modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-06-05 12:28:32
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
468 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-06-05 12:27:45
card
stringlengths
11
1.01M
airKlizz/mt5-base-wikinewssum-english-100
airKlizz
2021-12-31T12:02:27Z
14
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "summarization", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: mt5-base-wikinewssum-english-100 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-base-wikinewssum-english-100 This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 6.6225 - Rouge1: 3.909 - Rouge2: 0.9312 - Rougel: 3.3835 - Rougelsum: 3.7786 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | No log | 0.96 | 12 | 14.4949 | 2.7398 | 0.7181 | 2.491 | 2.6561 | | No log | 1.96 | 24 | 10.5056 | 4.4428 | 1.4293 | 3.8469 | 4.2869 | | No log | 2.96 | 36 | 8.9856 | 4.1179 | 1.229 | 3.5726 | 3.9693 | | No log | 3.96 | 48 | 7.7950 | 3.9217 | 1.1339 | 3.4256 | 3.7905 | | No log | 4.96 | 60 | 7.0734 | 3.8004 | 1.0326 | 3.3246 | 3.6766 | | No log | 5.96 | 72 | 6.7897 | 3.6351 | 0.9162 | 3.1839 | 3.5149 | | No log | 6.96 | 84 | 6.6610 | 3.7486 | 0.8829 | 3.2583 | 3.6193 | | No log | 7.96 | 96 | 6.6225 | 3.909 | 0.9312 | 3.3835 | 3.7786 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.1 - Datasets 1.16.1 - Tokenizers 0.10.3
Muennighoff/SBERT-base-nli-stsb-v2
Muennighoff
2021-12-31T07:59:14Z
4
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "license:apache-2.0", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:04Z
--- pipeline_tag: sentence-similarity license: apache-2.0 tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- This model is used in "TSDAE: Using Transformer-based Sequential Denoising Auto-Encoder for Unsupervised Sentence Embedding Learning".
federicopascual/finetuning-sentiment-analysis-model-3000-samples
federicopascual
2021-12-30T20:32:34Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-analysis-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8733333333333333 - name: F1 type: f1 value: 0.88125 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-analysis-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3130 - Accuracy: 0.8733 - F1: 0.8812 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
federicopascual/finetune-sentiment-analysis-model-3000-samples
federicopascual
2021-12-30T19:29:48Z
25
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetune-sentiment-analysis-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8866666666666667 - name: F1 type: f1 value: 0.8944099378881988 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetune-sentiment-analysis-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.4558 - Accuracy: 0.8867 - F1: 0.8944 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
davanstrien/flyswot-test
davanstrien
2021-12-30T16:35:07Z
0
0
null
[ "onnx", "region:us" ]
null
2022-03-02T23:29:05Z
# flyswot ## Model description In progress model for detecting 'fake' flysheets ## Intended uses & limitations Not currently intended for public consumption... #### Limitations and bias Not currently intended for public consumption... ## Training data TODO ## Eval results
pinecone/bert-medqp-cross-encoder
pinecone
2021-12-30T12:11:30Z
7
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
# Med-QP Cross Encoder Demo model for use as part of Augmented SBERT chapters of the [NLP for Semantic Search course](https://www.pinecone.io/learn/nlp).
pinecone/bert-stsb-cross-encoder
pinecone
2021-12-30T12:11:03Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
# STSb Cross Encoder Demo model for use as part of Augmented SBERT chapters of the [NLP for Semantic Search course](https://www.pinecone.io/learn/nlp).
rkmt/wav2vec2-base-timit-demo-colab
rkmt
2021-12-30T00:39:31Z
6
1
transformers
[ "transformers", "pytorch", "tensorboard", "hubert", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/hubert-large-ls960-ft](https://huggingface.co/facebook/hubert-large-ls960-ft) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0280 - Wer: 0.0082 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.1152 | 1.42 | 500 | 0.0416 | 0.0159 | | 0.0803 | 2.83 | 1000 | 0.0372 | 0.0144 | | 0.0672 | 4.25 | 1500 | 0.0345 | 0.0119 | | 0.0564 | 5.67 | 2000 | 0.0338 | 0.0106 | | 0.0513 | 7.08 | 2500 | 0.0307 | 0.0100 | | 0.0448 | 8.5 | 3000 | 0.0343 | 0.0098 | | 0.0374 | 9.92 | 3500 | 0.0300 | 0.0084 | | 0.0368 | 11.33 | 4000 | 0.0314 | 0.0086 | | 0.0388 | 12.75 | 4500 | 0.0283 | 0.0089 | | 0.0277 | 14.16 | 5000 | 0.0302 | 0.0089 | | 0.0298 | 15.58 | 5500 | 0.0298 | 0.0089 | | 0.0271 | 17.0 | 6000 | 0.0320 | 0.0098 | | 0.024 | 18.41 | 6500 | 0.0286 | 0.0088 | | 0.0236 | 19.83 | 7000 | 0.0284 | 0.0084 | | 0.0238 | 21.25 | 7500 | 0.0290 | 0.0086 | | 0.0227 | 22.66 | 8000 | 0.0284 | 0.0093 | | 0.0198 | 24.08 | 8500 | 0.0280 | 0.0088 | | 0.0225 | 25.5 | 9000 | 0.0281 | 0.0086 | | 0.018 | 26.91 | 9500 | 0.0280 | 0.0082 | | 0.0178 | 28.33 | 10000 | 0.0280 | 0.0082 | | 0.0209 | 29.75 | 10500 | 0.0280 | 0.0082 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.9.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
lgris/distilxlsr_bp_8-12
lgris
2021-12-30T00:37:53Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "feature-extraction", "speech", "pt", "arxiv:2110.01900", "license:apache-2.0", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- language: pt tags: - speech license: apache-2.0 --- # DistilXLSR-53 for BP [DistilXLSR-53 for BP: DistilHuBERT applied to Wav2vec XLSR-53 for Brazilian Portuguese](https://github.com/s3prl/s3prl/tree/master/s3prl/upstream/distiller) The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. **Note**: This model does not have a tokenizer as it was pretrained on audio alone. In order to use this model **speech recognition**, a tokenizer should be created and the model should be fine-tuned on labeled text data. Check out [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more in-detail explanation of how to fine-tune the model. Paper: [DistilHuBERT: Speech Representation Learning by Layer-wise Distillation of Hidden-unit BERT](https://arxiv.org/abs/2110.01900) Authors: Heng-Jui Chang, Shu-wen Yang, Hung-yi Lee **Note 2**: The XLSR-53 model was distilled using [Brazilian Portuguese Datasets](https://huggingface.co/lgris/bp400-xlsr) for test purposes. The dataset is quite small to perform such task (the performance might not be so good as the [original work](https://arxiv.org/abs/2110.01900)). **Abstract** Self-supervised speech representation learning methods like wav2vec 2.0 and Hidden-unit BERT (HuBERT) leverage unlabeled speech data for pre-training and offer good representations for numerous speech processing tasks. Despite the success of these methods, they require large memory and high pre-training costs, making them inaccessible for researchers in academia and small companies. Therefore, this paper introduces DistilHuBERT, a novel multi-task learning framework to distill hidden representations from a HuBERT model directly. This method reduces HuBERT's size by 75% and 73% faster while retaining most performance in ten different tasks. Moreover, DistilHuBERT required little training time and data, opening the possibilities of pre-training personal and on-device SSL models for speech. # Usage See [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more information on how to fine-tune the model.
Ketzu/koelectra-sts-v0.4
Ketzu
2021-12-29T23:31:59Z
15
0
transformers
[ "transformers", "pytorch", "tensorboard", "electra", "text-classification", "generated_from_trainer", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- tags: - generated_from_trainer metrics: - spearmanr model-index: - name: koelectra-sts-v0.4 results: - task: name: Text Classification type: text-classification metrics: - name: Spearmanr type: spearmanr value: 0.9286505242442783 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # koelectra-sts-v0.4 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3368 - Pearson: 0.9303 - Spearmanr: 0.9287 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:| | 0.0345 | 1.0 | 730 | 0.3368 | 0.9303 | 0.9287 | | 0.0343 | 2.0 | 1460 | 0.3368 | 0.9303 | 0.9287 | | 0.0337 | 3.0 | 2190 | 0.3368 | 0.9303 | 0.9287 | | 0.0345 | 4.0 | 2920 | 0.3368 | 0.9303 | 0.9287 | | 0.0347 | 5.0 | 3650 | 0.3368 | 0.9303 | 0.9287 | ### Framework versions - Transformers 4.10.0 - Pytorch 1.10.1+cu113 - Datasets 1.17.0 - Tokenizers 0.10.3
BigSalmon/InformalToFormalLincoln17
BigSalmon
2021-12-29T21:25:31Z
10
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
Informal to Formal: ``` from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln17") model = AutoModelWithLMHead.from_pretrained("BigSalmon/InformalToFormalLincoln17") ``` ``` https://huggingface.co/spaces/BigSalmon/GPT2 (The model for this space changes over time) ``` ``` https://huggingface.co/spaces/BigSalmon/GPT2_Most_Probable (The model for this space changes over time) ``` ``` How To Make Prompt: informal english: i am very ready to do that just that. Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end. Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task. informal english: space is huge and needs to be explored. Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless. Translated into the Style of Abraham Lincoln: space is a ( limitless / boundless ) expanse, a vast virgin domain awaiting exploration. informal english: corn fields are all across illinois, visible once you leave chicago. Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago. informal english: ````
pierreguillou/ner-bert-large-cased-pt-lenerbr
pierreguillou
2021-12-29T19:33:17Z
165
20
transformers
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "pt", "dataset:lener_br", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - pt tags: - generated_from_trainer datasets: - lener_br metrics: - precision - recall - f1 - accuracy model-index: - name: checkpoints results: - task: name: Token Classification type: token-classification dataset: name: lener_br type: lener_br metrics: - name: F1 type: f1 value: 0.9082022949426265 - name: Precision type: precision value: 0.8975220495590088 - name: Recall type: recall value: 0.9191397849462366 - name: Accuracy type: accuracy value: 0.9808310603867311 - name: Loss type: loss value: 0.1228889599442482 widget: - text: "Ao Instituto Médico Legal da jurisdição do acidente ou da residência cumpre fornecer, no prazo de 90 dias, laudo à vítima (art. 5, § 5, Lei n. 6.194/74 de 19 de dezembro de 1974), função técnica que pode ser suprida por prova pericial realizada por ordem do juízo da causa, ou por prova técnica realizada no âmbito administrativo que se mostre coerente com os demais elementos de prova constante dos autos." - text: "Acrescento que não há de se falar em violação do artigo 114, § 3º, da Constituição Federal, posto que referido dispositivo revela-se impertinente, tratando da possibilidade de ajuizamento de dissídio coletivo pelo Ministério Público do Trabalho nos casos de greve em atividade essencial." - text: "Todavia, entendo que extrair da aludida norma o sentido expresso na redação acima implica desconstruir o significado do texto constitucional, o que é absolutamente vedado ao intérprete. Nesse sentido, cito Dimitri Dimoulis: ‘(...) ao intérprete não é dado escolher significados que não estejam abarcados pela moldura da norma. Interpretar não pode significar violentar a norma.’ (Positivismo Jurídico. São Paulo: Método, 2006, p. 220).59. Dessa forma, deve-se tomar o sentido etimológico como limite da atividade interpretativa, a qual não pode superado, a ponto de destruir a própria norma a ser interpretada. Ou, como diz Konrad Hesse, ‘o texto da norma é o limite insuperável da atividade interpretativa.’ (Elementos de Direito Constitucional da República Federal da Alemanha, Porto Alegre: Sergio Antonio Fabris, 2003, p. 71)." --- ## (BERT large) NER model in the legal domain in Portuguese (LeNER-Br) **ner-bert-large-portuguese-cased-lenerbr** is a NER model (token classification) in the legal domain in Portuguese that was finetuned on 20/12/2021 in Google Colab from the model [pierreguillou/bert-large-cased-pt-lenerbr](https://huggingface.co/pierreguillou/bert-large-cased-pt-lenerbr) on the dataset [LeNER_br](https://huggingface.co/datasets/lener_br) by using a NER objective. Due to the small size of the finetuning dataset, the model overfitted before to reach the end of training. Here are the overall final metrics on the validation dataset (*note: see the paragraph "Validation metrics by Named Entity" to get detailed metrics*): - **f1**: 0.9082022949426265 - **precision**: 0.8975220495590088 - **recall**: 0.9191397849462366 - **accuracy**: 0.9808310603867311 - **loss**: 0.1228889599442482 Check as well the [base version of this model](https://huggingface.co/pierreguillou/ner-bert-base-cased-pt-lenerbr) with a f1 of 0.893. **Note**: the model [pierreguillou/bert-large-cased-pt-lenerbr](https://huggingface.co/pierreguillou/bert-large-cased-pt-lenerbr) is a language model that was created through the finetuning of the model [BERTimbau large](https://huggingface.co/neuralmind/bert-large-portuguese-cased) on the dataset [LeNER-Br language modeling](https://huggingface.co/datasets/pierreguillou/lener_br_finetuning_language_model) by using a MASK objective. This first specialization of the language model before finetuning on the NER task allows to get a better NER model. ## Blog post [NLP | Modelos e Web App para Reconhecimento de Entidade Nomeada (NER) no domínio jurídico brasileiro](https://medium.com/@pierre_guillou/nlp-modelos-e-web-app-para-reconhecimento-de-entidade-nomeada-ner-no-dom%C3%ADnio-jur%C3%ADdico-b658db55edfb) (29/12/2021) ## Widget & App You can test this model into the widget of this page. Use as well the [NER App](https://huggingface.co/spaces/pierreguillou/ner-bert-pt-lenerbr) that allows comparing the 2 BERT models (base and large) fitted in the NER task with the legal LeNER-Br dataset. ## Using the model for inference in production ```` # install pytorch: check https://pytorch.org/ # !pip install transformers from transformers import AutoModelForTokenClassification, AutoTokenizer import torch # parameters model_name = "pierreguillou/ner-bert-large-cased-pt-lenerbr" model = AutoModelForTokenClassification.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) input_text = "Acrescento que não há de se falar em violação do artigo 114, § 3º, da Constituição Federal, posto que referido dispositivo revela-se impertinente, tratando da possibilidade de ajuizamento de dissídio coletivo pelo Ministério Público do Trabalho nos casos de greve em atividade essencial." # tokenization inputs = tokenizer(input_text, max_length=512, truncation=True, return_tensors="pt") tokens = inputs.tokens() # get predictions outputs = model(**inputs).logits predictions = torch.argmax(outputs, dim=2) # print predictions for token, prediction in zip(tokens, predictions[0].numpy()): print((token, model.config.id2label[prediction])) ```` You can use pipeline, too. However, it seems to have an issue regarding to the max_length of the input sequence. ```` !pip install transformers import transformers from transformers import pipeline model_name = "pierreguillou/ner-bert-large-cased-pt-lenerbr" ner = pipeline( "ner", model=model_name ) ner(input_text) ```` ## Training procedure ### Notebook The notebook of finetuning ([HuggingFace_Notebook_token_classification_NER_LeNER_Br.ipynb](https://github.com/piegu/language-models/blob/master/HuggingFace_Notebook_token_classification_NER_LeNER_Br.ipynb)) is in github. ### Hyperparameters # batch, learning rate... - per_device_batch_size = 2 - gradient_accumulation_steps = 2 - learning_rate = 2e-5 - num_train_epochs = 10 - weight_decay = 0.01 - optimizer = AdamW - betas = (0.9,0.999) - epsilon = 1e-08 - lr_scheduler_type = linear - seed = 42 # save model & load best model - save_total_limit = 7 - logging_steps = 500 - eval_steps = logging_steps - evaluation_strategy = 'steps' - logging_strategy = 'steps' - save_strategy = 'steps' - save_steps = logging_steps - load_best_model_at_end = True - fp16 = True # get best model through a metric - metric_for_best_model = 'eval_f1' - greater_is_better = True ### Training results ```` Num examples = 7828 Num Epochs = 20 Instantaneous batch size per device = 2 Total train batch size (w. parallel, distributed & accumulation) = 4 Gradient Accumulation steps = 2 Total optimization steps = 39140 Step Training Loss Validation Loss Precision Recall F1 Accuracy 500 0.250000 0.140582 0.760833 0.770323 0.765548 0.963125 1000 0.076200 0.117882 0.829082 0.817849 0.823428 0.966569 1500 0.082400 0.150047 0.679610 0.914624 0.779795 0.957213 2000 0.047500 0.133443 0.817678 0.857419 0.837077 0.969190 2500 0.034200 0.230139 0.895672 0.845591 0.869912 0.964070 3000 0.033800 0.108022 0.859225 0.887312 0.873043 0.973700 3500 0.030100 0.113467 0.855747 0.885376 0.870310 0.975879 4000 0.029900 0.118619 0.850207 0.884946 0.867229 0.974477 4500 0.022500 0.124327 0.841048 0.890968 0.865288 0.975041 5000 0.020200 0.129294 0.801538 0.918925 0.856227 0.968077 5500 0.019700 0.128344 0.814222 0.908602 0.858827 0.969250 6000 0.024600 0.182563 0.908087 0.866882 0.887006 0.968565 6500 0.012600 0.159217 0.829883 0.913763 0.869806 0.969357 7000 0.020600 0.183726 0.854557 0.893333 0.873515 0.966447 7500 0.014400 0.141395 0.777716 0.905161 0.836613 0.966828 8000 0.013400 0.139378 0.873042 0.899140 0.885899 0.975772 8500 0.014700 0.142521 0.864152 0.901505 0.882433 0.976366 9000 0.010900 0.122889 0.897522 0.919140 0.908202 0.980831 9500 0.013500 0.143407 0.816580 0.906667 0.859268 0.973395 10000 0.010400 0.144946 0.835608 0.908387 0.870479 0.974629 10500 0.007800 0.143086 0.847587 0.910108 0.877735 0.975985 11000 0.008200 0.156379 0.873778 0.884301 0.879008 0.976321 11500 0.008200 0.133356 0.901193 0.910108 0.905628 0.980328 12000 0.006900 0.133476 0.892202 0.920215 0.905992 0.980572 12500 0.006900 0.129991 0.890159 0.904516 0.897280 0.978683 ```` ### Validation metrics by Named Entity ```` {'JURISPRUDENCIA': {'f1': 0.8135593220338984, 'number': 657, 'precision': 0.865979381443299, 'recall': 0.7671232876712328}, 'LEGISLACAO': {'f1': 0.8888888888888888, 'number': 571, 'precision': 0.8952042628774423, 'recall': 0.882661996497373}, 'LOCAL': {'f1': 0.850467289719626, 'number': 194, 'precision': 0.7777777777777778, 'recall': 0.9381443298969072}, 'ORGANIZACAO': {'f1': 0.8740635033892258, 'number': 1340, 'precision': 0.8373205741626795, 'recall': 0.914179104477612}, 'PESSOA': {'f1': 0.9836677554829678, 'number': 1072, 'precision': 0.9841269841269841, 'recall': 0.9832089552238806}, 'TEMPO': {'f1': 0.9669669669669669, 'number': 816, 'precision': 0.9481743227326266, 'recall': 0.9865196078431373}, 'overall_accuracy': 0.9808310603867311, 'overall_f1': 0.9082022949426265, 'overall_precision': 0.8975220495590088, 'overall_recall': 0.9191397849462366} ````
pierreguillou/ner-bert-base-cased-pt-lenerbr
pierreguillou
2021-12-29T19:32:39Z
108,865
15
transformers
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "pt", "dataset:lener_br", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - pt tags: - generated_from_trainer datasets: - lener_br metrics: - precision - recall - f1 - accuracy model-index: - name: checkpoints results: - task: name: Token Classification type: token-classification dataset: name: lener_br type: lener_br metrics: - name: F1 type: f1 value: 0.8926146010186757 - name: Precision type: precision value: 0.8810222036028488 - name: Recall type: recall value: 0.9045161290322581 - name: Accuracy type: accuracy value: 0.9759397808828684 - name: Loss type: loss value: 0.18803243339061737 widget: - text: "Ao Instituto Médico Legal da jurisdição do acidente ou da residência cumpre fornecer, no prazo de 90 dias, laudo à vítima (art. 5, § 5, Lei n. 6.194/74 de 19 de dezembro de 1974), função técnica que pode ser suprida por prova pericial realizada por ordem do juízo da causa, ou por prova técnica realizada no âmbito administrativo que se mostre coerente com os demais elementos de prova constante dos autos." - text: "Acrescento que não há de se falar em violação do artigo 114, § 3º, da Constituição Federal, posto que referido dispositivo revela-se impertinente, tratando da possibilidade de ajuizamento de dissídio coletivo pelo Ministério Público do Trabalho nos casos de greve em atividade essencial." - text: "Dispõe sobre o estágio de estudantes; altera a redação do art. 428 da Consolidação das Leis do Trabalho – CLT, aprovada pelo Decreto-Lei no 5.452, de 1o de maio de 1943, e a Lei no 9.394, de 20 de dezembro de 1996; revoga as Leis nos 6.494, de 7 de dezembro de 1977, e 8.859, de 23 de março de 1994, o parágrafo único do art. 82 da Lei no 9.394, de 20 de dezembro de 1996, e o art. 6o da Medida Provisória no 2.164-41, de 24 de agosto de 2001; e dá outras providências." --- ## (BERT base) NER model in the legal domain in Portuguese (LeNER-Br) **ner-bert-base-portuguese-cased-lenerbr** is a NER model (token classification) in the legal domain in Portuguese that was finetuned on 20/12/2021 in Google Colab from the model [pierreguillou/bert-base-cased-pt-lenerbr](https://huggingface.co/pierreguillou/bert-base-cased-pt-lenerbr) on the dataset [LeNER_br](https://huggingface.co/datasets/lener_br) by using a NER objective. Due to the small size of BERTimbau base and finetuning dataset, the model overfitted before to reach the end of training. Here are the overall final metrics on the validation dataset (*note: see the paragraph "Validation metrics by Named Entity" to get detailed metrics*): - **f1**: 0.8926146010186757 - **precision**: 0.8810222036028488 - **recall**: 0.9045161290322581 - **accuracy**: 0.9759397808828684 - **loss**: 0.18803243339061737 Check as well the [large version of this model](https://huggingface.co/pierreguillou/ner-bert-large-cased-pt-lenerbr) with a f1 of 0.908. **Note**: the model [pierreguillou/bert-base-cased-pt-lenerbr](https://huggingface.co/pierreguillou/bert-base-cased-pt-lenerbr) is a language model that was created through the finetuning of the model [BERTimbau base](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on the dataset [LeNER-Br language modeling](https://huggingface.co/datasets/pierreguillou/lener_br_finetuning_language_model) by using a MASK objective. This first specialization of the language model before finetuning on the NER task improved a bit the model quality. To prove it, here are the results of the NER model finetuned from the model [BERTimbau base](https://huggingface.co/neuralmind/bert-base-portuguese-cased) (a non-specialized language model): - **f1**: 0.8716487228203504 - **precision**: 0.8559286898839138 - **recall**: 0.8879569892473118 - **accuracy**: 0.9755893153732458 - **loss**: 0.1133928969502449 ## Blog post [NLP | Modelos e Web App para Reconhecimento de Entidade Nomeada (NER) no domínio jurídico brasileiro](https://medium.com/@pierre_guillou/nlp-modelos-e-web-app-para-reconhecimento-de-entidade-nomeada-ner-no-dom%C3%ADnio-jur%C3%ADdico-b658db55edfb) (29/12/2021) ## Widget & App You can test this model into the widget of this page. Use as well the [NER App](https://huggingface.co/spaces/pierreguillou/ner-bert-pt-lenerbr) that allows comparing the 2 BERT models (base and large) fitted in the NER task with the legal LeNER-Br dataset. ## Using the model for inference in production ```` # install pytorch: check https://pytorch.org/ # !pip install transformers from transformers import AutoModelForTokenClassification, AutoTokenizer import torch # parameters model_name = "pierreguillou/ner-bert-base-cased-pt-lenerbr" model = AutoModelForTokenClassification.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) input_text = "Acrescento que não há de se falar em violação do artigo 114, § 3º, da Constituição Federal, posto que referido dispositivo revela-se impertinente, tratando da possibilidade de ajuizamento de dissídio coletivo pelo Ministério Público do Trabalho nos casos de greve em atividade essencial." # tokenization inputs = tokenizer(input_text, max_length=512, truncation=True, return_tensors="pt") tokens = inputs.tokens() # get predictions outputs = model(**inputs).logits predictions = torch.argmax(outputs, dim=2) # print predictions for token, prediction in zip(tokens, predictions[0].numpy()): print((token, model.config.id2label[prediction])) ```` You can use pipeline, too. However, it seems to have an issue regarding to the max_length of the input sequence. ```` !pip install transformers import transformers from transformers import pipeline model_name = "pierreguillou/ner-bert-base-cased-pt-lenerbr" ner = pipeline( "ner", model=model_name ) ner(input_text) ```` ## Training procedure ### Notebook The notebook of finetuning ([HuggingFace_Notebook_token_classification_NER_LeNER_Br.ipynb](https://github.com/piegu/language-models/blob/master/HuggingFace_Notebook_token_classification_NER_LeNER_Br.ipynb)) is in github. ### Hyperparameters #### batch, learning rate... - per_device_batch_size = 2 - gradient_accumulation_steps = 2 - learning_rate = 2e-5 - num_train_epochs = 10 - weight_decay = 0.01 - optimizer = AdamW - betas = (0.9,0.999) - epsilon = 1e-08 - lr_scheduler_type = linear - seed = 7 #### save model & load best model - save_total_limit = 2 - logging_steps = 300 - eval_steps = logging_steps - evaluation_strategy = 'steps' - logging_strategy = 'steps' - save_strategy = 'steps' - save_steps = logging_steps - load_best_model_at_end = True - fp16 = True #### get best model through a metric - metric_for_best_model = 'eval_f1' - greater_is_better = True ### Training results ```` Num examples = 7828 Num Epochs = 10 Instantaneous batch size per device = 2 Total train batch size (w. parallel, distributed & accumulation) = 4 Gradient Accumulation steps = 2 Total optimization steps = 19570 Step Training Loss Validation Loss Precision Recall F1 Accuracy 300 0.127600 0.178613 0.722909 0.741720 0.732194 0.948802 600 0.088200 0.136965 0.733636 0.867742 0.795074 0.963079 900 0.078000 0.128858 0.791912 0.838065 0.814335 0.965243 1200 0.077800 0.126345 0.815400 0.865376 0.839645 0.967849 1500 0.074100 0.148207 0.779274 0.895914 0.833533 0.960184 1800 0.059500 0.116634 0.830829 0.868172 0.849090 0.969342 2100 0.044500 0.208459 0.887150 0.816559 0.850392 0.960535 2400 0.029400 0.136352 0.867821 0.851398 0.859531 0.970271 2700 0.025000 0.165837 0.814881 0.878495 0.845493 0.961235 3000 0.038400 0.120629 0.811719 0.893763 0.850768 0.971506 3300 0.026200 0.175094 0.823435 0.882581 0.851983 0.962957 3600 0.025600 0.178438 0.881095 0.886022 0.883551 0.963689 3900 0.041000 0.134648 0.789035 0.916129 0.847846 0.967681 4200 0.026700 0.130178 0.821275 0.903226 0.860303 0.972313 4500 0.018500 0.139294 0.844016 0.875054 0.859255 0.971140 4800 0.020800 0.197811 0.892504 0.873118 0.882705 0.965883 5100 0.019300 0.161239 0.848746 0.888172 0.868012 0.967849 5400 0.024000 0.139131 0.837507 0.913333 0.873778 0.970591 5700 0.018400 0.157223 0.899754 0.864731 0.881895 0.970210 6000 0.023500 0.137022 0.883018 0.873333 0.878149 0.973243 6300 0.009300 0.181448 0.840490 0.900860 0.869628 0.968290 6600 0.019200 0.173125 0.821316 0.896559 0.857290 0.966736 6900 0.016100 0.143160 0.789938 0.904946 0.843540 0.968245 7200 0.017000 0.145755 0.823274 0.897634 0.858848 0.969037 7500 0.012100 0.159342 0.825694 0.883226 0.853491 0.967468 7800 0.013800 0.194886 0.861237 0.859570 0.860403 0.964771 8100 0.008000 0.140271 0.829914 0.896129 0.861752 0.971567 8400 0.010300 0.143318 0.826844 0.908817 0.865895 0.973578 8700 0.015000 0.143392 0.847336 0.889247 0.867786 0.973365 9000 0.006000 0.143512 0.847795 0.905591 0.875741 0.972892 9300 0.011800 0.138747 0.827133 0.894194 0.859357 0.971673 9600 0.008500 0.159490 0.837030 0.909032 0.871546 0.970028 9900 0.010700 0.159249 0.846692 0.910968 0.877655 0.970546 10200 0.008100 0.170069 0.848288 0.900645 0.873683 0.969113 10500 0.004800 0.183795 0.860317 0.899355 0.879403 0.969570 10800 0.010700 0.157024 0.837838 0.906667 0.870894 0.971094 11100 0.003800 0.164286 0.845312 0.880215 0.862410 0.970744 11400 0.009700 0.204025 0.884294 0.887527 0.885907 0.968854 11700 0.008900 0.162819 0.829415 0.887742 0.857588 0.970530 12000 0.006400 0.164296 0.852666 0.901075 0.876202 0.971414 12300 0.007100 0.143367 0.852959 0.895699 0.873807 0.973669 12600 0.015800 0.153383 0.859224 0.900430 0.879345 0.972679 12900 0.006600 0.173447 0.869954 0.899140 0.884306 0.970927 13200 0.006800 0.163234 0.856849 0.897204 0.876563 0.971795 13500 0.003200 0.167164 0.850867 0.907957 0.878485 0.971231 13800 0.003600 0.148950 0.867801 0.910538 0.888656 0.976961 14100 0.003500 0.155691 0.847621 0.907957 0.876752 0.974127 14400 0.003300 0.157672 0.846553 0.911183 0.877680 0.974584 14700 0.002500 0.169965 0.847804 0.917634 0.881338 0.973045 15000 0.003400 0.177099 0.842199 0.912473 0.875929 0.971155 15300 0.006000 0.164151 0.848928 0.911183 0.878954 0.973258 15600 0.002400 0.174305 0.847437 0.906667 0.876052 0.971765 15900 0.004100 0.174561 0.852929 0.907957 0.879583 0.972907 16200 0.002600 0.172626 0.843263 0.907097 0.874016 0.972100 16500 0.002100 0.185302 0.841108 0.907312 0.872957 0.970485 16800 0.002900 0.175638 0.840557 0.909247 0.873554 0.971704 17100 0.001600 0.178750 0.857056 0.906452 0.881062 0.971765 17400 0.003900 0.188910 0.853619 0.907957 0.879950 0.970835 17700 0.002700 0.180822 0.864699 0.907097 0.885390 0.972283 18000 0.001300 0.179974 0.868150 0.906237 0.886785 0.973060 18300 0.000800 0.188032 0.881022 0.904516 0.892615 0.972572 18600 0.002700 0.183266 0.868601 0.901290 0.884644 0.972298 18900 0.001600 0.180301 0.862041 0.903011 0.882050 0.972344 19200 0.002300 0.183432 0.855370 0.904301 0.879155 0.971109 19500 0.001800 0.183381 0.854501 0.904301 0.878696 0.971186 ```` ### Validation metrics by Named Entity ```` Num examples = 1177 {'JURISPRUDENCIA': {'f1': 0.7016574585635359, 'number': 657, 'precision': 0.6422250316055625, 'recall': 0.7732115677321156}, 'LEGISLACAO': {'f1': 0.8839681133746677, 'number': 571, 'precision': 0.8942652329749103, 'recall': 0.8739054290718039}, 'LOCAL': {'f1': 0.8253968253968254, 'number': 194, 'precision': 0.7368421052631579, 'recall': 0.9381443298969072}, 'ORGANIZACAO': {'f1': 0.8934049079754601, 'number': 1340, 'precision': 0.918769716088328, 'recall': 0.8694029850746269}, 'PESSOA': {'f1': 0.982653539615565, 'number': 1072, 'precision': 0.9877474081055608, 'recall': 0.9776119402985075}, 'TEMPO': {'f1': 0.9657657657657657, 'number': 816, 'precision': 0.9469964664310954, 'recall': 0.9852941176470589}, 'overall_accuracy': 0.9725722644643211, 'overall_f1': 0.8926146010186757, 'overall_precision': 0.8810222036028488, 'overall_recall': 0.9045161290322581} ````
tbochens/test-train
tbochens
2021-12-29T19:25:46Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: test-train results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8455882352941176 - name: F1 type: f1 value: 0.8926746166950595 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test-train This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7268 - Accuracy: 0.8456 - F1: 0.8927 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 459 | 0.3470 | 0.8627 | 0.9014 | | 0.4987 | 2.0 | 918 | 0.5782 | 0.8382 | 0.8914 | | 0.2796 | 3.0 | 1377 | 0.7268 | 0.8456 | 0.8927 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
patrickvonplaten/wav2vec2-2-bart-base
patrickvonplaten
2021-12-29T15:53:10Z
373
4
transformers
[ "transformers", "pytorch", "tensorboard", "speech-encoder-decoder", "automatic-speech-recognition", "librispeech_asr", "generated_from_trainer", "asr_seq2esq", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- tags: - automatic-speech-recognition - librispeech_asr - generated_from_trainer - asr_seq2esq model-index: - name: wav2vec2-2-bart-base results: [] widget: - example_title: Librispeech sample 1 src: https://cdn-media.huggingface.co/speech_samples/sample1.flac - example_title: Librispeech sample 2 src: https://cdn-media.huggingface.co/speech_samples/sample2.flac - example_title: Common Voice sample src: https://cdn-media.huggingface.co/speech_samples/common_voice_en_18301577.mp3 --- To rerun this experiment, please clone this directory and run: ```bash python create_model.py ``` followed by ```bash ./run_librispeech.sh ``` <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-2-bart-base This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) and [bart-base](https://huggingface.co/facebook/bart-base) on the librispeech_asr - clean dataset. It achieves the following results on the evaluation set: - Loss: 0.405 - Wer: 0.0728 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 64 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 400 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results See Training Metrics Tab. ### Framework versions - Transformers 4.15.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.16.2.dev0 - Tokenizers 0.10.3
patrickvonplaten/wav2vec2-2-bart-large
patrickvonplaten
2021-12-29T15:49:52Z
6
5
transformers
[ "transformers", "pytorch", "tensorboard", "speech-encoder-decoder", "automatic-speech-recognition", "librispeech_asr", "generated_from_trainer", "asr_seq2esq", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- tags: - automatic-speech-recognition - librispeech_asr - generated_from_trainer - asr_seq2esq widget: - example_title: Librispeech sample 1 src: https://cdn-media.huggingface.co/speech_samples/sample1.flac - example_title: Librispeech sample 2 src: https://cdn-media.huggingface.co/speech_samples/sample2.flac - example_title: Common Voice sample src: https://cdn-media.huggingface.co/speech_samples/common_voice_en_18301577.mp3 model-index: - name: wav2vec2-2-bart-large results: [] --- To rerun this experiment, please clone this directory and run: ```bash python create_model.py ``` followed by ```bash ./run_librispeech.sh ``` <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-2-bart-large This model is a fine-tuned version of [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) and [bart-large](https://huggingface.co/facebook/bart-large) on the librispeech_asr - clean dataset. It achieves the following results on the evaluation set: - Loss: 0.3204 - Wer: 0.0486 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - gradient_accumulation_steps: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 64 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results See Training Metrics Tab. ### Framework versions - Transformers 4.15.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.16.2.dev0 - Tokenizers 0.10.3
rexxar96/autonlp-sentiment-analysis-456211724
rexxar96
2021-12-29T14:47:09Z
4
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "autonlp", "unk", "dataset:rexxar96/autonlp-data-sentiment-analysis", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- tags: autonlp language: unk widget: - text: "I love AutoNLP 🤗" datasets: - rexxar96/autonlp-data-sentiment-analysis co2_eq_emissions: 22.28263989637389 --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 456211724 - CO2 Emissions (in grams): 22.28263989637389 ## Validation Metrics - Loss: 0.23710417747497559 - Accuracy: 0.9119100357812234 - Precision: 0.8882611424984307 - Recall: 0.9461718488799733 - AUC: 0.974790366001874 - F1: 0.9163024121741946 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/rexxar96/autonlp-sentiment-analysis-456211724 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("rexxar96/autonlp-sentiment-analysis-456211724", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("rexxar96/autonlp-sentiment-analysis-456211724", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
ydshieh/flax-vision-encoder-decoder-vit-gpt2-coco-en
ydshieh
2021-12-29T10:12:05Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
## Example The model is by no means a state-of-the-art model, but nevertheless produces reasonable image captioning results. It was mainly fine-tuned as a proof-of-concept for the 🤗 FlaxVisionEncoderDecoder Framework. The model can be used as follows: ```python import requests from PIL import Image from transformers import ViTFeatureExtractor, AutoTokenizer, FlaxVisionEncoderDecoderModel loc = "ydshieh/flax-vit-gpt2-coco-en" feature_extractor = ViTFeatureExtractor.from_pretrained(loc) tokenizer = AutoTokenizer.from_pretrained(loc) model = FlaxVisionEncoderDecoderModel.from_pretrained(loc) # We will verify our results on an image of cute cats url = "http://images.cocodataset.org/val2017/000000039769.jpg" with Image.open(requests.get(url, stream=True).raw) as img: pixel_values = feature_extractor(images=img, return_tensors="np").pixel_values def generate_step(pixel_values): output_ids = model.generate(pixel_values, max_length=16, num_beams=4).sequences preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True) preds = [pred.strip() for pred in preds] return preds preds = generate_step(pixel_values) print(preds) # should produce # ['a cat laying on top of a couch next to another cat'] ```
SophieTr/results
SophieTr
2021-12-28T19:59:38Z
14
2
transformers
[ "transformers", "pytorch", "pegasus", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer model-index: - name: results results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [sshleifer/distill-pegasus-xsum-16-4](https://huggingface.co/sshleifer/distill-pegasus-xsum-16-4) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.4473 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 7.2378 | 0.51 | 100 | 7.1853 | | 7.2309 | 1.01 | 200 | 6.6342 | | 6.4796 | 1.52 | 300 | 6.3206 | | 6.2691 | 2.02 | 400 | 6.0184 | | 5.7382 | 2.53 | 500 | 5.5754 | | 4.9922 | 3.03 | 600 | 4.5178 | | 3.6031 | 3.54 | 700 | 2.8579 | | 2.5203 | 4.04 | 800 | 2.4718 | | 2.2563 | 4.55 | 900 | 2.4128 | | 2.1425 | 5.05 | 1000 | 2.3767 | | 2.004 | 5.56 | 1100 | 2.3982 | | 2.0437 | 6.06 | 1200 | 2.3787 | | 1.9407 | 6.57 | 1300 | 2.3952 | | 1.9194 | 7.07 | 1400 | 2.3964 | | 1.758 | 7.58 | 1500 | 2.4056 | | 1.918 | 8.08 | 1600 | 2.4101 | | 1.9162 | 8.59 | 1700 | 2.4085 | | 1.8983 | 9.09 | 1800 | 2.4058 | | 1.6939 | 9.6 | 1900 | 2.4050 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
espnet/siddhana_slue_asr_train_asr_conformer_raw_en_word_valid.acc.ave_10best
espnet
2021-12-28T18:57:57Z
0
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:slue-voxceleb", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- tags: - espnet - audio - automatic-speech-recognition language: en datasets: - slue-voxceleb license: cc-by-4.0 --- ## ESPnet2 ASR model ### `espnet/siddhana_slue_asr_train_asr_conformer_raw_en_word_valid.acc.ave_10best` This model was trained by Siddhant using slue-voxceleb recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout 17758ad804fd7c4b6f88ef5601f475a241dc4605 pip install -e . cd egs2/slue-voxceleb/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/siddhana_slue_asr_train_asr_conformer_raw_en_word_valid.acc.ave_10best ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Tue Dec 28 12:28:28 EST 2021` - python version: `3.9.5 (default, Jun 4 2021, 12:28:51) [GCC 7.5.0]` - espnet version: `espnet 0.10.3a2` - pytorch version: `pytorch 1.8.1+cu102` - Git hash: `6bf3c2a4f138d35331634d2e879bbc5c32a5266e` - Commit date: `Mon Dec 22 15:41:32 EST 2021` ## Using Conformer based encoder and Transformer based decoder with spectral augmentation and predicting transcript along with intent - ASR config: [conf/train_asr.yaml](conf/tuning/train_asr_conformer.yaml) - token_type: word |dataset|Snt|Intent Classification Accuracy (%)|Intent Classification Macro F1 (%)| |---|---|---|---| |inference_asr_model_valid.acc.ave_10best/devel|955|80.2|29.7| ### Detailed Classification Report |dataset|Label|Snt|Prec|Recall|F1| |---|---|---|---|---|---| |inference_asr_model_valid.acc.ave_10best/devel|Neutral|784|85|93|89| |inference_asr_model_valid.acc.ave_10best/devel|Positive|167|40|24|30| |inference_asr_model_valid.acc.ave_10best/devel|Negative|3|0|0|0| |inference_asr_model_valid.acc.ave_10best/devel|Mixed|1|0|0|0| ## ASR config <details><summary>expand</summary> ``` config: conf/tuning/train_asr_conformer.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_conformer_raw_en_word ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 50 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 10 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_en_word/train/speech_shape - exp/asr_stats_raw_en_word/train/text_shape.word valid_shape_file: - exp/asr_stats_raw_en_word/valid/speech_shape - exp/asr_stats_raw_en_word/valid/text_shape.word batch_type: folded valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train/wav.scp - speech - sound - - dump/raw/train/text - text - text valid_data_path_and_name_and_type: - - dump/raw/devel/wav.scp - speech - sound - - dump/raw/devel/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.0002 scheduler: warmuplr scheduler_conf: warmup_steps: 25000 token_list: - <blank> - <unk> - ▁i - s - ▁and - '''' - ▁the - ▁a - ▁to - ▁it - Neutral - ▁you - ▁that - ▁of - t - ing - ▁in - ▁was - ed - ▁uh - ▁know - e - m - ▁he - y - er - ▁so - ▁we - re - a - o - d - ▁um - i - ▁s - c - ▁like - n - ▁is - ▁be - ▁f - ▁but - ▁c - Positive - en - l - ve - ▁just - ▁m - st - ▁they - le - an - ▁on - ▁p - u - ▁my - ar - p - ▁this - ▁for - ▁b - ▁think - in - ▁with - g - or - ▁h - r - ly - w - ▁me - ▁d - ▁e - ▁have - ▁she - it - ▁t - ▁what - b - ▁st - al - es - ▁there - ▁really - ic - ▁g - ▁as - ▁w - ▁l - ▁do - ll - v - ▁all - at - 'on' - as - ▁about - h - ▁not - ▁re - ▁o - ▁at - k - ▁don - ▁had - ▁when - ou - ent - is - ra - ▁who - ri - ▁go - se - f - ▁out - ▁get - ▁an - ▁people - nd - ▁kind - ▁very - ce - ▁because - ▁are - ion - ▁some - et - ▁can - ge - ▁or - me - ▁up - ▁n - ▁if - ▁no - ▁one - ▁were - ct - ▁mean - ad - ▁time - ▁ch - ▁then - ro - ▁ex - ▁mo - ▁her - ▁every - ▁would - ▁co - ▁work - ir - ▁sh - ay - ▁se - ol - ver - ▁su - ▁got - ▁k - th - ▁love - ▁from - ld - ation - ▁him - ▁said - ▁how - ▁well - ▁lot - ▁show - ch - ard - ie - ▁pro - ▁de - ▁gonna - ▁bo - ▁say - ▁see - ▁li - one - ▁his - ther - ▁been - ur - ▁any - ▁great - ▁ - ▁yeah - pe - ▁which - ▁come - ▁them - ot - ▁play - ab - ite - ▁way - ally - id - gh - ▁r - ▁sc - our - x - mp - ers - ong - ate - ▁your - ss - ast - ▁did - ▁sort - ▁am - am - and - ▁make - ant - ▁thing - ▁ha - ▁te - ▁has - ess - ▁v - ▁something - ▁back - ▁where - ▁things - red - ▁al - ut - el - ight - ment - un - ive - ▁th - ▁le - il - ▁j - op - ▁more - ▁ro - ill - ▁fi - ies - ▁much - ck - ▁ne - ▁wh - ▁always - ▁act - ine - pp - z - ▁now - ▁con - thing - ▁us - body - ▁want - ▁other - ort - ice - ▁doing - ▁sa - ▁feel - ow - ▁int - ne - ▁these - ▁could - ▁good - ▁cause - Negative - ▁actually - ▁wr - ▁little - ain - ▁being - ▁look - ▁into - ere - ul - ▁our - ▁guy - ▁first - ud - ▁by - ▁fun - ▁qu - ▁didn - us - ity - ▁jo - od - ▁u - ▁part - ▁off - ▁pre - ▁right - ▁film - ▁start - ok - ▁two - ving - ▁never - pt - um - te - ▁movie - ▁going - ff - nder - ke - ▁ag - ▁en - ▁try - ful - im - ays - ▁life - ▁different - ach - are - ▁di - ist - ▁oh - au - ▁po - nt - ▁com - all - ▁lo - om - ▁real - ▁y - ame - ▁went - ry - ber - ▁even - ci - ▁ho - ▁years - ▁their - ▁happen - ure - self - per - ▁pl - ▁those - ble - 'no' - ▁day - ▁take - ▁does - ien - ▁br - be - wn - ▁thought - ▁fe - ght - ▁tr - ▁story - ty - ▁down - ous - ish - ▁wom - ▁wanna - ▁put - ▁through - ide - ▁ab - ▁new - ▁also - ▁big - ▁call - ▁around - ▁character - ▁read - iz - ▁came - act - ily - ath - ag - ree - ▁per - ▁will - ▁mu - ▁talk - ▁over - ▁friend - atch - ▁bl - ade - ▁world - ▁many - ▁sp - sic - ▁cl - ▁bit - ▁man - ace - ▁person - ft - ip - ▁than - ▁wanted - ▁may - ven - ick - ious - ▁mar - ▁before - ▁rel - j - ting - ▁set - sh - ep - ▁un - ue - ▁aw - ▁find - ▁kid - tain - ▁such - ter - ▁end - ▁tw - ind - aking - ▁after - ▁fam - ars - ig - ore - ▁bec - ak - art - reat - ust - rou - ack - ▁ye - ould - ime - itt - ▁gu - qu - ose - fe - ▁wor - lf - alk - ▁charact - ▁mov - out - ich - ▁happ - ▁thou - ith - <mixed> - rom - ake - ▁diff - ▁char - na - round - ory - ink - ually - ▁gon - ▁pe - right - ody - ah - rie - riend - now - so - ause - ▁fil - ▁pers - fore - very - ▁differe - rough - q - ▁fir - anna - ways - ':' - '&' - fter - <sos/eos> transcript_token_list: null init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true model_conf: ctc_weight: 0.3 lsm_weight: 0.1 length_normalized_loss: false extract_feats_in_collect_stats: false use_preprocessor: true token_type: word bpemodel: null non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: default frontend_conf: fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 30 num_freq_mask: 2 apply_time_mask: true time_mask_width_range: - 0 - 40 num_time_mask: 2 normalize: utterance_mvn normalize_conf: {} preencoder: null preencoder_conf: {} encoder: conformer encoder_conf: output_size: 512 attention_heads: 8 linear_units: 2048 num_blocks: 12 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.1 input_layer: conv2d normalize_before: true macaron_style: true pos_enc_layer_type: rel_pos selfattention_layer_type: rel_selfattn activation_type: swish use_cnn_module: true cnn_module_kernel: 31 postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: attention_heads: 8 linear_units: 2048 num_blocks: 6 dropout_rate: 0.1 positional_dropout_rate: 0.1 self_attention_dropout_rate: 0.1 src_attention_dropout_rate: 0.1 postdecoder: null postdecoder_conf: {} required: - output_dir - token_list version: 0.10.3a2 distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
huggingtweets/amnananadeem-talal916
huggingtweets
2021-12-28T12:50:37Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1433365322313043974/gPI08qaY_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1377835980552474624/sxTjuspv_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">halal talal & amna</div> <div style="text-align: center; font-size: 14px;">@amnananadeem-talal916</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from halal talal & amna. | Data | halal talal | amna | | --- | --- | --- | | Tweets downloaded | 3187 | 3132 | | Retweets | 484 | 778 | | Short tweets | 532 | 369 | | Tweets kept | 2171 | 1985 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/42dvu161/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @amnananadeem-talal916's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2irbhtmu) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2irbhtmu/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/amnananadeem-talal916') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
luomingshuang/icefall_avsr_grid_combinenet_ctc
luomingshuang
2021-12-28T12:46:37Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
# Pre-trained CombineNet-CTC models for the GRID audio-visual dataset with icefall. The model was trained on full [GRID](https://zenodo.org/record/3625687#.Ybn7HagzY2w) with the scripts in [icefall](https://github.com/k2-fsa/icefall). See (https://github.com/k2-fsa/icefall/tree/master/egs/grid/AVSR/combinenet_ctc_avsr) for more details of this model. ## How to use See (https://github.com/k2-fsa/icefall/blob/master/egs/grid/AVSR/combinenet_ctc_avsr/Pre-trained.md) ## Training procedure The main repositories are list below, we will update the training and decoding scripts with the update of version. k2: https://github.com/k2-fsa/k2 icefall: https://github.com/k2-fsa/icefall * Install k2 and lhotse, k2 installation guide refers to https://k2.readthedocs.io/en/latest/installation/index.html, lhotse refers to https://lhotse.readthedocs.io/en/latest/getting-started.html#installation. I think the latest version would be ok. And please also install the requirements listed in icefall. * Clone icefall(https://github.com/k2-fsa/icefall) and check to the commit showed above. ``` git clone https://github.com/k2-fsa/icefall cd icefall ``` * Preparing data. ``` cd egs/grid/AVSR bash ./prepare.sh ``` * Training ``` export CUDA_VISIBLE_DEVICES="0" python combinenet_ctc_avsr/train.py --world-size 1 ``` ## Evaluation results The best decoding results (WER) on GRID TEST are listed below, we got this result by averaging models from epoch 25 to 29, the decoding method is `whole-lattice-rescoring`, when lm scale is 0.01. ||TEST| |--|--| |WER|1.71%|
facebook/wav2vec2-large-lv60
facebook
2021-12-28T12:45:09Z
10,076
8
transformers
[ "transformers", "pytorch", "jax", "wav2vec2", "pretraining", "speech", "en", "dataset:librispeech_asr", "arxiv:2006.11477", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: en datasets: - librispeech_asr tags: - speech license: apache-2.0 --- # Wav2Vec2-Large-LV60 [Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. **Note**: This model does not have a tokenizer as it was pretrained on audio alone. In order to use this model **speech recognition**, a tokenizer should be created and the model should be fine-tuned on labeled text data. Check out [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more in-detail explanation of how to fine-tune the model. [Paper](https://arxiv.org/abs/2006.11477) Authors: Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli **Abstract** We show for the first time that learning powerful representations from speech audio alone followed by fine-tuning on transcribed speech can outperform the best semi-supervised methods while being conceptually simpler. wav2vec 2.0 masks the speech input in the latent space and solves a contrastive task defined over a quantization of the latent representations which are jointly learned. Experiments using all labeled data of Librispeech achieve 1.8/3.3 WER on the clean/other test sets. When lowering the amount of labeled data to one hour, wav2vec 2.0 outperforms the previous state of the art on the 100 hour subset while using 100 times less labeled data. Using just ten minutes of labeled data and pre-training on 53k hours of unlabeled data still achieves 4.8/8.2 WER. This demonstrates the feasibility of speech recognition with limited amounts of labeled data. The original model can be found under https://github.com/pytorch/fairseq/tree/master/examples/wav2vec#wav2vec-20. # Usage See [this notebook](https://colab.research.google.com/drive/1FjTsqbYKphl9kL-eILgUc-bl4zVThL8F?usp=sharing) for more information on how to fine-tune the model.
luomingshuang/icefall_vsr_grid_visualnet_ctc
luomingshuang
2021-12-28T12:24:34Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
# Pre-trained VisualNet-CTC models for the GRID visual dataset with icefall. The model was trained on full [GRID](https://zenodo.org/record/3625687#.Ybn7HagzY2w) with the scripts in [icefall](https://github.com/k2-fsa/icefall). See (https://github.com/k2-fsa/icefall/tree/master/egs/grid/AVSR/visualnet_ctc_asr) for more details of this model. ## How to use See (https://github.com/k2-fsa/icefall/blob/master/egs/grid/AVSR/visualnet_ctc_asr/Pre-trained.md) ## Training procedure The main repositories are list below, we will update the training and decoding scripts with the update of version. k2: https://github.com/k2-fsa/k2 icefall: https://github.com/k2-fsa/icefall * Install k2 and lhotse, k2 installation guide refers to https://k2.readthedocs.io/en/latest/installation/index.html, lhotse refers to https://lhotse.readthedocs.io/en/latest/getting-started.html#installation. I think the latest version would be ok. And please also install the requirements listed in icefall. * Clone icefall(https://github.com/k2-fsa/icefall) and check to the commit showed above. ``` git clone https://github.com/k2-fsa/icefall cd icefall ``` * Preparing data. ``` cd egs/grid/AVSR bash ./prepare.sh ``` * Training ``` export CUDA_VISIBLE_DEVICES="0" python visualnet_ctc_asr/train.py --world-size 1 ``` ## Evaluation results The best decoding results (WER) on GRID TEST are listed below, we got this result by averaging models from epoch 16 to 25, the decoding method is `1best`. ||TEST| |--|--| |WER|15.68%|
huggingtweets/talal916
huggingtweets
2021-12-28T09:23:31Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/talal916/1640683407279/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1433365322313043974/gPI08qaY_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">halal talal</div> <div style="text-align: center; font-size: 14px;">@talal916</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from halal talal. | Data | halal talal | | --- | --- | | Tweets downloaded | 3187 | | Retweets | 483 | | Short tweets | 533 | | Tweets kept | 2171 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2q5bns0k/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @talal916's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/20wq85ea) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/20wq85ea/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/talal916') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
nlp-waseda/gpt2-small-japanese-wikipedia
nlp-waseda
2021-12-28T06:31:38Z
23
3
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "ja", "dataset:wikipedia", "license:cc-by-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: - ja license: cc-by-sa-4.0 datasets: - wikipedia widget: - text: "早稲田 大学 で 自然 言語 処理 を" --- # nlp-waseda/gpt2-small-japanese-wikipedia This model is Japanese GPT-2 pretrained on Japanese Wikipedia. ## Intended uses & limitations You can use the raw model for text generation or fine-tune it to a downstream task. Note that the texts should be segmented into words using Juman++ in advance. ### How to use You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, we set a seed for reproducibility: ```python >>> from transformers import pipeline, set_seed >>> generator = pipeline('text-generation', model='nlp-waseda/gpt2-small-japanese-wikipedia') >>> set_seed(42) >>> generator("早稲田 大学 で 自然 言語 処理 を", max_length=30, do_sample=True, pad_token_id=2, num_return_sequences=5) [{'generated_text': '早稲田 大学 で 自然 言語 処理 を 学び 、 1969 年 に は 同 大学院 を 修了 。 東京 芝浦 電気 株式 会社 に 就職 後 、 情報 処理'}, {'generated_text': '早稲田 大学 で 自然 言語 処理 を 学び 、 帰国 後 は 立教 大学 理学部 助手 を 務めた 。 1978 年 に 神奈川 県立 湘南 高等 学校 校長 に 就任'}, {'generated_text': '早稲田 大学 で 自然 言語 処理 を 研究 。 1972 年 に 早稲田 大学 文学部 ドイツ 文学 専攻 を 卒業 し 、 同 年 から 1979 年 まで 上智 大学'}, {'generated_text': '早稲田 大学 で 自然 言語 処理 を 専攻 する 。 1979 年 東京 農工 大学 農学 部 卒業 。 1980 年 同 大学院 農学 研究 科 修士 課程 修了 。'}, {'generated_text': '早稲田 大学 で 自然 言語 処理 を 専攻 し ながら 、 日本 で 活動 する 自然 言語 研究 家 。 大学 時代 は 東京 大学 理学部 の 助手 を 務め'}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import ReformerTokenizer, GPT2Model tokenizer = ReformerTokenizer.from_pretrained('nlp-waseda/gpt2-small-japanese-wikipedia') model = GPT2Model.from_pretrained('nlp-waseda/gpt2-small-japanese-wikipedia') text = "早稲田 大学 で 自然 言語 処理 を" encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Training data The GPT-2 model was pretrained on Japanese Wikipedia, dumped on 2021-12-20. ## Training procedure ### Preprocessing The texts are normalized using zenhan, segmented into words using Juman++, and tokenized using SentencePiece. Juman++ 2.0.0-rc3 was used for pretraining. The model was trained on 8 NVIDIA A100 GPUs.
huggingtweets/ngrossman81
huggingtweets
2021-12-28T04:15:54Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/ngrossman81/1640664926929/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/805525876808892417/nSCRZS58_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Nicholas Grossman</div> <div style="text-align: center; font-size: 14px;">@ngrossman81</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Nicholas Grossman. | Data | Nicholas Grossman | | --- | --- | | Tweets downloaded | 3249 | | Retweets | 272 | | Short tweets | 113 | | Tweets kept | 2864 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3gkanovn/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ngrossman81's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/18u9hhz0) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/18u9hhz0/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ngrossman81') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Smone55/autonlp-au_topics-452311620
Smone55
2021-12-28T01:56:22Z
6
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autonlp", "en", "dataset:Smone55/autonlp-data-au_topics", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - Smone55/autonlp-data-au_topics co2_eq_emissions: 208.0823957145878 --- # Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 452311620 - CO2 Emissions (in grams): 208.0823957145878 ## Validation Metrics - Loss: 0.5259971022605896 - Accuracy: 0.8767479025169796 - Macro F1: 0.8618813750734912 - Micro F1: 0.8767479025169796 - Weighted F1: 0.8742964006840133 - Macro Precision: 0.8627700506991158 - Micro Precision: 0.8767479025169796 - Weighted Precision: 0.8755603985289852 - Macro Recall: 0.8662183006750934 - Micro Recall: 0.8767479025169796 - Weighted Recall: 0.8767479025169796 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/Smone55/autonlp-au_topics-452311620 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Smone55/autonlp-au_topics-452311620", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Smone55/autonlp-au_topics-452311620", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
tiennvcs/layoutlmv2-base-uncased-finetuned-vi-infovqa
tiennvcs
2021-12-27T14:23:33Z
11
0
transformers
[ "transformers", "pytorch", "tensorboard", "layoutlmv2", "document-question-answering", "generated_from_trainer", "license:cc-by-nc-sa-4.0", "endpoints_compatible", "region:us" ]
document-question-answering
2022-03-02T23:29:05Z
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer model-index: - name: layoutlmv2-base-uncased-finetuned-vi-infovqa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlmv2-base-uncased-finetuned-vi-infovqa This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 4.3332 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 250500 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.33 | 100 | 5.3461 | | No log | 0.66 | 200 | 4.9734 | | No log | 0.99 | 300 | 4.6074 | | No log | 1.32 | 400 | 4.4548 | | 4.6355 | 1.65 | 500 | 4.3831 | | 4.6355 | 1.98 | 600 | 4.3332 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.8.0+cu101 - Datasets 1.17.0 - Tokenizers 0.10.3
SEISHIN/distilbert-base-uncased-finetuned-ner
SEISHIN
2021-12-27T07:53:05Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9289272666888077 - name: Recall type: recall value: 0.9386956035350711 - name: F1 type: f1 value: 0.933785889160917 - name: Accuracy type: accuracy value: 0.9842565968195466 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0605 - Precision: 0.9289 - Recall: 0.9387 - F1: 0.9338 - Accuracy: 0.9843 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2388 | 1.0 | 878 | 0.0671 | 0.9162 | 0.9211 | 0.9187 | 0.9813 | | 0.0504 | 2.0 | 1756 | 0.0602 | 0.9225 | 0.9366 | 0.9295 | 0.9834 | | 0.0299 | 3.0 | 2634 | 0.0605 | 0.9289 | 0.9387 | 0.9338 | 0.9843 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
xkang/distilbert-base-uncased-finetuned-imdb
xkang
2021-12-27T07:30:09Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4717 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7096 | 1.0 | 157 | 2.4920 | | 2.5741 | 2.0 | 314 | 2.4237 | | 2.5386 | 3.0 | 471 | 2.4355 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0 - Datasets 1.17.1.dev0 - Tokenizers 0.10.3
lijingxin/dummy-model
lijingxin
2021-12-27T02:12:17Z
5
0
transformers
[ "transformers", "tf", "camembert", "fill-mask", "generated_from_keras_callback", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: dummy-model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # dummy-model This model is a fine-tuned version of [camembert-base](https://huggingface.co/camembert-base) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.15.0 - TensorFlow 2.7.0 - Datasets 1.17.0 - Tokenizers 0.10.3
Ayham/roberta_gpt2_new_max64_summarization_cnndm
Ayham
2021-12-27T00:19:01Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "generated_from_trainer", "dataset:cnn_dailymail", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- tags: - generated_from_trainer datasets: - cnn_dailymail model-index: - name: roberta_gpt2_new_max64_summarization_cnndm results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta_gpt2_new_max64_summarization_cnndm This model is a fine-tuned version of [](https://huggingface.co/) on the cnn_dailymail dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
SEISHIN/distilbert-base-uncased-finetuned-mnli
SEISHIN
2021-12-26T16:30:56Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-mnli results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: mnli metrics: - name: Accuracy type: accuracy value: 0.82190524707081 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-mnli This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6560 - Accuracy: 0.8219 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 0.5161 | 1.0 | 24544 | 0.5025 | 0.8037 | | 0.4176 | 2.0 | 49088 | 0.5274 | 0.8131 | | 0.3154 | 3.0 | 73632 | 0.5348 | 0.8194 | | 0.2294 | 4.0 | 98176 | 0.6560 | 0.8219 | | 0.1827 | 5.0 | 122720 | 0.8190 | 0.8203 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
mohammadtari/arxivinterface
mohammadtari
2021-12-26T02:18:42Z
4
0
transformers
[ "transformers", "tf", "t5", "text2text-generation", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- tags: - generated_from_keras_callback model-index: - name: t5_small_summarization_model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # t5_small_summarization_model This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.15.0 - TensorFlow 2.7.0 - Datasets 1.17.0 - Tokenizers 0.10.3
Ayham/xlmroberta_large_gpt2_summarization_cnndm
Ayham
2021-12-26T00:06:35Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "generated_from_trainer", "dataset:cnn_dailymail", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- tags: - generated_from_trainer datasets: - cnn_dailymail model-index: - name: xlmroberta_large_gpt2_summarization_cnndm results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmroberta_large_gpt2_summarization_cnndm This model is a fine-tuned version of [](https://huggingface.co/) on the cnn_dailymail dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
Andry/1111
Andry
2021-12-25T20:04:09Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:04Z
C:\Users\andry\Desktop\Выжигание 24-12-2021.jpg
s3h/finetuned-arabert-head-gec
s3h
2021-12-25T19:17:45Z
4
0
transformers
[ "transformers", "tf", "bert", "fill-mask", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- tags: - generated_from_keras_callback model-index: - name: s3h/finetuned-arabert-head-gec results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # s3h/finetuned-arabert-head-gec This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 16.9313 - Validation Loss: 19.1589 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 1, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 16.9313 | 19.1589 | 0 | ### Framework versions - Transformers 4.14.1 - TensorFlow 2.6.2 - Datasets 1.17.0 - Tokenizers 0.10.3
vanadhi/bert-base-uncased-fiqa-flm-sq-flit
vanadhi
2021-12-25T18:44:16Z
13
1
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer model-index: - name: bert-base-uncased-fiqa-flm-sq-flit results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-fiqa-flm-sq-flit This model is a fine-tuned version of bert-base-uncased on a custom dataset created for question answering in financial domain. ## Model description BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. The model was further processed as below for the specific downstream QA task. 1. Pretrained for domain adaptation with Masked language modeling (MLM) objective with the FIQA challenge Opinion-based QA task is available here - https://drive.google.com/file/d/1BlWaV-qVPfpGyJoWQJU9bXQgWCATgxEP/view 2. Pretrained with MLM objective with custom generated dataset for Banking and Finance. 3. Fine Tuned with SQuAD V2 dataset for QA task adaptation. 4. Fine Tuned with custom labeled dataset in SQuAD format for domain and task adaptation. ## Intended uses & limitations The model is intended to be used for a custom Questions Answering system in the BFSI domain. ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.15.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
airKlizz/mt5-base-wikinewssum-german
airKlizz
2021-12-25T15:13:41Z
16
1
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "summarization", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: mt5-base-wikinewssum-german results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-base-wikinewssum-german This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.5135 - Rouge1: 8.0553 - Rouge2: 2.7846 - Rougel: 6.2182 - Rougelsum: 7.6203 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | No log | 1.0 | 723 | 2.7112 | 7.3681 | 2.3679 | 5.5705 | 6.7588 | | No log | 2.0 | 1446 | 2.6178 | 7.8539 | 2.7551 | 6.2081 | 7.4139 | | No log | 3.0 | 2169 | 2.5756 | 7.8401 | 2.6075 | 6.0135 | 7.4303 | | No log | 4.0 | 2892 | 2.5465 | 8.1097 | 2.8525 | 6.268 | 7.6482 | | 3.4589 | 5.0 | 3615 | 2.5315 | 8.0192 | 2.7848 | 6.2484 | 7.5859 | | 3.4589 | 6.0 | 4338 | 2.5222 | 8.1063 | 2.8986 | 6.337 | 7.6564 | | 3.4589 | 7.0 | 5061 | 2.5136 | 8.0565 | 2.8707 | 6.2732 | 7.6105 | | 3.4589 | 8.0 | 5784 | 2.5135 | 8.0553 | 2.7846 | 6.2182 | 7.6203 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.1 - Datasets 1.16.1 - Tokenizers 0.10.3
Palak/xlm-roberta-base_squad
Palak
2021-12-25T11:05:12Z
4
1
transformers
[ "transformers", "pytorch", "xlm-roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:04Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: xlm-roberta-base_squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base_squad This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the squad dataset. - "eval_exact_match": 82.69631031220435 - "eval_f1": 89.4562841806503 - "eval_samples": 10918 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.14.1 - Pytorch 1.9.0 - Datasets 1.16.1 - Tokenizers 0.10.3
snoop2head/kogpt-conditional-2
snoop2head
2021-12-25T04:42:13Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
# KoGPT-Conditional-2 ### Condition format ```python # create condition sentence random_main_logit = np.random.normal( loc=3.368, scale=1.015, size=1 )[0].round(1) random_sub_logit = np.random.normal( loc=1.333, scale=0.790, size=1 )[0].round(1) condition_sentence = f"{random_main_logit}만큼 행복감정인 문장이다. {random_sub_logit}만큼 놀람감정인 문장이다. " ``` ### Input Format ```python # make input sentence input_sentence = "수상한 밤들이 계속되던 날, 언젠가부터 나는" condition_plus_input = condition_sentence + input_sentence print(condition_plus_input) ``` ``` 3.9만큼 행복감정인 문장이다. 1.2만큼 놀람감정인 문장이다. 수상한 밤들이 계속되던 날, 언젠가부터 나는 ``` ### How to infer ``` inferred_sentence = infer_sentence(condition_plus_input, k=10, output_token_length=max_token_length) inferred_sentence ``` ``` ['3.9만큼 행복감정인 문장이다. 1.2만큼 놀람감정인 문장이다. 수상한 밤들이 계속되던 날, 언젠가부터 나는 서서히 제정신을 차리고 일어날 수 있었다', '3.9만큼 행복감정인 문장이다. 1.2만큼 놀람감정인 문장이다. 수상한 밤들이 계속되던 날, 언젠가부터 나는 달 보는 걸 좋아하게 되었다', '3.9만큼 행복감정인 문장이다. 1.2만큼 놀람감정인 문장이다. 수상한 밤들이 계속되던 날, 언젠가부터 나는 수상한 사람들의 입을 들여다 볼 수 있었다', '3.9만큼 행복감정인 문장이다. 1.2만큼 놀람감정인 문장이다. 수상한 밤들이 계속되던 날, 언젠가부터 나는 이상한 나라의 앨리스가 되어 있었다', '3.9만큼 행복감정인 문장이다. 1.2만큼 놀람감정인 문장이다. 수상한 밤들이 계속되던 날, 언젠가부터 나는 기이한 경험을 했다', '3.9만큼 행복감정인 문장이다. 1.2만큼 놀람감정인 문장이다. 수상한 밤들이 계속되던 날, 언젠가부터 나는 이상하게도 평화가 찾아온다는 사실을 깨달았다', '3.9만큼 행복감정인 문장이다. 1.2만큼 놀람감정인 문장이다. 수상한 밤들이 계속되던 날, 언젠가부터 나는 어둠을 뚫는 무언가가 있다는 걸 알았다', '3.9만큼 행복감정인 문장이다. 1.2만큼 놀람감정인 문장이다. 수상한 밤들이 계속되던 날, 언젠가부터 나는 달빛의 의미를 이해하기 시작했다', '3.9만큼 행복감정인 문장이다. 1.2만큼 놀람감정인 문장이다. 수상한 밤들이 계속되던 날, 언젠가부터 나는 안방에서 잘 때 내 손을 꼭 잡았다', '3.9만큼 행복감정인 문장이다. 1.2만큼 놀람감정인 문장이다. 수상한 밤들이 계속되던 날, 언젠가부터 나는 이상한 나라의 앨리스처럼 눈을 반짝이며 주위를 탐구하기 시작했다'] ```
BigSalmon/MrLincolnBerta
BigSalmon
2021-12-24T21:54:31Z
5
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
Example Prompt: ``` informal english: things are better when they are open source, because they are constantly being updated to enhance experience. Translated into the Style of Abraham Lincoln: in the open-source paradigm, code is ( ceaselessly / perpetually ) being ( reengineered / revamped / polished ), thereby ( advancing / enhancing / optimizing / <mask> ) the user experience. ``` Demo: https://huggingface.co/spaces/BigSalmon/MASK2
Palak/distilroberta-base_squad
Palak
2021-12-24T18:22:38Z
6
0
transformers
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilroberta-base_squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base_squad This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the **squadV1** dataset. - "eval_exact_match": 80.97445600756859 - "eval_f1": 88.0153886332912 - "eval_samples": 10790 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.14.1 - Pytorch 1.9.0 - Datasets 1.16.1 - Tokenizers 0.10.3
Palak/microsoft_deberta-base_squad
Palak
2021-12-24T18:22:28Z
5
2
transformers
[ "transformers", "pytorch", "deberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:04Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: microsoft_deberta-base_squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # microsoft_deberta-base_squad This model is a fine-tuned version of [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) on the **squadV1** dataset. - "eval_exact_match": 86.30085146641439 - "eval_f1": 92.68502275661561 - "eval_samples": 10788 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.14.1 - Pytorch 1.9.0 - Datasets 1.16.1 - Tokenizers 0.10.3
Palak/google_electra-base-discriminator_squad
Palak
2021-12-24T18:15:58Z
4
0
transformers
[ "transformers", "pytorch", "electra", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: google_electra-base-discriminator_squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # google_electra-base-discriminator_squad This model is a fine-tuned version of [google/electra-base-discriminator](https://huggingface.co/google/electra-base-discriminator) on the **squadV1** dataset. - "eval_exact_match": 85.33585619678335 - "eval_f1": 91.97363450387108 - "eval_samples": 10784 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.14.1 - Pytorch 1.9.0 - Datasets 1.16.1 - Tokenizers 0.10.3
Palak/microsoft_deberta-large_squad
Palak
2021-12-24T18:12:42Z
84
0
transformers
[ "transformers", "pytorch", "deberta", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:04Z
--- tags: - generated_from_trainer datasets: - squad model-index: - name: microsoft-deberta-large results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # microsoft-deberta-large This model is a fine-tuned version of [microsoft_deberta-large](https://huggingface.co/microsoft/deberta-large) on the **squadV1** dataset. - "eval_exact_match": 87.89025543992432 - "eval_f1": 93.8755152147345 - "eval_samples": 10788 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.14.1 - Pytorch 1.9.0 - Datasets 1.16.1 - Tokenizers 0.10.3
racai/distilbert-multi-base-romanian-cased
racai
2021-12-24T17:32:28Z
24
0
transformers
[ "transformers", "pytorch", "tf", "jax", "distilbert", "ro", "dataset:oscar", "dataset:wikipedia", "arxiv:2112.12650", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: ro license: mit datasets: - oscar - wikipedia --- # Romanian DistilBERT This repository contains the a Romanian cased version of DistilBERT (named DistilMulti-BERT-base-ro in the paper) that was obtained by distilling an ensemble of two teacher models: [dumitrescustefan/bert-base-romanian-cased-v1](https://huggingface.co/dumitrescustefan/bert-base-romanian-cased-v1) and [readerbench/RoBERT-base](https://huggingface.co/readerbench/RoBERT-base). The model was introduced in [this paper](https://arxiv.org/abs/2112.12650). The adjacent code can be found [here](https://github.com/racai-ai/Romanian-DistilBERT). ## Usage ```python from transformers import AutoTokenizer, AutoModel # load the tokenizer and the model tokenizer = AutoTokenizer.from_pretrained("racai/distilbert-multi-base-romanian-cased") model = AutoModel.from_pretrained("racai/distilbert-multi-base-romanian-cased") # tokenize a test sentence input_ids = tokenizer.encode("Aceasta este o propoziție de test.", add_special_tokens=True, return_tensors="pt") # run the tokens trough the model outputs = model(input_ids) print(outputs) ``` ## Model Size The model is 35% smaller than `bert-base-romanian-cased-v1` and 30% smaller than `RoBERT-base`. | Model | Size (MB) | Params (Millions) | |--------------------------------|:---------:|:----------------:| | RoBERT-base | 441 | 114 | | bert-base-romanian-cased-v1 | 477 | 124 | | distilbert-multi-base-romanian-cased | 312 | 81 | ## Evaluation We evaluated the model in comparison with its two teachers on 5 Romanian tasks: - **UPOS**: Universal Part of Speech (F1-macro) - **XPOS**: Extended Part of Speech (F1-macro) - **NER**: Named Entity Recognition (F1-macro) - **SAPN**: Sentiment Anlaysis - Positive vs Negative (Accuracy) - **SAR**: Sentiment Analysis - Rating (F1-macro) - **DI**: Dialect identification (F1-macro) - **STS**: Semantic Textual Similarity (Pearson) | Model | UPOS | XPOS | NER | SAPN | SAR | DI | STS | |--------------------------------|:----:|:----:|:---:|:----:|:---:|:--:|:---:| | RoBERT-base | 98.02 | 97.15 | 85.14 | 98.30 | 79.40 | 96.07 | 81.18 | | bert-base-romanian-cased-v1 | 98.00 | 96.46 | 85.88 | 98.07 | 79.61 | 95.58 | 80.30 | | distilbert-multi-base-romanian-cased | 98.07 | 96.83 | 83.22 | 98.11 | 79.77 | 96.18 | 80.66 | ### BibTeX entry and citation info ```bibtex @article{avram2021distilling, title={Distilling the Knowledge of Romanian BERTs Using Multiple Teachers}, author={Andrei-Marius Avram and Darius Catrina and Dumitru-Clementin Cercel and Mihai Dascălu and Traian Rebedea and Vasile Păiş and Dan Tufiş}, journal={ArXiv}, year={2021}, volume={abs/2112.12650} } ```
SebastianS/dummy-model
SebastianS
2021-12-24T16:44:54Z
6
0
transformers
[ "transformers", "pytorch", "camembert", "fill-mask", "fr", "dataset:oscar", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: fr license: mit datasets: - oscar --- # dummy this is only a dummy model originally based on RoBERT model ## intended uses and limitations not intended to be used, same limitations as camembert-base model ## how to use it cant be used (lol) ## training data French subcorpus of the newly available multilingual corpus OSCAR ## training procedure evaluated on multiple downstream tasks ## variable and metrics not explicitly stated ## evaluation metrics maybe OSCAR ## evaluation results not explicitly stated
baffo32/gpt2-ptmap
baffo32
2021-12-24T13:45:44Z
15
0
transformers
[ "transformers", "pytorch", "tf", "jax", "tflite", "rust", "gpt2", "text-generation", "exbert", "en", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en tags: - exbert license: mit --- # GPT-2 Test the whole generation capabilities here: https://transformer.huggingface.co/doc/gpt2-large Pretrained model on English language using a causal language modeling (CLM) objective. It was introduced in [this paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) and first released at [this page](https://openai.com/blog/better-language-models/). Disclaimer: The team releasing GPT-2 also wrote a [model card](https://github.com/openai/gpt-2/blob/master/model_card.md) for their model. Content from this model card has been written by the Hugging Face team to complete the information they provided and give specific examples of bias. ## Model description GPT-2 is a transformers model pretrained on a very large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was trained to guess the next word in sentences. More precisely, inputs are sequences of continuous text of a certain length and the targets are the same sequence, shifted one token (word or piece of word) to the right. The model uses internally a mask-mechanism to make sure the predictions for the token `i` only uses the inputs from `1` to `i` but not the future tokens. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks. The model is best at what it was pretrained for however, which is generating texts from a prompt. ## Intended uses & limitations You can use the raw model for text generation or fine-tune it to a downstream task. See the [model hub](https://huggingface.co/models?filter=gpt2) to look for fine-tuned versions on a task that interests you. ### How to use You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, we set a seed for reproducibility: ```python >>> from transformers import pipeline, set_seed >>> generator = pipeline('text-generation', model='gpt2') >>> set_seed(42) >>> generator("Hello, I'm a language model,", max_length=30, num_return_sequences=5) [{'generated_text': "Hello, I'm a language model, a language for thinking, a language for expressing thoughts."}, {'generated_text': "Hello, I'm a language model, a compiler, a compiler library, I just want to know how I build this kind of stuff. I don"}, {'generated_text': "Hello, I'm a language model, and also have more than a few of your own, but I understand that they're going to need some help"}, {'generated_text': "Hello, I'm a language model, a system model. I want to know my language so that it might be more interesting, more user-friendly"}, {'generated_text': 'Hello, I\'m a language model, not a language model"\n\nThe concept of "no-tricks" comes in handy later with new'}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import GPT2Tokenizer, GPT2Model tokenizer = GPT2Tokenizer.from_pretrained('gpt2') model = GPT2Model.from_pretrained('gpt2') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import GPT2Tokenizer, TFGPT2Model tokenizer = GPT2Tokenizer.from_pretrained('gpt2') model = TFGPT2Model.from_pretrained('gpt2') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ### Limitations and bias The training data used for this model has not been released as a dataset one can browse. We know it contains a lot of unfiltered content from the internet, which is far from neutral. As the openAI team themselves point out in their [model card](https://github.com/openai/gpt-2/blob/master/model_card.md#out-of-scope-use-cases): > Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don’t support use-cases > that require the generated text to be true. > > Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do > not recommend that they be deployed into systems that interact with humans > unless the deployers first carry out a > study of biases relevant to the intended use-case. We found no statistically significant difference in gender, race, > and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with similar > levels of caution around use cases that are sensitive to biases around human attributes. Here's an example of how the model can have biased predictions: ```python >>> from transformers import pipeline, set_seed >>> generator = pipeline('text-generation', model='gpt2') >>> set_seed(42) >>> generator("The White man worked as a", max_length=10, num_return_sequences=5) [{'generated_text': 'The White man worked as a mannequin for'}, {'generated_text': 'The White man worked as a maniser of the'}, {'generated_text': 'The White man worked as a bus conductor by day'}, {'generated_text': 'The White man worked as a plumber at the'}, {'generated_text': 'The White man worked as a journalist. He had'}] >>> set_seed(42) >>> generator("The Black man worked as a", max_length=10, num_return_sequences=5) [{'generated_text': 'The Black man worked as a man at a restaurant'}, {'generated_text': 'The Black man worked as a car salesman in a'}, {'generated_text': 'The Black man worked as a police sergeant at the'}, {'generated_text': 'The Black man worked as a man-eating monster'}, {'generated_text': 'The Black man worked as a slave, and was'}] ``` This bias will also affect all fine-tuned versions of this model. ## Training data The OpenAI team wanted to train this model on a corpus as large as possible. To build it, they scraped all the web pages from outbound links on Reddit which received at least 3 karma. Note that all Wikipedia pages were removed from this dataset, so the model was not trained on any part of Wikipedia. The resulting dataset (called WebText) weights 40GB of texts but has not been publicly released. You can find a list of the top 1,000 domains present in WebText [here](https://github.com/openai/gpt-2/blob/master/domains.txt). ## Training procedure ### Preprocessing The texts are tokenized using a byte-level version of Byte Pair Encoding (BPE) (for unicode characters) and a vocabulary size of 50,257. The inputs are sequences of 1024 consecutive tokens. The larger model was trained on 256 cloud TPU v3 cores. The training duration was not disclosed, nor were the exact details of training. ## Evaluation results The model achieves the following results without any fine-tuning (zero-shot): | Dataset | LAMBADA | LAMBADA | CBT-CN | CBT-NE | WikiText2 | PTB | enwiki8 | text8 | WikiText103 | 1BW | |:--------:|:-------:|:-------:|:------:|:------:|:---------:|:------:|:-------:|:------:|:-----------:|:-----:| | (metric) | (PPL) | (ACC) | (ACC) | (ACC) | (PPL) | (PPL) | (BPB) | (BPC) | (PPL) | (PPL) | | | 35.13 | 45.99 | 87.65 | 83.4 | 29.41 | 65.85 | 1.16 | 1,17 | 37.50 | 75.20 | ### BibTeX entry and citation info ```bibtex @article{radford2019language, title={Language Models are Unsupervised Multitask Learners}, author={Radford, Alec and Wu, Jeff and Child, Rewon and Luan, David and Amodei, Dario and Sutskever, Ilya}, year={2019} } ``` <a href="https://huggingface.co/exbert/?model=gpt2"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
hiraki/wav2vec2-base-timit-demo-colab
hiraki
2021-12-24T10:51:35Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.3780 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 0.08 | 10 | 14.0985 | 1.0 | | No log | 0.16 | 20 | 13.8638 | 1.0004 | | No log | 0.24 | 30 | 13.5135 | 1.0023 | | No log | 0.32 | 40 | 12.8708 | 1.0002 | | No log | 0.4 | 50 | 11.6927 | 1.0 | | No log | 0.48 | 60 | 10.2733 | 1.0 | | No log | 0.56 | 70 | 8.1396 | 1.0 | | No log | 0.64 | 80 | 5.3503 | 1.0 | | No log | 0.72 | 90 | 3.7975 | 1.0 | | No log | 0.8 | 100 | 3.4275 | 1.0 | | No log | 0.88 | 110 | 3.3596 | 1.0 | | No log | 0.96 | 120 | 3.3780 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
toasthans/Twitter_Ohne_HPSearch
toasthans
2021-12-24T10:20:23Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: Twitter_Ohne_HPSearch results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Twitter_Ohne_HPSearch This model is a fine-tuned version of [bert-base-german-cased](https://huggingface.co/bert-base-german-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0262 - Accuracy: 0.8300 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 421 | 0.4296 | 0.8181 | | 0.4451 | 2.0 | 842 | 0.4889 | 0.8240 | | 0.1761 | 3.0 | 1263 | 0.9503 | 0.8103 | | 0.0486 | 4.0 | 1684 | 1.0262 | 0.8300 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
BigSalmon/InformalToFormalLincoln16
BigSalmon
2021-12-23T18:48:23Z
10
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
Informal to Formal: ``` from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln16") model = AutoModelWithLMHead.from_pretrained("BigSalmon/InformalToFormalLincoln16") ``` ``` https://huggingface.co/spaces/BigSalmon/GPT2 (The model for this space changes over time) ``` ``` https://huggingface.co/spaces/BigSalmon/GPT2_Most_Probable (The model for this space changes over time) ``` ``` How To Make Prompt: informal english: i am very ready to do that just that. Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end. Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task. informal english: space is huge and needs to be explored. Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless. Translated into the Style of Abraham Lincoln: space is a ( limitless / boundless ) expanse, a vast virgin domain awaiting exploration. informal english: corn fields are all across illinois, visible once you leave chicago. Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago. informal english: ````
toasthans/Facebook_Mit_HPS
toasthans
2021-12-23T17:47:19Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: Facebook_Mit_HPS results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Facebook_Mit_HPS This model is a fine-tuned version of [bert-base-german-cased](https://huggingface.co/bert-base-german-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3681 - Accuracy: 0.9281 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3.906763521176542e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 30 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 292 | 0.2394 | 0.9238 | | 0.2248 | 2.0 | 584 | 0.3112 | 0.9178 | | 0.2248 | 3.0 | 876 | 0.3681 | 0.9281 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
merve/distilbert-base-uncased-finetuned-ner
merve
2021-12-23T16:19:38Z
61
0
transformers
[ "transformers", "tf", "tensorboard", "distilbert", "token-classification", "generated_from_keras_callback", "dataset:conll2003", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: merve/distilbert-base-uncased-finetuned-ner results: [] datasets: - "conll2003" --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # merve/distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.2037 - Validation Loss: 0.0703 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2631, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.2037 | 0.0703 | 0 | ### Framework versions - Transformers 4.16.0.dev0 - TensorFlow 2.7.0 - Datasets 1.17.1.dev0 - Tokenizers 0.10.3
toasthans/Facebook_and_Twitter_Ohne_HPS
toasthans
2021-12-23T14:55:46Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: Facebook_and_Twitter_Ohne_HPS results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Facebook_and_Twitter_Ohne_HPS This model is a fine-tuned version of [bert-base-german-cased](https://huggingface.co/bert-base-german-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9218 - Accuracy: 0.8512 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4364 | 1.0 | 713 | 0.4107 | 0.8302 | | 0.2843 | 2.0 | 1426 | 0.4316 | 0.8495 | | 0.0869 | 3.0 | 2139 | 0.7700 | 0.8558 | | 0.0443 | 4.0 | 2852 | 0.9218 | 0.8512 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
redbloodyknife/DialoGPT-medium-shayo
redbloodyknife
2021-12-23T12:17:05Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- tags: - conversational --- #Shayo Bot by Shogun #Ai Chatbot Testing based on GPT2 and DialoGPT-Medium by Microsoft #shoguπ#9999
toasthans/Facebook_Mit_HPS_5_Epoch
toasthans
2021-12-23T08:27:55Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: Facebook_Mit_HPS_5_Epoch results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Facebook_Mit_HPS_5_Epoch This model is a fine-tuned version of [bert-base-german-cased](https://huggingface.co/bert-base-german-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4774 - Accuracy: 0.9315 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.546392051994155e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 5 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 292 | 0.2181 | 0.9264 | | 0.2411 | 2.0 | 584 | 0.2571 | 0.9289 | | 0.2411 | 3.0 | 876 | 0.5712 | 0.8947 | | 0.0558 | 4.0 | 1168 | 0.4675 | 0.9332 | | 0.0558 | 5.0 | 1460 | 0.4774 | 0.9315 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
KoichiYasuoka/roberta-small-japanese-aozora-char
KoichiYasuoka
2021-12-23T02:55:42Z
5
1
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "japanese", "masked-lm", "ja", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: - "ja" tags: - "japanese" - "masked-lm" license: "cc-by-sa-4.0" pipeline_tag: "fill-mask" mask_token: "[MASK]" widget: - text: "日本に着いたら[MASK]を訪ねなさい。" --- # roberta-small-japanese-aozora-char ## Model Description This is a RoBERTa model pre-trained on 青空文庫 texts with character tokenizer. You can fine-tune `roberta-small-japanese-aozora-char` for downstream tasks, such as [POS-tagging](https://huggingface.co/KoichiYasuoka/roberta-small-japanese-char-luw-upos), dependency-parsing, and so on. ## How to Use ```py from transformers import AutoTokenizer,AutoModelForMaskedLM tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-small-japanese-aozora-char") model=AutoModelForMaskedLM.from_pretrained("KoichiYasuoka/roberta-small-japanese-aozora-char") ```
Ayham/albert_gpt2_summarization_cnndm
Ayham
2021-12-23T01:36:49Z
14
0
transformers
[ "transformers", "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "generated_from_trainer", "dataset:cnn_dailymail", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- tags: - generated_from_trainer datasets: - cnn_dailymail model-index: - name: albert_large_gpt2_summarization_cnndm results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert_large_gpt2_summarization_cnndm This model is a fine-tuned version of [](https://huggingface.co/) on the cnn_dailymail dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
BigSalmon/MrLincoln5
BigSalmon
2021-12-22T22:41:39Z
10
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
Informal to Formal: ``` from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("gpt2") model = AutoModelWithLMHead.from_pretrained("BigSalmon/MrLincoln5") ``` ``` https://huggingface.co/spaces/BigSalmon/GPT2 (The model for this space changes over time) ``` ``` https://huggingface.co/spaces/BigSalmon/GPT2_Most_Probable (The model for this space changes over time) ``` ``` How To Make Prompt: informal english: i am very ready to do that just that. Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end. Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task. informal english: space is huge and needs to be explored. Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless. Translated into the Style of Abraham Lincoln: space is a ( limitless / boundless ) expanse, a vast virgin domain awaiting exploration. informal english: ````
SajjadAyoubi/clip-fa-vision
SajjadAyoubi
2021-12-22T19:03:07Z
1,523
5
transformers
[ "transformers", "pytorch", "clip_vision_model", "feature-extraction", "arxiv:2103.00020", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:04Z
# CLIPfa: Connecting Farsi Text and Images OpenAI released [`the paper Learning Transferable Visual Models From Natural Language Supervision`](https://arxiv.org/abs/2103.00020) in which they present the CLIP (Contrastive Language–Image Pre-training) model. This model is trained to connect text and images, by matching their corresponding vector representations using a contrastive learning objective. CLIP consists of two separate models, a vision encoder and a text encoder. These were trained on 400 Million images and corresponding captions. We have trained a Farsi (Persian) version of OpenAI's CLIP on a dataset of 400,000 (image, text) pairs. We used [`Farahani's RoBERTa-fa`](https://huggingface.co/m3hrdadfi/roberta-zwnj-wnli-mean-tokens) as the text encoder and [‍‍`ViT‍`](https://huggingface.co/openai/clip-vit-base-patch32) as the vision encoder from Original CLIP and finetuned them. - It should be noted that only 400K pairs were used for this training, whereas 4 million pairs were used for the Original CLIP. Also, the training took 30 days across 592 GPUs powered by the V100 chip. ## How to use? Both models generate vectors with 768 dimensions. ```python from transformers import CLIPVisionModel, RobertaModel, AutoTokenizer, CLIPFeatureExtractor # download pre-trained models vision_encoder = CLIPVisionModel.from_pretrained('SajjadAyoubi/clip-fa-vision') preprocessor = CLIPFeatureExtractor.from_pretrained('SajjadAyoubi/clip-fa-vision') text_encoder = RobertaModel.from_pretrained('SajjadAyoubi/clip-fa-text') tokenizer = AutoTokenizer.from_pretrained('SajjadAyoubi/clip-fa-text') # define input image and input text text = 'something' image = PIL.Image.open('my_favorite_image.jpg') # compute embeddings text_embedding = text_encoder(**tokenizer(text, return_tensors='pt')).pooler_output image_embedding = vision_encoder(**preprocessor(image, return_tensors='pt')).pooler_output text_embedding.shape == image_embedding.shape ``` ## Demo: The followings are just some use cases of CLIPfa on 25K [`Unsplash images`](https://github.com/unsplash/datasets) - use `pip install -q git+https://github.com/sajjjadayobi/clipfa.git` ```python from clipfa import CLIPDemo demo = CLIPDemo(vision_encoder, text_encoder, tokenizer) demo.compute_text_embeddings(['گاو' ,'اسب' ,'ماهی']) demo.compute_image_embeddings(test_df.image_path.to_list()) ``` ## Online Demo: [CLIPfa at Huggingface🤗 spaces](https://huggingface.co/spaces/SajjadAyoubi/CLIPfa-Demo) We used a small set of images (25K) to keep this app almost real-time, but it's obvious that the quality of image search depends heavily on the size of the image database. > Made with ❤️ in my basement🤫
gngpostalsrvc/BERiTmodel2
gngpostalsrvc
2021-12-22T17:25:25Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer model-index: - name: BERiTmodel2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERiTmodel2 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.1508 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 280 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 3.1924 | 1.0 | 2854 | 3.4329 | | 3.0936 | 2.0 | 5708 | 3.5036 | | 2.9998 | 3.0 | 8562 | 3.1906 | | 2.9064 | 4.0 | 11416 | 3.4867 | | 2.8493 | 5.0 | 14270 | 3.2027 | | 2.7538 | 6.0 | 17124 | 2.9772 | | 2.7273 | 7.0 | 19978 | 2.9950 | | 2.7399 | 8.0 | 22832 | 2.9690 | | 2.67 | 9.0 | 25686 | 3.0311 | | 2.6388 | 10.0 | 28540 | 3.1508 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
microsoft/wavlm-base
microsoft
2021-12-22T17:23:36Z
72,617
7
transformers
[ "transformers", "pytorch", "wavlm", "feature-extraction", "speech", "en", "arxiv:2110.13900", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- language: - en datasets: tags: - speech inference: false --- # WavLM-Base [Microsoft's WavLM](https://github.com/microsoft/unilm/tree/master/wavlm) The base model pretrained on 16kHz sampled speech audio. When using the model, make sure that your speech input is also sampled at 16kHz. **Note**: This model does not have a tokenizer as it was pretrained on audio alone. In order to use this model **speech recognition**, a tokenizer should be created and the model should be fine-tuned on labeled text data. Check out [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more in-detail explanation of how to fine-tune the model. The model was pre-trained on 960h of [Librispeech](https://huggingface.co/datasets/librispeech_asr). [Paper: WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) Authors: Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei **Abstract** *Self-supervised learning (SSL) achieves great success in speech recognition, while limited exploration has been attempted for other speech processing tasks. As speech signal contains multi-faceted information including speaker identity, paralinguistics, spoken content, etc., learning universal representations for all speech tasks is challenging. In this paper, we propose a new pre-trained model, WavLM, to solve full-stack downstream speech tasks. WavLM is built based on the HuBERT framework, with an emphasis on both spoken content modeling and speaker identity preservation. We first equip the Transformer structure with gated relative position bias to improve its capability on recognition tasks. For better speaker discrimination, we propose an utterance mixing training strategy, where additional overlapped utterances are created unsupervisely and incorporated during model training. Lastly, we scale up the training dataset from 60k hours to 94k hours. WavLM Large achieves state-of-the-art performance on the SUPERB benchmark, and brings significant improvements for various speech processing tasks on their representative benchmarks.* The original model can be found under https://github.com/microsoft/unilm/tree/master/wavlm. # Usage This is an English pre-trained speech model that has to be fine-tuned on a downstream task like speech recognition or audio classification before it can be used in inference. The model was pre-trained in English and should therefore perform well only in English. The model has been shown to work well on the [SUPERB benchmark](https://superbbenchmark.org/). **Note**: The model was pre-trained on phonemes rather than characters. This means that one should make sure that the input text is converted to a sequence of phonemes before fine-tuning. ## Speech Recognition To fine-tune the model for speech recognition, see [the official speech recognition example](https://github.com/huggingface/transformers/tree/master/examples/pytorch/speech-recognition). ## Speech Classification To fine-tune the model for speech classification, see [the official audio classification example](https://github.com/huggingface/transformers/tree/master/examples/pytorch/audio-classification). ## Speaker Verification TODO ## Speaker Diarization TODO # Contribution The model was contributed by [cywang](https://huggingface.co/cywang) and [patrickvonplaten](https://huggingface.co/patrickvonplaten). # License The official license can be found [here](https://github.com/microsoft/UniSpeech/blob/main/LICENSE) ![design](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/wavlm.png)
deepparag/DumBot-Beta
deepparag
2021-12-22T16:32:40Z
6
0
transformers
[ "transformers", "pytorch", "gpt_neo", "text-generation", "conversational", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- thumbnail: https://cdn.discordapp.com/app-icons/870239976690970625/c02cae78ae105f07969cfd8f8ea3d0a0.png tags: - conversational license: mit --- An generative AI made using [microsoft/DialoGPT-small](https://huggingface.co/microsoft/DialoGPT-small). Trained on: https://www.kaggle.com/Cornell-University/movie-dialog-corpus https://www.kaggle.com/jef1056/discord-data Important: The AI can be a bit weird at times as it is still undergoing training! At times it send stuff using :<random_wierd_words>: as they are discord emotes. It also send random @RandomName as it is trying to ping people. This works well on discord but on the web not so much but it is easy enough to remove such stuff using [re.sub](https://docs.python.org/3/library/re.html#re.sub) Issues: The AI like with all conversation AI lacks a character, it changes its name way too often. This can be solved using an AIML chatbot to give it a stable character! [Live Demo](https://dumbot-331213.uc.r.appspot.com/) Example: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("deepparag/DumBot") model = AutoModelWithLMHead.from_pretrained("deepparag/DumBot") # Let's chat for 4 lines for step in range(4): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # print(new_user_input_ids) # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate( bot_input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=4, do_sample=True, top_k=100, top_p=0.7, temperature=0.8 ) # pretty print last ouput tokens from bot print("DumBot: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) ```
huggingartists/100-gecs
huggingartists
2021-12-22T15:23:59Z
103
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/100-gecs", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/100-gecs tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/9fd98af9a817af8cd78636f71895b6ad.500x500x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">100 gecs</div> <a href="https://genius.com/artists/100-gecs"> <div style="text-align: center; font-size: 14px;">@100-gecs</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from 100 gecs. Dataset is available [here](https://huggingface.co/datasets/huggingartists/100-gecs). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/100-gecs") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3c9j4tvq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on 100 gecs's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1v0ffa4e) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1v0ffa4e/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/100-gecs') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/100-gecs") model = AutoModelWithLMHead.from_pretrained("huggingartists/100-gecs") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
dtomas/roberta-base-bne-irony
dtomas
2021-12-22T13:55:36Z
8
1
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "irony", "sarcasm", "spanish", "es", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: - es tags: - irony - sarcasm - spanish widget: - text: "¡Cómo disfruto peleándome con los Transformers!" example_title: "Ironic" - text: "Madrid es la capital de España" example_title: "Non ironic" --- # RoBERTa base finetuned for Spanish irony detection ## Model description Model to perform irony detection in Spanish. This is a finetuned version of the [RoBERTa-base-bne model](https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne) on the [IroSvA](https://www.autoritas.net/IroSvA2019/) corpus. Only the Spanish from Spain variant was used in the training process. It comprises 2,400 tweets labeled as ironic/non-ironic.
Ayham/xlmroberta_gpt2_summarization_xsum
Ayham
2021-12-22T12:59:45Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "generated_from_trainer", "dataset:xsum", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- tags: - generated_from_trainer datasets: - xsum model-index: - name: xlmroberta_gpt2_summarization_xsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmroberta_gpt2_summarization_xsum This model is a fine-tuned version of [](https://huggingface.co/) on the xsum dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
ayameRushia/roberta-base-indonesian-sentiment-analysis-smsa
ayameRushia
2021-12-22T10:33:50Z
51
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "dataset:indonlu", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer datasets: - indonlu metrics: - accuracy model-index: - name: roberta-base-indonesian-sentiment-analysis-smsa results: - task: name: Text Classification type: text-classification dataset: name: indonlu type: indonlu args: smsa metrics: - name: Accuracy type: accuracy value: 0.9349206349206349 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-indonesian-sentiment-analysis-smsa This model is a fine-tuned version of [flax-community/indonesian-roberta-base](https://huggingface.co/flax-community/indonesian-roberta-base) on the indonlu dataset. It achieves the following results on the evaluation set: - Loss: 0.4252 - Accuracy: 0.9349 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7582 | 1.0 | 688 | 0.3280 | 0.8786 | | 0.3225 | 2.0 | 1376 | 0.2398 | 0.9206 | | 0.2057 | 3.0 | 2064 | 0.2574 | 0.9230 | | 0.1642 | 4.0 | 2752 | 0.2820 | 0.9302 | | 0.1266 | 5.0 | 3440 | 0.3344 | 0.9317 | | 0.0608 | 6.0 | 4128 | 0.3543 | 0.9341 | | 0.058 | 7.0 | 4816 | 0.4252 | 0.9349 | | 0.0315 | 8.0 | 5504 | 0.4736 | 0.9310 | | 0.0166 | 9.0 | 6192 | 0.4649 | 0.9349 | | 0.0143 | 10.0 | 6880 | 0.4648 | 0.9341 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
NbAiLabArchive/test_w5_long_roberta_tokenizer_adafactor
NbAiLabArchive
2021-12-22T09:40:02Z
14
0
transformers
[ "transformers", "jax", "tensorboard", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
Just for performing some experiments. Do not use.
hrdipto/wav2vec2-xls-r-timit-tokenizer-base
hrdipto
2021-12-22T07:19:26Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-xls-r-timit-tokenizer-base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-timit-tokenizer-base This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0828 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 3.3134 | 4.03 | 500 | 3.0814 | 1.0 | | 2.9668 | 8.06 | 1000 | 3.0437 | 1.0 | | 2.9604 | 12.1 | 1500 | 3.0337 | 1.0 | | 2.9619 | 16.13 | 2000 | 3.0487 | 1.0 | | 2.9588 | 20.16 | 2500 | 3.0859 | 1.0 | | 2.957 | 24.19 | 3000 | 3.0921 | 1.0 | | 2.9555 | 28.22 | 3500 | 3.0828 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
huggingtweets/_luisinhobr-beckvencido
huggingtweets
2021-12-22T02:57:34Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/_luisinhobr-beckvencido/1640141850327/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1470914400764715012/YO9XqA0n_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1390224220643278850/LcIZLss-_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">agrummgit ag😜 & luisfer nando</div> <div style="text-align: center; font-size: 14px;">@_luisinhobr-beckvencido</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from agrummgit ag😜 & luisfer nando. | Data | agrummgit ag😜 | luisfer nando | | --- | --- | --- | | Tweets downloaded | 3226 | 2366 | | Retweets | 379 | 367 | | Short tweets | 672 | 503 | | Tweets kept | 2175 | 1496 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/34idoh6o/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @_luisinhobr-beckvencido's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1w6ipjqa) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1w6ipjqa/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/_luisinhobr-beckvencido') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Jeska/BertjeWDialDataALL04
Jeska
2021-12-22T02:47:07Z
18
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- tags: - generated_from_trainer model-index: - name: BertjeWDialDataALL04 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BertjeWDialDataALL04 This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9717 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.2954 | 1.0 | 1542 | 2.0372 | | 2.2015 | 2.0 | 3084 | 2.0104 | | 2.1661 | 3.0 | 4626 | 2.0372 | | 2.1186 | 4.0 | 6168 | 1.9549 | | 2.0939 | 5.0 | 7710 | 1.9438 | | 2.0867 | 6.0 | 9252 | 1.9648 | | 2.0462 | 7.0 | 10794 | 1.9465 | | 2.0315 | 8.0 | 12336 | 1.9412 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0 - Datasets 1.16.1 - Tokenizers 0.10.3
akashsivanandan/wav2vec2-large-xls-r-300m-tamil-colab-final
akashsivanandan
2021-12-22T01:26:48Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-tamil-colab-final results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-tamil-colab-final This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.7539 - Wer: 0.6135 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 11.1466 | 1.0 | 118 | 4.3444 | 1.0 | | 3.4188 | 2.0 | 236 | 3.2496 | 1.0 | | 2.8617 | 3.0 | 354 | 1.6165 | 1.0003 | | 0.958 | 4.0 | 472 | 0.7984 | 0.8720 | | 0.5929 | 5.0 | 590 | 0.6733 | 0.7831 | | 0.4628 | 6.0 | 708 | 0.6536 | 0.7621 | | 0.3834 | 7.0 | 826 | 0.6037 | 0.7155 | | 0.3242 | 8.0 | 944 | 0.6376 | 0.7184 | | 0.2736 | 9.0 | 1062 | 0.6214 | 0.7070 | | 0.2433 | 10.0 | 1180 | 0.6158 | 0.6944 | | 0.2217 | 11.0 | 1298 | 0.6548 | 0.6830 | | 0.1992 | 12.0 | 1416 | 0.6331 | 0.6775 | | 0.1804 | 13.0 | 1534 | 0.6644 | 0.6874 | | 0.1639 | 14.0 | 1652 | 0.6629 | 0.6649 | | 0.143 | 15.0 | 1770 | 0.6927 | 0.6836 | | 0.1394 | 16.0 | 1888 | 0.6933 | 0.6888 | | 0.1296 | 17.0 | 2006 | 0.7039 | 0.6860 | | 0.1212 | 18.0 | 2124 | 0.7042 | 0.6628 | | 0.1121 | 19.0 | 2242 | 0.7132 | 0.6475 | | 0.1069 | 20.0 | 2360 | 0.7423 | 0.6438 | | 0.1063 | 21.0 | 2478 | 0.7171 | 0.6484 | | 0.1025 | 22.0 | 2596 | 0.7396 | 0.6451 | | 0.0946 | 23.0 | 2714 | 0.7400 | 0.6432 | | 0.0902 | 24.0 | 2832 | 0.7385 | 0.6286 | | 0.0828 | 25.0 | 2950 | 0.7368 | 0.6286 | | 0.079 | 26.0 | 3068 | 0.7471 | 0.6306 | | 0.0747 | 27.0 | 3186 | 0.7524 | 0.6201 | | 0.0661 | 28.0 | 3304 | 0.7576 | 0.6201 | | 0.0659 | 29.0 | 3422 | 0.7579 | 0.6130 | | 0.0661 | 30.0 | 3540 | 0.7539 | 0.6135 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
enelpol/czywiesz-question
enelpol
2021-12-21T21:24:34Z
7
1
transformers
[ "transformers", "pytorch", "bert", "feature-extraction", "pl", "dataset:enelpol/czywiesz", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- language: pl datasets: - enelpol/czywiesz task_categories: - question_answering task_ids: - open-domain-qa multilinguality: - monolingual size_categories: - 1k<n<10K --- ## Model description This is the question encoder for the Polish DPR question answering model. The full model consists of two encoders. Please read [context encoder documentation](https://huggingface.co/enelpol/czywiesz-context) to get the details of the model.
Ayham/albert_gpt2_summarization_xsum
Ayham
2021-12-21T21:20:14Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "generated_from_trainer", "dataset:xsum", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- tags: - generated_from_trainer datasets: - xsum model-index: - name: albert_gpt2_summarization_xsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert_gpt2_summarization_xsum This model is a fine-tuned version of [](https://huggingface.co/) on the xsum dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
davanstrien/flyswot
davanstrien
2021-12-21T17:21:49Z
0
0
null
[ "onnx", "region:us" ]
null
2022-03-02T23:29:05Z
TODO ## Model description In progress model for detecting 'fake' flysheets ## Intended uses & limitations Not currently intended for public consumption... ## Limitations and bias Not currently intended for public consumption... ## Training data ## Eval results
davanstrien/book-genre-classification
davanstrien
2021-12-21T16:05:46Z
6
2
adapter-transformers
[ "adapter-transformers", "bert", "adapterhub:text-classification", "region:us" ]
null
2022-03-02T23:29:05Z
--- tags: - bert - adapterhub:text-classification - adapter-transformers --- # Adapter `davanstrien/book-genre-classification` for bert-base-cased An [adapter](https://adapterhub.ml) for the `bert-base-cased` model that was trained on the [text-classification](https://adapterhub.ml/explore/text-classification/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-cased") adapter_name = model.load_adapter("davanstrien/book-genre-classification", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
espnet/ftshijt_espnet2_asr_yolo_mixtec_transformer
espnet
2021-12-21T15:59:04Z
3
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "dataset:yolo_mixtec", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- tags: - espnet - audio - automatic-speech-recognition language: noinfo datasets: - yolo_mixtec license: cc-by-4.0 --- ## ESPnet2 ASR model ### `espnet/ftshijt_espnet2_asr_yolo_mixtec_transformer` This model was trained by ftshijt using yolo_mixtec recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet pip install -e . cd els/yolo_mixtec/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/ftshijt_espnet2_asr_yolo_mixtec_transformer ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Wed Nov 10 02:59:39 EST 2021` - python version: `3.9.7 (default, Sep 16 2021, 13:09:58) [GCC 7.5.0]` - espnet version: `espnet 0.10.4a1` - pytorch version: `pytorch 1.9.0` - Git hash: `` - Commit date: `` ## asr_train_asr_transformer_specaug_raw_bpe500 ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_lm_lm_train_bpe500_valid.loss.ave_asr_model_valid.acc.best/test|4985|81348|84.1|11.8|4.1|2.5|18.3|82.5| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_lm_lm_train_bpe500_valid.loss.ave_asr_model_valid.acc.best/test|4985|626187|93.4|2.2|4.4|2.4|9.0|82.5| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_lm_lm_train_bpe500_valid.loss.ave_asr_model_valid.acc.best/test|4985|325684|90.7|5.2|4.1|2.2|11.5|82.5| ## ASR config <details><summary>expand</summary> ``` config: conf/tuning/train_asr_transformer_specaug.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_transformer_specaug_raw_bpe500 ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 100 patience: 15 val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 10 grad_clip: 5 grad_clip_type: 2.0 grad_noise: false accum_grad: 2 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 32 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_bpe500/train/speech_shape - exp/asr_stats_raw_bpe500/train/text_shape.bpe valid_shape_file: - exp/asr_stats_raw_bpe500/valid/speech_shape - exp/asr_stats_raw_bpe500/valid/text_shape.bpe batch_type: folded valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - /tmp/st-jiatong-54826.tbQP9L0N/raw/train/wav.scp - speech - kaldi_ark - - /tmp/st-jiatong-54826.tbQP9L0N/raw/train/text - text - text valid_data_path_and_name_and_type: - - /tmp/st-jiatong-54826.tbQP9L0N/raw/dev/wav.scp - speech - kaldi_ark - - /tmp/st-jiatong-54826.tbQP9L0N/raw/dev/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 1.0 scheduler: noamlr scheduler_conf: warmup_steps: 25000 token_list: - <blank> - <unk> - '4' - '3' - '1' - '2' - A - ▁NDI - '''4' - '''1' - U - ▁BA - O - ▁I - E - 4= - ▁KU - ▁TAN - ▁KA - '''3' - NI - ▁YA - RA - 3= - 2= - IN - NA - ▁TA - AN - ▁KAN - ▁NI - ▁NDA - ▁NA - ▁JI - KAN - CHI - (3)= - I - UN - 1- - ▁SA - (4)= - ▁JA - XI - ▁KO - ▁TI - TA - KU - BI - ▁YU - ▁KWA - KA - XA - 1= - ▁YO - RI - NDO - ▁XA - TU - ▁TU - ▁ÑA - ▁KI - ▁XI - YO - NDU - NDA - ▁CHI - (2)= - ▁BI - ▁NU - KI - (1)= - YU - 3- - ▁MI - 'ON' - ▁A - BA - 4- - KO - ▁NDU - ▁ÑU - ▁NDO - NU - ÑU - '143' - ▁SI - ▁SO - 13- - NDI - ▁AN - ▁SU - TIN - SA - ▁BE - TO - RUN - KWA - KWI - ▁NDE - ▁KWI - XIN - ▁U - SI - SO - ▁TUN - EN - ▁KWE - YA - (4)=2 - NDE - TI - TUN - ▁TIN - MA - ▁SE - ▁XU - SU - ▁LU - ▁KE - ▁ - MI - ▁RAN - (3)=2 - 14- - ▁MA - KUN - LU - N - ▁O - KE - NGA - ▁IS - ▁JU - '=' - ▁LA - ÑA - JA - CHUN - R - TAN - PU - ▁TIEM - LI - LA - CHIU - ▁PA - M - ▁REY - ▁BAN - JI - L - SUN - ▁SEÑOR - ▁JO - ▁TIO - KWE - CHU - S - ▁YE - KIN - XU - BE - ▁CUENTA - ▁SAN - RRU - ▁¿ - CHA - ▁TO - RRA - LO - TE - ▁AMIGU - PA - XAN - ▁C - C - ▁CHA - ▁TE - ▁HIJO - ▁MB - ▁PI - G - ▁ÁNIMA - ▁CHE - ▁P - B - NDIO - SE - ▁SANTU - MU - ▁PADRE - D - JU - Z - ▁TORO - ▁PO - LE - ▁LI - RO - ▁LO - ▁MESA - CA - ▁CHIU - DO - ▁BU - ▁BUTA - JO - T - TRU - RU - ▁MBO - ▁JUAN - ▁MM - ▁CA - ▁M - ▁MAS - ▁DE - V - ▁MAÑA - ▁UTA - DA - ▁MULA - ▁YOLOXÓCHITL - ▁CONSEJU - ▁Y - ▁LE - ÓN - ▁MISA - TIU - ▁CANDELA - ▁PATRÓN - ▁PADRINU - ▁MARCU - ▁V - ▁G - Í - ▁XE - ▁MU - ▁XO - NGUI - ▁CO - ▁HOMBRE - ▁PESU - ▁PE - ▁D - ▁MACHITI - CO - REN - ▁RANCHU - ▁MIS - ▁MACHU - J - ▁PAN - CHO - H - ▁CHU - Y - ▁TON - GA - X - ▁VI - ▁FE - ▁TARRAYA - ▁SANTÍSIMA - ▁N - ▁MAYÓ - ▁CARRU - ▁F - ▁PAPÁ - ▁PALOMA - ▁MARÍA - ▁PEDRU - ▁CAFÉ - ▁COMISARIO - ▁PANELA - ▁PELÓN - É - ▁POZO - ▁CABRÓN - ▁GUACHU - ▁S - RES - ▁COSTUMBRE - ▁SEÑA - QUI - ▁ORO - CH - ▁MAR - SIN - SAN - ▁COSTA - ▁MAMÁ - ▁CINCUENTA - ▁CHO - ▁PEDR - ▁JUNTA - MÚ - ▁TIENDA - ▁JOSÉ - NC - ▁ES - ▁SUERTE - ▁FAMILIA - ▁ZAPATU - NTE - ▁PASTO - ▁CON - Ñ - ▁BOTE - CIÓN - ▁RE - ▁BOLSA - ▁MANGO - ▁JWE - ▁GASTU - ▁T - ▁B - ▁KW - ÍN - ▁HIJA - ▁CUARENT - ▁VAQUERU - ▁NECHITO - ▁NOVIA - ▁NOVIO - JWE - ▁PUENTE - ▁SANDÍA - ▁MALA - Ó - ▁ABONO - ▁JESÚS - ▁CUARTO - ▁EFE - ▁REINA - ▁COMANDANTE - ▁ESCUELA - ▁MANZANA - ▁MÁQUINA - LLA - ▁COR - ▁JERÓNIMO - ▁PISTOLA - NGI - CIO - ▁FRANCISCU - ▁TEODORO - CER - ▁SALUBI - ▁MEZA - ▁MÚSIC - ▁RU - ▁CONSTANTINO - ▁GARCÍA - ▁FRENU - ▁ROSA - ▁CERVEZA - ▁CIGARRU - ▁COMISIÓN - ▁CUNIJO - ▁FRANCISCO - ▁HÍJOLE - ▁NUEVE - ▁MUL - ▁PANTALÓN - ▁CAMISA - ▁CHINGADA - ▁SEMANA - ▁COM - GAR - ▁MARTÍN - ▁SÁBADO - ▁TRABAJO - ▁CINCO - ▁DIE - ▁EST - NDWA - ▁LECHIN - ▁COCO - ILLU - ▁CORRE - ▁MADR - ▁REC - ▁BAUTISTA - ▁VENTANA - ▁CUÑAD - ▁ANTONIU - ▁COPALA - LÍN - ▁SECUND - ▁COHETE - ▁HISTORIA - ▁POLICÍA - ENCIA - ▁CAD - ▁LUIS - ▁DOCTOR - ▁GONZÁLEZ - ▁JUEVE - ▁LIBRU - ▁QUESU - ▁VIAJE - ▁CART - ▁LOCO - ▁BOL - ▁COMPADRE - ▁JWI - ▁METRU - ▁BUENO - ▁TRE - ▁CASTILLO - ▁COMITÉ - ▁ETERNO - ▁LÍQUIDO - ▁MOLE - ▁CAPULCU - ▁DOMING - ▁ROMA - ▁CARAJU - ▁RIATA - ▁TRATU - ▁SEIS - ▁ADÁN - ▁JUANCITO - ▁HOR - '''' - ▁ARRÓ - ▁COCINA - ▁PALACIO - ▁RÓMULO - K - ▁ALFONSO - ▁BARTOLO - ▁FELIPE - ▁HERRER - ▁PAULINO - ▁YEGUA - ▁LISTA - Ú - ▁ABRIL - ▁CUATRO - ▁DICIEMBRE - ▁MARGARITO - ▁MOJONERA - ▁SOLEDAD - ▁VESTIDO - ▁PELOTA - RRET - ▁CAPITÁN - ▁COMUNIÓN - ▁CUCHARA - ▁FERNANDO - ▁GUADALUPE - ▁MIGUEL - ▁PELÚN - ▁SECRETARIU - ▁LENCHU - ▁EVA - ▁SEGUND - ▁CANTOR - ▁CHILPANCINGO - ▁GABRIEL - ▁QUINIENTO - ▁RAÚL - ▁SEVERIAN - ▁TUMBADA - ▁MALINCHI - ▁PRIMU - ▁MORAL - ▁AGOSTO - ▁CENTÍMETRO - ▁FIRMA - ▁HUEHUETÁN - ▁MANGUERA - ▁MEDI - ▁MUERT - ▁SALAZAR - ▁VIERNI - LILL - ▁LL - '-' - ▁CAMPESINO - ▁CIVIL - ▁COMISARIADO - ) - ( - Ã - ‘ - ¿ - Ü - ¡ - Q - F - Á - P - Ÿ - W - Ý - <sos/eos> init: xavier_uniform input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true model_conf: ctc_weight: 0.3 lsm_weight: 0.1 length_normalized_loss: false use_preprocessor: true token_type: bpe bpemodel: data/token_list/bpe_unigram500/bpe.model non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: default frontend_conf: fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 30 num_freq_mask: 2 apply_time_mask: true time_mask_width_range: - 0 - 40 num_time_mask: 2 normalize: global_mvn normalize_conf: stats_file: exp/asr_stats_raw_bpe500/train/feats_stats.npz preencoder: null preencoder_conf: {} encoder: transformer encoder_conf: input_layer: conv2d num_blocks: 12 linear_units: 2048 dropout_rate: 0.1 output_size: 512 attention_heads: 4 attention_dropout_rate: 0.0 postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: input_layer: embed num_blocks: 6 linear_units: 2048 dropout_rate: 0.1 required: - output_dir - token_list version: 0.10.4a1 distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/ftshijt_espnet2_asr_puebla_nahuatl_transfer
espnet
2021-12-21T15:43:26Z
4
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "dataset:puebla_nahuatl", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- tags: - espnet - audio - automatic-speech-recognition language: noinfo datasets: - puebla_nahuatl license: cc-by-4.0 --- ## ESPnet2 ASR model ### `espnet/ftshijt_espnet2_asr_puebla_nahuatl_transfer` This model was trained by ftshijt using puebla_nahuatl recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet pip install -e . cd els/puebla_nahuatl/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/ftshijt_espnet2_asr_puebla_nahuatl_transfer ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Sun Nov 7 18:16:55 EST 2021` - python version: `3.9.7 (default, Sep 16 2021, 13:09:58) [GCC 7.5.0]` - espnet version: `espnet 0.10.4a1` - pytorch version: `pytorch 1.9.0` - Git hash: `` - Commit date: `` ## asr_train_asr_transformer_hubert_raw_bpe500_sp ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_lm_lm_train_bpe500_valid.loss.ave_asr_model_valid.acc.best/test|10576|90532|77.0|17.0|6.0|3.6|26.6|74.0| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_lm_lm_train_bpe500_valid.loss.ave_asr_model_valid.acc.best/test|10576|590273|92.2|2.1|5.7|3.0|10.8|74.0| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_lm_lm_train_bpe500_valid.loss.ave_asr_model_valid.acc.best/test|10576|242435|86.0|7.3|6.8|3.5|17.5|74.0| ## ASR config <details><summary>expand</summary> ``` config: conf/tuning/train_asr_transformer_hubert.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_transformer_hubert_raw_bpe500_sp ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 100 patience: 15 val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 10 grad_clip: 5 grad_clip_type: 2.0 grad_noise: false accum_grad: 2 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 32 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_bpe500_sp/train/speech_shape - exp/asr_stats_raw_bpe500_sp/train/text_shape.bpe valid_shape_file: - exp/asr_stats_raw_bpe500_sp/valid/speech_shape - exp/asr_stats_raw_bpe500_sp/valid/text_shape.bpe batch_type: folded valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - /tmp/jiatong-150390.uytFFbyG/raw/train_sp/wav.scp - speech - kaldi_ark - - /tmp/jiatong-150390.uytFFbyG/raw/train_sp/text - text - text valid_data_path_and_name_and_type: - - /tmp/jiatong-150390.uytFFbyG/raw/dev/wav.scp - speech - kaldi_ark - - /tmp/jiatong-150390.uytFFbyG/raw/dev/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 1.0 scheduler: noamlr scheduler_conf: warmup_steps: 25000 token_list: - <blank> - <unk> - ':' - N - ▁A - ▁WA - ▁KE - ▁YO - ▁NE - ▁SE - H - MO - WA - '''' - ▁NO - ▁I - ▁N - S - ▁KI - K - ▁ - MAH - KA - TA - L - ▁POS - PA - ▁KA - ▁TA - ▁MO - T - ▁YEHWA - I - MEH - ▁YA - ▁DE - MA - A - ▁TE - TI - TSI - NI - CHI - ▁PERO - KI - LI - TO - WI - ▁PARA - KO - E - ▁O - ▁IKA - TE - O - W - ▁NEH - ▁NOCHI - CH - ▁TI - ▁TIK - LO - ▁SAH - ▁MAH - NA - LA - ▁OMPA - ▁IHKÓ - YA - ▁NI - ▁PORQUE - ▁MA - YO - ▁TEIN - LIA - ▁E - MPA - ▁NIKA - X - YAH - ▁KWALTSI - SA - TSA - ▁MOCHI - ▁NIK - ▁WE - ▁TO - TSÍ - ▁SEMI - ▁KITA - WAK - KWI - MI - ▁MM - ▁XO - ▁SEKI - JÓ - AH - ▁KOMO - R - NE - ▁OK - ▁KWALI - ▁CHI - ▁YEH - ▁NELI - SE - PO - WAH - PI - ME - KWA - ▁PA - ▁ONKAK - KE - ▁YE - ▁T - LTIK - ▁TEHWA - TAH - ▁TIKI - ▁QUE - ▁NIKI - PE - ▁IWKI - XI - TOK - ▁TAMAN - ▁KO - TSO - LE - RA - SI - WÍ - MAN - ▁TIMO - 'NO' - SO - ▁MIAK - U - ▁TEH - ▁KICHI - ▁XA - WE - ▁KOW - KEH - NÍ - LIK - ▁ITECH - TIH - ▁PE - ▁KIPIA - ▁CUANDO - ▁KWALTIA - ▁HASTA - LOWA - ▁ENTÓ - ▁NA - XO - RO - TIA - ▁NIKITA - CHIHCHI - ▁SEPA - ▁MAHYÁ - ▁PAHTI - ▁K - LIAH - ▁SAYOH - MATI - ▁PI - TS - ▁MÁS - XMATI - KAH - ▁XI - M - ▁ESTE - HKO - KOWIT - MIKI - CHO - ▁TAK - Á - ▁KILIAH - CHIO - ▁KIHTOWA - ▁KITE - NEKI - ▁ME - XA - ▁TEL - B - ▁KOWIT - ▁ATA - TIK - ▁EKINTSI - ▁IMA - ▁KWA - ▁OSO - ▁NEHJÓ - ▁ITEYO - Y - SKEH - ▁ISTA - ▁NIKILIA - LIH - ▁TIKWI - ▁PANÉ - KOWA - ▁OX - TEKI - ▁SA - NTE - ▁KIKWI - TSITSI - NOH - AHSI - ▁IXO - WIA - LTSI - ▁KIMA - C - ▁WEHWEI - ▁TEPITSI - ▁IHK - ▁XIWIT - YI - LIS - ▁CA - XMATTOK - SÁ - ▁MOTA - RE - ▁TIKIHTO - ▁MI - ▁X - D - ▁SAN - WIH - ▁WEHKA - KWE - CHA - ▁SI - KTIK - ▁YETOK - ▁MOKA - NEMI - LILIA - ▁¿ - TIW - ▁KIHTOWAH - LTI - Ó - MASÁ - ▁POR - ▁TIKITA - KETSA - ▁IWA - METS - YOH - ▁TAKWA - HKEH - ▁KIKWIH - ▁KIKWA - NIA - ▁ACHI - ▁KIKWAH - ▁KACHI - ▁PO - ▁IGUAL - NAL - ▁PILI - ▁NIMAN - YE - ▁NIKMATI - WIAH - ▁KIPA - ▁M - J - ▁KWI - ▁WI - WAYA - Z - ▁KITEKI - G - ▁' - ▁IHKO - CE - ▁TONI - ▁TSIKITSI - P - DO - TOKEH - NIK - ▁TIKILIAH - ▁KOWTAH - ▁TAI - ▁TATA - TIAH - CA - PIL - CHOWA - ▁KIMATI - ▁TAMA - XKA - XIWIT - TOS - KILIT - ILWI - SKI - YEH - DA - WAYO - ▁TAPA - ▁NIMO - CHIT - ▁NIMITS - ▁KINA - PAHTI - RI - ▁BUENO - ▁ESKI - WAYAH - PANO - KOW - WEYAK - LPAN - LTIA - ▁KITO - CO - ▁TINE - KIH - JO - ▁KATKA - ▁TIKTA - PAHTIA - ▁XIWTSI - ▁CHIKA - ▁KANAH - ▁KOYO - MPI - ▁IXIWYO - IHTIK - ▁KWE - ▁XIW - WILIA - XTIK - ▁VE - ▁TIKMATI - ▁KOKOLIS - LKWI - ▁AHKO - MEKAT - ▁TIKMA - ▁NIMITSILIA - ▁MITS - XTA - ▁CO - ▁KOMA - ▁KOMOHKÓ - F - ▁OKSEKI - ▁TEISÁ - ▁ESO - ▁IKOWYO - ▁ES - TOHTO - XTI - ▁TSI - ▁TIKO - PIHPI - ▁OKSÉ - ▁WEHKAPAN - KALAKI - ▁WEL - ▁MIGUEL - TEKITI - ▁TOKNI - ROWA - ▁MOSKALTIA - Í - XOKO - ▁TIKCHI - ▁EHE - ▁KWO - LPI - HTOK - TSTI - TÍ - ▁TEIHSÁ - KILO - ▁PUES - SKIA - HTIW - LILIAH - ▁IHWA - ▁KOSTIK - ▁TIKIHTOWAH - ▁CHA - ▁COMO - ▁KIMANA - CU - TAMAN - WITS - ▁KOKO - ILPIA - ▁NIMONO - ▁WELI - ▁NIKWI - WTOK - ▁KINEKI - KOKOH - ▁P - LTIAH - XKO - ▁ONKAYA - TAPOWI - MATTOK - ▁MISMO - ▁NIKIHTO - ▁NIKMATTOK - MESKIA - ▁SOH - KWOWIT - XTIA - WELITA - ▁DESPUÉS - ▁IXWA - ZA - TSAPOT - SKAL - ▁SIEMPRE - TINEMI - Ñ - ▁ESKIA - NELOWA - ▁TZINACAPAN - ▁DI - XIWYO - ▁AHA - ▁AHWIA - É - ▁KIKWIAH - MATTOKEH - ▁ACHTO - XTILIA - TAPAL - ▁KIHTO - TEHTE - ▁PORIN - ▁TSOPE - ▁KAHFE - GU - ▁NIMITSTAHTANI - ▁TAHTA - ▁KOWTATI - ISWAT - ▁TIKPIA - ▁KOMEKAT - TIOWIH - ▁TIMONOHNO - ▁TIEMPO - WEHKA - QUI - ▁TIHTI - ▁XOXOKTIK - ▁TAXKAL - EHE - ▁AJÁ - NANAKAT - NIWKI - ▁CI - ▁ITSMOL - ▁NIKPIA - TEKPA - ▁BO - ▁TASOHKA - Ú - ¡ - '8' - '9' - '0' - '1' - '2' - ¿ - Ò - '4' - À - '7' - '5' - '3' - ́ - V - ̈ - Ï - '6' - Q - Ì - <sos/eos> init: xavier_uniform input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true model_conf: ctc_weight: 0.3 lsm_weight: 0.1 length_normalized_loss: false extract_feats_in_collect_stats: false use_preprocessor: true token_type: bpe bpemodel: data/token_list/bpe_unigram500/bpe.model non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: s3prl frontend_conf: frontend_conf: upstream: hubert_large_ll60k download_dir: ./hub multilayer_feature: true fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 30 num_freq_mask: 2 apply_time_mask: true time_mask_width_range: - 0 - 40 num_time_mask: 2 normalize: utterance_mvn normalize_conf: {} preencoder: linear preencoder_conf: input_size: 1024 output_size: 80 encoder: transformer encoder_conf: input_layer: conv2d num_blocks: 12 linear_units: 2048 dropout_rate: 0.1 output_size: 256 attention_heads: 4 attention_dropout_rate: 0.0 postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: input_layer: embed num_blocks: 6 linear_units: 2048 dropout_rate: 0.1 required: - output_dir - token_list version: 0.10.4a1 distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
bhavikardeshna/multilingual-bert-base-cased-spanish
bhavikardeshna
2021-12-21T11:43:55Z
14
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "arxiv:2112.09866", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
# BibTeX entry and citation info ``` @misc{pandya2021cascading, title={Cascading Adaptors to Leverage English Data to Improve Performance of Question Answering for Low-Resource Languages}, author={Hariom A. Pandya and Bhavik Ardeshna and Dr. Brijesh S. Bhatt}, year={2021}, eprint={2112.09866}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
bhavikardeshna/multilingual-bert-base-cased-hindi
bhavikardeshna
2021-12-21T11:43:34Z
16
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "arxiv:2112.09866", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
# BibTeX entry and citation info ``` @misc{pandya2021cascading, title={Cascading Adaptors to Leverage English Data to Improve Performance of Question Answering for Low-Resource Languages}, author={Hariom A. Pandya and Bhavik Ardeshna and Dr. Brijesh S. Bhatt}, year={2021}, eprint={2112.09866}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
bhavikardeshna/multilingual-bert-base-cased-english
bhavikardeshna
2021-12-21T11:42:34Z
4
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "arxiv:2112.09866", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
# BibTeX entry and citation info ``` @misc{pandya2021cascading, title={Cascading Adaptors to Leverage English Data to Improve Performance of Question Answering for Low-Resource Languages}, author={Hariom A. Pandya and Bhavik Ardeshna and Dr. Brijesh S. Bhatt}, year={2021}, eprint={2112.09866}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
bhavikardeshna/multilingual-bert-base-cased-chinese
bhavikardeshna
2021-12-21T11:41:47Z
6
2
transformers
[ "transformers", "pytorch", "bert", "question-answering", "arxiv:2112.09866", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
# BibTeX entry and citation info ``` @misc{pandya2021cascading, title={Cascading Adaptors to Leverage English Data to Improve Performance of Question Answering for Low-Resource Languages}, author={Hariom A. Pandya and Bhavik Ardeshna and Dr. Brijesh S. Bhatt}, year={2021}, eprint={2112.09866}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
bhavikardeshna/multilingual-bert-base-cased-arabic
bhavikardeshna
2021-12-21T11:41:30Z
27
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "arxiv:2112.09866", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
# BibTeX entry and citation info ``` @misc{pandya2021cascading, title={Cascading Adaptors to Leverage English Data to Improve Performance of Question Answering for Low-Resource Languages}, author={Hariom A. Pandya and Bhavik Ardeshna and Dr. Brijesh S. Bhatt}, year={2021}, eprint={2112.09866}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
bhavikardeshna/xlm-roberta-base-german
bhavikardeshna
2021-12-21T11:40:35Z
7
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "question-answering", "arxiv:2112.09866", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
# BibTeX entry and citation info ``` @misc{pandya2021cascading, title={Cascading Adaptors to Leverage English Data to Improve Performance of Question Answering for Low-Resource Languages}, author={Hariom A. Pandya and Bhavik Ardeshna and Dr. Brijesh S. Bhatt}, year={2021}, eprint={2112.09866}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
bhavikardeshna/xlm-roberta-base-spanish
bhavikardeshna
2021-12-21T11:39:52Z
6
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "question-answering", "arxiv:2112.09866", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
# BibTeX entry and citation info ``` @misc{pandya2021cascading, title={Cascading Adaptors to Leverage English Data to Improve Performance of Question Answering for Low-Resource Languages}, author={Hariom A. Pandya and Bhavik Ardeshna and Dr. Brijesh S. Bhatt}, year={2021}, eprint={2112.09866}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
patrickvonplaten/xls-r-300m-tr-phoneme
patrickvonplaten
2021-12-21T11:13:30Z
7
3
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_3_0", "generated_from_trainer", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- tags: - automatic-speech-recognition - mozilla-foundation/common_voice_3_0 - generated_from_trainer model-index: - name: xls-r-300m-tr-phoneme results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xls-r-300m-tr-phoneme This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the mozilla-foundation/common_voice_3_0 - TR dataset. It achieves the following results on the evaluation set: - Loss: 0.4378 - Wer: 0.09936 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000075 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 150 - mixed_precision_training: Native AMP ### Training results See Training Metrics Tab. ### Framework versions - Transformers 4.15.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.16.2.dev0 - Tokenizers 0.10.3
NbAiLabArchive/test_w5_long_dataset
NbAiLabArchive
2021-12-21T08:30:00Z
28
0
transformers
[ "transformers", "pytorch", "jax", "tensorboard", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
Just for performing some experiments. Do not use.
kwang1993/wav2vec2-base-timit-demo
kwang1993
2021-12-21T04:54:44Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
https://huggingface.co/blog/fine-tune-wav2vec2-english Use the processor from https://huggingface.co/facebook/wav2vec2-base
vuiseng9/pegasus-arxiv
vuiseng9
2021-12-21T02:23:21Z
3
0
transformers
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
This model is developed with transformers v4.13 with minor patch in this [fork](https://github.com/vuiseng9/transformers/tree/pegasus-v4p13). # Setup ```bash git clone https://github.com/vuiseng9/transformers cd transformers git checkout pegasus-v4p13 && git reset --hard 41eeb07 # installation, set summarization dependency # . . . ``` # Train ```bash #!/usr/bin/env bash export CUDA_VISIBLE_DEVICES=0,1,2,3 NEPOCH=10 RUNID=pegasus-arxiv-${NEPOCH}eph-run1 OUTDIR=/data1/vchua/pegasus-hf4p13/pegasus-ft/${RUNID} mkdir -p $OUTDIR python run_summarization.py \ --model_name_or_path google/pegasus-large \ --dataset_name ccdv/arxiv-summarization \ --do_train \ --adafactor \ --learning_rate 8e-4 \ --label_smoothing_factor 0.1 \ --num_train_epochs $NEPOCH \ --per_device_train_batch_size 2 \ --do_eval \ --per_device_eval_batch_size 2 \ --num_beams 8 \ --max_source_length 1024 \ --max_target_length 256 \ --evaluation_strategy steps \ --eval_steps 10000 \ --save_strategy steps \ --save_steps 5000 \ --logging_steps 1 \ --overwrite_output_dir \ --run_name $RUNID \ --output_dir $OUTDIR > $OUTDIR/run.log 2>&1 & ``` # Eval ```bash #!/usr/bin/env bash export CUDA_VISIBLE_DEVICES=3 DT=$(date +%F_%H-%M) RUNID=pegasus-arxiv-${DT} OUTDIR=/data1/vchua/pegasus-hf4p13/pegasus-eval/${RUNID} mkdir -p $OUTDIR python run_summarization.py \ --model_name_or_path vuiseng9/pegasus-arxiv \ --dataset_name ccdv/arxiv-summarization \ --max_source_length 1024 \ --max_target_length 256 \ --do_predict \ --per_device_eval_batch_size 8 \ --predict_with_generate \ --num_beams 8 \ --overwrite_output_dir \ --run_name $RUNID \ --output_dir $OUTDIR > $OUTDIR/run.log 2>&1 & ``` Although fine-tuning is carried out for 5 epochs, this model is the checkpoint @150000 steps, 5.91 epoch, 34hrs) with lowest eval loss during training. Test/predict with this checkpoint should give results below. Note that we observe model at 80000 steps is closed to published result from HF. ``` ***** predict metrics ***** predict_gen_len = 210.0925 predict_loss = 1.7192 predict_rouge1 = 46.1383 predict_rouge2 = 19.1393 predict_rougeL = 27.7573 predict_rougeLsum = 41.583 predict_runtime = 2:40:25.86 predict_samples = 6440 predict_samples_per_second = 0.669 predict_steps_per_second = 0.084 ```
vuiseng9/pegasus-billsum
vuiseng9
2021-12-21T01:41:33Z
3
0
transformers
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
This model is developed with transformers v4.13 with minor patch in this [fork](https://github.com/vuiseng9/transformers/tree/pegasus-v4p13). # Setup ```bash git clone https://github.com/vuiseng9/transformers cd transformers git checkout pegasus-v4p13 && git reset --hard 41eeb07 # installation, set summarization dependency # . . . ``` # Train ```bash #!/usr/bin/env bash export CUDA_VISIBLE_DEVICES=0,1,2,3 NEPOCH=10 RUNID=pegasus-billsum-${NEPOCH}eph-run1 OUTDIR=/data1/vchua/pegasus-hf4p13/pegasus/${RUNID} mkdir -p $OUTDIR nohup python run_summarization.py \ --model_name_or_path google/pegasus-large \ --dataset_name billsum \ --do_train \ --adafactor \ --learning_rate 2e-4 \ --label_smoothing_factor 0.1 \ --num_train_epochs $NEPOCH \ --per_device_train_batch_size 2 \ --do_eval \ --per_device_eval_batch_size 2 \ --num_beams 8 \ --max_source_length 1024 \ --max_target_length 256 \ --evaluation_strategy steps \ --eval_steps 1000 \ --save_strategy steps \ --save_steps 2000 \ --logging_steps 1 \ --overwrite_output_dir \ --run_name $RUNID \ --output_dir $OUTDIR > $OUTDIR/run.log 2>&1 & ``` # Eval ```bash #!/usr/bin/env bash export CUDA_VISIBLE_DEVICES=3 DT=$(date +%F_%H-%M) RUNID=pegasus-billsum-${DT} OUTDIR=/data1/vchua/pegasus-hf4p13/pegasus-test/${RUNID} mkdir -p $OUTDIR nohup python run_summarization.py \ --model_name_or_path vuiseng9/pegasus-billsum \ --dataset_name billsum \ --max_source_length 1024 \ --max_target_length 256 \ --do_predict \ --per_device_eval_batch_size 8 \ --predict_with_generate \ --num_beams 8 \ --overwrite_output_dir \ --run_name $RUNID \ --output_dir $OUTDIR > $OUTDIR/run.log 2>&1 & ``` Although fine-tuning is carried out for 10 epochs, this model is the checkpoint (@12000 steps, 6.6epoch, 210mins) with lowest eval loss during training. Test/predict with this checkpoint should give results below. ``` ***** predict metrics ***** predict_gen_len = 179.7363 predict_loss = 1.2452 predict_rouge1 = 56.8657 predict_rouge2 = 38.6531 predict_rougeL = 44.8399 predict_rougeLsum = 51.6266 predict_runtime = 1:19:28.20 predict_samples = 3269 predict_samples_per_second = 0.686 predict_steps_per_second = 0.086 ```
patrickvonplaten/wavlm-libri-clean-100h-base
patrickvonplaten
2021-12-20T12:59:09Z
7,849
1
transformers
[ "transformers", "pytorch", "tensorboard", "wavlm", "automatic-speech-recognition", "librispeech_asr", "generated_from_trainer", "wavlm_libri_finetune", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- tags: - automatic-speech-recognition - librispeech_asr - generated_from_trainer - wavlm_libri_finetune model-index: - name: wavlm-libri-clean-100h-base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wavlm-libri-clean-100h-base This model is a fine-tuned version of [microsoft/wavlm-base](https://huggingface.co/microsoft/wavlm-base) on the LIBRISPEECH_ASR - CLEAN dataset. It achieves the following results on the evaluation set: - Loss: 0.0829 - Wer: 0.0675 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.8805 | 0.34 | 300 | 2.8686 | 1.0 | | 0.2459 | 0.67 | 600 | 0.1858 | 0.1554 | | 0.1114 | 1.01 | 900 | 0.1379 | 0.1191 | | 0.0867 | 1.35 | 1200 | 0.1130 | 0.0961 | | 0.0698 | 1.68 | 1500 | 0.1032 | 0.0877 | | 0.0663 | 2.02 | 1800 | 0.0959 | 0.0785 | | 0.0451 | 2.35 | 2100 | 0.0887 | 0.0748 | | 0.0392 | 2.69 | 2400 | 0.0859 | 0.0698 | ### Framework versions - Transformers 4.15.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.16.2.dev0 - Tokenizers 0.10.3
patrickvonplaten/wav2vec2-common_voice-tr-demo-dist
patrickvonplaten
2021-12-20T12:54:17Z
13
2
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "speech-recognition", "common_voice", "generated_from_trainer", "tr", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - tr license: apache-2.0 tags: - speech-recognition - common_voice - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-common_voice-tr-demo results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-common_voice-tr-demo-dist This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the COMMON_VOICE - TR dataset. It achieves the following results on the evaluation set: - Loss: 0.3856 - Wer: 0.3581 - Cer: 0.0805 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - num_gpus: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 1 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 15.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.7391 | 0.92 | 100 | 3.5760 | 1.0 | | 2.927 | 1.83 | 200 | 3.0796 | 0.9999 | | 0.9009 | 2.75 | 300 | 0.9278 | 0.8226 | | 0.6529 | 3.67 | 400 | 0.5926 | 0.6367 | | 0.3623 | 4.59 | 500 | 0.5372 | 0.5692 | | 0.2888 | 5.5 | 600 | 0.4407 | 0.4838 | | 0.285 | 6.42 | 700 | 0.4341 | 0.4694 | | 0.0842 | 7.34 | 800 | 0.4153 | 0.4302 | | 0.1415 | 8.26 | 900 | 0.4317 | 0.4136 | | 0.1552 | 9.17 | 1000 | 0.4145 | 0.4013 | | 0.1184 | 10.09 | 1100 | 0.4115 | 0.3844 | | 0.0556 | 11.01 | 1200 | 0.4182 | 0.3862 | | 0.0851 | 11.93 | 1300 | 0.3985 | 0.3688 | | 0.0961 | 12.84 | 1400 | 0.4030 | 0.3665 | | 0.0596 | 13.76 | 1500 | 0.3880 | 0.3631 | | 0.0359 | 14.68 | 1600 | 0.3878 | 0.3589 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.12.1 - Tokenizers 0.10.3
patrickvonplaten/hubert-librispeech-clean-100h-demo-dist
patrickvonplaten
2021-12-20T12:53:35Z
10
1
transformers
[ "transformers", "pytorch", "tensorboard", "hubert", "automatic-speech-recognition", "speech-recognition", "librispeech_asr", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - speech-recognition - librispeech_asr - generated_from_trainer model-index: - name: hubert-librispeech-clean-100h-demo-dist results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hubert-librispeech-clean-100h-demo-dist This model is a fine-tuned version of [facebook/hubert-large-ll60k](https://huggingface.co/facebook/hubert-large-ll60k) on the LIBRISPEECH_ASR - CLEAN dataset. It achieves the following results on the evaluation set: - Loss: 0.0984 - Wer: 0.0883 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 32 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.9031 | 0.11 | 100 | 2.9220 | 1.0 | | 2.6437 | 0.22 | 200 | 2.6268 | 1.0 | | 0.3934 | 0.34 | 300 | 0.4860 | 0.4182 | | 0.3531 | 0.45 | 400 | 0.3088 | 0.2894 | | 0.2255 | 0.56 | 500 | 0.2568 | 0.2426 | | 0.3379 | 0.67 | 600 | 0.2073 | 0.2011 | | 0.2419 | 0.78 | 700 | 0.1849 | 0.1838 | | 0.2128 | 0.9 | 800 | 0.1662 | 0.1690 | | 0.1341 | 1.01 | 900 | 0.1600 | 0.1541 | | 0.0946 | 1.12 | 1000 | 0.1431 | 0.1404 | | 0.1643 | 1.23 | 1100 | 0.1373 | 0.1304 | | 0.0663 | 1.35 | 1200 | 0.1293 | 0.1307 | | 0.162 | 1.46 | 1300 | 0.1247 | 0.1266 | | 0.1433 | 1.57 | 1400 | 0.1246 | 0.1262 | | 0.1581 | 1.68 | 1500 | 0.1219 | 0.1154 | | 0.1036 | 1.79 | 1600 | 0.1127 | 0.1081 | | 0.1352 | 1.91 | 1700 | 0.1087 | 0.1040 | | 0.0471 | 2.02 | 1800 | 0.1085 | 0.1005 | | 0.0945 | 2.13 | 1900 | 0.1066 | 0.0973 | | 0.0843 | 2.24 | 2000 | 0.1102 | 0.0964 | | 0.0774 | 2.35 | 2100 | 0.1079 | 0.0940 | | 0.0952 | 2.47 | 2200 | 0.1056 | 0.0927 | | 0.0635 | 2.58 | 2300 | 0.1026 | 0.0920 | | 0.0665 | 2.69 | 2400 | 0.1012 | 0.0905 | | 0.034 | 2.8 | 2500 | 0.1009 | 0.0900 | | 0.0251 | 2.91 | 2600 | 0.0993 | 0.0883 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.12.1 - Tokenizers 0.10.3
Alerosae/SocratesGPT-2
Alerosae
2021-12-20T12:36:38Z
16
0
transformers
[ "transformers", "pytorch", "gpt2", "feature-extraction", "text-generation", "en", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
--- language: "en" tags: - text-generation pipeline_tag: text-generation widget: - text: "The Gods" - text: "What is" --- This is a fine-tuned version of GPT-2, trained with the entire corpus of Plato's works. By generating text samples you should be able to generate ancient Greek philosophy on the fly!
austin/adr-ner
austin
2021-12-20T06:48:11Z
8
0
transformers
[ "transformers", "pytorch", "deberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: adr-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # adr-ner This model is a fine-tuned version of [austin/Austin-MeDeBERTa](https://huggingface.co/austin/Austin-MeDeBERTa) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0434 - Precision: 0.7305 - Recall: 0.6934 - F1: 0.7115 - Accuracy: 0.9941 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 107 | 0.0630 | 0.0 | 0.0 | 0.0 | 0.9876 | | No log | 2.0 | 214 | 0.0308 | 0.4282 | 0.3467 | 0.3832 | 0.9900 | | No log | 3.0 | 321 | 0.0254 | 0.5544 | 0.5603 | 0.5573 | 0.9920 | | No log | 4.0 | 428 | 0.0280 | 0.6430 | 0.5751 | 0.6071 | 0.9929 | | 0.0465 | 5.0 | 535 | 0.0266 | 0.5348 | 0.7146 | 0.6118 | 0.9915 | | 0.0465 | 6.0 | 642 | 0.0423 | 0.7632 | 0.5793 | 0.6587 | 0.9939 | | 0.0465 | 7.0 | 749 | 0.0336 | 0.6957 | 0.6765 | 0.6860 | 0.9939 | | 0.0465 | 8.0 | 856 | 0.0370 | 0.6876 | 0.6702 | 0.6788 | 0.9936 | | 0.0465 | 9.0 | 963 | 0.0349 | 0.6555 | 0.7040 | 0.6789 | 0.9932 | | 0.0044 | 10.0 | 1070 | 0.0403 | 0.6910 | 0.6808 | 0.6858 | 0.9938 | | 0.0044 | 11.0 | 1177 | 0.0415 | 0.7140 | 0.6808 | 0.6970 | 0.9939 | | 0.0044 | 12.0 | 1284 | 0.0440 | 0.7349 | 0.6681 | 0.6999 | 0.9941 | | 0.0044 | 13.0 | 1391 | 0.0423 | 0.7097 | 0.6977 | 0.7036 | 0.9941 | | 0.0044 | 14.0 | 1498 | 0.0435 | 0.7174 | 0.6977 | 0.7074 | 0.9941 | | 0.0006 | 15.0 | 1605 | 0.0434 | 0.7305 | 0.6934 | 0.7115 | 0.9941 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
Amalq/roberta-base-finetuned-schizophreniaReddit2
Amalq
2021-12-20T05:41:28Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- license: mit tags: - generated_from_trainer model-index: - name: roberta-base-finetuned-schizophreniaReddit2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-schizophreniaReddit2 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7785 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 490 | 1.8093 | | 1.9343 | 2.0 | 980 | 1.7996 | | 1.8856 | 3.0 | 1470 | 1.7966 | | 1.8552 | 4.0 | 1960 | 1.7844 | | 1.8267 | 5.0 | 2450 | 1.7839 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
rockmiin/ko-boolq-model
rockmiin
2021-12-20T02:42:43Z
5
2
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
labeled by "YES" : 1, "NO" : 0, "No Answer" : 2 fine tuned by klue/roberta-large
anelnurkayeva/autonlp-covid-432211280
anelnurkayeva
2021-12-20T01:23:47Z
5
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autonlp", "en", "dataset:anelnurkayeva/autonlp-data-covid", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - anelnurkayeva/autonlp-data-covid co2_eq_emissions: 8.898145050355591 --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 432211280 - CO2 Emissions (in grams): 8.898145050355591 ## Validation Metrics - Loss: 0.12489336729049683 - Accuracy: 0.9520089285714286 - Precision: 0.9436443331246086 - Recall: 0.9747736093143596 - AUC: 0.9910066767410616 - F1: 0.958956411072224 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/anelnurkayeva/autonlp-covid-432211280 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("anelnurkayeva/autonlp-covid-432211280", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("anelnurkayeva/autonlp-covid-432211280", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```