9819 | 45040 | 1.2044 | - | | 1.9823 | 45050 | 1.1981 | - | | 1.9828 | 45060 | 1.2125 | - | | 1.9832 | 45070 | 1.1665 | - | | 1.9836 | 45080 | 1.2238 | - | | 1.9841 | 45090 | 1.2506 | - | | 1.9845 | 45100 | 1.209 | - | | 1.9850 | 45110 | 1.1833 | - | | 1.9854 | 45120 | 1.2208 | - | | 1.9858 | 45130 | 1.1635 | - | | 1.9863 | 45140 | 1.1512 | - | | 1.9867 | 45150 | 1.1986 | - | | 1.9872 | 45160 | 1.2217 | - | | 1.9876 | 45170 | 1.1708 | - | | 1.9880 | 45180 | 1.1945 | - | | 1.9885 | 45190 | 1.2086 | - | | 1.9889 | 45200 | 1.1804 | - | | 1.9894 | 45210 | 1.2037 | - | | 1.9898 | 45220 | 1.181 | - | | 1.9902 | 45230 | 1.2427 | - | | 1.9907 | 45240 | 1.2067 | - | | 1.9911 | 45250 | 1.1328 | - | | 1.9916 | 45260 | 1.1816 | - | | 1.9920 | 45270 | 1.1682 | - | | 1.9924 | 45280 | 1.1889 | - | | 1.9929 | 45290 | 1.2515 | - | | 1.9933 | 45300 | 1.2586 | - | | 1.9938 | 45310 | 1.24 | - | | 1.9942 | 45320 | 1.235 | - | | 1.9946 | 45330 | 1.2196 | - | | 1.9951 | 45340 | 1.2146 | - | | 1.9955 | 45350 | 1.1598 | - | | 1.9960 | 45360 | 1.2057 | - | | 1.9964 | 45370 | 1.1568 | - | | 1.9968 | 45380 | 1.1764 | - | | 1.9973 | 45390 | 1.2248 | - | | 1.9977 | 45400 | 1.2201 | - | | 1.9982 | 45410 | 1.1651 | - | | 1.9986 | 45420 | 1.1533 | - | | 1.9990 | 45430 | 1.1544 | - | | 1.9995 | 45440 | 1.2051 | - | | 1.9999 | 45450 | 1.1873 | - | | 2.0004 | 45460 | 1.1677 | - | | 2.0008 | 45470 | 1.1805 | - | | 2.0012 | 45480 | 1.1588 | 1.4466 | | 2.0017 | 45490 | 1.1435 | - | | 2.0021 | 45500 | 1.161 | - | | 2.0026 | 45510 | 1.1623 | - | | 2.0030 | 45520 | 1.1286 | - | | 2.0034 | 45530 | 1.1396 | - | | 2.0039 | 45540 | 1.1261 | - | | 2.0043 | 45550 | 1.148 | - | | 2.0048 | 45560 | 1.1262 | - | | 2.0052 | 45570 | 1.1199 | - | | 2.0056 | 45580 | 1.1295 | - | | 2.0061 | 45590 | 1.1318 | - | | 2.0065 | 45600 | 1.1313 | - | | 2.0070 | 45610 | 1.1575 | - | | 2.0074 | 45620 | 1.1377 | - | | 2.0078 | 45630 | 1.1511 | - | | 2.0083 | 45640 | 1.1992 | - | | 2.0087 | 45650 | 1.133 | - | | 2.0092 | 45660 | 1.1312 | - | | 2.0096 | 45670 | 1.173 | - | | 2.0100 | 45680 | 1.1198 | - | | 2.0105 | 45690 | 1.1622 | - | | 2.0109 | 45700 | 1.1127 | - | | 2.0114 | 45710 | 1.1428 | - | | 2.0118 | 45720 | 1.1418 | - | | 2.0122 | 45730 | 1.1217 | - | | 2.0127 | 45740 | 1.2172 | - | | 2.0131 | 45750 | 1.129 | - | | 2.0136 | 45760 | 1.1428 | - | | 2.0140 | 45770 | 1.1452 | - | | 2.0144 | 45780 | 1.145 | - | | 2.0149 | 45790 | 1.1729 | - | | 2.0153 | 45800 | 1.1727 | - | | 2.0158 | 45810 | 1.1661 | - | | 2.0162 | 45820 | 1.1989 | - | | 2.0166 | 45830 | 1.1421 | - | | 2.0171 | 45840 | 1.15 | - | | 2.0175 | 45850 | 1.1472 | - | | 2.0180 | 45860 | 1.0956 | - | | 2.0184 | 45870 | 1.1323 | - | | 2.0188 | 45880 | 1.1322 | - | | 2.0193 | 45890 | 1.1787 | - | | 2.0197 | 45900 | 1.1562 | - | | 2.0202 | 45910 | 1.1066 | - | | 2.0206 | 45920 | 1.1027 | - | | 2.0210 | 45930 | 1.1457 | - | | 2.0215 | 45940 | 1.1302 | - | | 2.0219 | 45950 | 1.1472 | - | | 2.0224 | 45960 | 1.1042 | - | | 2.0228 | 45970 | 1.137 | - | | 2.0232 | 45980 | 1.1179 | - | | 2.0237 | 45990 | 1.13 | - | | 2.0241 | 46000 | 1.1145 | - | | 2.0246 | 46010 | 1.1494 | - | | 2.0250 | 46020 | 1.1831 | - | | 2.0254 | 46030 | 1.1463 | - | | 2.0259 | 46040 | 1.1235 | - | | 2.0263 | 46050 | 1.1468 | - | | 2.0268 | 46060 | 1.1911 | - | | 2.0272 | 46070 | 1.0997 | - | | 2.0276 | 46080 | 1.1333 | - | | 2.0281 | 46090 | 1.1641 | - | | 2.0285 | 46100 | 1.1764 | - | | 2.0290 | 46110 | 1.1559 | - | | 2.0294 | 46120 | 1.0704 | - | | 2.0298 | 46130 | 1.13 | - | | 2.0303 | 46140 | 1.1119 | - | | 2.0307 | 46150 | 1.174 | - | | 2.0312 | 46160 | 1.1778 | - | | 2.0316 | 46170 | 1.1358 | - | | 2.0320 | 46180 | 1.1365 | - | | 2.0325 | 46190 | 1.1975 | - | | 2.0329 | 46200 | 1.138 | - | | 2.0334 | 46210 | 1.2148 | - | | 2.0338 | 46220 | 1.1404 | - | | 2.0342 | 46230 | 1.162 | - | | 2.0347 | 46240 | 1.1609 | - | | 2.0351 | 46250 | 1.1473 | - | | 2.0356 | 46260 | 1.1309 | - | | 2.0360 | 46270 | 1.0938 | - | | 2.0364 | 46280 | 1.2018 | - | | 2.0369 | 46290 | 1.1356 | - | | 2.0373 | 46300 | 1.168 | - | | 2.0378 | 46310 | 1.1588 | - | | 2.0382 | 46320 | 1.1548 | - | | 2.0386 | 46330 | 1.1634 | - | | 2.0391 | 46340 | 1.1966 | - | | 2.0395 | 46350 | 1.1124 | - | | 2.0400 | 46360 | 1.1321 | - | | 2.0404 | 46370 | 1.0939 | - | | 2.0408 | 46380 | 1.0787 | - | | 2.0413 | 46390 | 1.1545 | - | | 2.0417 | 46400 | 1.128 | - | | 2.0422 | 46410 | 1.1119 | - | | 2.0426 | 46420 | 1.1249 | - | | 2.0430 | 46430 | 1.0741 | - | | 2.0435 | 46440 | 1.1776 | - | | 2.0439 | 46450 | 1.1439 | - | | 2.0444 | 46460 | 1.1645 | - | | 2.0448 | 46470 | 1.1725 | - | | 2.0452 | 46480 | 1.1332 | - | | 2.0457 | 46490 | 1.1602 | - | | 2.0461 | 46500 | 1.1338 | - | | 2.0466 | 46510 | 1.1509 | - | | 2.0470 | 46520 | 1.1058 | - | | 2.0474 | 46530 | 1.1414 | - | | 2.0479 | 46540 | 1.0845 | - | | 2.0483 | 46550 | 1.1417 | - | | 2.0488 | 46560 | 1.1161 | - | | 2.0492 | 46570 | 1.1876 | - | | 2.0496 | 46580 | 1.152 | - | | 2.0501 | 46590 | 1.1135 | - | | 2.0505 | 46600 | 1.1572 | - | | 2.0510 | 46610 | 1.1277 | - | | 2.0513 | 46617 | - | 1.4280 | | 2.0514 | 46620 | 1.1353 | - | | 2.0518 | 46630 | 1.1452 | - | | 2.0523 | 46640 | 1.1292 | - | | 2.0527 | 46650 | 1.1286 | - | | 2.0532 | 46660 | 1.0943 | - | | 2.0536 | 46670 | 1.1508 | - | | 2.0540 | 46680 | 1.1514 | - | | 2.0545 | 46690 | 1.1258 | - | | 2.0549 | 46700 | 1.1509 | - | | 2.0554 | 46710 | 1.1591 | - | | 2.0558 | 46720 | 1.1293 | - | | 2.0562 | 46730 | 1.1361 | - | | 2.0567 | 46740 | 1.1483 | - | | 2.0571 | 46750 | 1.1384 | - | | 2.0576 | 46760 | 1.1348 | - | | 2.0580 | 46770 | 1.1346 | - | | 2.0584 | 46780 | 1.144 | - | | 2.0589 | 46790 | 1.1114 | - | | 2.0593 | 46800 | 1.1814 | - | | 2.0598 | 46810 | 1.1427 | - | | 2.0602 | 46820 | 1.1264 | - | | 2.0606 | 46830 | 1.0985 | - | | 2.0611 | 46840 | 1.1533 | - | | 2.0615 | 46850 | 1.0977 | - | | 2.0620 | 46860 | 1.1625 | - | | 2.0624 | 46870 | 1.113 | - | | 2.0628 | 46880 | 1.067 | - | | 2.0633 | 46890 | 1.0999 | - | | 2.0637 | 46900 | 1.1682 | - | | 2.0642 | 46910 | 1.155 | - | | 2.0646 | 46920 | 1.1295 | - | | 2.0650 | 46930 | 1.17 | - | | 2.0655 | 46940 | 1.1496 | - | | 2.0659 | 46950 | 1.0787 | - | | 2.0664 | 46960 | 1.131 | - | | 2.0668 | 46970 | 1.1335 | - | | 2.0672 | 46980 | 1.0748 | - | | 2.0677 | 46990 | 1.1728 | - | | 2.0681 | 47000 | 1.1168 | - | | 2.0686 | 47010 | 1.1243 | - | | 2.0690 | 47020 | 1.1152 | - | | 2.0694 | 47030 | 1.1387 | - | | 2.0699 | 47040 | 1.1423 | - | | 2.0703 | 47050 | 1.1311 | - | | 2.0708 | 47060 | 1.1319 | - | | 2.0712 | 47070 | 1.1475 | - | | 2.0716 | 47080 | 1.1193 | - | | 2.0721 | 47090 | 1.1414 | - | | 2.0725 | 47100 | 1.1108 | - | | 2.0730 | 47110 | 1.1304 | - | | 2.0734 | 47120 | 1.1273 | - | | 2.0738 | 47130 | 1.1309 | - | | 2.0743 | 47140 | 1.1311 | - | | 2.0747 | 47150 | 1.1579 | - | | 2.0752 | 47160 | 1.1694 | - | | 2.0756 | 47170 | 1.137 | - | | 2.0760 | 47180 | 1.117 | - | | 2.0765 | 47190 | 1.1054 | - | | 2.0769 | 47200 | 1.0723 | - | | 2.0774 | 47210 | 1.1011 | - | | 2.0778 | 47220 | 1.1403 | - | | 2.0782 | 47230 | 1.1405 | - | | 2.0787 | 47240 | 1.1642 | - | | 2.0791 | 47250 | 1.1169 | - | | 2.0796 | 47260 | 1.1318 | - | | 2.0800 | 47270 | 1.1309 | - | | 2.0804 | 47280 | 1.0999 | - | | 2.0809 | 47290 | 1.1413 | - | | 2.0813 | 47300 | 1.1334 | - | | 2.0818 | 47310 | 1.1066 | - | | 2.0822 | 47320 | 1.1302 | - | | 2.0826 | 47330 | 1.0762 | - | | 2.0831 | 47340 | 1.1662 | - | | 2.0835 | 47350 | 1.1621 | - | | 2.0840 | 47360 | 1.2094 | - | | 2.0844 | 47370 | 1.0951 | - | | 2.0848 | 47380 | 1.1515 | - | | 2.0853 | 47390 | 1.1212 | - | | 2.0857 | 47400 | 1.0982 | - | | 2.0862 | 47410 | 1.1406 | - | | 2.0866 | 47420 | 1.1067 | - | | 2.0870 | 47430 | 1.1151 | - | | 2.0875 | 47440 | 1.1266 | - | | 2.0879 | 47450 | 1.117 | - | | 2.0884 | 47460 | 1.1597 | - | | 2.0888 | 47470 | 1.1563 | - | | 2.0892 | 47480 | 1.1151 | - | | 2.0897 | 47490 | 1.1321 | - | | 2.0901 | 47500 | 1.0743 | - | | 2.0906 | 47510 | 1.152 | - | | 2.0910 | 47520 | 1.1018 | - | | 2.0914 | 47530 | 1.0976 | - | | 2.0919 | 47540 | 1.1333 | - | | 2.0923 | 47550 | 1.1535 | - | | 2.0928 | 47560 | 1.0793 | - | | 2.0932 | 47570 | 1.189 | - | | 2.0936 | 47580 | 1.125 | - | | 2.0941 | 47590 | 1.1049 | - | | 2.0945 | 47600 | 1.1202 | - | | 2.0950 | 47610 | 1.0985 | - | | 2.0954 | 47620 | 1.1431 | - | | 2.0958 | 47630 | 1.128 | - | | 2.0963 | 47640 | 1.1152 | - | | 2.0967 | 47650 | 1.1643 | - | | 2.0972 | 47660 | 1.0748 | - | | 2.0976 | 47670 | 1.1251 | - | | 2.0980 | 47680 | 1.1402 | - | | 2.0985 | 47690 | 1.1132 | - | | 2.0989 | 47700 | 1.1114 | - | | 2.0994 | 47710 | 1.1201 | - | | 2.0998 | 47720 | 1.1324 | - | | 2.1002 | 47730 | 1.107 | - | | 2.1007 | 47740 | 1.1409 | - | | 2.1011 | 47750 | 1.1447 | - | | 2.1013 | 47754 | - | 1.4399 | | 2.1016 | 47760 | 1.1183 | - | | 2.1020 | 47770 | 1.089 | - | | 2.1024 | 47780 | 1.1683 | - | | 2.1029 | 47790 | 1.1189 | - | | 2.1033 | 47800 | 1.1497 | - | | 2.1038 | 47810 | 1.1256 | - | | 2.1042 | 47820 | 1.0732 | - | | 2.1046 | 47830 | 1.1136 | - | | 2.1051 | 47840 | 1.0963 | - | | 2.1055 | 47850 | 1.1425 | - | | 2.1060 | 47860 | 1.1293 | - | | 2.1064 | 47870 | 1.0829 | - | | 2.1068 | 47880 | 1.1116 | - | | 2.1073 | 47890 | 1.0804 | - | | 2.1077 | 47900 | 1.1267 | - | | 2.1082 | 47910 | 1.1318 | - | | 2.1086 | 47920 | 1.1302 | - | | 2.1090 | 47930 | 1.111 | - | | 2.1095 | 47940 | 1.1409 | - | | 2.1099 | 47950 | 1.0963 | - | | 2.1104 | 47960 | 1.1185 | - | | 2.1108 | 47970 | 1.1154 | - | | 2.1112 | 47980 | 1.1677 | - | | 2.1117 | 47990 | 1.0884 | - | | 2.1121 | 48000 | 1.1258 | - | | 2.1126 | 48010 | 1.1174 | - | | 2.1130 | 48020 | 1.136 | - | | 2.1134 | 48030 | 1.1272 | - | | 2.1139 | 48040 | 1.1159 | - | | 2.1143 | 48050 | 1.1314 | - | | 2.1148 | 48060 | 1.1025 | - | | 2.1152 | 48070 | 1.1034 | - | | 2.1156 | 48080 | 1.1151 | - | | 2.1161 | 48090 | 1.0858 | - | | 2.1165 | 48100 | 1.1712 | - | | 2.1170 | 48110 | 1.0976 | - | | 2.1174 | 48120 | 1.1011 | - | | 2.1178 | 48130 | 1.1609 | - | | 2.1183 | 48140 | 1.1451 | - | | 2.1187 | 48150 | 1.1546 | - | | 2.1192 | 48160 | 1.0814 | - | | 2.1196 | 48170 | 1.1571 | - | | 2.1200 | 48180 | 1.1015 | - | | 2.1205 | 48190 | 1.1021 | - | | 2.1209 | 48200 | 1.135 | - | | 2.1214 | 48210 | 1.0967 | - | | 2.1218 | 48220 | 1.0826 | - | | 2.1222 | 48230 | 1.1111 | - | | 2.1227 | 48240 | 1.0837 | - | | 2.1231 | 48250 | 1.1292 | - | | 2.1236 | 48260 | 1.1014 | - | | 2.1240 | 48270 | 1.1874 | - | | 2.1244 | 48280 | 1.1611 | - | | 2.1249 | 48290 | 1.1514 | - | | 2.1253 | 48300 | 1.0561 | - | | 2.1258 | 48310 | 1.139 | - | | 2.1262 | 48320 | 1.1302 | - | | 2.1266 | 48330 | 1.1391 | - | | 2.1271 | 48340 | 1.1482 | - | | 2.1275 | 48350 | 1.1474 | - | | 2.1280 | 48360 | 1.1067 | - | | 2.1284 | 48370 | 1.1239 | - | | 2.1288 | 48380 | 1.1108 | - | | 2.1293 | 48390 | 1.1379 | - | | 2.1297 | 48400 | 1.1529 | - | | 2.1302 | 48410 | 1.1783 | - | | 2.1306 | 48420 | 1.0841 | - | | 2.1310 | 48430 | 1.1482 | - | | 2.1315 | 48440 | 1.1356 | - | | 2.1319 | 48450 | 1.0778 | - | | 2.1324 | 48460 | 1.13 | - | | 2.1328 | 48470 | 1.1024 | - | | 2.1332 | 48480 | 1.1644 | - | | 2.1337 | 48490 | 1.0955 | - | | 2.1341 | 48500 | 1.1487 | - | | 2.1346 | 48510 | 1.1176 | - | | 2.1350 | 48520 | 1.1658 | - | | 2.1354 | 48530 | 1.1444 | - | | 2.1359 | 48540 | 1.0683 | - | | 2.1363 | 48550 | 1.1197 | - | | 2.1368 | 48560 | 1.1317 | - | | 2.1372 | 48570 | 1.0842 | - | | 2.1376 | 48580 | 1.1293 | - | | 2.1381 | 48590 | 1.148 | - | | 2.1385 | 48600 | 1.0655 | - | | 2.1390 | 48610 | 1.0856 | - | | 2.1394 | 48620 | 1.1494 | - | | 2.1398 | 48630 | 1.108 | - | | 2.1403 | 48640 | 1.1439 | - | | 2.1407 | 48650 | 1.0594 | - | | 2.1412 | 48660 | 1.1249 | - | | 2.1416 | 48670 | 1.1617 | - | | 2.1420 | 48680 | 1.0733 | - | | 2.1425 | 48690 | 1.1022 | - | | 2.1429 | 48700 | 1.1487 | - | | 2.1434 | 48710 | 1.1455 | - | | 2.1438 | 48720 | 1.1223 | - | | 2.1442 | 48730 | 1.0898 | - | | 2.1447 | 48740 | 1.1267 | - | | 2.1451 | 48750 | 1.118 | - | | 2.1456 | 48760 | 1.0967 | - | | 2.1460 | 48770 | 1.1294 | - | | 2.1464 | 48780 | 1.1186 | - | | 2.1469 | 48790 | 1.117 | - | | 2.1473 | 48800 | 1.1796 | - | | 2.1478 | 48810 | 1.0751 | - | | 2.1482 | 48820 | 1.1539 | - | | 2.1486 | 48830 | 1.1054 | - | | 2.1491 | 48840 | 1.1049 | - | | 2.1495 | 48850 | 1.0968 | - | | 2.1500 | 48860 | 1.1159 | - | | 2.1504 | 48870 | 1.1218 | - | | 2.1508 | 48880 | 1.1396 | - | | 2.1513 | 48890 | 1.1175 | - | | 2.1513 | 48891 | - | 1.4101 | | 2.1517 | 48900 | 1.0506 | - | | 2.1522 | 48910 | 1.1275 | - | | 2.1526 | 48920 | 1.0995 | - | | 2.1530 | 48930 | 1.1034 | - | | 2.1535 | 48940 | 1.1638 | - | | 2.1539 | 48950 | 1.1007 | - | | 2.1544 | 48960 | 1.1156 | - | | 2.1548 | 48970 | 1.068 | - | | 2.1552 | 48980 | 1.1299 | - | | 2.1557 | 48990 | 1.1209 | - | | 2.1561 | 49000 | 1.1112 | - | | 2.1566 | 49010 | 1.0734 | - | | 2.1570 | 49020 | 1.1103 | - | | 2.1574 | 49030 | 1.0968 | - | | 2.1579 | 49040 | 1.1753 | - | | 2.1583 | 49050 | 1.1101 | - | | 2.1588 | 49060 | 1.0715 | - | | 2.1592 | 49070 | 1.139 | - | | 2.1596 | 49080 | 1.0928 | - | | 2.1601 | 49090 | 1.0868 | - | | 2.1605 | 49100 | 1.0935 | - | | 2.1610 | 49110 | 1.0937 | - | | 2.1614 | 49120 | 1.0755 | - | | 2.1618 | 49130 | 1.0998 | - | | 2.1623 | 49140 | 1.1163 | - | | 2.1627 | 49150 | 1.1277 | - | | 2.1632 | 49160 | 1.1101 | - | | 2.1636 | 49170 | 1.1342 | - | | 2.1640 | 49180 | 1.0917 | - | | 2.1645 | 49190 | 1.1043 | - | | 2.1649 | 49200 | 1.1365 | - | | 2.1654 | 49210 | 1.1702 | - | | 2.1658 | 49220 | 1.1341 | - | | 2.1662 | 49230 | 1.1541 | - | | 2.1667 | 49240 | 1.0884 | - | | 2.1671 | 49250 | 1.1467 | - | | 2.1676 | 49260 | 1.1442 | - | | 2.1680 | 49270 | 1.0916 | - | | 2.1684 | 49280 | 1.1297 | - | | 2.1689 | 49290 | 1.1187 | - | | 2.1693 | 49300 | 1.1316 | - | | 2.1698 | 49310 | 1.1348 | - | | 2.1702 | 49320 | 1.1328 | - | | 2.1706 | 49330 | 1.1327 | - | | 2.1711 | 49340 | 1.1363 | - | | 2.1715 | 49350 | 1.1496 | - | | 2.1720 | 49360 | 1.1214 | - | | 2.1724 | 49370 | 1.0989 | - | | 2.1728 | 49380 | 1.1128 | - | | 2.1733 | 49390 | 1.1109 | - | | 2.1737 | 49400 | 1.0502 | - | | 2.1742 | 49410 | 1.1199 | - | | 2.1746 | 49420 | 1.1522 | - | | 2.1750 | 49430 | 1.0955 | - | | 2.1755 | 49440 | 1.1256 | - | | 2.1759 | 49450 | 1.0977 | - | | 2.1764 | 49460 | 1.1316 | - | | 2.1768 | 49470 | 1.0727 | - | | 2.1772 | 49480 | 1.091 | - | | 2.1777 | 49490 | 1.1476 | - | | 2.1781 | 49500 | 1.0993 | - | | 2.1786 | 49510 | 1.0953 | - | | 2.1790 | 49520 | 1.1485 | - | | 2.1794 | 49530 | 1.1321 | - | | 2.1799 | 49540 | 1.0641 | - | | 2.1803 | 49550 | 1.1163 | - | | 2.1808 | 49560 | 1.0851 | - | | 2.1812 | 49570 | 1.1525 | - | | 2.1816 | 49580 | 1.1256 | - | | 2.1821 | 49590 | 1.0561 | - | | 2.1825 | 49600 | 1.0944 | - | | 2.1830 | 49610 | 1.0914 | - | | 2.1834 | 49620 | 1.0825 | - | | 2.1838 | 49630 | 1.0701 | - | | 2.1843 | 49640 | 1.1396 | - | | 2.1847 | 49650 | 1.0871 | - | | 2.1852 | 49660 | 1.0919 | - | | 2.1856 | 49670 | 1.0439 | - | | 2.1860 | 49680 | 1.1112 | - | | 2.1865 | 49690 | 1.133 | - | | 2.1869 | 49700 | 1.059 | - | | 2.1874 | 49710 | 1.104 | - | | 2.1878 | 49720 | 1.0858 | - | | 2.1882 | 49730 | 1.1178 | - | | 2.1887 | 49740 | 1.0722 | - | | 2.1891 | 49750 | 1.136 | - | | 2.1896 | 49760 | 1.149 | - | | 2.1900 | 49770 | 1.1167 | - | | 2.1904 | 49780 | 1.1606 | - | | 2.1909 | 49790 | 1.1402 | - | | 2.1913 | 49800 | 1.1197 | - | | 2.1918 | 49810 | 1.0781 | - | | 2.1922 | 49820 | 1.1023 | - | | 2.1926 | 49830 | 1.0872 | - | | 2.1931 | 49840 | 1.122 | - | | 2.1935 | 49850 | 1.1593 | - | | 2.1940 | 49860 | 1.0881 | - | | 2.1944 | 49870 | 1.0719 | - | | 2.1948 | 49880 | 1.1236 | - | | 2.1953 | 49890 | 1.1484 | - | | 2.1957 | 49900 | 1.0953 | - | | 2.1962 | 49910 | 1.1773 | - | | 2.1966 | 49920 | 1.1479 | - | | 2.1970 | 49930 | 1.0996 | - | | 2.1975 | 49940 | 1.1329 | - | | 2.1979 | 49950 | 1.1454 | - | | 2.1984 | 49960 | 1.1236 | - | | 2.1988 | 49970 | 1.1117 | - | | 2.1992 | 49980 | 1.1038 | - | | 2.1997 | 49990 | 1.1434 | - | | 2.2001 | 50000 | 1.1429 | - | | 2.2006 | 50010 | 1.1118 | - | | 2.2010 | 50020 | 1.0844 | - | | 2.2014 | 50028 | - | 1.4408 | | 2.2014 | 50030 | 1.113 | - | | 2.2019 | 50040 | 1.1151 | - | | 2.2023 | 50050 | 1.0982 | - | | 2.2028 | 50060 | 1.0955 | - | | 2.2032 | 50070 | 1.1292 | - | | 2.2036 | 50080 | 1.0705 | - | | 2.2041 | 50090 | 1.0683 | - | | 2.2045 | 50100 | 1.1567 | - | | 2.2050 | 50110 | 1.1074 | - | | 2.2054 | 50120 | 1.0935 | - | | 2.2058 | 50130 | 1.1724 | - | | 2.2063 | 50140 | 1.1547 | - | | 2.2067 | 50150 | 1.1448 | - | | 2.2072 | 50160 | 1.0953 | - | | 2.2076 | 50170 | 1.1117 | - | | 2.2080 | 50180 | 1.0832 | - | | 2.2085 | 50190 | 1.0815 | - | | 2.2089 | 50200 | 1.084 | - | | 2.2094 | 50210 | 1.1106 | - | | 2.2098 | 50220 | 1.1453 | - | | 2.2102 | 50230 | 1.1225 | - | | 2.2107 | 50240 | 1.1107 | - | | 2.2111 | 50250 | 1.1041 | - | | 2.2116 | 50260 | 1.0893 | - | | 2.2120 | 50270 | 1.1054 | - | | 2.2124 | 50280 | 1.1094 | - | | 2.2129 | 50290 | 1.108 | - | | 2.2133 | 50300 | 1.1005 | - | | 2.2138 | 50310 | 1.0846 | - | | 2.2142 | 50320 | 1.1241 | - | | 2.2146 | 50330 | 1.1103 | - | | 2.2151 | 50340 | 1.0858 | - | | 2.2155 | 50350 | 1.135 | - | | 2.2160 | 50360 | 1.1783 | - | | 2.2164 | 50370 | 1.0845 | - | | 2.2168 | 50380 | 1.1204 | - | | 2.2173 | 50390 | 1.1253 | - | | 2.2177 | 50400 | 1.1014 | - | | 2.2182 | 50410 | 1.1209 | - | | 2.2186 | 50420 | 1.1072 | - | | 2.2190 | 50430 | 1.1092 | - | | 2.2195 | 50440 | 1.1163 | - | | 2.2199 | 50450 | 1.1242 | - | | 2.2204 | 50460 | 1.138 | - | | 2.2208 | 50470 | 1.1393 | - | | 2.2212 | 50480 | 1.0676 | - | | 2.2217 | 50490 | 1.0912 | - | | 2.2221 | 50500 | 1.1118 | - | | 2.2226 | 50510 | 1.1031 | - | | 2.2230 | 50520 | 1.1166 | - | | 2.2234 | 50530 | 1.0913 | - | | 2.2239 | 50540 | 1.089 | - | | 2.2243 | 50550 | 1.141 | - | | 2.2248 | 50560 | 1.0876 | - | | 2.2252 | 50570 | 1.1473 | - | | 2.2256 | 50580 | 1.1168 | - | | 2.2261 | 50590 | 1.081 | - | | 2.2265 | 50600 | 1.0927 | - | | 2.2270 | 50610 | 1.1059 | - | | 2.2274 | 50620 | 1.1167 | - | | 2.2278 | 50630 | 1.142 | - | | 2.2283 | 50640 | 1.1299 | - | | 2.2287 | 50650 | 1.1039 | - | | 2.2292 | 50660 | 1.0575 | - | | 2.2296 | 50670 | 1.0804 | - | | 2.2300 | 50680 | 1.129 | - | | 2.2305 | 50690 | 1.0703 | - | | 2.2309 | 50700 | 1.0901 | - | | 2.2314 | 50710 | 1.0804 | - | | 2.2318 | 50720 | 1.1232 | - | | 2.2322 | 50730 | 1.1095 | - | | 2.2327 | 50740 | 1.1034 | - | | 2.2331 | 50750 | 1.0418 | - | | 2.2336 | 50760 | 1.0633 | - | | 2.2340 | 50770 | 1.1047 | - | | 2.2344 | 50780 | 1.0475 | - | | 2.2349 | 50790 | 1.0813 | - | | 2.2353 | 50800 | 1.1026 | - | | 2.2358 | 50810 | 1.1035 | - | | 2.2362 | 50820 | 1.0921 | - | | 2.2366 | 50830 | 1.0977 | - | | 2.2371 | 50840 | 1.1125 | - | | 2.2375 | 50850 | 1.096 | - | | 2.2380 | 50860 | 1.0888 | - | | 2.2384 | 50870 | 1.1415 | - | | 2.2388 | 50880 | 1.114 | - | | 2.2393 | 50890 | 1.07 | - | | 2.2397 | 50900 | 1.1107 | - | | 2.2402 | 50910 | 1.1219 | - | | 2.2406 | 50920 | 1.078 | - | | 2.2410 | 50930 | 1.0593 | - | | 2.2415 | 50940 | 1.0679 | - | | 2.2419 | 50950 | 1.1221 | - | | 2.2424 | 50960 | 1.1256 | - | | 2.2428 | 50970 | 1.0984 | - | | 2.2432 | 50980 | 1.0762 | - | | 2.2437 | 50990 | 1.0965 | - | | 2.2441 | 51000 | 1.087 | - | | 2.2446 | 51010 | 1.1202 | - | | 2.2450 | 51020 | 1.1204 | - | | 2.2454 | 51030 | 1.0823 | - | | 2.2459 | 51040 | 1.0699 | - | | 2.2463 | 51050 | 1.0692 | - | | 2.2468 | 51060 | 1.0948 | - | | 2.2472 | 51070 | 1.0958 | - | | 2.2476 | 51080 | 1.0666 | - | | 2.2481 | 51090 | 1.1122 | - | | 2.2485 | 51100 | 1.0778 | - | | 2.2490 | 51110 | 1.0867 | - | | 2.2494 | 51120 | 1.1254 | - | | 2.2498 | 51130 | 1.094 | - | | 2.2503 | 51140 | 1.1131 | - | | 2.2507 | 51150 | 1.1322 | - | | 2.2512 | 51160 | 1.1406 | - | | 2.2514 | 51165 | - | 1.4187 | | 2.2516 | 51170 | 1.0756 | - | | 2.2520 | 51180 | 1.0685 | - | | 2.2525 | 51190 | 1.0716 | - | | 2.2529 | 51200 | 1.1367 | - | | 2.2534 | 51210 | 1.14 | - | | 2.2538 | 51220 | 1.1043 | - | | 2.2542 | 51230 | 1.0751 | - | | 2.2547 | 51240 | 1.0577 | - | | 2.2551 | 51250 | 1.1215 | - | | 2.2556 | 51260 | 1.0925 | - | | 2.2560 | 51270 | 1.0975 | - | | 2.2564 | 51280 | 1.1289 | - | | 2.2569 | 51290 | 1.0778 | - | | 2.2573 | 51300 | 1.0623 | - | | 2.2578 | 51310 | 1.0657 | - | | 2.2582 | 51320 | 1.116 | - | | 2.2586 | 51330 | 1.1092 | - | | 2.2591 | 51340 | 1.1516 | - | | 2.2595 | 51350 | 1.0981 | - | | 2.2600 | 51360 | 1.0781 | - | | 2.2604 | 51370 | 1.107 | - | | 2.2608 | 51380 | 1.0898 | - | | 2.2613 | 51390 | 1.0604 | - | | 2.2617 | 51400 | 1.057 | - | | 2.2622 | 51410 | 1.1112 | - | | 2.2626 | 51420 | 1.0782 | - | | 2.2630 | 51430 | 1.0522 | - | | 2.2635 | 51440 | 1.0443 | - | | 2.2639 | 51450 | 1.1068 | - | | 2.2644 | 51460 | 1.1218 | - | | 2.2648 | 51470 | 1.112 | - | | 2.2652 | 51480 | 1.0964 | - | | 2.2657 | 51490 | 1.0659 | - | | 2.2661 | 51500 | 1.1209 | - | | 2.2666 | 51510 | 1.1179 | - | | 2.2670 | 51520 | 1.0571 | - | | 2.2674 | 51530 | 1.0894 | - | | 2.2679 | 51540 | 1.1095 | - | | 2.2683 | 51550 | 1.0836 | - | | 2.2688 | 51560 | 1.0798 | - | | 2.2692 | 51570 | 1.0885 | - | | 2.2696 | 51580 | 1.1281 | - | | 2.2701 | 51590 | 1.0855 | - | | 2.2705 | 51600 | 1.1194 | - | | 2.2710 | 51610 | 1.0966 | - | | 2.2714 | 51620 | 1.0604 | - | | 2.2718 | 51630 | 1.1153 | - | | 2.2723 | 51640 | 1.0573 | - | | 2.2727 | 51650 | 1.0953 | - | | 2.2732 | 51660 | 1.1374 | - | | 2.2736 | 51670 | 1.051 | - | | 2.2740 | 51680 | 1.0674 | - | | 2.2745 | 51690 | 1.1214 | - | | 2.2749 | 51700 | 1.1118 | - | | 2.2754 | 51710 | 1.1055 | - | | 2.2758 | 51720 | 1.0673 | - | | 2.2762 | 51730 | 1.1018 | - | | 2.2767 | 51740 | 1.1306 | - | | 2.2771 | 51750 | 1.0728 | - | | 2.2776 | 51760 | 1.1219 | - | | 2.2780 | 51770 | 1.0974 | - | | 2.2784 | 51780 | 1.0987 | - | | 2.2789 | 51790 | 1.0742 | - | | 2.2793 | 51800 | 1.1319 | - | | 2.2798 | 51810 | 1.1054 | - | | 2.2802 | 51820 | 1.1471 | - | | 2.2806 | 51830 | 1.1143 | - | | 2.2811 | 51840 | 1.0715 | - | | 2.2815 | 51850 | 1.0598 | - | | 2.2820 | 51860 | 1.0512 | - | | 2.2824 | 51870 | 1.0542 | - | | 2.2828 | 51880 | 1.0944 | - | | 2.2833 | 51890 | 1.1054 | - | | 2.2837 | 51900 | 1.09 | - | | 2.2842 | 51910 | 1.0663 | - | | 2.2846 | 51920 | 1.1157 | - | | 2.2850 | 51930 | 1.0759 | - | | 2.2855 | 51940 | 1.042 | - | | 2.2859 | 51950 | 1.0747 | - | | 2.2864 | 51960 | 1.1287 | - | | 2.2868 | 51970 | 1.0216 | - | | 2.2872 | 51980 | 1.0706 | - | | 2.2877 | 51990 | 1.0959 | - | | 2.2881 | 52000 | 1.131 | - | | 2.2886 | 52010 | 1.0953 | - | | 2.2890 | 52020 | 1.1178 | - | | 2.2894 | 52030 | 1.071 | - | | 2.2899 | 52040 | 1.0247 | - | | 2.2903 | 52050 | 1.063 | - | | 2.2908 | 52060 | 1.0872 | - | | 2.2912 | 52070 | 1.0889 | - | | 2.2916 | 52080 | 1.1129 | - | | 2.2921 | 52090 | 1.1533 | - | | 2.2925 | 52100 | 1.0576 | - | | 2.2930 | 52110 | 1.1611 | - | | 2.2934 | 52120 | 1.0805 | - | | 2.2938 | 52130 | 1.1009 | - | | 2.2943 | 52140 | 1.1339 | - | | 2.2947 | 52150 | 1.113 | - | | 2.2952 | 52160 | 1.0992 | - | | 2.2956 | 52170 | 1.0933 | - | | 2.2960 | 52180 | 1.0737 | - | | 2.2965 | 52190 | 1.0951 | - | | 2.2969 | 52200 | 1.0731 | - | | 2.2974 | 52210 | 1.0501 | - | | 2.2978 | 52220 | 1.109 | - | | 2.2982 | 52230 | 1.1004 | - | | 2.2987 | 52240 | 1.0688 | - | | 2.2991 | 52250 | 1.066 | - | | 2.2996 | 52260 | 1.0736 | - | | 2.3000 | 52270 | 1.1011 | - | | 2.3004 | 52280 | 1.1167 | - | | 2.3009 | 52290 | 1.0832 | - | | 2.3013 | 52300 | 1.1215 | - | | 2.3014 | 52302 | - | 1.4365 | | 2.3018 | 52310 | 1.0201 | - | | 2.3022 | 52320 | 1.1023 | - | | 2.3026 | 52330 | 1.0713 | - | | 2.3031 | 52340 | 1.0557 | - | | 2.3035 | 52350 | 1.108 | - | | 2.3040 | 52360 | 1.0622 | - | | 2.3044 | 52370 | 1.0705 | - | | 2.3048 | 52380 | 1.1035 | - | | 2.3053 | 52390 | 1.1058 | - | | 2.3057 | 52400 | 1.0379 | - | | 2.3062 | 52410 | 1.0658 | - | | 2.3066 | 52420 | 1.0458 | - | | 2.3070 | 52430 | 1.0925 | - | | 2.3075 | 52440 | 1.0923 | - | | 2.3079 | 52450 | 1.0482 | - | | 2.3084 | 52460 | 1.0728 | - | | 2.3088 | 52470 | 1.0209 | - | | 2.3092 | 52480 | 1.0573 | - | | 2.3097 | 52490 | 1.1076 | - | | 2.3101 | 52500 | 1.109 | - | | 2.3106 | 52510 | 1.0855 | - | | 2.3110 | 52520 | 1.0674 | - | | 2.3114 | 52530 | 1.0761 | - | | 2.3119 | 52540 | 1.0648 | - | | 2.3123 | 52550 | 1.1026 | - | | 2.3128 | 52560 | 1.0821 | - | | 2.3132 | 52570 | 1.0581 | - | | 2.3136 | 52580 | 1.0535 | - | | 2.3141 | 52590 | 1.0425 | - | | 2.3145 | 52600 | 1.0693 | - | | 2.3150 | 52610 | 1.0886 | - | | 2.3154 | 52620 | 1.0379 | - | | 2.3158 | 52630 | 1.0744 | - | | 2.3163 | 52640 | 1.0726 | - | | 2.3167 | 52650 | 1.0825 | - | | 2.3172 | 52660 | 1.0875 | - | | 2.3176 | 52670 | 1.1 | - | | 2.3180 | 52680 | 1.0972 | - | | 2.3185 | 52690 | 1.1335 | - | | 2.3189 | 52700 | 1.0373 | - | | 2.3194 | 52710 | 1.0293 | - | | 2.3198 | 52720 | 1.0911 | - | | 2.3202 | 52730 | 1.071 | - | | 2.3207 | 52740 | 1.0564 | - | | 2.3211 | 52750 | 1.0978 | - | | 2.3216 | 52760 | 1.1199 | - | | 2.3220 | 52770 | 1.1439 | - | | 2.3225 | 52780 | 1.1313 | - | | 2.3229 | 52790 | 1.0947 | - | | 2.3233 | 52800 | 1.0892 | - | | 2.3238 | 52810 | 1.0569 | - | | 2.3242 | 52820 | 1.077 | - | | 2.3247 | 52830 | 1.1019 | - | | 2.3251 | 52840 | 1.0339 | - | | 2.3255 | 52850 | 1.095 | - | | 2.3260 | 52860 | 1.0683 | - | | 2.3264 | 52870 | 1.0656 | - | | 2.3269 | 52880 | 1.0459 | - | | 2.3273 | 52890 | 1.0803 | - | | 2.3277 | 52900 | 1.1183 | - | | 2.3282 | 52910 | 1.0902 | - | | 2.3286 | 52920 | 1.0583 | - | | 2.3291 | 52930 | 1.069 | - | | 2.3295 | 52940 | 1.0722 | - | | 2.3299 | 52950 | 1.0738 | - | | 2.3304 | 52960 | 1.0694 | - | | 2.3308 | 52970 | 1.0309 | - | | 2.3313 | 52980 | 1.0746 | - | | 2.3317 | 52990 | 1.1187 | - | | 2.3321 | 53000 | 1.0679 | - | | 2.3326 | 53010 | 1.0625 | - | | 2.3330 | 53020 | 1.0828 | - | | 2.3335 | 53030 | 1.1082 | - | | 2.3339 | 53040 | 1.0918 | - | | 2.3343 | 53050 | 1.0799 | - | | 2.3348 | 53060 | 1.0968 | - | | 2.3352 | 53070 | 1.0629 | - | | 2.3357 | 53080 | 1.0944 | - | | 2.3361 | 53090 | 1.058 | - | | 2.3365 | 53100 | 1.0826 | - | | 2.3370 | 53110 | 1.0775 | - | | 2.3374 | 53120 | 1.0657 | - | | 2.3379 | 53130 | 1.063 | - | | 2.3383 | 53140 | 1.0905 | - | | 2.3387 | 53150 | 1.0692 | - | | 2.3392 | 53160 | 1.032 | - | | 2.3396 | 53170 | 1.0057 | - | | 2.3401 | 53180 | 1.046 | - | | 2.3405 | 53190 | 1.0726 | - | | 2.3409 | 53200 | 1.0694 | - | | 2.3414 | 53210 | 1.081 | - | | 2.3418 | 53220 | 1.0692 | - | | 2.3423 | 53230 | 1.0485 | - | | 2.3427 | 53240 | 1.0573 | - | | 2.3431 | 53250 | 1.1172 | - | | 2.3436 | 53260 | 1.0777 | - | | 2.3440 | 53270 | 0.9993 | - | | 2.3445 | 53280 | 1.0661 | - | | 2.3449 | 53290 | 1.0711 | - | | 2.3453 | 53300 | 1.0624 | - | | 2.3458 | 53310 | 1.0392 | - | | 2.3462 | 53320 | 1.0589 | - | | 2.3467 | 53330 | 1.042 | - | | 2.3471 | 53340 | 1.1111 | - | | 2.3475 | 53350 | 1.0779 | - | | 2.3480 | 53360 | 1.0928 | - | | 2.3484 | 53370 | 1.1236 | - | | 2.3489 | 53380 | 1.0631 | - | | 2.3493 | 53390 | 1.0884 | - | | 2.3497 | 53400 | 1.0774 | - | | 2.3502 | 53410 | 1.0683 | - | | 2.3506 | 53420 | 1.0932 | - | | 2.3511 | 53430 | 1.0834 | - | | 2.3514 | 53439 | - | 1.4361 | | 2.3515 | 53440 | 1.0951 | - | | 2.3519 | 53450 | 1.0572 | - | | 2.3524 | 53460 | 1.0538 | - | | 2.3528 | 53470 | 1.1145 | - | | 2.3533 | 53480 | 1.0818 | - | | 2.3537 | 53490 | 1.1 | - | | 2.3541 | 53500 | 1.0793 | - | | 2.3546 | 53510 | 1.0522 | - | | 2.3550 | 53520 | 1.066 | - | | 2.3555 | 53530 | 1.0902 | - | | 2.3559 | 53540 | 1.0927 | - | | 2.3563 | 53550 | 1.1553 | - | | 2.3568 | 53560 | 1.0633 | - | | 2.3572 | 53570 | 1.0889 | - | | 2.3577 | 53580 | 1.0778 | - | | 2.3581 | 53590 | 1.0817 | - | | 2.3585 | 53600 | 1.1198 | - | | 2.3590 | 53610 | 1.0662 | - | | 2.3594 | 53620 | 1.0948 | - | | 2.3599 | 53630 | 1.1131 | - | | 2.3603 | 53640 | 1.0974 | - | | 2.3607 | 53650 | 1.0441 | - | | 2.3612 | 53660 | 1.0179 | - | | 2.3616 | 53670 | 1.1159 | - | | 2.3621 | 53680 | 1.0543 | - | | 2.3625 | 53690 | 1.0677 | - | | 2.3629 | 53700 | 1.0675 | - | | 2.3634 | 53710 | 1.0662 | - | | 2.3638 | 53720 | 1.0692 | - | | 2.3643 | 53730 | 1.0724 | - | | 2.3647 | 53740 | 1.1182 | - | | 2.3651 | 53750 | 1.0783 | - | | 2.3656 | 53760 | 1.057 | - | | 2.3660 | 53770 | 1.0513 | - | | 2.3665 | 53780 | 1.0299 | - | | 2.3669 | 53790 | 1.1076 | - | | 2.3673 | 53800 | 1.0505 | - | | 2.3678 | 53810 | 1.1195 | - | | 2.3682 | 53820 | 1.0519 | - | | 2.3687 | 53830 | 1.076 | - | | 2.3691 | 53840 | 1.0485 | - | | 2.3695 | 53850 | 1.0077 | - | | 2.3700 | 53860 | 1.0979 | - | | 2.3704 | 53870 | 1.0451 | - | | 2.3709 | 53880 | 1.0495 | - | | 2.3713 | 53890 | 1.0568 | - | | 2.3717 | 53900 | 1.0788 | - | | 2.3722 | 53910 | 1.0937 | - | | 2.3726 | 53920 | 1.0685 | - | | 2.3731 | 53930 | 1.1056 | - | | 2.3735 | 53940 | 1.0109 | - | | 2.3739 | 53950 | 1.104 | - | | 2.3744 | 53960 | 1.0395 | - | | 2.3748 | 53970 | 1.0662 | - | | 2.3753 | 53980 | 1.0684 | - | | 2.3757 | 53990 | 1.1029 | - | | 2.3761 | 54000 | 1.0807 | - | | 2.3766 | 54010 | 1.0894 | - | | 2.3770 | 54020 | 1.0581 | - | | 2.3775 | 54030 | 1.0437 | - | | 2.3779 | 54040 | 1.0884 | - | | 2.3783 | 54050 | 1.0783 | - | | 2.3788 | 54060 | 1.0618 | - | | 2.3792 | 54070 | 1.0879 | - | | 2.3797 | 54080 | 1.1041 | - | | 2.3801 | 54090 | 1.0866 | - | | 2.3805 | 54100 | 1.0872 | - | | 2.3810 | 54110 | 1.0646 | - | | 2.3814 | 54120 | 1.0544 | - | | 2.3819 | 54130 | 1.0749 | - | | 2.3823 | 54140 | 1.0968 | - | | 2.3827 | 54150 | 1.0022 | - | | 2.3832 | 54160 | 1.0607 | - | | 2.3836 | 54170 | 1.0385 | - | | 2.3841 | 54180 | 1.0158 | - | | 2.3845 | 54190 | 1.0835 | - | | 2.3849 | 54200 | 1.0962 | - | | 2.3854 | 54210 | 1.0165 | - | | 2.3858 | 54220 | 1.0762 | - | | 2.3863 | 54230 | 1.071 | - | | 2.3867 | 54240 | 1.1083 | - | | 2.3871 | 54250 | 1.1387 | - | | 2.3876 | 54260 | 1.0888 | - | | 2.3880 | 54270 | 1.0631 | - | | 2.3885 | 54280 | 1.1257 | - | | 2.3889 | 54290 | 1.0871 | - | | 2.3893 | 54300 | 1.0466 | - | | 2.3898 | 54310 | 0.9915 | - | | 2.3902 | 54320 | 1.044 | - | | 2.3907 | 54330 | 1.1024 | - | | 2.3911 | 54340 | 1.0451 | - | | 2.3915 | 54350 | 1.1005 | - | | 2.3920 | 54360 | 1.1357 | - | | 2.3924 | 54370 | 1.1037 | - | | 2.3929 | 54380 | 1.0745 | - | | 2.3933 | 54390 | 1.0469 | - | | 2.3937 | 54400 | 1.057 | - | | 2.3942 | 54410 | 1.0936 | - | | 2.3946 | 54420 | 1.0911 | - | | 2.3951 | 54430 | 1.0707 | - | | 2.3955 | 54440 | 1.0793 | - | | 2.3959 | 54450 | 1.0677 | - | | 2.3964 | 54460 | 1.0681 | - | | 2.3968 | 54470 | 1.0905 | - | | 2.3973 | 54480 | 1.0787 | - | | 2.3977 | 54490 | 1.0317 | - | | 2.3981 | 54500 | 1.035 | - | | 2.3986 | 54510 | 1.1043 | - | | 2.3990 | 54520 | 1.1018 | - | | 2.3995 | 54530 | 1.0624 | - | | 2.3999 | 54540 | 1.0959 | - | | 2.4003 | 54550 | 1.0768 | - | | 2.4008 | 54560 | 1.0553 | - | | 2.4012 | 54570 | 1.0678 | - | | 2.4015 | 54576 | - | 1.4412 | | 2.4017 | 54580 | 1.0706 | - | | 2.4021 | 54590 | 1.0236 | - | | 2.4025 | 54600 | 1.1212 | - | | 2.4030 | 54610 | 1.0802 | - | | 2.4034 | 54620 | 1.0539 | - | | 2.4039 | 54630 | 1.0917 | - | | 2.4043 | 54640 | 1.0818 | - | | 2.4047 | 54650 | 1.0648 | - | | 2.4052 | 54660 | 1.0275 | - | | 2.4056 | 54670 | 1.0787 | - | | 2.4061 | 54680 | 1.0739 | - | | 2.4065 | 54690 | 1.0738 | - | | 2.4069 | 54700 | 1.081 | - | | 2.4074 | 54710 | 1.0124 | - | | 2.4078 | 54720 | 1.1086 | - | | 2.4083 | 54730 | 1.0525 | - | | 2.4087 | 54740 | 1.1011 | - | | 2.4091 | 54750 | 1.0791 | - | | 2.4096 | 54760 | 1.0921 | - | | 2.4100 | 54770 | 1.0903 | - | | 2.4105 | 54780 | 1.0389 | - | | 2.4109 | 54790 | 1.0963 | - | | 2.4113 | 54800 | 1.0615 | - | | 2.4118 | 54810 | 1.0641 | - | | 2.4122 | 54820 | 1.0583 | - | | 2.4127 | 54830 | 1.0618 | - | | 2.4131 | 54840 | 1.0476 | - | | 2.4135 | 54850 | 1.0744 | - | | 2.4140 | 54860 | 1.0718 | - | | 2.4144 | 54870 | 1.0994 | - | | 2.4149 | 54880 | 1.0308 | - | | 2.4153 | 54890 | 1.0442 | - | | 2.4157 | 54900 | 1.0375 | - | | 2.4162 | 54910 | 1.078 | - | | 2.4166 | 54920 | 1.0702 | - | | 2.4171 | 54930 | 1.0285 | - | | 2.4175 | 54940 | 1.0784 | - | | 2.4179 | 54950 | 1.0314 | - | | 2.4184 | 54960 | 1.0464 | - | | 2.4188 | 54970 | 1.0277 | - | | 2.4193 | 54980 | 1.07 | - | | 2.4197 | 54990 | 1.0389 | - | | 2.4201 | 55000 | 1.0458 | - | | 2.4206 | 55010 | 1.0938 | - | | 2.4210 | 55020 | 1.0885 | - | | 2.4215 | 55030 | 1.0572 | - | | 2.4219 | 55040 | 1.0778 | - | | 2.4223 | 55050 | 1.0539 | - | | 2.4228 | 55060 | 1.0905 | - | | 2.4232 | 55070 | 1.0991 | - | | 2.4237 | 55080 | 1.0503 | - | | 2.4241 | 55090 | 1.0593 | - | | 2.4245 | 55100 | 1.0972 | - | | 2.4250 | 55110 | 1.0775 | - | | 2.4254 | 55120 | 1.0613 | - | | 2.4259 | 55130 | 1.0438 | - | | 2.4263 | 55140 | 1.0332 | - | | 2.4267 | 55150 | 1.0727 | - | | 2.4272 | 55160 | 1.1038 | - | | 2.4276 | 55170 | 1.0955 | - | | 2.4281 | 55180 | 1.0648 | - | | 2.4285 | 55190 | 1.0327 | - | | 2.4289 | 55200 | 1.0368 | - | | 2.4294 | 55210 | 1.1125 | - | | 2.4298 | 55220 | 1.0285 | - | | 2.4303 | 55230 | 1.0384 | - | | 2.4307 | 55240 | 1.0424 | - | | 2.4311 | 55250 | 1.0561 | - | | 2.4316 | 55260 | 1.007 | - | | 2.4320 | 55270 | 1.0292 | - | | 2.4325 | 55280 | 1.0525 | - | | 2.4329 | 55290 | 1.0978 | - | | 2.4333 | 55300 | 0.9937 | - | | 2.4338 | 55310 | 1.0233 | - | | 2.4342 | 55320 | 1.0835 | - | | 2.4347 | 55330 | 1.0263 | - | | 2.4351 | 55340 | 1.0752 | - | | 2.4355 | 55350 | 1.0787 | - | | 2.4360 | 55360 | 1.0858 | - | | 2.4364 | 55370 | 1.0746 | - | | 2.4369 | 55380 | 1.05 | - | | 2.4373 | 55390 | 1.0796 | - | | 2.4377 | 55400 | 1.099 | - | | 2.4382 | 55410 | 1.0369 | - | | 2.4386 | 55420 | 1.0536 | - | | 2.4391 | 55430 | 1.0829 | - | | 2.4395 | 55440 | 1.0651 | - | | 2.4399 | 55450 | 1.0562 | - | | 2.4404 | 55460 | 1.038 | - | | 2.4408 | 55470 | 1.0571 | - | | 2.4413 | 55480 | 1.0587 | - | | 2.4417 | 55490 | 1.0225 | - | | 2.4421 | 55500 | 1.0073 | - | | 2.4426 | 55510 | 1.0601 | - | | 2.4430 | 55520 | 1.0995 | - | | 2.4435 | 55530 | 1.0771 | - | | 2.4439 | 55540 | 1.0476 | - | | 2.4443 | 55550 | 1.0263 | - | | 2.4448 | 55560 | 1.0765 | - | | 2.4452 | 55570 | 1.0435 | - | | 2.4457 | 55580 | 1.0579 | - | | 2.4461 | 55590 | 1.0667 | - | | 2.4465 | 55600 | 1.1013 | - | | 2.4470 | 55610 | 1.0416 | - | | 2.4474 | 55620 | 1.0923 | - | | 2.4479 | 55630 | 1.0587 | - | | 2.4483 | 55640 | 1.0302 | - | | 2.4487 | 55650 | 1.0585 | - | | 2.4492 | 55660 | 1.0216 | - | | 2.4496 | 55670 | 1.1019 | - | | 2.4501 | 55680 | 1.0308 | - | | 2.4505 | 55690 | 1.093 | - | | 2.4509 | 55700 | 1.0813 | - | | 2.4514 | 55710 | 1.0636 | - | | 2.4515 | 55713 | - | 1.4065 | | 2.4518 | 55720 | 1.0551 | - | | 2.4523 | 55730 | 1.0432 | - | | 2.4527 | 55740 | 1.0239 | - | | 2.4531 | 55750 | 1.0448 | - | | 2.4536 | 55760 | 1.0427 | - | | 2.4540 | 55770 | 1.0941 | - | | 2.4545 | 55780 | 1.0511 | - | | 2.4549 | 55790 | 1.0679 | - | | 2.4553 | 55800 | 1.0565 | - | | 2.4558 | 55810 | 1.078 | - | | 2.4562 | 55820 | 1.0305 | - | | 2.4567 | 55830 | 1.0216 | - | | 2.4571 | 55840 | 1.056 | - | | 2.4575 | 55850 | 1.0821 | - | | 2.4580 | 55860 | 1.0965 | - | | 2.4584 | 55870 | 1.0411 | - | | 2.4589 | 55880 | 1.0276 | - | | 2.4593 | 55890 | 1.0469 | - | | 2.4597 | 55900 | 1.064 | - | | 2.4602 | 55910 | 1.0258 | - | | 2.4606 | 55920 | 1.079 | - | | 2.4611 | 55930 | 1.0735 | - | | 2.4615 | 55940 | 1.0651 | - | | 2.4619 | 55950 | 1.0397 | - | | 2.4624 | 55960 | 1.0247 | - | | 2.4628 | 55970 | 1.0288 | - | | 2.4633 | 55980 | 1.0427 | - | | 2.4637 | 55990 | 1.0839 | - | | 2.4641 | 56000 | 1.0599 | - | | 2.4646 | 56010 | 1.0288 | - | | 2.4650 | 56020 | 1.0757 | - | | 2.4655 | 56030 | 1.046 | - | | 2.4659 | 56040 | 1.0935 | - | | 2.4663 | 56050 | 1.0191 | - | | 2.4668 | 56060 | 1.0871 | - | | 2.4672 | 56070 | 1.0441 | - | | 2.4677 | 56080 | 0.9984 | - | | 2.4681 | 56090 | 1.0167 | - | | 2.4685 | 56100 | 1.0699 | - | | 2.4690 | 56110 | 1.0541 | - | | 2.4694 | 56120 | 1.0554 | - | | 2.4699 | 56130 | 1.0779 | - | | 2.4703 | 56140 | 1.0664 | - | | 2.4707 | 56150 | 1.0249 | - | | 2.4712 | 56160 | 1.0716 | - | | 2.4716 | 56170 | 1.0663 | - | | 2.4721 | 56180 | 1.0761 | - | | 2.4725 | 56190 | 1.063 | - | | 2.4729 | 56200 | 1.1305 | - | | 2.4734 | 56210 | 1.0561 | - | | 2.4738 | 56220 | 1.0777 | - | | 2.4743 | 56230 | 0.9978 | - | | 2.4747 | 56240 | 1.0797 | - | | 2.4751 | 56250 | 1.0362 | - | | 2.4756 | 56260 | 1.0718 | - | | 2.4760 | 56270 | 1.0517 | - | | 2.4765 | 56280 | 0.9846 | - | | 2.4769 | 56290 | 1.0837 | - | | 2.4773 | 56300 | 1.059 | - | | 2.4778 | 56310 | 1.0038 | - | | 2.4782 | 56320 | 1.0337 | - | | 2.4787 | 56330 | 1.027 | - | | 2.4791 | 56340 | 1.0378 | - | | 2.4795 | 56350 | 1.0941 | - | | 2.4800 | 56360 | 1.0282 | - | | 2.4804 | 56370 | 1.0445 | - | | 2.4809 | 56380 | 1.0552 | - | | 2.4813 | 56390 | 1.049 | - | | 2.4817 | 56400 | 1.0085 | - | | 2.4822 | 56410 | 1.0319 | - | | 2.4826 | 56420 | 1.0504 | - | | 2.4831 | 56430 | 1.1004 | - | | 2.4835 | 56440 | 1.06 | - | | 2.4839 | 56450 | 0.9767 | - | | 2.4844 | 56460 | 1.0323 | - | | 2.4848 | 56470 | 1.0049 | - | | 2.4853 | 56480 | 1.0367 | - | | 2.4857 | 56490 | 1.0365 | - | | 2.4861 | 56500 | 1.0516 | - | | 2.4866 | 56510 | 1.086 | - | | 2.4870 | 56520 | 1.0777 | - | | 2.4875 | 56530 | 1.0317 | - | | 2.4879 | 56540 | 1.0898 | - | | 2.4883 | 56550 | 1.0335 | - | | 2.4888 | 56560 | 1.0395 | - | | 2.4892 | 56570 | 1.0747 | - | | 2.4897 | 56580 | 1.134 | - | | 2.4901 | 56590 | 1.0366 | - | | 2.4905 | 56600 | 1.0421 | - | | 2.4910 | 56610 | 1.0269 | - | | 2.4914 | 56620 | 1.0184 | - | | 2.4919 | 56630 | 1.0536 | - | | 2.4923 | 56640 | 1.0444 | - | | 2.4927 | 56650 | 1.0738 | - | | 2.4932 | 56660 | 1.0485 | - | | 2.4936 | 56670 | 1.0908 | - | | 2.4941 | 56680 | 1.0472 | - | | 2.4945 | 56690 | 1.0438 | - | | 2.4949 | 56700 | 1.0445 | - | | 2.4954 | 56710 | 1.0445 | - | | 2.4958 | 56720 | 1.0481 | - | | 2.4963 | 56730 | 1.0785 | - | | 2.4967 | 56740 | 1.0477 | - | | 2.4971 | 56750 | 1.0855 | - | | 2.4976 | 56760 | 1.0679 | - | | 2.4980 | 56770 | 1.0612 | - | | 2.4985 | 56780 | 1.0068 | - | | 2.4989 | 56790 | 1.0615 | - | | 2.4993 | 56800 | 1.0025 | - | | 2.4998 | 56810 | 1.0041 | - | | 2.5002 | 56820 | 1.051 | - | | 2.5007 | 56830 | 1.0423 | - | | 2.5011 | 56840 | 1.0434 | - | | 2.5015 | 56850 | 1.0633 | 1.4340 | | 2.5020 | 56860 | 1.0791 | - | | 2.5024 | 56870 | 0.9987 | - | | 2.5029 | 56880 | 1.0375 | - | | 2.5033 | 56890 | 1.061 | - | | 2.5037 | 56900 | 1.046 | - | | 2.5042 | 56910 | 1.0416 | - | | 2.5046 | 56920 | 1.0173 | - | | 2.5051 | 56930 | 1.0261 | - | | 2.5055 | 56940 | 1.0372 | - | | 2.5059 | 56950 | 0.9978 | - | | 2.5064 | 56960 | 1.0273 | - | | 2.5068 | 56970 | 1.0344 | - | | 2.5073 | 56980 | 1.0284 | - | | 2.5077 | 56990 | 0.9848 | - | | 2.5081 | 57000 | 1.0622 | - | | 2.5086 | 57010 | 1.0227 | - | | 2.5090 | 57020 | 1.0344 | - | | 2.5095 | 57030 | 1.0111 | - | | 2.5099 | 57040 | 1.0435 | - | | 2.5103 | 57050 | 0.9895 | - | | 2.5108 | 57060 | 1.0379 | - | | 2.5112 | 57070 | 1.0114 | - | | 2.5117 | 57080 | 1.0497 | - | | 2.5121 | 57090 | 1.0423 | - | | 2.5125 | 57100 | 1.0663 | - | | 2.5130 | 57110 | 1.079 | - | | 2.5134 | 57120 | 0.9959 | - | | 2.5139 | 57130 | 1.0357 | - | | 2.5143 | 57140 | 1.0155 | - | | 2.5147 | 57150 | 1.0289 | - | | 2.5152 | 57160 | 1.0307 | - | | 2.5156 | 57170 | 1.0397 | - | | 2.5161 | 57180 | 1.0354 | - | | 2.5165 | 57190 | 1.0169 | - | | 2.5169 | 57200 | 1.0033 | - | | 2.5174 | 57210 | 1.0283 | - | | 2.5178 | 57220 | 1.0651 | - | | 2.5183 | 57230 | 1.0714 | - | | 2.5187 | 57240 | 1.0168 | - | | 2.5191 | 57250 | 1.022 | - | | 2.5196 | 57260 | 1.0326 | - | | 2.5200 | 57270 | 1.025 | - | | 2.5205 | 57280 | 1.0397 | - | | 2.5209 | 57290 | 1.0337 | - | | 2.5213 | 57300 | 1.0241 | - | | 2.5218 | 57310 | 1.0573 | - | | 2.5222 | 57320 | 1.0677 | - | | 2.5227 | 57330 | 0.996 | - | | 2.5231 | 57340 | 0.9951 | - | | 2.5235 | 57350 | 1.0357 | - | | 2.5240 | 57360 | 1.0648 | - | | 2.5244 | 57370 | 1.0838 | - | | 2.5249 | 57380 | 1.0464 | - | | 2.5253 | 57390 | 1.008 | - | | 2.5257 | 57400 | 1.0477 | - | | 2.5262 | 57410 | 1.0458 | - | | 2.5266 | 57420 | 1.0541 | - | | 2.5271 | 57430 | 1.0158 | - | | 2.5275 | 57440 | 1.0733 | - | | 2.5279 | 57450 | 1.0613 | - | | 2.5284 | 57460 | 0.9815 | - | | 2.5288 | 57470 | 1.052 | - | | 2.5293 | 57480 | 1.0365 | - | | 2.5297 | 57490 | 1.0429 | - | | 2.5301 | 57500 | 1.0602 | - | | 2.5306 | 57510 | 1.0644 | - | | 2.5310 | 57520 | 1.0195 | - | | 2.5315 | 57530 | 1.004 | - | | 2.5319 | 57540 | 1.0188 | - | | 2.5323 | 57550 | 1.0467 | - | | 2.5328 | 57560 | 1.0552 | - | | 2.5332 | 57570 | 1.0478 | - | | 2.5337 | 57580 | 1.019 | - | | 2.5341 | 57590 | 1.0241 | - | | 2.5345 | 57600 | 1.0023 | - | | 2.5350 | 57610 | 1.0715 | - | | 2.5354 | 57620 | 1.0153 | - | | 2.5359 | 57630 | 1.0575 | - | | 2.5363 | 57640 | 1.0357 | - | | 2.5367 | 57650 | 0.9973 | - | | 2.5372 | 57660 | 1.0399 | - | | 2.5376 | 57670 | 1.0088 | - | | 2.5381 | 57680 | 1.0685 | - | | 2.5385 | 57690 | 1.0389 | - | | 2.5389 | 57700 | 1.026 | - | | 2.5394 | 57710 | 1.007 | - | | 2.5398 | 57720 | 1.0209 | - | | 2.5403 | 57730 | 1.0019 | - | | 2.5407 | 57740 | 1.0016 | - | | 2.5411 | 57750 | 1.0022 | - | | 2.5416 | 57760 | 1.0136 | - | | 2.5420 | 57770 | 1.0578 | - | | 2.5425 | 57780 | 1.0189 | - | | 2.5429 | 57790 | 1.0722 | - | | 2.5433 | 57800 | 0.9929 | - | | 2.5438 | 57810 | 1.0625 | - | | 2.5442 | 57820 | 1.0459 | - | | 2.5447 | 57830 | 1.043 | - | | 2.5451 | 57840 | 1.0401 | - | | 2.5455 | 57850 | 1.0056 | - | | 2.5460 | 57860 | 1.0816 | - | | 2.5464 | 57870 | 1.0408 | - | | 2.5469 | 57880 | 1.0303 | - | | 2.5473 | 57890 | 1.0511 | - | | 2.5477 | 57900 | 1.0755 | - | | 2.5482 | 57910 | 1.0367 | - | | 2.5486 | 57920 | 1.0719 | - | | 2.5491 | 57930 | 0.9815 | - | | 2.5495 | 57940 | 1.0221 | - | | 2.5499 | 57950 | 0.9871 | - | | 2.5504 | 57960 | 1.0358 | - | | 2.5508 | 57970 | 1.0398 | - | | 2.5513 | 57980 | 1.0697 | - | | 2.5516 | 57987 | - | 1.3997 | | 2.5517 | 57990 | 1.0379 | - | | 2.5521 | 58000 | 1.0341 | - | | 2.5526 | 58010 | 1.0277 | - | | 2.5530 | 58020 | 0.9824 | - | | 2.5535 | 58030 | 0.9985 | - | | 2.5539 | 58040 | 1.0447 | - | | 2.5543 | 58050 | 1.026 | - | | 2.5548 | 58060 | 1.0088 | - | | 2.5552 | 58070 | 1.0525 | - | | 2.5557 | 58080 | 1.0885 | - | | 2.5561 | 58090 | 1.0457 | - | | 2.5565 | 58100 | 1.0598 | - | | 2.5570 | 58110 | 1.0421 | - | | 2.5574 | 58120 | 1.0092 | - | | 2.5579 | 58130 | 1.0288 | - | | 2.5583 | 58140 | 1.0042 | - | | 2.5587 | 58150 | 1.099 | - | | 2.5592 | 58160 | 1.0186 | - | | 2.5596 | 58170 | 1.0223 | - | | 2.5601 | 58180 | 0.9859 | - | | 2.5605 | 58190 | 1.0066 | - | | 2.5609 | 58200 | 1.0196 | - | | 2.5614 | 58210 | 1.0217 | - | | 2.5618 | 58220 | 0.9746 | - | | 2.5623 | 58230 | 0.9798 | - | | 2.5627 | 58240 | 0.9759 | - | | 2.5631 | 58250 | 1.061 | - | | 2.5636 | 58260 | 0.9937 | - | | 2.5640 | 58270 | 1.0715 | - | | 2.5645 | 58280 | 0.9926 | - | | 2.5649 | 58290 | 1.0171 | - | | 2.5653 | 58300 | 1.0325 | - | | 2.5658 | 58310 | 1.0908 | - | | 2.5662 | 58320 | 1.0424 | - | | 2.5667 | 58330 | 1.02 | - | | 2.5671 | 58340 | 1.0576 | - | | 2.5675 | 58350 | 1.0702 | - | | 2.5680 | 58360 | 1.0182 | - | | 2.5684 | 58370 | 0.9575 | - | | 2.5689 | 58380 | 1.0155 | - | | 2.5693 | 58390 | 0.9984 | - | | 2.5697 | 58400 | 1.0177 | - | | 2.5702 | 58410 | 0.9657 | - | | 2.5706 | 58420 | 1.018 | - | | 2.5711 | 58430 | 1.0431 | - | | 2.5715 | 58440 | 1.0082 | - | | 2.5719 | 58450 | 1.0208 | - | | 2.5724 | 58460 | 1.0011 | - | | 2.5728 | 58470 | 1.0283 | - | | 2.5733 | 58480 | 1.0172 | - | | 2.5737 | 58490 | 1.0381 | - | | 2.5741 | 58500 | 1.0172 | - | | 2.5746 | 58510 | 1.0501 | - | | 2.5750 | 58520 | 1.0642 | - | | 2.5755 | 58530 | 0.9841 | - | | 2.5759 | 58540 | 1.0222 | - | | 2.5763 | 58550 | 1.0464 | - | | 2.5768 | 58560 | 0.996 | - | | 2.5772 | 58570 | 1.0682 | - | | 2.5777 | 58580 | 1.0023 | - | | 2.5781 | 58590 | 0.9897 | - | | 2.5785 | 58600 | 1.0479 | - | | 2.5790 | 58610 | 1.0291 | - | | 2.5794 | 58620 | 1.0415 | - | | 2.5799 | 58630 | 1.024 | - | | 2.5803 | 58640 | 1.0468 | - | | 2.5807 | 58650 | 1.0039 | - | | 2.5812 | 58660 | 1.0231 | - | | 2.5816 | 58670 | 1.0262 | - | | 2.5821 | 58680 | 1.0658 | - | | 2.5825 | 58690 | 1.034 | - | | 2.5829 | 58700 | 1.0318 | - | | 2.5834 | 58710 | 0.9824 | - | | 2.5838 | 58720 | 1.0216 | - | | 2.5843 | 58730 | 1.0503 | - | | 2.5847 | 58740 | 1.0529 | - | | 2.5851 | 58750 | 1.0295 | - | | 2.5856 | 58760 | 1.0441 | - | | 2.5860 | 58770 | 0.9772 | - | | 2.5865 | 58780 | 0.9984 | - | | 2.5869 | 58790 | 1.0672 | - | | 2.5873 | 58800 | 0.9919 | - | | 2.5878 | 58810 | 1.0599 | - | | 2.5882 | 58820 | 1.0243 | - | | 2.5887 | 58830 | 0.9944 | - | | 2.5891 | 58840 | 0.9968 | - | | 2.5895 | 58850 | 0.9829 | - | | 2.5900 | 58860 | 0.9994 | - | | 2.5904 | 58870 | 1.0324 | - | | 2.5909 | 58880 | 0.9773 | - | | 2.5913 | 58890 | 0.9879 | - | | 2.5917 | 58900 | 1.0291 | - | | 2.5922 | 58910 | 1.0082 | - | | 2.5926 | 58920 | 1.0423 | - | | 2.5931 | 58930 | 0.9893 | - | | 2.5935 | 58940 | 1.0249 | - | | 2.5939 | 58950 | 0.9961 | - | | 2.5944 | 58960 | 1.0435 | - | | 2.5948 | 58970 | 0.9898 | - | | 2.5953 | 58980 | 1.0427 | - | | 2.5957 | 58990 | 1.028 | - | | 2.5961 | 59000 | 1.009 | - | | 2.5966 | 59010 | 0.9943 | - | | 2.5970 | 59020 | 0.9896 | - | | 2.5975 | 59030 | 1.0172 | - | | 2.5979 | 59040 | 1.0015 | - | | 2.5983 | 59050 | 0.997 | - | | 2.5988 | 59060 | 0.9995 | - | | 2.5992 | 59070 | 1.0351 | - | | 2.5997 | 59080 | 1.0154 | - | | 2.6001 | 59090 | 0.9849 | - | | 2.6005 | 59100 | 0.996 | - | | 2.6010 | 59110 | 1.0498 | - | | 2.6014 | 59120 | 1.0687 | - | | 2.6016 | 59124 | - | 1.4053 | | 2.6019 | 59130 | 1.0203 | - | | 2.6023 | 59140 | 1.0059 | - | | 2.6027 | 59150 | 1.0207 | - | | 2.6032 | 59160 | 1.0197 | - | | 2.6036 | 59170 | 1.0111 | - | | 2.6041 | 59180 | 1.0145 | - | | 2.6045 | 59190 | 1.0195 | - | | 2.6049 | 59200 | 0.9988 | - | | 2.6054 | 59210 | 1.0194 | - | | 2.6058 | 59220 | 1.0372 | - | | 2.6063 | 59230 | 1.0407 | - | | 2.6067 | 59240 | 0.997 | - | | 2.6071 | 59250 | 0.9987 | - | | 2.6076 | 59260 | 1.0505 | - | | 2.6080 | 59270 | 1.0382 | - | | 2.6085 | 59280 | 1.0189 | - | | 2.6089 | 59290 | 1.0359 | - | | 2.6093 | 59300 | 0.973 | - | | 2.6098 | 59310 | 0.9758 | - | | 2.6102 | 59320 | 1.0234 | - | | 2.6107 | 59330 | 1.0103 | - | | 2.6111 | 59340 | 1.0243 | - | | 2.6115 | 59350 | 0.9793 | - | | 2.6120 | 59360 | 0.9281 | - | | 2.6124 | 59370 | 1.0291 | - | | 2.6129 | 59380 | 1.0052 | - | | 2.6133 | 59390 | 1.0208 | - | | 2.6137 | 59400 | 1.0234 | - | | 2.6142 | 59410 | 1.0115 | - | | 2.6146 | 59420 | 1.0444 | - | | 2.6151 | 59430 | 1.0196 | - | | 2.6155 | 59440 | 1.0044 | - | | 2.6159 | 59450 | 1.0178 | - | | 2.6164 | 59460 | 1.0224 | - | | 2.6168 | 59470 | 1.0718 | - | | 2.6173 | 59480 | 1.0486 | - | | 2.6177 | 59490 | 1.0701 | - | | 2.6181 | 59500 | 1.0392 | - | | 2.6186 | 59510 | 1.0633 | - | | 2.6190 | 59520 | 1.0088 | - | | 2.6195 | 59530 | 1.0453 | - | | 2.6199 | 59540 | 1.0233 | - | | 2.6203 | 59550 | 0.9815 | - | | 2.6208 | 59560 | 1.0467 | - | | 2.6212 | 59570 | 1.0139 | - | | 2.6217 | 59580 | 1.0513 | - | | 2.6221 | 59590 | 0.9923 | - | | 2.6225 | 59600 | 1.0188 | - | | 2.6230 | 59610 | 1.0169 | - | | 2.6234 | 59620 | 0.9783 | - | | 2.6239 | 59630 | 1.0065 | - | | 2.6243 | 59640 | 1.0147 | - | | 2.6247 | 59650 | 1.038 | - | | 2.6252 | 59660 | 1.0255 | - | | 2.6256 | 59670 | 0.9882 | - | | 2.6261 | 59680 | 1.0337 | - | | 2.6265 | 59690 | 1.0639 | - | | 2.6269 | 59700 | 1.0001 | - | | 2.6274 | 59710 | 1.0348 | - | | 2.6278 | 59720 | 0.9949 | - | | 2.6283 | 59730 | 1.0428 | - | | 2.6287 | 59740 | 1.0202 | - | | 2.6291 | 59750 | 1.0239 | - | | 2.6296 | 59760 | 1.0756 | - | | 2.6300 | 59770 | 1.0305 | - | | 2.6305 | 59780 | 0.9798 | - | | 2.6309 | 59790 | 1.0432 | - | | 2.6313 | 59800 | 1.0045 | - | | 2.6318 | 59810 | 0.9888 | - | | 2.6322 | 59820 | 0.9663 | - | | 2.6327 | 59830 | 1.054 | - | | 2.6331 | 59840 | 1.0371 | - | | 2.6335 | 59850 | 1.04 | - | | 2.6340 | 59860 | 1.0025 | - | | 2.6344 | 59870 | 1.0185 | - | | 2.6349 | 59880 | 1.0125 | - | | 2.6353 | 59890 | 1.0086 | - | | 2.6357 | 59900 | 1.0442 | - | | 2.6362 | 59910 | 1.0043 | - | | 2.6366 | 59920 | 1.0251 | - | | 2.6371 | 59930 | 1.0135 | - | | 2.6375 | 59940 | 1.0114 | - | | 2.6379 | 59950 | 1.0204 | - | | 2.6384 | 59960 | 1.052 | - | | 2.6388 | 59970 | 1.0178 | - | | 2.6393 | 59980 | 1.0707 | - | | 2.6397 | 59990 | 1.0484 | - | | 2.6401 | 60000 | 1.0584 | - | | 2.6406 | 60010 | 1.0082 | - | | 2.6410 | 60020 | 1.0452 | - | | 2.6415 | 60030 | 0.9976 | - | | 2.6419 | 60040 | 1.0137 | - | | 2.6423 | 60050 | 1.014 | - | | 2.6428 | 60060 | 1.0239 | - | | 2.6432 | 60070 | 0.955 | - | | 2.6437 | 60080 | 0.9711 | - | | 2.6441 | 60090 | 1.0513 | - | | 2.6445 | 60100 | 0.9854 | - | | 2.6450 | 60110 | 0.9957 | - | | 2.6454 | 60120 | 0.9909 | - | | 2.6459 | 60130 | 1.0271 | - | | 2.6463 | 60140 | 1.0009 | - | | 2.6467 | 60150 | 1.0189 | - | | 2.6472 | 60160 | 1.0277 | - | | 2.6476 | 60170 | 1.0362 | - | | 2.6481 | 60180 | 0.9839 | - | | 2.6485 | 60190 | 1.0261 | - | | 2.6489 | 60200 | 1.0036 | - | | 2.6494 | 60210 | 1.0483 | - | | 2.6498 | 60220 | 1.0178 | - | | 2.6503 | 60230 | 0.984 | - | | 2.6507 | 60240 | 1.0078 | - | | 2.6511 | 60250 | 1.0424 | - | | 2.6516 | 60260 | 0.9991 | - | | 2.6516 | 60261 | - | 1.4031 | | 2.6520 | 60270 | 0.9808 | - | | 2.6525 | 60280 | 1.0062 | - | | 2.6529 | 60290 | 1.0058 | - | | 2.6533 | 60300 | 1.0275 | - | | 2.6538 | 60310 | 1.0474 | - | | 2.6542 | 60320 | 1.0422 | - | | 2.6547 | 60330 | 0.9976 | - | | 2.6551 | 60340 | 1.0008 | - | | 2.6555 | 60350 | 0.9751 | - | | 2.6560 | 60360 | 0.9672 | - | | 2.6564 | 60370 | 0.9775 | - | | 2.6569 | 60380 | 1.0612 | - | | 2.6573 | 60390 | 1.0038 | - | | 2.6577 | 60400 | 0.9966 | - | | 2.6582 | 60410 | 1.0681 | - | | 2.6586 | 60420 | 0.9923 | - | | 2.6591 | 60430 | 0.9863 | - | | 2.6595 | 60440 | 0.9994 | - | | 2.6599 | 60450 | 1.0029 | - | | 2.6604 | 60460 | 0.9867 | - | | 2.6608 | 60470 | 1.0223 | - | | 2.6613 | 60480 | 1.0195 | - | | 2.6617 | 60490 | 1.0122 | - | | 2.6621 | 60500 | 0.9735 | - | | 2.6626 | 60510 | 0.9904 | - | | 2.6630 | 60520 | 1.0392 | - | | 2.6635 | 60530 | 0.9941 | - | | 2.6639 | 60540 | 1.0389 | - | | 2.6643 | 60550 | 1.0295 | - | | 2.6648 | 60560 | 0.98 | - | | 2.6652 | 60570 | 1.0509 | - | | 2.6657 | 60580 | 0.9976 | - | | 2.6661 | 60590 | 1.0167 | - | | 2.6665 | 60600 | 1.0257 | - | | 2.6670 | 60610 | 1.0024 | - | | 2.6674 | 60620 | 1.013 | - | | 2.6679 | 60630 | 0.9811 | - | | 2.6683 | 60640 | 1.0639 | - | | 2.6687 | 60650 | 0.991 | - | | 2.6692 | 60660 | 0.9691 | - | | 2.6696 | 60670 | 1.0222 | - | | 2.6701 | 60680 | 1.0692 | - | | 2.6705 | 60690 | 0.9754 | - | | 2.6709 | 60700 | 1.0219 | - | | 2.6714 | 60710 | 0.9966 | - | | 2.6718 | 60720 | 1.0098 | - | | 2.6723 | 60730 | 1.0132 | - | | 2.6727 | 60740 | 0.9955 | - | | 2.6731 | 60750 | 0.9789 | - | | 2.6736 | 60760 | 1.0112 | - | | 2.6740 | 60770 | 0.9922 | - | | 2.6745 | 60780 | 1.0087 | - | | 2.6749 | 60790 | 1.068 | - | | 2.6753 | 60800 | 0.9834 | - | | 2.6758 | 60810 | 1.0062 | - | | 2.6762 | 60820 | 0.9884 | - | | 2.6767 | 60830 | 0.9865 | - | | 2.6771 | 60840 | 0.9919 | - | | 2.6775 | 60850 | 1.0043 | - | | 2.6780 | 60860 | 0.9848 | - | | 2.6784 | 60870 | 1.0297 | - | | 2.6789 | 60880 | 1.0108 | - | | 2.6793 | 60890 | 1.0275 | - | | 2.6798 | 60900 | 0.9725 | - | | 2.6802 | 60910 | 0.9834 | - | | 2.6806 | 60920 | 0.9773 | - | | 2.6811 | 60930 | 1.003 | - | | 2.6815 | 60940 | 1.0144 | - | | 2.6820 | 60950 | 0.966 | - | | 2.6824 | 60960 | 0.9708 | - | | 2.6828 | 60970 | 1.0001 | - | | 2.6833 | 60980 | 0.9731 | - | | 2.6837 | 60990 | 0.984 | - | | 2.6842 | 61000 | 0.9683 | - | | 2.6846 | 61010 | 1.0115 | - | | 2.6850 | 61020 | 1.038 | - | | 2.6855 | 61030 | 0.9599 | - | | 2.6859 | 61040 | 1.0146 | - | | 2.6864 | 61050 | 0.9981 | - | | 2.6868 | 61060 | 0.9793 | - | | 2.6872 | 61070 | 0.9958 | - | | 2.6877 | 61080 | 0.9898 | - | | 2.6881 | 61090 | 0.9935 | - | | 2.6886 | 61100 | 1.0196 | - | | 2.6890 | 61110 | 0.9991 | - | | 2.6894 | 61120 | 0.9969 | - | | 2.6899 | 61130 | 0.9879 | - | | 2.6903 | 61140 | 0.9978 | - | | 2.6908 | 61150 | 1.0246 | - | | 2.6912 | 61160 | 0.9698 | - | | 2.6916 | 61170 | 0.9818 | - | | 2.6921 | 61180 | 1.0289 | - | | 2.6925 | 61190 | 0.9697 | - | | 2.6930 | 61200 | 0.986 | - | | 2.6934 | 61210 | 1.0111 | - | | 2.6938 | 61220 | 0.9913 | - | | 2.6943 | 61230 | 1.0094 | - | | 2.6947 | 61240 | 1.0067 | - | | 2.6952 | 61250 | 1.0267 | - | | 2.6956 | 61260 | 0.9805 | - | | 2.6960 | 61270 | 1.0015 | - | | 2.6965 | 61280 | 0.9731 | - | | 2.6969 | 61290 | 0.9698 | - | | 2.6974 | 61300 | 0.9689 | - | | 2.6978 | 61310 | 1.0202 | - | | 2.6982 | 61320 | 0.9741 | - | | 2.6987 | 61330 | 1.0203 | - | | 2.6991 | 61340 | 0.9913 | - | | 2.6996 | 61350 | 0.9874 | - | | 2.7000 | 61360 | 1.022 | - | | 2.7004 | 61370 | 0.9427 | - | | 2.7009 | 61380 | 1.016 | - | | 2.7013 | 61390 | 0.9859 | - | | 2.7017 | 61398 | - | 1.4182 | | 2.7018 | 61400 | 0.9814 | - | | 2.7022 | 61410 | 1.0272 | - | | 2.7026 | 61420 | 1.0051 | - | | 2.7031 | 61430 | 0.9782 | - | | 2.7035 | 61440 | 1.0113 | - | | 2.7040 | 61450 | 0.9442 | - | | 2.7044 | 61460 | 0.9906 | - | | 2.7048 | 61470 | 0.9717 | - | | 2.7053 | 61480 | 0.9921 | - | | 2.7057 | 61490 | 1.0211 | - | | 2.7062 | 61500 | 1.0186 | - | | 2.7066 | 61510 | 0.979 | - | | 2.7070 | 61520 | 0.9549 | - | | 2.7075 | 61530 | 1.0076 | - | | 2.7079 | 61540 | 0.9974 | - | | 2.7084 | 61550 | 0.9892 | - | | 2.7088 | 61560 | 0.9796 | - | | 2.7092 | 61570 | 0.9754 | - | | 2.7097 | 61580 | 1.0503 | - | | 2.7101 | 61590 | 0.9709 | - | | 2.7106 | 61600 | 0.95 | - | | 2.7110 | 61610 | 1.0043 | - | | 2.7114 | 61620 | 0.9379 | - | | 2.7119 | 61630 | 0.9976 | - | | 2.7123 | 61640 | 0.9983 | - | | 2.7128 | 61650 | 0.9642 | - | | 2.7132 | 61660 | 0.9454 | - | | 2.7136 | 61670 | 1.0031 | - | | 2.7141 | 61680 | 0.9881 | - | | 2.7145 | 61690 | 0.978 | - | | 2.7150 | 61700 | 0.9721 | - | | 2.7154 | 61710 | 0.9811 | - | | 2.7158 | 61720 | 1.0271 | - | | 2.7163 | 61730 | 1.0262 | - | | 2.7167 | 61740 | 0.9757 | - | | 2.7172 | 61750 | 1.0199 | - | | 2.7176 | 61760 | 0.9787 | - | | 2.7180 | 61770 | 0.9825 | - | | 2.7185 | 61780 | 1.005 | - | | 2.7189 | 61790 | 1.0164 | - | | 2.7194 | 61800 | 0.9788 | - | | 2.7198 | 61810 | 1.0079 | - | | 2.7202 | 61820 | 0.9838 | - | | 2.7207 | 61830 | 0.9842 | - | | 2.7211 | 61840 | 0.9866 | - | | 2.7216 | 61850 | 0.9658 | - | | 2.7220 | 61860 | 0.9756 | - | | 2.7224 | 61870 | 0.9995 | - | | 2.7229 | 61880 | 0.958 | - | | 2.7233 | 61890 | 0.9666 | - | | 2.7238 | 61900 | 0.9839 | - | | 2.7242 | 61910 | 1.0069 | - | | 2.7246 | 61920 | 0.9648 | - | | 2.7251 | 61930 | 0.9428 | - | | 2.7255 | 61940 | 0.9907 | - | | 2.7260 | 61950 | 0.9568 | - | | 2.7264 | 61960 | 1.0011 | - | | 2.7268 | 61970 | 1.0205 | - | | 2.7273 | 61980 | 0.9806 | - | | 2.7277 | 61990 | 0.9821 | - | | 2.7282 | 62000 | 0.9144 | - | | 2.7286 | 62010 | 0.969 | - | | 2.7290 | 62020 | 1.0242 | - | | 2.7295 | 62030 | 0.994 | - | | 2.7299 | 62040 | 0.9891 | - | | 2.7304 | 62050 | 0.9915 | - | | 2.7308 | 62060 | 1.026 | - | | 2.7312 | 62070 | 1.0168 | - | | 2.7317 | 62080 | 0.99 | - | | 2.7321 | 62090 | 0.9904 | - | | 2.7326 | 62100 | 0.9744 | - | | 2.7330 | 62110 | 0.9762 | - | | 2.7334 | 62120 | 0.9758 | - | | 2.7339 | 62130 | 0.9566 | - | | 2.7343 | 62140 | 0.9373 | - | | 2.7348 | 62150 | 0.9963 | - | | 2.7352 | 62160 | 0.973 | - | | 2.7356 | 62170 | 0.9558 | - | | 2.7361 | 62180 | 1.0284 | - | | 2.7365 | 62190 | 1.0116 | - | | 2.7370 | 62200 | 0.9722 | - | | 2.7374 | 62210 | 0.9768 | - | | 2.7378 | 62220 | 0.9977 | - | | 2.7383 | 62230 | 0.9554 | - | | 2.7387 | 62240 | 0.9947 | - | | 2.7392 | 62250 | 0.9923 | - | | 2.7396 | 62260 | 1.0169 | - | | 2.7400 | 62270 | 1.0167 | - | | 2.7405 | 62280 | 0.9663 | - | | 2.7409 | 62290 | 0.9929 | - | | 2.7414 | 62300 | 0.981 | - | | 2.7418 | 62310 | 0.9743 | - | | 2.7422 | 62320 | 0.9492 | - | | 2.7427 | 62330 | 0.9719 | - | | 2.7431 | 62340 | 1.0118 | - | | 2.7436 | 62350 | 0.9886 | - | | 2.7440 | 62360 | 0.9877 | - | | 2.7444 | 62370 | 0.9656 | - | | 2.7449 | 62380 | 1.0129 | - | | 2.7453 | 62390 | 0.9878 | - | | 2.7458 | 62400 | 0.9646 | - | | 2.7462 | 62410 | 1.008 | - | | 2.7466 | 62420 | 0.9663 | - | | 2.7471 | 62430 | 0.988 | - | | 2.7475 | 62440 | 1.0001 | - | | 2.7480 | 62450 | 0.9786 | - | | 2.7484 | 62460 | 0.988 | - | | 2.7488 | 62470 | 0.9843 | - | | 2.7493 | 62480 | 0.9777 | - | | 2.7497 | 62490 | 1.0405 | - | | 2.7502 | 62500 | 1.0087 | - | | 2.7506 | 62510 | 0.9865 | - | | 2.7510 | 62520 | 0.9733 | - | | 2.7515 | 62530 | 1.0518 | - | | 2.7517 | 62535 | - | 1.4275 | | 2.7519 | 62540 | 1.003 | - | | 2.7524 | 62550 | 0.9849 | - | | 2.7528 | 62560 | 1.0063 | - | | 2.7532 | 62570 | 1.0046 | - | | 2.7537 | 62580 | 0.956 | - | | 2.7541 | 62590 | 0.9616 | - | | 2.7546 | 62600 | 1.0175 | - | | 2.7550 | 62610 | 1.0241 | - | | 2.7554 | 62620 | 0.9807 | - | | 2.7559 | 62630 | 0.9802 | - | | 2.7563 | 62640 | 0.9717 | - | | 2.7568 | 62650 | 0.9866 | - | | 2.7572 | 62660 | 0.9489 | - | | 2.7576 | 62670 | 1.0021 | - | | 2.7581 | 62680 | 1.0325 | - | | 2.7585 | 62690 | 1.0167 | - | | 2.7590 | 62700 | 0.9765 | - | | 2.7594 | 62710 | 0.9843 | - | | 2.7598 | 62720 | 0.9458 | - | | 2.7603 | 62730 | 0.9849 | - | | 2.7607 | 62740 | 0.983 | - | | 2.7612 | 62750 | 1.0202 | - | | 2.7616 | 62760 | 0.9966 | - | | 2.7620 | 62770 | 0.9667 | - | | 2.7625 | 62780 | 0.9982 | - | | 2.7629 | 62790 | 0.9695 | - | | 2.7634 | 62800 | 1.0125 | - | | 2.7638 | 62810 | 0.9695 | - | | 2.7642 | 62820 | 0.9938 | - | | 2.7647 | 62830 | 1.0364 | - | | 2.7651 | 62840 | 0.9575 | - | | 2.7656 | 62850 | 0.9886 | - | | 2.7660 | 62860 | 0.9947 | - | | 2.7664 | 62870 | 0.9653 | - | | 2.7669 | 62880 | 0.9729 | - | | 2.7673 | 62890 | 0.9697 | - | | 2.7678 | 62900 | 1.0244 | - | | 2.7682 | 62910 | 0.9795 | - | | 2.7686 | 62920 | 0.9978 | - | | 2.7691 | 62930 | 0.9662 | - | | 2.7695 | 62940 | 0.9559 | - | | 2.7700 | 62950 | 0.988 | - | | 2.7704 | 62960 | 0.973 | - | | 2.7708 | 62970 | 0.9212 | - | | 2.7713 | 62980 | 0.956 | - | | 2.7717 | 62990 | 1.0327 | - | | 2.7722 | 63000 | 0.9891 | - | | 2.7726 | 63010 | 0.9819 | - | | 2.7730 | 63020 | 0.9962 | - | | 2.7735 | 63030 | 0.9638 | - | | 2.7739 | 63040 | 1.0071 | - | | 2.7744 | 63050 | 0.9844 | - | | 2.7748 | 63060 | 0.9542 | - | | 2.7752 | 63070 | 1.0177 | - | | 2.7757 | 63080 | 0.9507 | - | | 2.7761 | 63090 | 0.9625 | - | | 2.7766 | 63100 | 0.988 | - | | 2.7770 | 63110 | 0.9617 | - | | 2.7774 | 63120 | 0.9376 | - | | 2.7779 | 63130 | 0.9938 | - | | 2.7783 | 63140 | 0.9616 | - | | 2.7788 | 63150 | 1.0192 | - | | 2.7792 | 63160 | 0.9593 | - | | 2.7796 | 63170 | 1.0152 | - | | 2.7801 | 63180 | 0.9521 | - | | 2.7805 | 63190 | 1.0063 | - | | 2.7810 | 63200 | 0.9498 | - | | 2.7814 | 63210 | 1.0048 | - | | 2.7818 | 63220 | 0.9776 | - | | 2.7823 | 63230 | 0.9934 | - | | 2.7827 | 63240 | 0.9722 | - | | 2.7832 | 63250 | 0.9143 | - | | 2.7836 | 63260 | 0.9494 | - | | 2.7840 | 63270 | 0.9866 | - | | 2.7845 | 63280 | 0.9731 | - | | 2.7849 | 63290 | 0.929 | - | | 2.7854 | 63300 | 1.0062 | - | | 2.7858 | 63310 | 0.9814 | - | | 2.7862 | 63320 | 0.9475 | - | | 2.7867 | 63330 | 1.0054 | - | | 2.7871 | 63340 | 0.9178 | - | | 2.7876 | 63350 | 0.9822 | - | | 2.7880 | 63360 | 0.9903 | - | | 2.7884 | 63370 | 0.954 | - | | 2.7889 | 63380 | 0.9306 | - | | 2.7893 | 63390 | 1.0151 | - | | 2.7898 | 63400 | 1.0007 | - | | 2.7902 | 63410 | 0.9604 | - | | 2.7906 | 63420 | 0.9658 | - | | 2.7911 | 63430 | 0.9366 | - | | 2.7915 | 63440 | 0.9949 | - | | 2.7920 | 63450 | 0.9398 | - | | 2.7924 | 63460 | 0.9365 | - | | 2.7928 | 63470 | 0.9658 | - | | 2.7933 | 63480 | 1.0023 | - | | 2.7937 | 63490 | 0.9365 | - | | 2.7942 | 63500 | 0.9635 | - | | 2.7946 | 63510 | 0.9218 | - | | 2.7950 | 63520 | 0.9643 | - | | 2.7955 | 63530 | 0.9629 | - | | 2.7959 | 63540 | 0.9422 | - | | 2.7964 | 63550 | 0.9577 | - | | 2.7968 | 63560 | 0.8946 | - | | 2.7972 | 63570 | 0.9962 | - | | 2.7977 | 63580 | 0.9649 | - | | 2.7981 | 63590 | 0.9778 | - | | 2.7986 | 63600 | 0.9731 | - | | 2.7990 | 63610 | 0.9654 | - | | 2.7994 | 63620 | 0.9912 | - | | 2.7999 | 63630 | 0.9668 | - | | 2.8003 | 63640 | 0.9645 | - | | 2.8008 | 63650 | 0.9762 | - | | 2.8012 | 63660 | 0.9573 | - | | 2.8016 | 63670 | 1.0233 | - | | 2.8017 | 63672 | - | 1.4237 | | 2.8021 | 63680 | 0.9747 | - | | 2.8025 | 63690 | 0.9511 | - | | 2.8030 | 63700 | 0.9762 | - | | 2.8034 | 63710 | 0.9565 | - | | 2.8038 | 63720 | 0.9645 | - | | 2.8043 | 63730 | 0.9517 | - | | 2.8047 | 63740 | 0.9634 | - | | 2.8052 | 63750 | 0.9971 | - | | 2.8056 | 63760 | 0.9415 | - | | 2.8060 | 63770 | 0.9689 | - | | 2.8065 | 63780 | 0.9797 | - | | 2.8069 | 63790 | 0.9631 | - | | 2.8074 | 63800 | 1.014 | - | | 2.8078 | 63810 | 0.9842 | - | | 2.8082 | 63820 | 1.0076 | - | | 2.8087 | 63830 | 0.9782 | - | | 2.8091 | 63840 | 0.9678 | - | | 2.8096 | 63850 | 0.9736 | - | | 2.8100 | 63860 | 0.9232 | - | | 2.8104 | 63870 | 0.9465 | - | | 2.8109 | 63880 | 0.9826 | - | | 2.8113 | 63890 | 1.0009 | - | | 2.8118 | 63900 | 0.9719 | - | | 2.8122 | 63910 | 0.9961 | - | | 2.8126 | 63920 | 0.982 | - | | 2.8131 | 63930 | 0.9737 | - | | 2.8135 | 63940 | 0.9694 | - | | 2.8140 | 63950 | 0.9092 | - | | 2.8144 | 63960 | 0.959 | - | | 2.8148 | 63970 | 0.9375 | - | | 2.8153 | 63980 | 1.0143 | - | | 2.8157 | 63990 | 0.9414 | - | | 2.8162 | 64000 | 0.9157 | - | | 2.8166 | 64010 | 0.9641 | - | | 2.8170 | 64020 | 0.927 | - | | 2.8175 | 64030 | 1.0102 | - | | 2.8179 | 64040 | 0.975 | - | | 2.8184 | 64050 | 0.9542 | - | | 2.8188 | 64060 | 0.9673 | - | | 2.8192 | 64070 | 0.9969 | - | | 2.8197 | 64080 | 0.974 | - | | 2.8201 | 64090 | 0.9639 | - | | 2.8206 | 64100 | 0.9726 | - | | 2.8210 | 64110 | 0.988 | - | | 2.8214 | 64120 | 0.9504 | - | | 2.8219 | 64130 | 0.9609 | - | | 2.8223 | 64140 | 0.9615 | - | | 2.8228 | 64150 | 0.9475 | - | | 2.8232 | 64160 | 0.9669 | - | | 2.8236 | 64170 | 0.9476 | - | | 2.8241 | 64180 | 0.9894 | - | | 2.8245 | 64190 | 0.9774 | - | | 2.8250 | 64200 | 0.9228 | - | | 2.8254 | 64210 | 0.9409 | - | | 2.8258 | 64220 | 0.9292 | - | | 2.8263 | 64230 | 0.9485 | - | | 2.8267 | 64240 | 0.9599 | - | | 2.8272 | 64250 | 0.9535 | - | | 2.8276 | 64260 | 0.9584 | - | | 2.8280 | 64270 | 0.9694 | - | | 2.8285 | 64280 | 0.9641 | - | | 2.8289 | 64290 | 0.9308 | - | | 2.8294 | 64300 | 0.9206 | - | | 2.8298 | 64310 | 0.962 | - | | 2.8302 | 64320 | 0.9246 | - | | 2.8307 | 64330 | 0.9339 | - | | 2.8311 | 64340 | 0.9664 | - | | 2.8316 | 64350 | 0.9894 | - | | 2.8320 | 64360 | 0.968 | - | | 2.8324 | 64370 | 0.9598 | - | | 2.8329 | 64380 | 0.9669 | - | | 2.8333 | 64390 | 0.9732 | - | | 2.8338 | 64400 | 0.9562 | - | | 2.8342 | 64410 | 0.9626 | - | | 2.8346 | 64420 | 1.0196 | - | | 2.8351 | 64430 | 0.9983 | - | | 2.8355 | 64440 | 0.9723 | - | | 2.8360 | 64450 | 0.9406 | - | | 2.8364 | 64460 | 0.9621 | - | | 2.8368 | 64470 | 0.9648 | - | | 2.8373 | 64480 | 0.9752 | - | | 2.8377 | 64490 | 0.9526 | - | | 2.8382 | 64500 | 0.9039 | - | | 2.8386 | 64510 | 0.9611 | - | | 2.8390 | 64520 | 1.023 | - | | 2.8395 | 64530 | 0.9273 | - | | 2.8399 | 64540 | 0.9521 | - | | 2.8404 | 64550 | 0.9978 | - | | 2.8408 | 64560 | 0.973 | - | | 2.8412 | 64570 | 1.0046 | - | | 2.8417 | 64580 | 0.951 | - | | 2.8421 | 64590 | 0.9648 | - | | 2.8426 | 64600 | 0.9417 | - | | 2.8430 | 64610 | 0.9401 | - | | 2.8434 | 64620 | 0.998 | - | | 2.8439 | 64630 | 0.9642 | - | | 2.8443 | 64640 | 1.0118 | - | | 2.8448 | 64650 | 0.9536 | - | | 2.8452 | 64660 | 0.9827 | - | | 2.8456 | 64670 | 0.9364 | - | | 2.8461 | 64680 | 0.9455 | - | | 2.8465 | 64690 | 0.9554 | - | | 2.8470 | 64700 | 0.9305 | - | | 2.8474 | 64710 | 0.9852 | - | | 2.8478 | 64720 | 0.9987 | - | | 2.8483 | 64730 | 0.9579 | - | | 2.8487 | 64740 | 0.9876 | - | | 2.8492 | 64750 | 0.9604 | - | | 2.8496 | 64760 | 0.9016 | - | | 2.8500 | 64770 | 0.9506 | - | | 2.8505 | 64780 | 0.9767 | - | | 2.8509 | 64790 | 0.9482 | - | | 2.8514 | 64800 | 1.0002 | - | | 2.8518 | 64809 | - | 1.4014 | | 2.8518 | 64810 | 0.9516 | - | | 2.8522 | 64820 | 0.9842 | - | | 2.8527 | 64830 | 0.9624 | - | | 2.8531 | 64840 | 0.946 | - | | 2.8536 | 64850 | 0.9637 | - | | 2.8540 | 64860 | 0.9815 | - | | 2.8544 | 64870 | 0.9671 | - | | 2.8549 | 64880 | 0.9125 | - | | 2.8553 | 64890 | 0.9348 | - | | 2.8558 | 64900 | 0.9951 | - | | 2.8562 | 64910 | 0.9496 | - | | 2.8566 | 64920 | 0.967 | - | | 2.8571 | 64930 | 0.9707 | - | | 2.8575 | 64940 | 0.9322 | - | | 2.8580 | 64950 | 0.9546 | - | | 2.8584 | 64960 | 0.9511 | - | | 2.8588 | 64970 | 0.9452 | - | | 2.8593 | 64980 | 0.9569 | - | | 2.8597 | 64990 | 0.9269 | - | | 2.8602 | 65000 | 0.9148 | - | | 2.8606 | 65010 | 0.9604 | - | | 2.8610 | 65020 | 0.9487 | - | | 2.8615 | 65030 | 0.9696 | - | | 2.8619 | 65040 | 0.9582 | - | | 2.8624 | 65050 | 0.9387 | - | | 2.8628 | 65060 | 0.9363 | - | | 2.8632 | 65070 | 0.9353 | - | | 2.8637 | 65080 | 0.9773 | - | | 2.8641 | 65090 | 0.9388 | - | | 2.8646 | 65100 | 0.9474 | - | | 2.8650 | 65110 | 0.9729 | - | | 2.8654 | 65120 | 0.96 | - | | 2.8659 | 65130 | 0.9578 | - | | 2.8663 | 65140 | 0.9655 | - | | 2.8668 | 65150 | 0.9331 | - | | 2.8672 | 65160 | 0.9543 | - | | 2.8676 | 65170 | 0.9313 | - | | 2.8681 | 65180 | 0.9817 | - | | 2.8685 | 65190 | 0.9566 | - | | 2.8690 | 65200 | 0.9485 | - | | 2.8694 | 65210 | 0.9455 | - | | 2.8698 | 65220 | 0.9596 | - | | 2.8703 | 65230 | 0.9791 | - | | 2.8707 | 65240 | 0.9653 | - | | 2.8712 | 65250 | 0.9649 | - | | 2.8716 | 65260 | 0.9334 | - | | 2.8720 | 65270 | 0.9877 | - | | 2.8725 | 65280 | 0.9586 | - | | 2.8729 | 65290 | 0.9551 | - | | 2.8734 | 65300 | 0.9287 | - | | 2.8738 | 65310 | 0.9415 | - | | 2.8742 | 65320 | 0.9473 | - | | 2.8747 | 65330 | 0.9495 | - | | 2.8751 | 65340 | 0.9542 | - | | 2.8756 | 65350 | 0.9194 | - | | 2.8760 | 65360 | 0.9606 | - | | 2.8764 | 65370 | 0.9243 | - | | 2.8769 | 65380 | 0.9438 | - | | 2.8773 | 65390 | 0.9668 | - | | 2.8778 | 65400 | 0.9526 | - | | 2.8782 | 65410 | 0.9644 | - | | 2.8786 | 65420 | 0.9333 | - | | 2.8791 | 65430 | 0.9634 | - | | 2.8795 | 65440 | 0.965 | - | | 2.8800 | 65450 | 1.0017 | - | | 2.8804 | 65460 | 0.9383 | - | | 2.8808 | 65470 | 0.9425 | - | | 2.8813 | 65480 | 0.936 | - | | 2.8817 | 65490 | 0.9481 | - | | 2.8822 | 65500 | 0.9727 | - | | 2.8826 | 65510 | 0.978 | - | | 2.8830 | 65520 | 0.9682 | - | | 2.8835 | 65530 | 0.9318 | - | | 2.8839 | 65540 | 0.9922 | - | | 2.8844 | 65550 | 0.9367 | - | | 2.8848 | 65560 | 0.9918 | - | | 2.8852 | 65570 | 0.992 | - | | 2.8857 | 65580 | 0.9491 | - | | 2.8861 | 65590 | 0.9786 | - | | 2.8866 | 65600 | 0.9659 | - | | 2.8870 | 65610 | 0.9216 | - | | 2.8874 | 65620 | 0.9707 | - | | 2.8879 | 65630 | 0.962 | - | | 2.8883 | 65640 | 0.953 | - | | 2.8888 | 65650 | 0.9281 | - | | 2.8892 | 65660 | 0.9333 | - | | 2.8896 | 65670 | 0.9395 | - | | 2.8901 | 65680 | 0.9433 | - | | 2.8905 | 65690 | 0.9503 | - | | 2.8910 | 65700 | 0.9386 | - | | 2.8914 | 65710 | 0.8914 | - | | 2.8918 | 65720 | 0.9276 | - | | 2.8923 | 65730 | 0.9597 | - | | 2.8927 | 65740 | 0.9641 | - | | 2.8932 | 65750 | 0.9367 | - | | 2.8936 | 65760 | 0.9842 | - | | 2.8940 | 65770 | 0.9456 | - | | 2.8945 | 65780 | 0.9384 | - | | 2.8949 | 65790 | 0.9093 | - | | 2.8954 | 65800 | 0.9444 | - | | 2.8958 | 65810 | 0.9486 | - | | 2.8962 | 65820 | 0.9303 | - | | 2.8967 | 65830 | 0.9425 | - | | 2.8971 | 65840 | 0.9409 | - | | 2.8976 | 65850 | 0.9564 | - | | 2.8980 | 65860 | 0.9413 | - | | 2.8984 | 65870 | 0.9595 | - | | 2.8989 | 65880 | 0.988 | - | | 2.8993 | 65890 | 0.9484 | - | | 2.8998 | 65900 | 0.9876 | - | | 2.9002 | 65910 | 0.9512 | - | | 2.9006 | 65920 | 0.9367 | - | | 2.9011 | 65930 | 0.9903 | - | | 2.9015 | 65940 | 0.9649 | - | | 2.9018 | 65946 | - | 1.4093 | | 2.9020 | 65950 | 0.933 | - | | 2.9024 | 65960 | 0.9118 | - | | 2.9028 | 65970 | 0.9324 | - | | 2.9033 | 65980 | 0.9346 | - | | 2.9037 | 65990 | 0.9474 | - | | 2.9042 | 66000 | 0.9665 | - | | 2.9046 | 66010 | 0.8859 | - | | 2.9050 | 66020 | 0.911 | - | | 2.9055 | 66030 | 0.9469 | - | | 2.9059 | 66040 | 0.9528 | - | | 2.9064 | 66050 | 0.968 | - | | 2.9068 | 66060 | 0.936 | - | | 2.9072 | 66070 | 0.9757 | - | | 2.9077 | 66080 | 0.9455 | - | | 2.9081 | 66090 | 0.9537 | - | | 2.9086 | 66100 | 0.9419 | - | | 2.9090 | 66110 | 0.94 | - | | 2.9094 | 66120 | 0.948 | - | | 2.9099 | 66130 | 0.9683 | - | | 2.9103 | 66140 | 0.933 | - | | 2.9108 | 66150 | 0.9711 | - | | 2.9112 | 66160 | 0.9318 | - | | 2.9116 | 66170 | 0.9349 | - | | 2.9121 | 66180 | 0.9487 | - | | 2.9125 | 66190 | 0.9265 | - | | 2.9130 | 66200 | 0.9176 | - | | 2.9134 | 66210 | 0.9134 | - | | 2.9138 | 66220 | 0.9465 | - | | 2.9143 | 66230 | 0.9439 | - | | 2.9147 | 66240 | 0.9264 | - | | 2.9152 | 66250 | 0.9678 | - | | 2.9156 | 66260 | 0.93 | - | | 2.9160 | 66270 | 0.9397 | - | | 2.9165 | 66280 | 0.9385 | - | | 2.9169 | 66290 | 0.9916 | - | | 2.9174 | 66300 | 0.9582 | - | | 2.9178 | 66310 | 0.9701 | - | | 2.9182 | 66320 | 0.9795 | - | | 2.9187 | 66330 | 0.9415 | - | | 2.9191 | 66340 | 0.9324 | - | | 2.9196 | 66350 | 0.9563 | - | | 2.9200 | 66360 | 0.9297 | - | | 2.9204 | 66370 | 0.9621 | - | | 2.9209 | 66380 | 0.9421 | - | | 2.9213 | 66390 | 0.9769 | - | | 2.9218 | 66400 | 0.9751 | - | | 2.9222 | 66410 | 0.9601 | - | | 2.9226 | 66420 | 0.9182 | - | | 2.9231 | 66430 | 0.9328 | - | | 2.9235 | 66440 | 0.9954 | - | | 2.9240 | 66450 | 0.9775 | - | | 2.9244 | 66460 | 0.9481 | - | | 2.9248 | 66470 | 0.9252 | - | | 2.9253 | 66480 | 0.9601 | - | | 2.9257 | 66490 | 0.9258 | - | | 2.9262 | 66500 | 0.9519 | - | | 2.9266 | 66510 | 0.9419 | - | | 2.9270 | 66520 | 0.9821 | - | | 2.9275 | 66530 | 0.9628 | - | | 2.9279 | 66540 | 0.9596 | - | | 2.9284 | 66550 | 0.9651 | - | | 2.9288 | 66560 | 0.9457 | - | | 2.9292 | 66570 | 0.9636 | - | | 2.9297 | 66580 | 0.9565 | - | | 2.9301 | 66590 | 0.943 | - | | 2.9306 | 66600 | 0.9347 | - | | 2.9310 | 66610 | 0.9608 | - | | 2.9314 | 66620 | 0.9401 | - | | 2.9319 | 66630 | 0.9316 | - | | 2.9323 | 66640 | 0.9514 | - | | 2.9328 | 66650 | 0.932 | - | | 2.9332 | 66660 | 0.8954 | - | | 2.9336 | 66670 | 0.9506 | - | | 2.9341 | 66680 | 0.9512 | - | | 2.9345 | 66690 | 0.9201 | - | | 2.9350 | 66700 | 0.9724 | - | | 2.9354 | 66710 | 0.9628 | - | | 2.9358 | 66720 | 0.9679 | - | | 2.9363 | 66730 | 0.9034 | - | | 2.9367 | 66740 | 0.9232 | - | | 2.9372 | 66750 | 0.9499 | - | | 2.9376 | 66760 | 0.956 | - | | 2.9380 | 66770 | 0.8967 | - | | 2.9385 | 66780 | 0.9078 | - | | 2.9389 | 66790 | 0.9554 | - | | 2.9394 | 66800 | 0.962 | - | | 2.9398 | 66810 | 0.9277 | - | | 2.9402 | 66820 | 0.973 | - | | 2.9407 | 66830 | 0.9941 | - | | 2.9411 | 66840 | 0.9007 | - | | 2.9416 | 66850 | 1.0093 | - | | 2.9420 | 66860 | 0.9651 | - | | 2.9424 | 66870 | 0.9464 | - | | 2.9429 | 66880 | 0.9382 | - | | 2.9433 | 66890 | 0.92 | - | | 2.9438 | 66900 | 0.9509 | - | | 2.9442 | 66910 | 0.9039 | - | | 2.9446 | 66920 | 0.9271 | - | | 2.9451 | 66930 | 1.0063 | - | | 2.9455 | 66940 | 0.8765 | - | | 2.9460 | 66950 | 0.9411 | - | | 2.9464 | 66960 | 0.9383 | - | | 2.9468 | 66970 | 0.9549 | - | | 2.9473 | 66980 | 0.9784 | - | | 2.9477 | 66990 | 0.9143 | - | | 2.9482 | 67000 | 0.9289 | - | | 2.9486 | 67010 | 0.9784 | - | | 2.9490 | 67020 | 0.9697 | - | | 2.9495 | 67030 | 0.9222 | - | | 2.9499 | 67040 | 0.9148 | - | | 2.9504 | 67050 | 0.939 | - | | 2.9508 | 67060 | 0.9518 | - | | 2.9512 | 67070 | 0.9758 | - | | 2.9517 | 67080 | 0.9733 | - | | 2.9518 | 67083 | - | 1.4033 | | 2.9521 | 67090 | 0.9229 | - | | 2.9526 | 67100 | 0.9332 | - | | 2.9530 | 67110 | 0.9693 | - | | 2.9534 | 67120 | 0.932 | - | | 2.9539 | 67130 | 0.9004 | - | | 2.9543 | 67140 | 0.9508 | - | | 2.9548 | 67150 | 0.8953 | - | | 2.9552 | 67160 | 0.945 | - | | 2.9556 | 67170 | 0.8999 | - | | 2.9561 | 67180 | 0.9741 | - | | 2.9565 | 67190 | 0.9893 | - | | 2.9570 | 67200 | 0.9268 | - | | 2.9574 | 67210 | 0.8717 | - | | 2.9578 | 67220 | 0.9399 | - | | 2.9583 | 67230 | 0.9196 | - | | 2.9587 | 67240 | 0.9522 | - | | 2.9592 | 67250 | 0.8865 | - | | 2.9596 | 67260 | 0.9172 | - | | 2.9600 | 67270 | 0.9659 | - | | 2.9605 | 67280 | 0.9731 | - | | 2.9609 | 67290 | 0.9698 | - | | 2.9614 | 67300 | 0.9513 | - | | 2.9618 | 67310 | 1.0016 | - | | 2.9622 | 67320 | 0.9286 | - | | 2.9627 | 67330 | 0.9043 | - | | 2.9631 | 67340 | 0.957 | - | | 2.9636 | 67350 | 0.9494 | - | | 2.9640 | 67360 | 0.9474 | - | | 2.9644 | 67370 | 0.9437 | - | | 2.9649 | 67380 | 0.9502 | - | | 2.9653 | 67390 | 0.9383 | - | | 2.9658 | 67400 | 0.913 | - | | 2.9662 | 67410 | 0.9565 | - | | 2.9666 | 67420 | 0.948 | - | | 2.9671 | 67430 | 0.9597 | - | | 2.9675 | 67440 | 0.9396 | - | | 2.9680 | 67450 | 0.9148 | - | | 2.9684 | 67460 | 0.9202 | - | | 2.9688 | 67470 | 0.9518 | - | | 2.9693 | 67480 | 0.9288 | - | | 2.9697 | 67490 | 0.9129 | - | | 2.9702 | 67500 | 0.9529 | - | | 2.9706 | 67510 | 0.9457 | - | | 2.9710 | 67520 | 0.9496 | - | | 2.9715 | 67530 | 0.9633 | - | | 2.9719 | 67540 | 0.9281 | - | | 2.9724 | 67550 | 0.9118 | - | | 2.9728 | 67560 | 0.9332 | - | | 2.9732 | 67570 | 0.8986 | - | | 2.9737 | 67580 | 0.9324 | - | | 2.9741 | 67590 | 0.9701 | - | | 2.9746 | 67600 | 0.9659 | - | | 2.9750 | 67610 | 0.94 | - | | 2.9754 | 67620 | 0.9052 | - | | 2.9759 | 67630 | 0.9231 | - | | 2.9763 | 67640 | 0.9277 | - | | 2.9768 | 67650 | 0.9046 | - | | 2.9772 | 67660 | 0.9656 | - | | 2.9776 | 67670 | 0.8967 | - | | 2.9781 | 67680 | 0.9378 | - | | 2.9785 | 67690 | 0.9661 | - | | 2.9790 | 67700 | 0.9174 | - | | 2.9794 | 67710 | 0.9411 | - | | 2.9798 | 67720 | 0.9935 | - | | 2.9803 | 67730 | 0.966 | - | | 2.9807 | 67740 | 0.9429 | - | | 2.9812 | 67750 | 0.9312 | - | | 2.9816 | 67760 | 0.9141 | - | | 2.9820 | 67770 | 0.9305 | - | | 2.9825 | 67780 | 0.9499 | - | | 2.9829 | 67790 | 0.8737 | - | | 2.9834 | 67800 | 0.9317 | - | | 2.9838 | 67810 | 0.9332 | - | | 2.9842 | 67820 | 0.9365 | - | | 2.9847 | 67830 | 0.9659 | - | | 2.9851 | 67840 | 0.9129 | - | | 2.9856 | 67850 | 0.9318 | - | | 2.9860 | 67860 | 0.9325 | - | | 2.9864 | 67870 | 0.9568 | - | | 2.9869 | 67880 | 0.9447 | - | | 2.9873 | 67890 | 0.9452 | - | | 2.9878 | 67900 | 0.9204 | - | | 2.9882 | 67910 | 0.9152 | - | | 2.9886 | 67920 | 0.9105 | - | | 2.9891 | 67930 | 0.9512 | - | | 2.9895 | 67940 | 0.9048 | - | | 2.9900 | 67950 | 0.9502 | - | | 2.9904 | 67960 | 0.9192 | - | | 2.9908 | 67970 | 0.9599 | - | | 2.9913 | 67980 | 0.9313 | - | | 2.9917 | 67990 | 0.9556 | - | | 2.9922 | 68000 | 0.9323 | - | | 2.9926 | 68010 | 0.9789 | - | | 2.9930 | 68020 | 0.916 | - | | 2.9935 | 68030 | 0.9094 | - | | 2.9939 | 68040 | 0.9188 | - | | 2.9944 | 68050 | 0.8964 | - | | 2.9948 | 68060 | 0.9545 | - | | 2.9952 | 68070 | 0.9498 | - | | 2.9957 | 68080 | 0.8951 | - | | 2.9961 | 68090 | 0.8845 | - | | 2.9966 | 68100 | 0.9399 | - | | 2.9970 | 68110 | 0.9405 | - | | 2.9974 | 68120 | 0.9405 | - | | 2.9979 | 68130 | 0.9891 | - | | 2.9983 | 68140 | 0.9637 | - | | 2.9988 | 68150 | 0.8949 | - | | 2.9992 | 68160 | 0.9027 | - | | 2.9996 | 68170 | 0.883 | - | | 3.0001 | 68180 | 0.8899 | - | | 3.0005 | 68190 | 0.8705 | - | | 3.0010 | 68200 | 0.8856 | - | | 3.0014 | 68210 | 0.8968 | - | | 3.0018 | 68220 | 0.875 | 1.3861 | | 3.0023 | 68230 | 0.8976 | - | | 3.0027 | 68240 | 0.8922 | - | | 3.0032 | 68250 | 0.8546 | - | | 3.0036 | 68260 | 0.8864 | - | | 3.0040 | 68270 | 0.8953 | - | | 3.0045 | 68280 | 0.8629 | - | | 3.0049 | 68290 | 0.8722 | - | | 3.0054 | 68300 | 0.8894 | - | | 3.0058 | 68310 | 0.9284 | - | | 3.0062 | 68320 | 0.8542 | - | | 3.0067 | 68330 | 0.8437 | - | | 3.0071 | 68340 | 0.9421 | - | | 3.0076 | 68350 | 0.8891 | - | | 3.0080 | 68360 | 0.867 | - | | 3.0084 | 68370 | 0.918 | - | | 3.0089 | 68380 | 0.8838 | - | | 3.0093 | 68390 | 0.8671 | - | | 3.0098 | 68400 | 0.9028 | - | | 3.0102 | 68410 | 0.857 | - | | 3.0106 | 68420 | 0.888 | - | | 3.0111 | 68430 | 0.8766 | - | | 3.0115 | 68440 | 0.8578 | - | | 3.0120 | 68450 | 0.884 | - | | 3.0124 | 68460 | 0.8392 | - | | 3.0128 | 68470 | 0.8895 | - | | 3.0133 | 68480 | 0.872 | - | | 3.0137 | 68490 | 0.9079 | - | | 3.0142 | 68500 | 0.8682 | - | | 3.0146 | 68510 | 0.9102 | - | | 3.0150 | 68520 | 0.8569 | - | | 3.0155 | 68530 | 0.8634 | - | | 3.0159 | 68540 | 0.8789 | - | | 3.0164 | 68550 | 0.8669 | - | | 3.0168 | 68560 | 0.8199 | - | | 3.0172 | 68570 | 0.8682 | - | | 3.0177 | 68580 | 0.8796 | - | | 3.0181 | 68590 | 0.8327 | - | | 3.0186 | 68600 | 0.8988 | - | | 3.0190 | 68610 | 0.8954 | - | | 3.0194 | 68620 | 0.9102 | - | | 3.0199 | 68630 | 0.8689 | - | | 3.0203 | 68640 | 0.9151 | - | | 3.0208 | 68650 | 0.8124 | - | | 3.0212 | 68660 | 0.866 | - | | 3.0216 | 68670 | 0.8721 | - | | 3.0221 | 68680 | 0.871 | - | | 3.0225 | 68690 | 0.8716 | - | | 3.0230 | 68700 | 0.8693 | - | | 3.0234 | 68710 | 0.8947 | - | | 3.0238 | 68720 | 0.8758 | - | | 3.0243 | 68730 | 0.8546 | - | | 3.0247 | 68740 | 0.8122 | - | | 3.0252 | 68750 | 0.872 | - | | 3.0256 | 68760 | 0.9222 | - | | 3.0260 | 68770 | 0.8297 | - | | 3.0265 | 68780 | 0.8678 | - | | 3.0269 | 68790 | 0.8712 | - | | 3.0274 | 68800 | 0.8741 | - | | 3.0278 | 68810 | 0.9197 | - | | 3.0282 | 68820 | 0.8898 | - | | 3.0287 | 68830 | 0.9001 | - | | 3.0291 | 68840 | 0.923 | - | | 3.0296 | 68850 | 0.8059 | - | | 3.0300 | 68860 | 0.8863 | - | | 3.0304 | 68870 | 0.8842 | - | | 3.0309 | 68880 | 0.8652 | - | | 3.0313 | 68890 | 0.8658 | - | | 3.0318 | 68900 | 0.91 | - | | 3.0322 | 68910 | 0.8827 | - | | 3.0326 | 68920 | 0.8869 | - | | 3.0331 | 68930 | 0.8724 | - | | 3.0335 | 68940 | 0.8916 | - | | 3.0340 | 68950 | 0.863 | - | | 3.0344 | 68960 | 0.8782 | - | | 3.0348 | 68970 | 0.8918 | - | | 3.0353 | 68980 | 0.9083 | - | | 3.0357 | 68990 | 0.8584 | - | | 3.0362 | 69000 | 0.8667 | - | | 3.0366 | 69010 | 0.8636 | - | | 3.0371 | 69020 | 0.9053 | - | | 3.0375 | 69030 | 0.9107 | - | | 3.0379 | 69040 | 0.8752 | - | | 3.0384 | 69050 | 0.9087 | - | | 3.0388 | 69060 | 0.8617 | - | | 3.0393 | 69070 | 0.9103 | - | | 3.0397 | 69080 | 0.8752 | - | | 3.0401 | 69090 | 0.883 | - | | 3.0406 | 69100 | 0.8619 | - | | 3.0410 | 69110 | 0.8453 | - | | 3.0415 | 69120 | 0.8296 | - | | 3.0419 | 69130 | 0.8738 | - | | 3.0423 | 69140 | 0.9009 | - | | 3.0428 | 69150 | 0.8957 | - | | 3.0432 | 69160 | 0.8846 | - | | 3.0437 | 69170 | 0.875 | - | | 3.0441 | 69180 | 0.8724 | - | | 3.0445 | 69190 | 0.8717 | - | | 3.0450 | 69200 | 0.9502 | - | | 3.0454 | 69210 | 0.865 | - | | 3.0459 | 69220 | 0.8873 | - | | 3.0463 | 69230 | 0.8425 | - | | 3.0467 | 69240 | 0.874 | - | | 3.0472 | 69250 | 0.8408 | - | | 3.0476 | 69260 | 0.8373 | - | | 3.0481 | 69270 | 0.8771 | - | | 3.0485 | 69280 | 0.8633 | - | | 3.0489 | 69290 | 0.8769 | - | | 3.0494 | 69300 | 0.8437 | - | | 3.0498 | 69310 | 0.8826 | - | | 3.0503 | 69320 | 0.848 | - | | 3.0507 | 69330 | 0.8592 | - | | 3.0511 | 69340 | 0.897 | - | | 3.0516 | 69350 | 0.8933 | - | | 3.0519 | 69357 | - | 1.3783 | | 3.0520 | 69360 | 0.8788 | - | | 3.0525 | 69370 | 0.8821 | - | | 3.0529 | 69380 | 0.8681 | - | | 3.0533 | 69390 | 0.8904 | - | | 3.0538 | 69400 | 0.8663 | - | | 3.0542 | 69410 | 0.8501 | - | | 3.0547 | 69420 | 0.895 | - | | 3.0551 | 69430 | 0.8897 | - | | 3.0555 | 69440 | 0.8628 | - | | 3.0560 | 69450 | 0.9012 | - | | 3.0564 | 69460 | 0.8866 | - | | 3.0569 | 69470 | 0.9094 | - | | 3.0573 | 69480 | 0.8725 | - | | 3.0577 | 69490 | 0.8627 | - | | 3.0582 | 69500 | 0.8742 | - | | 3.0586 | 69510 | 0.9026 | - | | 3.0591 | 69520 | 0.8816 | - | | 3.0595 | 69530 | 0.8702 | - | | 3.0599 | 69540 | 0.8787 | - | | 3.0604 | 69550 | 0.8611 | - | | 3.0608 | 69560 | 0.8785 | - | | 3.0613 | 69570 | 0.8271 | - | | 3.0617 | 69580 | 0.8608 | - | | 3.0621 | 69590 | 0.8825 | - | | 3.0626 | 69600 | 0.8905 | - | | 3.0630 | 69610 | 0.8714 | - | | 3.0635 | 69620 | 0.8495 | - | | 3.0639 | 69630 | 0.8484 | - | | 3.0643 | 69640 | 0.9333 | - | | 3.0648 | 69650 | 0.8568 | - | | 3.0652 | 69660 | 0.8751 | - | | 3.0657 | 69670 | 0.8494 | - | | 3.0661 | 69680 | 0.8752 | - | | 3.0665 | 69690 | 0.9166 | - | | 3.0670 | 69700 | 0.8814 | - | | 3.0674 | 69710 | 0.8848 | - | | 3.0679 | 69720 | 0.8855 | - | | 3.0683 | 69730 | 0.9204 | - | | 3.0687 | 69740 | 0.8633 | - | | 3.0692 | 69750 | 0.8591 | - | | 3.0696 | 69760 | 0.8535 | - | | 3.0701 | 69770 | 0.8578 | - | | 3.0705 | 69780 | 0.8895 | - | | 3.0709 | 69790 | 0.8958 | - | | 3.0714 | 69800 | 0.9212 | - | | 3.0718 | 69810 | 0.8626 | - | | 3.0723 | 69820 | 0.8955 | - | | 3.0727 | 69830 | 0.8607 | - | | 3.0731 | 69840 | 0.8748 | - | | 3.0736 | 69850 | 0.85 | - | | 3.0740 | 69860 | 0.8711 | - | | 3.0745 | 69870 | 0.8392 | - | | 3.0749 | 69880 | 0.8723 | - | | 3.0753 | 69890 | 0.9051 | - | | 3.0758 | 69900 | 0.8526 | - | | 3.0762 | 69910 | 0.8826 | - | | 3.0767 | 69920 | 0.9082 | - | | 3.0771 | 69930 | 0.8755 | - | | 3.0775 | 69940 | 0.8864 | - | | 3.0780 | 69950 | 0.8856 | - | | 3.0784 | 69960 | 0.8867 | - | | 3.0789 | 69970 | 0.9266 | - | | 3.0793 | 69980 | 0.85 | - | | 3.0797 | 69990 | 0.87 | - | | 3.0802 | 70000 | 0.8997 | - | | 3.0806 | 70010 | 0.8685 | - | | 3.0811 | 70020 | 0.8403 | - | | 3.0815 | 70030 | 0.9155 | - | | 3.0819 | 70040 | 0.8898 | - | | 3.0824 | 70050 | 0.8915 | - | | 3.0828 | 70060 | 0.8996 | - | | 3.0833 | 70070 | 0.8439 | - | | 3.0837 | 70080 | 0.8993 | - | | 3.0841 | 70090 | 0.9006 | - | | 3.0846 | 70100 | 0.8969 | - | | 3.0850 | 70110 | 0.8873 | - | | 3.0855 | 70120 | 0.9167 | - | | 3.0859 | 70130 | 0.8905 | - | | 3.0863 | 70140 | 0.8747 | - | | 3.0868 | 70150 | 0.8638 | - | | 3.0872 | 70160 | 0.8768 | - | | 3.0877 | 70170 | 0.8899 | - | | 3.0881 | 70180 | 0.862 | - | | 3.0885 | 70190 | 0.8917 | - | | 3.0890 | 70200 | 0.8517 | - | | 3.0894 | 70210 | 0.8779 | - | | 3.0899 | 70220 | 0.8895 | - | | 3.0903 | 70230 | 0.8567 | - | | 3.0907 | 70240 | 0.9012 | - | | 3.0912 | 70250 | 0.8854 | - | | 3.0916 | 70260 | 0.9253 | - | | 3.0921 | 70270 | 0.8856 | - | | 3.0925 | 70280 | 0.8944 | - | | 3.0929 | 70290 | 0.8486 | - | | 3.0934 | 70300 | 0.8674 | - | | 3.0938 | 70310 | 0.8876 | - | | 3.0943 | 70320 | 0.8408 | - | | 3.0947 | 70330 | 0.8944 | - | | 3.0951 | 70340 | 0.8931 | - | | 3.0956 | 70350 | 0.8585 | - | | 3.0960 | 70360 | 0.8356 | - | | 3.0965 | 70370 | 0.8835 | - | | 3.0969 | 70380 | 0.8768 | - | | 3.0973 | 70390 | 0.8439 | - | | 3.0978 | 70400 | 0.8579 | - | | 3.0982 | 70410 | 0.8342 | - | | 3.0987 | 70420 | 0.8822 | - | | 3.0991 | 70430 | 0.873 | - | | 3.0995 | 70440 | 0.8757 | - | | 3.1000 | 70450 | 0.8242 | - | | 3.1004 | 70460 | 0.8762 | - | | 3.1009 | 70470 | 0.9052 | - | | 3.1013 | 70480 | 0.8328 | - | | 3.1017 | 70490 | 0.9259 | - | | 3.1019 | 70494 | - | 1.4059 | | 3.1022 | 70500 | 0.8657 | - | | 3.1026 | 70510 | 0.8788 | - | | 3.1031 | 70520 | 0.8769 | - | | 3.1035 | 70530 | 0.8709 | - | | 3.1039 | 70540 | 0.9124 | - | | 3.1044 | 70550 | 0.8832 | - | | 3.1048 | 70560 | 0.8313 | - | | 3.1053 | 70570 | 0.9088 | - | | 3.1057 | 70580 | 0.8783 | - | | 3.1061 | 70590 | 0.9065 | - | | 3.1066 | 70600 | 0.8562 | - | | 3.1070 | 70610 | 0.8638 | - | | 3.1075 | 70620 | 0.9117 | - | | 3.1079 | 70630 | 0.9038 | - | | 3.1083 | 70640 | 0.8414 | - | | 3.1088 | 70650 | 0.8729 | - | | 3.1092 | 70660 | 0.9392 | - | | 3.1097 | 70670 | 0.8653 | - | | 3.1101 | 70680 | 0.9107 | - | | 3.1105 | 70690 | 0.8917 | - | | 3.1110 | 70700 | 0.8565 | - | | 3.1114 | 70710 | 0.9033 | - | | 3.1119 | 70720 | 0.8841 | - | | 3.1123 | 70730 | 0.86 | - | | 3.1127 | 70740 | 0.844 | - | | 3.1132 | 70750 | 0.8666 | - | | 3.1136 | 70760 | 0.8496 | - | | 3.1141 | 70770 | 0.8932 | - | | 3.1145 | 70780 | 0.8989 | - | | 3.1149 | 70790 | 0.8951 | - | | 3.1154 | 70800 | 0.8755 | - | | 3.1158 | 70810 | 0.8966 | - | | 3.1163 | 70820 | 0.8831 | - | | 3.1167 | 70830 | 0.914 | - | | 3.1171 | 70840 | 0.8747 | - | | 3.1176 | 70850 | 0.8487 | - | | 3.1180 | 70860 | 0.895 | - | | 3.1185 | 70870 | 0.8452 | - | | 3.1189 | 70880 | 0.8676 | - | | 3.1193 | 70890 | 0.868 | - | | 3.1198 | 70900 | 0.8824 | - | | 3.1202 | 70910 | 0.8484 | - | | 3.1207 | 70920 | 0.8967 | - | | 3.1211 | 70930 | 0.874 | - | | 3.1215 | 70940 | 0.8526 | - | | 3.1220 | 70950 | 0.8501 | - | | 3.1224 | 70960 | 0.8697 | - | | 3.1229 | 70970 | 0.8843 | - | | 3.1233 | 70980 | 0.8799 | - | | 3.1237 | 70990 | 0.9044 | - | | 3.1242 | 71000 | 0.8499 | - | | 3.1246 | 71010 | 0.8395 | - | | 3.1251 | 71020 | 0.8691 | - | | 3.1255 | 71030 | 0.8651 | - | | 3.1259 | 71040 | 0.8746 | - | | 3.1264 | 71050 | 0.8702 | - | | 3.1268 | 71060 | 0.8482 | - | | 3.1273 | 71070 | 0.8803 | - | | 3.1277 | 71080 | 0.8644 | - | | 3.1281 | 71090 | 0.887 | - | | 3.1286 | 71100 | 0.8875 | - | | 3.1290 | 71110 | 0.8706 | - | | 3.1295 | 71120 | 0.9344 | - | | 3.1299 | 71130 | 0.8792 | - | | 3.1303 | 71140 | 0.8702 | - | | 3.1308 | 71150 | 0.8527 | - | | 3.1312 | 71160 | 0.8684 | - | | 3.1317 | 71170 | 0.8475 | - | | 3.1321 | 71180 | 0.8717 | - | | 3.1325 | 71190 | 0.8908 | - | | 3.1330 | 71200 | 0.9005 | - | | 3.1334 | 71210 | 0.8661 | - | | 3.1339 | 71220 | 0.828 | - | | 3.1343 | 71230 | 0.8894 | - | | 3.1347 | 71240 | 0.8429 | - | | 3.1352 | 71250 | 0.8614 | - | | 3.1356 | 71260 | 0.8565 | - | | 3.1361 | 71270 | 0.8853 | - | | 3.1365 | 71280 | 0.8975 | - | | 3.1369 | 71290 | 0.8371 | - | | 3.1374 | 71300 | 0.86 | - | | 3.1378 | 71310 | 0.8612 | - | | 3.1383 | 71320 | 0.8315 | - | | 3.1387 | 71330 | 0.8748 | - | | 3.1391 | 71340 | 0.8505 | - | | 3.1396 | 71350 | 0.852 | - | | 3.1400 | 71360 | 0.8791 | - | | 3.1405 | 71370 | 0.8855 | - | | 3.1409 | 71380 | 0.8525 | - | | 3.1413 | 71390 | 0.891 | - | | 3.1418 | 71400 | 0.8859 | - | | 3.1422 | 71410 | 0.8675 | - | | 3.1427 | 71420 | 0.8576 | - | | 3.1431 | 71430 | 0.8597 | - | | 3.1435 | 71440 | 0.8793 | - | | 3.1440 | 71450 | 0.8746 | - | | 3.1444 | 71460 | 0.8381 | - | | 3.1449 | 71470 | 0.8749 | - | | 3.1453 | 71480 | 0.8599 | - | | 3.1457 | 71490 | 0.8813 | - | | 3.1462 | 71500 | 0.8672 | - | | 3.1466 | 71510 | 0.8848 | - | | 3.1471 | 71520 | 0.8636 | - | | 3.1475 | 71530 | 0.8846 | - | | 3.1479 | 71540 | 0.8926 | - | | 3.1484 | 71550 | 0.8662 | - | | 3.1488 | 71560 | 0.8405 | - | | 3.1493 | 71570 | 0.9048 | - | | 3.1497 | 71580 | 0.8546 | - | | 3.1501 | 71590 | 0.8603 | - | | 3.1506 | 71600 | 0.8645 | - | | 3.1510 | 71610 | 0.893 | - | | 3.1515 | 71620 | 0.8996 | - | | 3.1519 | 71630 | 0.8778 | - | | 3.1519 | 71631 | - | 1.4057 | | 3.1523 | 71640 | 0.8815 | - | | 3.1528 | 71650 | 0.8766 | - | | 3.1532 | 71660 | 0.8817 | - | | 3.1537 | 71670 | 0.846 | - | | 3.1541 | 71680 | 0.8448 | - | | 3.1545 | 71690 | 0.8584 | - | | 3.1550 | 71700 | 0.8714 | - | | 3.1554 | 71710 | 0.8972 | - | | 3.1559 | 71720 | 0.9076 | - | | 3.1563 | 71730 | 0.8858 | - | | 3.1567 | 71740 | 0.8809 | - | | 3.1572 | 71750 | 0.8324 | - | | 3.1576 | 71760 | 0.8337 | - | | 3.1581 | 71770 | 0.8719 | - | | 3.1585 | 71780 | 0.8467 | - | | 3.1589 | 71790 | 0.924 | - | | 3.1594 | 71800 | 0.861 | - | | 3.1598 | 71810 | 0.8428 | - | | 3.1603 | 71820 | 0.89 | - | | 3.1607 | 71830 | 0.8862 | - | | 3.1611 | 71840 | 0.8591 | - | | 3.1616 | 71850 | 0.8471 | - | | 3.1620 | 71860 | 0.8829 | - | | 3.1625 | 71870 | 0.848 | - | | 3.1629 | 71880 | 0.8456 | - | | 3.1633 | 71890 | 0.8539 | - | | 3.1638 | 71900 | 0.8845 | - | | 3.1642 | 71910 | 0.857 | - | | 3.1647 | 71920 | 0.8991 | - | | 3.1651 | 71930 | 0.8731 | - | | 3.1655 | 71940 | 0.8521 | - | | 3.1660 | 71950 | 0.9003 | - | | 3.1664 | 71960 | 0.8453 | - | | 3.1669 | 71970 | 0.8589 | - | | 3.1673 | 71980 | 0.8597 | - | | 3.1677 | 71990 | 0.9139 | - | | 3.1682 | 72000 | 0.8422 | - | | 3.1686 | 72010 | 0.8327 | - | | 3.1691 | 72020 | 0.902 | - | | 3.1695 | 72030 | 0.8488 | - | | 3.1699 | 72040 | 0.8705 | - | | 3.1704 | 72050 | 0.8809 | - | | 3.1708 | 72060 | 0.8831 | - | | 3.1713 | 72070 | 0.8868 | - | | 3.1717 | 72080 | 0.9048 | - | | 3.1721 | 72090 | 0.8537 | - | | 3.1726 | 72100 | 0.868 | - | | 3.1730 | 72110 | 0.8656 | - | | 3.1735 | 72120 | 0.8675 | - | | 3.1739 | 72130 | 0.8657 | - | | 3.1743 | 72140 | 0.8895 | - | | 3.1748 | 72150 | 0.8638 | - | | 3.1752 | 72160 | 0.9095 | - | | 3.1757 | 72170 | 0.847 | - | | 3.1761 | 72180 | 0.8702 | - | | 3.1765 | 72190 | 0.8475 | - | | 3.1770 | 72200 | 0.8743 | - | | 3.1774 | 72210 | 0.8403 | - | | 3.1779 | 72220 | 0.8885 | - | | 3.1783 | 72230 | 0.8953 | - | | 3.1787 | 72240 | 0.8825 | - | | 3.1792 | 72250 | 0.8505 | - | | 3.1796 | 72260 | 0.8588 | - | | 3.1801 | 72270 | 0.8795 | - | | 3.1805 | 72280 | 0.8661 | - | | 3.1809 | 72290 | 0.908 | - | | 3.1814 | 72300 | 0.8164 | - | | 3.1818 | 72310 | 0.8724 | - | | 3.1823 | 72320 | 0.8971 | - | | 3.1827 | 72330 | 0.8565 | - | | 3.1831 | 72340 | 0.8989 | - | | 3.1836 | 72350 | 0.8657 | - | | 3.1840 | 72360 | 0.8959 | - | | 3.1845 | 72370 | 0.8687 | - | | 3.1849 | 72380 | 0.8742 | - | | 3.1853 | 72390 | 0.886 | - | | 3.1858 | 72400 | 0.8864 | - | | 3.1862 | 72410 | 0.8834 | - | | 3.1867 | 72420 | 0.916 | - | | 3.1871 | 72430 | 0.8533 | - | | 3.1875 | 72440 | 0.8754 | - | | 3.1880 | 72450 | 0.8526 | - | | 3.1884 | 72460 | 0.8871 | - | | 3.1889 | 72470 | 0.8749 | - | | 3.1893 | 72480 | 0.8558 | - | | 3.1897 | 72490 | 0.8836 | - | | 3.1902 | 72500 | 0.8912 | - | | 3.1906 | 72510 | 0.9199 | - | | 3.1911 | 72520 | 0.8659 | - | | 3.1915 | 72530 | 0.8359 | - | | 3.1919 | 72540 | 0.8645 | - | | 3.1924 | 72550 | 0.8584 | - | | 3.1928 | 72560 | 0.8556 | - | | 3.1933 | 72570 | 0.8451 | - | | 3.1937 | 72580 | 0.8495 | - | | 3.1941 | 72590 | 0.869 | - | | 3.1946 | 72600 | 0.9066 | - | | 3.1950 | 72610 | 0.8721 | - | | 3.1955 | 72620 | 0.8245 | - | | 3.1959 | 72630 | 0.8488 | - | | 3.1963 | 72640 | 0.8663 | - | | 3.1968 | 72650 | 0.8676 | - | | 3.1972 | 72660 | 0.9114 | - | | 3.1977 | 72670 | 0.854 | - | | 3.1981 | 72680 | 0.8724 | - | | 3.1985 | 72690 | 0.867 | - | | 3.1990 | 72700 | 0.8576 | - | | 3.1994 | 72710 | 0.8678 | - | | 3.1999 | 72720 | 0.8528 | - | | 3.2003 | 72730 | 0.8587 | - | | 3.2007 | 72740 | 0.8738 | - | | 3.2012 | 72750 | 0.8712 | - | | 3.2016 | 72760 | 0.8604 | - | | 3.2020 | 72768 | - | 1.3963 | | 3.2021 | 72770 | 0.8545 | - | | 3.2025 | 72780 | 0.8605 | - | | 3.2029 | 72790 | 0.857 | - | | 3.2034 | 72800 | 0.8822 | - | | 3.2038 | 72810 | 0.866 | - | | 3.2043 | 72820 | 0.8597 | - | | 3.2047 | 72830 | 0.8428 | - | | 3.2051 | 72840 | 0.847 | - | | 3.2056 | 72850 | 0.8678 | - | | 3.2060 | 72860 | 0.8578 | - | | 3.2065 | 72870 | 0.8293 | - | | 3.2069 | 72880 | 0.9004 | - | | 3.2073 | 72890 | 0.9046 | - | | 3.2078 | 72900 | 0.8331 | - | | 3.2082 | 72910 | 0.8626 | - | | 3.2087 | 72920 | 0.8655 | - | | 3.2091 | 72930 | 0.8347 | - | | 3.2095 | 72940 | 0.893 | - | | 3.2100 | 72950 | 0.8574 | - | | 3.2104 | 72960 | 0.8239 | - | | 3.2109 | 72970 | 0.8332 | - | | 3.2113 | 72980 | 0.8784 | - | | 3.2117 | 72990 | 0.8581 | - | | 3.2122 | 73000 | 0.865 | - | | 3.2126 | 73010 | 0.902 | - | | 3.2131 | 73020 | 0.8743 | - | | 3.2135 | 73030 | 0.8472 | - | | 3.2139 | 73040 | 0.8842 | - | | 3.2144 | 73050 | 0.8441 | - | | 3.2148 | 73060 | 0.8567 | - | | 3.2153 | 73070 | 0.8317 | - | | 3.2157 | 73080 | 0.8252 | - | | 3.2161 | 73090 | 0.847 | - | | 3.2166 | 73100 | 0.8672 | - | | 3.2170 | 73110 | 0.8742 | - | | 3.2175 | 73120 | 0.8704 | - | | 3.2179 | 73130 | 0.8661 | - | | 3.2183 | 73140 | 0.8684 | - | | 3.2188 | 73150 | 0.9076 | - | | 3.2192 | 73160 | 0.8757 | - | | 3.2197 | 73170 | 0.8571 | - | | 3.2201 | 73180 | 0.8579 | - | | 3.2205 | 73190 | 0.836 | - | | 3.2210 | 73200 | 0.8443 | - | | 3.2214 | 73210 | 0.8405 | - | | 3.2219 | 73220 | 0.871 | - | | 3.2223 | 73230 | 0.858 | - | | 3.2227 | 73240 | 0.8739 | - | | 3.2232 | 73250 | 0.8497 | - | | 3.2236 | 73260 | 0.8439 | - | | 3.2241 | 73270 | 0.8801 | - | | 3.2245 | 73280 | 0.8884 | - | | 3.2249 | 73290 | 0.881 | - | | 3.2254 | 73300 | 0.8293 | - | | 3.2258 | 73310 | 0.8795 | - | | 3.2263 | 73320 | 0.8629 | - | | 3.2267 | 73330 | 0.8524 | - | | 3.2271 | 73340 | 0.8624 | - | | 3.2276 | 73350 | 0.866 | - | | 3.2280 | 73360 | 0.8479 | - | | 3.2285 | 73370 | 0.8857 | - | | 3.2289 | 73380 | 0.8492 | - | | 3.2293 | 73390 | 0.8516 | - | | 3.2298 | 73400 | 0.8663 | - | | 3.2302 | 73410 | 0.8785 | - | | 3.2307 | 73420 | 0.8518 | - | | 3.2311 | 73430 | 0.8908 | - | | 3.2315 | 73440 | 0.8543 | - | | 3.2320 | 73450 | 0.8612 | - | | 3.2324 | 73460 | 0.8751 | - | | 3.2329 | 73470 | 0.9037 | - | | 3.2333 | 73480 | 0.8683 | - | | 3.2337 | 73490 | 0.8634 | - | | 3.2342 | 73500 | 0.8556 | - | | 3.2346 | 73510 | 0.8528 | - | | 3.2351 | 73520 | 0.8645 | - | | 3.2355 | 73530 | 0.8063 | - | | 3.2359 | 73540 | 0.8321 | - | | 3.2364 | 73550 | 0.8169 | - | | 3.2368 | 73560 | 0.8884 | - | | 3.2373 | 73570 | 0.8433 | - | | 3.2377 | 73580 | 0.8671 | - | | 3.2381 | 73590 | 0.8578 | - | | 3.2386 | 73600 | 0.8301 | - | | 3.2390 | 73610 | 0.8482 | - | | 3.2395 | 73620 | 0.8438 | - | | 3.2399 | 73630 | 0.8727 | - | | 3.2403 | 73640 | 0.8256 | - | | 3.2408 | 73650 | 0.8507 | - | | 3.2412 | 73660 | 0.8507 | - | | 3.2417 | 73670 | 0.8431 | - | | 3.2421 | 73680 | 0.8417 | - | | 3.2425 | 73690 | 0.8497 | - | | 3.2430 | 73700 | 0.8864 | - | | 3.2434 | 73710 | 0.8681 | - | | 3.2439 | 73720 | 0.877 | - | | 3.2443 | 73730 | 0.861 | - | | 3.2447 | 73740 | 0.8285 | - | | 3.2452 | 73750 | 0.8656 | - | | 3.2456 | 73760 | 0.8962 | - | | 3.2461 | 73770 | 0.8371 | - | | 3.2465 | 73780 | 0.8877 | - | | 3.2469 | 73790 | 0.8387 | - | | 3.2474 | 73800 | 0.8896 | - | | 3.2478 | 73810 | 0.8809 | - | | 3.2483 | 73820 | 0.8335 | - | | 3.2487 | 73830 | 0.9112 | - | | 3.2491 | 73840 | 0.8402 | - | | 3.2496 | 73850 | 0.8418 | - | | 3.2500 | 73860 | 0.8782 | - | | 3.2505 | 73870 | 0.8136 | - | | 3.2509 | 73880 | 0.897 | - | | 3.2513 | 73890 | 0.8313 | - | | 3.2518 | 73900 | 0.8154 | - | | 3.2520 | 73905 | - | 1.3836 | | 3.2522 | 73910 | 0.8629 | - | | 3.2527 | 73920 | 0.8269 | - | | 3.2531 | 73930 | 0.8649 | - | | 3.2535 | 73940 | 0.8493 | - | | 3.2540 | 73950 | 0.8364 | - | | 3.2544 | 73960 | 0.8402 | - | | 3.2549 | 73970 | 0.8661 | - | | 3.2553 | 73980 | 0.9145 | - | | 3.2557 | 73990 | 0.839 | - | | 3.2562 | 74000 | 0.879 | - | | 3.2566 | 74010 | 0.8438 | - | | 3.2571 | 74020 | 0.8585 | - | | 3.2575 | 74030 | 0.8421 | - | | 3.2579 | 74040 | 0.8625 | - | | 3.2584 | 74050 | 0.8678 | - | | 3.2588 | 74060 | 0.8418 | - | | 3.2593 | 74070 | 0.8499 | - | | 3.2597 | 74080 | 0.8604 | - | | 3.2601 | 74090 | 0.8375 | - | | 3.2606 | 74100 | 0.8354 | - | | 3.2610 | 74110 | 0.8586 | - | | 3.2615 | 74120 | 0.8375 | - | | 3.2619 | 74130 | 0.8473 | - | | 3.2623 | 74140 | 0.87 | - | | 3.2628 | 74150 | 0.8336 | - | | 3.2632 | 74160 | 0.8636 | - | | 3.2637 | 74170 | 0.8224 | - | | 3.2641 | 74180 | 0.8334 | - | | 3.2645 | 74190 | 0.8581 | - | | 3.2650 | 74200 | 0.8605 | - | | 3.2654 | 74210 | 0.8221 | - | | 3.2659 | 74220 | 0.8597 | - | | 3.2663 | 74230 | 0.8458 | - | | 3.2667 | 74240 | 0.8671 | - | | 3.2672 | 74250 | 0.8514 | - | | 3.2676 | 74260 | 0.8402 | - | | 3.2681 | 74270 | 0.8411 | - | | 3.2685 | 74280 | 0.8481 | - | | 3.2689 | 74290 | 0.8518 | - | | 3.2694 | 74300 | 0.836 | - | | 3.2698 | 74310 | 0.8647 | - | | 3.2703 | 74320 | 0.8448 | - | | 3.2707 | 74330 | 0.8928 | - | | 3.2711 | 74340 | 0.8136 | - | | 3.2716 | 74350 | 0.8653 | - | | 3.2720 | 74360 | 0.8276 | - | | 3.2725 | 74370 | 0.8354 | - | | 3.2729 | 74380 | 0.8472 | - | | 3.2733 | 74390 | 0.85 | - | | 3.2738 | 74400 | 0.8805 | - | | 3.2742 | 74410 | 0.8627 | - | | 3.2747 | 74420 | 0.8339 | - | | 3.2751 | 74430 | 0.8674 | - | | 3.2755 | 74440 | 0.8514 | - | | 3.2760 | 74450 | 0.8275 | - | | 3.2764 | 74460 | 0.859 | - | | 3.2769 | 74470 | 0.8853 | - | | 3.2773 | 74480 | 0.8523 | - | | 3.2777 | 74490 | 0.8675 | - | | 3.2782 | 74500 | 0.8579 | - | | 3.2786 | 74510 | 0.8221 | - | | 3.2791 | 74520 | 0.8784 | - | | 3.2795 | 74530 | 0.8384 | - | | 3.2799 | 74540 | 0.8626 | - | | 3.2804 | 74550 | 0.8636 | - | | 3.2808 | 74560 | 0.8695 | - | | 3.2813 | 74570 | 0.9031 | - | | 3.2817 | 74580 | 0.831 | - | | 3.2821 | 74590 | 0.9057 | - | | 3.2826 | 74600 | 0.8718 | - | | 3.2830 | 74610 | 0.836 | - | | 3.2835 | 74620 | 0.8379 | - | | 3.2839 | 74630 | 0.8606 | - | | 3.2843 | 74640 | 0.8162 | - | | 3.2848 | 74650 | 0.8468 | - | | 3.2852 | 74660 | 0.8839 | - | | 3.2857 | 74670 | 0.8748 | - | | 3.2861 | 74680 | 0.8488 | - | | 3.2865 | 74690 | 0.8249 | - | | 3.2870 | 74700 | 0.8131 | - | | 3.2874 | 74710 | 0.7959 | - | | 3.2879 | 74720 | 0.8458 | - | | 3.2883 | 74730 | 0.8724 | - | | 3.2887 | 74740 | 0.8504 | - | | 3.2892 | 74750 | 0.8781 | - | | 3.2896 | 74760 | 0.8374 | - | | 3.2901 | 74770 | 0.8431 | - | | 3.2905 | 74780 | 0.8399 | - | | 3.2909 | 74790 | 0.8381 | - | | 3.2914 | 74800 | 0.8171 | - | | 3.2918 | 74810 | 0.8412 | - | | 3.2923 | 74820 | 0.8426 | - | | 3.2927 | 74830 | 0.8906 | - | | 3.2931 | 74840 | 0.8745 | - | | 3.2936 | 74850 | 0.9026 | - | | 3.2940 | 74860 | 0.8342 | - | | 3.2945 | 74870 | 0.8334 | - | | 3.2949 | 74880 | 0.8944 | - | | 3.2953 | 74890 | 0.8119 | - | | 3.2958 | 74900 | 0.8475 | - | | 3.2962 | 74910 | 0.8367 | - | | 3.2967 | 74920 | 0.8807 | - | | 3.2971 | 74930 | 0.868 | - | | 3.2975 | 74940 | 0.8473 | - | | 3.2980 | 74950 | 0.8455 | - | | 3.2984 | 74960 | 0.8702 | - | | 3.2989 | 74970 | 0.8049 | - | | 3.2993 | 74980 | 0.8807 | - | | 3.2997 | 74990 | 0.8131 | - | | 3.3002 | 75000 | 0.8429 | - | | 3.3006 | 75010 | 0.838 | - | | 3.3011 | 75020 | 0.8209 | - | | 3.3015 | 75030 | 0.9014 | - | | 3.3019 | 75040 | 0.8474 | - | | 3.3020 | 75042 | - | 1.3761 | | 3.3024 | 75050 | 0.8191 | - | | 3.3028 | 75060 | 0.8195 | - | | 3.3033 | 75070 | 0.8664 | - | | 3.3037 | 75080 | 0.8365 | - | | 3.3041 | 75090 | 0.8565 | - | | 3.3046 | 75100 | 0.8511 | - | | 3.3050 | 75110 | 0.8423 | - | | 3.3055 | 75120 | 0.7992 | - | | 3.3059 | 75130 | 0.8418 | - | | 3.3063 | 75140 | 0.8258 | - | | 3.3068 | 75150 | 0.8279 | - | | 3.3072 | 75160 | 0.844 | - | | 3.3077 | 75170 | 0.8576 | - | | 3.3081 | 75180 | 0.8668 | - | | 3.3085 | 75190 | 0.8231 | - | | 3.3090 | 75200 | 0.8473 | - | | 3.3094 | 75210 | 0.8456 | - | | 3.3099 | 75220 | 0.8359 | - | | 3.3103 | 75230 | 0.7933 | - | | 3.3107 | 75240 | 0.86 | - | | 3.3112 | 75250 | 0.8478 | - | | 3.3116 | 75260 | 0.8743 | - | | 3.3121 | 75270 | 0.8437 | - | | 3.3125 | 75280 | 0.847 | - | | 3.3129 | 75290 | 0.8265 | - | | 3.3134 | 75300 | 0.9031 | - | | 3.3138 | 75310 | 0.8854 | - | | 3.3143 | 75320 | 0.8454 | - | | 3.3147 | 75330 | 0.8117 | - | | 3.3151 | 75340 | 0.8102 | - | | 3.3156 | 75350 | 0.8567 | - | | 3.3160 | 75360 | 0.8573 | - | | 3.3165 | 75370 | 0.8344 | - | | 3.3169 | 75380 | 0.8605 | - | | 3.3173 | 75390 | 0.8382 | - | | 3.3178 | 75400 | 0.8643 | - | | 3.3182 | 75410 | 0.8404 | - | | 3.3187 | 75420 | 0.8154 | - | | 3.3191 | 75430 | 0.8648 | - | | 3.3195 | 75440 | 0.8338 | - | | 3.3200 | 75450 | 0.8393 | - | | 3.3204 | 75460 | 0.8454 | - | | 3.3209 | 75470 | 0.8448 | - | | 3.3213 | 75480 | 0.8327 | - | | 3.3217 | 75490 | 0.8643 | - | | 3.3222 | 75500 | 0.8647 | - | | 3.3226 | 75510 | 0.8542 | - | | 3.3231 | 75520 | 0.8718 | - | | 3.3235 | 75530 | 0.8201 | - | | 3.3239 | 75540 | 0.8124 | - | | 3.3244 | 75550 | 0.8206 | - | | 3.3248 | 75560 | 0.8374 | - | | 3.3253 | 75570 | 0.8683 | - | | 3.3257 | 75580 | 0.8652 | - | | 3.3261 | 75590 | 0.8505 | - | | 3.3266 | 75600 | 0.8621 | - | | 3.3270 | 75610 | 0.7975 | - | | 3.3275 | 75620 | 0.8081 | - | | 3.3279 | 75630 | 0.7946 | - | | 3.3283 | 75640 | 0.834 | - | | 3.3288 | 75650 | 0.8265 | - | | 3.3292 | 75660 | 0.7918 | - | | 3.3297 | 75670 | 0.8996 | - | | 3.3301 | 75680 | 0.8479 | - | | 3.3305 | 75690 | 0.8253 | - | | 3.3310 | 75700 | 0.8366 | - | | 3.3314 | 75710 | 0.8681 | - | | 3.3319 | 75720 | 0.8366 | - | | 3.3323 | 75730 | 0.8189 | - | | 3.3327 | 75740 | 0.8381 | - | | 3.3332 | 75750 | 0.8568 | - | | 3.3336 | 75760 | 0.8441 | - | | 3.3341 | 75770 | 0.8358 | - | | 3.3345 | 75780 | 0.8794 | - | | 3.3349 | 75790 | 0.8448 | - | | 3.3354 | 75800 | 0.848 | - | | 3.3358 | 75810 | 0.8646 | - | | 3.3363 | 75820 | 0.8466 | - | | 3.3367 | 75830 | 0.8527 | - | | 3.3371 | 75840 | 0.8633 | - | | 3.3376 | 75850 | 0.814 | - | | 3.3380 | 75860 | 0.8437 | - | | 3.3385 | 75870 | 0.8684 | - | | 3.3389 | 75880 | 0.8577 | - | | 3.3393 | 75890 | 0.8782 | - | | 3.3398 | 75900 | 0.8162 | - | | 3.3402 | 75910 | 0.8403 | - | | 3.3407 | 75920 | 0.84 | - | | 3.3411 | 75930 | 0.8721 | - | | 3.3415 | 75940 | 0.8849 | - | | 3.3420 | 75950 | 0.838 | - | | 3.3424 | 75960 | 0.8006 | - | | 3.3429 | 75970 | 0.8495 | - | | 3.3433 | 75980 | 0.8314 | - | | 3.3437 | 75990 | 0.7986 | - | | 3.3442 | 76000 | 0.8378 | - | | 3.3446 | 76010 | 0.8918 | - | | 3.3451 | 76020 | 0.8418 | - | | 3.3455 | 76030 | 0.8384 | - | | 3.3459 | 76040 | 0.8212 | - | | 3.3464 | 76050 | 0.8071 | - | | 3.3468 | 76060 | 0.8649 | - | | 3.3473 | 76070 | 0.8485 | - | | 3.3477 | 76080 | 0.7798 | - | | 3.3481 | 76090 | 0.8471 | - | | 3.3486 | 76100 | 0.845 | - | | 3.3490 | 76110 | 0.8207 | - | | 3.3495 | 76120 | 0.8504 | - | | 3.3499 | 76130 | 0.8749 | - | | 3.3503 | 76140 | 0.8353 | - | | 3.3508 | 76150 | 0.8215 | - | | 3.3512 | 76160 | 0.827 | - | | 3.3517 | 76170 | 0.8148 | - | | 3.3521 | 76179 | - | 1.4060 | | 3.3521 | 76180 | 0.8295 | - | | 3.3525 | 76190 | 0.8549 | - | | 3.3530 | 76200 | 0.8477 | - | | 3.3534 | 76210 | 0.8476 | - | | 3.3539 | 76220 | 0.8437 | - | | 3.3543 | 76230 | 0.7932 | - | | 3.3547 | 76240 | 0.82 | - | | 3.3552 | 76250 | 0.8836 | - | | 3.3556 | 76260 | 0.8503 | - | | 3.3561 | 76270 | 0.8375 | - | | 3.3565 | 76280 | 0.8429 | - | | 3.3569 | 76290 | 0.9008 | - | | 3.3574 | 76300 | 0.8156 | - | | 3.3578 | 76310 | 0.8087 | - | | 3.3583 | 76320 | 0.865 | - | | 3.3587 | 76330 | 0.8235 | - | | 3.3591 | 76340 | 0.8699 | - | | 3.3596 | 76350 | 0.8371 | - | | 3.3600 | 76360 | 0.835 | - | | 3.3605 | 76370 | 0.8502 | - | | 3.3609 | 76380 | 0.8235 | - | | 3.3613 | 76390 | 0.8162 | - | | 3.3618 | 76400 | 0.8519 | - | | 3.3622 | 76410 | 0.8344 | - | | 3.3627 | 76420 | 0.8531 | - | | 3.3631 | 76430 | 0.8382 | - | | 3.3635 | 76440 | 0.8783 | - | | 3.3640 | 76450 | 0.8468 | - | | 3.3644 | 76460 | 0.8548 | - | | 3.3649 | 76470 | 0.8572 | - | | 3.3653 | 76480 | 0.8192 | - | | 3.3657 | 76490 | 0.8511 | - | | 3.3662 | 76500 | 0.8663 | - | | 3.3666 | 76510 | 0.8499 | - | | 3.3671 | 76520 | 0.8295 | - | | 3.3675 | 76530 | 0.8172 | - | | 3.3679 | 76540 | 0.8455 | - | | 3.3684 | 76550 | 0.8144 | - | | 3.3688 | 76560 | 0.8199 | - | | 3.3693 | 76570 | 0.8003 | - | | 3.3697 | 76580 | 0.8189 | - | | 3.3701 | 76590 | 0.8312 | - | | 3.3706 | 76600 | 0.8327 | - | | 3.3710 | 76610 | 0.8573 | - | | 3.3715 | 76620 | 0.8045 | - | | 3.3719 | 76630 | 0.8407 | - | | 3.3723 | 76640 | 0.8598 | - | | 3.3728 | 76650 | 0.8263 | - | | 3.3732 | 76660 | 0.8238 | - | | 3.3737 | 76670 | 0.8541 | - | | 3.3741 | 76680 | 0.8199 | - | | 3.3745 | 76690 | 0.8196 | - | | 3.3750 | 76700 | 0.8615 | - | | 3.3754 | 76710 | 0.8711 | - | | 3.3759 | 76720 | 0.845 | - | | 3.3763 | 76730 | 0.8433 | - | | 3.3767 | 76740 | 0.8365 | - | | 3.3772 | 76750 | 0.8201 | - | | 3.3776 | 76760 | 0.8149 | - | | 3.3781 | 76770 | 0.7892 | - | | 3.3785 | 76780 | 0.843 | - | | 3.3789 | 76790 | 0.8479 | - | | 3.3794 | 76800 | 0.7801 | - | | 3.3798 | 76810 | 0.9015 | - | | 3.3803 | 76820 | 0.8726 | - | | 3.3807 | 76830 | 0.8416 | - | | 3.3811 | 76840 | 0.8112 | - | | 3.3816 | 76850 | 0.8312 | - | | 3.3820 | 76860 | 0.8365 | - | | 3.3825 | 76870 | 0.8198 | - | | 3.3829 | 76880 | 0.8122 | - | | 3.3833 | 76890 | 0.8556 | - | | 3.3838 | 76900 | 0.8504 | - | | 3.3842 | 76910 | 0.8575 | - | | 3.3847 | 76920 | 0.8541 | - | | 3.3851 | 76930 | 0.8401 | - | | 3.3855 | 76940 | 0.82 | - | | 3.3860 | 76950 | 0.8442 | - | | 3.3864 | 76960 | 0.8386 | - | | 3.3869 | 76970 | 0.813 | - | | 3.3873 | 76980 | 0.8228 | - | | 3.3877 | 76990 | 0.859 | - | | 3.3882 | 77000 | 0.8711 | - | | 3.3886 | 77010 | 0.8158 | - | | 3.3891 | 77020 | 0.8173 | - | | 3.3895 | 77030 | 0.8184 | - | | 3.3899 | 77040 | 0.8489 | - | | 3.3904 | 77050 | 0.843 | - | | 3.3908 | 77060 | 0.8773 | - | | 3.3913 | 77070 | 0.8383 | - | | 3.3917 | 77080 | 0.8556 | - | | 3.3921 | 77090 | 0.8474 | - | | 3.3926 | 77100 | 0.8488 | - | | 3.3930 | 77110 | 0.8709 | - | | 3.3935 | 77120 | 0.8129 | - | | 3.3939 | 77130 | 0.8329 | - | | 3.3944 | 77140 | 0.7658 | - | | 3.3948 | 77150 | 0.8347 | - | | 3.3952 | 77160 | 0.8532 | - | | 3.3957 | 77170 | 0.8549 | - | | 3.3961 | 77180 | 0.8453 | - | | 3.3966 | 77190 | 0.8628 | - | | 3.3970 | 77200 | 0.8551 | - | | 3.3974 | 77210 | 0.8764 | - | | 3.3979 | 77220 | 0.8015 | - | | 3.3983 | 77230 | 0.8489 | - | | 3.3988 | 77240 | 0.8432 | - | | 3.3992 | 77250 | 0.8419 | - | | 3.3996 | 77260 | 0.8747 | - | | 3.4001 | 77270 | 0.846 | - | | 3.4005 | 77280 | 0.8221 | - | | 3.4010 | 77290 | 0.8567 | - | | 3.4014 | 77300 | 0.782 | - | | 3.4018 | 77310 | 0.8594 | - | | 3.4021 | 77316 | - | 1.3658 | | 3.4023 | 77320 | 0.8638 | - | | 3.4027 | 77330 | 0.8357 | - | | 3.4032 | 77340 | 0.845 | - | | 3.4036 | 77350 | 0.8291 | - | | 3.4040 | 77360 | 0.845 | - | | 3.4045 | 77370 | 0.8157 | - | | 3.4049 | 77380 | 0.8307 | - | | 3.4054 | 77390 | 0.8114 | - | | 3.4058 | 77400 | 0.7582 | - | | 3.4062 | 77410 | 0.8454 | - | | 3.4067 | 77420 | 0.784 | - | | 3.4071 | 77430 | 0.81 | - | | 3.4076 | 77440 | 0.8513 | - | | 3.4080 | 77450 | 0.8322 | - | | 3.4084 | 77460 | 0.8435 | - | | 3.4089 | 77470 | 0.8521 | - | | 3.4093 | 77480 | 0.8445 | - | | 3.4098 | 77490 | 0.855 | - | | 3.4102 | 77500 | 0.8098 | - | | 3.4106 | 77510 | 0.8435 | - | | 3.4111 | 77520 | 0.8617 | - | | 3.4115 | 77530 | 0.8141 | - | | 3.4120 | 77540 | 0.8157 | - | | 3.4124 | 77550 | 0.8203 | - | | 3.4128 | 77560 | 0.8136 | - | | 3.4133 | 77570 | 0.8341 | - | | 3.4137 | 77580 | 0.8134 | - | | 3.4142 | 77590 | 0.7894 | - | | 3.4146 | 77600 | 0.8572 | - | | 3.4150 | 77610 | 0.8452 | - | | 3.4155 | 77620 | 0.8139 | - | | 3.4159 | 77630 | 0.8117 | - | | 3.4164 | 77640 | 0.8559 | - | | 3.4168 | 77650 | 0.8644 | - | | 3.4172 | 77660 | 0.8005 | - | | 3.4177 | 77670 | 0.8203 | - | | 3.4181 | 77680 | 0.8652 | - | | 3.4186 | 77690 | 0.8571 | - | | 3.4190 | 77700 | 0.8419 | - | | 3.4194 | 77710 | 0.8226 | - | | 3.4199 | 77720 | 0.868 | - | | 3.4203 | 77730 | 0.8317 | - | | 3.4208 | 77740 | 0.8189 | - | | 3.4212 | 77750 | 0.852 | - | | 3.4216 | 77760 | 0.8936 | - | | 3.4221 | 77770 | 0.8728 | - | | 3.4225 | 77780 | 0.8537 | - | | 3.4230 | 77790 | 0.8389 | - | | 3.4234 | 77800 | 0.8793 | - | | 3.4238 | 77810 | 0.7873 | - | | 3.4243 | 77820 | 0.8069 | - | | 3.4247 | 77830 | 0.8034 | - | | 3.4252 | 77840 | 0.8467 | - | | 3.4256 | 77850 | 0.8354 | - | | 3.4260 | 77860 | 0.8315 | - | | 3.4265 | 77870 | 0.8216 | - | | 3.4269 | 77880 | 0.7883 | - | | 3.4274 | 77890 | 0.8528 | - | | 3.4278 | 77900 | 0.8502 | - | | 3.4282 | 77910 | 0.8223 | - | | 3.4287 | 77920 | 0.8316 | - | | 3.4291 | 77930 | 0.8355 | - | | 3.4296 | 77940 | 0.8313 | - | | 3.4300 | 77950 | 0.8533 | - | | 3.4304 | 77960 | 0.8477 | - | | 3.4309 | 77970 | 0.8396 | - | | 3.4313 | 77980 | 0.821 | - | | 3.4318 | 77990 | 0.7824 | - | | 3.4322 | 78000 | 0.8045 | - | | 3.4326 | 78010 | 0.8749 | - | | 3.4331 | 78020 | 0.8469 | - | | 3.4335 | 78030 | 0.8635 | - | | 3.4340 | 78040 | 0.8452 | - | | 3.4344 | 78050 | 0.8418 | - | | 3.4348 | 78060 | 0.8416 | - | | 3.4353 | 78070 | 0.8349 | - | | 3.4357 | 78080 | 0.805 | - | | 3.4362 | 78090 | 0.8227 | - | | 3.4366 | 78100 | 0.8208 | - | | 3.4370 | 78110 | 0.8622 | - | | 3.4375 | 78120 | 0.823 | - | | 3.4379 | 78130 | 0.858 | - | | 3.4384 | 78140 | 0.8125 | - | | 3.4388 | 78150 | 0.8072 | - | | 3.4392 | 78160 | 0.8381 | - | | 3.4397 | 78170 | 0.8475 | - | | 3.4401 | 78180 | 0.8315 | - | | 3.4406 | 78190 | 0.8099 | - | | 3.4410 | 78200 | 0.801 | - | | 3.4414 | 78210 | 0.879 | - | | 3.4419 | 78220 | 0.7844 | - | | 3.4423 | 78230 | 0.8235 | - | | 3.4428 | 78240 | 0.766 | - | | 3.4432 | 78250 | 0.7875 | - | | 3.4436 | 78260 | 0.8433 | - | | 3.4441 | 78270 | 0.8319 | - | | 3.4445 | 78280 | 0.8234 | - | | 3.4450 | 78290 | 0.8105 | - | | 3.4454 | 78300 | 0.8183 | - | | 3.4458 | 78310 | 0.8178 | - | | 3.4463 | 78320 | 0.8463 | - | | 3.4467 | 78330 | 0.8128 | - | | 3.4472 | 78340 | 0.8031 | - | | 3.4476 | 78350 | 0.8183 | - | | 3.4480 | 78360 | 0.8257 | - | | 3.4485 | 78370 | 0.8048 | - | | 3.4489 | 78380 | 0.8285 | - | | 3.4494 | 78390 | 0.7991 | - | | 3.4498 | 78400 | 0.8671 | - | | 3.4502 | 78410 | 0.796 | - | | 3.4507 | 78420 | 0.8117 | - | | 3.4511 | 78430 | 0.828 | - | | 3.4516 | 78440 | 0.8288 | - | | 3.4520 | 78450 | 0.8243 | - | | 3.4521 | 78453 | - | 1.3806 | | 3.4524 | 78460 | 0.8348 | - | | 3.4529 | 78470 | 0.847 | - | | 3.4533 | 78480 | 0.8154 | - | | 3.4538 | 78490 | 0.8109 | - | | 3.4542 | 78500 | 0.8393 | - | | 3.4546 | 78510 | 0.7969 | - | | 3.4551 | 78520 | 0.8018 | - | | 3.4555 | 78530 | 0.8262 | - | | 3.4560 | 78540 | 0.8573 | - | | 3.4564 | 78550 | 0.8568 | - | | 3.4568 | 78560 | 0.7906 | - | | 3.4573 | 78570 | 0.8115 | - | | 3.4577 | 78580 | 0.8217 | - | | 3.4582 | 78590 | 0.8695 | - | | 3.4586 | 78600 | 0.7948 | - | | 3.4590 | 78610 | 0.8532 | - | | 3.4595 | 78620 | 0.8354 | - | | 3.4599 | 78630 | 0.8514 | - | | 3.4604 | 78640 | 0.8251 | - | | 3.4608 | 78650 | 0.8273 | - | | 3.4612 | 78660 | 0.8313 | - | | 3.4617 | 78670 | 0.8183 | - | | 3.4621 | 78680 | 0.7995 | - | | 3.4626 | 78690 | 0.8085 | - | | 3.4630 | 78700 | 0.8074 | - | | 3.4634 | 78710 | 0.8108 | - | | 3.4639 | 78720 | 0.8159 | - | | 3.4643 | 78730 | 0.8451 | - | | 3.4648 | 78740 | 0.8166 | - | | 3.4652 | 78750 | 0.8368 | - | | 3.4656 | 78760 | 0.8219 | - | | 3.4661 | 78770 | 0.8431 | - | | 3.4665 | 78780 | 0.7959 | - | | 3.4670 | 78790 | 0.7811 | - | | 3.4674 | 78800 | 0.8075 | - | | 3.4678 | 78810 | 0.8674 | - | | 3.4683 | 78820 | 0.8446 | - | | 3.4687 | 78830 | 0.8312 | - | | 3.4692 | 78840 | 0.8059 | - | | 3.4696 | 78850 | 0.8397 | - | | 3.4700 | 78860 | 0.8378 | - | | 3.4705 | 78870 | 0.8444 | - | | 3.4709 | 78880 | 0.8228 | - | | 3.4714 | 78890 | 0.8142 | - | | 3.4718 | 78900 | 0.8158 | - | | 3.4722 | 78910 | 0.7852 | - | | 3.4727 | 78920 | 0.8326 | - | | 3.4731 | 78930 | 0.8231 | - | | 3.4736 | 78940 | 0.8523 | - | | 3.4740 | 78950 | 0.7719 | - | | 3.4744 | 78960 | 0.8395 | - | | 3.4749 | 78970 | 0.807 | - | | 3.4753 | 78980 | 0.863 | - | | 3.4758 | 78990 | 0.8226 | - | | 3.4762 | 79000 | 0.8163 | - | | 3.4766 | 79010 | 0.8552 | - | | 3.4771 | 79020 | 0.8254 | - | | 3.4775 | 79030 | 0.8115 | - | | 3.4780 | 79040 | 0.8097 | - | | 3.4784 | 79050 | 0.8333 | - | | 3.4788 | 79060 | 0.7931 | - | | 3.4793 | 79070 | 0.8518 | - | | 3.4797 | 79080 | 0.8412 | - | | 3.4802 | 79090 | 0.8 | - | | 3.4806 | 79100 | 0.8371 | - | | 3.4810 | 79110 | 0.8175 | - | | 3.4815 | 79120 | 0.8182 | - | | 3.4819 | 79130 | 0.8031 | - | | 3.4824 | 79140 | 0.8478 | - | | 3.4828 | 79150 | 0.7991 | - | | 3.4832 | 79160 | 0.8554 | - | | 3.4837 | 79170 | 0.8338 | - | | 3.4841 | 79180 | 0.7964 | - | | 3.4846 | 79190 | 0.8065 | - | | 3.4850 | 79200 | 0.8168 | - | | 3.4854 | 79210 | 0.8225 | - | | 3.4859 | 79220 | 0.8048 | - | | 3.4863 | 79230 | 0.8298 | - | | 3.4868 | 79240 | 0.8554 | - | | 3.4872 | 79250 | 0.8361 | - | | 3.4876 | 79260 | 0.8075 | - | | 3.4881 | 79270 | 0.8241 | - | | 3.4885 | 79280 | 0.8051 | - | | 3.4890 | 79290 | 0.851 | - | | 3.4894 | 79300 | 0.8355 | - | | 3.4898 | 79310 | 0.7933 | - | | 3.4903 | 79320 | 0.8075 | - | | 3.4907 | 79330 | 0.796 | - | | 3.4912 | 79340 | 0.829 | - | | 3.4916 | 79350 | 0.8174 | - | | 3.4920 | 79360 | 0.8602 | - | | 3.4925 | 79370 | 0.8421 | - | | 3.4929 | 79380 | 0.7882 | - | | 3.4934 | 79390 | 0.7828 | - | | 3.4938 | 79400 | 0.8359 | - | | 3.4942 | 79410 | 0.8273 | - | | 3.4947 | 79420 | 0.8275 | - | | 3.4951 | 79430 | 0.8337 | - | | 3.4956 | 79440 | 0.8393 | - | | 3.4960 | 79450 | 0.8558 | - | | 3.4964 | 79460 | 0.8176 | - | | 3.4969 | 79470 | 0.8426 | - | | 3.4973 | 79480 | 0.8227 | - | | 3.4978 | 79490 | 0.7986 | - | | 3.4982 | 79500 | 0.8513 | - | | 3.4986 | 79510 | 0.8233 | - | | 3.4991 | 79520 | 0.7981 | - | | 3.4995 | 79530 | 0.8128 | - | | 3.5000 | 79540 | 0.855 | - | | 3.5004 | 79550 | 0.8601 | - | | 3.5008 | 79560 | 0.8023 | - | | 3.5013 | 79570 | 0.802 | - | | 3.5017 | 79580 | 0.8163 | - | | 3.5022 | 79590 | 0.7995 | 1.3837 | | 3.5026 | 79600 | 0.8062 | - | | 3.5030 | 79610 | 0.8079 | - | | 3.5035 | 79620 | 0.7952 | - | | 3.5039 | 79630 | 0.8064 | - | | 3.5044 | 79640 | 0.8269 | - | | 3.5048 | 79650 | 0.8365 | - | | 3.5052 | 79660 | 0.8244 | - | | 3.5057 | 79670 | 0.8121 | - | | 3.5061 | 79680 | 0.8255 | - | | 3.5066 | 79690 | 0.8083 | - | | 3.5070 | 79700 | 0.855 | - | | 3.5074 | 79710 | 0.7844 | - | | 3.5079 | 79720 | 0.7829 | - | | 3.5083 | 79730 | 0.8356 | - | | 3.5088 | 79740 | 0.8064 | - | | 3.5092 | 79750 | 0.8023 | - | | 3.5096 | 79760 | 0.7997 | - | | 3.5101 | 79770 | 0.8418 | - | | 3.5105 | 79780 | 0.8075 | - | | 3.5110 | 79790 | 0.8105 | - | | 3.5114 | 79800 | 0.7648 | - | | 3.5118 | 79810 | 0.8372 | - | | 3.5123 | 79820 | 0.7942 | - | | 3.5127 | 79830 | 0.8321 | - | | 3.5132 | 79840 | 0.8227 | - | | 3.5136 | 79850 | 0.8279 | - | | 3.5140 | 79860 | 0.8356 | - | | 3.5145 | 79870 | 0.852 | - | | 3.5149 | 79880 | 0.8014 | - | | 3.5154 | 79890 | 0.8184 | - | | 3.5158 | 79900 | 0.8283 | - | | 3.5162 | 79910 | 0.7779 | - | | 3.5167 | 79920 | 0.843 | - | | 3.5171 | 79930 | 0.8044 | - | | 3.5176 | 79940 | 0.8453 | - | | 3.5180 | 79950 | 0.8448 | - | | 3.5184 | 79960 | 0.7981 | - | | 3.5189 | 79970 | 0.8173 | - | | 3.5193 | 79980 | 0.8753 | - | | 3.5198 | 79990 | 0.7809 | - | | 3.5202 | 80000 | 0.7773 | - | | 3.5206 | 80010 | 0.8128 | - | | 3.5211 | 80020 | 0.8379 | - | | 3.5215 | 80030 | 0.8666 | - | | 3.5220 | 80040 | 0.8112 | - | | 3.5224 | 80050 | 0.859 | - | | 3.5228 | 80060 | 0.8432 | - | | 3.5233 | 80070 | 0.8145 | - | | 3.5237 | 80080 | 0.8134 | - | | 3.5242 | 80090 | 0.808 | - | | 3.5246 | 80100 | 0.8182 | - | | 3.5250 | 80110 | 0.7792 | - | | 3.5255 | 80120 | 0.8454 | - | | 3.5259 | 80130 | 0.8073 | - | | 3.5264 | 80140 | 0.8301 | - | | 3.5268 | 80150 | 0.8157 | - | | 3.5272 | 80160 | 0.8235 | - | | 3.5277 | 80170 | 0.8281 | - | | 3.5281 | 80180 | 0.8238 | - | | 3.5286 | 80190 | 0.8166 | - | | 3.5290 | 80200 | 0.8211 | - | | 3.5294 | 80210 | 0.8238 | - | | 3.5299 | 80220 | 0.811 | - | | 3.5303 | 80230 | 0.8175 | - | | 3.5308 | 80240 | 0.8384 | - | | 3.5312 | 80250 | 0.7981 | - | | 3.5316 | 80260 | 0.8389 | - | | 3.5321 | 80270 | 0.8513 | - | | 3.5325 | 80280 | 0.8176 | - | | 3.5330 | 80290 | 0.8382 | - | | 3.5334 | 80300 | 0.8062 | - | | 3.5338 | 80310 | 0.8262 | - | | 3.5343 | 80320 | 0.8122 | - | | 3.5347 | 80330 | 0.8299 | - | | 3.5352 | 80340 | 0.8036 | - | | 3.5356 | 80350 | 0.8341 | - | | 3.5360 | 80360 | 0.8345 | - | | 3.5365 | 80370 | 0.8663 | - | | 3.5369 | 80380 | 0.826 | - | | 3.5374 | 80390 | 0.8203 | - | | 3.5378 | 80400 | 0.7951 | - | | 3.5382 | 80410 | 0.8568 | - | | 3.5387 | 80420 | 0.8099 | - | | 3.5391 | 80430 | 0.811 | - | | 3.5396 | 80440 | 0.8202 | - | | 3.5400 | 80450 | 0.8915 | - | | 3.5404 | 80460 | 0.8065 | - | | 3.5409 | 80470 | 0.8372 | - | | 3.5413 | 80480 | 0.8237 | - | | 3.5418 | 80490 | 0.8317 | - | | 3.5422 | 80500 | 0.7939 | - | | 3.5426 | 80510 | 0.8071 | - | | 3.5431 | 80520 | 0.8507 | - | | 3.5435 | 80530 | 0.8071 | - | | 3.5440 | 80540 | 0.8295 | - | | 3.5444 | 80550 | 0.8018 | - | | 3.5448 | 80560 | 0.767 | - | | 3.5453 | 80570 | 0.7792 | - | | 3.5457 | 80580 | 0.8474 | - | | 3.5462 | 80590 | 0.8287 | - | | 3.5466 | 80600 | 0.7772 | - | | 3.5470 | 80610 | 0.8161 | - | | 3.5475 | 80620 | 0.8173 | - | | 3.5479 | 80630 | 0.7996 | - | | 3.5484 | 80640 | 0.7879 | - | | 3.5488 | 80650 | 0.8312 | - | | 3.5492 | 80660 | 0.8135 | - | | 3.5497 | 80670 | 0.8016 | - | | 3.5501 | 80680 | 0.7853 | - | | 3.5506 | 80690 | 0.8381 | - | | 3.5510 | 80700 | 0.831 | - | | 3.5514 | 80710 | 0.8416 | - | | 3.5519 | 80720 | 0.8156 | - | | 3.5522 | 80727 | - | 1.3862 | | 3.5523 | 80730 | 0.7994 | - | | 3.5528 | 80740 | 0.7681 | - | | 3.5532 | 80750 | 0.8334 | - | | 3.5536 | 80760 | 0.8203 | - | | 3.5541 | 80770 | 0.8073 | - | | 3.5545 | 80780 | 0.7944 | - | | 3.5550 | 80790 | 0.7806 | - | | 3.5554 | 80800 | 0.778 | - | | 3.5558 | 80810 | 0.795 | - | | 3.5563 | 80820 | 0.8067 | - | | 3.5567 | 80830 | 0.8328 | - | | 3.5572 | 80840 | 0.8218 | - | | 3.5576 | 80850 | 0.8225 | - | | 3.5580 | 80860 | 0.8507 | - | | 3.5585 | 80870 | 0.7926 | - | | 3.5589 | 80880 | 0.7923 | - | | 3.5594 | 80890 | 0.7761 | - | | 3.5598 | 80900 | 0.7992 | - | | 3.5602 | 80910 | 0.7813 | - | | 3.5607 | 80920 | 0.8322 | - | | 3.5611 | 80930 | 0.8235 | - | | 3.5616 | 80940 | 0.8143 | - | | 3.5620 | 80950 | 0.8031 | - | | 3.5624 | 80960 | 0.799 | - | | 3.5629 | 80970 | 0.7658 | - | | 3.5633 | 80980 | 0.8287 | - | | 3.5638 | 80990 | 0.8142 | - | | 3.5642 | 81000 | 0.8165 | - | | 3.5646 | 81010 | 0.8514 | - | | 3.5651 | 81020 | 0.8154 | - | | 3.5655 | 81030 | 0.8462 | - | | 3.5660 | 81040 | 0.76 | - | | 3.5664 | 81050 | 0.8511 | - | | 3.5668 | 81060 | 0.7323 | - | | 3.5673 | 81070 | 0.8045 | - | | 3.5677 | 81080 | 0.8382 | - | | 3.5682 | 81090 | 0.8274 | - | | 3.5686 | 81100 | 0.8064 | - | | 3.5690 | 81110 | 0.7655 | - | | 3.5695 | 81120 | 0.8168 | - | | 3.5699 | 81130 | 0.8117 | - | | 3.5704 | 81140 | 0.785 | - | | 3.5708 | 81150 | 0.832 | - | | 3.5712 | 81160 | 0.8375 | - | | 3.5717 | 81170 | 0.7864 | - | | 3.5721 | 81180 | 0.8167 | - | | 3.5726 | 81190 | 0.8329 | - | | 3.5730 | 81200 | 0.8267 | - | | 3.5734 | 81210 | 0.8395 | - | | 3.5739 | 81220 | 0.8519 | - | | 3.5743 | 81230 | 0.8207 | - | | 3.5748 | 81240 | 0.798 | - | | 3.5752 | 81250 | 0.817 | - | | 3.5756 | 81260 | 0.8411 | - | | 3.5761 | 81270 | 0.8182 | - | | 3.5765 | 81280 | 0.8288 | - | | 3.5770 | 81290 | 0.8099 | - | | 3.5774 | 81300 | 0.7793 | - | | 3.5778 | 81310 | 0.8472 | - | | 3.5783 | 81320 | 0.8061 | - | | 3.5787 | 81330 | 0.7808 | - | | 3.5792 | 81340 | 0.8127 | - | | 3.5796 | 81350 | 0.8208 | - | | 3.5800 | 81360 | 0.7852 | - | | 3.5805 | 81370 | 0.8063 | - | | 3.5809 | 81380 | 0.7759 | - | | 3.5814 | 81390 | 0.8501 | - | | 3.5818 | 81400 | 0.8205 | - | | 3.5822 | 81410 | 0.8125 | - | | 3.5827 | 81420 | 0.828 | - | | 3.5831 | 81430 | 0.7998 | - | | 3.5836 | 81440 | 0.8602 | - | | 3.5840 | 81450 | 0.7844 | - | | 3.5844 | 81460 | 0.8187 | - | | 3.5849 | 81470 | 0.8021 | - | | 3.5853 | 81480 | 0.7637 | - | | 3.5858 | 81490 | 0.8461 | - | | 3.5862 | 81500 | 0.8438 | - | | 3.5866 | 81510 | 0.8549 | - | | 3.5871 | 81520 | 0.8103 | - | | 3.5875 | 81530 | 0.8024 | - | | 3.5880 | 81540 | 0.7911 | - | | 3.5884 | 81550 | 0.8503 | - | | 3.5888 | 81560 | 0.7962 | - | | 3.5893 | 81570 | 0.798 | - | | 3.5897 | 81580 | 0.7978 | - | | 3.5902 | 81590 | 0.8021 | - | | 3.5906 | 81600 | 0.851 | - | | 3.5910 | 81610 | 0.7917 | - | | 3.5915 | 81620 | 0.8101 | - | | 3.5919 | 81630 | 0.807 | - | | 3.5924 | 81640 | 0.8308 | - | | 3.5928 | 81650 | 0.8294 | - | | 3.5932 | 81660 | 0.8187 | - | | 3.5937 | 81670 | 0.8512 | - | | 3.5941 | 81680 | 0.8003 | - | | 3.5946 | 81690 | 0.7692 | - | | 3.5950 | 81700 | 0.8189 | - | | 3.5954 | 81710 | 0.7834 | - | | 3.5959 | 81720 | 0.8491 | - | | 3.5963 | 81730 | 0.8056 | - | | 3.5968 | 81740 | 0.8445 | - | | 3.5972 | 81750 | 0.7964 | - | | 3.5976 | 81760 | 0.8031 | - | | 3.5981 | 81770 | 0.816 | - | | 3.5985 | 81780 | 0.8696 | - | | 3.5990 | 81790 | 0.804 | - | | 3.5994 | 81800 | 0.8133 | - | | 3.5998 | 81810 | 0.8556 | - | | 3.6003 | 81820 | 0.786 | - | | 3.6007 | 81830 | 0.7925 | - | | 3.6012 | 81840 | 0.7768 | - | | 3.6016 | 81850 | 0.7761 | - | | 3.6020 | 81860 | 0.7788 | - | | 3.6022 | 81864 | - | 1.3726 | | 3.6025 | 81870 | 0.8554 | - | | 3.6029 | 81880 | 0.795 | - | | 3.6034 | 81890 | 0.8061 | - | | 3.6038 | 81900 | 0.7623 | - | | 3.6042 | 81910 | 0.7742 | - | | 3.6047 | 81920 | 0.7874 | - | | 3.6051 | 81930 | 0.7983 | - | | 3.6056 | 81940 | 0.8517 | - | | 3.6060 | 81950 | 0.8093 | - | | 3.6064 | 81960 | 0.8376 | - | | 3.6069 | 81970 | 0.7594 | - | | 3.6073 | 81980 | 0.8036 | - | | 3.6078 | 81990 | 0.8171 | - | | 3.6082 | 82000 | 0.7667 | - | | 3.6086 | 82010 | 0.8398 | - | | 3.6091 | 82020 | 0.8381 | - | | 3.6095 | 82030 | 0.7781 | - | | 3.6100 | 82040 | 0.8055 | - | | 3.6104 | 82050 | 0.8229 | - | | 3.6108 | 82060 | 0.8205 | - | | 3.6113 | 82070 | 0.7735 | - | | 3.6117 | 82080 | 0.8126 | - | | 3.6122 | 82090 | 0.8 | - | | 3.6126 | 82100 | 0.8309 | - | | 3.6130 | 82110 | 0.7649 | - | | 3.6135 | 82120 | 0.7746 | - | | 3.6139 | 82130 | 0.8159 | - | | 3.6144 | 82140 | 0.8341 | - | | 3.6148 | 82150 | 0.8296 | - | | 3.6152 | 82160 | 0.8089 | - | | 3.6157 | 82170 | 0.823 | - | | 3.6161 | 82180 | 0.7718 | - | | 3.6166 | 82190 | 0.7813 | - | | 3.6170 | 82200 | 0.7828 | - | | 3.6174 | 82210 | 0.7598 | - | | 3.6179 | 82220 | 0.7736 | - | | 3.6183 | 82230 | 0.8095 | - | | 3.6188 | 82240 | 0.8178 | - | | 3.6192 | 82250 | 0.8116 | - | | 3.6196 | 82260 | 0.7986 | - | | 3.6201 | 82270 | 0.8398 | - | | 3.6205 | 82280 | 0.8007 | - | | 3.6210 | 82290 | 0.7973 | - | | 3.6214 | 82300 | 0.7825 | - | | 3.6218 | 82310 | 0.7661 | - | | 3.6223 | 82320 | 0.7936 | - | | 3.6227 | 82330 | 0.8323 | - | | 3.6232 | 82340 | 0.7948 | - | | 3.6236 | 82350 | 0.7793 | - | | 3.6240 | 82360 | 0.843 | - | | 3.6245 | 82370 | 0.8036 | - | | 3.6249 | 82380 | 0.7912 | - | | 3.6254 | 82390 | 0.8025 | - | | 3.6258 | 82400 | 0.8308 | - | | 3.6262 | 82410 | 0.8139 | - | | 3.6267 | 82420 | 0.8046 | - | | 3.6271 | 82430 | 0.7953 | - | | 3.6276 | 82440 | 0.8036 | - | | 3.6280 | 82450 | 0.8386 | - | | 3.6284 | 82460 | 0.7951 | - | | 3.6289 | 82470 | 0.8256 | - | | 3.6293 | 82480 | 0.8126 | - | | 3.6298 | 82490 | 0.7795 | - | | 3.6302 | 82500 | 0.8027 | - | | 3.6306 | 82510 | 0.7972 | - | | 3.6311 | 82520 | 0.7627 | - | | 3.6315 | 82530 | 0.7902 | - | | 3.6320 | 82540 | 0.8104 | - | | 3.6324 | 82550 | 0.8035 | - | | 3.6328 | 82560 | 0.7675 | - | | 3.6333 | 82570 | 0.7904 | - | | 3.6337 | 82580 | 0.7814 | - | | 3.6342 | 82590 | 0.7888 | - | | 3.6346 | 82600 | 0.801 | - | | 3.6350 | 82610 | 0.8126 | - | | 3.6355 | 82620 | 0.801 | - | | 3.6359 | 82630 | 0.8169 | - | | 3.6364 | 82640 | 0.8154 | - | | 3.6368 | 82650 | 0.7942 | - | | 3.6372 | 82660 | 0.8199 | - | | 3.6377 | 82670 | 0.8313 | - | | 3.6381 | 82680 | 0.8122 | - | | 3.6386 | 82690 | 0.8329 | - | | 3.6390 | 82700 | 0.8234 | - | | 3.6394 | 82710 | 0.821 | - | | 3.6399 | 82720 | 0.8119 | - | | 3.6403 | 82730 | 0.7914 | - | | 3.6408 | 82740 | 0.8 | - | | 3.6412 | 82750 | 0.7946 | - | | 3.6416 | 82760 | 0.8204 | - | | 3.6421 | 82770 | 0.8213 | - | | 3.6425 | 82780 | 0.8023 | - | | 3.6430 | 82790 | 0.8379 | - | | 3.6434 | 82800 | 0.8283 | - | | 3.6438 | 82810 | 0.7946 | - | | 3.6443 | 82820 | 0.804 | - | | 3.6447 | 82830 | 0.8067 | - | | 3.6452 | 82840 | 0.8264 | - | | 3.6456 | 82850 | 0.7971 | - | | 3.6460 | 82860 | 0.8057 | - | | 3.6465 | 82870 | 0.805 | - | | 3.6469 | 82880 | 0.7641 | - | | 3.6474 | 82890 | 0.8412 | - | | 3.6478 | 82900 | 0.7575 | - | | 3.6482 | 82910 | 0.7963 | - | | 3.6487 | 82920 | 0.7939 | - | | 3.6491 | 82930 | 0.8143 | - | | 3.6496 | 82940 | 0.8393 | - | | 3.6500 | 82950 | 0.8088 | - | | 3.6504 | 82960 | 0.8009 | - | | 3.6509 | 82970 | 0.802 | - | | 3.6513 | 82980 | 0.8174 | - | | 3.6518 | 82990 | 0.7669 | - | | 3.6522 | 83000 | 0.7981 | - | | 3.6522 | 83001 | - | 1.3769 | | 3.6526 | 83010 | 0.7776 | - | | 3.6531 | 83020 | 0.8126 | - | | 3.6535 | 83030 | 0.7966 | - | | 3.6540 | 83040 | 0.8274 | - | | 3.6544 | 83050 | 0.7831 | - | | 3.6548 | 83060 | 0.8281 | - | | 3.6553 | 83070 | 0.8101 | - | | 3.6557 | 83080 | 0.7799 | - | | 3.6562 | 83090 | 0.78 | - | | 3.6566 | 83100 | 0.8113 | - | | 3.6570 | 83110 | 0.8215 | - | | 3.6575 | 83120 | 0.7934 | - | | 3.6579 | 83130 | 0.8237 | - | | 3.6584 | 83140 | 0.7835 | - | | 3.6588 | 83150 | 0.7888 | - | | 3.6592 | 83160 | 0.7711 | - | | 3.6597 | 83170 | 0.8044 | - | | 3.6601 | 83180 | 0.7981 | - | | 3.6606 | 83190 | 0.8171 | - | | 3.6610 | 83200 | 0.7921 | - | | 3.6614 | 83210 | 0.833 | - | | 3.6619 | 83220 | 0.8046 | - | | 3.6623 | 83230 | 0.7808 | - | | 3.6628 | 83240 | 0.8128 | - | | 3.6632 | 83250 | 0.8178 | - | | 3.6636 | 83260 | 0.7954 | - | | 3.6641 | 83270 | 0.7979 | - | | 3.6645 | 83280 | 0.8139 | - | | 3.6650 | 83290 | 0.8071 | - | | 3.6654 | 83300 | 0.7732 | - | | 3.6658 | 83310 | 0.817 | - | | 3.6663 | 83320 | 0.7932 | - | | 3.6667 | 83330 | 0.8054 | - | | 3.6672 | 83340 | 0.8356 | - | | 3.6676 | 83350 | 0.8242 | - | | 3.6680 | 83360 | 0.8106 | - | | 3.6685 | 83370 | 0.8185 | - | | 3.6689 | 83380 | 0.8059 | - | | 3.6694 | 83390 | 0.7519 | - | | 3.6698 | 83400 | 0.7983 | - | | 3.6702 | 83410 | 0.7964 | - | | 3.6707 | 83420 | 0.7715 | - | | 3.6711 | 83430 | 0.7857 | - | | 3.6716 | 83440 | 0.7806 | - | | 3.6720 | 83450 | 0.8197 | - | | 3.6724 | 83460 | 0.7934 | - | | 3.6729 | 83470 | 0.8308 | - | | 3.6733 | 83480 | 0.7826 | - | | 3.6738 | 83490 | 0.7954 | - | | 3.6742 | 83500 | 0.83 | - | | 3.6746 | 83510 | 0.7939 | - | | 3.6751 | 83520 | 0.778 | - | | 3.6755 | 83530 | 0.7887 | - | | 3.6760 | 83540 | 0.762 | - | | 3.6764 | 83550 | 0.7916 | - | | 3.6768 | 83560 | 0.8125 | - | | 3.6773 | 83570 | 0.7905 | - | | 3.6777 | 83580 | 0.7697 | - | | 3.6782 | 83590 | 0.8235 | - | | 3.6786 | 83600 | 0.7587 | - | | 3.6790 | 83610 | 0.8012 | - | | 3.6795 | 83620 | 0.8254 | - | | 3.6799 | 83630 | 0.801 | - | | 3.6804 | 83640 | 0.803 | - | | 3.6808 | 83650 | 0.7913 | - | | 3.6812 | 83660 | 0.7524 | - | | 3.6817 | 83670 | 0.7894 | - | | 3.6821 | 83680 | 0.8247 | - | | 3.6826 | 83690 | 0.7379 | - | | 3.6830 | 83700 | 0.8349 | - | | 3.6834 | 83710 | 0.8038 | - | | 3.6839 | 83720 | 0.7721 | - | | 3.6843 | 83730 | 0.7839 | - | | 3.6848 | 83740 | 0.8192 | - | | 3.6852 | 83750 | 0.778 | - | | 3.6856 | 83760 | 0.8029 | - | | 3.6861 | 83770 | 0.7833 | - | | 3.6865 | 83780 | 0.8003 | - | | 3.6870 | 83790 | 0.8002 | - | | 3.6874 | 83800 | 0.7818 | - | | 3.6878 | 83810 | 0.8046 | - | | 3.6883 | 83820 | 0.7773 | - | | 3.6887 | 83830 | 0.8162 | - | | 3.6892 | 83840 | 0.8343 | - | | 3.6896 | 83850 | 0.7641 | - | | 3.6900 | 83860 | 0.7848 | - | | 3.6905 | 83870 | 0.8191 | - | | 3.6909 | 83880 | 0.7963 | - | | 3.6914 | 83890 | 0.797 | - | | 3.6918 | 83900 | 0.7576 | - | | 3.6922 | 83910 | 0.8122 | - | | 3.6927 | 83920 | 0.8124 | - | | 3.6931 | 83930 | 0.7323 | - | | 3.6936 | 83940 | 0.797 | - | | 3.6940 | 83950 | 0.7372 | - | | 3.6944 | 83960 | 0.7857 | - | | 3.6949 | 83970 | 0.7928 | - | | 3.6953 | 83980 | 0.7617 | - | | 3.6958 | 83990 | 0.8044 | - | | 3.6962 | 84000 | 0.7951 | - | | 3.6966 | 84010 | 0.8358 | - | | 3.6971 | 84020 | 0.8252 | - | | 3.6975 | 84030 | 0.7879 | - | | 3.6980 | 84040 | 0.7826 | - | | 3.6984 | 84050 | 0.8096 | - | | 3.6988 | 84060 | 0.7823 | - | | 3.6993 | 84070 | 0.7898 | - | | 3.6997 | 84080 | 0.7907 | - | | 3.7002 | 84090 | 0.8199 | - | | 3.7006 | 84100 | 0.8132 | - | | 3.7010 | 84110 | 0.8185 | - | | 3.7015 | 84120 | 0.8398 | - | | 3.7019 | 84130 | 0.7927 | - | | 3.7023 | 84138 | - | 1.3690 | | 3.7024 | 84140 | 0.7846 | - | | 3.7028 | 84150 | 0.7832 | - | | 3.7032 | 84160 | 0.7627 | - | | 3.7037 | 84170 | 0.8082 | - | | 3.7041 | 84180 | 0.8002 | - | | 3.7046 | 84190 | 0.8285 | - | | 3.7050 | 84200 | 0.7985 | - | | 3.7054 | 84210 | 0.8006 | - | | 3.7059 | 84220 | 0.7643 | - | | 3.7063 | 84230 | 0.7783 | - | | 3.7068 | 84240 | 0.8009 | - | | 3.7072 | 84250 | 0.7672 | - | | 3.7076 | 84260 | 0.8421 | - | | 3.7081 | 84270 | 0.7864 | - | | 3.7085 | 84280 | 0.7813 | - | | 3.7090 | 84290 | 0.7913 | - | | 3.7094 | 84300 | 0.7968 | - | | 3.7098 | 84310 | 0.8092 | - | | 3.7103 | 84320 | 0.7647 | - | | 3.7107 | 84330 | 0.8048 | - | | 3.7112 | 84340 | 0.8024 | - | | 3.7116 | 84350 | 0.8016 | - | | 3.7120 | 84360 | 0.8048 | - | | 3.7125 | 84370 | 0.7473 | - | | 3.7129 | 84380 | 0.7852 | - | | 3.7134 | 84390 | 0.7815 | - | | 3.7138 | 84400 | 0.8306 | - | | 3.7142 | 84410 | 0.8004 | - | | 3.7147 | 84420 | 0.7993 | - | | 3.7151 | 84430 | 0.8048 | - | | 3.7156 | 84440 | 0.7818 | - | | 3.7160 | 84450 | 0.787 | - | | 3.7164 | 84460 | 0.7992 | - | | 3.7169 | 84470 | 0.8161 | - | | 3.7173 | 84480 | 0.7911 | - | | 3.7178 | 84490 | 0.8011 | - | | 3.7182 | 84500 | 0.7969 | - | | 3.7186 | 84510 | 0.8016 | - | | 3.7191 | 84520 | 0.799 | - | | 3.7195 | 84530 | 0.8208 | - | | 3.7200 | 84540 | 0.7494 | - | | 3.7204 | 84550 | 0.8078 | - | | 3.7208 | 84560 | 0.8278 | - | | 3.7213 | 84570 | 0.7908 | - | | 3.7217 | 84580 | 0.7968 | - | | 3.7222 | 84590 | 0.767 | - | | 3.7226 | 84600 | 0.783 | - | | 3.7230 | 84610 | 0.7495 | - | | 3.7235 | 84620 | 0.7868 | - | | 3.7239 | 84630 | 0.7977 | - | | 3.7244 | 84640 | 0.8218 | - | | 3.7248 | 84650 | 0.7841 | - | | 3.7252 | 84660 | 0.8066 | - | | 3.7257 | 84670 | 0.7861 | - | | 3.7261 | 84680 | 0.7704 | - | | 3.7266 | 84690 | 0.82 | - | | 3.7270 | 84700 | 0.8091 | - | | 3.7274 | 84710 | 0.793 | - | | 3.7279 | 84720 | 0.7623 | - | | 3.7283 | 84730 | 0.7761 | - | | 3.7288 | 84740 | 0.7622 | - | | 3.7292 | 84750 | 0.7868 | - | | 3.7296 | 84760 | 0.7996 | - | | 3.7301 | 84770 | 0.7737 | - | | 3.7305 | 84780 | 0.7886 | - | | 3.7310 | 84790 | 0.7865 | - | | 3.7314 | 84800 | 0.8285 | - | | 3.7318 | 84810 | 0.7984 | - | | 3.7323 | 84820 | 0.7977 | - | | 3.7327 | 84830 | 0.8075 | - | | 3.7332 | 84840 | 0.7763 | - | | 3.7336 | 84850 | 0.7344 | - | | 3.7340 | 84860 | 0.8063 | - | | 3.7345 | 84870 | 0.8026 | - | | 3.7349 | 84880 | 0.796 | - | | 3.7354 | 84890 | 0.8288 | - | | 3.7358 | 84900 | 0.7825 | - | | 3.7362 | 84910 | 0.7987 | - | | 3.7367 | 84920 | 0.8285 | - | | 3.7371 | 84930 | 0.7409 | - | | 3.7376 | 84940 | 0.7952 | - | | 3.7380 | 84950 | 0.7913 | - | | 3.7384 | 84960 | 0.7595 | - | | 3.7389 | 84970 | 0.8179 | - | | 3.7393 | 84980 | 0.848 | - | | 3.7398 | 84990 | 0.7583 | - | | 3.7402 | 85000 | 0.7793 | - | | 3.7406 | 85010 | 0.8232 | - | | 3.7411 | 85020 | 0.8119 | - | | 3.7415 | 85030 | 0.8035 | - | | 3.7420 | 85040 | 0.8255 | - | | 3.7424 | 85050 | 0.8023 | - | | 3.7428 | 85060 | 0.8042 | - | | 3.7433 | 85070 | 0.7664 | - | | 3.7437 | 85080 | 0.7786 | - | | 3.7442 | 85090 | 0.7845 | - | | 3.7446 | 85100 | 0.7837 | - | | 3.7450 | 85110 | 0.7866 | - | | 3.7455 | 85120 | 0.7945 | - | | 3.7459 | 85130 | 0.7821 | - | | 3.7464 | 85140 | 0.7921 | - | | 3.7468 | 85150 | 0.7824 | - | | 3.7472 | 85160 | 0.7738 | - | | 3.7477 | 85170 | 0.7706 | - | | 3.7481 | 85180 | 0.8167 | - | | 3.7486 | 85190 | 0.7984 | - | | 3.7490 | 85200 | 0.8004 | - | | 3.7494 | 85210 | 0.7642 | - | | 3.7499 | 85220 | 0.77 | - | | 3.7503 | 85230 | 0.7683 | - | | 3.7508 | 85240 | 0.8278 | - | | 3.7512 | 85250 | 0.8392 | - | | 3.7517 | 85260 | 0.817 | - | | 3.7521 | 85270 | 0.79 | - | | 3.7523 | 85275 | - | 1.3909 | | 3.7525 | 85280 | 0.7903 | - | | 3.7530 | 85290 | 0.7937 | - | | 3.7534 | 85300 | 0.7754 | - | | 3.7539 | 85310 | 0.7997 | - | | 3.7543 | 85320 | 0.727 | - | | 3.7547 | 85330 | 0.7622 | - | | 3.7552 | 85340 | 0.8107 | - | | 3.7556 | 85350 | 0.782 | - | | 3.7561 | 85360 | 0.7775 | - | | 3.7565 | 85370 | 0.8287 | - | | 3.7569 | 85380 | 0.8162 | - | | 3.7574 | 85390 | 0.7528 | - | | 3.7578 | 85400 | 0.8173 | - | | 3.7583 | 85410 | 0.8138 | - | | 3.7587 | 85420 | 0.7904 | - | | 3.7591 | 85430 | 0.8118 | - | | 3.7596 | 85440 | 0.7946 | - | | 3.7600 | 85450 | 0.7916 | - | | 3.7605 | 85460 | 0.7352 | - | | 3.7609 | 85470 | 0.7901 | - | | 3.7613 | 85480 | 0.7648 | - | | 3.7618 | 85490 | 0.8297 | - | | 3.7622 | 85500 | 0.7714 | - | | 3.7627 | 85510 | 0.799 | - | | 3.7631 | 85520 | 0.7968 | - | | 3.7635 | 85530 | 0.7587 | - | | 3.7640 | 85540 | 0.7722 | - | | 3.7644 | 85550 | 0.791 | - | | 3.7649 | 85560 | 0.7942 | - | | 3.7653 | 85570 | 0.7676 | - | | 3.7657 | 85580 | 0.8101 | - | | 3.7662 | 85590 | 0.8028 | - | | 3.7666 | 85600 | 0.7454 | - | | 3.7671 | 85610 | 0.8007 | - | | 3.7675 | 85620 | 0.8226 | - | | 3.7679 | 85630 | 0.7766 | - | | 3.7684 | 85640 | 0.7822 | - | | 3.7688 | 85650 | 0.8046 | - | | 3.7693 | 85660 | 0.7569 | - | | 3.7697 | 85670 | 0.7687 | - | | 3.7701 | 85680 | 0.7448 | - | | 3.7706 | 85690 | 0.7909 | - | | 3.7710 | 85700 | 0.7775 | - | | 3.7715 | 85710 | 0.8067 | - | | 3.7719 | 85720 | 0.7782 | - | | 3.7723 | 85730 | 0.7832 | - | | 3.7728 | 85740 | 0.7603 | - | | 3.7732 | 85750 | 0.8055 | - | | 3.7737 | 85760 | 0.8 | - | | 3.7741 | 85770 | 0.7873 | - | | 3.7745 | 85780 | 0.7613 | - | | 3.7750 | 85790 | 0.7894 | - | | 3.7754 | 85800 | 0.8002 | - | | 3.7759 | 85810 | 0.7696 | - | | 3.7763 | 85820 | 0.7473 | - | | 3.7767 | 85830 | 0.8359 | - | | 3.7772 | 85840 | 0.7806 | - | | 3.7776 | 85850 | 0.7789 | - | | 3.7781 | 85860 | 0.8154 | - | | 3.7785 | 85870 | 0.7616 | - | | 3.7789 | 85880 | 0.7672 | - | | 3.7794 | 85890 | 0.7855 | - | | 3.7798 | 85900 | 0.7488 | - | | 3.7803 | 85910 | 0.7721 | - | | 3.7807 | 85920 | 0.7789 | - | | 3.7811 | 85930 | 0.7993 | - | | 3.7816 | 85940 | 0.778 | - | | 3.7820 | 85950 | 0.7778 | - | | 3.7825 | 85960 | 0.8483 | - | | 3.7829 | 85970 | 0.7868 | - | | 3.7833 | 85980 | 0.7954 | - | | 3.7838 | 85990 | 0.7675 | - | | 3.7842 | 86000 | 0.7741 | - | | 3.7847 | 86010 | 0.8057 | - | | 3.7851 | 86020 | 0.7714 | - | | 3.7855 | 86030 | 0.8109 | - | | 3.7860 | 86040 | 0.8106 | - | | 3.7864 | 86050 | 0.7918 | - | | 3.7869 | 86060 | 0.7752 | - | | 3.7873 | 86070 | 0.7734 | - | | 3.7877 | 86080 | 0.8018 | - | | 3.7882 | 86090 | 0.8243 | - | | 3.7886 | 86100 | 0.7546 | - | | 3.7891 | 86110 | 0.7801 | - | | 3.7895 | 86120 | 0.7999 | - | | 3.7899 | 86130 | 0.7931 | - | | 3.7904 | 86140 | 0.7707 | - | | 3.7908 | 86150 | 0.8215 | - | | 3.7913 | 86160 | 0.791 | - | | 3.7917 | 86170 | 0.7746 | - | | 3.7921 | 86180 | 0.8192 | - | | 3.7926 | 86190 | 0.7633 | - | | 3.7930 | 86200 | 0.7952 | - | | 3.7935 | 86210 | 0.7938 | - | | 3.7939 | 86220 | 0.7803 | - | | 3.7943 | 86230 | 0.7681 | - | | 3.7948 | 86240 | 0.8102 | - | | 3.7952 | 86250 | 0.7999 | - | | 3.7957 | 86260 | 0.785 | - | | 3.7961 | 86270 | 0.7819 | - | | 3.7965 | 86280 | 0.7827 | - | | 3.7970 | 86290 | 0.7776 | - | | 3.7974 | 86300 | 0.7879 | - | | 3.7979 | 86310 | 0.8116 | - | | 3.7983 | 86320 | 0.7899 | - | | 3.7987 | 86330 | 0.791 | - | | 3.7992 | 86340 | 0.8193 | - | | 3.7996 | 86350 | 0.7971 | - | | 3.8001 | 86360 | 0.7871 | - | | 3.8005 | 86370 | 0.807 | - | | 3.8009 | 86380 | 0.7674 | - | | 3.8014 | 86390 | 0.789 | - | | 3.8018 | 86400 | 0.7726 | - | | 3.8023 | 86410 | 0.801 | - | | 3.8023 | 86412 | - | 1.3781 | | 3.8027 | 86420 | 0.8232 | - | | 3.8031 | 86430 | 0.8254 | - | | 3.8036 | 86440 | 0.8167 | - | | 3.8040 | 86450 | 0.778 | - | | 3.8045 | 86460 | 0.7623 | - | | 3.8049 | 86470 | 0.8178 | - | | 3.8053 | 86480 | 0.8225 | - | | 3.8058 | 86490 | 0.758 | - | | 3.8062 | 86500 | 0.7624 | - | | 3.8067 | 86510 | 0.7823 | - | | 3.8071 | 86520 | 0.7799 | - | | 3.8075 | 86530 | 0.7537 | - | | 3.8080 | 86540 | 0.8077 | - | | 3.8084 | 86550 | 0.8088 | - | | 3.8089 | 86560 | 0.798 | - | | 3.8093 | 86570 | 0.8011 | - | | 3.8097 | 86580 | 0.7641 | - | | 3.8102 | 86590 | 0.7813 | - | | 3.8106 | 86600 | 0.7731 | - | | 3.8111 | 86610 | 0.7764 | - | | 3.8115 | 86620 | 0.7975 | - | | 3.8119 | 86630 | 0.8013 | - | | 3.8124 | 86640 | 0.7693 | - | | 3.8128 | 86650 | 0.7813 | - | | 3.8133 | 86660 | 0.7408 | - | | 3.8137 | 86670 | 0.7784 | - | | 3.8141 | 86680 | 0.7754 | - | | 3.8146 | 86690 | 0.8008 | - | | 3.8150 | 86700 | 0.7843 | - | | 3.8155 | 86710 | 0.8254 | - | | 3.8159 | 86720 | 0.7922 | - | | 3.8163 | 86730 | 0.7719 | - | | 3.8168 | 86740 | 0.7494 | - | | 3.8172 | 86750 | 0.7922 | - | | 3.8177 | 86760 | 0.7872 | - | | 3.8181 | 86770 | 0.788 | - | | 3.8185 | 86780 | 0.7467 | - | | 3.8190 | 86790 | 0.7625 | - | | 3.8194 | 86800 | 0.7631 | - | | 3.8199 | 86810 | 0.7861 | - | | 3.8203 | 86820 | 0.7833 | - | | 3.8207 | 86830 | 0.7767 | - | | 3.8212 | 86840 | 0.8052 | - | | 3.8216 | 86850 | 0.828 | - | | 3.8221 | 86860 | 0.7688 | - | | 3.8225 | 86870 | 0.7862 | - | | 3.8229 | 86880 | 0.795 | - | | 3.8234 | 86890 | 0.7769 | - | | 3.8238 | 86900 | 0.7545 | - | | 3.8243 | 86910 | 0.7949 | - | | 3.8247 | 86920 | 0.8386 | - | | 3.8251 | 86930 | 0.7647 | - | | 3.8256 | 86940 | 0.8075 | - | | 3.8260 | 86950 | 0.7662 | - | | 3.8265 | 86960 | 0.7416 | - | | 3.8269 | 86970 | 0.8002 | - | | 3.8273 | 86980 | 0.7856 | - | | 3.8278 | 86990 | 0.776 | - | | 3.8282 | 87000 | 0.7827 | - | | 3.8287 | 87010 | 0.7814 | - | | 3.8291 | 87020 | 0.7578 | - | | 3.8295 | 87030 | 0.7759 | - | | 3.8300 | 87040 | 0.7987 | - | | 3.8304 | 87050 | 0.7698 | - | | 3.8309 | 87060 | 0.7958 | - | | 3.8313 | 87070 | 0.7672 | - | | 3.8317 | 87080 | 0.7666 | - | | 3.8322 | 87090 | 0.806 | - | | 3.8326 | 87100 | 0.8002 | - | | 3.8331 | 87110 | 0.7501 | - | | 3.8335 | 87120 | 0.8016 | - | | 3.8339 | 87130 | 0.7688 | - | | 3.8344 | 87140 | 0.771 | - | | 3.8348 | 87150 | 0.7803 | - | | 3.8353 | 87160 | 0.7942 | - | | 3.8357 | 87170 | 0.7691 | - | | 3.8361 | 87180 | 0.7847 | - | | 3.8366 | 87190 | 0.7851 | - | | 3.8370 | 87200 | 0.7552 | - | | 3.8375 | 87210 | 0.7986 | - | | 3.8379 | 87220 | 0.7775 | - | | 3.8383 | 87230 | 0.7484 | - | | 3.8388 | 87240 | 0.7775 | - | | 3.8392 | 87250 | 0.7459 | - | | 3.8397 | 87260 | 0.7953 | - | | 3.8401 | 87270 | 0.7508 | - | | 3.8405 | 87280 | 0.7791 | - | | 3.8410 | 87290 | 0.7596 | - | | 3.8414 | 87300 | 0.7504 | - | | 3.8419 | 87310 | 0.762 | - | | 3.8423 | 87320 | 0.7813 | - | | 3.8427 | 87330 | 0.8048 | - | | 3.8432 | 87340 | 0.7801 | - | | 3.8436 | 87350 | 0.7948 | - | | 3.8441 | 87360 | 0.7646 | - | | 3.8445 | 87370 | 0.7888 | - | | 3.8449 | 87380 | 0.7324 | - | | 3.8454 | 87390 | 0.798 | - | | 3.8458 | 87400 | 0.7827 | - | | 3.8463 | 87410 | 0.7826 | - | | 3.8467 | 87420 | 0.7829 | - | | 3.8471 | 87430 | 0.7765 | - | | 3.8476 | 87440 | 0.7781 | - | | 3.8480 | 87450 | 0.7624 | - | | 3.8485 | 87460 | 0.7762 | - | | 3.8489 | 87470 | 0.7732 | - | | 3.8493 | 87480 | 0.821 | - | | 3.8498 | 87490 | 0.7754 | - | | 3.8502 | 87500 | 0.7605 | - | | 3.8507 | 87510 | 0.7665 | - | | 3.8511 | 87520 | 0.7907 | - | | 3.8515 | 87530 | 0.8188 | - | | 3.8520 | 87540 | 0.7875 | - | | 3.8524 | 87549 | - | 1.3775 | | 3.8524 | 87550 | 0.8105 | - | | 3.8529 | 87560 | 0.7488 | - | | 3.8533 | 87570 | 0.785 | - | | 3.8537 | 87580 | 0.7622 | - | | 3.8542 | 87590 | 0.7882 | - | | 3.8546 | 87600 | 0.7897 | - | | 3.8551 | 87610 | 0.7659 | - | | 3.8555 | 87620 | 0.7964 | - | | 3.8559 | 87630 | 0.7778 | - | | 3.8564 | 87640 | 0.8123 | - | | 3.8568 | 87650 | 0.7622 | - | | 3.8573 | 87660 | 0.7806 | - | | 3.8577 | 87670 | 0.777 | - | | 3.8581 | 87680 | 0.7917 | - | | 3.8586 | 87690 | 0.7659 | - | | 3.8590 | 87700 | 0.7595 | - | | 3.8595 | 87710 | 0.7641 | - | | 3.8599 | 87720 | 0.7912 | - | | 3.8603 | 87730 | 0.7924 | - | | 3.8608 | 87740 | 0.7924 | - | | 3.8612 | 87750 | 0.756 | - | | 3.8617 | 87760 | 0.7787 | - | | 3.8621 | 87770 | 0.7882 | - | | 3.8625 | 87780 | 0.7712 | - | | 3.8630 | 87790 | 0.7516 | - | | 3.8634 | 87800 | 0.7512 | - | | 3.8639 | 87810 | 0.7538 | - | | 3.8643 | 87820 | 0.8062 | - | | 3.8647 | 87830 | 0.7743 | - | | 3.8652 | 87840 | 0.7714 | - | | 3.8656 | 87850 | 0.7736 | - | | 3.8661 | 87860 | 0.7857 | - | | 3.8665 | 87870 | 0.8228 | - | | 3.8669 | 87880 | 0.7598 | - | | 3.8674 | 87890 | 0.7898 | - | | 3.8678 | 87900 | 0.7801 | - | | 3.8683 | 87910 | 0.7638 | - | | 3.8687 | 87920 | 0.7435 | - | | 3.8691 | 87930 | 0.8042 | - | | 3.8696 | 87940 | 0.787 | - | | 3.8700 | 87950 | 0.7634 | - | | 3.8705 | 87960 | 0.7795 | - | | 3.8709 | 87970 | 0.7634 | - | | 3.8713 | 87980 | 0.8065 | - | | 3.8718 | 87990 | 0.7717 | - | | 3.8722 | 88000 | 0.7965 | - | | 3.8727 | 88010 | 0.7769 | - | | 3.8731 | 88020 | 0.7857 | - | | 3.8735 | 88030 | 0.7965 | - | | 3.8740 | 88040 | 0.7719 | - | | 3.8744 | 88050 | 0.7278 | - | | 3.8749 | 88060 | 0.7666 | - | | 3.8753 | 88070 | 0.7887 | - | | 3.8757 | 88080 | 0.7795 | - | | 3.8762 | 88090 | 0.7582 | - | | 3.8766 | 88100 | 0.7813 | - | | 3.8771 | 88110 | 0.7852 | - | | 3.8775 | 88120 | 0.7804 | - | | 3.8779 | 88130 | 0.7963 | - | | 3.8784 | 88140 | 0.8097 | - | | 3.8788 | 88150 | 0.7434 | - | | 3.8793 | 88160 | 0.7697 | - | | 3.8797 | 88170 | 0.7941 | - | | 3.8801 | 88180 | 0.7893 | - | | 3.8806 | 88190 | 0.7773 | - | | 3.8810 | 88200 | 0.7684 | - | | 3.8815 | 88210 | 0.8039 | - | | 3.8819 | 88220 | 0.7672 | - | | 3.8823 | 88230 | 0.8181 | - | | 3.8828 | 88240 | 0.7965 | - | | 3.8832 | 88250 | 0.7942 | - | | 3.8837 | 88260 | 0.75 | - | | 3.8841 | 88270 | 0.7902 | - | | 3.8845 | 88280 | 0.8077 | - | | 3.8850 | 88290 | 0.7449 | - | | 3.8854 | 88300 | 0.8272 | - | | 3.8859 | 88310 | 0.8152 | - | | 3.8863 | 88320 | 0.7734 | - | | 3.8867 | 88330 | 0.7684 | - | | 3.8872 | 88340 | 0.7402 | - | | 3.8876 | 88350 | 0.7676 | - | | 3.8881 | 88360 | 0.7682 | - | | 3.8885 | 88370 | 0.7382 | - | | 3.8889 | 88380 | 0.7543 | - | | 3.8894 | 88390 | 0.7966 | - | | 3.8898 | 88400 | 0.7903 | - | | 3.8903 | 88410 | 0.7831 | - | | 3.8907 | 88420 | 0.7792 | - | | 3.8911 | 88430 | 0.7793 | - | | 3.8916 | 88440 | 0.7633 | - | | 3.8920 | 88450 | 0.8273 | - | | 3.8925 | 88460 | 0.7951 | - | | 3.8929 | 88470 | 0.7851 | - | | 3.8933 | 88480 | 0.7912 | - | | 3.8938 | 88490 | 0.7876 | - | | 3.8942 | 88500 | 0.7571 | - | | 3.8947 | 88510 | 0.7685 | - | | 3.8951 | 88520 | 0.776 | - | | 3.8955 | 88530 | 0.7541 | - | | 3.8960 | 88540 | 0.7674 | - | | 3.8964 | 88550 | 0.7889 | - | | 3.8969 | 88560 | 0.7418 | - | | 3.8973 | 88570 | 0.7905 | - | | 3.8977 | 88580 | 0.7542 | - | | 3.8982 | 88590 | 0.7836 | - | | 3.8986 | 88600 | 0.7842 | - | | 3.8991 | 88610 | 0.7752 | - | | 3.8995 | 88620 | 0.7529 | - | | 3.8999 | 88630 | 0.7872 | - | | 3.9004 | 88640 | 0.7861 | - | | 3.9008 | 88650 | 0.7702 | - | | 3.9013 | 88660 | 0.7873 | - | | 3.9017 | 88670 | 0.7842 | - | | 3.9021 | 88680 | 0.7587 | - | | 3.9024 | 88686 | - | 1.3736 | | 3.9026 | 88690 | 0.7754 | - | | 3.9030 | 88700 | 0.7725 | - | | 3.9035 | 88710 | 0.782 | - | | 3.9039 | 88720 | 0.7949 | - | | 3.9043 | 88730 | 0.789 | - | | 3.9048 | 88740 | 0.7999 | - | | 3.9052 | 88750 | 0.7545 | - | | 3.9057 | 88760 | 0.7598 | - | | 3.9061 | 88770 | 0.7892 | - | | 3.9065 | 88780 | 0.7725 | - | | 3.9070 | 88790 | 0.7908 | - | | 3.9074 | 88800 | 0.7767 | - | | 3.9079 | 88810 | 0.7878 | - | | 3.9083 | 88820 | 0.7746 | - | | 3.9087 | 88830 | 0.7948 | - | | 3.9092 | 88840 | 0.7517 | - | | 3.9096 | 88850 | 0.7705 | - | | 3.9101 | 88860 | 0.7574 | - | | 3.9105 | 88870 | 0.7639 | - | | 3.9109 | 88880 | 0.7652 | - | | 3.9114 | 88890 | 0.7907 | - | | 3.9118 | 88900 | 0.8226 | - | | 3.9123 | 88910 | 0.8013 | - | | 3.9127 | 88920 | 0.7866 | - | | 3.9131 | 88930 | 0.803 | - | | 3.9136 | 88940 | 0.7602 | - | | 3.9140 | 88950 | 0.811 | - | | 3.9145 | 88960 | 0.7973 | - | | 3.9149 | 88970 | 0.8115 | - | | 3.9153 | 88980 | 0.7703 | - | | 3.9158 | 88990 | 0.7983 | - | | 3.9162 | 89000 | 0.7438 | - | | 3.9167 | 89010 | 0.7753 | - | | 3.9171 | 89020 | 0.7661 | - | | 3.9175 | 89030 | 0.8212 | - | | 3.9180 | 89040 | 0.7657 | - | | 3.9184 | 89050 | 0.7927 | - | | 3.9189 | 89060 | 0.7721 | - | | 3.9193 | 89070 | 0.7614 | - | | 3.9197 | 89080 | 0.7714 | - | | 3.9202 | 89090 | 0.7713 | - | | 3.9206 | 89100 | 0.7562 | - | | 3.9211 | 89110 | 0.7681 | - | | 3.9215 | 89120 | 0.7796 | - | | 3.9219 | 89130 | 0.7815 | - | | 3.9224 | 89140 | 0.7925 | - | | 3.9228 | 89150 | 0.7769 | - | | 3.9233 | 89160 | 0.7678 | - | | 3.9237 | 89170 | 0.7746 | - | | 3.9241 | 89180 | 0.7751 | - | | 3.9246 | 89190 | 0.7754 | - | | 3.9250 | 89200 | 0.7885 | - | | 3.9255 | 89210 | 0.7845 | - | | 3.9259 | 89220 | 0.7915 | - | | 3.9263 | 89230 | 0.7905 | - | | 3.9268 | 89240 | 0.7691 | - | | 3.9272 | 89250 | 0.7771 | - | | 3.9277 | 89260 | 0.78 | - | | 3.9281 | 89270 | 0.7836 | - | | 3.9285 | 89280 | 0.7642 | - | | 3.9290 | 89290 | 0.7635 | - | | 3.9294 | 89300 | 0.8017 | - | | 3.9299 | 89310 | 0.7882 | - | | 3.9303 | 89320 | 0.7512 | - | | 3.9307 | 89330 | 0.8121 | - | | 3.9312 | 89340 | 0.7611 | - | | 3.9316 | 89350 | 0.7623 | - | | 3.9321 | 89360 | 0.7398 | - | | 3.9325 | 89370 | 0.7236 | - | | 3.9329 | 89380 | 0.7471 | - | | 3.9334 | 89390 | 0.7787 | - | | 3.9338 | 89400 | 0.7444 | - | | 3.9343 | 89410 | 0.7627 | - | | 3.9347 | 89420 | 0.7807 | - | | 3.9351 | 89430 | 0.7645 | - | | 3.9356 | 89440 | 0.8142 | - | | 3.9360 | 89450 | 0.7954 | - | | 3.9365 | 89460 | 0.7809 | - | | 3.9369 | 89470 | 0.7742 | - | | 3.9373 | 89480 | 0.7499 | - | | 3.9378 | 89490 | 0.8022 | - | | 3.9382 | 89500 | 0.7404 | - | | 3.9387 | 89510 | 0.769 | - | | 3.9391 | 89520 | 0.7756 | - | | 3.9395 | 89530 | 0.7638 | - | | 3.9400 | 89540 | 0.7987 | - | | 3.9404 | 89550 | 0.7741 | - | | 3.9409 | 89560 | 0.7653 | - | | 3.9413 | 89570 | 0.7486 | - | | 3.9417 | 89580 | 0.7654 | - | | 3.9422 | 89590 | 0.7601 | - | | 3.9426 | 89600 | 0.7853 | - | | 3.9431 | 89610 | 0.7924 | - | | 3.9435 | 89620 | 0.7453 | - | | 3.9439 | 89630 | 0.8432 | - | | 3.9444 | 89640 | 0.7963 | - | | 3.9448 | 89650 | 0.779 | - | | 3.9453 | 89660 | 0.7961 | - | | 3.9457 | 89670 | 0.7914 | - | | 3.9461 | 89680 | 0.7513 | - | | 3.9466 | 89690 | 0.7311 | - | | 3.9470 | 89700 | 0.7603 | - | | 3.9475 | 89710 | 0.7265 | - | | 3.9479 | 89720 | 0.7559 | - | | 3.9483 | 89730 | 0.7738 | - | | 3.9488 | 89740 | 0.7767 | - | | 3.9492 | 89750 | 0.7433 | - | | 3.9497 | 89760 | 0.7684 | - | | 3.9501 | 89770 | 0.7509 | - | | 3.9505 | 89780 | 0.7949 | - | | 3.9510 | 89790 | 0.7855 | - | | 3.9514 | 89800 | 0.7307 | - | | 3.9519 | 89810 | 0.778 | - | | 3.9523 | 89820 | 0.7729 | - | | 3.9524 | 89823 | - | 1.3721 | | 3.9527 | 89830 | 0.7925 | - | | 3.9532 | 89840 | 0.7671 | - | | 3.9536 | 89850 | 0.7687 | - | | 3.9541 | 89860 | 0.7456 | - | | 3.9545 | 89870 | 0.7564 | - | | 3.9549 | 89880 | 0.7916 | - | | 3.9554 | 89890 | 0.799 | - | | 3.9558 | 89900 | 0.7369 | - | | 3.9563 | 89910 | 0.7991 | - | | 3.9567 | 89920 | 0.7963 | - | | 3.9571 | 89930 | 0.7733 | - | | 3.9576 | 89940 | 0.7516 | - | | 3.9580 | 89950 | 0.7863 | - | | 3.9585 | 89960 | 0.7574 | - | | 3.9589 | 89970 | 0.7366 | - | | 3.9593 | 89980 | 0.7836 | - | | 3.9598 | 89990 | 0.7849 | - | | 3.9602 | 90000 | 0.7659 | - | | 3.9607 | 90010 | 0.7795 | - | | 3.9611 | 90020 | 0.757 | - | | 3.9615 | 90030 | 0.7421 | - | | 3.9620 | 90040 | 0.7683 | - | | 3.9624 | 90050 | 0.769 | - | | 3.9629 | 90060 | 0.746 | - | | 3.9633 | 90070 | 0.7586 | - | | 3.9637 | 90080 | 0.7612 | - | | 3.9642 | 90090 | 0.7679 | - | | 3.9646 | 90100 | 0.785 | - | | 3.9651 | 90110 | 0.7842 | - | | 3.9655 | 90120 | 0.7742 | - | | 3.9659 | 90130 | 0.7968 | - | | 3.9664 | 90140 | 0.7685 | - | | 3.9668 | 90150 | 0.8331 | - | | 3.9673 | 90160 | 0.7721 | - | | 3.9677 | 90170 | 0.7376 | - | | 3.9681 | 90180 | 0.7678 | - | | 3.9686 | 90190 | 0.7908 | - | | 3.9690 | 90200 | 0.7967 | - | | 3.9695 | 90210 | 0.7881 | - | | 3.9699 | 90220 | 0.8033 | - | | 3.9703 | 90230 | 0.7881 | - | | 3.9708 | 90240 | 0.8083 | - | | 3.9712 | 90250 | 0.7541 | - | | 3.9717 | 90260 | 0.7629 | - | | 3.9721 | 90270 | 0.7266 | - | | 3.9725 | 90280 | 0.7707 | - | | 3.9730 | 90290 | 0.7793 | - | | 3.9734 | 90300 | 0.7578 | - | | 3.9739 | 90310 | 0.7601 | - | | 3.9743 | 90320 | 0.7594 | - | | 3.9747 | 90330 | 0.7494 | - | | 3.9752 | 90340 | 0.7707 | - | | 3.9756 | 90350 | 0.764 | - | | 3.9761 | 90360 | 0.7343 | - | | 3.9765 | 90370 | 0.7442 | - | | 3.9769 | 90380 | 0.7796 | - | | 3.9774 | 90390 | 0.7492 | - | | 3.9778 | 90400 | 0.7823 | - | | 3.9783 | 90410 | 0.7373 | - | | 3.9787 | 90420 | 0.7551 | - | | 3.9791 | 90430 | 0.773 | - | | 3.9796 | 90440 | 0.7638 | - | | 3.9800 | 90450 | 0.7756 | - | | 3.9805 | 90460 | 0.7859 | - | | 3.9809 | 90470 | 0.7476 | - | | 3.9813 | 90480 | 0.7593 | - | | 3.9818 | 90490 | 0.7649 | - | | 3.9822 | 90500 | 0.7793 | - | | 3.9827 | 90510 | 0.7791 | - | | 3.9831 | 90520 | 0.7685 | - | | 3.9835 | 90530 | 0.7781 | - | | 3.9840 | 90540 | 0.7586 | - | | 3.9844 | 90550 | 0.7656 | - | | 3.9849 | 90560 | 0.7429 | - | | 3.9853 | 90570 | 0.7742 | - | | 3.9857 | 90580 | 0.7622 | - | | 3.9862 | 90590 | 0.8129 | - | | 3.9866 | 90600 | 0.7669 | - | | 3.9871 | 90610 | 0.7551 | - | | 3.9875 | 90620 | 0.7408 | - | | 3.9879 | 90630 | 0.7233 | - | | 3.9884 | 90640 | 0.7806 | - | | 3.9888 | 90650 | 0.7533 | - | | 3.9893 | 90660 | 0.7563 | - | | 3.9897 | 90670 | 0.7832 | - | | 3.9901 | 90680 | 0.7705 | - | | 3.9906 | 90690 | 0.733 | - | | 3.9910 | 90700 | 0.7943 | - | | 3.9915 | 90710 | 0.7746 | - | | 3.9919 | 90720 | 0.7749 | - | | 3.9923 | 90730 | 0.7729 | - | | 3.9928 | 90740 | 0.8105 | - | | 3.9932 | 90750 | 0.7623 | - | | 3.9937 | 90760 | 0.7589 | - | | 3.9941 | 90770 | 0.7469 | - | | 3.9945 | 90780 | 0.7746 | - | | 3.9950 | 90790 | 0.7792 | - | | 3.9954 | 90800 | 0.7601 | - | | 3.9959 | 90810 | 0.7741 | - | | 3.9963 | 90820 | 0.749 | - | | 3.9967 | 90830 | 0.7543 | - | | 3.9972 | 90840 | 0.7616 | - | | 3.9976 | 90850 | 0.7909 | - | | 3.9981 | 90860 | 0.7943 | - | | 3.9985 | 90870 | 0.7782 | - | | 3.9989 | 90880 | 0.7922 | - | | 3.9994 | 90890 | 0.7378 | - | | 3.9998 | 90900 | 0.7588 | - | | 4.0003 | 90910 | 0.7412 | - | | 4.0007 | 90920 | 0.7095 | - | | 4.0011 | 90930 | 0.7529 | - | | 4.0016 | 90940 | 0.7479 | - | | 4.0020 | 90950 | 0.684 | - | | 4.0025 | 90960 | 0.7176 | 1.3732 | | 4.0029 | 90970 | 0.7498 | - | | 4.0033 | 90980 | 0.7136 | - | | 4.0038 | 90990 | 0.7413 | - | | 4.0042 | 91000 | 0.7116 | - | | 4.0047 | 91010 | 0.7631 | - | | 4.0051 | 91020 | 0.7355 | - | | 4.0055 | 91030 | 0.7153 | - | | 4.0060 | 91040 | 0.7402 | - | | 4.0064 | 91050 | 0.7337 | - | | 4.0069 | 91060 | 0.7554 | - | | 4.0073 | 91070 | 0.7 | - | | 4.0077 | 91080 | 0.7279 | - | | 4.0082 | 91090 | 0.7155 | - | | 4.0086 | 91100 | 0.7102 | - | | 4.0091 | 91110 | 0.7222 | - | | 4.0095 | 91120 | 0.7212 | - | | 4.0099 | 91130 | 0.6955 | - | | 4.0104 | 91140 | 0.7561 | - | | 4.0108 | 91150 | 0.7589 | - | | 4.0113 | 91160 | 0.7375 | - | | 4.0117 | 91170 | 0.7492 | - | | 4.0121 | 91180 | 0.7107 | - | | 4.0126 | 91190 | 0.7468 | - | | 4.0130 | 91200 | 0.6917 | - | | 4.0135 | 91210 | 0.7309 | - | | 4.0139 | 91220 | 0.7352 | - | | 4.0143 | 91230 | 0.7649 | - | | 4.0148 | 91240 | 0.76 | - | | 4.0152 | 91250 | 0.7358 | - | | 4.0157 | 91260 | 0.7399 | - | | 4.0161 | 91270 | 0.7468 | - | | 4.0165 | 91280 | 0.7425 | - | | 4.0170 | 91290 | 0.7233 | - | | 4.0174 | 91300 | 0.7091 | - | | 4.0179 | 91310 | 0.7269 | - | | 4.0183 | 91320 | 0.7632 | - | | 4.0187 | 91330 | 0.7347 | - | | 4.0192 | 91340 | 0.7249 | - | | 4.0196 | 91350 | 0.7682 | - | | 4.0201 | 91360 | 0.7129 | - | | 4.0205 | 91370 | 0.7643 | - | | 4.0209 | 91380 | 0.7521 | - | | 4.0214 | 91390 | 0.7331 | - | | 4.0218 | 91400 | 0.7272 | - | | 4.0223 | 91410 | 0.7202 | - | | 4.0227 | 91420 | 0.7618 | - | | 4.0231 | 91430 | 0.7426 | - | | 4.0236 | 91440 | 0.7275 | - | | 4.0240 | 91450 | 0.7385 | - | | 4.0245 | 91460 | 0.7283 | - | | 4.0249 | 91470 | 0.7108 | - | | 4.0253 | 91480 | 0.7499 | - | | 4.0258 | 91490 | 0.7121 | - | | 4.0262 | 91500 | 0.7028 | - | | 4.0267 | 91510 | 0.7346 | - | | 4.0271 | 91520 | 0.7211 | - | | 4.0275 | 91530 | 0.7221 | - | | 4.0280 | 91540 | 0.7395 | - | | 4.0284 | 91550 | 0.786 | - | | 4.0289 | 91560 | 0.7499 | - | | 4.0293 | 91570 | 0.7471 | - | | 4.0297 | 91580 | 0.7285 | - | | 4.0302 | 91590 | 0.7355 | - | | 4.0306 | 91600 | 0.7993 | - | | 4.0311 | 91610 | 0.7168 | - | | 4.0315 | 91620 | 0.7317 | - | | 4.0319 | 91630 | 0.7165 | - | | 4.0324 | 91640 | 0.7233 | - | | 4.0328 | 91650 | 0.7232 | - | | 4.0333 | 91660 | 0.7432 | - | | 4.0337 | 91670 | 0.6996 | - | | 4.0341 | 91680 | 0.7614 | - | | 4.0346 | 91690 | 0.7071 | - | | 4.0350 | 91700 | 0.7228 | - | | 4.0355 | 91710 | 0.7171 | - | | 4.0359 | 91720 | 0.7563 | - | | 4.0363 | 91730 | 0.7161 | - | | 4.0368 | 91740 | 0.7092 | - | | 4.0372 | 91750 | 0.7259 | - | | 4.0377 | 91760 | 0.7543 | - | | 4.0381 | 91770 | 0.7639 | - | | 4.0385 | 91780 | 0.7305 | - | | 4.0390 | 91790 | 0.7415 | - | | 4.0394 | 91800 | 0.7217 | - | | 4.0399 | 91810 | 0.7375 | - | | 4.0403 | 91820 | 0.7706 | - | | 4.0407 | 91830 | 0.7198 | - | | 4.0412 | 91840 | 0.7748 | - | | 4.0416 | 91850 | 0.7139 | - | | 4.0421 | 91860 | 0.76 | - | | 4.0425 | 91870 | 0.7333 | - | | 4.0429 | 91880 | 0.7108 | - | | 4.0434 | 91890 | 0.7361 | - | | 4.0438 | 91900 | 0.7482 | - | | 4.0443 | 91910 | 0.7233 | - | | 4.0447 | 91920 | 0.7118 | - | | 4.0451 | 91930 | 0.756 | - | | 4.0456 | 91940 | 0.752 | - | | 4.0460 | 91950 | 0.7261 | - | | 4.0465 | 91960 | 0.7572 | - | | 4.0469 | 91970 | 0.7069 | - | | 4.0473 | 91980 | 0.7235 | - | | 4.0478 | 91990 | 0.7619 | - | | 4.0482 | 92000 | 0.7336 | - | | 4.0487 | 92010 | 0.7124 | - | | 4.0491 | 92020 | 0.7194 | - | | 4.0495 | 92030 | 0.7325 | - | | 4.0500 | 92040 | 0.7212 | - | | 4.0504 | 92050 | 0.7259 | - | | 4.0509 | 92060 | 0.7245 | - | | 4.0513 | 92070 | 0.7513 | - | | 4.0517 | 92080 | 0.7352 | - | | 4.0522 | 92090 | 0.7108 | - | | 4.0525 | 92097 | - | 1.3787 | | 4.0526 | 92100 | 0.7395 | - | | 4.0531 | 92110 | 0.7358 | - | | 4.0535 | 92120 | 0.7172 | - | | 4.0539 | 92130 | 0.7544 | - | | 4.0544 | 92140 | 0.7457 | - | | 4.0548 | 92150 | 0.7652 | - | | 4.0553 | 92160 | 0.7613 | - | | 4.0557 | 92170 | 0.7312 | - | | 4.0561 | 92180 | 0.7239 | - | | 4.0566 | 92190 | 0.7546 | - | | 4.0570 | 92200 | 0.7016 | - | | 4.0575 | 92210 | 0.7382 | - | | 4.0579 | 92220 | 0.7203 | - | | 4.0583 | 92230 | 0.7115 | - | | 4.0588 | 92240 | 0.7433 | - | | 4.0592 | 92250 | 0.7334 | - | | 4.0597 | 92260 | 0.7176 | - | | 4.0601 | 92270 | 0.7472 | - | | 4.0605 | 92280 | 0.7205 | - | | 4.0610 | 92290 | 0.7249 | - | | 4.0614 | 92300 | 0.7258 | - | | 4.0619 | 92310 | 0.7381 | - | | 4.0623 | 92320 | 0.7114 | - | | 4.0627 | 92330 | 0.7021 | - | | 4.0632 | 92340 | 0.7165 | - | | 4.0636 | 92350 | 0.7377 | - | | 4.0641 | 92360 | 0.7809 | - | | 4.0645 | 92370 | 0.7341 | - | | 4.0649 | 92380 | 0.7421 | - | | 4.0654 | 92390 | 0.7276 | - | | 4.0658 | 92400 | 0.7284 | - | | 4.0663 | 92410 | 0.7524 | - | | 4.0667 | 92420 | 0.7201 | - | | 4.0671 | 92430 | 0.7276 | - | | 4.0676 | 92440 | 0.7508 | - | | 4.0680 | 92450 | 0.75 | - | | 4.0685 | 92460 | 0.746 | - | | 4.0689 | 92470 | 0.7169 | - | | 4.0693 | 92480 | 0.7664 | - | | 4.0698 | 92490 | 0.7394 | - | | 4.0702 | 92500 | 0.7386 | - | | 4.0707 | 92510 | 0.7214 | - | | 4.0711 | 92520 | 0.7361 | - | | 4.0715 | 92530 | 0.7105 | - | | 4.0720 | 92540 | 0.7114 | - | | 4.0724 | 92550 | 0.7143 | - | | 4.0729 | 92560 | 0.7228 | - | | 4.0733 | 92570 | 0.7049 | - | | 4.0737 | 92580 | 0.7153 | - | | 4.0742 | 92590 | 0.7136 | - | | 4.0746 | 92600 | 0.7467 | - | | 4.0751 | 92610 | 0.7092 | - | | 4.0755 | 92620 | 0.7247 | - | | 4.0759 | 92630 | 0.7497 | - | | 4.0764 | 92640 | 0.7278 | - | | 4.0768 | 92650 | 0.6955 | - | | 4.0773 | 92660 | 0.7283 | - | | 4.0777 | 92670 | 0.7235 | - | | 4.0781 | 92680 | 0.7434 | - | | 4.0786 | 92690 | 0.7193 | - | | 4.0790 | 92700 | 0.7542 | - | | 4.0795 | 92710 | 0.7201 | - | | 4.0799 | 92720 | 0.7467 | - | | 4.0803 | 92730 | 0.7529 | - | | 4.0808 | 92740 | 0.7238 | - | | 4.0812 | 92750 | 0.7393 | - | | 4.0817 | 92760 | 0.7246 | - | | 4.0821 | 92770 | 0.7312 | - | | 4.0825 | 92780 | 0.6909 | - | | 4.0830 | 92790 | 0.74 | - | | 4.0834 | 92800 | 0.7238 | - | | 4.0839 | 92810 | 0.7409 | - | | 4.0843 | 92820 | 0.7132 | - | | 4.0847 | 92830 | 0.7126 | - | | 4.0852 | 92840 | 0.7266 | - | | 4.0856 | 92850 | 0.7199 | - | | 4.0861 | 92860 | 0.7099 | - | | 4.0865 | 92870 | 0.7089 | - | | 4.0869 | 92880 | 0.7606 | - | | 4.0874 | 92890 | 0.7229 | - | | 4.0878 | 92900 | 0.7367 | - | | 4.0883 | 92910 | 0.7138 | - | | 4.0887 | 92920 | 0.7338 | - | | 4.0891 | 92930 | 0.6956 | - | | 4.0896 | 92940 | 0.7192 | - | | 4.0900 | 92950 | 0.7245 | - | | 4.0905 | 92960 | 0.7252 | - | | 4.0909 | 92970 | 0.7151 | - | | 4.0913 | 92980 | 0.7655 | - | | 4.0918 | 92990 | 0.6995 | - | | 4.0922 | 93000 | 0.7407 | - | | 4.0927 | 93010 | 0.7496 | - | | 4.0931 | 93020 | 0.7503 | - | | 4.0935 | 93030 | 0.7384 | - | | 4.0940 | 93040 | 0.7187 | - | | 4.0944 | 93050 | 0.7139 | - | | 4.0949 | 93060 | 0.734 | - | | 4.0953 | 93070 | 0.7261 | - | | 4.0957 | 93080 | 0.7434 | - | | 4.0962 | 93090 | 0.7121 | - | | 4.0966 | 93100 | 0.7349 | - | | 4.0971 | 93110 | 0.6938 | - | | 4.0975 | 93120 | 0.7258 | - | | 4.0979 | 93130 | 0.73 | - | | 4.0984 | 93140 | 0.7475 | - | | 4.0988 | 93150 | 0.7385 | - | | 4.0993 | 93160 | 0.702 | - | | 4.0997 | 93170 | 0.7402 | - | | 4.1001 | 93180 | 0.7484 | - | | 4.1006 | 93190 | 0.7358 | - | | 4.1010 | 93200 | 0.7438 | - | | 4.1015 | 93210 | 0.7245 | - | | 4.1019 | 93220 | 0.7143 | - | | 4.1023 | 93230 | 0.7511 | - | | 4.1025 | 93234 | - | 1.3846 | | 4.1028 | 93240 | 0.7182 | - | | 4.1032 | 93250 | 0.7283 | - | | 4.1037 | 93260 | 0.709 | - | | 4.1041 | 93270 | 0.731 | - | | 4.1045 | 93280 | 0.7731 | - | | 4.1050 | 93290 | 0.7279 | - | | 4.1054 | 93300 | 0.7301 | - | | 4.1059 | 93310 | 0.7075 | - | | 4.1063 | 93320 | 0.7523 | - | | 4.1067 | 93330 | 0.7127 | - | | 4.1072 | 93340 | 0.71 | - | | 4.1076 | 93350 | 0.691 | - | | 4.1081 | 93360 | 0.7472 | - | | 4.1085 | 93370 | 0.7098 | - | | 4.1090 | 93380 | 0.7401 | - | | 4.1094 | 93390 | 0.6932 | - | | 4.1098 | 93400 | 0.6886 | - | | 4.1103 | 93410 | 0.7322 | - | | 4.1107 | 93420 | 0.7075 | - | | 4.1112 | 93430 | 0.7324 | - | | 4.1116 | 93440 | 0.7308 | - | | 4.1120 | 93450 | 0.7138 | - | | 4.1125 | 93460 | 0.7467 | - | | 4.1129 | 93470 | 0.7006 | - | | 4.1134 | 93480 | 0.7013 | - | | 4.1138 | 93490 | 0.7462 | - | | 4.1142 | 93500 | 0.7142 | - | | 4.1147 | 93510 | 0.6966 | - | | 4.1151 | 93520 | 0.7529 | - | | 4.1156 | 93530 | 0.7033 | - | | 4.1160 | 93540 | 0.6963 | - | | 4.1164 | 93550 | 0.7371 | - | | 4.1169 | 93560 | 0.7513 | - | | 4.1173 | 93570 | 0.737 | - | | 4.1178 | 93580 | 0.6994 | - | | 4.1182 | 93590 | 0.755 | - | | 4.1186 | 93600 | 0.7146 | - | | 4.1191 | 93610 | 0.7533 | - | | 4.1195 | 93620 | 0.7328 | - | | 4.1200 | 93630 | 0.7206 | - | | 4.1204 | 93640 | 0.679 | - | | 4.1208 | 93650 | 0.7252 | - | | 4.1213 | 93660 | 0.7065 | - | | 4.1217 | 93670 | 0.723 | - | | 4.1222 | 93680 | 0.7342 | - | | 4.1226 | 93690 | 0.7421 | - | | 4.1230 | 93700 | 0.716 | - | | 4.1235 | 93710 | 0.7535 | - | | 4.1239 | 93720 | 0.7212 | - | | 4.1244 | 93730 | 0.7205 | - | | 4.1248 | 93740 | 0.7251 | - | | 4.1252 | 93750 | 0.7314 | - | | 4.1257 | 93760 | 0.7242 | - | | 4.1261 | 93770 | 0.7255 | - | | 4.1266 | 93780 | 0.7288 | - | | 4.1270 | 93790 | 0.7289 | - | | 4.1274 | 93800 | 0.731 | - | | 4.1279 | 93810 | 0.7111 | - | | 4.1283 | 93820 | 0.7112 | - | | 4.1288 | 93830 | 0.7162 | - | | 4.1292 | 93840 | 0.7369 | - | | 4.1296 | 93850 | 0.7116 | - | | 4.1301 | 93860 | 0.702 | - | | 4.1305 | 93870 | 0.7091 | - | | 4.1310 | 93880 | 0.7151 | - | | 4.1314 | 93890 | 0.7248 | - | | 4.1318 | 93900 | 0.716 | - | | 4.1323 | 93910 | 0.7234 | - | | 4.1327 | 93920 | 0.7355 | - | | 4.1332 | 93930 | 0.7243 | - | | 4.1336 | 93940 | 0.7103 | - | | 4.1340 | 93950 | 0.7303 | - | | 4.1345 | 93960 | 0.7263 | - | | 4.1349 | 93970 | 0.7556 | - | | 4.1354 | 93980 | 0.6941 | - | | 4.1358 | 93990 | 0.7861 | - | | 4.1362 | 94000 | 0.723 | - | | 4.1367 | 94010 | 0.6912 | - | | 4.1371 | 94020 | 0.7133 | - | | 4.1376 | 94030 | 0.739 | - | | 4.1380 | 94040 | 0.7169 | - | | 4.1384 | 94050 | 0.7051 | - | | 4.1389 | 94060 | 0.7333 | - | | 4.1393 | 94070 | 0.7149 | - | | 4.1398 | 94080 | 0.7302 | - | | 4.1402 | 94090 | 0.7144 | - | | 4.1406 | 94100 | 0.715 | - | | 4.1411 | 94110 | 0.724 | - | | 4.1415 | 94120 | 0.6947 | - | | 4.1420 | 94130 | 0.7473 | - | | 4.1424 | 94140 | 0.7349 | - | | 4.1428 | 94150 | 0.7437 | - | | 4.1433 | 94160 | 0.7205 | - | | 4.1437 | 94170 | 0.7478 | - | | 4.1442 | 94180 | 0.7113 | - | | 4.1446 | 94190 | 0.717 | - | | 4.1450 | 94200 | 0.6944 | - | | 4.1455 | 94210 | 0.7857 | - | | 4.1459 | 94220 | 0.7253 | - | | 4.1464 | 94230 | 0.7088 | - | | 4.1468 | 94240 | 0.7131 | - | | 4.1472 | 94250 | 0.7289 | - | | 4.1477 | 94260 | 0.7267 | - | | 4.1481 | 94270 | 0.6987 | - | | 4.1486 | 94280 | 0.7112 | - | | 4.1490 | 94290 | 0.7398 | - | | 4.1494 | 94300 | 0.73 | - | | 4.1499 | 94310 | 0.7125 | - | | 4.1503 | 94320 | 0.7125 | - | | 4.1508 | 94330 | 0.7479 | - | | 4.1512 | 94340 | 0.7242 | - | | 4.1516 | 94350 | 0.7337 | - | | 4.1521 | 94360 | 0.7277 | - | | 4.1525 | 94370 | 0.7356 | - | | 4.1526 | 94371 | - | 1.3867 | | 4.1530 | 94380 | 0.7217 | - | | 4.1534 | 94390 | 0.7397 | - | | 4.1538 | 94400 | 0.7226 | - | | 4.1543 | 94410 | 0.7177 | - | | 4.1547 | 94420 | 0.7458 | - | | 4.1552 | 94430 | 0.733 | - | | 4.1556 | 94440 | 0.7142 | - | | 4.1560 | 94450 | 0.7087 | - | | 4.1565 | 94460 | 0.7622 | - | | 4.1569 | 94470 | 0.7333 | - | | 4.1574 | 94480 | 0.7226 | - | | 4.1578 | 94490 | 0.7099 | - | | 4.1582 | 94500 | 0.7337 | - | | 4.1587 | 94510 | 0.7446 | - | | 4.1591 | 94520 | 0.7167 | - | | 4.1596 | 94530 | 0.7215 | - | | 4.1600 | 94540 | 0.7587 | - | | 4.1604 | 94550 | 0.7766 | - | | 4.1609 | 94560 | 0.6933 | - | | 4.1613 | 94570 | 0.726 | - | | 4.1618 | 94580 | 0.7201 | - | | 4.1622 | 94590 | 0.7436 | - | | 4.1626 | 94600 | 0.7386 | - | | 4.1631 | 94610 | 0.7297 | - | | 4.1635 | 94620 | 0.7421 | - | | 4.1640 | 94630 | 0.7415 | - | | 4.1644 | 94640 | 0.7475 | - | | 4.1648 | 94650 | 0.7739 | - | | 4.1653 | 94660 | 0.7235 | - | | 4.1657 | 94670 | 0.7179 | - | | 4.1662 | 94680 | 0.7601 | - | | 4.1666 | 94690 | 0.7424 | - | | 4.1670 | 94700 | 0.7274 | - | | 4.1675 | 94710 | 0.7158 | - | | 4.1679 | 94720 | 0.7554 | - | | 4.1684 | 94730 | 0.6958 | - | | 4.1688 | 94740 | 0.7416 | - | | 4.1692 | 94750 | 0.7399 | - | | 4.1697 | 94760 | 0.7174 | - | | 4.1701 | 94770 | 0.7209 | - | | 4.1706 | 94780 | 0.7583 | - | | 4.1710 | 94790 | 0.6807 | - | | 4.1714 | 94800 | 0.7592 | - | | 4.1719 | 94810 | 0.7406 | - | | 4.1723 | 94820 | 0.7059 | - | | 4.1728 | 94830 | 0.7295 | - | | 4.1732 | 94840 | 0.7008 | - | | 4.1736 | 94850 | 0.7505 | - | | 4.1741 | 94860 | 0.7309 | - | | 4.1745 | 94870 | 0.7418 | - | | 4.1750 | 94880 | 0.7148 | - | | 4.1754 | 94890 | 0.7436 | - | | 4.1758 | 94900 | 0.7293 | - | | 4.1763 | 94910 | 0.7665 | - | | 4.1767 | 94920 | 0.7432 | - | | 4.1772 | 94930 | 0.742 | - | | 4.1776 | 94940 | 0.7156 | - | | 4.1780 | 94950 | 0.7072 | - | | 4.1785 | 94960 | 0.6984 | - | | 4.1789 | 94970 | 0.7056 | - | | 4.1794 | 94980 | 0.6933 | - | | 4.1798 | 94990 | 0.7257 | - | | 4.1802 | 95000 | 0.7405 | - | | 4.1807 | 95010 | 0.7488 | - | | 4.1811 | 95020 | 0.7267 | - | | 4.1816 | 95030 | 0.7669 | - | | 4.1820 | 95040 | 0.7265 | - | | 4.1824 | 95050 | 0.7279 | - | | 4.1829 | 95060 | 0.7159 | - | | 4.1833 | 95070 | 0.7345 | - | | 4.1838 | 95080 | 0.7318 | - | | 4.1842 | 95090 | 0.7183 | - | | 4.1846 | 95100 | 0.7144 | - | | 4.1851 | 95110 | 0.7167 | - | | 4.1855 | 95120 | 0.7079 | - | | 4.1860 | 95130 | 0.7124 | - | | 4.1864 | 95140 | 0.7407 | - | | 4.1868 | 95150 | 0.713 | - | | 4.1873 | 95160 | 0.7787 | - | | 4.1877 | 95170 | 0.7211 | - | | 4.1882 | 95180 | 0.7265 | - | | 4.1886 | 95190 | 0.7626 | - | | 4.1890 | 95200 | 0.7373 | - | | 4.1895 | 95210 | 0.7089 | - | | 4.1899 | 95220 | 0.7099 | - | | 4.1904 | 95230 | 0.7202 | - | | 4.1908 | 95240 | 0.7273 | - | | 4.1912 | 95250 | 0.7356 | - | | 4.1917 | 95260 | 0.7399 | - | | 4.1921 | 95270 | 0.7094 | - | | 4.1926 | 95280 | 0.7225 | - | | 4.1930 | 95290 | 0.7488 | - | | 4.1934 | 95300 | 0.7376 | - | | 4.1939 | 95310 | 0.7066 | - | | 4.1943 | 95320 | 0.7186 | - | | 4.1948 | 95330 | 0.7314 | - | | 4.1952 | 95340 | 0.6811 | - | | 4.1956 | 95350 | 0.7029 | - | | 4.1961 | 95360 | 0.703 | - | | 4.1965 | 95370 | 0.7357 | - | | 4.1970 | 95380 | 0.7521 | - | | 4.1974 | 95390 | 0.7095 | - | | 4.1978 | 95400 | 0.6912 | - | | 4.1983 | 95410 | 0.7225 | - | | 4.1987 | 95420 | 0.7286 | - | | 4.1992 | 95430 | 0.7281 | - | | 4.1996 | 95440 | 0.7167 | - | | 4.2000 | 95450 | 0.6972 | - | | 4.2005 | 95460 | 0.7351 | - | | 4.2009 | 95470 | 0.7145 | - | | 4.2014 | 95480 | 0.7174 | - | | 4.2018 | 95490 | 0.7149 | - | | 4.2022 | 95500 | 0.7323 | - | | 4.2026 | 95508 | - | 1.3841 | | 4.2027 | 95510 | 0.6633 | - | | 4.2031 | 95520 | 0.7155 | - | | 4.2036 | 95530 | 0.7232 | - | | 4.2040 | 95540 | 0.7254 | - | | 4.2044 | 95550 | 0.7343 | - | | 4.2049 | 95560 | 0.7558 | - | | 4.2053 | 95570 | 0.7587 | - | | 4.2058 | 95580 | 0.6951 | - | | 4.2062 | 95590 | 0.7554 | - | | 4.2066 | 95600 | 0.6806 | - | | 4.2071 | 95610 | 0.736 | - | | 4.2075 | 95620 | 0.7204 | - | | 4.2080 | 95630 | 0.7339 | - | | 4.2084 | 95640 | 0.7352 | - | | 4.2088 | 95650 | 0.7126 | - | | 4.2093 | 95660 | 0.7451 | - | | 4.2097 | 95670 | 0.7106 | - | | 4.2102 | 95680 | 0.7354 | - | | 4.2106 | 95690 | 0.7152 | - | | 4.2110 | 95700 | 0.6703 | - | | 4.2115 | 95710 | 0.7295 | - | | 4.2119 | 95720 | 0.7297 | - | | 4.2124 | 95730 | 0.7381 | - | | 4.2128 | 95740 | 0.7382 | - | | 4.2132 | 95750 | 0.7314 | - | | 4.2137 | 95760 | 0.7168 | - | | 4.2141 | 95770 | 0.7015 | - | | 4.2146 | 95780 | 0.7606 | - | | 4.2150 | 95790 | 0.7381 | - | | 4.2154 | 95800 | 0.7411 | - | | 4.2159 | 95810 | 0.746 | - | | 4.2163 | 95820 | 0.7436 | - | | 4.2168 | 95830 | 0.7071 | - | | 4.2172 | 95840 | 0.7387 | - | | 4.2176 | 95850 | 0.7398 | - | | 4.2181 | 95860 | 0.7234 | - | | 4.2185 | 95870 | 0.7382 | - | | 4.2190 | 95880 | 0.7386 | - | | 4.2194 | 95890 | 0.6831 | - | | 4.2198 | 95900 | 0.719 | - | | 4.2203 | 95910 | 0.712 | - | | 4.2207 | 95920 | 0.7437 | - | | 4.2212 | 95930 | 0.7297 | - | | 4.2216 | 95940 | 0.7169 | - | | 4.2220 | 95950 | 0.7234 | - | | 4.2225 | 95960 | 0.7484 | - | | 4.2229 | 95970 | 0.741 | - | | 4.2234 | 95980 | 0.7388 | - | | 4.2238 | 95990 | 0.7366 | - | | 4.2242 | 96000 | 0.7239 | - | | 4.2247 | 96010 | 0.7001 | - | | 4.2251 | 96020 | 0.7328 | - | | 4.2256 | 96030 | 0.7454 | - | | 4.2260 | 96040 | 0.7264 | - | | 4.2264 | 96050 | 0.7294 | - | | 4.2269 | 96060 | 0.6976 | - | | 4.2273 | 96070 | 0.7229 | - | | 4.2278 | 96080 | 0.7159 | - | | 4.2282 | 96090 | 0.7401 | - | | 4.2286 | 96100 | 0.7301 | - | | 4.2291 | 96110 | 0.7036 | - | | 4.2295 | 96120 | 0.7431 | - | | 4.2300 | 96130 | 0.6774 | - | | 4.2304 | 96140 | 0.7376 | - | | 4.2308 | 96150 | 0.7627 | - | | 4.2313 | 96160 | 0.7385 | - | | 4.2317 | 96170 | 0.7168 | - | | 4.2322 | 96180 | 0.7455 | - | | 4.2326 | 96190 | 0.7229 | - | | 4.2330 | 96200 | 0.7357 | - | | 4.2335 | 96210 | 0.7394 | - | | 4.2339 | 96220 | 0.7302 | - | | 4.2344 | 96230 | 0.7398 | - | | 4.2348 | 96240 | 0.7319 | - | | 4.2352 | 96250 | 0.7184 | - | | 4.2357 | 96260 | 0.7325 | - | | 4.2361 | 96270 | 0.7442 | - | | 4.2366 | 96280 | 0.7118 | - | | 4.2370 | 96290 | 0.7392 | - | | 4.2374 | 96300 | 0.7481 | - | | 4.2379 | 96310 | 0.7069 | - | | 4.2383 | 96320 | 0.7148 | - | | 4.2388 | 96330 | 0.7608 | - | | 4.2392 | 96340 | 0.6928 | - | | 4.2396 | 96350 | 0.6914 | - | | 4.2401 | 96360 | 0.7409 | - | | 4.2405 | 96370 | 0.7027 | - | | 4.2410 | 96380 | 0.729 | - | | 4.2414 | 96390 | 0.6987 | - | | 4.2418 | 96400 | 0.7202 | - | | 4.2423 | 96410 | 0.7249 | - | | 4.2427 | 96420 | 0.7168 | - | | 4.2432 | 96430 | 0.7623 | - | | 4.2436 | 96440 | 0.7449 | - | | 4.2440 | 96450 | 0.7129 | - | | 4.2445 | 96460 | 0.7451 | - | | 4.2449 | 96470 | 0.7124 | - | | 4.2454 | 96480 | 0.7216 | - | | 4.2458 | 96490 | 0.7445 | - | | 4.2462 | 96500 | 0.7175 | - | | 4.2467 | 96510 | 0.7208 | - | | 4.2471 | 96520 | 0.7722 | - | | 4.2476 | 96530 | 0.7249 | - | | 4.2480 | 96540 | 0.7132 | - | | 4.2484 | 96550 | 0.712 | - | | 4.2489 | 96560 | 0.7118 | - | | 4.2493 | 96570 | 0.7138 | - | | 4.2498 | 96580 | 0.7291 | - | | 4.2502 | 96590 | 0.7387 | - | | 4.2506 | 96600 | 0.7284 | - | | 4.2511 | 96610 | 0.7206 | - | | 4.2515 | 96620 | 0.7176 | - | | 4.2520 | 96630 | 0.754 | - | | 4.2524 | 96640 | 0.7444 | - | | 4.2526 | 96645 | - | 1.3810 | | 4.2528 | 96650 | 0.709 | - | | 4.2533 | 96660 | 0.709 | - | | 4.2537 | 96670 | 0.6718 | - | | 4.2542 | 96680 | 0.735 | - | | 4.2546 | 96690 | 0.7268 | - | | 4.2550 | 96700 | 0.7321 | - | | 4.2555 | 96710 | 0.6903 | - | | 4.2559 | 96720 | 0.7124 | - | | 4.2564 | 96730 | 0.716 | - | | 4.2568 | 96740 | 0.7687 | - | | 4.2572 | 96750 | 0.7187 | - | | 4.2577 | 96760 | 0.7152 | - | | 4.2581 | 96770 | 0.7858 | - | | 4.2586 | 96780 | 0.7166 | - | | 4.2590 | 96790 | 0.7562 | - | | 4.2594 | 96800 | 0.6945 | - | | 4.2599 | 96810 | 0.7137 | - | | 4.2603 | 96820 | 0.7115 | - | | 4.2608 | 96830 | 0.7059 | - | | 4.2612 | 96840 | 0.7107 | - | | 4.2616 | 96850 | 0.6941 | - | | 4.2621 | 96860 | 0.7072 | - | | 4.2625 | 96870 | 0.7243 | - | | 4.2630 | 96880 | 0.7298 | - | | 4.2634 | 96890 | 0.6792 | - | | 4.2638 | 96900 | 0.6909 | - | | 4.2643 | 96910 | 0.7595 | - | | 4.2647 | 96920 | 0.7185 | - | | 4.2652 | 96930 | 0.7358 | - | | 4.2656 | 96940 | 0.7229 | - | | 4.2660 | 96950 | 0.7513 | - | | 4.2665 | 96960 | 0.7412 | - | | 4.2669 | 96970 | 0.7216 | - | | 4.2674 | 96980 | 0.7517 | - | | 4.2678 | 96990 | 0.7523 | - | | 4.2682 | 97000 | 0.7247 | - | | 4.2687 | 97010 | 0.7236 | - | | 4.2691 | 97020 | 0.6905 | - | | 4.2696 | 97030 | 0.727 | - | | 4.2700 | 97040 | 0.7121 | - | | 4.2704 | 97050 | 0.7007 | - | | 4.2709 | 97060 | 0.7027 | - | | 4.2713 | 97070 | 0.6878 | - | | 4.2718 | 97080 | 0.7392 | - | | 4.2722 | 97090 | 0.7161 | - | | 4.2726 | 97100 | 0.7206 | - | | 4.2731 | 97110 | 0.7303 | - | | 4.2735 | 97120 | 0.733 | - | | 4.2740 | 97130 | 0.7418 | - | | 4.2744 | 97140 | 0.7176 | - | | 4.2748 | 97150 | 0.7285 | - | | 4.2753 | 97160 | 0.7521 | - | | 4.2757 | 97170 | 0.7199 | - | | 4.2762 | 97180 | 0.7342 | - | | 4.2766 | 97190 | 0.7122 | - | | 4.2770 | 97200 | 0.7335 | - | | 4.2775 | 97210 | 0.7542 | - | | 4.2779 | 97220 | 0.7011 | - | | 4.2784 | 97230 | 0.7402 | - | | 4.2788 | 97240 | 0.739 | - | | 4.2792 | 97250 | 0.7383 | - | | 4.2797 | 97260 | 0.7063 | - | | 4.2801 | 97270 | 0.7482 | - | | 4.2806 | 97280 | 0.7481 | - | | 4.2810 | 97290 | 0.7309 | - | | 4.2814 | 97300 | 0.7377 | - | | 4.2819 | 97310 | 0.7067 | - | | 4.2823 | 97320 | 0.7315 | - | | 4.2828 | 97330 | 0.7348 | - | | 4.2832 | 97340 | 0.74 | - | | 4.2836 | 97350 | 0.7471 | - | | 4.2841 | 97360 | 0.7361 | - | | 4.2845 | 97370 | 0.747 | - | | 4.2850 | 97380 | 0.7027 | - | | 4.2854 | 97390 | 0.7414 | - | | 4.2858 | 97400 | 0.7041 | - | | 4.2863 | 97410 | 0.7244 | - | | 4.2867 | 97420 | 0.7435 | - | | 4.2872 | 97430 | 0.7229 | - | | 4.2876 | 97440 | 0.7406 | - | | 4.2880 | 97450 | 0.712 | - | | 4.2885 | 97460 | 0.731 | - | | 4.2889 | 97470 | 0.7115 | - | | 4.2894 | 97480 | 0.6931 | - | | 4.2898 | 97490 | 0.685 | - | | 4.2902 | 97500 | 0.7619 | - | | 4.2907 | 97510 | 0.7385 | - | | 4.2911 | 97520 | 0.71 | - | | 4.2916 | 97530 | 0.7428 | - | | 4.2920 | 97540 | 0.7223 | - | | 4.2924 | 97550 | 0.6922 | - | | 4.2929 | 97560 | 0.7291 | - | | 4.2933 | 97570 | 0.7204 | - | | 4.2938 | 97580 | 0.7518 | - | | 4.2942 | 97590 | 0.7436 | - | | 4.2946 | 97600 | 0.7435 | - | | 4.2951 | 97610 | 0.7453 | - | | 4.2955 | 97620 | 0.7583 | - | | 4.2960 | 97630 | 0.7448 | - | | 4.2964 | 97640 | 0.6725 | - | | 4.2968 | 97650 | 0.7549 | - | | 4.2973 | 97660 | 0.7041 | - | | 4.2977 | 97670 | 0.7212 | - | | 4.2982 | 97680 | 0.7041 | - | | 4.2986 | 97690 | 0.6721 | - | | 4.2990 | 97700 | 0.6931 | - | | 4.2995 | 97710 | 0.7288 | - | | 4.2999 | 97720 | 0.7207 | - | | 4.3004 | 97730 | 0.7339 | - | | 4.3008 | 97740 | 0.7217 | - | | 4.3012 | 97750 | 0.7141 | - | | 4.3017 | 97760 | 0.7085 | - | | 4.3021 | 97770 | 0.7364 | - | | 4.3026 | 97780 | 0.7203 | - | | 4.3026 | 97782 | - | 1.3755 | | 4.3030 | 97790 | 0.7278 | - | | 4.3034 | 97800 | 0.7214 | - | | 4.3039 | 97810 | 0.7256 | - | | 4.3043 | 97820 | 0.6981 | - | | 4.3048 | 97830 | 0.6873 | - | | 4.3052 | 97840 | 0.703 | - | | 4.3056 | 97850 | 0.6978 | - | | 4.3061 | 97860 | 0.6767 | - | | 4.3065 | 97870 | 0.7251 | - | | 4.3070 | 97880 | 0.7619 | - | | 4.3074 | 97890 | 0.7282 | - | | 4.3078 | 97900 | 0.7168 | - | | 4.3083 | 97910 | 0.7232 | - | | 4.3087 | 97920 | 0.7179 | - | | 4.3092 | 97930 | 0.7223 | - | | 4.3096 | 97940 | 0.7107 | - | | 4.3100 | 97950 | 0.7127 | - | | 4.3105 | 97960 | 0.7219 | - | | 4.3109 | 97970 | 0.6939 | - | | 4.3114 | 97980 | 0.7419 | - | | 4.3118 | 97990 | 0.7011 | - | | 4.3122 | 98000 | 0.7186 | - | | 4.3127 | 98010 | 0.7109 | - | | 4.3131 | 98020 | 0.7123 | - | | 4.3136 | 98030 | 0.7257 | - | | 4.3140 | 98040 | 0.7214 | - | | 4.3144 | 98050 | 0.7319 | - | | 4.3149 | 98060 | 0.7199 | - | | 4.3153 | 98070 | 0.749 | - | | 4.3158 | 98080 | 0.7062 | - | | 4.3162 | 98090 | 0.7317 | - | | 4.3166 | 98100 | 0.7074 | - | | 4.3171 | 98110 | 0.711 | - | | 4.3175 | 98120 | 0.7532 | - | | 4.3180 | 98130 | 0.7231 | - | | 4.3184 | 98140 | 0.719 | - | | 4.3188 | 98150 | 0.7465 | - | | 4.3193 | 98160 | 0.7183 | - | | 4.3197 | 98170 | 0.6889 | - | | 4.3202 | 98180 | 0.715 | - | | 4.3206 | 98190 | 0.7417 | - | | 4.3210 | 98200 | 0.7429 | - | | 4.3215 | 98210 | 0.6999 | - | | 4.3219 | 98220 | 0.7236 | - | | 4.3224 | 98230 | 0.7297 | - | | 4.3228 | 98240 | 0.6769 | - | | 4.3232 | 98250 | 0.7163 | - | | 4.3237 | 98260 | 0.714 | - | | 4.3241 | 98270 | 0.7056 | - | | 4.3246 | 98280 | 0.7071 | - | | 4.3250 | 98290 | 0.7826 | - | | 4.3254 | 98300 | 0.7446 | - | | 4.3259 | 98310 | 0.7031 | - | | 4.3263 | 98320 | 0.734 | - | | 4.3268 | 98330 | 0.7372 | - | | 4.3272 | 98340 | 0.7366 | - | | 4.3276 | 98350 | 0.7324 | - | | 4.3281 | 98360 | 0.7115 | - | | 4.3285 | 98370 | 0.7223 | - | | 4.3290 | 98380 | 0.775 | - | | 4.3294 | 98390 | 0.7557 | - | | 4.3298 | 98400 | 0.7132 | - | | 4.3303 | 98410 | 0.7079 | - | | 4.3307 | 98420 | 0.7191 | - | | 4.3312 | 98430 | 0.677 | - | | 4.3316 | 98440 | 0.7492 | - | | 4.3320 | 98450 | 0.7239 | - | | 4.3325 | 98460 | 0.7075 | - | | 4.3329 | 98470 | 0.7217 | - | | 4.3334 | 98480 | 0.7541 | - | | 4.3338 | 98490 | 0.7167 | - | | 4.3342 | 98500 | 0.7478 | - | | 4.3347 | 98510 | 0.7093 | - | | 4.3351 | 98520 | 0.7177 | - | | 4.3356 | 98530 | 0.7443 | - | | 4.3360 | 98540 | 0.7163 | - | | 4.3364 | 98550 | 0.7395 | - | | 4.3369 | 98560 | 0.7403 | - | | 4.3373 | 98570 | 0.7485 | - | | 4.3378 | 98580 | 0.7284 | - | | 4.3382 | 98590 | 0.7202 | - | | 4.3386 | 98600 | 0.7197 | - | | 4.3391 | 98610 | 0.742 | - | | 4.3395 | 98620 | 0.7275 | - | | 4.3400 | 98630 | 0.7108 | - | | 4.3404 | 98640 | 0.7412 | - | | 4.3408 | 98650 | 0.7004 | - | | 4.3413 | 98660 | 0.7375 | - | | 4.3417 | 98670 | 0.7275 | - | | 4.3422 | 98680 | 0.7135 | - | | 4.3426 | 98690 | 0.6985 | - | | 4.3430 | 98700 | 0.6999 | - | | 4.3435 | 98710 | 0.7206 | - | | 4.3439 | 98720 | 0.7279 | - | | 4.3444 | 98730 | 0.6977 | - | | 4.3448 | 98740 | 0.7146 | - | | 4.3452 | 98750 | 0.6956 | - | | 4.3457 | 98760 | 0.7182 | - | | 4.3461 | 98770 | 0.7322 | - | | 4.3466 | 98780 | 0.725 | - | | 4.3470 | 98790 | 0.7509 | - | | 4.3474 | 98800 | 0.7398 | - | | 4.3479 | 98810 | 0.7094 | - | | 4.3483 | 98820 | 0.7187 | - | | 4.3488 | 98830 | 0.7436 | - | | 4.3492 | 98840 | 0.7127 | - | | 4.3496 | 98850 | 0.7149 | - | | 4.3501 | 98860 | 0.6965 | - | | 4.3505 | 98870 | 0.712 | - | | 4.3510 | 98880 | 0.7238 | - | | 4.3514 | 98890 | 0.7125 | - | | 4.3518 | 98900 | 0.7168 | - | | 4.3523 | 98910 | 0.6652 | - | | 4.3527 | 98919 | - | 1.3790 | | 4.3527 | 98920 | 0.7476 | - | | 4.3532 | 98930 | 0.7196 | - | | 4.3536 | 98940 | 0.7215 | - | | 4.3540 | 98950 | 0.677 | - | | 4.3545 | 98960 | 0.7423 | - | | 4.3549 | 98970 | 0.7251 | - | | 4.3554 | 98980 | 0.7283 | - | | 4.3558 | 98990 | 0.7318 | - | | 4.3562 | 99000 | 0.729 | - | | 4.3567 | 99010 | 0.7269 | - | | 4.3571 | 99020 | 0.7026 | - | | 4.3576 | 99030 | 0.7108 | - | | 4.3580 | 99040 | 0.6794 | - | | 4.3584 | 99050 | 0.706 | - | | 4.3589 | 99060 | 0.7178 | - | | 4.3593 | 99070 | 0.7134 | - | | 4.3598 | 99080 | 0.7341 | - | | 4.3602 | 99090 | 0.7373 | - | | 4.3606 | 99100 | 0.7256 | - | | 4.3611 | 99110 | 0.757 | - | | 4.3615 | 99120 | 0.6878 | - | | 4.3620 | 99130 | 0.6887 | - | | 4.3624 | 99140 | 0.6995 | - | | 4.3628 | 99150 | 0.6962 | - | | 4.3633 | 99160 | 0.7191 | - | | 4.3637 | 99170 | 0.6915 | - | | 4.3642 | 99180 | 0.6946 | - | | 4.3646 | 99190 | 0.7045 | - | | 4.3650 | 99200 | 0.72 | - | | 4.3655 | 99210 | 0.7335 | - | | 4.3659 | 99220 | 0.7241 | - | | 4.3664 | 99230 | 0.758 | - | | 4.3668 | 99240 | 0.6908 | - | | 4.3672 | 99250 | 0.721 | - | | 4.3677 | 99260 | 0.7021 | - | | 4.3681 | 99270 | 0.7233 | - | | 4.3686 | 99280 | 0.6892 | - | | 4.3690 | 99290 | 0.7273 | - | | 4.3694 | 99300 | 0.7348 | - | | 4.3699 | 99310 | 0.7536 | - | | 4.3703 | 99320 | 0.7016 | - | | 4.3708 | 99330 | 0.7412 | - | | 4.3712 | 99340 | 0.7087 | - | | 4.3716 | 99350 | 0.7226 | - | | 4.3721 | 99360 | 0.7385 | - | | 4.3725 | 99370 | 0.6908 | - | | 4.3730 | 99380 | 0.738 | - | | 4.3734 | 99390 | 0.7468 | - | | 4.3738 | 99400 | 0.6718 | - | | 4.3743 | 99410 | 0.7169 | - | | 4.3747 | 99420 | 0.7461 | - | | 4.3752 | 99430 | 0.7337 | - | | 4.3756 | 99440 | 0.7735 | - | | 4.3760 | 99450 | 0.7161 | - | | 4.3765 | 99460 | 0.6782 | - | | 4.3769 | 99470 | 0.7111 | - | | 4.3774 | 99480 | 0.7271 | - | | 4.3778 | 99490 | 0.6891 | - | | 4.3782 | 99500 | 0.744 | - | | 4.3787 | 99510 | 0.7188 | - | | 4.3791 | 99520 | 0.7026 | - | | 4.3796 | 99530 | 0.7389 | - | | 4.3800 | 99540 | 0.6886 | - | | 4.3804 | 99550 | 0.7153 | - | | 4.3809 | 99560 | 0.7038 | - | | 4.3813 | 99570 | 0.7082 | - | | 4.3818 | 99580 | 0.7194 | - | | 4.3822 | 99590 | 0.7373 | - | | 4.3826 | 99600 | 0.73 | - | | 4.3831 | 99610 | 0.7149 | - | | 4.3835 | 99620 | 0.7377 | - | | 4.3840 | 99630 | 0.7122 | - | | 4.3844 | 99640 | 0.7068 | - | | 4.3848 | 99650 | 0.73 | - | | 4.3853 | 99660 | 0.6883 | - | | 4.3857 | 99670 | 0.7267 | - | | 4.3862 | 99680 | 0.714 | - | | 4.3866 | 99690 | 0.7321 | - | | 4.3870 | 99700 | 0.7315 | - | | 4.3875 | 99710 | 0.6973 | - | | 4.3879 | 99720 | 0.6928 | - | | 4.3884 | 99730 | 0.7013 | - | | 4.3888 | 99740 | 0.7224 | - | | 4.3892 | 99750 | 0.7243 | - | | 4.3897 | 99760 | 0.7078 | - | | 4.3901 | 99770 | 0.6965 | - | | 4.3906 | 99780 | 0.6823 | - | | 4.3910 | 99790 | 0.7232 | - | | 4.3914 | 99800 | 0.7116 | - | | 4.3919 | 99810 | 0.7429 | - | | 4.3923 | 99820 | 0.7169 | - | | 4.3928 | 99830 | 0.7052 | - | | 4.3932 | 99840 | 0.7012 | - | | 4.3936 | 99850 | 0.7196 | - | | 4.3941 | 99860 | 0.7235 | - | | 4.3945 | 99870 | 0.7199 | - | | 4.3950 | 99880 | 0.7032 | - | | 4.3954 | 99890 | 0.6957 | - | | 4.3958 | 99900 | 0.7134 | - | | 4.3963 | 99910 | 0.6962 | - | | 4.3967 | 99920 | 0.7149 | - | | 4.3972 | 99930 | 0.6996 | - | | 4.3976 | 99940 | 0.7244 | - | | 4.3980 | 99950 | 0.7257 | - | | 4.3985 | 99960 | 0.6968 | - | | 4.3989 | 99970 | 0.7137 | - | | 4.3994 | 99980 | 0.7495 | - | | 4.3998 | 99990 | 0.7187 | - | | 4.4002 | 100000 | 0.7007 | - | | 4.4007 | 100010 | 0.7 | - | | 4.4011 | 100020 | 0.7518 | - | | 4.4016 | 100030 | 0.7329 | - | | 4.4020 | 100040 | 0.7157 | - | | 4.4024 | 100050 | 0.7378 | - | | 4.4027 | 100056 | - | 1.3816 | | 4.4029 | 100060 | 0.7383 | - | | 4.4033 | 100070 | 0.712 | - | | 4.4038 | 100080 | 0.6979 | - | | 4.4042 | 100090 | 0.6967 | - | | 4.4046 | 100100 | 0.7403 | - | | 4.4051 | 100110 | 0.7265 | - | | 4.4055 | 100120 | 0.7011 | - | | 4.4060 | 100130 | 0.7065 | - | | 4.4064 | 100140 | 0.7018 | - | | 4.4068 | 100150 | 0.6935 | - | | 4.4073 | 100160 | 0.7199 | - | | 4.4077 | 100170 | 0.7102 | - | | 4.4082 | 100180 | 0.7265 | - | | 4.4086 | 100190 | 0.726 | - | | 4.4090 | 100200 | 0.6943 | - | | 4.4095 | 100210 | 0.6983 | - | | 4.4099 | 100220 | 0.7016 | - | | 4.4104 | 100230 | 0.6966 | - | | 4.4108 | 100240 | 0.7243 | - | | 4.4112 | 100250 | 0.725 | - | | 4.4117 | 100260 | 0.728 | - | | 4.4121 | 100270 | 0.7196 | - | | 4.4126 | 100280 | 0.7031 | - | | 4.4130 | 100290 | 0.6972 | - | | 4.4134 | 100300 | 0.7289 | - | | 4.4139 | 100310 | 0.7118 | - | | 4.4143 | 100320 | 0.6994 | - | | 4.4148 | 100330 | 0.7249 | - | | 4.4152 | 100340 | 0.69 | - | | 4.4156 | 100350 | 0.7124 | - | | 4.4161 | 100360 | 0.7091 | - | | 4.4165 | 100370 | 0.6805 | - | | 4.4170 | 100380 | 0.7081 | - | | 4.4174 | 100390 | 0.7121 | - | | 4.4178 | 100400 | 0.7371 | - | | 4.4183 | 100410 | 0.6874 | - | | 4.4187 | 100420 | 0.724 | - | | 4.4192 | 100430 | 0.7116 | - | | 4.4196 | 100440 | 0.7158 | - | | 4.4200 | 100450 | 0.7117 | - | | 4.4205 | 100460 | 0.7009 | - | | 4.4209 | 100470 | 0.6882 | - | | 4.4214 | 100480 | 0.7264 | - | | 4.4218 | 100490 | 0.7525 | - | | 4.4222 | 100500 | 0.699 | - | | 4.4227 | 100510 | 0.681 | - | | 4.4231 | 100520 | 0.7109 | - | | 4.4236 | 100530 | 0.7215 | - | | 4.4240 | 100540 | 0.7052 | - | | 4.4244 | 100550 | 0.714 | - | | 4.4249 | 100560 | 0.7193 | - | | 4.4253 | 100570 | 0.6726 | - | | 4.4258 | 100580 | 0.7249 | - | | 4.4262 | 100590 | 0.6997 | - | | 4.4266 | 100600 | 0.7494 | - | | 4.4271 | 100610 | 0.7239 | - | | 4.4275 | 100620 | 0.7362 | - | | 4.4280 | 100630 | 0.7293 | - | | 4.4284 | 100640 | 0.7506 | - | | 4.4288 | 100650 | 0.7276 | - | | 4.4293 | 100660 | 0.7144 | - | | 4.4297 | 100670 | 0.7282 | - | | 4.4302 | 100680 | 0.7188 | - | | 4.4306 | 100690 | 0.7052 | - | | 4.4310 | 100700 | 0.6845 | - | | 4.4315 | 100710 | 0.6998 | - | | 4.4319 | 100720 | 0.6834 | - | | 4.4324 | 100730 | 0.7309 | - | | 4.4328 | 100740 | 0.7211 | - | | 4.4332 | 100750 | 0.7179 | - | | 4.4337 | 100760 | 0.7447 | - | | 4.4341 | 100770 | 0.721 | - | | 4.4346 | 100780 | 0.718 | - | | 4.4350 | 100790 | 0.737 | - | | 4.4354 | 100800 | 0.7321 | - | | 4.4359 | 100810 | 0.7091 | - | | 4.4363 | 100820 | 0.7327 | - | | 4.4368 | 100830 | 0.7075 | - | | 4.4372 | 100840 | 0.7251 | - | | 4.4376 | 100850 | 0.7341 | - | | 4.4381 | 100860 | 0.7274 | - | | 4.4385 | 100870 | 0.7304 | - | | 4.4390 | 100880 | 0.7451 | - | | 4.4394 | 100890 | 0.7125 | - | | 4.4398 | 100900 | 0.7114 | - | | 4.4403 | 100910 | 0.702 | - | | 4.4407 | 100920 | 0.7219 | - | | 4.4412 | 100930 | 0.7274 | - | | 4.4416 | 100940 | 0.7134 | - | | 4.4420 | 100950 | 0.7282 | - | | 4.4425 | 100960 | 0.6953 | - | | 4.4429 | 100970 | 0.7193 | - | | 4.4434 | 100980 | 0.7284 | - | | 4.4438 | 100990 | 0.7469 | - | | 4.4442 | 101000 | 0.6782 | - | | 4.4447 | 101010 | 0.7204 | - | | 4.4451 | 101020 | 0.7219 | - | | 4.4456 | 101030 | 0.7142 | - | | 4.4460 | 101040 | 0.7368 | - | | 4.4464 | 101050 | 0.7231 | - | | 4.4469 | 101060 | 0.7272 | - | | 4.4473 | 101070 | 0.7371 | - | | 4.4478 | 101080 | 0.7414 | - | | 4.4482 | 101090 | 0.7025 | - | | 4.4486 | 101100 | 0.7277 | - | | 4.4491 | 101110 | 0.7503 | - | | 4.4495 | 101120 | 0.7721 | - | | 4.4500 | 101130 | 0.7393 | - | | 4.4504 | 101140 | 0.6921 | - | | 4.4508 | 101150 | 0.7343 | - | | 4.4513 | 101160 | 0.7192 | - | | 4.4517 | 101170 | 0.7044 | - | | 4.4522 | 101180 | 0.6969 | - | | 4.4526 | 101190 | 0.6852 | - | | 4.4527 | 101193 | - | 1.3802 | | 4.4530 | 101200 | 0.6697 | - | | 4.4535 | 101210 | 0.7569 | - | | 4.4539 | 101220 | 0.7219 | - | | 4.4544 | 101230 | 0.6911 | - | | 4.4548 | 101240 | 0.7327 | - | | 4.4552 | 101250 | 0.7084 | - | | 4.4557 | 101260 | 0.7302 | - | | 4.4561 | 101270 | 0.6938 | - | | 4.4566 | 101280 | 0.7329 | - | | 4.4570 | 101290 | 0.7356 | - | | 4.4574 | 101300 | 0.7111 | - | | 4.4579 | 101310 | 0.679 | - | | 4.4583 | 101320 | 0.6997 | - | | 4.4588 | 101330 | 0.704 | - | | 4.4592 | 101340 | 0.726 | - | | 4.4596 | 101350 | 0.7176 | - | | 4.4601 | 101360 | 0.7111 | - | | 4.4605 | 101370 | 0.6832 | - | | 4.4610 | 101380 | 0.6974 | - | | 4.4614 | 101390 | 0.7269 | - | | 4.4618 | 101400 | 0.7052 | - | | 4.4623 | 101410 | 0.7293 | - | | 4.4627 | 101420 | 0.7184 | - | | 4.4632 | 101430 | 0.7329 | - | | 4.4636 | 101440 | 0.7222 | - | | 4.4640 | 101450 | 0.7658 | - | | 4.4645 | 101460 | 0.7218 | - | | 4.4649 | 101470 | 0.7084 | - | | 4.4654 | 101480 | 0.7055 | - | | 4.4658 | 101490 | 0.7262 | - | | 4.4663 | 101500 | 0.7008 | - | | 4.4667 | 101510 | 0.7234 | - | | 4.4671 | 101520 | 0.7395 | - | | 4.4676 | 101530 | 0.6993 | - | | 4.4680 | 101540 | 0.7134 | - | | 4.4685 | 101550 | 0.6626 | - | | 4.4689 | 101560 | 0.7207 | - | | 4.4693 | 101570 | 0.664 | - | | 4.4698 | 101580 | 0.73 | - | | 4.4702 | 101590 | 0.7241 | - | | 4.4707 | 101600 | 0.7069 | - | | 4.4711 | 101610 | 0.7241 | - | | 4.4715 | 101620 | 0.7154 | - | | 4.4720 | 101630 | 0.6772 | - | | 4.4724 | 101640 | 0.7255 | - | | 4.4729 | 101650 | 0.7094 | - | | 4.4733 | 101660 | 0.7374 | - | | 4.4737 | 101670 | 0.7113 | - | | 4.4742 | 101680 | 0.7539 | - | | 4.4746 | 101690 | 0.7098 | - | | 4.4751 | 101700 | 0.7475 | - | | 4.4755 | 101710 | 0.7278 | - | | 4.4759 | 101720 | 0.7327 | - | | 4.4764 | 101730 | 0.7104 | - | | 4.4768 | 101740 | 0.7243 | - | | 4.4773 | 101750 | 0.7005 | - | | 4.4777 | 101760 | 0.7032 | - | | 4.4781 | 101770 | 0.7201 | - | | 4.4786 | 101780 | 0.7132 | - | | 4.4790 | 101790 | 0.7069 | - | | 4.4795 | 101800 | 0.7122 | - | | 4.4799 | 101810 | 0.7328 | - | | 4.4803 | 101820 | 0.7322 | - | | 4.4808 | 101830 | 0.7184 | - | | 4.4812 | 101840 | 0.7622 | - | | 4.4817 | 101850 | 0.7302 | - | | 4.4821 | 101860 | 0.7606 | - | | 4.4825 | 101870 | 0.7408 | - | | 4.4830 | 101880 | 0.7027 | - | | 4.4834 | 101890 | 0.6981 | - | | 4.4839 | 101900 | 0.7091 | - | | 4.4843 | 101910 | 0.7086 | - | | 4.4847 | 101920 | 0.6849 | - | | 4.4852 | 101930 | 0.7116 | - | | 4.4856 | 101940 | 0.726 | - | | 4.4861 | 101950 | 0.7073 | - | | 4.4865 | 101960 | 0.6839 | - | | 4.4869 | 101970 | 0.7026 | - | | 4.4874 | 101980 | 0.6954 | - | | 4.4878 | 101990 | 0.6903 | - | | 4.4883 | 102000 | 0.711 | - | | 4.4887 | 102010 | 0.6763 | - | | 4.4891 | 102020 | 0.7398 | - | | 4.4896 | 102030 | 0.72 | - | | 4.4900 | 102040 | 0.7644 | - | | 4.4905 | 102050 | 0.738 | - | | 4.4909 | 102060 | 0.6992 | - | | 4.4913 | 102070 | 0.701 | - | | 4.4918 | 102080 | 0.7418 | - | | 4.4922 | 102090 | 0.6873 | - | | 4.4927 | 102100 | 0.721 | - | | 4.4931 | 102110 | 0.7167 | - | | 4.4935 | 102120 | 0.7184 | - | | 4.4940 | 102130 | 0.7484 | - | | 4.4944 | 102140 | 0.687 | - | | 4.4949 | 102150 | 0.7159 | - | | 4.4953 | 102160 | 0.7197 | - | | 4.4957 | 102170 | 0.7221 | - | | 4.4962 | 102180 | 0.7181 | - | | 4.4966 | 102190 | 0.7046 | - | | 4.4971 | 102200 | 0.7179 | - | | 4.4975 | 102210 | 0.7208 | - | | 4.4979 | 102220 | 0.6973 | - | | 4.4984 | 102230 | 0.7198 | - | | 4.4988 | 102240 | 0.6818 | - | | 4.4993 | 102250 | 0.7185 | - | | 4.4997 | 102260 | 0.702 | - | | 4.5001 | 102270 | 0.7087 | - | | 4.5006 | 102280 | 0.7591 | - | | 4.5010 | 102290 | 0.6803 | - | | 4.5015 | 102300 | 0.7471 | - | | 4.5019 | 102310 | 0.6855 | - | | 4.5023 | 102320 | 0.696 | - | | 4.5028 | 102330 | 0.7071 | 1.3820 | | 4.5032 | 102340 | 0.7031 | - | | 4.5037 | 102350 | 0.7289 | - | | 4.5041 | 102360 | 0.7191 | - | | 4.5045 | 102370 | 0.7143 | - | | 4.5050 | 102380 | 0.741 | - | | 4.5054 | 102390 | 0.7066 | - | | 4.5059 | 102400 | 0.7158 | - | | 4.5063 | 102410 | 0.728 | - | | 4.5067 | 102420 | 0.7146 | - | | 4.5072 | 102430 | 0.7169 | - | | 4.5076 | 102440 | 0.7405 | - | | 4.5081 | 102450 | 0.716 | - | | 4.5085 | 102460 | 0.7142 | - | | 4.5089 | 102470 | 0.695 | - | | 4.5094 | 102480 | 0.7077 | - | | 4.5098 | 102490 | 0.7103 | - | | 4.5103 | 102500 | 0.7177 | - | | 4.5107 | 102510 | 0.6803 | - | | 4.5111 | 102520 | 0.689 | - | | 4.5116 | 102530 | 0.7155 | - | | 4.5120 | 102540 | 0.7317 | - | | 4.5125 | 102550 | 0.7196 | - | | 4.5129 | 102560 | 0.6819 | - | | 4.5133 | 102570 | 0.7371 | - | | 4.5138 | 102580 | 0.706 | - | | 4.5142 | 102590 | 0.7342 | - | | 4.5147 | 102600 | 0.6929 | - | | 4.5151 | 102610 | 0.7028 | - | | 4.5155 | 102620 | 0.6726 | - | | 4.5160 | 102630 | 0.7193 | - | | 4.5164 | 102640 | 0.7166 | - | | 4.5169 | 102650 | 0.7418 | - | | 4.5173 | 102660 | 0.699 | - | | 4.5177 | 102670 | 0.6982 | - | | 4.5182 | 102680 | 0.6727 | - | | 4.5186 | 102690 | 0.725 | - | | 4.5191 | 102700 | 0.7287 | - | | 4.5195 | 102710 | 0.7149 | - | | 4.5199 | 102720 | 0.668 | - | | 4.5204 | 102730 | 0.6938 | - | | 4.5208 | 102740 | 0.7068 | - | | 4.5213 | 102750 | 0.7254 | - | | 4.5217 | 102760 | 0.6937 | - | | 4.5221 | 102770 | 0.7305 | - | | 4.5226 | 102780 | 0.7071 | - | | 4.5230 | 102790 | 0.6981 | - | | 4.5235 | 102800 | 0.7331 | - | | 4.5239 | 102810 | 0.7357 | - | | 4.5243 | 102820 | 0.7374 | - | | 4.5248 | 102830 | 0.6904 | - | | 4.5252 | 102840 | 0.7021 | - | | 4.5257 | 102850 | 0.7166 | - | | 4.5261 | 102860 | 0.7346 | - | | 4.5265 | 102870 | 0.7221 | - | | 4.5270 | 102880 | 0.7203 | - | | 4.5274 | 102890 | 0.7234 | - | | 4.5279 | 102900 | 0.733 | - | | 4.5283 | 102910 | 0.7481 | - | | 4.5287 | 102920 | 0.6976 | - | | 4.5292 | 102930 | 0.7403 | - | | 4.5296 | 102940 | 0.7348 | - | | 4.5301 | 102950 | 0.7043 | - | | 4.5305 | 102960 | 0.7056 | - | | 4.5309 | 102970 | 0.7477 | - | | 4.5314 | 102980 | 0.7322 | - | | 4.5318 | 102990 | 0.7119 | - | | 4.5323 | 103000 | 0.7187 | - | | 4.5327 | 103010 | 0.7047 | - | | 4.5331 | 103020 | 0.6959 | - | | 4.5336 | 103030 | 0.6971 | - | | 4.5340 | 103040 | 0.7384 | - | | 4.5345 | 103050 | 0.7022 | - | | 4.5349 | 103060 | 0.713 | - | | 4.5353 | 103070 | 0.7352 | - | | 4.5358 | 103080 | 0.728 | - | | 4.5362 | 103090 | 0.7066 | - | | 4.5367 | 103100 | 0.7117 | - | | 4.5371 | 103110 | 0.7271 | - | | 4.5375 | 103120 | 0.742 | - | | 4.5380 | 103130 | 0.734 | - | | 4.5384 | 103140 | 0.7527 | - | | 4.5389 | 103150 | 0.7296 | - | | 4.5393 | 103160 | 0.7307 | - | | 4.5397 | 103170 | 0.7338 | - | | 4.5402 | 103180 | 0.7203 | - | | 4.5406 | 103190 | 0.7111 | - | | 4.5411 | 103200 | 0.6949 | - | | 4.5415 | 103210 | 0.7167 | - | | 4.5419 | 103220 | 0.7142 | - | | 4.5424 | 103230 | 0.7273 | - | | 4.5428 | 103240 | 0.6963 | - | | 4.5433 | 103250 | 0.7205 | - | | 4.5437 | 103260 | 0.7519 | - | | 4.5441 | 103270 | 0.6918 | - | | 4.5446 | 103280 | 0.7356 | - | | 4.5450 | 103290 | 0.7309 | - | | 4.5455 | 103300 | 0.7314 | - | | 4.5459 | 103310 | 0.709 | - | | 4.5463 | 103320 | 0.7422 | - | | 4.5468 | 103330 | 0.6857 | - | | 4.5472 | 103340 | 0.7684 | - | | 4.5477 | 103350 | 0.7377 | - | | 4.5481 | 103360 | 0.6904 | - | | 4.5485 | 103370 | 0.7173 | - | | 4.5490 | 103380 | 0.7346 | - | | 4.5494 | 103390 | 0.6808 | - | | 4.5499 | 103400 | 0.722 | - | | 4.5503 | 103410 | 0.71 | - | | 4.5507 | 103420 | 0.7187 | - | | 4.5512 | 103430 | 0.7146 | - | | 4.5516 | 103440 | 0.7016 | - | | 4.5521 | 103450 | 0.7182 | - | | 4.5525 | 103460 | 0.7366 | - | | 4.5528 | 103467 | - | 1.3765 | | 4.5529 | 103470 | 0.7072 | - | | 4.5534 | 103480 | 0.7466 | - | | 4.5538 | 103490 | 0.7539 | - | | 4.5543 | 103500 | 0.725 | - | | 4.5547 | 103510 | 0.7291 | - | | 4.5551 | 103520 | 0.7115 | - | | 4.5556 | 103530 | 0.7188 | - | | 4.5560 | 103540 | 0.6808 | - | | 4.5565 | 103550 | 0.7409 | - | | 4.5569 | 103560 | 0.7259 | - | | 4.5573 | 103570 | 0.7389 | - | | 4.5578 | 103580 | 0.7286 | - | | 4.5582 | 103590 | 0.7383 | - | | 4.5587 | 103600 | 0.7215 | - | | 4.5591 | 103610 | 0.702 | - | | 4.5595 | 103620 | 0.6926 | - | | 4.5600 | 103630 | 0.7157 | - | | 4.5604 | 103640 | 0.7139 | - | | 4.5609 | 103650 | 0.6897 | - | | 4.5613 | 103660 | 0.7073 | - | | 4.5617 | 103670 | 0.7126 | - | | 4.5622 | 103680 | 0.7212 | - | | 4.5626 | 103690 | 0.7147 | - | | 4.5631 | 103700 | 0.7253 | - | | 4.5635 | 103710 | 0.7232 | - | | 4.5639 | 103720 | 0.7288 | - | | 4.5644 | 103730 | 0.7431 | - | | 4.5648 | 103740 | 0.7088 | - | | 4.5653 | 103750 | 0.6907 | - | | 4.5657 | 103760 | 0.6799 | - | | 4.5661 | 103770 | 0.6929 | - | | 4.5666 | 103780 | 0.7173 | - | | 4.5670 | 103790 | 0.6749 | - | | 4.5675 | 103800 | 0.7384 | - | | 4.5679 | 103810 | 0.6935 | - | | 4.5683 | 103820 | 0.7358 | - | | 4.5688 | 103830 | 0.7318 | - | | 4.5692 | 103840 | 0.691 | - | | 4.5697 | 103850 | 0.6986 | - | | 4.5701 | 103860 | 0.7386 | - | | 4.5705 | 103870 | 0.7267 | - | | 4.5710 | 103880 | 0.703 | - | | 4.5714 | 103890 | 0.7121 | - | | 4.5719 | 103900 | 0.7488 | - | | 4.5723 | 103910 | 0.728 | - | | 4.5727 | 103920 | 0.713 | - | | 4.5732 | 103930 | 0.763 | - | | 4.5736 | 103940 | 0.7157 | - | | 4.5741 | 103950 | 0.717 | - | | 4.5745 | 103960 | 0.7158 | - | | 4.5749 | 103970 | 0.7212 | - | | 4.5754 | 103980 | 0.6944 | - | | 4.5758 | 103990 | 0.6911 | - | | 4.5763 | 104000 | 0.7066 | - | | 4.5767 | 104010 | 0.7229 | - | | 4.5771 | 104020 | 0.723 | - | | 4.5776 | 104030 | 0.6886 | - | | 4.5780 | 104040 | 0.6991 | - | | 4.5785 | 104050 | 0.726 | - | | 4.5789 | 104060 | 0.7168 | - | | 4.5793 | 104070 | 0.7101 | - | | 4.5798 | 104080 | 0.7041 | - | | 4.5802 | 104090 | 0.7011 | - | | 4.5807 | 104100 | 0.7053 | - | | 4.5811 | 104110 | 0.6842 | - | | 4.5815 | 104120 | 0.7085 | - | | 4.5820 | 104130 | 0.7316 | - | | 4.5824 | 104140 | 0.7232 | - | | 4.5829 | 104150 | 0.6838 | - | | 4.5833 | 104160 | 0.7192 | - | | 4.5837 | 104170 | 0.7065 | - | | 4.5842 | 104180 | 0.7092 | - | | 4.5846 | 104190 | 0.7287 | - | | 4.5851 | 104200 | 0.7026 | - | | 4.5855 | 104210 | 0.7208 | - | | 4.5859 | 104220 | 0.706 | - | | 4.5864 | 104230 | 0.7107 | - | | 4.5868 | 104240 | 0.7033 | - | | 4.5873 | 104250 | 0.702 | - | | 4.5877 | 104260 | 0.7157 | - | | 4.5881 | 104270 | 0.7223 | - | | 4.5886 | 104280 | 0.6973 | - | | 4.5890 | 104290 | 0.7196 | - | | 4.5895 | 104300 | 0.6739 | - | | 4.5899 | 104310 | 0.6793 | - | | 4.5903 | 104320 | 0.701 | - | | 4.5908 | 104330 | 0.7105 | - | | 4.5912 | 104340 | 0.7136 | - | | 4.5917 | 104350 | 0.7371 | - | | 4.5921 | 104360 | 0.727 | - | | 4.5925 | 104370 | 0.7241 | - | | 4.5930 | 104380 | 0.7195 | - | | 4.5934 | 104390 | 0.6813 | - | | 4.5939 | 104400 | 0.7346 | - | | 4.5943 | 104410 | 0.7173 | - | | 4.5947 | 104420 | 0.7343 | - | | 4.5952 | 104430 | 0.715 | - | | 4.5956 | 104440 | 0.7132 | - | | 4.5961 | 104450 | 0.7314 | - | | 4.5965 | 104460 | 0.6924 | - | | 4.5969 | 104470 | 0.7185 | - | | 4.5974 | 104480 | 0.6781 | - | | 4.5978 | 104490 | 0.6931 | - | | 4.5983 | 104500 | 0.7612 | - | | 4.5987 | 104510 | 0.7343 | - | | 4.5991 | 104520 | 0.7233 | - | | 4.5996 | 104530 | 0.7073 | - | | 4.6000 | 104540 | 0.7074 | - | | 4.6005 | 104550 | 0.6958 | - | | 4.6009 | 104560 | 0.7189 | - | | 4.6013 | 104570 | 0.7259 | - | | 4.6018 | 104580 | 0.7068 | - | | 4.6022 | 104590 | 0.722 | - | | 4.6027 | 104600 | 0.7273 | - | | 4.6028 | 104604 | - | 1.3776 | | 4.6031 | 104610 | 0.7106 | - | | 4.6035 | 104620 | 0.7094 | - | | 4.6040 | 104630 | 0.7009 | - | | 4.6044 | 104640 | 0.7221 | - | | 4.6049 | 104650 | 0.702 | - | | 4.6053 | 104660 | 0.7626 | - | | 4.6057 | 104670 | 0.7039 | - | | 4.6062 | 104680 | 0.6817 | - | | 4.6066 | 104690 | 0.7501 | - | | 4.6071 | 104700 | 0.6999 | - | | 4.6075 | 104710 | 0.6816 | - | | 4.6079 | 104720 | 0.7218 | - | | 4.6084 | 104730 | 0.7128 | - | | 4.6088 | 104740 | 0.6841 | - | | 4.6093 | 104750 | 0.7047 | - | | 4.6097 | 104760 | 0.7111 | - | | 4.6101 | 104770 | 0.7162 | - | | 4.6106 | 104780 | 0.6848 | - | | 4.6110 | 104790 | 0.7268 | - | | 4.6115 | 104800 | 0.6928 | - | | 4.6119 | 104810 | 0.711 | - | | 4.6123 | 104820 | 0.757 | - | | 4.6128 | 104830 | 0.6958 | - | | 4.6132 | 104840 | 0.7158 | - | | 4.6137 | 104850 | 0.7121 | - | | 4.6141 | 104860 | 0.7162 | - | | 4.6145 | 104870 | 0.7161 | - | | 4.6150 | 104880 | 0.7122 | - | | 4.6154 | 104890 | 0.6847 | - | | 4.6159 | 104900 | 0.6884 | - | | 4.6163 | 104910 | 0.6918 | - | | 4.6167 | 104920 | 0.7364 | - | | 4.6172 | 104930 | 0.6798 | - | | 4.6176 | 104940 | 0.7167 | - | | 4.6181 | 104950 | 0.7421 | - | | 4.6185 | 104960 | 0.6994 | - | | 4.6189 | 104970 | 0.7025 | - | | 4.6194 | 104980 | 0.6859 | - | | 4.6198 | 104990 | 0.7118 | - | | 4.6203 | 105000 | 0.686 | - | | 4.6207 | 105010 | 0.6517 | - | | 4.6211 | 105020 | 0.742 | - | | 4.6216 | 105030 | 0.7574 | - | | 4.6220 | 105040 | 0.7061 | - | | 4.6225 | 105050 | 0.7334 | - | | 4.6229 | 105060 | 0.7086 | - | | 4.6233 | 105070 | 0.685 | - | | 4.6238 | 105080 | 0.6918 | - | | 4.6242 | 105090 | 0.6904 | - | | 4.6247 | 105100 | 0.7291 | - | | 4.6251 | 105110 | 0.7134 | - | | 4.6255 | 105120 | 0.6975 | - | | 4.6260 | 105130 | 0.7135 | - | | 4.6264 | 105140 | 0.7145 | - | | 4.6269 | 105150 | 0.6715 | - | | 4.6273 | 105160 | 0.7147 | - | | 4.6277 | 105170 | 0.6993 | - | | 4.6282 | 105180 | 0.7236 | - | | 4.6286 | 105190 | 0.7385 | - | | 4.6291 | 105200 | 0.7276 | - | | 4.6295 | 105210 | 0.6692 | - | | 4.6299 | 105220 | 0.6922 | - | | 4.6304 | 105230 | 0.7187 | - | | 4.6308 | 105240 | 0.7184 | - | | 4.6313 | 105250 | 0.7212 | - | | 4.6317 | 105260 | 0.7042 | - | | 4.6321 | 105270 | 0.7122 | - | | 4.6326 | 105280 | 0.7527 | - | | 4.6330 | 105290 | 0.7052 | - | | 4.6335 | 105300 | 0.6836 | - | | 4.6339 | 105310 | 0.7484 | - | | 4.6343 | 105320 | 0.7071 | - | | 4.6348 | 105330 | 0.7132 | - | | 4.6352 | 105340 | 0.7547 | - | | 4.6357 | 105350 | 0.6994 | - | | 4.6361 | 105360 | 0.6612 | - | | 4.6365 | 105370 | 0.723 | - | | 4.6370 | 105380 | 0.6946 | - | | 4.6374 | 105390 | 0.7199 | - | | 4.6379 | 105400 | 0.7164 | - | | 4.6383 | 105410 | 0.7458 | - | | 4.6387 | 105420 | 0.7094 | - | | 4.6392 | 105430 | 0.7353 | - | | 4.6396 | 105440 | 0.683 | - | | 4.6401 | 105450 | 0.7168 | - | | 4.6405 | 105460 | 0.6798 | - | | 4.6409 | 105470 | 0.6964 | - | | 4.6414 | 105480 | 0.7049 | - | | 4.6418 | 105490 | 0.702 | - | | 4.6423 | 105500 | 0.7156 | - | | 4.6427 | 105510 | 0.7285 | - | | 4.6431 | 105520 | 0.73 | - | | 4.6436 | 105530 | 0.705 | - | | 4.6440 | 105540 | 0.6948 | - | | 4.6445 | 105550 | 0.6781 | - | | 4.6449 | 105560 | 0.6953 | - | | 4.6453 | 105570 | 0.6799 | - | | 4.6458 | 105580 | 0.7207 | - | | 4.6462 | 105590 | 0.7116 | - | | 4.6467 | 105600 | 0.7392 | - | | 4.6471 | 105610 | 0.7228 | - | | 4.6475 | 105620 | 0.7071 | - | | 4.6480 | 105630 | 0.7007 | - | | 4.6484 | 105640 | 0.692 | - | | 4.6489 | 105650 | 0.6971 | - | | 4.6493 | 105660 | 0.7088 | - | | 4.6497 | 105670 | 0.7073 | - | | 4.6502 | 105680 | 0.69 | - | | 4.6506 | 105690 | 0.7169 | - | | 4.6511 | 105700 | 0.7189 | - | | 4.6515 | 105710 | 0.7171 | - | | 4.6519 | 105720 | 0.6764 | - | | 4.6524 | 105730 | 0.6845 | - | | 4.6528 | 105740 | 0.7271 | - | | 4.6529 | 105741 | - | 1.3753 | | 4.6533 | 105750 | 0.7175 | - | | 4.6537 | 105760 | 0.7132 | - | | 4.6541 | 105770 | 0.7051 | - | | 4.6546 | 105780 | 0.7194 | - | | 4.6550 | 105790 | 0.7206 | - | | 4.6555 | 105800 | 0.713 | - | | 4.6559 | 105810 | 0.7061 | - | | 4.6563 | 105820 | 0.7257 | - | | 4.6568 | 105830 | 0.7403 | - | | 4.6572 | 105840 | 0.6968 | - | | 4.6577 | 105850 | 0.6853 | - | | 4.6581 | 105860 | 0.7355 | - | | 4.6585 | 105870 | 0.6602 | - | | 4.6590 | 105880 | 0.7112 | - | | 4.6594 | 105890 | 0.7213 | - | | 4.6599 | 105900 | 0.71 | - | | 4.6603 | 105910 | 0.6803 | - | | 4.6607 | 105920 | 0.7039 | - | | 4.6612 | 105930 | 0.6824 | - | | 4.6616 | 105940 | 0.6824 | - | | 4.6621 | 105950 | 0.7454 | - | | 4.6625 | 105960 | 0.7314 | - | | 4.6629 | 105970 | 0.7064 | - | | 4.6634 | 105980 | 0.7147 | - | | 4.6638 | 105990 | 0.6886 | - | | 4.6643 | 106000 | 0.7272 | - | | 4.6647 | 106010 | 0.6886 | - | | 4.6651 | 106020 | 0.725 | - | | 4.6656 | 106030 | 0.6973 | - | | 4.6660 | 106040 | 0.7035 | - | | 4.6665 | 106050 | 0.6951 | - | | 4.6669 | 106060 | 0.7292 | - | | 4.6673 | 106070 | 0.6733 | - | | 4.6678 | 106080 | 0.7075 | - | | 4.6682 | 106090 | 0.7157 | - | | 4.6687 | 106100 | 0.741 | - | | 4.6691 | 106110 | 0.6945 | - | | 4.6695 | 106120 | 0.6875 | - | | 4.6700 | 106130 | 0.7013 | - | | 4.6704 | 106140 | 0.722 | - | | 4.6709 | 106150 | 0.682 | - | | 4.6713 | 106160 | 0.7403 | - | | 4.6717 | 106170 | 0.7521 | - | | 4.6722 | 106180 | 0.6823 | - | | 4.6726 | 106190 | 0.6817 | - | | 4.6731 | 106200 | 0.7136 | - | | 4.6735 | 106210 | 0.7128 | - | | 4.6739 | 106220 | 0.742 | - | | 4.6744 | 106230 | 0.7494 | - | | 4.6748 | 106240 | 0.7045 | - | | 4.6753 | 106250 | 0.6978 | - | | 4.6757 | 106260 | 0.6975 | - | | 4.6761 | 106270 | 0.7319 | - | | 4.6766 | 106280 | 0.7277 | - | | 4.6770 | 106290 | 0.6993 | - | | 4.6775 | 106300 | 0.7174 | - | | 4.6779 | 106310 | 0.7098 | - | | 4.6783 | 106320 | 0.7214 | - | | 4.6788 | 106330 | 0.6976 | - | | 4.6792 | 106340 | 0.7137 | - | | 4.6797 | 106350 | 0.6841 | - | | 4.6801 | 106360 | 0.6939 | - | | 4.6805 | 106370 | 0.7284 | - | | 4.6810 | 106380 | 0.6715 | - | | 4.6814 | 106390 | 0.6824 | - | | 4.6819 | 106400 | 0.6959 | - | | 4.6823 | 106410 | 0.6989 | - | | 4.6827 | 106420 | 0.707 | - | | 4.6832 | 106430 | 0.7168 | - | | 4.6836 | 106440 | 0.7034 | - | | 4.6841 | 106450 | 0.7017 | - | | 4.6845 | 106460 | 0.7047 | - | | 4.6849 | 106470 | 0.7247 | - | | 4.6854 | 106480 | 0.7234 | - | | 4.6858 | 106490 | 0.7319 | - | | 4.6863 | 106500 | 0.6958 | - | | 4.6867 | 106510 | 0.6833 | - | | 4.6871 | 106520 | 0.7117 | - | | 4.6876 | 106530 | 0.6814 | - | | 4.6880 | 106540 | 0.6682 | - | | 4.6885 | 106550 | 0.7086 | - | | 4.6889 | 106560 | 0.6938 | - | | 4.6893 | 106570 | 0.6891 | - | | 4.6898 | 106580 | 0.7253 | - | | 4.6902 | 106590 | 0.719 | - | | 4.6907 | 106600 | 0.7276 | - | | 4.6911 | 106610 | 0.6643 | - | | 4.6915 | 106620 | 0.7153 | - | | 4.6920 | 106630 | 0.7357 | - | | 4.6924 | 106640 | 0.7483 | - | | 4.6929 | 106650 | 0.7266 | - | | 4.6933 | 106660 | 0.7105 | - | | 4.6937 | 106670 | 0.6847 | - | | 4.6942 | 106680 | 0.7102 | - | | 4.6946 | 106690 | 0.703 | - | | 4.6951 | 106700 | 0.7165 | - | | 4.6955 | 106710 | 0.6965 | - | | 4.6959 | 106720 | 0.7248 | - | | 4.6964 | 106730 | 0.7291 | - | | 4.6968 | 106740 | 0.6993 | - | | 4.6973 | 106750 | 0.6855 | - | | 4.6977 | 106760 | 0.7311 | - | | 4.6981 | 106770 | 0.7326 | - | | 4.6986 | 106780 | 0.7241 | - | | 4.6990 | 106790 | 0.691 | - | | 4.6995 | 106800 | 0.7265 | - | | 4.6999 | 106810 | 0.7003 | - | | 4.7003 | 106820 | 0.7166 | - | | 4.7008 | 106830 | 0.676 | - | | 4.7012 | 106840 | 0.7152 | - | | 4.7017 | 106850 | 0.6898 | - | | 4.7021 | 106860 | 0.714 | - | | 4.7025 | 106870 | 0.7216 | - | | 4.7029 | 106878 | - | 1.3756 | | 4.7030 | 106880 | 0.7221 | - | | 4.7034 | 106890 | 0.7175 | - | | 4.7039 | 106900 | 0.7132 | - | | 4.7043 | 106910 | 0.6886 | - | | 4.7047 | 106920 | 0.7409 | - | | 4.7052 | 106930 | 0.7063 | - | | 4.7056 | 106940 | 0.7098 | - | | 4.7061 | 106950 | 0.7246 | - | | 4.7065 | 106960 | 0.7326 | - | | 4.7069 | 106970 | 0.7132 | - | | 4.7074 | 106980 | 0.7189 | - | | 4.7078 | 106990 | 0.72 | - | | 4.7083 | 107000 | 0.7194 | - | | 4.7087 | 107010 | 0.7031 | - | | 4.7091 | 107020 | 0.7197 | - | | 4.7096 | 107030 | 0.7277 | - | | 4.7100 | 107040 | 0.7002 | - | | 4.7105 | 107050 | 0.7207 | - | | 4.7109 | 107060 | 0.6811 | - | | 4.7113 | 107070 | 0.7277 | - | | 4.7118 | 107080 | 0.69 | - | | 4.7122 | 107090 | 0.7246 | - | | 4.7127 | 107100 | 0.7054 | - | | 4.7131 | 107110 | 0.7089 | - | | 4.7135 | 107120 | 0.7478 | - | | 4.7140 | 107130 | 0.6825 | - | | 4.7144 | 107140 | 0.7373 | - | | 4.7149 | 107150 | 0.7236 | - | | 4.7153 | 107160 | 0.6953 | - | | 4.7157 | 107170 | 0.7167 | - | | 4.7162 | 107180 | 0.682 | - | | 4.7166 | 107190 | 0.7064 | - | | 4.7171 | 107200 | 0.699 | - | | 4.7175 | 107210 | 0.6995 | - | | 4.7179 | 107220 | 0.7242 | - | | 4.7184 | 107230 | 0.7181 | - | | 4.7188 | 107240 | 0.7064 | - | | 4.7193 | 107250 | 0.7415 | - | | 4.7197 | 107260 | 0.7114 | - | | 4.7201 | 107270 | 0.7596 | - | | 4.7206 | 107280 | 0.6959 | - | | 4.7210 | 107290 | 0.7071 | - | | 4.7215 | 107300 | 0.7058 | - | | 4.7219 | 107310 | 0.7083 | - | | 4.7223 | 107320 | 0.7171 | - | | 4.7228 | 107330 | 0.6997 | - | | 4.7232 | 107340 | 0.7579 | - | | 4.7237 | 107350 | 0.6721 | - | | 4.7241 | 107360 | 0.7327 | - | | 4.7245 | 107370 | 0.7305 | - | | 4.7250 | 107380 | 0.6811 | - | | 4.7254 | 107390 | 0.7146 | - | | 4.7259 | 107400 | 0.6765 | - | | 4.7263 | 107410 | 0.704 | - | | 4.7267 | 107420 | 0.7321 | - | | 4.7272 | 107430 | 0.7081 | - | | 4.7276 | 107440 | 0.7174 | - | | 4.7281 | 107450 | 0.7381 | - | | 4.7285 | 107460 | 0.7169 | - | | 4.7289 | 107470 | 0.7344 | - | | 4.7294 | 107480 | 0.7104 | - | | 4.7298 | 107490 | 0.6736 | - | | 4.7303 | 107500 | 0.7059 | - | | 4.7307 | 107510 | 0.7076 | - | | 4.7311 | 107520 | 0.7035 | - | | 4.7316 | 107530 | 0.7432 | - | | 4.7320 | 107540 | 0.7298 | - | | 4.7325 | 107550 | 0.743 | - | | 4.7329 | 107560 | 0.6638 | - | | 4.7333 | 107570 | 0.7352 | - | | 4.7338 | 107580 | 0.7299 | - | | 4.7342 | 107590 | 0.7211 | - | | 4.7347 | 107600 | 0.7015 | - | | 4.7351 | 107610 | 0.7085 | - | | 4.7355 | 107620 | 0.686 | - | | 4.7360 | 107630 | 0.7222 | - | | 4.7364 | 107640 | 0.715 | - | | 4.7369 | 107650 | 0.7094 | - | | 4.7373 | 107660 | 0.7403 | - | | 4.7377 | 107670 | 0.7007 | - | | 4.7382 | 107680 | 0.643 | - | | 4.7386 | 107690 | 0.7382 | - | | 4.7391 | 107700 | 0.6948 | - | | 4.7395 | 107710 | 0.7231 | - | | 4.7399 | 107720 | 0.7321 | - | | 4.7404 | 107730 | 0.6847 | - | | 4.7408 | 107740 | 0.7413 | - | | 4.7413 | 107750 | 0.6922 | - | | 4.7417 | 107760 | 0.7184 | - | | 4.7421 | 107770 | 0.7241 | - | | 4.7426 | 107780 | 0.6651 | - | | 4.7430 | 107790 | 0.6827 | - | | 4.7435 | 107800 | 0.7096 | - | | 4.7439 | 107810 | 0.7138 | - | | 4.7443 | 107820 | 0.7241 | - | | 4.7448 | 107830 | 0.7315 | - | | 4.7452 | 107840 | 0.6989 | - | | 4.7457 | 107850 | 0.7066 | - | | 4.7461 | 107860 | 0.7115 | - | | 4.7465 | 107870 | 0.7513 | - | | 4.7470 | 107880 | 0.7279 | - | | 4.7474 | 107890 | 0.7125 | - | | 4.7479 | 107900 | 0.7022 | - | | 4.7483 | 107910 | 0.7278 | - | | 4.7487 | 107920 | 0.7465 | - | | 4.7492 | 107930 | 0.7153 | - | | 4.7496 | 107940 | 0.7132 | - | | 4.7501 | 107950 | 0.712 | - | | 4.7505 | 107960 | 0.704 | - | | 4.7509 | 107970 | 0.7162 | - | | 4.7514 | 107980 | 0.7125 | - | | 4.7518 | 107990 | 0.7043 | - | | 4.7523 | 108000 | 0.6869 | - | | 4.7527 | 108010 | 0.716 | - | | 4.7529 | 108015 | - | 1.3755 | | 4.7531 | 108020 | 0.6936 | - | | 4.7536 | 108030 | 0.7356 | - | | 4.7540 | 108040 | 0.7217 | - | | 4.7545 | 108050 | 0.7523 | - | | 4.7549 | 108060 | 0.7347 | - | | 4.7553 | 108070 | 0.7103 | - | | 4.7558 | 108080 | 0.7033 | - | | 4.7562 | 108090 | 0.6971 | - | | 4.7567 | 108100 | 0.7203 | - | | 4.7571 | 108110 | 0.7093 | - | | 4.7575 | 108120 | 0.745 | - | | 4.7580 | 108130 | 0.7025 | - | | 4.7584 | 108140 | 0.7163 | - | | 4.7589 | 108150 | 0.7389 | - | | 4.7593 | 108160 | 0.6935 | - | | 4.7597 | 108170 | 0.6962 | - | | 4.7602 | 108180 | 0.6958 | - | | 4.7606 | 108190 | 0.6942 | - | | 4.7611 | 108200 | 0.7022 | - | | 4.7615 | 108210 | 0.7007 | - | | 4.7619 | 108220 | 0.6596 | - | | 4.7624 | 108230 | 0.7384 | - | | 4.7628 | 108240 | 0.6922 | - | | 4.7633 | 108250 | 0.6999 | - | | 4.7637 | 108260 | 0.7104 | - | | 4.7641 | 108270 | 0.7527 | - | | 4.7646 | 108280 | 0.7039 | - | | 4.7650 | 108290 | 0.6955 | - | | 4.7655 | 108300 | 0.7443 | - | | 4.7659 | 108310 | 0.7163 | - | | 4.7663 | 108320 | 0.6909 | - | | 4.7668 | 108330 | 0.7046 | - | | 4.7672 | 108340 | 0.7235 | - | | 4.7677 | 108350 | 0.7281 | - | | 4.7681 | 108360 | 0.7163 | - | | 4.7685 | 108370 | 0.695 | - | | 4.7690 | 108380 | 0.7408 | - | | 4.7694 | 108390 | 0.6719 | - | | 4.7699 | 108400 | 0.7396 | - | | 4.7703 | 108410 | 0.7229 | - | | 4.7707 | 108420 | 0.7139 | - | | 4.7712 | 108430 | 0.7706 | - | | 4.7716 | 108440 | 0.7428 | - | | 4.7721 | 108450 | 0.7184 | - | | 4.7725 | 108460 | 0.708 | - | | 4.7729 | 108470 | 0.716 | - | | 4.7734 | 108480 | 0.7089 | - | | 4.7738 | 108490 | 0.6827 | - | | 4.7743 | 108500 | 0.7119 | - | | 4.7747 | 108510 | 0.7479 | - | | 4.7751 | 108520 | 0.6776 | - | | 4.7756 | 108530 | 0.722 | - | | 4.7760 | 108540 | 0.6848 | - | | 4.7765 | 108550 | 0.6974 | - | | 4.7769 | 108560 | 0.694 | - | | 4.7773 | 108570 | 0.7 | - | | 4.7778 | 108580 | 0.7163 | - | | 4.7782 | 108590 | 0.7214 | - | | 4.7787 | 108600 | 0.6909 | - | | 4.7791 | 108610 | 0.708 | - | | 4.7795 | 108620 | 0.693 | - | | 4.7800 | 108630 | 0.6845 | - | | 4.7804 | 108640 | 0.6954 | - | | 4.7809 | 108650 | 0.7187 | - | | 4.7813 | 108660 | 0.7272 | - | | 4.7817 | 108670 | 0.7164 | - | | 4.7822 | 108680 | 0.7118 | - | | 4.7826 | 108690 | 0.6895 | - | | 4.7831 | 108700 | 0.6917 | - | | 4.7835 | 108710 | 0.7038 | - | | 4.7839 | 108720 | 0.7058 | - | | 4.7844 | 108730 | 0.7183 | - | | 4.7848 | 108740 | 0.7068 | - | | 4.7853 | 108750 | 0.7125 | - | | 4.7857 | 108760 | 0.7078 | - | | 4.7861 | 108770 | 0.7003 | - | | 4.7866 | 108780 | 0.725 | - | | 4.7870 | 108790 | 0.7064 | - | | 4.7875 | 108800 | 0.7182 | - | | 4.7879 | 108810 | 0.7254 | - | | 4.7883 | 108820 | 0.7092 | - | | 4.7888 | 108830 | 0.6861 | - | | 4.7892 | 108840 | 0.6878 | - | | 4.7897 | 108850 | 0.6798 | - | | 4.7901 | 108860 | 0.7327 | - | | 4.7905 | 108870 | 0.712 | - | | 4.7910 | 108880 | 0.6736 | - | | 4.7914 | 108890 | 0.7073 | - | | 4.7919 | 108900 | 0.7305 | - | | 4.7923 | 108910 | 0.7083 | - | | 4.7927 | 108920 | 0.7072 | - | | 4.7932 | 108930 | 0.7088 | - | | 4.7936 | 108940 | 0.7059 | - | | 4.7941 | 108950 | 0.7238 | - | | 4.7945 | 108960 | 0.7228 | - | | 4.7949 | 108970 | 0.7135 | - | | 4.7954 | 108980 | 0.6677 | - | | 4.7958 | 108990 | 0.7307 | - | | 4.7963 | 109000 | 0.6977 | - | | 4.7967 | 109010 | 0.6746 | - | | 4.7971 | 109020 | 0.682 | - | | 4.7976 | 109030 | 0.7032 | - | | 4.7980 | 109040 | 0.707 | - | | 4.7985 | 109050 | 0.7148 | - | | 4.7989 | 109060 | 0.7099 | - | | 4.7993 | 109070 | 0.7166 | - | | 4.7998 | 109080 | 0.6709 | - | | 4.8002 | 109090 | 0.7027 | - | | 4.8007 | 109100 | 0.7312 | - | | 4.8011 | 109110 | 0.7308 | - | | 4.8015 | 109120 | 0.6971 | - | | 4.8020 | 109130 | 0.6904 | - | | 4.8024 | 109140 | 0.7009 | - | | 4.8029 | 109150 | 0.7145 | - | | 4.8030 | 109152 | - | 1.3751 | | 4.8033 | 109160 | 0.6731 | - | | 4.8037 | 109170 | 0.7049 | - | | 4.8042 | 109180 | 0.7153 | - | | 4.8046 | 109190 | 0.7011 | - | | 4.8051 | 109200 | 0.7431 | - | | 4.8055 | 109210 | 0.7239 | - | | 4.8059 | 109220 | 0.7133 | - | | 4.8064 | 109230 | 0.7032 | - | | 4.8068 | 109240 | 0.7119 | - | | 4.8073 | 109250 | 0.7216 | - | | 4.8077 | 109260 | 0.7101 | - | | 4.8081 | 109270 | 0.7204 | - | | 4.8086 | 109280 | 0.6913 | - | | 4.8090 | 109290 | 0.6714 | - | | 4.8095 | 109300 | 0.7087 | - | | 4.8099 | 109310 | 0.6952 | - | | 4.8103 | 109320 | 0.7131 | - | | 4.8108 | 109330 | 0.7231 | - | | 4.8112 | 109340 | 0.6835 | - | | 4.8117 | 109350 | 0.713 | - | | 4.8121 | 109360 | 0.7372 | - | | 4.8125 | 109370 | 0.6933 | - | | 4.8130 | 109380 | 0.7097 | - | | 4.8134 | 109390 | 0.7398 | - | | 4.8139 | 109400 | 0.6994 | - | | 4.8143 | 109410 | 0.7267 | - | | 4.8147 | 109420 | 0.7015 | - | | 4.8152 | 109430 | 0.6781 | - | | 4.8156 | 109440 | 0.7138 | - | | 4.8161 | 109450 | 0.6784 | - | | 4.8165 | 109460 | 0.7188 | - | | 4.8169 | 109470 | 0.7284 | - | | 4.8174 | 109480 | 0.7326 | - | | 4.8178 | 109490 | 0.6896 | - | | 4.8183 | 109500 | 0.6551 | - | | 4.8187 | 109510 | 0.7081 | - | | 4.8191 | 109520 | 0.6999 | - | | 4.8196 | 109530 | 0.6848 | - | | 4.8200 | 109540 | 0.7203 | - | | 4.8205 | 109550 | 0.7479 | - | | 4.8209 | 109560 | 0.6917 | - | | 4.8213 | 109570 | 0.7185 | - | | 4.8218 | 109580 | 0.7127 | - | | 4.8222 | 109590 | 0.7167 | - | | 4.8227 | 109600 | 0.7286 | - | | 4.8231 | 109610 | 0.7219 | - | | 4.8236 | 109620 | 0.6841 | - | | 4.8240 | 109630 | 0.7027 | - | | 4.8244 | 109640 | 0.6878 | - | | 4.8249 | 109650 | 0.6926 | - | | 4.8253 | 109660 | 0.7103 | - | | 4.8258 | 109670 | 0.6962 | - | | 4.8262 | 109680 | 0.7063 | - | | 4.8266 | 109690 | 0.678 | - | | 4.8271 | 109700 | 0.6786 | - | | 4.8275 | 109710 | 0.7036 | - | | 4.8280 | 109720 | 0.6907 | - | | 4.8284 | 109730 | 0.7104 | - | | 4.8288 | 109740 | 0.6945 | - | | 4.8293 | 109750 | 0.6941 | - | | 4.8297 | 109760 | 0.6688 | - | | 4.8302 | 109770 | 0.6995 | - | | 4.8306 | 109780 | 0.7255 | - | | 4.8310 | 109790 | 0.7183 | - | | 4.8315 | 109800 | 0.6746 | - | | 4.8319 | 109810 | 0.7297 | - | | 4.8324 | 109820 | 0.6865 | - | | 4.8328 | 109830 | 0.7124 | - | | 4.8332 | 109840 | 0.7178 | - | | 4.8337 | 109850 | 0.7352 | - | | 4.8341 | 109860 | 0.7152 | - | | 4.8346 | 109870 | 0.7225 | - | | 4.8350 | 109880 | 0.7081 | - | | 4.8354 | 109890 | 0.6946 | - | | 4.8359 | 109900 | 0.7385 | - | | 4.8363 | 109910 | 0.7411 | - | | 4.8368 | 109920 | 0.7153 | - | | 4.8372 | 109930 | 0.6994 | - | | 4.8376 | 109940 | 0.6983 | - | | 4.8381 | 109950 | 0.7445 | - | | 4.8385 | 109960 | 0.7201 | - | | 4.8390 | 109970 | 0.7365 | - | | 4.8394 | 109980 | 0.7079 | - | | 4.8398 | 109990 | 0.7198 | - | | 4.8403 | 110000 | 0.7036 | - | | 4.8407 | 110010 | 0.7128 | - | | 4.8412 | 110020 | 0.7533 | - | | 4.8416 | 110030 | 0.699 | - | | 4.8420 | 110040 | 0.6869 | - | | 4.8425 | 110050 | 0.7099 | - | | 4.8429 | 110060 | 0.7036 | - | | 4.8434 | 110070 | 0.6974 | - | | 4.8438 | 110080 | 0.7214 | - | | 4.8442 | 110090 | 0.7362 | - | | 4.8447 | 110100 | 0.669 | - | | 4.8451 | 110110 | 0.6587 | - | | 4.8456 | 110120 | 0.7084 | - | | 4.8460 | 110130 | 0.7112 | - | | 4.8464 | 110140 | 0.7099 | - | | 4.8469 | 110150 | 0.7365 | - | | 4.8473 | 110160 | 0.7094 | - | | 4.8478 | 110170 | 0.7112 | - | | 4.8482 | 110180 | 0.6977 | - | | 4.8486 | 110190 | 0.7 | - | | 4.8491 | 110200 | 0.6803 | - | | 4.8495 | 110210 | 0.6929 | - | | 4.8500 | 110220 | 0.7199 | - | | 4.8504 | 110230 | 0.6988 | - | | 4.8508 | 110240 | 0.6868 | - | | 4.8513 | 110250 | 0.6879 | - | | 4.8517 | 110260 | 0.7251 | - | | 4.8522 | 110270 | 0.6984 | - | | 4.8526 | 110280 | 0.6973 | - | | 4.8530 | 110289 | - | 1.3750 | | 4.8530 | 110290 | 0.7173 | - | | 4.8535 | 110300 | 0.7259 | - | | 4.8539 | 110310 | 0.7142 | - | | 4.8544 | 110320 | 0.7084 | - | | 4.8548 | 110330 | 0.7235 | - | | 4.8552 | 110340 | 0.6895 | - | | 4.8557 | 110350 | 0.7072 | - | | 4.8561 | 110360 | 0.6928 | - | | 4.8566 | 110370 | 0.7275 | - | | 4.8570 | 110380 | 0.7098 | - | | 4.8574 | 110390 | 0.689 | - | | 4.8579 | 110400 | 0.7059 | - | | 4.8583 | 110410 | 0.747 | - | | 4.8588 | 110420 | 0.6811 | - | | 4.8592 | 110430 | 0.6998 | - | | 4.8596 | 110440 | 0.7264 | - | | 4.8601 | 110450 | 0.694 | - | | 4.8605 | 110460 | 0.7129 | - | | 4.8610 | 110470 | 0.698 | - | | 4.8614 | 110480 | 0.7049 | - | | 4.8618 | 110490 | 0.721 | - | | 4.8623 | 110500 | 0.7147 | - | | 4.8627 | 110510 | 0.6709 | - | | 4.8632 | 110520 | 0.6995 | - | | 4.8636 | 110530 | 0.7162 | - | | 4.8640 | 110540 | 0.6986 | - | | 4.8645 | 110550 | 0.7014 | - | | 4.8649 | 110560 | 0.7287 | - | | 4.8654 | 110570 | 0.6749 | - | | 4.8658 | 110580 | 0.714 | - | | 4.8662 | 110590 | 0.7019 | - | | 4.8667 | 110600 | 0.725 | - | | 4.8671 | 110610 | 0.7001 | - | | 4.8676 | 110620 | 0.731 | - | | 4.8680 | 110630 | 0.7207 | - | | 4.8684 | 110640 | 0.6462 | - | | 4.8689 | 110650 | 0.7153 | - | | 4.8693 | 110660 | 0.7043 | - | | 4.8698 | 110670 | 0.7144 | - | | 4.8702 | 110680 | 0.7014 | - | | 4.8706 | 110690 | 0.7588 | - | | 4.8711 | 110700 | 0.7196 | - | | 4.8715 | 110710 | 0.7019 | - | | 4.8720 | 110720 | 0.7045 | - | | 4.8724 | 110730 | 0.6871 | - | | 4.8728 | 110740 | 0.711 | - | | 4.8733 | 110750 | 0.7226 | - | | 4.8737 | 110760 | 0.6941 | - | | 4.8742 | 110770 | 0.7245 | - | | 4.8746 | 110780 | 0.7276 | - | | 4.8750 | 110790 | 0.6806 | - | | 4.8755 | 110800 | 0.7088 | - | | 4.8759 | 110810 | 0.6722 | - | | 4.8764 | 110820 | 0.7207 | - | | 4.8768 | 110830 | 0.7149 | - | | 4.8772 | 110840 | 0.7132 | - | | 4.8777 | 110850 | 0.7331 | - | | 4.8781 | 110860 | 0.6781 | - | | 4.8786 | 110870 | 0.669 | - | | 4.8790 | 110880 | 0.7258 | - | | 4.8794 | 110890 | 0.712 | - | | 4.8799 | 110900 | 0.7268 | - | | 4.8803 | 110910 | 0.7172 | - | | 4.8808 | 110920 | 0.7305 | - | | 4.8812 | 110930 | 0.703 | - | | 4.8816 | 110940 | 0.6728 | - | | 4.8821 | 110950 | 0.6895 | - | | 4.8825 | 110960 | 0.7168 | - | | 4.8830 | 110970 | 0.686 | - | | 4.8834 | 110980 | 0.7206 | - | | 4.8838 | 110990 | 0.7039 | - | | 4.8843 | 111000 | 0.7127 | - | | 4.8847 | 111010 | 0.7374 | - | | 4.8852 | 111020 | 0.6949 | - | | 4.8856 | 111030 | 0.7131 | - | | 4.8860 | 111040 | 0.7161 | - | | 4.8865 | 111050 | 0.7351 | - | | 4.8869 | 111060 | 0.6993 | - | | 4.8874 | 111070 | 0.7074 | - | | 4.8878 | 111080 | 0.732 | - | | 4.8882 | 111090 | 0.7488 | - | | 4.8887 | 111100 | 0.698 | - | | 4.8891 | 111110 | 0.7175 | - | | 4.8896 | 111120 | 0.6604 | - | | 4.8900 | 111130 | 0.7353 | - | | 4.8904 | 111140 | 0.6972 | - | | 4.8909 | 111150 | 0.7087 | - | | 4.8913 | 111160 | 0.7262 | - | | 4.8918 | 111170 | 0.6743 | - | | 4.8922 | 111180 | 0.6978 | - | | 4.8926 | 111190 | 0.6344 | - | | 4.8931 | 111200 | 0.7162 | - | | 4.8935 | 111210 | 0.7388 | - | | 4.8940 | 111220 | 0.7107 | - | | 4.8944 | 111230 | 0.6885 | - | | 4.8948 | 111240 | 0.7111 | - | | 4.8953 | 111250 | 0.7026 | - | | 4.8957 | 111260 | 0.7286 | - | | 4.8962 | 111270 | 0.6725 | - | | 4.8966 | 111280 | 0.6951 | - | | 4.8970 | 111290 | 0.727 | - | | 4.8975 | 111300 | 0.7074 | - | | 4.8979 | 111310 | 0.7221 | - | | 4.8984 | 111320 | 0.6888 | - | | 4.8988 | 111330 | 0.7195 | - | | 4.8992 | 111340 | 0.7182 | - | | 4.8997 | 111350 | 0.7044 | - | | 4.9001 | 111360 | 0.7371 | - | | 4.9006 | 111370 | 0.6799 | - | | 4.9010 | 111380 | 0.723 | - | | 4.9014 | 111390 | 0.6974 | - | | 4.9019 | 111400 | 0.7339 | - | | 4.9023 | 111410 | 0.741 | - | | 4.9028 | 111420 | 0.6722 | - | | 4.9030 | 111426 | - | 1.3746 | | 4.9032 | 111430 | 0.7056 | - | | 4.9036 | 111440 | 0.7061 | - | | 4.9041 | 111450 | 0.7518 | - | | 4.9045 | 111460 | 0.6994 | - | | 4.9050 | 111470 | 0.6961 | - | | 4.9054 | 111480 | 0.7261 | - | | 4.9058 | 111490 | 0.6779 | - | | 4.9063 | 111500 | 0.7155 | - | | 4.9067 | 111510 | 0.69 | - | | 4.9072 | 111520 | 0.6632 | - | | 4.9076 | 111530 | 0.7181 | - | | 4.9080 | 111540 | 0.7167 | - | | 4.9085 | 111550 | 0.716 | - | | 4.9089 | 111560 | 0.7224 | - | | 4.9094 | 111570 | 0.6999 | - | | 4.9098 | 111580 | 0.714 | - | | 4.9102 | 111590 | 0.712 | - | | 4.9107 | 111600 | 0.7072 | - | | 4.9111 | 111610 | 0.7463 | - | | 4.9116 | 111620 | 0.7036 | - | | 4.9120 | 111630 | 0.7106 | - | | 4.9124 | 111640 | 0.7163 | - | | 4.9129 | 111650 | 0.659 | - | | 4.9133 | 111660 | 0.7509 | - | | 4.9138 | 111670 | 0.7419 | - | | 4.9142 | 111680 | 0.6816 | - | | 4.9146 | 111690 | 0.6977 | - | | 4.9151 | 111700 | 0.7165 | - | | 4.9155 | 111710 | 0.7007 | - | | 4.9160 | 111720 | 0.715 | - | | 4.9164 | 111730 | 0.7351 | - | | 4.9168 | 111740 | 0.6661 | - | | 4.9173 | 111750 | 0.7265 | - | | 4.9177 | 111760 | 0.6917 | - | | 4.9182 | 111770 | 0.7134 | - | | 4.9186 | 111780 | 0.704 | - | | 4.9190 | 111790 | 0.6905 | - | | 4.9195 | 111800 | 0.733 | - | | 4.9199 | 111810 | 0.7279 | - | | 4.9204 | 111820 | 0.7433 | - | | 4.9208 | 111830 | 0.7549 | - | | 4.9212 | 111840 | 0.6911 | - | | 4.9217 | 111850 | 0.6976 | - | | 4.9221 | 111860 | 0.7186 | - | | 4.9226 | 111870 | 0.7008 | - | | 4.9230 | 111880 | 0.679 | - | | 4.9234 | 111890 | 0.7156 | - | | 4.9239 | 111900 | 0.7028 | - | | 4.9243 | 111910 | 0.7182 | - | | 4.9248 | 111920 | 0.712 | - | | 4.9252 | 111930 | 0.7242 | - | | 4.9256 | 111940 | 0.7064 | - | | 4.9261 | 111950 | 0.735 | - | | 4.9265 | 111960 | 0.7197 | - | | 4.9270 | 111970 | 0.7508 | - | | 4.9274 | 111980 | 0.7035 | - | | 4.9278 | 111990 | 0.6633 | - | | 4.9283 | 112000 | 0.7252 | - | | 4.9287 | 112010 | 0.7123 | - | | 4.9292 | 112020 | 0.7539 | - | | 4.9296 | 112030 | 0.7137 | - | | 4.9300 | 112040 | 0.7026 | - | | 4.9305 | 112050 | 0.6984 | - | | 4.9309 | 112060 | 0.6968 | - | | 4.9314 | 112070 | 0.7057 | - | | 4.9318 | 112080 | 0.6471 | - | | 4.9322 | 112090 | 0.6854 | - | | 4.9327 | 112100 | 0.7132 | - | | 4.9331 | 112110 | 0.694 | - | | 4.9336 | 112120 | 0.6949 | - | | 4.9340 | 112130 | 0.6992 | - | | 4.9344 | 112140 | 0.7146 | - | | 4.9349 | 112150 | 0.7123 | - | | 4.9353 | 112160 | 0.7083 | - | | 4.9358 | 112170 | 0.658 | - | | 4.9362 | 112180 | 0.7179 | - | | 4.9366 | 112190 | 0.7282 | - | | 4.9371 | 112200 | 0.7318 | - | | 4.9375 | 112210 | 0.7058 | - | | 4.9380 | 112220 | 0.6865 | - | | 4.9384 | 112230 | 0.7404 | - | | 4.9388 | 112240 | 0.7341 | - | | 4.9393 | 112250 | 0.7046 | - | | 4.9397 | 112260 | 0.7029 | - | | 4.9402 | 112270 | 0.7156 | - | | 4.9406 | 112280 | 0.7443 | - | | 4.9410 | 112290 | 0.7038 | - | | 4.9415 | 112300 | 0.7056 | - | | 4.9419 | 112310 | 0.7333 | - | | 4.9424 | 112320 | 0.713 | - | | 4.9428 | 112330 | 0.7037 | - | | 4.9432 | 112340 | 0.7021 | - | | 4.9437 | 112350 | 0.7031 | - | | 4.9441 | 112360 | 0.718 | - | | 4.9446 | 112370 | 0.6707 | - | | 4.9450 | 112380 | 0.7202 | - | | 4.9454 | 112390 | 0.7136 | - | | 4.9459 | 112400 | 0.7108 | - | | 4.9463 | 112410 | 0.7161 | - | | 4.9468 | 112420 | 0.7363 | - | | 4.9472 | 112430 | 0.7029 | - | | 4.9476 | 112440 | 0.6919 | - | | 4.9481 | 112450 | 0.6834 | - | | 4.9485 | 112460 | 0.7133 | - | | 4.9490 | 112470 | 0.7103 | - | | 4.9494 | 112480 | 0.7089 | - | | 4.9498 | 112490 | 0.6971 | - | | 4.9503 | 112500 | 0.705 | - | | 4.9507 | 112510 | 0.7202 | - | | 4.9512 | 112520 | 0.6655 | - | | 4.9516 | 112530 | 0.7606 | - | | 4.9520 | 112540 | 0.776 | - | | 4.9525 | 112550 | 0.7216 | - | | 4.9529 | 112560 | 0.7147 | - | | 4.9530 | 112563 | - | 1.3751 | | 4.9534 | 112570 | 0.7221 | - | | 4.9538 | 112580 | 0.6801 | - | | 4.9542 | 112590 | 0.7356 | - | | 4.9547 | 112600 | 0.7144 | - | | 4.9551 | 112610 | 0.718 | - | | 4.9556 | 112620 | 0.6902 | - | | 4.9560 | 112630 | 0.6805 | - | | 4.9564 | 112640 | 0.7402 | - | | 4.9569 | 112650 | 0.681 | - | | 4.9573 | 112660 | 0.6968 | - | | 4.9578 | 112670 | 0.7283 | - | | 4.9582 | 112680 | 0.6899 | - | | 4.9586 | 112690 | 0.7003 | - | | 4.9591 | 112700 | 0.7219 | - | | 4.9595 | 112710 | 0.6675 | - | | 4.9600 | 112720 | 0.6912 | - | | 4.9604 | 112730 | 0.7481 | - | | 4.9608 | 112740 | 0.7095 | - | | 4.9613 | 112750 | 0.69 | - | | 4.9617 | 112760 | 0.7235 | - | | 4.9622 | 112770 | 0.7264 | - | | 4.9626 | 112780 | 0.7211 | - | | 4.9630 | 112790 | 0.7352 | - | | 4.9635 | 112800 | 0.6848 | - | | 4.9639 | 112810 | 0.709 | - | | 4.9644 | 112820 | 0.701 | - | | 4.9648 | 112830 | 0.6757 | - | | 4.9652 | 112840 | 0.7167 | - | | 4.9657 | 112850 | 0.7376 | - | | 4.9661 | 112860 | 0.7044 | - | | 4.9666 | 112870 | 0.7118 | - | | 4.9670 | 112880 | 0.7096 | - | | 4.9674 | 112890 | 0.7192 | - | | 4.9679 | 112900 | 0.7026 | - | | 4.9683 | 112910 | 0.6882 | - | | 4.9688 | 112920 | 0.702 | - | | 4.9692 | 112930 | 0.7138 | - | | 4.9696 | 112940 | 0.7345 | - | | 4.9701 | 112950 | 0.7221 | - | | 4.9705 | 112960 | 0.7101 | - | | 4.9710 | 112970 | 0.7083 | - | | 4.9714 | 112980 | 0.7122 | - | | 4.9718 | 112990 | 0.7237 | - | | 4.9723 | 113000 | 0.736 | - | | 4.9727 | 113010 | 0.7058 | - | | 4.9732 | 113020 | 0.6802 | - | | 4.9736 | 113030 | 0.7262 | - | | 4.9740 | 113040 | 0.7136 | - | | 4.9745 | 113050 | 0.7081 | - | | 4.9749 | 113060 | 0.6958 | - | | 4.9754 | 113070 | 0.7218 | - | | 4.9758 | 113080 | 0.7053 | - | | 4.9762 | 113090 | 0.6712 | - | | 4.9767 | 113100 | 0.6933 | - | | 4.9771 | 113110 | 0.7022 | - | | 4.9776 | 113120 | 0.6873 | - | | 4.9780 | 113130 | 0.6951 | - | | 4.9784 | 113140 | 0.7214 | - | | 4.9789 | 113150 | 0.718 | - | | 4.9793 | 113160 | 0.7307 | - | | 4.9798 | 113170 | 0.7044 | - | | 4.9802 | 113180 | 0.7048 | - | | 4.9806 | 113190 | 0.7014 | - | | 4.9811 | 113200 | 0.716 | - | | 4.9815 | 113210 | 0.6879 | - | | 4.9820 | 113220 | 0.6717 | - | | 4.9824 | 113230 | 0.7057 | - | | 4.9828 | 113240 | 0.7079 | - | | 4.9833 | 113250 | 0.682 | - | | 4.9837 | 113260 | 0.6997 | - | | 4.9842 | 113270 | 0.6898 | - | | 4.9846 | 113280 | 0.6854 | - | | 4.9850 | 113290 | 0.6676 | - | | 4.9855 | 113300 | 0.6925 | - | | 4.9859 | 113310 | 0.7083 | - | | 4.9864 | 113320 | 0.7377 | - | | 4.9868 | 113330 | 0.7039 | - | | 4.9872 | 113340 | 0.7429 | - | | 4.9877 | 113350 | 0.6891 | - | | 4.9881 | 113360 | 0.7215 | - | | 4.9886 | 113370 | 0.7033 | - | | 4.9890 | 113380 | 0.6724 | - | | 4.9894 | 113390 | 0.7015 | - | | 4.9899 | 113400 | 0.7404 | - | | 4.9903 | 113410 | 0.7013 | - | | 4.9908 | 113420 | 0.7216 | - | | 4.9912 | 113430 | 0.7182 | - | | 4.9916 | 113440 | 0.7018 | - | | 4.9921 | 113450 | 0.7147 | - | | 4.9925 | 113460 | 0.6867 | - | | 4.9930 | 113470 | 0.7026 | - | | 4.9934 | 113480 | 0.6539 | - | | 4.9938 | 113490 | 0.6845 | - | | 4.9943 | 113500 | 0.7073 | - | | 4.9947 | 113510 | 0.685 | - | | 4.9952 | 113520 | 0.7001 | - | | 4.9956 | 113530 | 0.7356 | - | | 4.9960 | 113540 | 0.6959 | - | | 4.9965 | 113550 | 0.6758 | - | | 4.9969 | 113560 | 0.7473 | - | | 4.9974 | 113570 | 0.668 | - | | 4.9978 | 113580 | 0.6844 | - | | 4.9982 | 113590 | 0.6963 | - | | 4.9987 | 113600 | 0.6713 | - | | 4.9991 | 113610 | 0.6758 | - | | 4.9996 | 113620 | 0.7356 | - | | 5.0 | 113630 | 0.7251 | - | </details> ### Framework Versions - Python: 3.11.8 - Sentence Transformers: 3.1.1 - Transformers: 4.45.1 - PyTorch: 2.5.1.post302 - Accelerate: 0.34.2 - Datasets: 3.0.0 - Tokenizers: 0.20.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MaskedCachedMultipleNegativesRankingLoss ```bibtex @misc{gao2021scaling, title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup}, author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan}, year={2021}, eprint={2101.06983}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
furrutiav/neobert_mixtral_nllfg_vanilla_cola_tf_idf_centroid
furrutiav
2025-03-17T23:05:56Z
0
0
transformers
[ "transformers", "safetensors", "neobert", "feature-extraction", "custom_code", "arxiv:1910.09700", "region:us" ]
feature-extraction
2025-03-17T23:05:12Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
tornwhisp/FictionalQuartz
tornwhisp
2025-03-17T23:03:35Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-03-17T23:03:23Z
--- license: apache-2.0 ---
aghadge/email_phishing
aghadge
2025-03-17T23:03:33Z
90
0
transformers
[ "transformers", "pytorch", "safetensors", "gguf", "llama", "text-generation-inference", "unsloth", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-11T18:46:33Z
--- base_model: unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** aghadge - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
lesso16/980b6266-c4d4-4835-bdf4-573c12d62564
lesso16
2025-03-17T23:02:56Z
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM-1.7B", "base_model:adapter:unsloth/SmolLM-1.7B", "license:apache-2.0", "region:us" ]
null
2025-03-17T18:22:05Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM-1.7B tags: - axolotl - generated_from_trainer model-index: - name: 980b6266-c4d4-4835-bdf4-573c12d62564 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM-1.7B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - df51bd19b3e6085d_train_data.json ds_type: json format: custom path: /workspace/input_data/df51bd19b3e6085d_train_data.json type: field_input: conversation field_instruction: note field_output: summary format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null do_eval: true early_stopping_patience: 3 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 500 evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 8 gradient_checkpointing: true group_by_length: true hub_model_id: lesso16/980b6266-c4d4-4835-bdf4-573c12d62564 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.000216 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 50 lora_alpha: 128 lora_dropout: 0.15 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 2000 micro_batch_size: 4 mlflow_experiment_name: /tmp/df51bd19b3e6085d_train_data.json model_type: AutoModelForCausalLM num_epochs: 10 optimizer: adamw_torch_fused output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 500 saves_per_epoch: null seed: 160 sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: d7f96eda-e66f-4f96-a567-ca0a1a2c655c wandb_project: 16a wandb_run: your_name wandb_runid: d7f96eda-e66f-4f96-a567-ca0a1a2c655c warmup_steps: 100 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 980b6266-c4d4-4835-bdf4-573c12d62564 This model is a fine-tuned version of [unsloth/SmolLM-1.7B](https://huggingface.co/unsloth/SmolLM-1.7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1351 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000216 - train_batch_size: 4 - eval_batch_size: 4 - seed: 160 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 2000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0012 | 1 | 0.9542 | | 0.1649 | 0.5768 | 500 | 0.1632 | | 0.1351 | 1.1540 | 1000 | 0.1446 | | 0.1287 | 1.7308 | 1500 | 0.1369 | | 0.1171 | 2.3080 | 2000 | 0.1351 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
tornwhisp/FictionalJade
tornwhisp
2025-03-17T23:02:36Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-03-17T23:02:16Z
--- license: apache-2.0 ---
HyoungWook/DNA-R1-Q4_K_M-GGUF
HyoungWook
2025-03-17T23:02:11Z
0
0
transformers
[ "transformers", "gguf", "dnotitia", "nlp", "llm", "slm", "conversation", "chat", "reasoning", "r1", "llama-cpp", "gguf-my-repo", "text-generation", "en", "ko", "base_model:dnotitia/DNA-R1", "base_model:quantized:dnotitia/DNA-R1", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-03-17T23:01:33Z
--- base_model: dnotitia/DNA-R1 language: - en - ko library_name: transformers license: cc-by-nc-4.0 pipeline_tag: text-generation tags: - dnotitia - nlp - llm - slm - conversation - chat - reasoning - r1 - llama-cpp - gguf-my-repo --- # HyoungWook/DNA-R1-Q4_K_M-GGUF This model was converted to GGUF format from [`dnotitia/DNA-R1`](https://huggingface.co/dnotitia/DNA-R1) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/dnotitia/DNA-R1) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo HyoungWook/DNA-R1-Q4_K_M-GGUF --hf-file dna-r1-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo HyoungWook/DNA-R1-Q4_K_M-GGUF --hf-file dna-r1-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo HyoungWook/DNA-R1-Q4_K_M-GGUF --hf-file dna-r1-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo HyoungWook/DNA-R1-Q4_K_M-GGUF --hf-file dna-r1-q4_k_m.gguf -c 2048 ```
Triangle104/Cydonia-24B-v2.1-Q3_K_S-GGUF
Triangle104
2025-03-17T23:01:14Z
0
0
null
[ "gguf", "llama-cpp", "gguf-my-repo", "base_model:TheDrummer/Cydonia-24B-v2.1", "base_model:quantized:TheDrummer/Cydonia-24B-v2.1", "license:other", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-17T22:50:12Z
--- base_model: TheDrummer/Cydonia-24B-v2.1 license: other tags: - llama-cpp - gguf-my-repo --- # Triangle104/Cydonia-24B-v2.1-Q3_K_S-GGUF This model was converted to GGUF format from [`TheDrummer/Cydonia-24B-v2.1`](https://huggingface.co/TheDrummer/Cydonia-24B-v2.1) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/TheDrummer/Cydonia-24B-v2.1) for more details on the model. --- Supported Chat Templates - Mistral v7 Tekken (recommended) Metharme (may require some patching) Alpaca (worth a try for story) Description - Cydonia 24B v2.1 is a finetune of Mistral's latest 'Small' model (2501). Further tuning was done to improve prose, foster creativity, and tone down positivity. --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Cydonia-24B-v2.1-Q3_K_S-GGUF --hf-file cydonia-24b-v2.1-q3_k_s.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Cydonia-24B-v2.1-Q3_K_S-GGUF --hf-file cydonia-24b-v2.1-q3_k_s.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Cydonia-24B-v2.1-Q3_K_S-GGUF --hf-file cydonia-24b-v2.1-q3_k_s.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Cydonia-24B-v2.1-Q3_K_S-GGUF --hf-file cydonia-24b-v2.1-q3_k_s.gguf -c 2048 ```
stojchet/kto5-sft1
stojchet
2025-03-17T23:00:50Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "trl", "sft", "generated_from_trainer", "base_model:stojchet/kto5", "base_model:finetune:stojchet/kto5", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-17T22:50:58Z
--- library_name: transformers license: other base_model: stojchet/kto5 tags: - trl - sft - generated_from_trainer model-index: - name: kto5-sft1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kto5-sft1 This model is a fine-tuned version of [stojchet/kto5](https://huggingface.co/stojchet/kto5) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 5.9985 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 24.3316 | 2.3088 | 100 | 5.9985 | ### Framework versions - Transformers 4.45.0 - Pytorch 2.5.1+cu124 - Datasets 2.19.2 - Tokenizers 0.20.3
Sophie-Rain-SpiderMan-viral-news/Sophie.Rain.SpiderMan.leaked.Video.x.twitter.trending
Sophie-Rain-SpiderMan-viral-news
2025-03-17T22:59:28Z
0
0
null
[ "region:us" ]
null
2025-03-17T22:59:03Z
<animated-image data-catalyst=""><a href="https://alltvsteam.com/viral-video/?v=news-es-tvdf" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
aidando73/Qwen2-0.5B-summarize-SFT-2025-03-17-43773
aidando73
2025-03-17T22:57:42Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-17T22:56:47Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
arham-15/llama2_7B_qphysics
arham-15
2025-03-17T22:55:29Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:meta-llama/Llama-2-7b-chat-hf", "base_model:finetune:meta-llama/Llama-2-7b-chat-hf", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-03-17T05:06:14Z
--- base_model: - meta-llama/Llama-2-7b-chat-hf tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- ### Llama 2 7B Physics A large language model specialized for quantum physics related queries. It has been fine tuned from llama 2 7B which is a chat model. The model was fine-tuned using the unsloth library in python. ### Usage You can import and use the model using unsloth: ```python from unsloth import FastLanguageModel max_seq_length = 2048 model, tokenizer = FastLanguageModel.from_pretrained( model_name = "arham-15/llama2_7B_qphysics", max_seq_length = max_seq_length, dtype = None, load_in_4bit = True, ) ``` Or you can use the hugging face transformers library if you wish to, totally up to you. ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "arham-15/llama2_7B_qphysics" model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ``` ### Results The model has been evaluated with its base model by perplexity score. The model has shown significant improvement on quantum physics related queries. Out of 200 test questions, the model outperformed the base model on 126 with a lower perplexity score.
medmekk/testest
medmekk
2025-03-17T22:52:00Z
0
0
null
[ "safetensors", "llama", "base_model:medmekk/testest", "base_model:quantized:medmekk/testest", "4-bit", "bitsandbytes", "region:us" ]
null
2025-03-17T22:50:28Z
--- base_model: - medmekk/testest --- # medmekk/testest (Quantized) ## Description This model is a quantized version of the original model `medmekk/testest`. It has been quantized using int4 quantization with bitsandbytes. ## Quantization Details - **Quantization Type**: int4 - **bnb_4bit_quant_type**: nf4 - **bnb_4bit_use_double_quant**: True - **bnb_4bit_compute_dtype**: bfloat16 - **bnb_4bit_quant_storage**: uint8 ## Usage You can use this model in your applications by loading it directly from the Hugging Face Hub: ```python from transformers import AutoModel model = AutoModel.from_pretrained("medmekk/testest")