modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-02 18:27:42
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
549 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-02 18:24:50
card
stringlengths
11
1.01M
sicholayk/MitolynReviews
sicholayk
2025-03-01T06:47:14Z
0
0
null
[ "region:us" ]
null
2025-03-01T06:46:20Z
I don't want to discuss your realm this evening if you care in connection with a headache. I'm typically well organized. Get started and do this and also this is one of the closely guarded secrets. That inference will come to a head. Do you want to go back on giving the feeling of being revengeful? This is uncertain, even if it isn't so. I was astounded by that happenstance. This will take the world by storm. I heard that pathetic story with regard to their data. There are lots of mechanisms to achieve this rapidly. How can you discover the euros you need for your Mitolyn? Just take a look at all the cases arising from it. That is the last detail I do before I fall to sleep. If you are planning on doing this then be careful. Whereby do apprentices purchase peerless Mitolyn sessions? https://www.youtube.com/watch?v=_f6IDMHw9gQ https://youtu.be/_f6IDMHw9gQ?si=5NpxSgNos4s_kaXR https://nas.io/mydealsjunction/challenges/mitolyn-reviews-say-goodbye-to-stubborn-fat-with-mitolyn https://nas.io/mydealsjunction/challenges/mitolyn-scam-worst-mitolyn-pills-scam-of-2025-watch-out https://tinyurl.com/28r8k54a https://tinyurl.com/3urtzmfd https://imgur.com/a/mitolyn-reviews-2025-honest-review-eJ56RSt https://heylink.me/mitolyngetnow/ https://www.behance.net/mitolynreviews1 https://bento.me/mitolynordernow https://magic.ly/mitolynordernow https://solo.to/mitolynordernow https://taplink.cc/mitolynbuy https://pastelink.net/obo3v4eo https://linktr.ee/mitolynordernow https://beacons.ai/mitolynordernow https://www.pinterest.com/pin/1101763496378784382/ https://mitolynbenefits.quora.com/ https://www.pinterest.com/mitolyngetnow/ https://soundcloud.com/sarbkmay/mitolyn-scam https://soundcloud.com/sarbkmay https://slaps.com/mitolyngetnow https://mymediads.com/mitolyn-reviews-should-you-try-mitolyn-for-weight-loss/ https://nas.io/mydealsjunction/challenges/mitolyn-scam-worst-mitolyn-pills-scam-of-2025-watch-out https://sketchfab.com/3d-models/mitolyn-scam-read-consumer-reports-d376c0f3842f4a9f80576c25016493d2 https://sketchfab.com/mitolyngetnow https://www.pixiv.net/novel/show.php?id=24160414 https://www.businesslistings.net.au/HEALTH/new_york/sicholayk/1108072.aspx https://www.deviantart.com/sicholayk https://www.deviantart.com/sicholayk/art/1165352644 https://eodev.com/gorev/30555887 https://www.provenexpert.com/sicholayk/ https://superuser.com/questions/1883798/mitolyn-scam-worst-mitolyn-pills https://fueler.io/mitolyngetnow https://tudomuaban.com/chi-tiet-rao-vat/2487605/mitolyn-reviews-read-consumer-reports-.html https://znanija.com/task/56798682 https://community.netgear.com/t5/WiFi-Range-Extenders-Nighthawk/Is-This-Supplement-Good-For-Losing-Weight/m-p/2440336 https://groups.google.com/g/mitolyn-scam/c/dIZAekXv3SU https://groups.google.com/g/mitolyn-scam/ https://www.mumsnet.com/talk/am_i_being_unreasonable/5284806-mitolyn-reviews-2025-my-honest-review https://huggingface.co/sicholayk https://www.historypin.org/en/mitolyn-reviews-2025-my-honest-review/pin/1199041 https://github.com/mitolyngetnow/Mitolyn-Reviews/ https://github.com/mitolyngetnow/
sbhikha/InkubaLM-MT-Swahili-8bit
sbhikha
2025-03-01T06:40:56Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-02-28T05:54:02Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
dmkhl/GPT
dmkhl
2025-03-01T06:40:28Z
0
0
adapter-transformers
[ "adapter-transformers", "aa", "dataset:open-thoughts/OpenThoughts-114k", "base_model:deepseek-ai/DeepSeek-R1", "base_model:adapter:deepseek-ai/DeepSeek-R1", "license:apache-2.0", "region:us" ]
null
2025-03-01T06:39:24Z
--- license: apache-2.0 datasets: - open-thoughts/OpenThoughts-114k language: - aa metrics: - accuracy base_model: - deepseek-ai/DeepSeek-R1 new_version: deepseek-ai/DeepSeek-R1 library_name: adapter-transformers ---
robiulawaldev/93d0b1ac-e7e5-489e-86f9-923924cc3668
robiulawaldev
2025-03-01T06:37:03Z
0
0
peft
[ "peft", "generated_from_trainer", "base_model:unsloth/SmolLM2-1.7B-Instruct", "base_model:adapter:unsloth/SmolLM2-1.7B-Instruct", "region:us" ]
null
2025-03-01T06:36:54Z
--- library_name: peft tags: - generated_from_trainer base_model: unsloth/SmolLM2-1.7B-Instruct model-index: - name: robiulawaldev/93d0b1ac-e7e5-489e-86f9-923924cc3668 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # robiulawaldev/93d0b1ac-e7e5-489e-86f9-923924cc3668 This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1463 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Seongyun/DeepSeek-R1-Distill-Qwen-1.5B-GRPO_pref_repetition_penalty
Seongyun
2025-03-01T06:36:35Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "trl", "grpo", "conversational", "arxiv:2402.03300", "base_model:deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B", "base_model:finetune:deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-01T03:54:00Z
--- base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B library_name: transformers model_name: DeepSeek-R1-Distill-Qwen-1.5B-GRPO_pref_repetition_penalty tags: - generated_from_trainer - trl - grpo licence: license --- # Model Card for DeepSeek-R1-Distill-Qwen-1.5B-GRPO_pref_repetition_penalty This model is a fine-tuned version of [deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Seongyun/DeepSeek-R1-Distill-Qwen-1.5B-GRPO_pref_repetition_penalty", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/minjuseo/huggingface/runs/k5vl0gnl) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.16.0.dev0 - Transformers: 4.49.0 - Pytorch: 2.5.1 - Datasets: 3.3.1 - Tokenizers: 0.21.0 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
dykim723/dependencies
dykim723
2025-03-01T06:36:28Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-03-01T06:34:43Z
--- license: apache-2.0 ---
PrunaAI/LinkSoul-Chinese-Llama-2-7b-HQQ-8bit-smashed
PrunaAI
2025-03-01T06:36:09Z
9
0
null
[ "llama", "pruna-ai", "hqq", "region:us" ]
null
2025-02-24T20:59:44Z
--- thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg" base_model: ORIGINAL_REPO_NAME metrics: - memory_disk - memory_inference - inference_latency - inference_throughput - inference_CO2_emissions - inference_energy_consumption tags: - pruna-ai --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer"> <img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </a> </div> <!-- header end --> [![Twitter](https://img.shields.io/twitter/follow/PrunaAI?style=social)](https://twitter.com/PrunaAI) [![GitHub](https://img.shields.io/github/followers/PrunaAI?label=Follow%20%40PrunaAI&style=social)](https://github.com/PrunaAI) [![LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue)](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-blue?style=social&logo=discord)](https://discord.gg/rskEr4BZJx) # Simply make AI models cheaper, smaller, faster, and greener! - Give a thumbs up if you like this model! - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact). - Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). - Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/) - Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help. ## Results ![image info](./plots.png) **Frequently Asked Questions** - ***How does the compression work?*** The model is compressed with hqq. - ***How does the model quality change?*** The quality of the model output might vary compared to the base model. - ***How is the model efficiency evaluated?*** These results were obtained with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you. - ***What is the model format?*** We use safetensors. - ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data. - ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model. - ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). - ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads. - ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases. ## Setup You can run the smashed model with these steps: 0. Check requirements from the original repo ORIGINAL_REPO_NAME installed. In particular, check python, cuda, and transformers versions. 1. Make sure that you have installed quantization related packages. ```bash pip install hqq ``` 2. Load & run the model. ```python from transformers import AutoModelForCausalLM, AutoTokenizer from hqq.engine.hf import HQQModelForCausalLM from hqq.models.hf.base import AutoHQQHFModel try: model = HQQModelForCausalLM.from_quantized("PrunaAI/LinkSoul-Chinese-Llama-2-7b-HQQ-8bit-smashed", device_map='auto') except: model = AutoHQQHFModel.from_quantized("PrunaAI/LinkSoul-Chinese-Llama-2-7b-HQQ-8bit-smashed") tokenizer = AutoTokenizer.from_pretrained("ORIGINAL_REPO_NAME") input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"] outputs = model.generate(input_ids, max_new_tokens=216) tokenizer.decode(outputs[0]) ``` ## Configurations The configuration info are in `smash_config.json`. ## Credits & License The license of the smashed model follows the license of the original model. Please check the license of the original model ORIGINAL_REPO_NAME before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi. ## Want to compress other models? - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact). - Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
Antonin77777/Llama3Ollamamodelunslothtest
Antonin77777
2025-03-01T06:35:56Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "base_model:finetune:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-03-01T06:35:45Z
--- base_model: unsloth/llama-3-8b-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Antonin77777 - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
ManukyanD/colqwen2.5-clipped9-checkpoint-2000
ManukyanD
2025-03-01T06:34:19Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-03-01T06:33:57Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
olegGerbylev/Qwen2.5-0.5b-instruct-VTB
olegGerbylev
2025-03-01T06:33:16Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "llama-factory", "full", "generated_from_trainer", "conversational", "base_model:Qwen/Qwen2.5-0.5B-Instruct", "base_model:finetune:Qwen/Qwen2.5-0.5B-Instruct", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-01T06:31:42Z
--- library_name: transformers license: other base_model: Qwen/Qwen2.5-0.5B-Instruct tags: - llama-factory - full - generated_from_trainer model-index: - name: train_2025-03-01-05-12-51 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # train_2025-03-01-05-12-51 This model is a fine-tuned version of [Qwen/Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct) on the match dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3
tsss1/deepsek-qwen1.5-vpn
tsss1
2025-03-01T06:33:09Z
0
0
transformers
[ "transformers", "gguf", "qwen2", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-01T06:32:55Z
--- base_model: unsloth/deepseek-r1-distill-qwen-1.5b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** tsss1 - **License:** apache-2.0 - **Finetuned from model :** unsloth/deepseek-r1-distill-qwen-1.5b-unsloth-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
AHAMED-27/Qwen-Qwen2.5-7B-Instruct-open-assistant-guanaco-2
AHAMED-27
2025-03-01T06:32:36Z
0
0
peft
[ "peft", "safetensors", "optimum_habana", "base_model:Qwen/Qwen2.5-7B", "base_model:adapter:Qwen/Qwen2.5-7B", "region:us" ]
null
2025-03-01T05:49:50Z
--- base_model: Qwen/Qwen2.5-7B library_name: peft --- # Model Card for Qwen-Qwen2.5-7B-Instruct-open-assistant-guanaco-2 ## Model Details ### Model Description This model is a fine-tuned version of **Qwen2.5-7B**, optimized for **causal language modeling (CAUSAL_LM)** using **LoRA (Low-Rank Adaptation)**. The fine-tuning process was carried out under **Intel Gaudi access** using Habana Gaudi AI processors, leveraging `optimum-habana` for hardware acceleration. - **Developed by:** AHAMED-27 - **Funded by:** [More Information Needed] - **Shared by:** AHAMED-27 - **Model type:** Causal Language Model (CAUSAL_LM) - **Language(s):** English - **License:** [More Information Needed] - **Finetuned from model:** [Qwen/Qwen2.5-7B](https://huggingface.co/Qwen/Qwen2.5-7B) ### Model Sources - **Repository:** [AHAMED-27/Qwen-Qwen2.5-7B-Instruct-open-assistant-guanaco-2](https://huggingface.co/AHAMED-27/Qwen-Qwen2.5-7B-Instruct-open-assistant-guanaco-2) - **Paper:** [More Information Needed] - **Demo:** [More Information Needed] ## Uses ### Direct Use This model is designed for natural language generation tasks, such as: - Text completion - Conversational AI - Story generation - Summarization ### Downstream Use The model can be fine-tuned further for specific NLP applications such as: - Chatbots - Code generation - Sentiment analysis - Question answering ### Out-of-Scope Use - The model is not intended for real-time decision-making applications where accuracy is critical. - Avoid using it for generating misinformation or harmful content. ## Bias, Risks, and Limitations ### Known Risks - The model may generate biased or incorrect responses as it is fine-tuned on publicly available datasets. - It may not perform well on low-resource languages or domain-specific tasks without additional fine-tuning. ### Recommendations - Users should verify the generated content before deploying it in production. - Ethical considerations should be taken into account while using this model. ## How to Get Started with the Model Use the code below to load and generate text using the model: ```python from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("AHAMED-27/Qwen-Qwen2.5-7B-Instruct-open-assistant-guanaco-2") model = AutoModelForCausalLM.from_pretrained("AHAMED-27/Qwen-Qwen2.5-7B-Instruct-open-assistant-guanaco-2") input_text = "Explain the benefits of using LoRA for fine-tuning large language models." inputs = tokenizer(input_text, return_tensors="pt") output = model.generate(**inputs) print(tokenizer.decode(output[0], skip_special_tokens=True)) ``` ## Training Details ### Training Data The model was fine-tuned on the **timdettmers/openassistant-guanaco** dataset. ### Training Procedure #### Preprocessing - Tokenization was performed using the `AutoTokenizer` from the `transformers` library. - LoRA adaptation was applied to the attention projection layers (`q_proj`, `v_proj`). #### Training Hyperparameters - **Training Regime:** BF16 Mixed Precision - **Epochs:** 3 - **Batch Size:** 16 per device - **Learning Rate:** 1e-4 - **Optimizer:** Adam - **Scheduler:** Constant LR - **LoRA Rank (r):** 8 - **LoRA Alpha:** 16 - **LoRA Dropout:** 0.05 #### Speeds, Sizes, Times - **Training Runtime:** 1026.98 seconds - **Training Samples per Second:** 17.471 - **Training Steps per Second:** 1.092 - **Total Available Memory:** 94.62 GB - **Max Memory Allocated:** 89.17 GB - **Memory Currently Allocated:** 58.34 GB ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data - The model was evaluated on a held-out validation set from the **timdettmers/openassistant-guanaco** dataset. #### Evaluation Metrics - **Evaluation Accuracy:** 71.51% - **Evaluation Loss:** 1.3675 - **Perplexity:** 3.92 - **Evaluation Runtime:** 20.308 seconds - **Evaluation Samples per Second:** 22.511 - **Evaluation Steps per Second:** 2.882 ## Software Dependencies - **Transformers Version:** 4.38.2 - **Optimum-Habana Version:** 1.24.0 - **Intel Gaudi SynapseAI Toolkit** ## Acknowledgments This fine-tuning process was completed using **Intel Gaudi hardware**, enabling optimized performance with reduced training time. Special thanks to the **Intel Habana team** for their work on Gaudi AI processors. For more details, visit [Habana Labs](https://habana.ai/).
mclemcrew/Qwen-Audio-Instruct-MixInstruct
mclemcrew
2025-03-01T06:32:24Z
0
0
peft
[ "peft", "safetensors", "generated_from_trainer", "base_model:Qwen/Qwen2-Audio-7B-Instruct", "base_model:adapter:Qwen/Qwen2-Audio-7B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-03-01T06:31:38Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2-Audio-7B-Instruct tags: - generated_from_trainer model-index: - name: Qwen-Audio-Instruct-MixInstruct results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Qwen-Audio-Instruct-MixInstruct This model is a fine-tuned version of [Qwen/Qwen2-Audio-7B-Instruct](https://huggingface.co/Qwen/Qwen2-Audio-7B-Instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 6.5263 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 8.2976 | 0.2857 | 2 | 7.6225 | | 7.917 | 0.5714 | 4 | 6.9937 | | 6.8546 | 0.8571 | 6 | 6.5263 | ### Framework versions - PEFT 0.14.0 - Transformers 4.49.0 - Pytorch 2.5.1+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0
bowilleatyou/d0388abf-72b5-4571-af88-21d5e8692e9b
bowilleatyou
2025-03-01T06:30:27Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-03-01T03:06:37Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
cointeleporting/SmolLM2-1.7B-Instruct-thinking-function_calling-V0
cointeleporting
2025-03-01T06:19:52Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:HuggingFaceTB/SmolLM2-1.7B-Instruct", "base_model:finetune:HuggingFaceTB/SmolLM2-1.7B-Instruct", "license:mit", "endpoints_compatible", "region:us" ]
null
2025-03-01T05:26:31Z
--- base_model: HuggingFaceTB/SmolLM2-1.7B-Instruct library_name: transformers model_name: SmolLM2-1.7B-Instruct-thinking-function_calling tags: - generated_from_trainer - trl - sft license: mit --- # Model Card for SmolLM2-1.7B-Instruct-thinking-function_calling-V0 This model is a fine-tuned version of [HuggingFaceTB/SmolLM2-1.7B-Instruct](https://huggingface.co/HuggingFaceTB/SmolLM2-1.7B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="cointeleporting/SmolLM2-1.7B-Instruct-thinking-function_calling-V0", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.15.2 - Transformers: 4.47.0 - Pytorch: 2.5.1+cu121 - Datasets: 3.3.1 - Tokenizers: 0.21.0 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
tsss1/DeepSeek-r1-qwen1.5
tsss1
2025-03-01T06:18:38Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-03-01T06:18:33Z
--- base_model: unsloth/deepseek-r1-distill-qwen-1.5b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** tsss1 - **License:** apache-2.0 - **Finetuned from model :** unsloth/deepseek-r1-distill-qwen-1.5b-unsloth-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
MaziyarPanahi/Latxa-Llama-3.1-8B-Instruct-GGUF
MaziyarPanahi
2025-03-01T06:17:04Z
0
0
null
[ "gguf", "mistral", "quantized", "2-bit", "3-bit", "4-bit", "5-bit", "6-bit", "8-bit", "GGUF", "text-generation", "base_model:HiTZ/Latxa-Llama-3.1-8B-Instruct", "base_model:quantized:HiTZ/Latxa-Llama-3.1-8B-Instruct", "region:us", "conversational" ]
text-generation
2025-03-01T05:54:48Z
--- base_model: HiTZ/Latxa-Llama-3.1-8B-Instruct inference: false model_creator: HiTZ model_name: Latxa-Llama-3.1-8B-Instruct-GGUF pipeline_tag: text-generation quantized_by: MaziyarPanahi tags: - quantized - 2-bit - 3-bit - 4-bit - 5-bit - 6-bit - 8-bit - GGUF - text-generation --- # [MaziyarPanahi/Latxa-Llama-3.1-8B-Instruct-GGUF](https://huggingface.co/MaziyarPanahi/Latxa-Llama-3.1-8B-Instruct-GGUF) - Model creator: [HiTZ](https://huggingface.co/HiTZ) - Original model: [HiTZ/Latxa-Llama-3.1-8B-Instruct](https://huggingface.co/HiTZ/Latxa-Llama-3.1-8B-Instruct) ## Description [MaziyarPanahi/Latxa-Llama-3.1-8B-Instruct-GGUF](https://huggingface.co/MaziyarPanahi/Latxa-Llama-3.1-8B-Instruct-GGUF) contains GGUF format model files for [HiTZ/Latxa-Llama-3.1-8B-Instruct](https://huggingface.co/HiTZ/Latxa-Llama-3.1-8B-Instruct). ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Here is an incomplete list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. * [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models. ## Special thanks 🙏 Special thanks to [Georgi Gerganov](https://github.com/ggerganov) and the whole team working on [llama.cpp](https://github.com/ggerganov/llama.cpp/) for making all of this possible.
YoichiTakenaka/deverta-v3-japanese-large-Trust
YoichiTakenaka
2025-03-01T06:16:04Z
7
0
null
[ "safetensors", "deberta-v2", "text-classification", "japanese", "license:cc-by-sa-4.0", "region:us" ]
text-classification
2025-02-21T02:15:26Z
--- license: cc-by-sa-4.0 license_details: | Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) Copyright (c) 2025 Yoichi Takenaka This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy of this license, visit https://creativecommons.org/licenses/by-sa/4.0/ This project is based on: - DeBERTa (https://huggingface.co/microsoft/deberta-v3-large), licensed under the MIT License. - DeBERTa Japanese Model (https://huggingface.co/globis-university/deberta-v3-japanese-large), licensed under the CC BY-SA 4.0 License. Any modifications or derivative works must also be distributed under the same CC BY-SA 4.0 License. tags: - text-classification - japanese model-index: - name: deverta-v3-japanese-large-Anger results: [] --- # DeBERTa Emotion Predictor This package provides a DeBERTa-based model for predicting emotions in Japanese text. DeBERTa Emotion Predictor は、ファインチューニング済みの DeBERTa モデルを用いて日本語テキストの感情推定を行う Python パッケージです。8 つの感情(Joy, Sadness, Anticipation, Surprise, Anger, Fear, Disgust, Trust)に対するそれぞれのモデルを利用し、各テキストに対する感情の予測ラベルと肯定クラスの確信度を簡単に取得できます。 ## Install(インストール) pip を使います。 ```bash pip install deberta-emotion-predictor ``` ## Usage (おためし利用) ```python from deberta_emotion_predictor import DeBERTaEmotionPredictor predictor = DeBERTaEmotionPredictor() result = predictor.predict_emotions("今日はとても嬉しい!") predictor.show_emotions(result) ``` 注)Hugging-face から8種類のDeBERTaをダウンロードするため、初回起動に大変時間がかかります。二回目以降の実行から速くなります。 データフレームも入力できます。 ```python import pandas as pd from deberta_emotion_predictor import DeBERTaEmotionPredictor # model_dir は、言語モデルとトークナイザがある場所を指しています predictor = DeBERTaEmotionPredictor() # サンプルテキスト(リスト形式) sample_texts = [ "そうだ 京都、行こう。", "がんばるひとの、がんばらない時間。", "わたしらしくをあたらしく", "ピースはここにある。", "結婚しなくても幸せになれるこの時代に、私は、あなたと結婚したいのです。", "これからの地球のために一肌、脱ぎました。", "自分は、きっと想像以上だ。", "ハローしあわせ。", "日本を、1枚で。" ] res_df = predictor.predict_emotions(sample_texts) predictor.show_emotions(res_df) ``` なお動作には torch, transformers, pandas が必要です。 ```bash pip install torch pip install transformers pip install pandas ``` また、GPUを使用するには、NVIDIA GPUドライバー等のインストールが必要です。 こちらは、他の資料を参照してください。 ## 特徴 - **8感情の推定** 各感情ごとにファインチューニング済みのモデルを利用し、テキストの感情推定を行います。 - **柔軟な入力形式** 単一のテキスト、テキストのリスト、または pandas Series を入力として受け付け、結果を DataFrame 形式で返します。 - **効率的な推論** GPU メモリの使用量を抑えるため、必要なときだけモデルを GPU にロードする設計になっています。 ## 使用方法 以下は、パッケージの基本的な使い方の例です: ### テキストの渡し方(リスト) ```python sample_texts = [ "そうだ 京都、行こう。", "がんばるひとの、がんばらない時間。" ] result_df = predictor.predict_emotions(sample_texts) predictor.show_emotions(result_df) ``` ### 単一のテキストの場合 ```python result_single = predictor.predict_emotions("新しい朝が来た。") print(result_single) ``` ### 出力されるデータフレーム 出力されるデータフレームには、各感情の有無をあらわす8つの列、及び各感情の確率値が格納されています。 ```python print(result_df) ``` ## ディレクトリ構成 ``` deberta_emotion_predictor/ ├── README.md # この説明ファイル ├── deberta_emotion_predictor.py # DeBERTaEmotionPredictor クラスの実装 │ └── tokenizer_DeBERTa_v3_large/ #トークナイザー ├── setup.py ├── pyproject.toml ├── README.md ├── LICENSE └── usage.py ``` ## 必要環境 - Python 3.6 以上 - PyTorch - transformers - pandas ## License Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) Copyright (c) 2025 Yoichi Takenaka This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy of this license, visit https://creativecommons.org/licenses/by-sa/4.0/ This project is based on: - DeBERTa (https://huggingface.co/microsoft/deberta-v3-large), licensed under the MIT License. - DeBERTa Japanese Model (https://huggingface.co/globis-university/deberta-v3-japanese-large), licensed under the CC BY-SA 4.0 License. Any modifications or derivative works must also be distributed under the same CC BY-SA 4.0 License.
YoichiTakenaka/deverta-v3-japanese-large-Sadness
YoichiTakenaka
2025-03-01T06:15:40Z
6
0
null
[ "safetensors", "deberta-v2", "text-classification", "japanese", "license:cc-by-sa-4.0", "region:us" ]
text-classification
2025-02-21T02:13:18Z
--- license: cc-by-sa-4.0 license_details: | Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) Copyright (c) 2025 Yoichi Takenaka This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy of this license, visit https://creativecommons.org/licenses/by-sa/4.0/ This project is based on: - DeBERTa (https://huggingface.co/microsoft/deberta-v3-large), licensed under the MIT License. - DeBERTa Japanese Model (https://huggingface.co/globis-university/deberta-v3-japanese-large), licensed under the CC BY-SA 4.0 License. Any modifications or derivative works must also be distributed under the same CC BY-SA 4.0 License. tags: - text-classification - japanese model-index: - name: deverta-v3-japanese-large-Anger results: [] --- # DeBERTa Emotion Predictor This package provides a DeBERTa-based model for predicting emotions in Japanese text. DeBERTa Emotion Predictor は、ファインチューニング済みの DeBERTa モデルを用いて日本語テキストの感情推定を行う Python パッケージです。8 つの感情(Joy, Sadness, Anticipation, Surprise, Anger, Fear, Disgust, Trust)に対するそれぞれのモデルを利用し、各テキストに対する感情の予測ラベルと肯定クラスの確信度を簡単に取得できます。 ## Install(インストール) pip を使います。 ```bash pip install deberta-emotion-predictor ``` ## Usage (おためし利用) ```python from deberta_emotion_predictor import DeBERTaEmotionPredictor predictor = DeBERTaEmotionPredictor() result = predictor.predict_emotions("今日はとても嬉しい!") predictor.show_emotions(result) ``` 注)Hugging-face から8種類のDeBERTaをダウンロードするため、初回起動に大変時間がかかります。二回目以降の実行から速くなります。 データフレームも入力できます。 ```python import pandas as pd from deberta_emotion_predictor import DeBERTaEmotionPredictor # model_dir は、言語モデルとトークナイザがある場所を指しています predictor = DeBERTaEmotionPredictor() # サンプルテキスト(リスト形式) sample_texts = [ "そうだ 京都、行こう。", "がんばるひとの、がんばらない時間。", "わたしらしくをあたらしく", "ピースはここにある。", "結婚しなくても幸せになれるこの時代に、私は、あなたと結婚したいのです。", "これからの地球のために一肌、脱ぎました。", "自分は、きっと想像以上だ。", "ハローしあわせ。", "日本を、1枚で。" ] res_df = predictor.predict_emotions(sample_texts) predictor.show_emotions(res_df) ``` なお動作には torch, transformers, pandas が必要です。 ```bash pip install torch pip install transformers pip install pandas ``` また、GPUを使用するには、NVIDIA GPUドライバー等のインストールが必要です。 こちらは、他の資料を参照してください。 ## 特徴 - **8感情の推定** 各感情ごとにファインチューニング済みのモデルを利用し、テキストの感情推定を行います。 - **柔軟な入力形式** 単一のテキスト、テキストのリスト、または pandas Series を入力として受け付け、結果を DataFrame 形式で返します。 - **効率的な推論** GPU メモリの使用量を抑えるため、必要なときだけモデルを GPU にロードする設計になっています。 ## 使用方法 以下は、パッケージの基本的な使い方の例です: ### テキストの渡し方(リスト) ```python sample_texts = [ "そうだ 京都、行こう。", "がんばるひとの、がんばらない時間。" ] result_df = predictor.predict_emotions(sample_texts) predictor.show_emotions(result_df) ``` ### 単一のテキストの場合 ```python result_single = predictor.predict_emotions("新しい朝が来た。") print(result_single) ``` ### 出力されるデータフレーム 出力されるデータフレームには、各感情の有無をあらわす8つの列、及び各感情の確率値が格納されています。 ```python print(result_df) ``` ## ディレクトリ構成 ``` deberta_emotion_predictor/ ├── README.md # この説明ファイル ├── deberta_emotion_predictor.py # DeBERTaEmotionPredictor クラスの実装 │ └── tokenizer_DeBERTa_v3_large/ #トークナイザー ├── setup.py ├── pyproject.toml ├── README.md ├── LICENSE └── usage.py ``` ## 必要環境 - Python 3.6 以上 - PyTorch - transformers - pandas ## License Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) Copyright (c) 2025 Yoichi Takenaka This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy of this license, visit https://creativecommons.org/licenses/by-sa/4.0/ This project is based on: - DeBERTa (https://huggingface.co/microsoft/deberta-v3-large), licensed under the MIT License. - DeBERTa Japanese Model (https://huggingface.co/globis-university/deberta-v3-japanese-large), licensed under the CC BY-SA 4.0 License. Any modifications or derivative works must also be distributed under the same CC BY-SA 4.0 License.
YoichiTakenaka/deverta-v3-japanese-large-Disgust
YoichiTakenaka
2025-03-01T06:14:56Z
6
0
null
[ "safetensors", "deberta-v2", "text-classification", "japanese", "license:cc-by-sa-4.0", "region:us" ]
text-classification
2025-02-21T02:15:08Z
--- license: cc-by-sa-4.0 license_details: | Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) Copyright (c) 2025 Yoichi Takenaka This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy of this license, visit https://creativecommons.org/licenses/by-sa/4.0/ This project is based on: - DeBERTa (https://huggingface.co/microsoft/deberta-v3-large), licensed under the MIT License. - DeBERTa Japanese Model (https://huggingface.co/globis-university/deberta-v3-japanese-large), licensed under the CC BY-SA 4.0 License. Any modifications or derivative works must also be distributed under the same CC BY-SA 4.0 License. tags: - text-classification - japanese model-index: - name: deverta-v3-japanese-large-Anger results: [] --- # DeBERTa Emotion Predictor This package provides a DeBERTa-based model for predicting emotions in Japanese text. DeBERTa Emotion Predictor は、ファインチューニング済みの DeBERTa モデルを用いて日本語テキストの感情推定を行う Python パッケージです。8 つの感情(Joy, Sadness, Anticipation, Surprise, Anger, Fear, Disgust, Trust)に対するそれぞれのモデルを利用し、各テキストに対する感情の予測ラベルと肯定クラスの確信度を簡単に取得できます。 ## Install(インストール) pip を使います。 ```bash pip install deberta-emotion-predictor ``` ## Usage (おためし利用) ```python from deberta_emotion_predictor import DeBERTaEmotionPredictor predictor = DeBERTaEmotionPredictor() result = predictor.predict_emotions("今日はとても嬉しい!") predictor.show_emotions(result) ``` 注)Hugging-face から8種類のDeBERTaをダウンロードするため、初回起動に大変時間がかかります。二回目以降の実行から速くなります。 データフレームも入力できます。 ```python import pandas as pd from deberta_emotion_predictor import DeBERTaEmotionPredictor # model_dir は、言語モデルとトークナイザがある場所を指しています predictor = DeBERTaEmotionPredictor() # サンプルテキスト(リスト形式) sample_texts = [ "そうだ 京都、行こう。", "がんばるひとの、がんばらない時間。", "わたしらしくをあたらしく", "ピースはここにある。", "結婚しなくても幸せになれるこの時代に、私は、あなたと結婚したいのです。", "これからの地球のために一肌、脱ぎました。", "自分は、きっと想像以上だ。", "ハローしあわせ。", "日本を、1枚で。" ] res_df = predictor.predict_emotions(sample_texts) predictor.show_emotions(res_df) ``` なお動作には torch, transformers, pandas が必要です。 ```bash pip install torch pip install transformers pip install pandas ``` また、GPUを使用するには、NVIDIA GPUドライバー等のインストールが必要です。 こちらは、他の資料を参照してください。 ## 特徴 - **8感情の推定** 各感情ごとにファインチューニング済みのモデルを利用し、テキストの感情推定を行います。 - **柔軟な入力形式** 単一のテキスト、テキストのリスト、または pandas Series を入力として受け付け、結果を DataFrame 形式で返します。 - **効率的な推論** GPU メモリの使用量を抑えるため、必要なときだけモデルを GPU にロードする設計になっています。 ## 使用方法 以下は、パッケージの基本的な使い方の例です: ### テキストの渡し方(リスト) ```python sample_texts = [ "そうだ 京都、行こう。", "がんばるひとの、がんばらない時間。" ] result_df = predictor.predict_emotions(sample_texts) predictor.show_emotions(result_df) ``` ### 単一のテキストの場合 ```python result_single = predictor.predict_emotions("新しい朝が来た。") print(result_single) ``` ### 出力されるデータフレーム 出力されるデータフレームには、各感情の有無をあらわす8つの列、及び各感情の確率値が格納されています。 ```python print(result_df) ``` ## ディレクトリ構成 ``` deberta_emotion_predictor/ ├── README.md # この説明ファイル ├── deberta_emotion_predictor.py # DeBERTaEmotionPredictor クラスの実装 │ └── tokenizer_DeBERTa_v3_large/ #トークナイザー ├── setup.py ├── pyproject.toml ├── README.md ├── LICENSE └── usage.py ``` ## 必要環境 - Python 3.6 以上 - PyTorch - transformers - pandas ## License Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) Copyright (c) 2025 Yoichi Takenaka This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy of this license, visit https://creativecommons.org/licenses/by-sa/4.0/ This project is based on: - DeBERTa (https://huggingface.co/microsoft/deberta-v3-large), licensed under the MIT License. - DeBERTa Japanese Model (https://huggingface.co/globis-university/deberta-v3-japanese-large), licensed under the CC BY-SA 4.0 License. Any modifications or derivative works must also be distributed under the same CC BY-SA 4.0 License.
kchayanapas/Hoog-dialect-agent
kchayanapas
2025-03-01T06:13:46Z
0
0
transformers
[ "transformers", "safetensors", "roberta", "fill-mask", "generated_from_trainer", "base_model:lst-nectec/HoogBERTa", "base_model:finetune:lst-nectec/HoogBERTa", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2025-03-01T04:35:20Z
--- library_name: transformers license: mit base_model: lst-nectec/HoogBERTa tags: - generated_from_trainer model-index: - name: Hoog-dialect-agent results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Hoog-dialect-agent This model is a fine-tuned version of [lst-nectec/HoogBERTa](https://huggingface.co/lst-nectec/HoogBERTa) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4763 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.1149 | 1.0 | 15421 | 1.7294 | | 1.732 | 2.0 | 30842 | 1.5678 | | 1.5818 | 3.0 | 46263 | 1.4763 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.6.0+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0
bkale22/him
bkale22
2025-03-01T06:12:16Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-03-01T06:12:16Z
--- license: apache-2.0 ---
PrunaAI/Salesforce-xgen-7b-8k-base-HQQ-8bit-smashed
PrunaAI
2025-03-01T06:12:04Z
4
0
null
[ "llama", "pruna-ai", "hqq", "region:us" ]
null
2025-02-24T16:52:34Z
--- thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg" base_model: ORIGINAL_REPO_NAME metrics: - memory_disk - memory_inference - inference_latency - inference_throughput - inference_CO2_emissions - inference_energy_consumption tags: - pruna-ai --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer"> <img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </a> </div> <!-- header end --> [![Twitter](https://img.shields.io/twitter/follow/PrunaAI?style=social)](https://twitter.com/PrunaAI) [![GitHub](https://img.shields.io/github/followers/PrunaAI?label=Follow%20%40PrunaAI&style=social)](https://github.com/PrunaAI) [![LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue)](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-blue?style=social&logo=discord)](https://discord.gg/rskEr4BZJx) # Simply make AI models cheaper, smaller, faster, and greener! - Give a thumbs up if you like this model! - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact). - Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). - Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/) - Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help. ## Results ![image info](./plots.png) **Frequently Asked Questions** - ***How does the compression work?*** The model is compressed with hqq. - ***How does the model quality change?*** The quality of the model output might vary compared to the base model. - ***How is the model efficiency evaluated?*** These results were obtained with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you. - ***What is the model format?*** We use safetensors. - ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data. - ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model. - ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). - ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads. - ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases. ## Setup You can run the smashed model with these steps: 0. Check requirements from the original repo ORIGINAL_REPO_NAME installed. In particular, check python, cuda, and transformers versions. 1. Make sure that you have installed quantization related packages. ```bash pip install hqq ``` 2. Load & run the model. ```python from transformers import AutoModelForCausalLM, AutoTokenizer from hqq.engine.hf import HQQModelForCausalLM from hqq.models.hf.base import AutoHQQHFModel try: model = HQQModelForCausalLM.from_quantized("PrunaAI/Salesforce-xgen-7b-8k-base-HQQ-8bit-smashed", device_map='auto') except: model = AutoHQQHFModel.from_quantized("PrunaAI/Salesforce-xgen-7b-8k-base-HQQ-8bit-smashed") tokenizer = AutoTokenizer.from_pretrained("ORIGINAL_REPO_NAME") input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"] outputs = model.generate(input_ids, max_new_tokens=216) tokenizer.decode(outputs[0]) ``` ## Configurations The configuration info are in `smash_config.json`. ## Credits & License The license of the smashed model follows the license of the original model. Please check the license of the original model ORIGINAL_REPO_NAME before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi. ## Want to compress other models? - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact). - Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
akibc123/LLava_pruned_layer_sensitivity_5.4B
akibc123
2025-03-01T06:09:24Z
0
0
transformers
[ "transformers", "safetensors", "llava", "image-text-to-text", "conversational", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-03-01T06:05:58Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
AlexS3957/mralex-lora
AlexS3957
2025-03-01T06:07:41Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-03-01T05:26:14Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: TOK --- # Mralex Lora <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `TOK` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('AlexS3957/mralex-lora', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
KiahHong/distilled-bias-bert
KiahHong
2025-03-01T06:05:04Z
0
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-03-01T06:04:11Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
jeix/TA-SAE
jeix
2025-03-01T06:04:51Z
0
1
null
[ "safetensors", "license:mit", "region:us" ]
null
2025-02-10T13:21:26Z
--- license: mit --- # TA-SAE Model Card This repository contains the trained Temporal-Aware Sparse AutoEncoder (TA-SAE) models for different layers. ## Model Description TA-SAE is a specialized autoencoder model designed for temporal feature extraction and compression. Each layer model represents a different level of feature abstraction in the network. ## Usage ### Installation ```python pip install huggingface_hub ``` ### Loading Models #### Download a specific file: ```python from huggingface_hub import hf_hub_download # Download specific layer model file_path = hf_hub_download( repo_id="jeix/TA-SAE", filename="PixArt/SAE-Layer0/model.safetensors" ) ``` #### Download all files for a specific layer: ```python from huggingface_hub import snapshot_download # Download all files for layer0 local_dir = snapshot_download( repo_id="jeix/TA-SAE", repo_type="model", allow_patterns="PixArt/SAE-Layer0/*" ) ``` #### Download all layers: ```python local_dir = snapshot_download( repo_id="jeix/TA-SAE", repo_type="model", allow_patterns="PixArt/SAE-Layer*/*" ) ``` ### Using Command Line #### Install CLI tool ```bash pip install -U huggingface_hub ``` #### Download specific file ```bash huggingface-cli download jeix/TA-SAE --local-dir ./download --include "PixArt/SAE-Layer0/model.safetensors" ``` ## Model Files Description Each layer directory contains the following files: - `model.safetensors`: The main model weights - `optimizer.bin`: Optimizer state - `scheduler.bin`: Learning rate scheduler state - `random_states_0.pkl`: Random state information - `scaler.pt`: Data scaling parameters <!-- ## License [Add your license information here] ## Citation [Add citation information if applicable] ## Contact [Add your contact information or github profile] -->
mshen2/qwen2.5-math-7b-v4-nohcot
mshen2
2025-03-01T06:04:40Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-01T05:53:56Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
rohinm/model_works
rohinm
2025-03-01T06:03:37Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-01T06:01:34Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
7Dragons/Michelin_2v1
7Dragons
2025-03-01T06:01:16Z
0
0
null
[ "onnx", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-03-01T06:00:09Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
Isylimanov099/Rysbek
Isylimanov099
2025-03-01T05:58:35Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-03-01T05:58:20Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Jeongmoon/rag_unambig_single_8B_without_distr
Jeongmoon
2025-03-01T05:58:13Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:meta-llama/Llama-3.1-8B-Instruct", "base_model:adapter:meta-llama/Llama-3.1-8B-Instruct", "region:us" ]
null
2025-03-01T05:41:33Z
--- base_model: "meta-llama/Meta-Llama-3.1-8B-Instruct" library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.12.0
jerseyjerry/task-5-microsoft-Phi-3-mini-4k-instruct-20250301
jerseyjerry
2025-03-01T05:54:53Z
0
0
peft
[ "peft", "safetensors", "llama-factory", "lora", "generated_from_trainer", "base_model:microsoft/Phi-3-mini-4k-instruct", "base_model:adapter:microsoft/Phi-3-mini-4k-instruct", "license:other", "region:us" ]
null
2025-03-01T05:54:31Z
--- library_name: peft license: other base_model: microsoft/Phi-3-mini-4k-instruct tags: - llama-factory - lora - generated_from_trainer model-index: - name: lora results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lora This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) on the flock_task5_tranning dataset. It achieves the following results on the evaluation set: - Loss: 0.0052 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - total_eval_batch_size: 2 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 60 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.5231 | 2.5 | 10 | 1.6286 | | 1.4069 | 5.0 | 20 | 1.4773 | | 1.2518 | 7.5 | 30 | 1.3657 | | 1.3069 | 10.0 | 40 | 1.2441 | | 1.0816 | 12.5 | 50 | 1.0924 | | 1.0063 | 15.0 | 60 | 0.9201 | | 0.666 | 17.5 | 70 | 0.7236 | | 0.5723 | 20.0 | 80 | 0.5105 | | 0.3671 | 22.5 | 90 | 0.3136 | | 0.2108 | 25.0 | 100 | 0.1737 | | 0.1203 | 27.5 | 110 | 0.0830 | | 0.069 | 30.0 | 120 | 0.0397 | | 0.0233 | 32.5 | 130 | 0.0212 | | 0.0158 | 35.0 | 140 | 0.0129 | | 0.0104 | 37.5 | 150 | 0.0093 | | 0.0081 | 40.0 | 160 | 0.0076 | | 0.0073 | 42.5 | 170 | 0.0066 | | 0.0072 | 45.0 | 180 | 0.0060 | | 0.0062 | 47.5 | 190 | 0.0056 | | 0.0063 | 50.0 | 200 | 0.0054 | | 0.0068 | 52.5 | 210 | 0.0053 | | 0.0064 | 55.0 | 220 | 0.0052 | | 0.0061 | 57.5 | 230 | 0.0052 | | 0.0056 | 60.0 | 240 | 0.0052 | ### Framework versions - PEFT 0.12.0 - Transformers 4.48.3 - Pytorch 2.6.0+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0
Isylimanov099/DeepSeekLawyer-1
Isylimanov099
2025-03-01T05:54:28Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-02-28T14:21:58Z
--- base_model: unsloth/deepseek-r1-distill-llama-8b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Isylimanov099 - **License:** apache-2.0 - **Finetuned from model :** unsloth/deepseek-r1-distill-llama-8b-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
qing-yao/strict_default_seed-63_1e-3
qing-yao
2025-03-01T05:52:58Z
0
0
transformers
[ "transformers", "safetensors", "opt", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-28T18:08:39Z
--- library_name: transformers tags: - generated_from_trainer metrics: - accuracy model-index: - name: strict_default_seed-63_1e-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # strict_default_seed-63_1e-3 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.1796 - Accuracy: 0.4013 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 64 - seed: 63 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 32000 - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:-----:|:---------------:|:--------:| | 5.9692 | 0.9999 | 1487 | 4.4075 | 0.2938 | | 4.3051 | 1.9998 | 2974 | 3.9084 | 0.3325 | | 3.7034 | 2.9997 | 4461 | 3.6285 | 0.3558 | | 3.5333 | 3.9997 | 5948 | 3.4659 | 0.3708 | | 3.31 | 4.9996 | 7435 | 3.3671 | 0.3807 | | 3.2377 | 5.9995 | 8922 | 3.3051 | 0.3862 | | 3.1277 | 6.9994 | 10409 | 3.2697 | 0.3903 | | 3.091 | 8.0 | 11897 | 3.2403 | 0.3931 | | 3.0274 | 8.9999 | 13384 | 3.2207 | 0.3948 | | 3.0015 | 9.9998 | 14871 | 3.2077 | 0.3969 | | 2.9642 | 10.9997 | 16358 | 3.2009 | 0.3975 | | 2.9446 | 11.9997 | 17845 | 3.1935 | 0.3985 | | 2.922 | 12.9996 | 19332 | 3.1888 | 0.3992 | | 2.9046 | 13.9995 | 20819 | 3.1852 | 0.3999 | | 2.8939 | 14.9994 | 22306 | 3.1799 | 0.4005 | | 2.8755 | 16.0 | 23794 | 3.1868 | 0.3999 | | 2.8744 | 16.9999 | 25281 | 3.1763 | 0.4012 | | 2.8578 | 17.9998 | 26768 | 3.1774 | 0.4013 | | 2.8626 | 18.9997 | 28255 | 3.1776 | 0.4015 | | 2.845 | 19.9983 | 29740 | 3.1796 | 0.4013 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.20.0
mradermacher/L3-Stheno-Maid-Blackroot-Grand-HORROR-16.5B-V1.5-STABLE-i1-GGUF
mradermacher
2025-03-01T05:52:24Z
0
0
null
[ "region:us" ]
null
2025-03-01T05:52:22Z
<!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/DavidAU/L3-Stheno-Maid-Blackroot-Grand-HORROR-16.5B-V1.5-STABLE
sfarrukhm/ppo-LunarLander-v2
sfarrukhm
2025-03-01T05:51:43Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2025-03-01T05:51:22Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 250.11 +/- 21.95 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
JFernandoGRE/bert-ner-colombian-elitenames
JFernandoGRE
2025-03-01T05:51:39Z
0
0
transformers
[ "transformers", "safetensors", "bert", "token-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2025-03-01T05:51:17Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Isylimanov099/Venera
Isylimanov099
2025-03-01T05:50:45Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-03-01T05:50:16Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
JackyWW/vit-finetuned
JackyWW
2025-03-01T05:48:28Z
11
0
transformers
[ "transformers", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-02-24T07:06:24Z
--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-finetuned results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.55625 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-finetuned This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.2270 - Accuracy: 0.5563 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0026 | 1.0 | 64 | 1.3046 | 0.5125 | | 0.6945 | 2.0 | 128 | 1.2227 | 0.5437 | | 0.4462 | 3.0 | 192 | 1.2127 | 0.5563 | | 0.2831 | 4.0 | 256 | 1.2013 | 0.55 | | 0.2379 | 5.0 | 320 | 1.2270 | 0.5563 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.5.1+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0
Jonjew/GlowingGlitchFlux
Jonjew
2025-03-01T05:47:20Z
0
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:unknown", "region:us" ]
text-to-image
2025-03-01T05:46:16Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: >- woman wearing a glowing mad-glwngmrbldppr dress walking through a public park, smile <lora:glowing-glitch-flux:1>, night parameters: negative_prompt: 'Guidance: 1 Steps: 20 Seed: 763776051' output: url: images/20240916_085432_763776051_flux1-dev-fp8.png - text: >- woman wearing a glowing mad-glwngmrbldppr scarf, black skirt and white top in front of a red sports car, city <lora:glowing-glitch-flux:1>, night parameters: negative_prompt: 'Guidance: 1 Steps: 20 Seed: 1283386014' output: url: images/20240916_090334_1283386014_flux1-dev-fp8.png - text: >- woman wearing a glowing mad-glwngmrbldppr scarf, black skirt and white top in front of a red sports car, city <lora:glowing-glitch-flux:1>, night parameters: negative_prompt: 'Guidance: 1 Steps: 20 Seed: 1283386013' output: url: images/20240916_090250_1283386013_flux1-dev-fp8.png - text: >- woman wearing a glowing mad-glwnggltch dress walking through a public park, smile <lora:glowing-glitch-flux:1>, night parameters: negative_prompt: 'Guidance: 1 Steps: 20 Seed: 2651785672' output: url: images/20240916_083814_2651785672_flux1-dev-fp8.png base_model: black-forest-labs/FLUX.1-dev instance_prompt: mad-glwnggltch, glowing license: unknown --- # Glowing Glitch FLUX &amp;SDXL <Gallery /> ## Model description FROM https:&#x2F;&#x2F;civitai.com&#x2F;models&#x2F;306426&#x2F;glowing-glitch-flux-andsdxl Trigger mad-glwnggltch, glowing strength 0.8-1.0 The LoRA was trained on Flux-Dev. It might not work with other Flux Versions. If it works, expect it to behave differently then with Flux-Dev. The showcase images are made with Flux-Dev. For Flux Dev I recommend the following setting - Lora strength 0.8-1.0, highres fix with denoising 0.3-0.5 If you enjoy my work, consider showing your support with a 👍 or ❤️ on the model or images—it really keeps me motivated! You can also follow me or buy me a coffee ☕ at: https:&#x2F;&#x2F;ko-fi.com&#x2F;madcaddie Usage tips for the LoRA are in the version details Thanks and have fun! ## Trigger words You should use `mad-glwnggltch` to trigger the image generation. You should use `glowing` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/Jonjew/GlowingGlitchFlux/tree/main) them in the Files & versions tab.
yahyaabd/allstats-search-base-v1-64-1
yahyaabd
2025-03-01T05:46:57Z
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "xlm-roberta", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:25580", "loss:OnlineContrastiveLoss", "dataset:yahyaabd/query-hard-pos-neg-doc-pairs-statictable", "arxiv:1908.10084", "base_model:sentence-transformers/paraphrase-multilingual-mpnet-base-v2", "base_model:finetune:sentence-transformers/paraphrase-multilingual-mpnet-base-v2", "model-index", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-03-01T05:45:53Z
--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:25580 - loss:OnlineContrastiveLoss base_model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2 widget: - source_sentence: ikhtisar arus kas triwulan 1, 2004 (miliar) sentences: - Balita (0-59 Bulan) Menurut Status Gizi, Tahun 1998-2005 - Perbandingan Indeks dan Tingkat Inflasi Desember 2023 Kota-kota di Luar Pulau Jawa dan Sumatera dengan Nasional (2018=100) - Rata-rata Konsumsi dan Pengeluaran Perkapita Seminggu Menurut Komoditi Makanan dan Golongan Pengeluaran per Kapita Seminggu di Provinsi Sulawesi Tengah, 2018-2023 - source_sentence: BaIgaimana gambaran neraca arus dana dUi Indonesia pada kuartal kedua tahun 2015? sentences: - Jumlah Sekolah, Guru, dan Murid Sekolah Menengah Pertama (SMP) di Bawah Kementrian Pendidikan dan Kebudayaan Menurut Provinsi 2011/2012-2015/2016 - Ringkasan Neraca Arus Dana Triwulan III Tahun 2003 (Miliar Rupiah) - Rata-rata Konsumsi dan Pengeluaran Perkapita Seminggu Menurut Komoditi Makanan dan Golongan Pengeluaran per Kapita Seminggu di Provinsi Sulawesi Tenggara, 2018-2023 - source_sentence: Berapa persen pengeluaran orang di kotaa untuk makanan vs non-makanan, per provinsi, 2018? sentences: - Ekspor Tanaman Obat, Aromatik, dan Rempah-Rempah menurut Negara Tujuan Utama, 2012-2023 - Rata-rata Pendapatan Bersih Pekerja Bebas Menurut Provinsi dan Pendidikan Tertinggi yang Ditamatkan (ribu rupiah), 2017 - IHK dan Rata-rata Upah per Bulan Buruh Industri di Bawah Mandor (Supervisor), 1996-2014 (1996=100) - source_sentence: Negara-negara asal impor crude oil dan produk turunannya tahun 2002-2023 sentences: - Persentase Pengeluaran Rata-rata per Kapita Sebulan Menurut Kelompok Barang, Indonesia, 1999, 2002-2023 - Rata-rata Pendapatan Bersih Berusaha Sendiri menurut Provinsi dan Pendidikan yang Ditamatkan (ribu rupiah), 2016 - Perkembangan Beberapa Agregat Pendapatan dan Pendapatan per Kapita Atas Dasar Harga Berlaku, 2010-2016 - source_sentence: Arus dana Q3 2006 sentences: - Posisi Simpanan Berjangka Rupiah pada Bank Umum dan BPR Menurut Golongan Pemilik (miliar rupiah), 2005-2018 - Ringkasan Neraca Arus Dana, Triwulan III, 2006, (Miliar Rupiah) - Rata-Rata Pengeluaran per Kapita Sebulan di Daerah Perkotaan Menurut Kelompok Barang dan Golongan Pengeluaran per Kapita Sebulan, 2000-2012 datasets: - yahyaabd/query-hard-pos-neg-doc-pairs-statictable pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - cosine_accuracy - cosine_accuracy_threshold - cosine_f1 - cosine_f1_threshold - cosine_precision - cosine_recall - cosine_ap - cosine_mcc model-index: - name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2 results: - task: type: binary-classification name: Binary Classification dataset: name: allstats semantic base v1 test type: allstats-semantic-base-v1_test metrics: - type: cosine_accuracy value: 0.9848926101201311 name: Cosine Accuracy - type: cosine_accuracy_threshold value: 0.7900121212005615 name: Cosine Accuracy Threshold - type: cosine_f1 value: 0.9764805894020969 name: Cosine F1 - type: cosine_f1_threshold value: 0.7900121212005615 name: Cosine F1 Threshold - type: cosine_precision value: 0.9907993099482462 name: Cosine Precision - type: cosine_recall value: 0.9625698324022346 name: Cosine Recall - type: cosine_ap value: 0.997296170532912 name: Cosine Ap - type: cosine_mcc value: 0.965575308214853 name: Cosine Mcc - task: type: binary-classification name: Binary Classification dataset: name: allstats semantic base v1 dev type: allstats-semantic-base-v1_dev metrics: - type: cosine_accuracy value: 0.9830260996532214 name: Cosine Accuracy - type: cosine_accuracy_threshold value: 0.7720456123352051 name: Cosine Accuracy Threshold - type: cosine_f1 value: 0.9737954353338968 name: Cosine F1 - type: cosine_f1_threshold value: 0.7720456123352051 name: Cosine F1 Threshold - type: cosine_precision value: 0.9740698985343855 name: Cosine Precision - type: cosine_recall value: 0.9735211267605633 name: Cosine Recall - type: cosine_ap value: 0.9942901335165523 name: Cosine Ap - type: cosine_mcc value: 0.9612432190234385 name: Cosine Mcc --- # SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) on the [query-hard-pos-neg-doc-pairs-statictable](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) <!-- at revision 75c57757a97f90ad739aca51fa8bfea0e485a7f2 --> - **Maximum Sequence Length:** 128 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity - **Training Dataset:** - [query-hard-pos-neg-doc-pairs-statictable](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable) <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("yahyaabd/allstats-search-base-v1-64-1") # Run inference sentences = [ 'Arus dana Q3 2006', 'Ringkasan Neraca Arus Dana, Triwulan III, 2006, (Miliar Rupiah)', 'Rata-Rata Pengeluaran per Kapita Sebulan di Daerah Perkotaan Menurut Kelompok Barang dan Golongan Pengeluaran per Kapita Sebulan, 2000-2012', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Binary Classification * Datasets: `allstats-semantic-base-v1_test` and `allstats-semantic-base-v1_dev` * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator) | Metric | allstats-semantic-base-v1_test | allstats-semantic-base-v1_dev | |:--------------------------|:-------------------------------|:------------------------------| | cosine_accuracy | 0.9849 | 0.983 | | cosine_accuracy_threshold | 0.79 | 0.772 | | cosine_f1 | 0.9765 | 0.9738 | | cosine_f1_threshold | 0.79 | 0.772 | | cosine_precision | 0.9908 | 0.9741 | | cosine_recall | 0.9626 | 0.9735 | | **cosine_ap** | **0.9973** | **0.9943** | | cosine_mcc | 0.9656 | 0.9612 | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### query-hard-pos-neg-doc-pairs-statictable * Dataset: [query-hard-pos-neg-doc-pairs-statictable](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable) at [7b28b96](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable/tree/7b28b964daa3073a4d012d1ffca46ecd4f26bb5f) * Size: 25,580 training samples * Columns: <code>query</code>, <code>doc</code>, and <code>label</code> * Approximate statistics based on the first 1000 samples: | | query | doc | label | |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------| | type | string | string | int | | details | <ul><li>min: 7 tokens</li><li>mean: 20.14 tokens</li><li>max: 55 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 24.9 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>0: ~70.80%</li><li>1: ~29.20%</li></ul> | * Samples: | query | doc | label | |:-------------------------------------------------------------------------|:----------------------------------------------|:---------------| | <code>Status pekerjaan utama penduduk usia 15+ yang bekerja, 2020</code> | <code>Jumlah Penghuni Lapas per Kanwil</code> | <code>0</code> | | <code>status pekerjaan utama penduduk usia 15+ yang bekerja, 2020</code> | <code>Jumlah Penghuni Lapas per Kanwil</code> | <code>0</code> | | <code>STATUS PEKERJAAN UTAMA PENDUDUK USIA 15+ YANG BEKERJA, 2020</code> | <code>Jumlah Penghuni Lapas per Kanwil</code> | <code>0</code> | * Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss) ### Evaluation Dataset #### query-hard-pos-neg-doc-pairs-statictable * Dataset: [query-hard-pos-neg-doc-pairs-statictable](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable) at [7b28b96](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable/tree/7b28b964daa3073a4d012d1ffca46ecd4f26bb5f) * Size: 5,479 evaluation samples * Columns: <code>query</code>, <code>doc</code>, and <code>label</code> * Approximate statistics based on the first 1000 samples: | | query | doc | label | |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------| | type | string | string | int | | details | <ul><li>min: 7 tokens</li><li>mean: 20.78 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 26.28 tokens</li><li>max: 43 tokens</li></ul> | <ul><li>0: ~71.50%</li><li>1: ~28.50%</li></ul> | * Samples: | query | doc | label | |:-----------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------|:---------------| | <code>Bagaimana perbandingan PNS pria dan wanita di berbagai golongan tahun 2014?</code> | <code>Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Lapangan Pekerjaan Utama (ribu rupiah), 2017</code> | <code>0</code> | | <code>bagaimana perbandingan pns pria dan wanita di berbagai golongan tahun 2014?</code> | <code>Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Lapangan Pekerjaan Utama (ribu rupiah), 2017</code> | <code>0</code> | | <code>BAGAIMANA PERBANDINGAN PNS PRIA DAN WANITA DI BERBAGAI GOLONGAN TAHUN 2014?</code> | <code>Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Lapangan Pekerjaan Utama (ribu rupiah), 2017</code> | <code>0</code> | * Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss) ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `num_train_epochs`: 1 - `warmup_ratio`: 0.1 - `fp16`: True - `dataloader_num_workers`: 4 - `load_best_model_at_end`: True - `eval_on_start`: True #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 4 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: True - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | Validation Loss | allstats-semantic-base-v1_test_cosine_ap | allstats-semantic-base-v1_dev_cosine_ap | |:-------:|:-------:|:-------------:|:---------------:|:----------------------------------------:|:---------------------------------------:| | -1 | -1 | - | - | 0.9365 | - | | 0 | 0 | - | 1.3012 | - | 0.9331 | | 0.05 | 20 | 0.8793 | 0.3369 | - | 0.9868 | | 0.1 | 40 | 0.3919 | 0.4554 | - | 0.9799 | | 0.15 | 60 | 0.2398 | 0.2568 | - | 0.9897 | | 0.2 | 80 | 0.2672 | 0.2341 | - | 0.9917 | | 0.25 | 100 | 0.1842 | 0.2385 | - | 0.9855 | | 0.3 | 120 | 0.0857 | 0.2157 | - | 0.9927 | | 0.35 | 140 | 0.1376 | 0.1655 | - | 0.9932 | | 0.4 | 160 | 0.0904 | 0.2740 | - | 0.9890 | | 0.45 | 180 | 0.1708 | 0.3111 | - | 0.9840 | | 0.5 | 200 | 0.1761 | 0.1739 | - | 0.9939 | | 0.55 | 220 | 0.0817 | 0.2213 | - | 0.9906 | | 0.6 | 240 | 0.0567 | 0.1985 | - | 0.9901 | | 0.65 | 260 | 0.0796 | 0.1560 | - | 0.9907 | | 0.7 | 280 | 0.0637 | 0.1648 | - | 0.9911 | | 0.75 | 300 | 0.0206 | 0.1301 | - | 0.9939 | | 0.8 | 320 | 0.0344 | 0.1378 | - | 0.9939 | | 0.85 | 340 | 0.0565 | 0.1333 | - | 0.9941 | | 0.9 | 360 | 0.0064 | 0.1308 | - | 0.9942 | | 0.95 | 380 | 0.0327 | 0.1316 | - | 0.9943 | | **1.0** | **400** | **0.0138** | **0.1266** | **-** | **0.9943** | | -1 | -1 | - | - | 0.9973 | - | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 3.4.0 - Transformers: 4.48.1 - PyTorch: 2.5.1+cu124 - Accelerate: 1.3.0 - Datasets: 3.2.0 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
Jonjew/PatrickNagelStyle
Jonjew
2025-03-01T05:42:15Z
0
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:unknown", "region:us" ]
text-to-image
2025-03-01T05:41:16Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: "mad-nglstl <lora:patrick-nagel-style-flux:1> Poster, illustration, Flat Colour A monochrome image of a raven-haired woman with a long, flowing mane. Sheâ\x80\x99s posed in profile, her gaze directed upwards. The background is a stark white, creating a strong contrast between the black of her hair and the pale tones of her face and neck. This image evokes a sense of purity and timelessness." parameters: negative_prompt: 'Guidance: 1 Steps: 12 Seed: 3583696309' output: url: >- images/00364-flux1DevHyperNF4Flux1DevBNB_flux1DevHyperNF4_3583696309_Euler_1_12_1344x1728.png - text: "mad-nglstl <lora:patrick-nagel-style-flux:1> Poster, Illustration, Minimalist Design, Flat Colour A brunette woman in a fitted black dress sits on a small yacht, her posture relaxed as she reclines on the plush seating area. Her gaze is directed towards the calm ocean water, and she holds a glass of champagne delicately in one hand. The yachtâ\x80\x99s interior is rendered in soft, muted tones, and the flat colours of the sea and sky create a tranquil, luxurious atmosphere. The scene evokes a sense of leisurely elegance and refined taste." parameters: negative_prompt: 'Guidance: 1 Steps: 12 Seed: 3139834208' output: url: >- images/00019-flux1DevHyperNF4Flux1DevBNB_flux1DevHyperNF4_3139834208_Euler_1_12_2048x1152.png - text: "mad-nglstl <lora:patrick-nagel-style-flux:1> Poster, illustration, Flat Colour, Stylized Graphic A close-up headshot of a red-haired woman with a voluminous hairstyle. Sheâ\x80\x99s gazing over the top of oversized white sunglasses, her lips painted in a deep wine color. Her shoulders are covered in a high-collared black coat that contrasts sharply against the flat, pastel blue background. Beneath the portrait, \"Patrick Nagel Style\" is written in a monospaced retro font, echoing the classic 80s design aesthetic." parameters: negative_prompt: 'Guidance: 1 Steps: 12 Seed: 205566818' output: url: >- images/00027-flux1DevHyperNF4Flux1DevBNB_flux1DevHyperNF4_205566818_Euler_1_12_1344x1728.png - text: "mad-nglstl <lora:patrick-nagel-style-flux:1> Poster, illustration, Flat Colour A portrait of a blonde woman with her hair pulled back in a high ponytail, wearing oversized black sunglasses. Sheâ\x80\x99s dressed in a strapless, white silk top. The background is a stark black, creating a dramatic contrast. Her lips are a deep, bold red, the only vibrant color in the composition. This shot is meant to evoke a sense of cool sophistication and elegance." parameters: negative_prompt: 'Guidance: 1 Steps: 12 Seed: 3849281708' output: url: >- images/00336-flux1DevHyperNF4Flux1DevBNB_flux1DevHyperNF4_3849281708_Euler_1_12_1344x1728.png base_model: black-forest-labs/FLUX.1-dev instance_prompt: mad-nglstl, illustration license: unknown --- # Patrick Nagel Style FLUX <Gallery /> ## Model description FROM https:&#x2F;&#x2F;civitai.com&#x2F;models&#x2F;804710&#x2F;patrick-nagel-style-flux Triggers: mad-nglstl, illustration Strength 0.8-1.0 The LoRA was trained on Flux-Dev. It might not work with other Flux Versions. If it works, expect it to behave differently then with Flux-Dev. The showcase images are made with Flux-Dev. For Flux Dev I recommend the following setting - Lora strength 0.8-1.0, highres fix with denoising 0.25-0.40 thanks to @Mirabilis for the training data and the showcase images. Please check out his profile he makes amazing images. If you enjoy my work, consider showing your support with a 👍 or ❤️ on the model or images—it really keeps me motivated! You can also follow me or buy me a coffee ☕ at: https:&#x2F;&#x2F;ko-fi.com&#x2F;madcaddie Usage tips for the LoRA are in the version details Thanks and have fun! ## Trigger words You should use `mad-nglstl` to trigger the image generation. You should use `illustration` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/Jonjew/PatrickNagelStyle/tree/main) them in the Files & versions tab.
kk-aivio/2f083dbb-cbed-4ff0-a6c9-2f112373f26b
kk-aivio
2025-03-01T05:41:44Z
0
0
peft
[ "peft", "generated_from_trainer", "base_model:elyza/Llama-3-ELYZA-JP-8B", "base_model:adapter:elyza/Llama-3-ELYZA-JP-8B", "region:us" ]
null
2025-03-01T05:41:32Z
--- library_name: peft tags: - generated_from_trainer base_model: elyza/Llama-3-ELYZA-JP-8B model-index: - name: kk-aivio/2f083dbb-cbed-4ff0-a6c9-2f112373f26b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kk-aivio/2f083dbb-cbed-4ff0-a6c9-2f112373f26b This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.4550 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mradermacher/healthinsurance_textgen1-i1-GGUF
mradermacher
2025-03-01T05:39:47Z
0
0
transformers
[ "transformers", "gguf", "generated_from_trainer", "en", "base_model:vraman54/healthinsurance_textgen1", "base_model:quantized:vraman54/healthinsurance_textgen1", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix" ]
null
2025-03-01T05:37:22Z
--- base_model: vraman54/healthinsurance_textgen1 language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - generated_from_trainer --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/vraman54/healthinsurance_textgen1 <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/healthinsurance_textgen1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/healthinsurance_textgen1-i1-GGUF/resolve/main/healthinsurance_textgen1.i1-IQ1_S.gguf) | i1-IQ1_S | 0.2 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/healthinsurance_textgen1-i1-GGUF/resolve/main/healthinsurance_textgen1.i1-IQ1_M.gguf) | i1-IQ1_M | 0.2 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/healthinsurance_textgen1-i1-GGUF/resolve/main/healthinsurance_textgen1.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/healthinsurance_textgen1-i1-GGUF/resolve/main/healthinsurance_textgen1.i1-IQ2_XS.gguf) | i1-IQ2_XS | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/healthinsurance_textgen1-i1-GGUF/resolve/main/healthinsurance_textgen1.i1-IQ2_S.gguf) | i1-IQ2_S | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/healthinsurance_textgen1-i1-GGUF/resolve/main/healthinsurance_textgen1.i1-IQ2_M.gguf) | i1-IQ2_M | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/healthinsurance_textgen1-i1-GGUF/resolve/main/healthinsurance_textgen1.i1-Q2_K_S.gguf) | i1-Q2_K_S | 0.2 | very low quality | | [GGUF](https://huggingface.co/mradermacher/healthinsurance_textgen1-i1-GGUF/resolve/main/healthinsurance_textgen1.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 0.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/healthinsurance_textgen1-i1-GGUF/resolve/main/healthinsurance_textgen1.i1-Q2_K.gguf) | i1-Q2_K | 0.2 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/healthinsurance_textgen1-i1-GGUF/resolve/main/healthinsurance_textgen1.i1-IQ3_XS.gguf) | i1-IQ3_XS | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/healthinsurance_textgen1-i1-GGUF/resolve/main/healthinsurance_textgen1.i1-IQ3_S.gguf) | i1-IQ3_S | 0.2 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/healthinsurance_textgen1-i1-GGUF/resolve/main/healthinsurance_textgen1.i1-Q3_K_S.gguf) | i1-Q3_K_S | 0.2 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/healthinsurance_textgen1-i1-GGUF/resolve/main/healthinsurance_textgen1.i1-IQ3_M.gguf) | i1-IQ3_M | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/healthinsurance_textgen1-i1-GGUF/resolve/main/healthinsurance_textgen1.i1-Q3_K_M.gguf) | i1-Q3_K_M | 0.2 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/healthinsurance_textgen1-i1-GGUF/resolve/main/healthinsurance_textgen1.i1-Q3_K_L.gguf) | i1-Q3_K_L | 0.2 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/healthinsurance_textgen1-i1-GGUF/resolve/main/healthinsurance_textgen1.i1-IQ4_XS.gguf) | i1-IQ4_XS | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/healthinsurance_textgen1-i1-GGUF/resolve/main/healthinsurance_textgen1.i1-IQ4_NL.gguf) | i1-IQ4_NL | 0.2 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/healthinsurance_textgen1-i1-GGUF/resolve/main/healthinsurance_textgen1.i1-Q4_0.gguf) | i1-Q4_0 | 0.2 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/healthinsurance_textgen1-i1-GGUF/resolve/main/healthinsurance_textgen1.i1-Q4_K_S.gguf) | i1-Q4_K_S | 0.2 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/healthinsurance_textgen1-i1-GGUF/resolve/main/healthinsurance_textgen1.i1-Q4_K_M.gguf) | i1-Q4_K_M | 0.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/healthinsurance_textgen1-i1-GGUF/resolve/main/healthinsurance_textgen1.i1-Q4_1.gguf) | i1-Q4_1 | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/healthinsurance_textgen1-i1-GGUF/resolve/main/healthinsurance_textgen1.i1-Q5_K_S.gguf) | i1-Q5_K_S | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/healthinsurance_textgen1-i1-GGUF/resolve/main/healthinsurance_textgen1.i1-Q5_K_M.gguf) | i1-Q5_K_M | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/healthinsurance_textgen1-i1-GGUF/resolve/main/healthinsurance_textgen1.i1-Q6_K.gguf) | i1-Q6_K | 0.2 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/gpt2-mental-health-i1-GGUF
mradermacher
2025-03-01T05:39:15Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:Jyz1331/gpt2-mental-health", "base_model:quantized:Jyz1331/gpt2-mental-health", "endpoints_compatible", "region:us", "imatrix" ]
null
2025-03-01T05:34:25Z
--- base_model: Jyz1331/gpt2-mental-health language: - en library_name: transformers quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/Jyz1331/gpt2-mental-health <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/gpt2-mental-health-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/gpt2-mental-health-i1-GGUF/resolve/main/gpt2-mental-health.i1-IQ1_S.gguf) | i1-IQ1_S | 0.2 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/gpt2-mental-health-i1-GGUF/resolve/main/gpt2-mental-health.i1-IQ1_M.gguf) | i1-IQ1_M | 0.2 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/gpt2-mental-health-i1-GGUF/resolve/main/gpt2-mental-health.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/gpt2-mental-health-i1-GGUF/resolve/main/gpt2-mental-health.i1-IQ2_XS.gguf) | i1-IQ2_XS | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/gpt2-mental-health-i1-GGUF/resolve/main/gpt2-mental-health.i1-IQ2_S.gguf) | i1-IQ2_S | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/gpt2-mental-health-i1-GGUF/resolve/main/gpt2-mental-health.i1-IQ2_M.gguf) | i1-IQ2_M | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/gpt2-mental-health-i1-GGUF/resolve/main/gpt2-mental-health.i1-Q2_K_S.gguf) | i1-Q2_K_S | 0.2 | very low quality | | [GGUF](https://huggingface.co/mradermacher/gpt2-mental-health-i1-GGUF/resolve/main/gpt2-mental-health.i1-Q2_K.gguf) | i1-Q2_K | 0.2 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/gpt2-mental-health-i1-GGUF/resolve/main/gpt2-mental-health.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 0.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/gpt2-mental-health-i1-GGUF/resolve/main/gpt2-mental-health.i1-IQ3_XS.gguf) | i1-IQ3_XS | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/gpt2-mental-health-i1-GGUF/resolve/main/gpt2-mental-health.i1-IQ3_S.gguf) | i1-IQ3_S | 0.2 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/gpt2-mental-health-i1-GGUF/resolve/main/gpt2-mental-health.i1-Q3_K_S.gguf) | i1-Q3_K_S | 0.2 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/gpt2-mental-health-i1-GGUF/resolve/main/gpt2-mental-health.i1-IQ3_M.gguf) | i1-IQ3_M | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/gpt2-mental-health-i1-GGUF/resolve/main/gpt2-mental-health.i1-Q3_K_M.gguf) | i1-Q3_K_M | 0.2 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/gpt2-mental-health-i1-GGUF/resolve/main/gpt2-mental-health.i1-Q3_K_L.gguf) | i1-Q3_K_L | 0.2 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/gpt2-mental-health-i1-GGUF/resolve/main/gpt2-mental-health.i1-IQ4_XS.gguf) | i1-IQ4_XS | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/gpt2-mental-health-i1-GGUF/resolve/main/gpt2-mental-health.i1-IQ4_NL.gguf) | i1-IQ4_NL | 0.2 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/gpt2-mental-health-i1-GGUF/resolve/main/gpt2-mental-health.i1-Q4_0.gguf) | i1-Q4_0 | 0.2 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/gpt2-mental-health-i1-GGUF/resolve/main/gpt2-mental-health.i1-Q4_K_S.gguf) | i1-Q4_K_S | 0.2 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/gpt2-mental-health-i1-GGUF/resolve/main/gpt2-mental-health.i1-Q4_K_M.gguf) | i1-Q4_K_M | 0.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/gpt2-mental-health-i1-GGUF/resolve/main/gpt2-mental-health.i1-Q4_1.gguf) | i1-Q4_1 | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/gpt2-mental-health-i1-GGUF/resolve/main/gpt2-mental-health.i1-Q5_K_S.gguf) | i1-Q5_K_S | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/gpt2-mental-health-i1-GGUF/resolve/main/gpt2-mental-health.i1-Q5_K_M.gguf) | i1-Q5_K_M | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/gpt2-mental-health-i1-GGUF/resolve/main/gpt2-mental-health.i1-Q6_K.gguf) | i1-Q6_K | 0.2 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
imdatta0/llama_openthoughts_sorted
imdatta0
2025-03-01T05:38:51Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-01T05:36:02Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
necva/replica-IEPile
necva
2025-03-01T05:37:52Z
0
0
null
[ "safetensors", "llama", "en", "dataset:zjunlp/iepile", "base_model:meta-llama/Llama-3.1-8B-Instruct", "base_model:quantized:meta-llama/Llama-3.1-8B-Instruct", "license:mit", "4-bit", "bitsandbytes", "region:us" ]
null
2025-03-01T03:53:54Z
--- license: mit datasets: - zjunlp/iepile language: - en base_model: - meta-llama/Llama-3.1-8B-Instruct --- ## Intended use The model is instruction-tuned on IEpile dataset. The intended use of the model is Information Extraction tasks: Named Entity Recognition (NER), Relation Extraction (RE), and Event Extraction (EE)
irishprancer/354565ae-3eb3-43ed-896b-82627f516a80
irishprancer
2025-03-01T05:36:09Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-02-28T23:51:48Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
irishprancer/68666e6f-b562-4b7f-bce4-811056edb2cf
irishprancer
2025-03-01T05:36:06Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-02-28T23:52:36Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
MaziyarPanahi/Fireball-R1.1-Llama-3.1-8B-GGUF
MaziyarPanahi
2025-03-01T05:34:37Z
0
0
null
[ "gguf", "mistral", "quantized", "2-bit", "3-bit", "4-bit", "5-bit", "6-bit", "8-bit", "GGUF", "text-generation", "base_model:EpistemeAI/Fireball-R1.1-Llama-3.1-8B", "base_model:quantized:EpistemeAI/Fireball-R1.1-Llama-3.1-8B", "region:us", "conversational" ]
text-generation
2025-03-01T05:12:41Z
--- base_model: EpistemeAI/Fireball-R1.1-Llama-3.1-8B inference: false model_creator: EpistemeAI model_name: Fireball-R1.1-Llama-3.1-8B-GGUF pipeline_tag: text-generation quantized_by: MaziyarPanahi tags: - quantized - 2-bit - 3-bit - 4-bit - 5-bit - 6-bit - 8-bit - GGUF - text-generation --- # [MaziyarPanahi/Fireball-R1.1-Llama-3.1-8B-GGUF](https://huggingface.co/MaziyarPanahi/Fireball-R1.1-Llama-3.1-8B-GGUF) - Model creator: [EpistemeAI](https://huggingface.co/EpistemeAI) - Original model: [EpistemeAI/Fireball-R1.1-Llama-3.1-8B](https://huggingface.co/EpistemeAI/Fireball-R1.1-Llama-3.1-8B) ## Description [MaziyarPanahi/Fireball-R1.1-Llama-3.1-8B-GGUF](https://huggingface.co/MaziyarPanahi/Fireball-R1.1-Llama-3.1-8B-GGUF) contains GGUF format model files for [EpistemeAI/Fireball-R1.1-Llama-3.1-8B](https://huggingface.co/EpistemeAI/Fireball-R1.1-Llama-3.1-8B). ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Here is an incomplete list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. * [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models. ## Special thanks 🙏 Special thanks to [Georgi Gerganov](https://github.com/ggerganov) and the whole team working on [llama.cpp](https://github.com/ggerganov/llama.cpp/) for making all of this possible.
mradermacher/Mental_Health_Fine_Tuned_GPT2-GGUF
mradermacher
2025-03-01T05:33:28Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:singhvarun789/Mental_Health_Fine_Tuned_GPT2", "base_model:quantized:singhvarun789/Mental_Health_Fine_Tuned_GPT2", "endpoints_compatible", "region:us" ]
null
2025-03-01T02:42:30Z
--- base_model: singhvarun789/Mental_Health_Fine_Tuned_GPT2 language: - en library_name: transformers quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/singhvarun789/Mental_Health_Fine_Tuned_GPT2 <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Mental_Health_Fine_Tuned_GPT2-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Mental_Health_Fine_Tuned_GPT2-GGUF/resolve/main/Mental_Health_Fine_Tuned_GPT2.Q2_K.gguf) | Q2_K | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/Mental_Health_Fine_Tuned_GPT2-GGUF/resolve/main/Mental_Health_Fine_Tuned_GPT2.Q3_K_S.gguf) | Q3_K_S | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/Mental_Health_Fine_Tuned_GPT2-GGUF/resolve/main/Mental_Health_Fine_Tuned_GPT2.Q3_K_M.gguf) | Q3_K_M | 0.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Mental_Health_Fine_Tuned_GPT2-GGUF/resolve/main/Mental_Health_Fine_Tuned_GPT2.Q3_K_L.gguf) | Q3_K_L | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/Mental_Health_Fine_Tuned_GPT2-GGUF/resolve/main/Mental_Health_Fine_Tuned_GPT2.IQ4_XS.gguf) | IQ4_XS | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/Mental_Health_Fine_Tuned_GPT2-GGUF/resolve/main/Mental_Health_Fine_Tuned_GPT2.Q4_K_S.gguf) | Q4_K_S | 0.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Mental_Health_Fine_Tuned_GPT2-GGUF/resolve/main/Mental_Health_Fine_Tuned_GPT2.Q4_K_M.gguf) | Q4_K_M | 0.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Mental_Health_Fine_Tuned_GPT2-GGUF/resolve/main/Mental_Health_Fine_Tuned_GPT2.Q5_K_S.gguf) | Q5_K_S | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/Mental_Health_Fine_Tuned_GPT2-GGUF/resolve/main/Mental_Health_Fine_Tuned_GPT2.Q5_K_M.gguf) | Q5_K_M | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/Mental_Health_Fine_Tuned_GPT2-GGUF/resolve/main/Mental_Health_Fine_Tuned_GPT2.Q6_K.gguf) | Q6_K | 0.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Mental_Health_Fine_Tuned_GPT2-GGUF/resolve/main/Mental_Health_Fine_Tuned_GPT2.Q8_0.gguf) | Q8_0 | 0.3 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Mental_Health_Fine_Tuned_GPT2-GGUF/resolve/main/Mental_Health_Fine_Tuned_GPT2.f16.gguf) | f16 | 0.4 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
Grogros/dmWM-llama-3.2-1B-Instruct-OWTWM-DistillationWM-OWTWM2-wmToken-d4-10percent
Grogros
2025-03-01T05:33:25Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "conversational", "dataset:openwebtext", "base_model:meta-llama/Llama-3.2-1B-Instruct", "base_model:finetune:meta-llama/Llama-3.2-1B-Instruct", "license:llama3.2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-01T02:39:20Z
--- library_name: transformers license: llama3.2 base_model: meta-llama/Llama-3.2-1B-Instruct tags: - generated_from_trainer datasets: - openwebtext model-index: - name: dmWM-llama-3.2-1B-Instruct-OWTWM-DistillationWM-OWTWM2-wmToken-d4-10percent results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dmWM-llama-3.2-1B-Instruct-OWTWM-DistillationWM-OWTWM2-wmToken-d4-10percent This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on the openwebtext dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAFACTOR and the args are: No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - training_steps: 2500 ### Training results ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1.post303 - Datasets 3.2.0 - Tokenizers 0.20.4
bowilleatyou/4eac65d4-7da9-45aa-bea7-d941a5d65086
bowilleatyou
2025-03-01T05:33:21Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-02-28T23:52:31Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/GPT-2-fine-tuned-mental-health-i1-GGUF
mradermacher
2025-03-01T05:32:49Z
0
0
transformers
[ "transformers", "gguf", "text-generation", "mental-health", "gpt-2", "conversational-ai", "en", "dataset:custom-dataset", "dataset:kaggle", "base_model:TheCarBun/GPT-2-fine-tuned-mental-health", "base_model:quantized:TheCarBun/GPT-2-fine-tuned-mental-health", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix" ]
text-generation
2025-03-01T05:27:51Z
--- base_model: TheCarBun/GPT-2-fine-tuned-mental-health datasets: - custom-dataset - kaggle language: en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - text-generation - transformers - mental-health - gpt-2 - conversational-ai --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/TheCarBun/GPT-2-fine-tuned-mental-health <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/GPT-2-fine-tuned-mental-health-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/GPT-2-fine-tuned-mental-health-i1-GGUF/resolve/main/GPT-2-fine-tuned-mental-health.i1-IQ1_S.gguf) | i1-IQ1_S | 0.2 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/GPT-2-fine-tuned-mental-health-i1-GGUF/resolve/main/GPT-2-fine-tuned-mental-health.i1-IQ1_M.gguf) | i1-IQ1_M | 0.2 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/GPT-2-fine-tuned-mental-health-i1-GGUF/resolve/main/GPT-2-fine-tuned-mental-health.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/GPT-2-fine-tuned-mental-health-i1-GGUF/resolve/main/GPT-2-fine-tuned-mental-health.i1-IQ2_XS.gguf) | i1-IQ2_XS | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/GPT-2-fine-tuned-mental-health-i1-GGUF/resolve/main/GPT-2-fine-tuned-mental-health.i1-IQ2_S.gguf) | i1-IQ2_S | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/GPT-2-fine-tuned-mental-health-i1-GGUF/resolve/main/GPT-2-fine-tuned-mental-health.i1-IQ2_M.gguf) | i1-IQ2_M | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/GPT-2-fine-tuned-mental-health-i1-GGUF/resolve/main/GPT-2-fine-tuned-mental-health.i1-Q2_K_S.gguf) | i1-Q2_K_S | 0.2 | very low quality | | [GGUF](https://huggingface.co/mradermacher/GPT-2-fine-tuned-mental-health-i1-GGUF/resolve/main/GPT-2-fine-tuned-mental-health.i1-Q2_K.gguf) | i1-Q2_K | 0.2 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/GPT-2-fine-tuned-mental-health-i1-GGUF/resolve/main/GPT-2-fine-tuned-mental-health.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 0.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/GPT-2-fine-tuned-mental-health-i1-GGUF/resolve/main/GPT-2-fine-tuned-mental-health.i1-IQ3_XS.gguf) | i1-IQ3_XS | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/GPT-2-fine-tuned-mental-health-i1-GGUF/resolve/main/GPT-2-fine-tuned-mental-health.i1-IQ3_S.gguf) | i1-IQ3_S | 0.2 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/GPT-2-fine-tuned-mental-health-i1-GGUF/resolve/main/GPT-2-fine-tuned-mental-health.i1-Q3_K_S.gguf) | i1-Q3_K_S | 0.2 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/GPT-2-fine-tuned-mental-health-i1-GGUF/resolve/main/GPT-2-fine-tuned-mental-health.i1-IQ3_M.gguf) | i1-IQ3_M | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/GPT-2-fine-tuned-mental-health-i1-GGUF/resolve/main/GPT-2-fine-tuned-mental-health.i1-Q3_K_M.gguf) | i1-Q3_K_M | 0.2 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/GPT-2-fine-tuned-mental-health-i1-GGUF/resolve/main/GPT-2-fine-tuned-mental-health.i1-Q3_K_L.gguf) | i1-Q3_K_L | 0.2 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/GPT-2-fine-tuned-mental-health-i1-GGUF/resolve/main/GPT-2-fine-tuned-mental-health.i1-IQ4_XS.gguf) | i1-IQ4_XS | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/GPT-2-fine-tuned-mental-health-i1-GGUF/resolve/main/GPT-2-fine-tuned-mental-health.i1-IQ4_NL.gguf) | i1-IQ4_NL | 0.2 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/GPT-2-fine-tuned-mental-health-i1-GGUF/resolve/main/GPT-2-fine-tuned-mental-health.i1-Q4_0.gguf) | i1-Q4_0 | 0.2 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/GPT-2-fine-tuned-mental-health-i1-GGUF/resolve/main/GPT-2-fine-tuned-mental-health.i1-Q4_K_S.gguf) | i1-Q4_K_S | 0.2 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/GPT-2-fine-tuned-mental-health-i1-GGUF/resolve/main/GPT-2-fine-tuned-mental-health.i1-Q4_K_M.gguf) | i1-Q4_K_M | 0.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/GPT-2-fine-tuned-mental-health-i1-GGUF/resolve/main/GPT-2-fine-tuned-mental-health.i1-Q4_1.gguf) | i1-Q4_1 | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/GPT-2-fine-tuned-mental-health-i1-GGUF/resolve/main/GPT-2-fine-tuned-mental-health.i1-Q5_K_S.gguf) | i1-Q5_K_S | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/GPT-2-fine-tuned-mental-health-i1-GGUF/resolve/main/GPT-2-fine-tuned-mental-health.i1-Q5_K_M.gguf) | i1-Q5_K_M | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/GPT-2-fine-tuned-mental-health-i1-GGUF/resolve/main/GPT-2-fine-tuned-mental-health.i1-Q6_K.gguf) | i1-Q6_K | 0.2 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
robiulawaldev/14f0a47f-740c-4527-9cc9-ad607a9940e8
robiulawaldev
2025-03-01T05:32:21Z
0
0
peft
[ "peft", "generated_from_trainer", "base_model:elyza/Llama-3-ELYZA-JP-8B", "base_model:adapter:elyza/Llama-3-ELYZA-JP-8B", "region:us" ]
null
2025-03-01T05:32:06Z
--- library_name: peft tags: - generated_from_trainer base_model: elyza/Llama-3-ELYZA-JP-8B model-index: - name: robiulawaldev/14f0a47f-740c-4527-9cc9-ad607a9940e8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # robiulawaldev/14f0a47f-740c-4527-9cc9-ad607a9940e8 This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.7644 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Jonjew/ModernMinimalismFlux
Jonjew
2025-03-01T05:30:43Z
0
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:unknown", "region:us" ]
text-to-image
2025-03-01T05:29:26Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: >- mad-mdrnmnmlsm painting of a cyberpunk woman wearing a futuristic kimono in front of stylized sun, cybernetic implants, paint splashes, outrun, teal and yellow background <lora:modern-minimalism-flux:1.0> brush_stroke parameters: negative_prompt: 'Guidance: 1 Steps: 20 Seed: 3596382678' output: url: images/20241129_182300_3596382678_flux1-dev-fp8-e4m3fn.png - text: >- mad-mdrnmnmlsm painting of futuristic clothing, woman sitting on the roof in a cyberpunk city overlooking a busy<lora:modern-minimalism-flux:1.2> brush_stroke, red, parameters: negative_prompt: 'Guidance: 1 Steps: 20 Seed: 2241650794' output: url: images/20241129_183234_2241650794_flux1-dev-fp8-e4m3fn.png - text: >- mad-mdrnmnmlsm painting of woman wearing a futuristic dress, smiling, upper body, text banner reading "modern minimalism" <lora:modern-minimalism-flux:1.2> brush_stroke, orange parameters: negative_prompt: 'Guidance: 1 Steps: 20 Seed: 774678587' output: url: images/20241129_193512_774678587_flux1-dev-fp8-e4m3fn.png - text: >- black and white and red mad-mdrnmnmlsm painting of a woman <lora:modern-minimalism-flux:1.2> brush_stroke parameters: negative_prompt: 'Guidance: 1 Steps: 20 Seed: 1430858349' output: url: images/20241129_181156_1430858349_flux1-dev-fp8-e4m3fn.png - text: >- mad-mdrnmnmlsm painting of futuristic clothing, woman sitting on the roof in a cyberpunk city overlooking a busy<lora:modern-minimalism-flux:1.2> brush_stroke, red, neon yellow, navy blue, green parameters: negative_prompt: 'Guidance: 1 Steps: 20 Seed: 2688234518' output: url: images/20241129_184427_2688234518_flux1-dev-fp8-e4m3fn.png - text: >- black and white and green mad-mdrnmnmlsm painting of a <lora:modern-minimalism-flux:1.2> brush_stroke parameters: negative_prompt: 'Guidance: 1 Steps: 20 Seed: 1470341916' output: url: images/20241129_181557_1470341916_flux1-dev-fp8-e4m3fn.png base_model: black-forest-labs/FLUX.1-dev instance_prompt: mad-mdrnmnmlsm, painting of, paint splashes, outrun, brush strokes license: unknown --- # Modern Minimalism FLUX <Gallery /> ## Model description FROM https:&#x2F;&#x2F;civitai.com&#x2F;models&#x2F;992509&#x2F;modern-minimalism-flux Triggers: mad-mdrnmnmlsm, painting of, paint splashes, outrun, brush strokes Strength 1.2 About this version The LoRA was trained on Flux-Dev. It might not work with other Flux Versions. If it works, expect it to behave differently then with Flux-Dev. The showcase images are made with Flux-Dev. For Flux Dev I recommend the following setting - Lora strength 1.0-1.4, highres fix with denoising 0.4-0.5 ## Trigger words You should use `mad-mdrnmnmlsm` to trigger the image generation. You should use `painting of` to trigger the image generation. You should use `paint splashes` to trigger the image generation. You should use `outrun` to trigger the image generation. You should use `brush strokes` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/Jonjew/ModernMinimalismFlux/tree/main) them in the Files & versions tab.
quyeticb/nhqcv
quyeticb
2025-03-01T05:26:39Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-03-01T05:24:37Z
--- license: apache-2.0 ---
baby-dev/8d266fdf-99c9-4525-ae46-bdef53461ec8
baby-dev
2025-03-01T05:25:37Z
0
0
peft
[ "peft", "generated_from_trainer", "base_model:NousResearch/Nous-Hermes-2-Mistral-7B-DPO", "base_model:adapter:NousResearch/Nous-Hermes-2-Mistral-7B-DPO", "region:us" ]
null
2025-03-01T05:25:23Z
--- library_name: peft tags: - generated_from_trainer base_model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO model-index: - name: baby-dev/8d266fdf-99c9-4525-ae46-bdef53461ec8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # baby-dev/8d266fdf-99c9-4525-ae46-bdef53461ec8 This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3350 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Jonjew/StencilArtFlux
Jonjew
2025-03-01T05:24:46Z
0
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:unknown", "region:us" ]
text-to-image
2025-03-01T05:24:08Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: >- cyberpunk woman cybernetic implants , flat colors, mad-stncl <lora:Stencil_Art_FLUX:0.7>, (masterpiece:1.2), best quality parameters: negative_prompt: 'Guidance: 1 Steps: 20 Seed: 2009145261' output: url: images/20240818_081643_2009145261_flux1-dev.png - text: >- cyberpunk woman cybernetic implants, text "stencil art" , flat colors, mad-stncl <lora:Stencil_Art_FLUX:0.7>, (masterpiece:1.2), best quality parameters: negative_prompt: 'Guidance: 1 Steps: 20 Seed: 3583174960' output: url: images/20240818_082951_3583174960_flux1-dev.png - text: >- (vertical text "STENCIL ART by madcaddie":1.2), woman standing in a futuristic cityscape, colored panels, flat colors, mad-stncl <lora:Stencil_Art_FLUX:0.5>, (masterpiece:1.2), best quality parameters: negative_prompt: 'Guidance: 1 Steps: 12 Seed: 3039115122' output: url: images/20240818_085833_3039115122_flux1-dev.png - text: >- cyberpunk woman cybernetic implants, flat colors, mad-stncl <lora:Stencil_Art_FLUX:0.7>, (masterpiece:1.2), best quality parameters: negative_prompt: 'Guidance: 1 Steps: 20 Seed: 162613546' output: url: images/20240818_081123_162613546_flux1-dev.png - text: >- cyberpunk woman cybernetic implants , flat colors, mad-stncl <lora:Stencil_Art_FLUX:0.7>, (masterpiece:1.2), best quality parameters: negative_prompt: 'Guidance: 1 Steps: 20 Seed: 3499351274' output: url: images/20240818_082053_3499351274_flux1-dev.png base_model: black-forest-labs/FLUX.1-dev instance_prompt: mad-stncl, flat colors license: unknown --- # Stencil Art FLUX, SDXL &amp; SD1.5 <Gallery /> ## Model description FROM https:&#x2F;&#x2F;civitai.com&#x2F;models&#x2F;460648&#x2F;stencil-art-flux-sdxl-and-sd15 Triggers: mad-stncl, flat colors Strength 0.5-0.8, 0.7 typical Hey there, this time I have a stencil art LoRA for you. If you enjoy my work, consider showing your support with a 👍 or ❤️ on the model or images—it really keeps me motivated! You can also follow me or buy me a coffee ☕ at: https:&#x2F;&#x2F;ko-fi.com&#x2F;madcaddie Usage tips for the LoRA are in the version details Thanks and have fun! ## Trigger words You should use `mad-stncl` to trigger the image generation. You should use `flat colors` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/Jonjew/StencilArtFlux/tree/main) them in the Files & versions tab.
ReadyArt/Forgotten-Abomination-8B-V2.2-Q4_K_M-GGUF
ReadyArt
2025-03-01T05:24:40Z
0
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "llama-cpp", "gguf-my-repo", "base_model:ReadyArt/Forgotten-Abomination-8B-V2.2", "base_model:quantized:ReadyArt/Forgotten-Abomination-8B-V2.2", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-01T05:24:17Z
--- base_model: ReadyArt/Forgotten-Abomination-8B-V2.2 library_name: transformers tags: - mergekit - merge - llama-cpp - gguf-my-repo --- # sleepdeprived3/Forgotten-Abomination-8B-V2.2-Q4_K_M-GGUF This model was converted to GGUF format from [`ReadyArt/Forgotten-Abomination-8B-V2.2`](https://huggingface.co/ReadyArt/Forgotten-Abomination-8B-V2.2) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/ReadyArt/Forgotten-Abomination-8B-V2.2) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo sleepdeprived3/Forgotten-Abomination-8B-V2.2-Q4_K_M-GGUF --hf-file forgotten-abomination-8b-v2.2-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo sleepdeprived3/Forgotten-Abomination-8B-V2.2-Q4_K_M-GGUF --hf-file forgotten-abomination-8b-v2.2-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo sleepdeprived3/Forgotten-Abomination-8B-V2.2-Q4_K_M-GGUF --hf-file forgotten-abomination-8b-v2.2-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo sleepdeprived3/Forgotten-Abomination-8B-V2.2-Q4_K_M-GGUF --hf-file forgotten-abomination-8b-v2.2-q4_k_m.gguf -c 2048 ```
bowilleatyou/6aaa8d6a-e7c4-427f-97fd-7ce83d4e6ce3
bowilleatyou
2025-03-01T05:24:31Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-02-28T23:52:10Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
viaface/via_svit_001
viaface
2025-03-01T05:23:44Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-03-01T05:23:44Z
--- license: apache-2.0 ---
Jonjew/NeonCyberPunkCubism
Jonjew
2025-03-01T05:19:39Z
0
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:unknown", "region:us" ]
text-to-image
2025-03-01T05:19:10Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: >- (text banner in the bottom reading "CUBISM" blocky font:1.4) mad-cbpk-cubism, woman, cyberpunk, teal background, orange outlines, <lora:neon-cyberpunk-cubism-flux-000009:1.0> parameters: negative_prompt: 'Guidance: 1 Steps: 20 Seed: 1222353332' output: url: images/20241031_142935_1222353332_flux1-dev-fp8-e4m3fn.png - text: >- (text banner "CUBISM" :1.4) mad-cbpk-cubism, woman, cyberpunk, teal background, orange outlines, <lora:neon-cyberpunk-cubism-flux-000009:1.0> parameters: negative_prompt: 'Guidance: 1 Steps: 20 Seed: 4127093335' output: url: images/20241031_141813_4127093335_flux1-dev-fp8-e4m3fn.png - text: >- mad-cbpk-cubism woman in kimono made of 3d block shapes, yellow moon, cyberpunk, dynamic pose, (cubism:1.4), painting <lora:neon-cyberpunk-cubism-flux-000009:1.2> parameters: negative_prompt: 'Guidance: 1 Steps: 20 Seed: 753749128' output: url: images/20241031_131848_753749128_flux1-dev-fp8-e4m3fn.png base_model: black-forest-labs/FLUX.1-dev instance_prompt: mad-cbpk-cubism license: unknown --- # Neon Cyberpunk Cubism FLUX &amp; SDXL <Gallery /> ## Model description FROM https:&#x2F;&#x2F;civitai.com&#x2F;models&#x2F;412468&#x2F;neon-cyberpunk-cubism-flux-and-sdxl Trigger mad-cbpk-cubism Hey there, this time I have another cyberpunk art LoRA for you. I tried to combine the hightech, scifi visuals of cyberpunk with the cubism art style. The LoRA is trained on cyberpunk themed images in orange and teal coloring. So it&#39;s has a natural bias towards this look, but with proper prompting you should be able to easily change the coloring or the theme of the image. If you enjoy my work, consider showing your support with a 👍 or ❤️ on the model or images—it really keeps me motivated! You can also follow me or buy me a coffee ☕ at: https:&#x2F;&#x2F;ko-fi.com&#x2F;madcaddie Usage tips for the LoRA are in the version details ## Trigger words You should use `mad-cbpk-cubism` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/Jonjew/NeonCyberPunkCubism/tree/main) them in the Files & versions tab.
mradermacher/openbuddy-r1-67b-v25.1-65k-i1-GGUF
mradermacher
2025-03-01T05:14:41Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:OpenBuddy/openbuddy-r1-67b-v25.1-65k", "base_model:quantized:OpenBuddy/openbuddy-r1-67b-v25.1-65k", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-02-28T21:45:38Z
--- base_model: OpenBuddy/openbuddy-r1-67b-v25.1-65k language: - en library_name: transformers quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/OpenBuddy/openbuddy-r1-67b-v25.1-65k <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/openbuddy-r1-67b-v25.1-65k-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/openbuddy-r1-67b-v25.1-65k-i1-GGUF/resolve/main/openbuddy-r1-67b-v25.1-65k.i1-IQ1_S.gguf) | i1-IQ1_S | 14.8 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/openbuddy-r1-67b-v25.1-65k-i1-GGUF/resolve/main/openbuddy-r1-67b-v25.1-65k.i1-IQ1_M.gguf) | i1-IQ1_M | 16.1 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/openbuddy-r1-67b-v25.1-65k-i1-GGUF/resolve/main/openbuddy-r1-67b-v25.1-65k.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 18.3 | | | [GGUF](https://huggingface.co/mradermacher/openbuddy-r1-67b-v25.1-65k-i1-GGUF/resolve/main/openbuddy-r1-67b-v25.1-65k.i1-IQ2_XS.gguf) | i1-IQ2_XS | 20.3 | | | [GGUF](https://huggingface.co/mradermacher/openbuddy-r1-67b-v25.1-65k-i1-GGUF/resolve/main/openbuddy-r1-67b-v25.1-65k.i1-IQ2_S.gguf) | i1-IQ2_S | 21.4 | | | [GGUF](https://huggingface.co/mradermacher/openbuddy-r1-67b-v25.1-65k-i1-GGUF/resolve/main/openbuddy-r1-67b-v25.1-65k.i1-IQ2_M.gguf) | i1-IQ2_M | 23.2 | | | [GGUF](https://huggingface.co/mradermacher/openbuddy-r1-67b-v25.1-65k-i1-GGUF/resolve/main/openbuddy-r1-67b-v25.1-65k.i1-Q2_K_S.gguf) | i1-Q2_K_S | 23.3 | very low quality | | [GGUF](https://huggingface.co/mradermacher/openbuddy-r1-67b-v25.1-65k-i1-GGUF/resolve/main/openbuddy-r1-67b-v25.1-65k.i1-Q2_K.gguf) | i1-Q2_K | 25.2 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/openbuddy-r1-67b-v25.1-65k-i1-GGUF/resolve/main/openbuddy-r1-67b-v25.1-65k.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 26.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/openbuddy-r1-67b-v25.1-65k-i1-GGUF/resolve/main/openbuddy-r1-67b-v25.1-65k.i1-IQ3_XS.gguf) | i1-IQ3_XS | 28.0 | | | [GGUF](https://huggingface.co/mradermacher/openbuddy-r1-67b-v25.1-65k-i1-GGUF/resolve/main/openbuddy-r1-67b-v25.1-65k.i1-Q3_K_S.gguf) | i1-Q3_K_S | 29.4 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/openbuddy-r1-67b-v25.1-65k-i1-GGUF/resolve/main/openbuddy-r1-67b-v25.1-65k.i1-IQ3_S.gguf) | i1-IQ3_S | 29.5 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/openbuddy-r1-67b-v25.1-65k-i1-GGUF/resolve/main/openbuddy-r1-67b-v25.1-65k.i1-IQ3_M.gguf) | i1-IQ3_M | 30.6 | | | [GGUF](https://huggingface.co/mradermacher/openbuddy-r1-67b-v25.1-65k-i1-GGUF/resolve/main/openbuddy-r1-67b-v25.1-65k.i1-Q3_K_M.gguf) | i1-Q3_K_M | 32.8 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/openbuddy-r1-67b-v25.1-65k-i1-GGUF/resolve/main/openbuddy-r1-67b-v25.1-65k.i1-Q3_K_L.gguf) | i1-Q3_K_L | 35.7 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/openbuddy-r1-67b-v25.1-65k-i1-GGUF/resolve/main/openbuddy-r1-67b-v25.1-65k.i1-IQ4_XS.gguf) | i1-IQ4_XS | 36.3 | | | [GGUF](https://huggingface.co/mradermacher/openbuddy-r1-67b-v25.1-65k-i1-GGUF/resolve/main/openbuddy-r1-67b-v25.1-65k.i1-Q4_0.gguf) | i1-Q4_0 | 38.4 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/openbuddy-r1-67b-v25.1-65k-i1-GGUF/resolve/main/openbuddy-r1-67b-v25.1-65k.i1-Q4_K_S.gguf) | i1-Q4_K_S | 38.5 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/openbuddy-r1-67b-v25.1-65k-i1-GGUF/resolve/main/openbuddy-r1-67b-v25.1-65k.i1-Q4_K_M.gguf) | i1-Q4_K_M | 40.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/openbuddy-r1-67b-v25.1-65k-i1-GGUF/resolve/main/openbuddy-r1-67b-v25.1-65k.i1-Q4_1.gguf) | i1-Q4_1 | 42.4 | | | [GGUF](https://huggingface.co/mradermacher/openbuddy-r1-67b-v25.1-65k-i1-GGUF/resolve/main/openbuddy-r1-67b-v25.1-65k.i1-Q5_K_S.gguf) | i1-Q5_K_S | 46.6 | | | [GGUF](https://huggingface.co/mradermacher/openbuddy-r1-67b-v25.1-65k-i1-GGUF/resolve/main/openbuddy-r1-67b-v25.1-65k.i1-Q5_K_M.gguf) | i1-Q5_K_M | 47.8 | | | [PART 1](https://huggingface.co/mradermacher/openbuddy-r1-67b-v25.1-65k-i1-GGUF/resolve/main/openbuddy-r1-67b-v25.1-65k.i1-Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/openbuddy-r1-67b-v25.1-65k-i1-GGUF/resolve/main/openbuddy-r1-67b-v25.1-65k.i1-Q6_K.gguf.part2of2) | i1-Q6_K | 55.4 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
AMindToThink/GEMMA-2-2B-FT-ORPO-ISAERFT_gemma-2-2b-lr1.9e-05-beta0.15-20250301-0449
AMindToThink
2025-03-01T05:14:22Z
0
0
transformers
[ "transformers", "generated_from_trainer", "smol-course", "module_1", "isaerft", "lr_1.9369302408016977e-05", "beta_0.15", "arxiv:2403.07691", "base_model:google/gemma-2-2b", "base_model:finetune:google/gemma-2-2b", "endpoints_compatible", "region:us" ]
null
2025-03-01T05:14:20Z
--- base_model: google/gemma-2-2b library_name: transformers model_name: GEMMA-2-2B-FT-ORPO-ISAERFT_gemma-2-2b-lr1.9e-05-beta0.15-20250301-0449 tags: - generated_from_trainer - smol-course - module_1 - isaerft - lr_1.9369302408016977e-05 - beta_0.15 licence: license --- # Model Card for GEMMA-2-2B-FT-ORPO-ISAERFT_gemma-2-2b-lr1.9e-05-beta0.15-20250301-0449 This model is a fine-tuned version of [google/gemma-2-2b](https://huggingface.co/google/gemma-2-2b). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="AMindToThink/GEMMA-2-2B-FT-ORPO-ISAERFT_gemma-2-2b-lr1.9e-05-beta0.15-20250301-0449", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/matthewkhoriaty-northwestern-university/orpo-isaerft-sweep/runs/ixhw8kjz) This model was trained with ORPO, a method introduced in [ORPO: Monolithic Preference Optimization without Reference Model](https://huggingface.co/papers/2403.07691). ### Framework versions - TRL: 0.15.1 - Transformers: 4.49.0 - Pytorch: 2.6.0 - Datasets: 2.21.0 - Tokenizers: 0.21.0 ## Citations Cite ORPO as: ```bibtex @article{hong2024orpo, title = {{ORPO: Monolithic Preference Optimization without Reference Model}}, author = {Jiwoo Hong and Noah Lee and James Thorne}, year = 2024, eprint = {arXiv:2403.07691} } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
darkc0de/BuddyGlassIsBonziBuddyUncensored-Q5_K_M-GGUF
darkc0de
2025-03-01T05:13:47Z
0
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "llama-cpp", "gguf-my-repo", "base_model:darkc0de/BuddyGlassIsBonziBuddyUncensored", "base_model:quantized:darkc0de/BuddyGlassIsBonziBuddyUncensored", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-01T05:12:30Z
--- base_model: darkc0de/BuddyGlassIsBonziBuddyUncensored library_name: transformers tags: - mergekit - merge - llama-cpp - gguf-my-repo --- # darkc0de/BuddyGlassIsBonziBuddyUncensored-Q5_K_M-GGUF This model was converted to GGUF format from [`darkc0de/BuddyGlassIsBonziBuddyUncensored`](https://huggingface.co/darkc0de/BuddyGlassIsBonziBuddyUncensored) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/darkc0de/BuddyGlassIsBonziBuddyUncensored) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo darkc0de/BuddyGlassIsBonziBuddyUncensored-Q5_K_M-GGUF --hf-file buddyglassisbonzibuddyuncensored-q5_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo darkc0de/BuddyGlassIsBonziBuddyUncensored-Q5_K_M-GGUF --hf-file buddyglassisbonzibuddyuncensored-q5_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo darkc0de/BuddyGlassIsBonziBuddyUncensored-Q5_K_M-GGUF --hf-file buddyglassisbonzibuddyuncensored-q5_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo darkc0de/BuddyGlassIsBonziBuddyUncensored-Q5_K_M-GGUF --hf-file buddyglassisbonzibuddyuncensored-q5_k_m.gguf -c 2048 ```
Flytoanything/model
Flytoanything
2025-03-01T05:07:56Z
0
0
transformers
[ "transformers", "pytorch", "gguf", "llama", "text-generation-inference", "unsloth", "trl", "sft", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-03-01T04:39:57Z
--- base_model: unsloth/meta-llama-3.1-8b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Flytoanything - **License:** apache-2.0 - **Finetuned from model :** unsloth/meta-llama-3.1-8b-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
guli111/11
guli111
2025-03-01T05:07:00Z
0
0
null
[ "arxiv:1910.09700", "region:us" ]
null
2025-03-01T04:56:27Z
Helsinki-NLP/opus-mt-zh-en metrics: - bleu base_model: - perplexity-ai/r1-1776 new_version: perplexity-ai/r1-1776 pipeline_tag: translation library_name: asteroid --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Nexesenex/Llama_3.1_8b_Dolerstormed_V1.04
Nexesenex
2025-03-01T05:05:32Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "arxiv:2403.19522", "base_model:Nexesenex/Llama_3.1_8b_Dolermed_R1_V1.03", "base_model:merge:Nexesenex/Llama_3.1_8b_Dolermed_R1_V1.03", "base_model:Nexesenex/Llama_3.1_8b_Hermedash_R1_V1.04", "base_model:merge:Nexesenex/Llama_3.1_8b_Hermedash_R1_V1.04", "base_model:Nexesenex/Llama_3.1_8b_Stormeder_v1.04", "base_model:merge:Nexesenex/Llama_3.1_8b_Stormeder_v1.04", "license:llama3.1", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-28T18:47:55Z
--- base_model: - Nexesenex/Llama_3.1_8b_Hermedash_R1_V1.04 - Nexesenex/Llama_3.1_8b_Dolermed_R1_V1.03 - Nexesenex/Llama_3.1_8b_Stormeder_v1.04 library_name: transformers tags: - mergekit - merge license: llama3.1 --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [Model Stock](https://arxiv.org/abs/2403.19522) merge method using [Nexesenex/Llama_3.1_8b_Dolermed_R1_V1.03](https://huggingface.co/Nexesenex/Llama_3.1_8b_Dolermed_R1_V1.03) as a base. ### Models Merged The following models were included in the merge: * [Nexesenex/Llama_3.1_8b_Hermedash_R1_V1.04](https://huggingface.co/Nexesenex/Llama_3.1_8b_Hermedash_R1_V1.04) * [Nexesenex/Llama_3.1_8b_Stormeder_v1.04](https://huggingface.co/Nexesenex/Llama_3.1_8b_Stormeder_v1.04) ### Configuration The following YAML configuration was used to produce this model: ```yaml merge_method: model_stock models: - model: Nexesenex/Llama_3.1_8b_Stormeder_v1.04 parameters: weight: 1.0 - model: Nexesenex/Llama_3.1_8b_Hermedash_R1_V1.04 parameters: weight: 1.0 base_model: Nexesenex/Llama_3.1_8b_Dolermed_R1_V1.03 dtype: bfloat16 normalize: true chat_template: auto tokenizer: source: union ```
Kaze-droid/politicalBiasDistilBert
Kaze-droid
2025-03-01T05:04:53Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-03-01T05:04:53Z
--- license: apache-2.0 ---
robiulawaldev/758c31a0-f3c8-433d-9a8f-82c05f8afe75
robiulawaldev
2025-03-01T05:01:32Z
0
0
peft
[ "peft", "generated_from_trainer", "base_model:unsloth/codegemma-7b", "base_model:adapter:unsloth/codegemma-7b", "region:us" ]
null
2025-03-01T05:01:15Z
--- library_name: peft tags: - generated_from_trainer base_model: unsloth/codegemma-7b model-index: - name: robiulawaldev/758c31a0-f3c8-433d-9a8f-82c05f8afe75 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # robiulawaldev/758c31a0-f3c8-433d-9a8f-82c05f8afe75 This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0172 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
noreff/flux-volod-manual-captions
noreff
2025-03-01T04:59:50Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-03-01T04:59:47Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: Volod --- # Flux Volod Manual Captions <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `Volod` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('noreff/flux-volod-manual-captions', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
Lettria/grag-go-idf-contrastive_10-trial-9
Lettria
2025-03-01T04:58:42Z
0
0
sentence-transformers
[ "sentence-transformers", "tensorboard", "onnx", "safetensors", "xlm-roberta", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:2939", "loss:ContrastiveLoss", "arxiv:1908.10084", "base_model:intfloat/multilingual-e5-base", "base_model:quantized:intfloat/multilingual-e5-base", "model-index", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-03-01T04:57:36Z
--- base_model: intfloat/multilingual-e5-base library_name: sentence-transformers metrics: - cosine_accuracy - cosine_accuracy_threshold - cosine_f1 - cosine_f1_threshold - cosine_precision - cosine_recall - cosine_ap - cosine_mcc pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:2939 - loss:ContrastiveLoss widget: - source_sentence: 'Type de project: Les projets qui s''inscrivent dans les stratégies des établissements supérieurs et qui répondent aux priorités énoncées dans le SRESRI 2023-2028 : Améliorer les conditions de vie, d''études et de formationPermettre aux jeunes et aux professionnels d''accéder aux meilleures formationsFaciliter le déploiement de services et équipementsSoutenir les transformations pédagogiques de formation pour répondre aux enjeux sociétaux, économiques et environnementaux Les candidats doivent également répondre à au moins l''une des deux thématiques suivantes : Projets d''innovation dans les usages numériques' sentences: - '''Association'':entité|EST|''Bénéficiaires'':__inferred__' - '''mentor d''entreprise'':personne|JOUE_RÔLE|''passeur social'':rôle' - '''Date de début'':concept|EST|''non précisée'':__inferred__' - source_sentence: 'Type de project: Les thématiques abordées, au titre du programme, comprennent la santé numérique et les risques de dépendance, la protection des données personnelles et la prévention des situations de harcèlement et de cyberharcèlement ; les interventions questionnent aussi les aspects numériques de la vie affective et sexuelle et son corollaire de risques tels que le "sexting", le "Revenge porn", le chantage sexuel et l''impact de la pornographie sur les jeunes.   A la demande des établissements, des focus thématiques peuvent être réalisés sur d''autres sujets comme la prévention des phénomènes de prostitution des mineurs, les problématiques liées aux jeux d''argent et de hasard en ligne ou encore la lutte contre la désinformation à travers une approche d''éducation aux médias et à l''information.   Les établissements bénéficiaires peuvent choisir jusqu''à deux thématiques qu''ils identifient comme prioritaires.' sentences: - '''Appel à projets'':événement|VOTER|''Commission permanente'':organisation' - '''Région'':organisation|soutient|''structures privées'':organisation' - '''petites entreprises innovantes franciliennes'':bénéficiaire|INCLUT|''Professionnel - Créateur d''entreprise'':bénéficiaire' - source_sentence: 'Procédures et démarches: Les éventuelles manifestations d’intérêt concurrentes devront obligatoirement comporter les éléments de nature à en assurer le sérieux et notamment les documents suivants : un courrier de présentation et de candidature du candidat ;une présentation du projet qu’il entend réaliser (5 à 6 pages maximum hors annexes), répondant aux activités et contraintes décrites dans le présent document et comprenant, a minima :une description de l’offre technique, des grilles tarifaires, de la clientèle cible, des modalités d’exploitation envisagées,un compte de résultat prévisionnel détaillant' sentences: - '''projet'':concept|COMPREND|''grilles tarifaires'':concept' - '''dispositif de soutien'':programme|ASSOCIÉ|''Culture : Musique'':thème' - '''plateforme mesdemarches.iledefrance.fr'':plateforme|BÉNÉFICIAIRE|''EPCI'':entité' - source_sentence: 'Date de début: Lundi 2 Septembre 2024, à 00:00:00 (UTC+0200) Date de fin (clôture): Vendredi 31 Janvier 2025, à 00:00:00 (UTC+0100) Date de début de la future campagne: Lundi 2 Septembre 2024, à 00:00:00 (UTC+0200)' sentences: - '''Début de la future campagne'':événement|a pour période (Properties={''startDate'': ''2024-09-02T00:00:00+02:00''})|''Clôture de la campagne'':événement' - '''Sociétés de production'':organisation|ENREGISTRÉ|''FDSI Audiovisuel'':programme' - '''Date de fin'':concept|EST|''non précisée'':__inferred__' - source_sentence: 'Procédures et démarches: La demande est à effectuer en ligne sur la plateforme mesdemarches.iledefrance.frLes dates limites de dépôt sont : avant le 1er décembre, le 1er février, le 1er juin ou le 16 août 2024 (pour une réponse fin novembre). Bénéficiaires: Association - Fondation, Association - Régie par la loi de 1901, Association - ONG, Collectivité ou institution - Communes de 10 000 à 20 000 hab, Collectivité ou institution - Communes de 2000 à 10 000 hab, Collectivité ou institution - Communes de < 2000 hab, Collectivité ou institution - Communes de > 20 000 hab, Collectivité ou institution - Département, Collectivité ou institution - EPCI, Collectivité ou institution - EPT / Métropole du Grand Paris, Collectivité ou institution - Bailleurs sociaux, Collectivité ou institution - Autre (GIP, copropriété, EPA...), Collectivité ou institution - Office de tourisme intercommunal Précision sure les bénéficiaires: nan' sentences: - '''plateforme mesdemarches.iledefrance.fr'':plateforme|BÉNÉFICIAIRE|''Association - Fondation'':entité' - '''mentorat'':concept|IMPLIQUE|''salariés d''entreprises'':groupe' - '''actions'':concept|VALORISE|''maisons d''artistes'':lieu' model-index: - name: SentenceTransformer based on intfloat/multilingual-e5-base results: - task: type: binary-classification name: Binary Classification dataset: name: BinaryClassifEval type: BinaryClassifEval metrics: - type: cosine_accuracy value: 0.8212719298245614 name: Cosine Accuracy - type: cosine_accuracy_threshold value: 0.855517566204071 name: Cosine Accuracy Threshold - type: cosine_f1 value: 0.8739365815931941 name: Cosine F1 - type: cosine_f1_threshold value: 0.855517566204071 name: Cosine F1 Threshold - type: cosine_precision value: 0.8345642540620384 name: Cosine Precision - type: cosine_recall value: 0.9172077922077922 name: Cosine Recall - type: cosine_ap value: 0.9473007930852937 name: Cosine Ap - type: cosine_mcc value: 0.5768451443521337 name: Cosine Mcc --- # SentenceTransformer based on intfloat/multilingual-e5-base This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [intfloat/multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) <!-- at revision 835193815a3936a24a0ee7dc9e3d48c1fbb19c55 --> - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity - **Training Dataset:** - json <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("Lettria/grag-go-idf-contrastive_10-trial-9") # Run inference sentences = [ 'Procédures et démarches: La demande est à effectuer en ligne sur la plateforme mesdemarches.iledefrance.frLes dates limites de dépôt sont : avant le 1er décembre, le 1er février, le 1er juin ou le 16 août 2024 (pour une réponse fin novembre).\nBénéficiaires: Association - Fondation, Association - Régie par la loi de 1901, Association - ONG, Collectivité ou institution - Communes de 10 000 à 20 000 hab, Collectivité ou institution - Communes de 2000 à 10 000 hab, Collectivité ou institution - Communes de < 2000 hab, Collectivité ou institution - Communes de > 20 000 hab, Collectivité ou institution - Département, Collectivité ou institution - EPCI, Collectivité ou institution - EPT / Métropole du Grand Paris, Collectivité ou institution - Bailleurs sociaux, Collectivité ou institution - Autre (GIP, copropriété, EPA...), Collectivité ou institution - Office de tourisme intercommunal\nPrécision sure les bénéficiaires: nan', "'plateforme mesdemarches.iledefrance.fr':plateforme|BÉNÉFICIAIRE|'Association - Fondation':entité", "'mentorat':concept|IMPLIQUE|'salariés d'entreprises':groupe", ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Binary Classification * Dataset: `BinaryClassifEval` * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator) | Metric | Value | |:--------------------------|:-----------| | cosine_accuracy | 0.8213 | | cosine_accuracy_threshold | 0.8555 | | cosine_f1 | 0.8739 | | cosine_f1_threshold | 0.8555 | | cosine_precision | 0.8346 | | cosine_recall | 0.9172 | | **cosine_ap** | **0.9473** | | cosine_mcc | 0.5768 | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### json * Dataset: json * Size: 2,939 training samples * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code> * Approximate statistics based on the first 1000 samples: | | sentence1 | sentence2 | label | |:--------|:-------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------| | type | string | string | int | | details | <ul><li>min: 26 tokens</li><li>mean: 191.64 tokens</li><li>max: 429 tokens</li></ul> | <ul><li>min: 18 tokens</li><li>mean: 31.2 tokens</li><li>max: 72 tokens</li></ul> | <ul><li>1: 100.00%</li></ul> | * Samples: | sentence1 | sentence2 | label | |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------|:---------------| | <code>Type de project: L’excès de précipitations tout au long de l’année a conduit à une chute spectaculaire des rendements des céréales d’été et des protéagineux (blé, orge, pois, féverole, etc.) que produisent 90% des agriculteurs d’Île-de-France, historique grenier à blé du pays. Tributaires naturels du fleurissement des cultures, les apiculteurs professionnels de la région ont également souffert de ces dérèglements climatiques.La Région accompagne les exploitations concernées en leur apportant une aide exceptionnelle.</code> | <code>'excès de précipitations':phénomène|DIMINUE|'rendements des protéagineux':concept</code> | <code>1</code> | | <code>Type de project: Dans le cadre de sa stratégie « Impact 2028 », la Région s’engage dans la défense de la souveraineté industrielle en renforçant son soutien à une industrie circulaire et décarbonée, porteuse d’innovations et créatrice d’emplois. PM'up Jeunes pousses industrielles soutient les projets d’implantation d’une première usine tournée vers la décarbonation, l’efficacité énergétique et la circularité des processus de production. Ces projets peuvent prendre l'une de ces formes : Une première unité de production industrielle, après une phase de prototypage,Une ligne pilote de production industrielle, en interne ou chez un tiers situé en Île-de-France, à condition que sa production soit destinée à de premières commercialisations,La transformation d’une unité de production pilote à une unité de production industrielle</code> | <code>'Région Île-de-France':organisation|soutient|'industrie décarbonée':concept</code> | <code>1</code> | | <code>Procédures et démarches: Le dépôt des demandes de subvention se fait en ligne sur la plateforme régionale mesdemarches.iledefrance.fr : Session de dépôt unique pour les nouvelles demandes : du 30 septembre au 4 novembre 2024 (11 heures) pour des festivals qui se déroulent entre le 1er mars 2025 et le 28 février 2026 (vote à la CP de mars 2025). Pour les demandes de renouvellement, un mail est envoyé aux structures concernées par le service du Spectacle vivant en amont de chaque session de dépôt.<br>Bénéficiaires: Professionnel - Culture, Association - Fondation, Association - Régie par la loi de 1901, Association - ONG, Collectivité ou institution - Communes de 10 000 à 20 000 hab, Collectivité ou institution - Autre (GIP, copropriété, EPA...), Collectivité ou institution - Communes de 2000 à 10 000 hab, Collectivité ou institution - Communes de < 2000 hab, Collectivité ou institution - Communes de > 20 000 hab, Collectivité ou institution - Département, Collectivité ou institution - EPC...</code> | <code>'Collectivité ou institution - EPCI':bénéficiaire|PEUT_BÉNÉFICIER|'demandes de subvention':procédure</code> | <code>1</code> | * Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters: ```json { "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE", "margin": 0.5, "size_average": true } ``` ### Evaluation Dataset #### json * Dataset: json * Size: 912 evaluation samples * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code> * Approximate statistics based on the first 912 samples: | | sentence1 | sentence2 | label | |:--------|:-------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------| | type | string | string | int | | details | <ul><li>min: 24 tokens</li><li>mean: 175.73 tokens</li><li>max: 394 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 30.53 tokens</li><li>max: 133 tokens</li></ul> | <ul><li>0: ~32.46%</li><li>1: ~67.54%</li></ul> | * Samples: | sentence1 | sentence2 | label | |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------| | <code>Type de project: Le programme propose des rencontres le samedi après-midi dans une université ou une grande école réputée, entre les professionnels bénévoles et les lycéens et collégiens sous la forme d'atelier thématiques. Ces moments de rencontre touchent à une grande multitude de domaines d’activités. L'objectif est de donner l’opportunité aux jeunes les plus enclavés d’échanger avec des intervenants professionnels aux parcours atypiques et inspirants. Les intervenants suscitent les ambitions et élargissent les perspectives des élèves.</code> | <code>'rencontres':événement|impliquent|'professionnels bénévoles':groupe</code> | <code>1</code> | | <code>Précision sure les bénéficiaires: Communes,Établissements publics de coopération intercommunale (avec ou sans fiscalité propre),Établissements publics territoriaux franciliens,Départements,Aménageurs publics et privés (lorsque ces derniers interviennent à la demande ou pour le compte d'une collectivité précitée).</code> | <code>'Aménageurs privés':entité|INTERVIENT_POUR|'Départements':entité</code> | <code>1</code> | | <code>Date de début: non précisée<br>Date de fin (clôture): non précisée<br>Date de début de la future campagne: non précisée</code> | <code>'Date de fin':concept|EST|'non précisée':__inferred__</code> | <code>1</code> | * Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters: ```json { "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE", "margin": 0.5, "size_average": true } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `per_device_train_batch_size`: 4 - `per_device_eval_batch_size`: 4 - `gradient_accumulation_steps`: 2 - `learning_rate`: 6.880743377052856e-05 - `num_train_epochs`: 20 - `lr_scheduler_type`: cosine - `warmup_steps`: 332 - `bf16`: True - `tf32`: True - `load_best_model_at_end`: True - `optim`: adamw_torch_fused - `hub_model_id`: Lettria/grag-go-idf-contrastive_10-trial-9 #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 4 - `per_device_eval_batch_size`: 4 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 2 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 6.880743377052856e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 20 - `max_steps`: -1 - `lr_scheduler_type`: cosine - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 332 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: True - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: Lettria/grag-go-idf-contrastive_10-trial-9 - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs <details><summary>Click to expand</summary> | Epoch | Step | Training Loss | Validation Loss | BinaryClassifEval_cosine_ap | |:-------:|:-------:|:-------------:|:---------------:|:---------------------------:| | 0.1361 | 50 | 0.0247 | - | - | | 0.2721 | 100 | 0.0166 | - | - | | 0.4082 | 150 | 0.012 | - | - | | 0.5442 | 200 | 0.0101 | - | - | | 0.6803 | 250 | 0.01 | - | - | | 0.8163 | 300 | 0.0066 | - | - | | 0.9524 | 350 | 0.0054 | - | - | | **1.0** | **368** | **-** | **0.0226** | **0.9473** | | 1.0871 | 400 | 0.0056 | - | - | | 1.2231 | 450 | 0.0043 | - | - | | 1.3592 | 500 | 0.0026 | - | - | | 1.4952 | 550 | 0.0043 | - | - | | 1.6313 | 600 | 0.0046 | - | - | | 1.7673 | 650 | 0.0044 | - | - | | 1.9034 | 700 | 0.0038 | - | - | | 2.0 | 736 | - | 0.0337 | 0.9493 | | 2.0381 | 750 | 0.0035 | - | - | | 2.1741 | 800 | 0.0023 | - | - | | 2.3102 | 850 | 0.0018 | - | - | | 2.4463 | 900 | 0.001 | - | - | | 2.5823 | 950 | 0.0019 | - | - | | 2.7184 | 1000 | 0.0023 | - | - | | 2.8544 | 1050 | 0.0026 | - | - | | 2.9905 | 1100 | 0.002 | - | - | | 3.0 | 1104 | - | 0.0269 | 0.9492 | | 3.1252 | 1150 | 0.0019 | - | - | | 3.2612 | 1200 | 0.0016 | - | - | | 3.3973 | 1250 | 0.001 | - | - | | 3.5333 | 1300 | 0.0011 | - | - | | 3.6694 | 1350 | 0.0014 | - | - | | 3.8054 | 1400 | 0.0012 | - | - | | 3.9415 | 1450 | 0.0011 | - | - | | 4.0 | 1472 | - | 0.0313 | 0.9417 | | 4.0762 | 1500 | 0.0013 | - | - | | 4.2122 | 1550 | 0.0016 | - | - | | 4.3483 | 1600 | 0.0013 | - | - | | 4.4844 | 1650 | 0.0008 | - | - | | 4.6204 | 1700 | 0.0004 | - | - | | 4.7565 | 1750 | 0.0007 | - | - | | 4.8925 | 1800 | 0.0009 | - | - | | 5.0 | 1840 | - | 0.0307 | 0.9371 | | 5.0272 | 1850 | 0.0003 | - | - | | 5.1633 | 1900 | 0.0005 | - | - | | 5.2993 | 1950 | 0.0006 | - | - | | 5.4354 | 2000 | 0.0004 | - | - | | 5.5714 | 2050 | 0.0002 | - | - | | 5.7075 | 2100 | 0.0004 | - | - | | 5.8435 | 2150 | 0.0006 | - | - | | 5.9796 | 2200 | 0.0003 | - | - | | 6.0 | 2208 | - | 0.0283 | 0.9435 | | 6.1143 | 2250 | 0.0003 | - | - | | 6.2503 | 2300 | 0.0004 | - | - | | 6.3864 | 2350 | 0.0001 | - | - | | 6.5224 | 2400 | 0.0003 | - | - | | 6.6585 | 2450 | 0.0002 | - | - | | 6.7946 | 2500 | 0.0002 | - | - | | 6.9306 | 2550 | 0.0003 | - | - | | 7.0 | 2576 | - | 0.0249 | 0.9472 | | 7.0653 | 2600 | 0.0004 | - | - | | 7.2014 | 2650 | 0.0003 | - | - | | 7.3374 | 2700 | 0.0004 | - | - | | 7.4735 | 2750 | 0.0006 | - | - | | 7.6095 | 2800 | 0.0002 | - | - | | 7.7456 | 2850 | 0.0002 | - | - | | 7.8816 | 2900 | 0.0003 | - | - | | 8.0 | 2944 | - | 0.0314 | 0.9189 | | 8.0163 | 2950 | 0.0002 | - | - | | 8.1524 | 3000 | 0.0003 | - | - | | 8.2884 | 3050 | 0.0003 | - | - | | 8.4245 | 3100 | 0.0003 | - | - | | 8.5605 | 3150 | 0.0006 | - | - | | 8.6966 | 3200 | 0.0014 | - | - | | 8.8327 | 3250 | 0.0009 | - | - | | 8.9687 | 3300 | 0.0006 | - | - | | 9.0 | 3312 | - | 0.0313 | 0.9208 | | 9.1034 | 3350 | 0.0003 | - | - | | 9.2395 | 3400 | 0.0007 | - | - | | 9.3755 | 3450 | 0.0005 | - | - | | 9.5116 | 3500 | 0.0003 | - | - | | 9.6476 | 3550 | 0.0002 | - | - | | 9.7837 | 3600 | 0.0006 | - | - | | 9.9197 | 3650 | 0.0003 | - | - | | 10.0 | 3680 | - | 0.0305 | 0.9282 | | 10.0544 | 3700 | 0.0003 | - | - | | 10.1905 | 3750 | 0.0002 | - | - | | 10.3265 | 3800 | 0.0002 | - | - | | 10.4626 | 3850 | 0.0001 | - | - | | 10.5986 | 3900 | 0.0002 | - | - | | 10.7347 | 3950 | 0.0001 | - | - | | 10.8707 | 4000 | 0.0002 | - | - | | 11.0 | 4048 | - | 0.0330 | 0.9229 | | 11.0054 | 4050 | 0.0003 | - | - | | 11.1415 | 4100 | 0.0001 | - | - | | 11.2776 | 4150 | 0.0001 | - | - | | 11.4136 | 4200 | 0.0001 | - | - | | 11.5497 | 4250 | 0.0001 | - | - | | 11.6857 | 4300 | 0.0001 | - | - | | 11.8218 | 4350 | 0.0001 | - | - | | 11.9578 | 4400 | 0.0001 | - | - | | 12.0 | 4416 | - | 0.0315 | 0.9326 | | 12.0925 | 4450 | 0.0001 | - | - | | 12.2286 | 4500 | 0.0001 | - | - | | 12.3646 | 4550 | 0.0 | - | - | | 12.5007 | 4600 | 0.0002 | - | - | | 12.6367 | 4650 | 0.0001 | - | - | | 12.7728 | 4700 | 0.0001 | - | - | | 12.9088 | 4750 | 0.0001 | - | - | | 13.0 | 4784 | - | 0.0320 | 0.9254 | | 13.0435 | 4800 | 0.0001 | - | - | | 13.1796 | 4850 | 0.0001 | - | - | | 13.3156 | 4900 | 0.0 | - | - | | 13.4517 | 4950 | 0.0 | - | - | | 13.5878 | 5000 | 0.0001 | - | - | | 13.7238 | 5050 | 0.0001 | - | - | | 13.8599 | 5100 | 0.0 | - | - | | 13.9959 | 5150 | 0.0001 | - | - | | 14.0 | 5152 | - | 0.0312 | 0.9331 | | 14.1306 | 5200 | 0.0 | - | - | | 14.2667 | 5250 | 0.0 | - | - | | 14.4027 | 5300 | 0.0001 | - | - | | 14.5388 | 5350 | 0.0 | - | - | | 14.6748 | 5400 | 0.0001 | - | - | | 14.8109 | 5450 | 0.0 | - | - | | 14.9469 | 5500 | 0.0 | - | - | | 15.0 | 5520 | - | 0.0313 | 0.9325 | | 15.0816 | 5550 | 0.0 | - | - | | 15.2177 | 5600 | 0.0 | - | - | | 15.3537 | 5650 | 0.0 | - | - | | 15.4898 | 5700 | 0.0001 | - | - | | 15.6259 | 5750 | 0.0001 | - | - | | 15.7619 | 5800 | 0.0001 | - | - | | 15.8980 | 5850 | 0.0 | - | - | | 16.0 | 5888 | - | 0.0313 | 0.9318 | | 16.0327 | 5900 | 0.0 | - | - | | 16.1687 | 5950 | 0.0 | - | - | | 16.3048 | 6000 | 0.0 | - | - | | 16.4408 | 6050 | 0.0 | - | - | | 16.5769 | 6100 | 0.0 | - | - | | 16.7129 | 6150 | 0.0001 | - | - | | 16.8490 | 6200 | 0.0 | - | - | | 16.9850 | 6250 | 0.0 | - | - | | 17.0 | 6256 | - | 0.0311 | 0.9333 | | 17.1197 | 6300 | 0.0 | - | - | | 17.2558 | 6350 | 0.0 | - | - | | 17.3918 | 6400 | 0.0 | - | - | | 17.5279 | 6450 | 0.0 | - | - | | 17.6639 | 6500 | 0.0001 | - | - | | 17.8 | 6550 | 0.0 | - | - | | 17.9361 | 6600 | 0.0 | - | - | | 18.0 | 6624 | - | 0.0313 | 0.9324 | | 18.0707 | 6650 | 0.0 | - | - | | 18.2068 | 6700 | 0.0 | - | - | | 18.3429 | 6750 | 0.0 | - | - | | 18.4789 | 6800 | 0.0 | - | - | | 18.6150 | 6850 | 0.0 | - | - | | 18.7510 | 6900 | 0.0 | - | - | | 18.8871 | 6950 | 0.0 | - | - | | 19.0 | 6992 | - | 0.0313 | 0.9327 | | 19.0218 | 7000 | 0.0 | - | - | | 19.1578 | 7050 | 0.0 | - | - | | 19.2939 | 7100 | 0.0 | - | - | | 19.4299 | 7150 | 0.0 | - | - | | 19.5660 | 7200 | 0.0 | - | - | | 19.7020 | 7250 | 0.0 | - | - | | 19.8381 | 7300 | 0.0 | - | - | | 19.9469 | 7340 | - | 0.0226 | 0.9473 | * The bold row denotes the saved checkpoint. </details> ### Framework Versions - Python: 3.11.9 - Sentence Transformers: 3.4.1 - Transformers: 4.48.3 - PyTorch: 2.3.0 - Accelerate: 1.1.0 - Datasets: 3.3.2 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### ContrastiveLoss ```bibtex @inproceedings{hadsell2006dimensionality, author={Hadsell, R. and Chopra, S. and LeCun, Y.}, booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)}, title={Dimensionality Reduction by Learning an Invariant Mapping}, year={2006}, volume={2}, number={}, pages={1735-1742}, doi={10.1109/CVPR.2006.100} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
dabrown/6a2ea502-582a-4075-9563-1ed4dfe37de2
dabrown
2025-03-01T04:58:18Z
0
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2-7B-Instruct", "base_model:adapter:unsloth/Qwen2-7B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-03-01T01:43:39Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2-7B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 6a2ea502-582a-4075-9563-1ed4dfe37de2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.5.2` ```yaml adapter: lora base_model: unsloth/Qwen2-7B-Instruct bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - c2c161709bf34c3d_train_data.json ds_type: json format: custom path: /workspace/input_data/c2c161709bf34c3d_train_data.json type: field_instruction: title field_output: lyrics format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 16 gradient_checkpointing: false group_by_length: true hub_model_id: dabrown/6a2ea502-582a-4075-9563-1ed4dfe37de2 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: false lora_inference_mode: true lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 1500 micro_batch_size: 2 mlflow_experiment_name: /tmp/c2c161709bf34c3d_train_data.json model_type: AutoModelForCausalLM modules_to_save: lm_head num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true peft_use_rslora: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: offline wandb_name: 89e44ac5-963f-4035-972d-1436c67b7fe7 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 89e44ac5-963f-4035-972d-1436c67b7fe7 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 6a2ea502-582a-4075-9563-1ed4dfe37de2 This model is a fine-tuned version of [unsloth/Qwen2-7B-Instruct](https://huggingface.co/unsloth/Qwen2-7B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2186 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 1099 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.8811 | 0.0009 | 1 | 2.6547 | | 2.0803 | 0.2503 | 275 | 2.2955 | | 2.6179 | 0.5006 | 550 | 2.2486 | | 2.2288 | 0.7509 | 825 | 2.2186 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.3 - Pytorch 2.3.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3
DoppelReflEx/L3-8B-R1-WolfCore-V1.5-test
DoppelReflEx
2025-03-01T04:56:46Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "arxiv:2403.19522", "base_model:Sao10K/L3-8B-Lunaris-v1", "base_model:merge:Sao10K/L3-8B-Lunaris-v1", "base_model:Sao10K/L3-8B-Stheno-v3.2", "base_model:merge:Sao10K/L3-8B-Stheno-v3.2", "base_model:SicariusSicariiStuff/Wingless_Imp_8B", "base_model:merge:SicariusSicariiStuff/Wingless_Imp_8B", "base_model:TheDrummer/Llama-3SOME-8B-v2", "base_model:merge:TheDrummer/Llama-3SOME-8B-v2", "base_model:cgato/L3-TheSpice-8b-v0.8.3", "base_model:merge:cgato/L3-TheSpice-8b-v0.8.3", "base_model:deepseek-ai/DeepSeek-R1-Distill-Llama-8B", "base_model:merge:deepseek-ai/DeepSeek-R1-Distill-Llama-8B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-01T04:52:22Z
--- base_model: - Sao10K/L3-8B-Lunaris-v1 - SicariusSicariiStuff/Wingless_Imp_8B - cgato/L3-TheSpice-8b-v0.8.3 - deepseek-ai/DeepSeek-R1-Distill-Llama-8B - Sao10K/L3-8B-Stheno-v3.2 - TheDrummer/Llama-3SOME-8B-v2 library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [Model Stock](https://arxiv.org/abs/2403.19522) merge method using [Sao10K/L3-8B-Stheno-v3.2](https://huggingface.co/Sao10K/L3-8B-Stheno-v3.2) as a base. ### Models Merged The following models were included in the merge: * [Sao10K/L3-8B-Lunaris-v1](https://huggingface.co/Sao10K/L3-8B-Lunaris-v1) * [SicariusSicariiStuff/Wingless_Imp_8B](https://huggingface.co/SicariusSicariiStuff/Wingless_Imp_8B) * [cgato/L3-TheSpice-8b-v0.8.3](https://huggingface.co/cgato/L3-TheSpice-8b-v0.8.3) * [deepseek-ai/DeepSeek-R1-Distill-Llama-8B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B) * [TheDrummer/Llama-3SOME-8B-v2](https://huggingface.co/TheDrummer/Llama-3SOME-8B-v2) ### Configuration The following YAML configuration was used to produce this model: ```yaml base_model: Sao10K/L3-8B-Stheno-v3.2 merge_method: model_stock dtype: bfloat16 models: - model: cgato/L3-TheSpice-8b-v0.8.3 - model: Sao10K/L3-8B-Lunaris-v1 - model: TheDrummer/Llama-3SOME-8B-v2 - model: SicariusSicariiStuff/Wingless_Imp_8B - model: deepseek-ai/DeepSeek-R1-Distill-Llama-8B ```
7Dragons/Michelin_1v1
7Dragons
2025-03-01T04:54:21Z
0
0
null
[ "onnx", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-03-01T04:53:09Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
bruhzair/Cui-x2-t1
bruhzair
2025-03-01T04:54:18Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-01T04:54:17Z
--- base_model: [] library_name: transformers tags: - mergekit - merge --- # Cui5 This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the Passthrough merge method. ### Models Merged The following models were included in the merge: * /workspace/cache/models--Steelskull--L3.3-Cu-Mai-R1-70b/snapshots/0353bb34f6e825a9d4a9a30e653bd7936e0b75b3 ### Configuration The following YAML configuration was used to produce this model: ```yaml dtype: float16 merge_method: passthrough slices: - sources: - layer_range: [0, 40] model: /workspace/cache/models--Steelskull--L3.3-Cu-Mai-R1-70b/snapshots/0353bb34f6e825a9d4a9a30e653bd7936e0b75b3 - sources: - layer_range: [20, 60] model: /workspace/cache/models--Steelskull--L3.3-Cu-Mai-R1-70b/snapshots/0353bb34f6e825a9d4a9a30e653bd7936e0b75b3 - sources: - layer_range: [40, 80] model: /workspace/cache/models--Steelskull--L3.3-Cu-Mai-R1-70b/snapshots/0353bb34f6e825a9d4a9a30e653bd7936e0b75b3 ```
swadhin42/vit-base-patch16-224-in21k-lora
swadhin42
2025-03-01T04:53:41Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-03-01T04:53:38Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
liamj16/fine_tuned_Qwen2.5-Code-3B-all-w-perf
liamj16
2025-03-01T04:52:44Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-01T04:50:09Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
kurogane/ModernBERT_Japanese_MT_Bench_test
kurogane
2025-03-01T04:52:24Z
3
0
null
[ "safetensors", "modernbert", "ja", "base_model:sbintuitions/modernbert-ja-130m", "base_model:finetune:sbintuitions/modernbert-ja-130m", "license:cc-by-nc-4.0", "region:us" ]
null
2025-02-20T12:12:06Z
--- language: - ja base_model: - sbintuitions/modernbert-ja-130m license: cc-by-nc-4.0 --- # ModernBERT_Japanese_MT_Bench_test これはテスト的なモデルです。 [Nejumi LLMリーダーボード3](https://wandb.ai/wandb-japan/llm-leaderboard3/reports/Nejumi-LLM-3--Vmlldzo3OTg2NjM2?accessToken=wpnwc9whr96pxm40dfe4k3xq513f9jc4yhj7q6pnvj4jtayoefbc77qhzbsrztgz)で公開されているJapanese MT Benchのroleplay, humanities, writingの結果を勝手にModernBERTに学習させたモデルです。 今後、自力でJapanese MT Benchをし直して使えるモデルにしていきたい。 ## トレーニングの結果 トレーニングコードはChatGPTに書いてもらいました。自力で設計できるようになりたい…。 [training用のノートブック](https://huggingface.co/kurogane/ModernBERT_Japanese_MT_Bench_test/blob/main/train_jmtb_test_v6%20(%E3%82%B3%E3%83%94%E3%83%BC).ipynb)でfine tuningしました。 Japanese MT Benchの0~10の結果を1/10して、0~1.0の回帰タスクとして学習させています。 ![training_log](https://huggingface.co/kurogane/ModernBERT_Japanese_MT_Bench_test/resolve/main/log_epochs.png) やりすぎなのかもしれないし、どう改善したらいいんだろうか? ![](https://huggingface.co/kurogane/ModernBERT_Japanese_MT_Bench_test/resolve/main/dataset_distribution.png) データセットの分布を見る限り、9の出力に偏りが多いので推測結果が高めに偏ってるのかもしれません。 ## testデータとの差 [test用のnotebook](https://huggingface.co/kurogane/ModernBERT_Japanese_MT_Bench_test/blob/main/modernbert_run_test.ipynb)のコードで出力しました。 ![test_check](https://huggingface.co/kurogane/ModernBERT_Japanese_MT_Bench_test/resolve/main/test_check.png) 予測できてる雰囲気だけど、低いやつをだいぶ予測ミスしてるから使い物にはならなそう。 ## License 各モデルの継承ライセンスに従う必要があるので、基本的に使用不可と考えてください。 そのため、CC-BY-NC-4.0とします。
ElysiaCoding/dqn-SpaceInvadersNoFrameskip-v4
ElysiaCoding
2025-03-01T04:52:09Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2025-03-01T04:06:40Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 601.50 +/- 74.97 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib SBX (SB3 + Jax): https://github.com/araffin/sbx Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga ElysiaCoding -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga ElysiaCoding -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga ElysiaCoding ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
sighmon/rl_course_vizdoom_health_gathering_supreme
sighmon
2025-03-01T04:51:35Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2025-03-01T04:51:27Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 8.74 +/- 2.54 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r sighmon/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m <path.to.enjoy.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m <path.to.train.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
Jonjew/NeonCyberPunkFLUX
Jonjew
2025-03-01T04:50:40Z
0
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:unknown", "region:us" ]
text-to-image
2025-03-01T04:50:14Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: >- mad-cbrbdy, woman, night, haze, neon signs, glowing lights of clothing, photorealistic, dynamic pose, floating glowing text reading "Neon Cyberpunk - Cyberbody" <lora:Neon_Cyberpunk_Cyberbody_FLUX:1> parameters: negative_prompt: 'Guidance: 1 Steps: 10 Seed: 2529191325' output: url: images/20240824_203903_2529191325_flux1-dev.png - text: >- mad-cbrbdy, woman, night, haze, neon signs, glowing lights of clothing, photorealistic, dynamic pose <lora:Neon_Cyberpunk_Cyberbody_FLUX:0.9 parameters: negative_prompt: 'Guidance: 1 Steps: 10 Seed: 3031505860' output: url: images/20240824_204616_3031505860_flux1-dev.png - text: >- mad-cbrbdy, woman on rooftop of a skyscraper squatting, holding a rifle looking down, night, haze, neon signs, glowing lights on clothing, googles, photorealistic, dynamic pose <lora:Neon_Cyberpunk_Cyberbody_FLUX:1> parameters: negative_prompt: 'Guidance: 1 Steps: 20 Seed: 1947219156' output: url: images/20240824_211330_1947219156_flux1-dev.png base_model: black-forest-labs/FLUX.1-dev instance_prompt: mad-cbrbdy license: unknown --- # Neon Cyberpunk FLUX, SDXL &amp; SD1.5 376 <Gallery /> ## Model description FROM https:&#x2F;&#x2F;civitai.com&#x2F;models&#x2F;269179&#x2F;neon-cyberpunk-flux-sdxl-and-sd15 Trigger: mad-cbrbdy Strength - start with 1 Hey there, This lora is trained to add details to a cyberpunk character. Version 1 has five different concepts it was trained on. Version 2 each concept from version 1 has an individual LoRA. (or will get one eventually) If you enjoy my work, consider showing your support with a 👍 or ❤️ on the model or images—it really keeps me motivated! You can also follow me or buy me a coffee ☕ at: https:&#x2F;&#x2F;ko-fi.com&#x2F;madcaddie Training Flux LoRAs is more expensive then SDXL LoRAs therefore I&#39;m using the early access feature. Please keep in mind that the LoRA will be free after the early access period expires. ## Trigger words You should use `mad-cbrbdy` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/Jonjew/NeonCyberPunkFLUX/tree/main) them in the Files & versions tab.
DevQuasar/EpistemeAI.Fireball-Meta-Llama-3.1-8B-Instruct-Agent-0.003-GGUF
DevQuasar
2025-03-01T04:49:34Z
0
0
null
[ "gguf", "text-generation", "base_model:EpistemeAI/Fireball-Meta-Llama-3.1-8B-Instruct-Agent-0.003", "base_model:quantized:EpistemeAI/Fireball-Meta-Llama-3.1-8B-Instruct-Agent-0.003", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-03-01T03:55:34Z
--- base_model: - EpistemeAI/Fireball-Meta-Llama-3.1-8B-Instruct-Agent-0.003 pipeline_tag: text-generation --- [<img src="https://raw.githubusercontent.com/csabakecskemeti/devquasar/main/dq_logo_black-transparent.png" width="200"/>](https://devquasar.com) Quantized version of: [EpistemeAI/Fireball-Meta-Llama-3.1-8B-Instruct-Agent-0.003](https://huggingface.co/EpistemeAI/Fireball-Meta-Llama-3.1-8B-Instruct-Agent-0.003) 'Make knowledge free for everyone' <p align="center"> Made with <br> <a href="https://www.civo.com/" target="_blank"> <img src="https://www.civo.com/assets/public/brand-assets/civo-logo-colour-60cc1622dedf346f7afde1fff760523f731b0aac106a5465af98ff4073114b74.svg" width="100"/> </a> </p> <a href='https://ko-fi.com/L4L416YX7C' target='_blank'><img height='36' style='border:0px;height:36px;' src='https://storage.ko-fi.com/cdn/kofi6.png?v=6' border='0' alt='Buy Me a Coffee at ko-fi.com' /></a>
NewEden/Lora-grpo
NewEden
2025-03-01T04:49:18Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:Delta-Vector/Control-Nanuq-8B", "base_model:adapter:Delta-Vector/Control-Nanuq-8B", "region:us" ]
null
2025-03-01T04:48:49Z
--- base_model: Delta-Vector/Control-Nanuq-8B library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.14.0
darkc0de/BuddyGlassIsBonziBuddyUncensored
darkc0de
2025-03-01T04:47:58Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "conversational", "arxiv:2306.01708", "base_model:TheDrummer/Cydonia-24B-v2", "base_model:merge:TheDrummer/Cydonia-24B-v2", "base_model:cognitivecomputations/Dolphin3.0-Mistral-24B", "base_model:merge:cognitivecomputations/Dolphin3.0-Mistral-24B", "base_model:huihui-ai/Mistral-Small-24B-Instruct-2501-abliterated", "base_model:merge:huihui-ai/Mistral-Small-24B-Instruct-2501-abliterated", "base_model:mistralai/Mistral-Small-24B-Instruct-2501", "base_model:merge:mistralai/Mistral-Small-24B-Instruct-2501", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-01T04:34:46Z
--- base_model: - huihui-ai/Mistral-Small-24B-Instruct-2501-abliterated - mistralai/Mistral-Small-24B-Instruct-2501 - cognitivecomputations/Dolphin3.0-Mistral-24B - TheDrummer/Cydonia-24B-v2 library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [TIES](https://arxiv.org/abs/2306.01708) merge method using [mistralai/Mistral-Small-24B-Instruct-2501](https://huggingface.co/mistralai/Mistral-Small-24B-Instruct-2501) as a base. ### Models Merged The following models were included in the merge: * [huihui-ai/Mistral-Small-24B-Instruct-2501-abliterated](https://huggingface.co/huihui-ai/Mistral-Small-24B-Instruct-2501-abliterated) * [cognitivecomputations/Dolphin3.0-Mistral-24B](https://huggingface.co/cognitivecomputations/Dolphin3.0-Mistral-24B) * [TheDrummer/Cydonia-24B-v2](https://huggingface.co/TheDrummer/Cydonia-24B-v2) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: cognitivecomputations/Dolphin3.0-Mistral-24B parameters: density: 0.5 weight: 0.5 - model: huihui-ai/Mistral-Small-24B-Instruct-2501-abliterated parameters: density: 0.5 weight: 0.5 - model: TheDrummer/Cydonia-24B-v2 parameters: density: 0.5 weight: 0.5 merge_method: ties base_model: mistralai/Mistral-Small-24B-Instruct-2501 parameters: normalize: false int8_mask: true dtype: float16 ```
dabrown/7852b0cb-ddf7-47be-b831-0ab03c3e2890
dabrown
2025-03-01T04:47:07Z
0
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2-7B-Instruct", "base_model:adapter:unsloth/Qwen2-7B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-03-01T01:42:59Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2-7B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 7852b0cb-ddf7-47be-b831-0ab03c3e2890 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.5.2` ```yaml adapter: lora base_model: unsloth/Qwen2-7B-Instruct bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - c2c161709bf34c3d_train_data.json ds_type: json format: custom path: /workspace/input_data/c2c161709bf34c3d_train_data.json type: field_instruction: title field_output: lyrics format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 16 gradient_checkpointing: false group_by_length: true hub_model_id: dabrown/7852b0cb-ddf7-47be-b831-0ab03c3e2890 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: false lora_inference_mode: true lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 1500 micro_batch_size: 2 mlflow_experiment_name: /tmp/c2c161709bf34c3d_train_data.json model_type: AutoModelForCausalLM modules_to_save: lm_head num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true peft_use_rslora: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: offline wandb_name: 89e44ac5-963f-4035-972d-1436c67b7fe7 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 89e44ac5-963f-4035-972d-1436c67b7fe7 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 7852b0cb-ddf7-47be-b831-0ab03c3e2890 This model is a fine-tuned version of [unsloth/Qwen2-7B-Instruct](https://huggingface.co/unsloth/Qwen2-7B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2183 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 1099 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.8811 | 0.0009 | 1 | 2.6547 | | 2.0815 | 0.2503 | 275 | 2.2947 | | 2.6145 | 0.5006 | 550 | 2.2483 | | 2.2308 | 0.7509 | 825 | 2.2183 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.3 - Pytorch 2.3.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3
Bharatdeep-H/stella_finetuned_en_dataset_stella_400_20_translated_query_v3_w_v_MAX_400
Bharatdeep-H
2025-03-01T04:46:57Z
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "new", "feature-extraction", "semantic-search", "sentence-similarity", "transformers", "finetuned", "semeval2024", "custom_code", "multilingual", "license:mit", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-03-01T04:40:45Z
--- language: multilingual tags: - sentence-transformers - semantic-search - sentence-similarity - transformers - finetuned - semeval2024 license: mit --- # Bharatdeep-H/stella_finetuned_en_dataset_stella_400_20_translated_query_v3_w_v_MAX_400 This model was fine-tuned for SemEval 2024 Task 7 on a multilingual fact-checking dataset for semantic search. ## Training The model was trained using positive and negative pairs from a multilingual fact-checking dataset. ## Usage ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('Bharatdeep-H/stella_finetuned_en_dataset_stella_400_20_translated_query_v3_w_v_MAX_400') ```
kk-aivio/18a882b9-3763-47f4-ad3c-743451ee247f
kk-aivio
2025-03-01T04:46:32Z
0
0
peft
[ "peft", "generated_from_trainer", "base_model:NousResearch/Nous-Hermes-2-Mistral-7B-DPO", "base_model:adapter:NousResearch/Nous-Hermes-2-Mistral-7B-DPO", "region:us" ]
null
2025-03-01T04:46:20Z
--- library_name: peft tags: - generated_from_trainer base_model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO model-index: - name: kk-aivio/18a882b9-3763-47f4-ad3c-743451ee247f results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kk-aivio/18a882b9-3763-47f4-ad3c-743451ee247f This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3346 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Daemontatox/mamba2hybrid
Daemontatox
2025-03-01T04:46:17Z
0
0
transformers
[ "transformers", "nvidia", "Megatron-LM", "Mamba", "Mamba-2", "SSM", "8B", "text-generation", "en", "arxiv:2406.07887", "arxiv:2405.21060", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-generation
2025-02-27T23:44:07Z
--- license: apache-2.0 language: - en pipeline_tag: text-generation tags: - nvidia - Megatron-LM - Mamba - Mamba-2 - SSM - 8B library_name: transformers --- # An Empirical Study of Mamba-based Language Models [Documentation](https://github.com/NVIDIA/Megatron-LM/tree/ssm/examples/mamba) &ensp; [Paper](https://arxiv.org/abs/2406.07887) &ensp; [Models](https://huggingface.co/collections/nvidia/ssms-666a362c5c3bb7e4a6bcfb9c) ## Overview We release the 8B-parameter [Mamba-2](https://arxiv.org/abs/2405.21060) and Mamba-2-Hybrid model (made of Mamba-2, attention, and MLP layers) trained for the paper [An Empirical Study of Mamba-based Language Models.](https://arxiv.org/abs/2406.07887). These models were trained for 3.5T tokens with a sequence length of 4K. These models can be compared to the released 8B-parameter Transformer trained on the same data with the same hyperparameters. We also release the 32K and 128K long-context extensions of Mamba-2-Hybrid. ### Model Version(s) `mamba2-hybrid-8b-3t-128k`: 8B-parameter Mamba-2-Hybrid model trained on 3.5T tokens extended to support 128K sequence lengths through continued pretraining on 50B tokens. ### Toolkit [Megatron-LM Framework](https://github.com/NVIDIA/Megatron-LM/tree/ssm/examples/mamba) # Citations See more details in our paper: [An Empirical Study of Mamba-based Language Models.](https://arxiv.org/abs/2406.07887) _Roger Waleffe, Wonmin Byeon, Duncan Riach, Brandon Norick, Vijay Korthikanti, Tri Dao, Albert Gu, Ali Hatamizadeh, Sudhakar Singh, Deepak Narayanan, Garvit Kulshreshtha, Vartika Singh, Jared Casper, Jan Kautz, Mohammad Shoeybi, Bryan Catanzaro._ (2024) Please cite the paper as follows if you use the models from this repo: ```bibtex @article{waleffe2024anempirical, title = {An Empirical Study of Mamba-based Language Models}, author = {Roger Waleffe and Wonmin Byeon and Duncan Riach and Brandon Norick and Vijay Korthikanti and Tri Dao and Albert Gu and Ali Hatamizadeh and Sudhakar Singh and Deepak Narayanan and Garvit Kulshreshtha and Vartika Singh and Jared Casper and Jan Kautz and Mohammad Shoeybi and Bryan Catanzaro}, year = {2024}, journal = {arXiv preprint arXiv: 2406.07887} } ```
srsuzume/suzume
srsuzume
2025-03-01T04:46:13Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-03-01T04:12:21Z
--- license: apache-2.0 ---
talismanic/fine_tuned_Qwen2.5-Code-3B-hq-only
talismanic
2025-03-01T04:42:05Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-01T04:13:36Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
eagle0504/qwen-2-5-3b-instruct-using-openai-gsm8k
eagle0504
2025-03-01T04:40:47Z
0
0
transformers
[ "transformers", "pytorch", "safetensors", "qwen2", "text-generation", "unsloth", "trl", "grpo", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-01T02:01:42Z
--- library_name: transformers tags: - unsloth - trl - grpo --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
sonakul/NLP-A5-st124738-dpo-gpt2
sonakul
2025-03-01T04:40:36Z
0
1
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-01T04:37:46Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
yahyaabd/allstats-search-large-v1-32-2
yahyaabd
2025-03-01T04:37:08Z
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:25580", "loss:OnlineContrastiveLoss", "dataset:yahyaabd/query-hard-pos-neg-doc-pairs-statictable", "arxiv:1908.10084", "base_model:denaya/indoSBERT-large", "base_model:finetune:denaya/indoSBERT-large", "model-index", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-03-01T04:35:59Z
--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:25580 - loss:OnlineContrastiveLoss base_model: denaya/indoSBERT-large widget: - source_sentence: ikhtisar arus kas triwulan 1, 2004 (miliar) sentences: - Balita (0-59 Bulan) Menurut Status Gizi, Tahun 1998-2005 - Perbandingan Indeks dan Tingkat Inflasi Desember 2023 Kota-kota di Luar Pulau Jawa dan Sumatera dengan Nasional (2018=100) - Rata-rata Konsumsi dan Pengeluaran Perkapita Seminggu Menurut Komoditi Makanan dan Golongan Pengeluaran per Kapita Seminggu di Provinsi Sulawesi Tengah, 2018-2023 - source_sentence: BaIgaimana gambaran neraca arus dana dUi Indonesia pada kuartal kedua tahun 2015? sentences: - Jumlah Sekolah, Guru, dan Murid Sekolah Menengah Pertama (SMP) di Bawah Kementrian Pendidikan dan Kebudayaan Menurut Provinsi 2011/2012-2015/2016 - Ringkasan Neraca Arus Dana Triwulan III Tahun 2003 (Miliar Rupiah) - Rata-rata Konsumsi dan Pengeluaran Perkapita Seminggu Menurut Komoditi Makanan dan Golongan Pengeluaran per Kapita Seminggu di Provinsi Sulawesi Tenggara, 2018-2023 - source_sentence: Berapa persen pengeluaran orang di kotaa untuk makanan vs non-makanan, per provinsi, 2018? sentences: - Ekspor Tanaman Obat, Aromatik, dan Rempah-Rempah menurut Negara Tujuan Utama, 2012-2023 - Rata-rata Pendapatan Bersih Pekerja Bebas Menurut Provinsi dan Pendidikan Tertinggi yang Ditamatkan (ribu rupiah), 2017 - IHK dan Rata-rata Upah per Bulan Buruh Industri di Bawah Mandor (Supervisor), 1996-2014 (1996=100) - source_sentence: Negara-negara asal impor crude oil dan produk turunannya tahun 2002-2023 sentences: - Persentase Pengeluaran Rata-rata per Kapita Sebulan Menurut Kelompok Barang, Indonesia, 1999, 2002-2023 - Rata-rata Pendapatan Bersih Berusaha Sendiri menurut Provinsi dan Pendidikan yang Ditamatkan (ribu rupiah), 2016 - Perkembangan Beberapa Agregat Pendapatan dan Pendapatan per Kapita Atas Dasar Harga Berlaku, 2010-2016 - source_sentence: Arus dana Q3 2006 sentences: - Posisi Simpanan Berjangka Rupiah pada Bank Umum dan BPR Menurut Golongan Pemilik (miliar rupiah), 2005-2018 - Ringkasan Neraca Arus Dana, Triwulan III, 2006, (Miliar Rupiah) - Rata-Rata Pengeluaran per Kapita Sebulan di Daerah Perkotaan Menurut Kelompok Barang dan Golongan Pengeluaran per Kapita Sebulan, 2000-2012 datasets: - yahyaabd/query-hard-pos-neg-doc-pairs-statictable pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - cosine_accuracy - cosine_accuracy_threshold - cosine_f1 - cosine_f1_threshold - cosine_precision - cosine_recall - cosine_ap - cosine_mcc model-index: - name: SentenceTransformer based on denaya/indoSBERT-large results: - task: type: binary-classification name: Binary Classification dataset: name: allstats semantic large v1 test type: allstats-semantic-large-v1_test metrics: - type: cosine_accuracy value: 0.9834364761558063 name: Cosine Accuracy - type: cosine_accuracy_threshold value: 0.7773222327232361 name: Cosine Accuracy Threshold - type: cosine_f1 value: 0.9745739033249511 name: Cosine F1 - type: cosine_f1_threshold value: 0.7773222327232361 name: Cosine F1 Threshold - type: cosine_precision value: 0.9748462828395752 name: Cosine Precision - type: cosine_recall value: 0.9743016759776536 name: Cosine Recall - type: cosine_ap value: 0.9959810762137397 name: Cosine Ap - type: cosine_mcc value: 0.9622916280716365 name: Cosine Mcc - task: type: binary-classification name: Binary Classification dataset: name: allstats semantic large v1 dev type: allstats-semantic-large-v1_dev metrics: - type: cosine_accuracy value: 0.9760905274685161 name: Cosine Accuracy - type: cosine_accuracy_threshold value: 0.7572722434997559 name: Cosine Accuracy Threshold - type: cosine_f1 value: 0.9640997533570841 name: Cosine F1 - type: cosine_f1_threshold value: 0.7572722434997559 name: Cosine F1 Threshold - type: cosine_precision value: 0.9386339381003201 name: Cosine Precision - type: cosine_recall value: 0.9909859154929578 name: Cosine Recall - type: cosine_ap value: 0.9953499585582108 name: Cosine Ap - type: cosine_mcc value: 0.9469795586519781 name: Cosine Mcc --- # SentenceTransformer based on denaya/indoSBERT-large This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [denaya/indoSBERT-large](https://huggingface.co/denaya/indoSBERT-large) on the [query-hard-pos-neg-doc-pairs-statictable](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable) dataset. It maps sentences & paragraphs to a 256-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [denaya/indoSBERT-large](https://huggingface.co/denaya/indoSBERT-large) <!-- at revision 5c64d43f07f7054dfbf33d226b3066414b6ebc4a --> - **Maximum Sequence Length:** 256 tokens - **Output Dimensionality:** 256 dimensions - **Similarity Function:** Cosine Similarity - **Training Dataset:** - [query-hard-pos-neg-doc-pairs-statictable](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable) <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Dense({'in_features': 1024, 'out_features': 256, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("yahyaabd/allstats-search-large-v1-32-2") # Run inference sentences = [ 'Arus dana Q3 2006', 'Ringkasan Neraca Arus Dana, Triwulan III, 2006, (Miliar Rupiah)', 'Rata-Rata Pengeluaran per Kapita Sebulan di Daerah Perkotaan Menurut Kelompok Barang dan Golongan Pengeluaran per Kapita Sebulan, 2000-2012', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 256] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Binary Classification * Datasets: `allstats-semantic-large-v1_test` and `allstats-semantic-large-v1_dev` * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator) | Metric | allstats-semantic-large-v1_test | allstats-semantic-large-v1_dev | |:--------------------------|:--------------------------------|:-------------------------------| | cosine_accuracy | 0.9834 | 0.9761 | | cosine_accuracy_threshold | 0.7773 | 0.7573 | | cosine_f1 | 0.9746 | 0.9641 | | cosine_f1_threshold | 0.7773 | 0.7573 | | cosine_precision | 0.9748 | 0.9386 | | cosine_recall | 0.9743 | 0.991 | | **cosine_ap** | **0.996** | **0.9953** | | cosine_mcc | 0.9623 | 0.947 | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### query-hard-pos-neg-doc-pairs-statictable * Dataset: [query-hard-pos-neg-doc-pairs-statictable](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable) at [7b28b96](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable/tree/7b28b964daa3073a4d012d1ffca46ecd4f26bb5f) * Size: 25,580 training samples * Columns: <code>query</code>, <code>doc</code>, and <code>label</code> * Approximate statistics based on the first 1000 samples: | | query | doc | label | |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------| | type | string | string | int | | details | <ul><li>min: 6 tokens</li><li>mean: 17.12 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 20.47 tokens</li><li>max: 42 tokens</li></ul> | <ul><li>0: ~70.80%</li><li>1: ~29.20%</li></ul> | * Samples: | query | doc | label | |:-------------------------------------------------------------------------|:----------------------------------------------|:---------------| | <code>Status pekerjaan utama penduduk usia 15+ yang bekerja, 2020</code> | <code>Jumlah Penghuni Lapas per Kanwil</code> | <code>0</code> | | <code>status pekerjaan utama penduduk usia 15+ yang bekerja, 2020</code> | <code>Jumlah Penghuni Lapas per Kanwil</code> | <code>0</code> | | <code>STATUS PEKERJAAN UTAMA PENDUDUK USIA 15+ YANG BEKERJA, 2020</code> | <code>Jumlah Penghuni Lapas per Kanwil</code> | <code>0</code> | * Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss) ### Evaluation Dataset #### query-hard-pos-neg-doc-pairs-statictable * Dataset: [query-hard-pos-neg-doc-pairs-statictable](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable) at [7b28b96](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable/tree/7b28b964daa3073a4d012d1ffca46ecd4f26bb5f) * Size: 5,479 evaluation samples * Columns: <code>query</code>, <code>doc</code>, and <code>label</code> * Approximate statistics based on the first 1000 samples: | | query | doc | label | |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------| | type | string | string | int | | details | <ul><li>min: 7 tokens</li><li>mean: 17.85 tokens</li><li>max: 35 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 21.2 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>0: ~71.50%</li><li>1: ~28.50%</li></ul> | * Samples: | query | doc | label | |:-----------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------|:---------------| | <code>Bagaimana perbandingan PNS pria dan wanita di berbagai golongan tahun 2014?</code> | <code>Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Lapangan Pekerjaan Utama (ribu rupiah), 2017</code> | <code>0</code> | | <code>bagaimana perbandingan pns pria dan wanita di berbagai golongan tahun 2014?</code> | <code>Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Lapangan Pekerjaan Utama (ribu rupiah), 2017</code> | <code>0</code> | | <code>BAGAIMANA PERBANDINGAN PNS PRIA DAN WANITA DI BERBAGAI GOLONGAN TAHUN 2014?</code> | <code>Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Lapangan Pekerjaan Utama (ribu rupiah), 2017</code> | <code>0</code> | * Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss) ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 32 - `num_train_epochs`: 2 - `warmup_ratio`: 0.1 - `fp16`: True - `load_best_model_at_end`: True - `eval_on_start`: True #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 32 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 2 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: True - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | Validation Loss | allstats-semantic-large-v1_test_cosine_ap | allstats-semantic-large-v1_dev_cosine_ap | |:--------:|:-------:|:-------------:|:---------------:|:-----------------------------------------:|:----------------------------------------:| | -1 | -1 | - | - | 0.9750 | - | | 0 | 0 | - | 0.1850 | - | 0.9766 | | 0.025 | 20 | 0.1581 | 0.1538 | - | 0.9789 | | 0.05 | 40 | 0.1898 | 0.1200 | - | 0.9848 | | 0.075 | 60 | 0.0647 | 0.1096 | - | 0.9855 | | 0.1 | 80 | 0.118 | 0.1242 | - | 0.9831 | | 0.125 | 100 | 0.0545 | 0.1301 | - | 0.9827 | | 0.15 | 120 | 0.0646 | 0.1114 | - | 0.9862 | | 0.175 | 140 | 0.0775 | 0.1005 | - | 0.9865 | | 0.2 | 160 | 0.0664 | 0.1234 | - | 0.9840 | | 0.225 | 180 | 0.067 | 0.1349 | - | 0.9850 | | 0.25 | 200 | 0.0823 | 0.1032 | - | 0.9877 | | 0.275 | 220 | 0.0895 | 0.1432 | - | 0.9808 | | 0.3 | 240 | 0.0666 | 0.1389 | - | 0.9809 | | 0.325 | 260 | 0.0872 | 0.1122 | - | 0.9844 | | 0.35 | 280 | 0.0551 | 0.1435 | - | 0.9838 | | 0.375 | 300 | 0.0919 | 0.1068 | - | 0.9886 | | 0.4 | 320 | 0.0437 | 0.0903 | - | 0.9861 | | 0.425 | 340 | 0.0619 | 0.1065 | - | 0.9850 | | 0.45 | 360 | 0.0469 | 0.1346 | - | 0.9844 | | 0.475 | 380 | 0.029 | 0.1351 | - | 0.9828 | | 0.5 | 400 | 0.0511 | 0.1123 | - | 0.9843 | | 0.525 | 420 | 0.0394 | 0.1434 | - | 0.9815 | | 0.55 | 440 | 0.0178 | 0.1577 | - | 0.9769 | | 0.575 | 460 | 0.047 | 0.1253 | - | 0.9796 | | 0.6 | 480 | 0.0066 | 0.1262 | - | 0.9791 | | 0.625 | 500 | 0.0383 | 0.1277 | - | 0.9814 | | 0.65 | 520 | 0.0084 | 0.1361 | - | 0.9845 | | 0.675 | 540 | 0.0409 | 0.1202 | - | 0.9872 | | 0.7 | 560 | 0.0372 | 0.1245 | - | 0.9854 | | 0.725 | 580 | 0.0353 | 0.1469 | - | 0.9817 | | 0.75 | 600 | 0.0429 | 0.1225 | - | 0.9836 | | 0.775 | 620 | 0.0595 | 0.1082 | - | 0.9862 | | 0.8 | 640 | 0.0266 | 0.0886 | - | 0.9903 | | 0.825 | 660 | 0.0178 | 0.0712 | - | 0.9918 | | **0.85** | **680** | **0.0567** | **0.0511** | **-** | **0.9936** | | 0.875 | 700 | 0.0142 | 0.0538 | - | 0.9916 | | 0.9 | 720 | 0.0136 | 0.0726 | - | 0.9890 | | 0.925 | 740 | 0.0192 | 0.0707 | - | 0.9884 | | 0.95 | 760 | 0.0253 | 0.0937 | - | 0.9872 | | 0.975 | 780 | 0.0149 | 0.0792 | - | 0.9878 | | 1.0 | 800 | 0.0231 | 0.0912 | - | 0.9879 | | 1.025 | 820 | 0.0 | 0.1030 | - | 0.9871 | | 1.05 | 840 | 0.0096 | 0.0990 | - | 0.9876 | | 1.075 | 860 | 0.0 | 0.1032 | - | 0.9868 | | 1.1 | 880 | 0.0 | 0.1037 | - | 0.9866 | | 1.125 | 900 | 0.0 | 0.1038 | - | 0.9866 | | 1.15 | 920 | 0.0 | 0.1038 | - | 0.9866 | | 1.175 | 940 | 0.0 | 0.1038 | - | 0.9866 | | 1.2 | 960 | 0.0121 | 0.1030 | - | 0.9895 | | 1.225 | 980 | 0.0 | 0.1035 | - | 0.9899 | | 1.25 | 1000 | 0.0 | 0.1040 | - | 0.9898 | | 1.275 | 1020 | 0.0 | 0.1049 | - | 0.9898 | | 1.3 | 1040 | 0.0 | 0.1049 | - | 0.9898 | | 1.325 | 1060 | 0.0067 | 0.1015 | - | 0.9903 | | 1.35 | 1080 | 0.0 | 0.1048 | - | 0.9901 | | 1.375 | 1100 | 0.0159 | 0.0956 | - | 0.9910 | | 1.4 | 1120 | 0.0067 | 0.0818 | - | 0.9926 | | 1.425 | 1140 | 0.0151 | 0.0838 | - | 0.9926 | | 1.45 | 1160 | 0.0 | 0.0889 | - | 0.9920 | | 1.475 | 1180 | 0.0 | 0.0894 | - | 0.9920 | | 1.5 | 1200 | 0.023 | 0.0696 | - | 0.9935 | | 1.525 | 1220 | 0.0 | 0.0693 | - | 0.9935 | | 1.55 | 1240 | 0.0 | 0.0711 | - | 0.9935 | | 1.575 | 1260 | 0.0 | 0.0711 | - | 0.9935 | | 1.6 | 1280 | 0.0 | 0.0711 | - | 0.9935 | | 1.625 | 1300 | 0.0176 | 0.0743 | - | 0.9936 | | 1.65 | 1320 | 0.0 | 0.0806 | - | 0.9931 | | 1.675 | 1340 | 0.0 | 0.0817 | - | 0.9931 | | 1.7 | 1360 | 0.007 | 0.0809 | - | 0.9929 | | 1.725 | 1380 | 0.0209 | 0.0700 | - | 0.9941 | | 1.75 | 1400 | 0.0068 | 0.0605 | - | 0.9949 | | 1.775 | 1420 | 0.0069 | 0.0564 | - | 0.9951 | | 1.8 | 1440 | 0.0097 | 0.0559 | - | 0.9953 | | 1.825 | 1460 | 0.0 | 0.0557 | - | 0.9953 | | 1.85 | 1480 | 0.0 | 0.0557 | - | 0.9953 | | 1.875 | 1500 | 0.0 | 0.0557 | - | 0.9953 | | 1.9 | 1520 | 0.0 | 0.0557 | - | 0.9953 | | 1.925 | 1540 | 0.0 | 0.0557 | - | 0.9953 | | 1.95 | 1560 | 0.0089 | 0.0544 | - | 0.9953 | | 1.975 | 1580 | 0.0 | 0.0544 | - | 0.9953 | | 2.0 | 1600 | 0.0 | 0.0544 | - | 0.9953 | | -1 | -1 | - | - | 0.9960 | - | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 3.4.0 - Transformers: 4.48.1 - PyTorch: 2.5.1+cu124 - Accelerate: 1.3.0 - Datasets: 3.2.0 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
PrunaAI/Salesforce-xgen-7b-8k-base-bnb-8bit-smashed
PrunaAI
2025-03-01T04:35:37Z
0
0
null
[ "safetensors", "llama", "pruna-ai", "8-bit", "bitsandbytes", "region:us" ]
null
2025-03-01T04:28:05Z
--- thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg" base_model: ORIGINAL_REPO_NAME metrics: - memory_disk - memory_inference - inference_latency - inference_throughput - inference_CO2_emissions - inference_energy_consumption tags: - pruna-ai --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer"> <img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </a> </div> <!-- header end --> [![Twitter](https://img.shields.io/twitter/follow/PrunaAI?style=social)](https://twitter.com/PrunaAI) [![GitHub](https://img.shields.io/github/followers/PrunaAI?label=Follow%20%40PrunaAI&style=social)](https://github.com/PrunaAI) [![LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue)](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-blue?style=social&logo=discord)](https://discord.gg/rskEr4BZJx) # Simply make AI models cheaper, smaller, faster, and greener! - Give a thumbs up if you like this model! - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact). - Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). - Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/) - Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help. ## Results ![image info](./plots.png) **Frequently Asked Questions** - ***How does the compression work?*** The model is compressed with llm-int8. - ***How does the model quality change?*** The quality of the model output might vary compared to the base model. - ***How is the model efficiency evaluated?*** These results were obtained with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you. - ***What is the model format?*** We use safetensors. - ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data. - ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model. - ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). - ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads. - ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases. ## Setup You can run the smashed model with these steps: 0. Check requirements from the original repo ORIGINAL_REPO_NAME installed. In particular, check python, cuda, and transformers versions. 1. Make sure that you have installed quantization related packages. ```bash pip install transformers accelerate bitsandbytes>0.37.0 ``` 2. Load & run the model. ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("PrunaAI/Salesforce-xgen-7b-8k-base-bnb-8bit-smashed", trust_remote_code=True, device_map='auto') tokenizer = AutoTokenizer.from_pretrained("ORIGINAL_REPO_NAME") input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"] outputs = model.generate(input_ids, max_new_tokens=216) tokenizer.decode(outputs[0]) ``` ## Configurations The configuration info are in `smash_config.json`. ## Credits & License The license of the smashed model follows the license of the original model. Please check the license of the original model ORIGINAL_REPO_NAME before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi. ## Want to compress other models? - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact). - Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
Jaypen/AHOF_models_by_HG0
Jaypen
2025-03-01T04:33:31Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-02-01T10:09:28Z
--- license: apache-2.0 ---
mradermacher/DeepSeek-R1-Medical-o1-COT-GGUF
mradermacher
2025-03-01T04:33:18Z
323
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "llama", "trl", "sft", "en", "dataset:FreedomIntelligence/medical-o1-reasoning-SFT", "base_model:eugrug-60/DeepSeek-R1-Medical-o1-COT", "base_model:quantized:eugrug-60/DeepSeek-R1-Medical-o1-COT", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-02-16T04:09:33Z
--- base_model: eugrug-60/DeepSeek-R1-Medical-o1-COT datasets: - FreedomIntelligence/medical-o1-reasoning-SFT language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - text-generation-inference - transformers - unsloth - llama - trl - sft --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/eugrug-60/DeepSeek-R1-Medical-o1-COT <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/DeepSeek-R1-Medical-o1-COT-GGUF/resolve/main/DeepSeek-R1-Medical-o1-COT.Q2_K.gguf) | Q2_K | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/DeepSeek-R1-Medical-o1-COT-GGUF/resolve/main/DeepSeek-R1-Medical-o1-COT.Q3_K_S.gguf) | Q3_K_S | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/DeepSeek-R1-Medical-o1-COT-GGUF/resolve/main/DeepSeek-R1-Medical-o1-COT.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/DeepSeek-R1-Medical-o1-COT-GGUF/resolve/main/DeepSeek-R1-Medical-o1-COT.Q3_K_L.gguf) | Q3_K_L | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/DeepSeek-R1-Medical-o1-COT-GGUF/resolve/main/DeepSeek-R1-Medical-o1-COT.IQ4_XS.gguf) | IQ4_XS | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/DeepSeek-R1-Medical-o1-COT-GGUF/resolve/main/DeepSeek-R1-Medical-o1-COT.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/DeepSeek-R1-Medical-o1-COT-GGUF/resolve/main/DeepSeek-R1-Medical-o1-COT.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/DeepSeek-R1-Medical-o1-COT-GGUF/resolve/main/DeepSeek-R1-Medical-o1-COT.Q5_K_S.gguf) | Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/DeepSeek-R1-Medical-o1-COT-GGUF/resolve/main/DeepSeek-R1-Medical-o1-COT.Q5_K_M.gguf) | Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/DeepSeek-R1-Medical-o1-COT-GGUF/resolve/main/DeepSeek-R1-Medical-o1-COT.Q6_K.gguf) | Q6_K | 6.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/DeepSeek-R1-Medical-o1-COT-GGUF/resolve/main/DeepSeek-R1-Medical-o1-COT.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/DeepSeek-R1-Medical-o1-COT-GGUF/resolve/main/DeepSeek-R1-Medical-o1-COT.f16.gguf) | f16 | 16.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
PrunaAI/01-ai-Yi-6B-HQQ-8bit-smashed
PrunaAI
2025-03-01T04:30:54Z
2
0
null
[ "llama", "pruna-ai", "hqq", "region:us" ]
null
2025-02-18T18:57:10Z
--- thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg" base_model: ORIGINAL_REPO_NAME metrics: - memory_disk - memory_inference - inference_latency - inference_throughput - inference_CO2_emissions - inference_energy_consumption tags: - pruna-ai --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer"> <img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </a> </div> <!-- header end --> [![Twitter](https://img.shields.io/twitter/follow/PrunaAI?style=social)](https://twitter.com/PrunaAI) [![GitHub](https://img.shields.io/github/followers/PrunaAI?label=Follow%20%40PrunaAI&style=social)](https://github.com/PrunaAI) [![LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue)](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-blue?style=social&logo=discord)](https://discord.gg/rskEr4BZJx) # Simply make AI models cheaper, smaller, faster, and greener! - Give a thumbs up if you like this model! - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact). - Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). - Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/) - Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help. ## Results ![image info](./plots.png) **Frequently Asked Questions** - ***How does the compression work?*** The model is compressed with hqq. - ***How does the model quality change?*** The quality of the model output might vary compared to the base model. - ***How is the model efficiency evaluated?*** These results were obtained with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you. - ***What is the model format?*** We use safetensors. - ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data. - ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model. - ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). - ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads. - ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases. ## Setup You can run the smashed model with these steps: 0. Check requirements from the original repo ORIGINAL_REPO_NAME installed. In particular, check python, cuda, and transformers versions. 1. Make sure that you have installed quantization related packages. ```bash pip install hqq ``` 2. Load & run the model. ```python from transformers import AutoModelForCausalLM, AutoTokenizer from hqq.engine.hf import HQQModelForCausalLM from hqq.models.hf.base import AutoHQQHFModel try: model = HQQModelForCausalLM.from_quantized("PrunaAI/01-ai-Yi-6B-HQQ-8bit-smashed", device_map='auto') except: model = AutoHQQHFModel.from_quantized("PrunaAI/01-ai-Yi-6B-HQQ-8bit-smashed") tokenizer = AutoTokenizer.from_pretrained("ORIGINAL_REPO_NAME") input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"] outputs = model.generate(input_ids, max_new_tokens=216) tokenizer.decode(outputs[0]) ``` ## Configurations The configuration info are in `smash_config.json`. ## Credits & License The license of the smashed model follows the license of the original model. Please check the license of the original model ORIGINAL_REPO_NAME before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi. ## Want to compress other models? - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact). - Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).