modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-06-04 12:29:36
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
468 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-06-04 12:29:27
card
stringlengths
11
1.01M
ielab/unicoil-tilde128-msmarco-passage
ielab
2021-10-31T13:57:26Z
2
0
transformers
[ "transformers", "pytorch", "bert", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
uniCOIL trained with passages expand with TILDE (m=128)
ielab/TILDEv2-TILDE128-exp
ielab
2021-10-31T13:51:09Z
6
0
transformers
[ "transformers", "pytorch", "bert", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
TILDEv2 trained with passages expand with TILDE (m=128)
ielab/TILDEv2-TILDE200-exp
ielab
2021-10-31T13:50:55Z
26
0
transformers
[ "transformers", "pytorch", "bert", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
TILDEv2 trained with passages expand with TILDE (m=200)
ielab/unicoil-tilde200-msmarco-passage
ielab
2021-10-31T13:50:01Z
20
0
transformers
[ "transformers", "pytorch", "bert", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
uniCOIL trained with passages expand with TILDE (m=200)
huggingtweets/harbogomps
huggingtweets
2021-10-30T21:14:54Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/harbogomps/1635628393154/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1064019238279495680/-EPf-JLO_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">🧛 Harbo Chomps 🧛</div> <div style="text-align: center; font-size: 14px;">@harbogomps</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 🧛 Harbo Chomps 🧛. | Data | 🧛 Harbo Chomps 🧛 | | --- | --- | | Tweets downloaded | 515 | | Retweets | 189 | | Short tweets | 92 | | Tweets kept | 234 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/ao36t1el/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @harbogomps's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3b5rtb6c) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3b5rtb6c/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/harbogomps') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingartists/linkin-park
huggingartists
2021-10-30T14:56:26Z
5
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/linkin-park", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/linkin-park tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/a865aac7693c39977b9b402dc364908e.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Linkin Park</div> <a href="https://genius.com/artists/linkin-park"> <div style="text-align: center; font-size: 14px;">@linkin-park</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Linkin Park. Dataset is available [here](https://huggingface.co/datasets/huggingartists/linkin-park). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/linkin-park") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3mtr0u4z/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Linkin Park's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/fxn4brd6) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/fxn4brd6/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/linkin-park') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/linkin-park") model = AutoModelWithLMHead.from_pretrained("huggingartists/linkin-park") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingtweets/phaggotthefrog
huggingtweets
2021-10-30T10:52:42Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/phaggotthefrog/1635591158850/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1444194494430081025/FVUA149U_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Anti-Soap Frög 🐀</div> <div style="text-align: center; font-size: 14px;">@phaggotthefrog</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Anti-Soap Frög 🐀. | Data | Anti-Soap Frög 🐀 | | --- | --- | | Tweets downloaded | 3226 | | Retweets | 629 | | Short tweets | 738 | | Tweets kept | 1859 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3el8bjuf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @phaggotthefrog's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2qjb6app) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2qjb6app/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/phaggotthefrog') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/rufandom
huggingtweets
2021-10-30T09:37:07Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/rufandom/1635586623585/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1375014984799944705/bcaZBnKn_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Грейс| Мультифандом✨</div> <div style="text-align: center; font-size: 14px;">@rufandom</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Грейс| Мультифандом✨. | Data | Грейс| Мультифандом✨ | | --- | --- | | Tweets downloaded | 977 | | Retweets | 549 | | Short tweets | 15 | | Tweets kept | 413 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1wthxx9x/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @rufandom's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/10tid4s1) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/10tid4s1/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/rufandom') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
celtics1863/env-bert-cls-chinese
celtics1863
2021-10-30T09:27:10Z
7
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "environment", "multi-class", "classification", "zh", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: - zh tags: - bert - pytorch - environment - multi-class - classification --- 中文环境文本分类模型,1.6M的数据集,在env-bert-chinese上进行fine-tuning。 分为环境影响评价与控制、碳排放控制、水污染控制、大气污染控制、土壤污染控制、环境生态、固体废物、环境毒理与健康、环境微生物、环境政策与经济10类。 项目正在进行中,后续会陆续更新相关内容。 清华大学环境学院课题组 有相关需求、建议,联系[email protected]
adam3242/test
adam3242
2021-10-30T08:31:53Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
--- title: Twitter Sentiments emoji: 😍 colorFrom: yellow colorTo: blue sdk: streamlit app_file: app.py pinned: false --- # Configuration `title`: _string_ Display title for the Space `emoji`: _string_ Space emoji (emoji-only character allowed) `colorFrom`: _string_ Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray) `colorTo`: _string_ Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray) `sdk`: _string_ Can be either `gradio` or `streamlit` `app_file`: _string_ Path to your main application file (which contains either `gradio` or `streamlit` Python code). Path is relative to the root of the repository. `pinned`: _boolean_ Whether the Space stays on top of your list.
huggingtweets/elonmusk-kanyewest
huggingtweets
2021-10-29T17:29:10Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/elonmusk-kanyewest/1635528546431/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1442634650703237120/mXIcYtIs_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1276461929934942210/cqNhNk6v_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Elon Musk & ye</div> <div style="text-align: center; font-size: 14px;">@elonmusk-kanyewest</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Elon Musk & ye. | Data | Elon Musk | ye | | --- | --- | --- | | Tweets downloaded | 3249 | 1856 | | Retweets | 185 | 186 | | Short tweets | 853 | 573 | | Tweets kept | 2211 | 1097 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3ceinvzc/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @elonmusk-kanyewest's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/16csk8qn) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/16csk8qn/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/elonmusk-kanyewest') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/incharmuese-sadsocrates-vvangone
huggingtweets
2021-10-29T15:35:31Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/incharmuese-sadsocrates-vvangone/1635521727120/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/581592941124153346/5nfUJyU2_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/561419401145376768/7OIwxUCC_400x400.jpeg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1190256978007904257/TsXH7_nP_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Charmeuse & Sad Socrates & Vincent Van Gone</div> <div style="text-align: center; font-size: 14px;">@incharmuese-sadsocrates-vvangone</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Charmeuse & Sad Socrates & Vincent Van Gone. | Data | Charmeuse | Sad Socrates | Vincent Van Gone | | --- | --- | --- | --- | | Tweets downloaded | 3238 | 3197 | 3233 | | Retweets | 1165 | 40 | 1054 | | Short tweets | 248 | 161 | 266 | | Tweets kept | 1825 | 2996 | 1913 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/13ochftk/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @incharmuese-sadsocrates-vvangone's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/173sb7ob) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/173sb7ob/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/incharmuese-sadsocrates-vvangone') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/cnn-elonmusk-kanyewest
huggingtweets
2021-10-29T15:21:45Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1276461929934942210/cqNhNk6v_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1442634650703237120/mXIcYtIs_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1278259160644227073/MfCyF7CG_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">ye & Elon Musk & CNN</div> <div style="text-align: center; font-size: 14px;">@cnn-elonmusk-kanyewest</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ye & Elon Musk & CNN. | Data | ye | Elon Musk | CNN | | --- | --- | --- | --- | | Tweets downloaded | 1856 | 3250 | 3250 | | Retweets | 186 | 186 | 104 | | Short tweets | 573 | 853 | 18 | | Tweets kept | 1097 | 2211 | 3128 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3ehxjxud/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cnn-elonmusk-kanyewest's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1dcouz7e) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1dcouz7e/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cnn-elonmusk-kanyewest') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/yierpaen
huggingtweets
2021-10-29T14:00:32Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/yierpaen/1635516027908/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1428772517347479552/fT9QUaOy_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Erpan Pardon</div> <div style="text-align: center; font-size: 14px;">@yierpaen</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Erpan Pardon. | Data | Erpan Pardon | | --- | --- | | Tweets downloaded | 3025 | | Retweets | 2613 | | Short tweets | 106 | | Tweets kept | 306 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2jk3rfqi/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @yierpaen's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/y2mm5kxj) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/y2mm5kxj/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/yierpaen') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
furyhawk/t5-small-finetuned-bbc
furyhawk
2021-10-29T11:01:51Z
7
1
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: t5-small-finetuned-bbc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-bbc This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3238 - Rouge1: 21.2266 - Rouge2: 16.0927 - Rougel: 19.6785 - Rougelsum: 19.8849 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 0.4882 | 1.0 | 1001 | 0.3238 | 21.2266 | 16.0927 | 19.6785 | 19.8849 | 19.0 | ### Framework versions - Transformers 4.12.0 - Pytorch 1.10.0 - Datasets 1.14.0 - Tokenizers 0.10.3
shiqing/opus-mt-en-zh-finetuned-en-to-zh
shiqing
2021-10-29T08:38:40Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: opus-mt-en-zh-finetuned-en-to-zh results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-zh-finetuned-en-to-zh This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-zh](https://huggingface.co/Helsinki-NLP/opus-mt-en-zh) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:| | No log | 1.0 | 10 | 4.0166 | 1.3628 | 416.6867 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cpu - Datasets 1.14.0 - Tokenizers 0.10.3
classla/bcms-bertic
classla
2021-10-29T08:20:06Z
1,597
15
transformers
[ "transformers", "pytorch", "electra", "pretraining", "hr", "bs", "sr", "cnr", "hbs", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: - hr - bs - sr - cnr - hbs license: apache-2.0 --- # BERTić&ast; [bert-ich] /bɜrtitʃ/ - A transformer language model for Bosnian, Croatian, Montenegrin and Serbian &ast; The name should resemble the facts (1) that the model was trained in Zagreb, Croatia, where diminutives ending in -ić (as in fotić, smajlić, hengić etc.) are very popular, and (2) that most surnames in the countries where these languages are spoken end in -ić (with diminutive etymology as well). This Electra model was trained on more than 8 billion tokens of Bosnian, Croatian, Montenegrin and Serbian text. **&ast;new&ast;** We have published a version of this model fine-tuned on the named entity recognition task ([bcms-bertic-ner](https://huggingface.co/classla/bcms-bertic-ner)) and on the hate speech detection task ([bcms-bertic-frenk-hate](https://huggingface.co/classla/bcms-bertic-frenk-hate)). If you use the model, please cite the following paper: ``` @inproceedings{ljubesic-lauc-2021-bertic, title = "{BERT}i{\'c} - The Transformer Language Model for {B}osnian, {C}roatian, {M}ontenegrin and {S}erbian", author = "Ljube{\v{s}}i{\'c}, Nikola and Lauc, Davor", booktitle = "Proceedings of the 8th Workshop on Balto-Slavic Natural Language Processing", month = apr, year = "2021", address = "Kiyv, Ukraine", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2021.bsnlp-1.5", pages = "37--42", } ``` ## Benchmarking Comparing this model to [multilingual BERT](https://huggingface.co/bert-base-multilingual-cased) and [CroSloEngual BERT](https://huggingface.co/EMBEDDIA/crosloengual-bert) on the tasks of (1) part-of-speech tagging, (2) named entity recognition, (3) geolocation prediction, and (4) commonsense causal reasoning, shows the BERTić model to be superior to the other two. ### Part-of-speech tagging Evaluation metric is (seqeval) microF1. Reported are means of five runs. Best results are presented in bold. Statistical significance is calculated between two best-performing systems via a two-tailed t-test (&ast; p<=0.05, &ast;&ast; p<=0.01, &ast;&ast;&ast; p<=0.001, &ast;&ast;&ast;&ast;&ast; p<=0.0001). Dataset | Language | Variety | CLASSLA | mBERT | cseBERT | BERTić ---|---|---|---|---|---|--- hr500k | Croatian | standard | 93.87 | 94.60 | 95.74 | **95.81&ast;&ast;&ast;** reldi-hr | Croatian | internet non-standard | - | 88.87 | 91.63 | **92.28&ast;&ast;&ast;** SETimes.SR | Serbian | standard | 95.00 | 95.50 | **96.41** | 96.31 reldi-sr | Serbian | internet non-standard | - | 91.26 | 93.54 | **93.90&ast;&ast;&ast;** ### Named entity recognition Evaluation metric is (seqeval) microF1. Reported are means of five runs. Best results are presented in bold. Statistical significance is calculated between two best-performing systems via a two-tailed t-test (&ast; p<=0.05, &ast;&ast; p<=0.01, &ast;&ast;&ast; p<=0.001, &ast;&ast;&ast;&ast;&ast; p<=0.0001). Dataset | Language | Variety | CLASSLA | mBERT | cseBERT | BERTić ---|---|---|---|---|---|--- hr500k | Croatian | standard | 80.13 | 85.67 | 88.98 | **89.21&ast;&ast;&ast;&ast;** reldi-hr | Croatian | internet non-standard | - | 76.06 | 81.38 | **83.05&ast;&ast;&ast;&ast;** SETimes.SR | Serbian | standard | 84.64 | **92.41** | 92.28 | 92.02 reldi-sr | Serbian | internet non-standard | - | 81.29 | 82.76 | **87.92&ast;&ast;&ast;&ast;** ### Geolocation prediction The dataset comes from the VarDial 2020 evaluation campaign's shared task on [Social Media variety Geolocation prediction](https://sites.google.com/view/vardial2020/evaluation-campaign). The task is to predict the latitude and longitude of a tweet given its text. Evaluation metrics are median and mean of distance between gold and predicted geolocations (lower is better). No statistical significance is computed due to large test set (39,723 instances). Centroid baseline predicts each text to be created in the centroid of the training dataset. System | Median | Mean ---|---|--- centroid | 107.10 | 145.72 mBERT | 42.25 | 82.05 cseBERT | 40.76 | 81.88 BERTić | **37.96** | **79.30** ### Choice Of Plausible Alternatives The dataset is a translation of the [COPA dataset](https://people.ict.usc.edu/~gordon/copa.html) into Croatian ([link to the dataset](http://hdl.handle.net/11356/1404)). Evaluation metric is accuracy. Reported are means of five runs. Best results are presented in bold. Statistical significance is calculated between two best-performing systems via a two-tailed t-test (&ast; p<=0.05, &ast;&ast; p<=0.01, &ast;&ast;&ast; p<=0.001, &ast;&ast;&ast;&ast;&ast; p<=0.0001). System | Accuracy ---|--- random | 50.00 mBERT | 54.12 cseBERT | 61.80 BERTić | **65.76&ast;&ast;**
vijayv500/DialoGPT-small-Big-Bang-Theory-Series-Transcripts
vijayv500
2021-10-29T07:39:27Z
8
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- tags: - conversational license: mit --- ## I fine-tuned DialoGPT-small model on "The Big Bang Theory" TV Series dataset from Kaggle (https://www.kaggle.com/mitramir5/the-big-bang-theory-series-transcript) ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch tokenizer = AutoTokenizer.from_pretrained("vijayv500/DialoGPT-small-Big-Bang-Theory-Series-Transcripts") model = AutoModelForCausalLM.from_pretrained("vijayv500/DialoGPT-small-Big-Bang-Theory-Series-Transcripts") # Let's chat for 5 lines for step in range(5): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate( bot_input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=3, do_sample=True, top_k=100, top_p=0.7, temperature = 0.8 ) # pretty print last ouput tokens from bot print("TBBT Bot: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) ```
aguilara42/openl3-labeler-w-timestamps
aguilara42
2021-10-29T01:38:54Z
0
1
null
[ "audacity", "region:us" ]
null
2022-03-02T23:29:05Z
--- tags: - audacity inference: false --- # Labeler With Timestamps ## Being used for the `Audio Labeler` effect in Audacity This is a audio labeler model which is used in Audacity's labeler effect. metadata: ``` { "sample_rate": 48000, "domain_tags": ["Music"], "tags": ["Audio Labeler"], "effect_type": "waveform-to-labels", "multichannel": false, "labels": ["Acoustic Guitar", "Auxiliary Percussion", "Brass", "Clean Electric Guitar", "Distorted Electric Guitar", "Double Bass", "Drum Set", "Electric Bass", "Flute", "piano", "Reeds", "Saxophone", "Strings", "Trumpet", "Voice"], "short_description": "Use me to label some instruments!", "long_description": "An audio labeler, which outputs label predictions and time ranges for the labels. This model can label various instruments listed in the labels section." } ```
bochaowei/t5-small-finetuned-cnn-wei1
bochaowei
2021-10-28T20:24:24Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:cnn_dailymail", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - cnn_dailymail metrics: - rouge model-index: - name: t5-small-finetuned-cnn-wei1 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: cnn_dailymail type: cnn_dailymail args: 3.0.0 metrics: - name: Rouge1 type: rouge value: 41.1796 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-cnn-wei1 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the cnn_dailymail dataset. It achieves the following results on the evaluation set: - Loss: 1.6819 - Rouge1: 41.1796 - Rouge2: 18.9426 - Rougel: 29.2338 - Rougelsum: 38.4087 - Gen Len: 72.7607 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.8582 | 1.0 | 23927 | 1.6819 | 41.1796 | 18.9426 | 29.2338 | 38.4087 | 72.7607 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
sparki/kinkyfurs-gpt2
sparki
2021-10-28T16:26:08Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "en", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en license: mit --- Import it using pipeline from transformers import pipeline text_generation = pipeline('text-generation' , model='sparki/kinkyfurs-gpt2') Then use it prefix_text = input() text_generation(prefix_text, max_length=50, num_beams=5,no_repeat_ngram_size=2,early_stopping=True)
patrickvonplaten/sew-d-small-100k-ft-timit-2
patrickvonplaten
2021-10-28T15:51:49Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "sew-d", "automatic-speech-recognition", "timit_asr", "generated_from_trainer", "dataset:timit_asr", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - automatic-speech-recognition - timit_asr - generated_from_trainer datasets: - timit_asr model-index: - name: sew-d-small-100k-ft-timit-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sew-d-small-100k-ft-timit-2 This model is a fine-tuned version of [asapp/sew-d-small-100k](https://huggingface.co/asapp/sew-d-small-100k) on the TIMIT_ASR - NA dataset. It achieves the following results on the evaluation set: - Loss: 1.7357 - Wer: 0.7935 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.1554 | 0.69 | 100 | 4.0531 | 1.0 | | 2.9584 | 1.38 | 200 | 2.9775 | 1.0 | | 2.9355 | 2.07 | 300 | 2.9412 | 1.0 | | 2.9048 | 2.76 | 400 | 2.9143 | 1.0 | | 2.8568 | 3.45 | 500 | 2.8786 | 1.0 | | 2.7248 | 4.14 | 600 | 2.7553 | 0.9833 | | 2.6124 | 4.83 | 700 | 2.5874 | 1.0511 | | 2.5463 | 5.52 | 800 | 2.4630 | 1.0883 | | 2.3302 | 6.21 | 900 | 2.3948 | 1.0651 | | 2.0669 | 6.9 | 1000 | 2.2228 | 0.9920 | | 2.1991 | 7.59 | 1100 | 2.0815 | 0.9185 | | 2.293 | 8.28 | 1200 | 2.0229 | 0.8674 | | 2.0366 | 8.97 | 1300 | 1.9590 | 0.9165 | | 1.767 | 9.66 | 1400 | 1.9129 | 0.8125 | | 1.6222 | 10.34 | 1500 | 1.8868 | 0.8259 | | 2.173 | 11.03 | 1600 | 1.8691 | 0.8661 | | 1.8614 | 11.72 | 1700 | 1.8388 | 0.8250 | | 1.5928 | 12.41 | 1800 | 1.8528 | 0.7772 | | 1.5978 | 13.1 | 1900 | 1.8002 | 0.7892 | | 1.9886 | 13.79 | 2000 | 1.7848 | 0.8448 | | 1.8042 | 14.48 | 2100 | 1.7819 | 0.8156 | | 1.5488 | 15.17 | 2200 | 1.7615 | 0.8228 | | 1.4468 | 15.86 | 2300 | 1.7565 | 0.7946 | | 1.8153 | 16.55 | 2400 | 1.7537 | 0.8341 | | 1.77 | 17.24 | 2500 | 1.7527 | 0.7958 | | 1.4742 | 17.93 | 2600 | 1.7592 | 0.7850 | | 1.4088 | 18.62 | 2700 | 1.7421 | 0.8149 | | 1.7066 | 19.31 | 2800 | 1.7382 | 0.7977 | | 1.7068 | 20.0 | 2900 | 1.7357 | 0.7935 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.8.1 - Datasets 1.14.1.dev0 - Tokenizers 0.10.3
furyhawk/t5-base-finetuned-bbc-headline
furyhawk
2021-10-28T15:44:15Z
5
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5-base-finetuned-bbc-headline results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-finetuned-bbc-headline This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 167 | 2.2978 | 31.8313 | 10.3824 | 29.6182 | 29.4336 | 10.3153 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1 - Datasets 1.12.1 - Tokenizers 0.10.3
patrickvonplaten/sew-d-small-100k-ft-timit
patrickvonplaten
2021-10-28T15:26:02Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "sew-d", "automatic-speech-recognition", "timit_asr", "generated_from_trainer", "dataset:timit_asr", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - automatic-speech-recognition - timit_asr - generated_from_trainer datasets: - timit_asr model-index: - name: sew-d-small-100k-ft-timit results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sew-d-small-100k-ft-timit This model is a fine-tuned version of [asapp/sew-d-small-100k](https://huggingface.co/asapp/sew-d-small-100k) on the TIMIT_ASR - NA dataset. It achieves the following results on the evaluation set: - Loss: 1.7482 - Wer: 0.7987 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.2068 | 0.69 | 100 | 4.0802 | 1.0 | | 2.9805 | 1.38 | 200 | 2.9792 | 1.0 | | 2.9781 | 2.07 | 300 | 2.9408 | 1.0 | | 2.9655 | 2.76 | 400 | 2.9143 | 1.0 | | 2.8953 | 3.45 | 500 | 2.8775 | 1.0 | | 2.7719 | 4.14 | 600 | 2.7815 | 0.9999 | | 2.6531 | 4.83 | 700 | 2.6375 | 1.0065 | | 2.6425 | 5.52 | 800 | 2.5602 | 1.0210 | | 2.3963 | 6.21 | 900 | 2.4665 | 1.0591 | | 2.1447 | 6.9 | 1000 | 2.2792 | 0.9848 | | 2.2719 | 7.59 | 1100 | 2.2237 | 0.9465 | | 2.3629 | 8.28 | 1200 | 2.1058 | 0.8907 | | 2.0913 | 8.97 | 1300 | 2.0113 | 0.9070 | | 1.8334 | 9.66 | 1400 | 1.9466 | 0.8177 | | 1.6608 | 10.34 | 1500 | 1.9217 | 0.8698 | | 2.2194 | 11.03 | 1600 | 1.9091 | 0.8727 | | 1.9002 | 11.72 | 1700 | 1.8746 | 0.8332 | | 1.6268 | 12.41 | 1800 | 1.8782 | 0.7951 | | 1.6455 | 13.1 | 1900 | 1.8230 | 0.8225 | | 2.0308 | 13.79 | 2000 | 1.8067 | 0.8560 | | 1.855 | 14.48 | 2100 | 1.8129 | 0.8177 | | 1.5901 | 15.17 | 2200 | 1.7891 | 0.8367 | | 1.4848 | 15.86 | 2300 | 1.7821 | 0.8201 | | 1.8754 | 16.55 | 2400 | 1.7700 | 0.8137 | | 1.7975 | 17.24 | 2500 | 1.7795 | 0.8171 | | 1.5194 | 17.93 | 2600 | 1.7605 | 0.7977 | | 1.4374 | 18.62 | 2700 | 1.7529 | 0.7978 | | 1.7498 | 19.31 | 2800 | 1.7522 | 0.8023 | | 1.7452 | 20.0 | 2900 | 1.7482 | 0.7987 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.8.1 - Datasets 1.14.1.dev0 - Tokenizers 0.10.3
asapp/sew-d-small-100k
asapp
2021-10-28T14:05:24Z
5
0
transformers
[ "transformers", "pytorch", "sew-d", "feature-extraction", "speech", "en", "dataset:librispeech_asr", "arxiv:2109.06870", "license:apache-2.0", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- language: en datasets: - librispeech_asr tags: - speech license: apache-2.0 --- # SEW-D-small [SEW-D by ASAPP Research](https://github.com/asappresearch/sew) The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc... Paper: [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) Authors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi **Abstract** This paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes. The original model can be found under https://github.com/asappresearch/sew#model-checkpoints . # Usage See [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more information on how to fine-tune the model. Note that the class `Wav2Vec2ForCTC` has to be replaced by `SEWDForCTC`.
asapp/sew-d-base-plus-100k
asapp
2021-10-28T13:48:40Z
8
0
transformers
[ "transformers", "pytorch", "sew-d", "feature-extraction", "speech", "en", "dataset:librispeech_asr", "arxiv:2109.06870", "license:apache-2.0", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- language: en datasets: - librispeech_asr tags: - speech license: apache-2.0 --- # SEW-D-base+ [SEW-D by ASAPP Research](https://github.com/asappresearch/sew) The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc... Paper: [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) Authors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi **Abstract** This paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes. The original model can be found under https://github.com/asappresearch/sew#model-checkpoints . # Usage See [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more information on how to fine-tune the model. Note that the class `Wav2Vec2ForCTC` has to be replaced by `SEWDForCTC`.
SajjadAyoubi/distil-bigbird-fa-zwnj
SajjadAyoubi
2021-10-28T13:14:34Z
83
0
transformers
[ "transformers", "pytorch", "big_bird", "fill-mask", "arxiv:1810.04805", "arxiv:2005.12515", "arxiv:2007.14062", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
<span align="center"> <a href="https://huggingface.co/SajjadAyoubi/"><img src="https://img.shields.io/static/v1?label=%F0%9F%A4%97%20Hugging%20Face&message=SajjadAyoubi&color=yellow"></a> <a href="https://colab.research.google.com/github/sajjjadayobi/PersianQA/blob/main/notebooks/Demo.ipynb"><img src="https://img.shields.io/static/v1?label=Colab&message=Fine-tuning Example&logo=Google%20Colab&color=f9ab00"></a> </span> # ParsBigBird: Persian Bert For **Long-Range** Sequences The [Bert](https://arxiv.org/abs/1810.04805) and [ParsBert](https://arxiv.org/abs/2005.12515) algorithms can handle texts with token lengths of up to 512, however, many tasks such as summarizing and answering questions require longer texts. In our work, we have trained the [BigBird](https://arxiv.org/abs/2007.14062) model for the Persian language to process texts up to 4096 in the Farsi (Persian) language using sparse attention. ## Evaluation: 🌡️ We have evaluated the model on three tasks with different sequence lengths | Name | Params | SnappFood (F1) | Digikala Magazine(F1) | PersianQA (F1) | | :--------------------------------------------------------------: | :----: | :-----------------: | :---------------: | :--------------: | | [distil-bigbird-fa-zwnj](https://github.com/sajjjadayobi/ParsBigBird) | 78M | 85.43% | **94.05%** | **73.34%** | | [bert-base-fa](https://github.com/hooshvare/parsbert) | 118M | **87.98%** | 93.65% | 70.06% | - Despite being as big as distill-bert, the model performs equally well as ParsBert and is much better on PersianQA which requires much more context - This evaluation was based on `max_lentgh=2048` (It can be changed up to 4096) ## How to use❓ ### As Contextualized Word Embedding ```python from transformers import BigBirdModel, AutoTokenizer MODEL_NAME = "SajjadAyoubi/distil-bigbird-fa-zwnj" # by default its in `block_sparse` block_size=32 model = BigBirdModel.from_pretrained(MODEL_NAME, block_size=32) # you can use full attention like the following: use this when input isn't longer than 512 model = BigBirdModel.from_pretrained(MODEL_NAME, attention_type="original_full") text = "😃 امیدوارم مدل بدردبخوری باشه چون خیلی طول کشید تا ترین بشه" tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) tokens = tokenizer(text, return_tensors='pt') output = model(**tokens) # contextualized embedding ``` ### As Fill Blank ```python from transformers import pipeline MODEL_NAME = 'SajjadAyoubi/distil-bigbird-fa-zwnj' fill = pipeline('fill-mask', model=MODEL_NAME, tokenizer=MODEL_NAME) results = fill('تهران پایتخت [MASK] است.') print(results[0]['token_str']) >>> 'ایران' ``` ## Pretraining details: 🔭 This model was pretrained using a masked language model (MLM) objective on the Persian section of the Oscar dataset. Following the original BERT training, 15% of tokens were masked. This was first described in this [paper](https://arxiv.org/abs/2007.14062) and released in this [repository](https://github.com/google-research/bigbird). Documents longer than 4096 were split into multiple documents, while documents much smaller than 4096 were merged using the [SEP] token. Model is warm started from `distilbert-fa`’s [checkpoint](https://huggingface.co/HooshvareLab/distilbert-fa-zwnj-base). - For more details, you can take a look at config.json at the model card in 🤗 Model Hub ## Fine Tuning Recommendations: 🐤 Due to the model's memory requirements, `gradient_checkpointing` and `gradient_accumulation` should be used to maintain a reasonable batch size. Considering this model isn't really big, it's a good idea to first fine-tune it on your dataset using Masked LM objective (also called intermediate fine-tuning) before implementing the main task. In block_sparse mode, it doesn't matter how many tokens are input. It just attends to 256 tokens. Furthermore, original_full should be used up to 512 sequence lengths (instead of block sparse). ### Fine Tuning Examples 👷‍♂️👷‍♀️ | Dataset | Fine Tuning Example | | ------------------------------------- | ------------------------------------------------------------ | | Digikala Magazine Text Classification | <a href="https://colab.research.google.com/github/sajjjadayobi/PersianQA/blob/main/notebooks/Demo.ipynb"><img src="https://img.shields.io/static/v1?label=Colab&message=Fine-tuning Example&logo=Google%20Colab&color=f9ab00"></a> | ## Contact us: 🤝 If you have a technical question regarding the model, pretraining, code or publication, please create an issue in the repository. This is the fastest way to reach us. ## Citation: ↩️ we didn't publish any papers on the work. However, if you did, please cite us properly with an entry like one below. ```bibtex @misc{ParsBigBird, author = {Ayoubi, Sajjad}, title = {ParsBigBird: Persian Bert For Long-Range Sequences}, year = 2021, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/SajjjadAyobi/ParsBigBird}}, } ```
Narrativaai/fake-news-detection-spanish
Narrativaai
2021-10-28T11:03:28Z
26
11
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "fake", "news", "competition", "es", "dataset:fakedes", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- language: es tags: - generated_from_trainer - fake - news - competition datasets: - fakedes widget: - text: 'La palabra "haiga", aceptada por la RAE [SEP] La palabra "haiga", aceptada por la RAE La Real Academia de la Lengua (RAE), ha aceptado el uso de "HAIGA", para su utilización en las tres personas del singular del presente del subjuntivo del verbo hacer, aunque asegura que la forma más recomendable en la lengua culta para este tiempo, sigue siendo "haya". Así lo han confirmado fuentes de la RAE, que explican que este cambio ha sido propuesto y aprobado por el pleno de la Academia de la Lengua, tras la extendida utilización por todo el territorio nacional, sobre todo, empleado por personas carentes de estudios o con estudios básicos de graduado escolar. Ya no será objeto de burla ese compañero que a diario repite aquello de "Mientras que haiga faena, no podemos quejarnos" o esa abuela que repite aquello de "El que haiga sacao los juguetes, que los recoja". Entre otras palabras novedosas que ha aceptado la RAE, contamos también con "Descambiar", significa deshacer un cambio, por ejemplo "devolver la compra". Visto lo visto, nadie apostaría que la palabra "follamigos" sea la siguiente de la lista.' metrics: - f1 - accuracy model-index: - name: roberta-large-fake-news-detection-spanish results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # RoBERTa-large-fake-news-detection-spanish This model is a fine-tuned version of [PlanTL-GOB-ES/roberta-large-bne](https://huggingface.co/PlanTL-GOB-ES/roberta-large-bne) on an [Spanish Fake News Dataset](https://sites.google.com/view/iberlef2020/#h.p_w0c31bn0r-SW). It achieves the following results on the evaluation set: - Loss: 1.7474 - F1: **0.7717** - Accuracy: 0.7797 > So, based on the [leaderboard](https://sites.google.com/view/fakedes/results?authuser=0) our model **outperforms** the best model (scores F1 = 0.7666). ## Model description RoBERTa-large-bne is a transformer-based masked language model for the Spanish language. It is based on the RoBERTa large model and has been pre-trained using the largest Spanish corpus known to date, with a total of 570GB of clean and deduplicated text processed for this work, compiled from the web crawlings performed by the National Library of Spain (Biblioteca Nacional de España) from 2009 to 2019. ## Intended uses & limitations The objective of this task is to decide if a news item is fake or real by analyzing its textual representation. ## Training and evaluation data **FakeDeS**: [Fake News Detection in Spanish Shared Task](https://sites.google.com/view/fakedes/home) Fake news provides information that aims to manipulate people for different purposes: terrorism, political elections, advertisement, satire, among others. In social networks, misinformation extends in seconds among thousands of people, so it is necessary to develop tools that help control the amount of false information on the web. Similar tasks are detection of popularity in social networks and detection of subjectivity of messages in this media. A fake news detection system aims to help users detect and filter out potentially deceptive news. The prediction of intentionally misleading news is based on the analysis of truthful and fraudulent previously reviewed news, i.e., annotated corpora. The Spanish Fake News Corpus is a collection of news compiled from several web sources: established newspapers websites,media companies websites, special websites dedicated to validating fake news, websites designated by different journalists as sites that regularly publish fake news. The news were collected from January to July of 2018 and all of them were written in Mexican Spanish. The corpus has 971 news collected from January to July, 2018, from different sources: - Established newspapers websites, - Media companies websites, - Special websites dedicated to validating fake news, - Websites designated by different journalists as sites that regularly publish fake news. The corpus was tagged considering only two classes (true or fake), following a manual labeling process: - A news is true if there is evidence that it has been published in reliable sites. - A news is fake if there is news from reliable sites or specialized website in detection of deceptive content that contradicts it or no other evidence was found about the news besides the source. - We collected the true-fake news pair of an event so there is a correlation of news in the corpus. In order to avoid topic bias, the corpus covers news from 9 different topics: Science, Sport, Economy, Education, Entertainment, Politics, Health, Security, and Society. As it can be seen in the table below, the number of fake and true news is quite balanced. Approximately 70% will be used as training corpus (676 news), and the 30% as testing corpus (295 news). The training corpus contains the following information: - Category: Fake/ True - Topic: Science/ Sport/ Economy/ Education/ Entertainment/ Politics, Health/ Security/ Society - Headline: The title of the news. - Text: The complete text of the news. - Link: The URL where the news was published. More information needed ## Training procedure TBA ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:| | No log | 1.0 | 243 | 0.6282 | 0.7513 | 0.75 | | No log | 2.0 | 486 | 0.9600 | 0.7346 | 0.7587 | | 0.5099 | 3.0 | 729 | 1.2128 | 0.7656 | 0.7570 | | 0.5099 | 4.0 | 972 | 1.4001 | 0.7606 | 0.7622 | | 0.1949 | 5.0 | 1215 | 1.9748 | 0.6475 | 0.7220 | | 0.1949 | 6.0 | 1458 | 1.7386 | 0.7706 | 0.7710 | | 0.0263 | 7.0 | 1701 | 1.7474 | 0.7717 | 0.7797 | | 0.0263 | 8.0 | 1944 | 1.8114 | 0.7695 | 0.7780 | | 0.0046 | 9.0 | 2187 | 1.8444 | 0.7709 | 0.7797 | | 0.0046 | 10.0 | 2430 | 1.8552 | 0.7709 | 0.7797 | ### Fast usage with HF `pipelines` ```python from transformers import pipeline ckpt = "Narrativaai/fake-news-detection-spanish" classifier = pipeline("text-classification", model=ckpt) headline = "Your headline" text = "Your article text here..." classifier(headline + " [SEP] " + text) ``` ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3 Created by: [Narrativa](https://www.narrativa.com/) About Narrativa: Natural Language Generation (NLG) | Gabriele, our machine learning-based platform, builds and deploys natural language solutions. #NLG #AI
anton-l/sew-mid-100k-ft-common-language
anton-l
2021-10-28T10:52:41Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "sew", "audio-classification", "generated_from_trainer", "dataset:common_language", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - audio-classification - generated_from_trainer datasets: - common_language metrics: - accuracy model-index: - name: sew-mid-100k-ft-common-language results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sew-mid-100k-ft-common-language This model is a fine-tuned version of [asapp/sew-mid-100k](https://huggingface.co/asapp/sew-mid-100k) on the common_language dataset. It achieves the following results on the evaluation set: - Loss: 2.1189 - Accuracy: 0.3842 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 4 - seed: 0 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.608 | 1.0 | 173 | 3.7266 | 0.0540 | | 3.1298 | 2.0 | 346 | 3.2180 | 0.1654 | | 2.8481 | 3.0 | 519 | 2.9270 | 0.2019 | | 2.648 | 4.0 | 692 | 2.6991 | 0.2619 | | 2.5 | 5.0 | 865 | 2.5236 | 0.3004 | | 2.2578 | 6.0 | 1038 | 2.4019 | 0.3212 | | 2.2782 | 7.0 | 1211 | 2.1698 | 0.3658 | | 2.1665 | 8.0 | 1384 | 2.1976 | 0.3631 | | 2.1626 | 9.0 | 1557 | 2.1473 | 0.3791 | | 2.1514 | 10.0 | 1730 | 2.1189 | 0.3842 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.1+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
furyhawk/t5-small-finetuned-bbc-headline
furyhawk
2021-10-28T08:35:00Z
5
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5-small-finetuned-bbc-headline results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-bbc-headline This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 167 | 3.6454 | 22.4311 | 5.9878 | 20.118 | 20.482 | 18.9009 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1 - Datasets 1.12.1 - Tokenizers 0.10.3
quangtran199hust/layoutlmv2_e
quangtran199hust
2021-10-28T08:17:21Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "layoutlmv2", "token-classification", "generated_from_trainer", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: cc-by-sa-4.0 tags: - generated_from_trainer model-index: - name: layoutlmv2_e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlmv2_e This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 300 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.8.0+cu101 - Tokenizers 0.10.3
quangtran199hust/layoutlmv2_roige
quangtran199hust
2021-10-28T07:32:00Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "layoutlmv2", "token-classification", "generated_from_trainer", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: cc-by-sa-4.0 tags: - generated_from_trainer model-index: - name: layoutlmv2_roige results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlmv2_roige This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.8.0+cu101 - Datasets 1.14.0 - Tokenizers 0.10.3
aditeyabaral/sentencetransformer-indic-bert
aditeyabaral
2021-10-28T02:17:50Z
8
0
sentence-transformers
[ "sentence-transformers", "pytorch", "albert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # aditeyabaral/sentencetransformer-indic-bert This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('aditeyabaral/sentencetransformer-indic-bert') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('aditeyabaral/sentencetransformer-indic-bert') model = AutoModel.from_pretrained('aditeyabaral/sentencetransformer-indic-bert') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=aditeyabaral/sentencetransformer-indic-bert) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 9234 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: AlbertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
patrickvonplaten/sew-d-mid-400k-librispeech-clean-100h-ft
patrickvonplaten
2021-10-27T23:44:33Z
6
1
transformers
[ "transformers", "pytorch", "tensorboard", "sew-d", "automatic-speech-recognition", "librispeech_asr", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - automatic-speech-recognition - librispeech_asr - generated_from_trainer model-index: - name: sew-d-mid-400k-librispeech-clean-100h-ft results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sew-d-mid-400k-librispeech-clean-100h-ft This model is a fine-tuned version of [asapp/sew-d-mid-400k](https://huggingface.co/asapp/sew-d-mid-400k) on the LIBRISPEECH_ASR - CLEAN dataset. It achieves the following results on the evaluation set: - Loss: 2.3540 - Wer: 1.0536 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 32 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 7.319 | 0.11 | 100 | 11.0572 | 1.0 | | 3.6726 | 0.22 | 200 | 4.2003 | 1.0 | | 2.981 | 0.34 | 300 | 3.5742 | 0.9919 | | 2.9411 | 0.45 | 400 | 3.2599 | 1.0 | | 2.903 | 0.56 | 500 | 2.9350 | 1.0 | | 2.8597 | 0.67 | 600 | 2.9514 | 1.0 | | 2.7771 | 0.78 | 700 | 2.8521 | 1.0 | | 2.7926 | 0.9 | 800 | 2.7821 | 1.0120 | | 2.6623 | 1.01 | 900 | 2.7027 | 0.9924 | | 2.5893 | 1.12 | 1000 | 2.6667 | 1.0240 | | 2.5733 | 1.23 | 1100 | 2.6341 | 1.0368 | | 2.5455 | 1.35 | 1200 | 2.5928 | 1.0411 | | 2.4919 | 1.46 | 1300 | 2.5695 | 1.0817 | | 2.5182 | 1.57 | 1400 | 2.5559 | 1.1072 | | 2.4766 | 1.68 | 1500 | 2.5229 | 1.1257 | | 2.4267 | 1.79 | 1600 | 2.4991 | 1.1151 | | 2.3919 | 1.91 | 1700 | 2.4768 | 1.1139 | | 2.3883 | 2.02 | 1800 | 2.4452 | 1.0636 | | 2.3737 | 2.13 | 1900 | 2.4304 | 1.0594 | | 2.3569 | 2.24 | 2000 | 2.4095 | 1.0539 | | 2.3641 | 2.35 | 2100 | 2.3997 | 1.0511 | | 2.3281 | 2.47 | 2200 | 2.3856 | 1.0414 | | 2.2912 | 2.58 | 2300 | 2.3750 | 1.0696 | | 2.3028 | 2.69 | 2400 | 2.3684 | 1.0436 | | 2.2906 | 2.8 | 2500 | 2.3613 | 1.0538 | | 2.2822 | 2.91 | 2600 | 2.3558 | 1.0506 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.13.4.dev0 - Tokenizers 0.10.3
anton-l/hubert-base-ft-keyword-spotting
anton-l
2021-10-27T22:34:38Z
7
2
transformers
[ "transformers", "pytorch", "tensorboard", "hubert", "audio-classification", "generated_from_trainer", "dataset:superb", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - audio-classification - generated_from_trainer datasets: - superb metrics: - accuracy model-index: - name: hubert-base-ft-keyword-spotting results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hubert-base-ft-keyword-spotting This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on the superb dataset. It achieves the following results on the evaluation set: - Loss: 0.0774 - Accuracy: 0.9819 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 0 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0422 | 1.0 | 399 | 0.8999 | 0.6918 | | 0.3296 | 2.0 | 798 | 0.1505 | 0.9778 | | 0.2088 | 3.0 | 1197 | 0.0901 | 0.9816 | | 0.202 | 4.0 | 1596 | 0.0848 | 0.9813 | | 0.1535 | 5.0 | 1995 | 0.0774 | 0.9819 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.1+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
jwuthri/autonlp-shipping_status_2-27366103
jwuthri
2021-10-27T21:34:42Z
4
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "autonlp", "unk", "dataset:jwuthri/autonlp-data-shipping_status_2", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- tags: autonlp language: unk widget: - text: "I love AutoNLP 🤗" datasets: - jwuthri/autonlp-data-shipping_status_2 co2_eq_emissions: 32.912881644048 --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 27366103 - CO2 Emissions (in grams): 32.912881644048 ## Validation Metrics - Loss: 0.18175844848155975 - Accuracy: 0.9437683592110785 - Precision: 0.9416809605488851 - Recall: 0.8459167950693375 - AUC: 0.9815242330050846 - F1: 0.8912337662337663 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/jwuthri/autonlp-shipping_status_2-27366103 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("jwuthri/autonlp-shipping_status_2-27366103", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("jwuthri/autonlp-shipping_status_2-27366103", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
huggingtweets/void_vomicae
huggingtweets
2021-10-27T21:01:11Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/void_vomicae/1635368467642/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1452295981517742087/v8HfhHLT_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">《 𝚟 o̶ 𝚒 𝚍 》</div> <div style="text-align: center; font-size: 14px;">@void_vomicae</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 《 𝚟 o̶ 𝚒 𝚍 》. | Data | 《 𝚟 o̶ 𝚒 𝚍 》 | | --- | --- | | Tweets downloaded | 2083 | | Retweets | 417 | | Short tweets | 422 | | Tweets kept | 1244 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/fju0lp9t/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @void_vomicae's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1wos3ytc) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1wos3ytc/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/void_vomicae') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
prajjwal1/bert-medium
prajjwal1
2021-10-27T18:30:16Z
37,177
3
transformers
[ "transformers", "pytorch", "BERT", "MNLI", "NLI", "transformer", "pre-training", "en", "arxiv:1908.08962", "arxiv:2110.01518", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: - en license: - mit tags: - BERT - MNLI - NLI - transformer - pre-training --- The following model is a Pytorch pre-trained model obtained from converting Tensorflow checkpoint found in the [official Google BERT repository](https://github.com/google-research/bert). This is one of the smaller pre-trained BERT variants, together with [bert-tiny](https://huggingface.co/prajjwal1/bert-tiny), [bert-mini](https://huggingface.co/prajjwal1/bert-mini) and [bert-small](https://huggingface.co/prajjwal1/bert-small). They were introduced in the study `Well-Read Students Learn Better: On the Importance of Pre-training Compact Models` ([arxiv](https://arxiv.org/abs/1908.08962)), and ported to HF for the study `Generalization in NLI: Ways (Not) To Go Beyond Simple Heuristics` ([arXiv](https://arxiv.org/abs/2110.01518)). These models are supposed to be trained on a downstream task. If you use the model, please consider citing both the papers: ``` @misc{bhargava2021generalization, title={Generalization in NLI: Ways (Not) To Go Beyond Simple Heuristics}, author={Prajjwal Bhargava and Aleksandr Drozd and Anna Rogers}, year={2021}, eprint={2110.01518}, archivePrefix={arXiv}, primaryClass={cs.CL} } @article{DBLP:journals/corr/abs-1908-08962, author = {Iulia Turc and Ming{-}Wei Chang and Kenton Lee and Kristina Toutanova}, title = {Well-Read Students Learn Better: The Impact of Student Initialization on Knowledge Distillation}, journal = {CoRR}, volume = {abs/1908.08962}, year = {2019}, url = {http://arxiv.org/abs/1908.08962}, eprinttype = {arXiv}, eprint = {1908.08962}, timestamp = {Thu, 29 Aug 2019 16:32:34 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-1908-08962.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` Config of this model: - `prajjwal1/bert-medium` (L=8, H=512) [Model Link](https://huggingface.co/prajjwal1/bert-medium) Other models to check out: - `prajjwal1/bert-tiny` (L=2, H=128) [Model Link](https://huggingface.co/prajjwal1/bert-tiny) - `prajjwal1/bert-mini` (L=4, H=256) [Model Link](https://huggingface.co/prajjwal1/bert-mini) - `prajjwal1/bert-small` (L=4, H=512) [Model Link](https://huggingface.co/prajjwal1/bert-small) Original Implementation and more info can be found in [this Github repository](https://github.com/prajjwal1/generalize_lm_nli). Twitter: [@prajjwal_1](https://twitter.com/prajjwal_1)
Michael711/feinschwarz
Michael711
2021-10-27T18:28:16Z
11
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "de", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
--- license: mit tags: - generated_from_trainer - de model-index: - name: feinesblack results: [] --- # feinschwarz This model is a fine-tuned version of [dbmdz/german-gpt2](https://huggingface.co/dbmdz/german-gpt2). The dataset was compiled from all texts of https://www.feinschwarz.net (as of October 2021). The homepage gathers essayistic texts on theological topics. The model will be used to explore the challenges of text-generating AI for theology with a hands on approach. Can an AI generate theological knowledge? Is a text by Karl Rahner of more value than an AI-generated text? Can we even distinguish a Rahner text from an AI-generated text in the future? And the crucial question: Would it be bad if not? The model is a very first attempt and in its current version certainly not yet a danger for academic theology 🤓 # Using the model You can create text with the model using this code: ```python from transformers import pipeline pipe = pipeline('text-generation', model="Michael711/feinschwarz", tokenizer="Michael711/feinschwarz") text = pipe("Der Sinn des Lebens ist es", max_length=100)[0]["generated_text"] print(text) ``` Have fun theologizing!
prajjwal1/bert-mini
prajjwal1
2021-10-27T18:27:38Z
98,112
20
transformers
[ "transformers", "pytorch", "BERT", "MNLI", "NLI", "transformer", "pre-training", "en", "arxiv:1908.08962", "arxiv:2110.01518", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: - en license: - mit tags: - BERT - MNLI - NLI - transformer - pre-training --- The following model is a Pytorch pre-trained model obtained from converting Tensorflow checkpoint found in the [official Google BERT repository](https://github.com/google-research/bert). This is one of the smaller pre-trained BERT variants, together with [bert-small](https://huggingface.co/prajjwal1/bert-small) and [bert-medium](https://huggingface.co/prajjwal1/bert-medium). They were introduced in the study `Well-Read Students Learn Better: On the Importance of Pre-training Compact Models` ([arxiv](https://arxiv.org/abs/1908.08962)), and ported to HF for the study `Generalization in NLI: Ways (Not) To Go Beyond Simple Heuristics` ([arXiv](https://arxiv.org/abs/2110.01518)). These models are supposed to be trained on a downstream task. If you use the model, please consider citing both the papers: ``` @misc{bhargava2021generalization, title={Generalization in NLI: Ways (Not) To Go Beyond Simple Heuristics}, author={Prajjwal Bhargava and Aleksandr Drozd and Anna Rogers}, year={2021}, eprint={2110.01518}, archivePrefix={arXiv}, primaryClass={cs.CL} } @article{DBLP:journals/corr/abs-1908-08962, author = {Iulia Turc and Ming{-}Wei Chang and Kenton Lee and Kristina Toutanova}, title = {Well-Read Students Learn Better: The Impact of Student Initialization on Knowledge Distillation}, journal = {CoRR}, volume = {abs/1908.08962}, year = {2019}, url = {http://arxiv.org/abs/1908.08962}, eprinttype = {arXiv}, eprint = {1908.08962}, timestamp = {Thu, 29 Aug 2019 16:32:34 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-1908-08962.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` Config of this model: `prajjwal1/bert-mini` (L=4, H=256) [Model Link](https://huggingface.co/prajjwal1/bert-mini) Other models to check out: - `prajjwal1/bert-tiny` (L=2, H=128) [Model Link](https://huggingface.co/prajjwal1/bert-tiny) - `prajjwal1/bert-small` (L=4, H=512) [Model Link](https://huggingface.co/prajjwal1/bert-small) - `prajjwal1/bert-medium` (L=8, H=512) [Model Link](https://huggingface.co/prajjwal1/bert-medium) Original Implementation and more info can be found in [this Github repository](https://github.com/prajjwal1/generalize_lm_nli). Twitter: [@prajjwal_1](https://twitter.com/prajjwal_1)
patrickvonplaten/sew-d-small-100k-timit
patrickvonplaten
2021-10-27T17:15:26Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "sew-d", "automatic-speech-recognition", "timit_asr", "generated_from_trainer", "dataset:timit_asr", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - automatic-speech-recognition - timit_asr - generated_from_trainer datasets: - timit_asr model-index: - name: sew-d-small-100k-timit results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sew-d-small-100k-timit This model is a fine-tuned version of [asapp/sew-d-small-100k](https://huggingface.co/asapp/sew-d-small-100k) on the TIMIT_ASR - NA dataset. It achieves the following results on the evaluation set: - Loss: 1.7541 - Wer: 0.8061 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.2068 | 0.69 | 100 | 4.0802 | 1.0 | | 2.9805 | 1.38 | 200 | 2.9792 | 1.0 | | 2.9781 | 2.07 | 300 | 2.9408 | 1.0 | | 2.9655 | 2.76 | 400 | 2.9143 | 1.0 | | 2.8953 | 3.45 | 500 | 2.8775 | 1.0 | | 2.7718 | 4.14 | 600 | 2.7787 | 1.0 | | 2.6711 | 4.83 | 700 | 2.6401 | 0.9786 | | 2.6403 | 5.52 | 800 | 2.5435 | 1.0392 | | 2.4052 | 6.21 | 900 | 2.4580 | 1.0706 | | 2.1708 | 6.9 | 1000 | 2.2800 | 1.0090 | | 2.2555 | 7.59 | 1100 | 2.1493 | 0.9579 | | 2.3673 | 8.28 | 1200 | 2.0709 | 0.9051 | | 2.091 | 8.97 | 1300 | 2.0258 | 0.8926 | | 1.8433 | 9.66 | 1400 | 1.9645 | 0.8243 | | 1.6824 | 10.34 | 1500 | 1.9211 | 0.8707 | | 2.2282 | 11.03 | 1600 | 1.8914 | 0.8695 | | 1.9027 | 11.72 | 1700 | 1.8718 | 0.8343 | | 1.6303 | 12.41 | 1800 | 1.8646 | 0.8232 | | 1.648 | 13.1 | 1900 | 1.8297 | 0.8177 | | 2.0429 | 13.79 | 2000 | 1.8127 | 0.8642 | | 1.8833 | 14.48 | 2100 | 1.8005 | 0.8307 | | 1.5996 | 15.17 | 2200 | 1.7926 | 0.8467 | | 1.4876 | 15.86 | 2300 | 1.7795 | 0.8341 | | 1.8925 | 16.55 | 2400 | 1.7716 | 0.8199 | | 1.814 | 17.24 | 2500 | 1.7846 | 0.8086 | | 1.536 | 17.93 | 2600 | 1.7655 | 0.8019 | | 1.4476 | 18.62 | 2700 | 1.7599 | 0.8070 | | 1.7629 | 19.31 | 2800 | 1.7589 | 0.8119 | | 1.7646 | 20.0 | 2900 | 1.7541 | 0.8061 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.8.1 - Datasets 1.14.1.dev0 - Tokenizers 0.10.3
patrickvonplaten/wav2vec2-large-xlsr-129-turkish-colab
patrickvonplaten
2021-10-27T17:08:13Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xlsr-129-turkish-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-129-turkish-colab This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-129](https://huggingface.co/facebook/wav2vec2-large-xlsr-129) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.3149 - Wer: 0.4748 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 6.4837 | 3.67 | 400 | 3.2526 | 1.0 | | 3.0896 | 7.34 | 800 | 2.8037 | 1.0 | | 1.5604 | 11.01 | 1200 | 0.5688 | 0.6613 | | 0.6511 | 14.68 | 1600 | 0.3998 | 0.5580 | | 0.4798 | 18.35 | 2000 | 0.3505 | 0.5118 | | 0.4047 | 22.02 | 2400 | 0.3273 | 0.4858 | | 0.3519 | 25.69 | 2800 | 0.3224 | 0.4796 | | 0.343 | 29.36 | 3200 | 0.3149 | 0.4748 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu102 - Datasets 1.13.3 - Tokenizers 0.10.3
suwani/BERT_NER_Ep5_PAD_50-finetuned-ner
suwani
2021-10-27T13:13:15Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: BERT_NER_Ep5_PAD_50-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERT_NER_Ep5_PAD_50-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3893 - Precision: 0.6540 - Recall: 0.7348 - F1: 0.6920 - Accuracy: 0.9006 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 288 | 0.3705 | 0.5852 | 0.6215 | 0.6028 | 0.8793 | | 0.4885 | 2.0 | 576 | 0.3351 | 0.5925 | 0.7317 | 0.6548 | 0.8865 | | 0.4885 | 3.0 | 864 | 0.3196 | 0.6471 | 0.7138 | 0.6788 | 0.8994 | | 0.2172 | 4.0 | 1152 | 0.3368 | 0.6454 | 0.7323 | 0.6861 | 0.8992 | | 0.2172 | 5.0 | 1440 | 0.3491 | 0.6507 | 0.7312 | 0.6886 | 0.9008 | | 0.1459 | 6.0 | 1728 | 0.3833 | 0.6715 | 0.7018 | 0.6863 | 0.9013 | | 0.1045 | 7.0 | 2016 | 0.3893 | 0.6540 | 0.7348 | 0.6920 | 0.9006 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
doc2query/yahoo_answers-t5-base-v1
doc2query
2021-10-27T12:56:48Z
5
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "en", "arxiv:1904.08375", "arxiv:2104.08663", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - datasets/sentence-transformers/embedding-training-data widget: - text: "Python is an interpreted, high-level and general-purpose programming language. Python's design philosophy emphasizes code readability with its notable use of significant whitespace. Its language constructs and object-oriented approach aim to help programmers write clear, logical code for small and large-scale projects." license: apache-2.0 --- # doc2query/yahoo_answers-t5-base-v1 This is a [doc2query](https://arxiv.org/abs/1904.08375) model based on T5 (also known as [docT5query](https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf)). It can be used for: - **Document expansion**: You generate for your paragraphs 20-40 queries and index the paragraphs and the generates queries in a standard BM25 index like Elasticsearch, OpenSearch, or Lucene. The generated queries help to close the lexical gap of lexical search, as the generate queries contain synonyms. Further, it re-weights words giving important words a higher weight even if they appear seldomn in a paragraph. In our [BEIR](https://arxiv.org/abs/2104.08663) paper we showed that BM25+docT5query is a powerful search engine. In the [BEIR repository](https://github.com/UKPLab/beir) we have an example how to use docT5query with Pyserini. - **Domain Specific Training Data Generation**: It can be used to generate training data to learn an embedding model. On [SBERT.net](https://www.sbert.net/examples/unsupervised_learning/query_generation/README.html) we have an example how to use the model to generate (query, text) pairs for a given collection of unlabeled texts. These pairs can then be used to train powerful dense embedding models. ## Usage ```python from transformers import T5Tokenizer, T5ForConditionalGeneration model_name = 'doc2query/yahoo_answers-t5-base-v1' tokenizer = T5Tokenizer.from_pretrained(model_name) model = T5ForConditionalGeneration.from_pretrained(model_name) text = "Python is an interpreted, high-level and general-purpose programming language. Python's design philosophy emphasizes code readability with its notable use of significant whitespace. Its language constructs and object-oriented approach aim to help programmers write clear, logical code for small and large-scale projects." input_ids = tokenizer.encode(text, max_length=320, truncation=True, return_tensors='pt') outputs = model.generate( input_ids=input_ids, max_length=64, do_sample=True, top_p=0.95, num_return_sequences=5) print("Text:") print(text) print("\nGenerated Queries:") for i in range(len(outputs)): query = tokenizer.decode(outputs[i], skip_special_tokens=True) print(f'{i + 1}: {query}') ``` **Note:** `model.generate()` is non-deterministic. It produces different queries each time you run it. ## Training This model fine-tuned [google/t5-v1_1-base](https://huggingface.co/google/t5-v1_1-base) for 111k training steps. For the training script, see the `train_script.py` in this repository. The input-text was truncated to 320 word pieces. Output text was generated up to 64 word pieces. This model was trained on a (title, answer) pairs from [Yahoo Answers](https://huggingface.co/datasets/sentence-transformers/embedding-training-data).
patrickvonplaten/unispeech-sat-base-timit-ft
patrickvonplaten
2021-10-27T10:51:18Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "unispeech-sat", "automatic-speech-recognition", "timit_asr", "generated_from_trainer", "dataset:timit_asr", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- tags: - automatic-speech-recognition - timit_asr - generated_from_trainer datasets: - timit_asr model-index: - name: unispeech-sat-base-timit-ft results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # unispeech-sat-base-timit-ft This model is a fine-tuned version of [microsoft/unispeech-sat-base](https://huggingface.co/microsoft/unispeech-sat-base) on the TIMIT_ASR - NA dataset. It achieves the following results on the evaluation set: - Loss: 0.6712 - Wer: 0.4101 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.2582 | 0.69 | 100 | 3.1651 | 1.0 | | 2.9542 | 1.38 | 200 | 2.9567 | 1.0 | | 2.9656 | 2.07 | 300 | 2.9195 | 1.0 | | 2.8946 | 2.76 | 400 | 2.8641 | 1.0 | | 1.9305 | 3.45 | 500 | 1.7680 | 1.0029 | | 1.0134 | 4.14 | 600 | 1.0184 | 0.6942 | | 0.8355 | 4.83 | 700 | 0.7769 | 0.6080 | | 0.8724 | 5.52 | 800 | 0.7182 | 0.6035 | | 0.5619 | 6.21 | 900 | 0.6823 | 0.5406 | | 0.4247 | 6.9 | 1000 | 0.6279 | 0.5237 | | 0.4257 | 7.59 | 1100 | 0.6056 | 0.5000 | | 0.5007 | 8.28 | 1200 | 0.5870 | 0.4918 | | 0.3854 | 8.97 | 1300 | 0.6200 | 0.4804 | | 0.264 | 9.66 | 1400 | 0.6030 | 0.4600 | | 0.1989 | 10.34 | 1500 | 0.6049 | 0.4588 | | 0.3196 | 11.03 | 1600 | 0.5946 | 0.4599 | | 0.2622 | 11.72 | 1700 | 0.6282 | 0.4422 | | 0.1697 | 12.41 | 1800 | 0.6559 | 0.4413 | | 0.1464 | 13.1 | 1900 | 0.6349 | 0.4328 | | 0.2277 | 13.79 | 2000 | 0.6133 | 0.4284 | | 0.221 | 14.48 | 2100 | 0.6617 | 0.4219 | | 0.1391 | 15.17 | 2200 | 0.6705 | 0.4235 | | 0.112 | 15.86 | 2300 | 0.6207 | 0.4218 | | 0.1717 | 16.55 | 2400 | 0.6749 | 0.4184 | | 0.2081 | 17.24 | 2500 | 0.6756 | 0.4169 | | 0.1244 | 17.93 | 2600 | 0.6750 | 0.4181 | | 0.0978 | 18.62 | 2700 | 0.6500 | 0.4115 | | 0.128 | 19.31 | 2800 | 0.6750 | 0.4106 | | 0.1791 | 20.0 | 2900 | 0.6712 | 0.4101 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.8.1 - Datasets 1.14.1.dev0 - Tokenizers 0.10.3
patrickvonplaten/unispeech-large-1500h-cv-timit
patrickvonplaten
2021-10-27T10:50:16Z
5,699
0
transformers
[ "transformers", "pytorch", "tensorboard", "unispeech", "automatic-speech-recognition", "timit_asr", "generated_from_trainer", "dataset:timit_asr", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- tags: - automatic-speech-recognition - timit_asr - generated_from_trainer datasets: - timit_asr model-index: - name: unispeech-large-1500h-cv-timit results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # unispeech-large-1500h-cv-timit This model is a fine-tuned version of [microsoft/unispeech-large-1500h-cv](https://huggingface.co/microsoft/unispeech-large-1500h-cv) on the TIMIT_ASR - NA dataset. It achieves the following results on the evaluation set: - Loss: 0.3099 - Wer: 0.2196 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.64 | 0.69 | 100 | 3.9717 | 0.9981 | | 2.6793 | 1.38 | 200 | 2.6264 | 1.0 | | 1.2221 | 2.07 | 300 | 0.9999 | 0.7167 | | 0.9009 | 2.76 | 400 | 0.6509 | 0.5570 | | 0.4352 | 3.45 | 500 | 0.4682 | 0.4332 | | 0.227 | 4.14 | 600 | 0.3661 | 0.3565 | | 0.2169 | 4.83 | 700 | 0.3244 | 0.3203 | | 0.2687 | 5.52 | 800 | 0.3137 | 0.2981 | | 0.127 | 6.21 | 900 | 0.3220 | 0.2828 | | 0.0922 | 6.9 | 1000 | 0.3075 | 0.2708 | | 0.0965 | 7.59 | 1100 | 0.2779 | 0.2576 | | 0.1298 | 8.28 | 1200 | 0.3111 | 0.2480 | | 0.0855 | 8.97 | 1300 | 0.3021 | 0.2421 | | 0.0629 | 9.66 | 1400 | 0.3122 | 0.2511 | | 0.0471 | 10.34 | 1500 | 0.2965 | 0.2368 | | 0.0871 | 11.03 | 1600 | 0.3247 | 0.2387 | | 0.0503 | 11.72 | 1700 | 0.3359 | 0.2363 | | 0.0402 | 12.41 | 1800 | 0.2976 | 0.2332 | | 0.0336 | 13.1 | 1900 | 0.3139 | 0.2321 | | 0.0634 | 13.79 | 2000 | 0.3188 | 0.2309 | | 0.0429 | 14.48 | 2100 | 0.3145 | 0.2335 | | 0.028 | 15.17 | 2200 | 0.3244 | 0.2242 | | 0.0255 | 15.86 | 2300 | 0.2914 | 0.2196 | | 0.0406 | 16.55 | 2400 | 0.3249 | 0.2202 | | 0.0512 | 17.24 | 2500 | 0.3037 | 0.2198 | | 0.0269 | 17.93 | 2600 | 0.3218 | 0.2242 | | 0.0287 | 18.62 | 2700 | 0.3106 | 0.2185 | | 0.0319 | 19.31 | 2800 | 0.3124 | 0.2217 | | 0.0494 | 20.0 | 2900 | 0.3099 | 0.2196 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.8.1 - Datasets 1.14.1.dev0 - Tokenizers 0.10.3
patrickvonplaten/wav2vec2-base-timit-fine-tuned
patrickvonplaten
2021-10-27T10:49:08Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "timit_asr", "generated_from_trainer", "dataset:timit_asr", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - automatic-speech-recognition - timit_asr - generated_from_trainer datasets: - timit_asr model-index: - name: wav2vec2-base-timit-fine-tuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-fine-tuned This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the TIMIT_ASR - NA dataset. It achieves the following results on the evaluation set: - Loss: 0.3457 - Wer: 0.2151 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.1621 | 0.69 | 100 | 3.1102 | 1.0 | | 2.9592 | 1.38 | 200 | 2.9603 | 1.0 | | 2.9116 | 2.07 | 300 | 2.8921 | 1.0 | | 2.1332 | 2.76 | 400 | 1.9718 | 0.9958 | | 0.8477 | 3.45 | 500 | 0.7813 | 0.5237 | | 0.4251 | 4.14 | 600 | 0.5166 | 0.3982 | | 0.3743 | 4.83 | 700 | 0.4400 | 0.3578 | | 0.4194 | 5.52 | 800 | 0.4077 | 0.3370 | | 0.23 | 6.21 | 900 | 0.4018 | 0.3142 | | 0.1554 | 6.9 | 1000 | 0.3623 | 0.2995 | | 0.1511 | 7.59 | 1100 | 0.3433 | 0.2697 | | 0.1983 | 8.28 | 1200 | 0.3539 | 0.2715 | | 0.1443 | 8.97 | 1300 | 0.3622 | 0.2551 | | 0.0971 | 9.66 | 1400 | 0.3580 | 0.2519 | | 0.0764 | 10.34 | 1500 | 0.3529 | 0.2437 | | 0.1203 | 11.03 | 1600 | 0.3455 | 0.2431 | | 0.0881 | 11.72 | 1700 | 0.3648 | 0.2415 | | 0.0521 | 12.41 | 1800 | 0.3564 | 0.2320 | | 0.0434 | 13.1 | 1900 | 0.3485 | 0.2270 | | 0.0864 | 13.79 | 2000 | 0.3517 | 0.2228 | | 0.0651 | 14.48 | 2100 | 0.3506 | 0.2285 | | 0.0423 | 15.17 | 2200 | 0.3428 | 0.2247 | | 0.0302 | 15.86 | 2300 | 0.3372 | 0.2198 | | 0.0548 | 16.55 | 2400 | 0.3496 | 0.2196 | | 0.0674 | 17.24 | 2500 | 0.3407 | 0.2166 | | 0.0291 | 17.93 | 2600 | 0.3512 | 0.2171 | | 0.0298 | 18.62 | 2700 | 0.3363 | 0.2158 | | 0.0419 | 19.31 | 2800 | 0.3493 | 0.2145 | | 0.046 | 20.0 | 2900 | 0.3457 | 0.2151 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.8.1 - Datasets 1.14.1.dev0 - Tokenizers 0.10.3
suwani/BERT_NER_Ep6_PAD_50-finetuned-ner
suwani
2021-10-27T10:28:40Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: BERT_NER_Ep6_PAD_50-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERT_NER_Ep6_PAD_50-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3741 - Precision: 0.6510 - Recall: 0.7399 - F1: 0.6926 - Accuracy: 0.9020 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 288 | 0.3648 | 0.5949 | 0.5907 | 0.5928 | 0.8792 | | 0.4815 | 2.0 | 576 | 0.3400 | 0.5860 | 0.7390 | 0.6536 | 0.8867 | | 0.4815 | 3.0 | 864 | 0.3217 | 0.6404 | 0.7129 | 0.6747 | 0.8992 | | 0.2206 | 4.0 | 1152 | 0.3430 | 0.6413 | 0.7321 | 0.6837 | 0.8995 | | 0.2206 | 5.0 | 1440 | 0.3560 | 0.6464 | 0.7377 | 0.6890 | 0.9010 | | 0.1487 | 6.0 | 1728 | 0.3741 | 0.6510 | 0.7399 | 0.6926 | 0.9020 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
doc2query/S2ORC-t5-base-v1
doc2query
2021-10-27T10:04:09Z
35
4
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "en", "dataset:S2ORC", "arxiv:1904.08375", "arxiv:2104.08663", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - S2ORC widget: - text: "Python is an interpreted, high-level and general-purpose programming language. Python's design philosophy emphasizes code readability with its notable use of significant whitespace. Its language constructs and object-oriented approach aim to help programmers write clear, logical code for small and large-scale projects." license: apache-2.0 --- # doc2query/S2ORC-t5-base-v1 This is a [doc2query](https://arxiv.org/abs/1904.08375) model based on T5 (also known as [docT5query](https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf)). It can be used for: - **Document expansion**: You generate for your paragraphs 20-40 queries and index the paragraphs and the generates queries in a standard BM25 index like Elasticsearch, OpenSearch, or Lucene. The generated queries help to close the lexical gap of lexical search, as the generate queries contain synonyms. Further, it re-weights words giving important words a higher weight even if they appear seldomn in a paragraph. In our [BEIR](https://arxiv.org/abs/2104.08663) paper we showed that BM25+docT5query is a powerful search engine. In the [BEIR repository](https://github.com/UKPLab/beir) we have an example how to use docT5query with Pyserini. - **Domain Specific Training Data Generation**: It can be used to generate training data to learn an embedding model. On [SBERT.net](https://www.sbert.net/examples/unsupervised_learning/query_generation/README.html) we have an example how to use the model to generate (query, text) pairs for a given collection of unlabeled texts. These pairs can then be used to train powerful dense embedding models. ## Usage ```python from transformers import T5Tokenizer, T5ForConditionalGeneration model_name = 'doc2query/S2ORC-t5-base-v1' tokenizer = T5Tokenizer.from_pretrained(model_name) model = T5ForConditionalGeneration.from_pretrained(model_name) text = "Python is an interpreted, high-level and general-purpose programming language. Python's design philosophy emphasizes code readability with its notable use of significant whitespace. Its language constructs and object-oriented approach aim to help programmers write clear, logical code for small and large-scale projects." input_ids = tokenizer.encode(text, max_length=320, truncation=True, return_tensors='pt') outputs = model.generate( input_ids=input_ids, max_length=64, do_sample=True, top_p=0.95, num_return_sequences=5) print("Text:") print(text) print("\nGenerated Queries:") for i in range(len(outputs)): query = tokenizer.decode(outputs[i], skip_special_tokens=True) print(f'{i + 1}: {query}') ``` **Note:** `model.generate()` is non-deterministic. It produces different queries each time you run it. ## Training This model fine-tuned [google/t5-v1_1-base](https://huggingface.co/google/t5-v1_1-base) for 156k training steps. For the training script, see the `train_script.py` in this repository. The input-text was truncated to 320 word pieces. Output text was generated up to 64 word pieces. This model was trained on a (title, abstract) pairs from [S2ORC](https://github.com/allenai/s2orc).
doc2query/reddit-t5-base-v1
doc2query
2021-10-27T09:56:25Z
4
1
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "en", "arxiv:1904.08375", "arxiv:2104.08663", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - datasets/sentence-transformers/reddit-title-body widget: - text: "Python is an interpreted, high-level and general-purpose programming language. Python's design philosophy emphasizes code readability with its notable use of significant whitespace. Its language constructs and object-oriented approach aim to help programmers write clear, logical code for small and large-scale projects." license: apache-2.0 --- # doc2query/reddit-t5-base-v1 This is a [doc2query](https://arxiv.org/abs/1904.08375) model based on T5 (also known as [docT5query](https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf)). It can be used for: - **Document expansion**: You generate for your paragraphs 20-40 queries and index the paragraphs and the generates queries in a standard BM25 index like Elasticsearch, OpenSearch, or Lucene. The generated queries help to close the lexical gap of lexical search, as the generate queries contain synonyms. Further, it re-weights words giving important words a higher weight even if they appear seldomn in a paragraph. In our [BEIR](https://arxiv.org/abs/2104.08663) paper we showed that BM25+docT5query is a powerful search engine. In the [BEIR repository](https://github.com/UKPLab/beir) we have an example how to use docT5query with Pyserini. - **Domain Specific Training Data Generation**: It can be used to generate training data to learn an embedding model. On [SBERT.net](https://www.sbert.net/examples/unsupervised_learning/query_generation/README.html) we have an example how to use the model to generate (query, text) pairs for a given collection of unlabeled texts. These pairs can then be used to train powerful dense embedding models. ## Usage ```python from transformers import T5Tokenizer, T5ForConditionalGeneration model_name = 'doc2query/reddit-t5-base-v1' tokenizer = T5Tokenizer.from_pretrained(model_name) model = T5ForConditionalGeneration.from_pretrained(model_name) text = "Python is an interpreted, high-level and general-purpose programming language. Python's design philosophy emphasizes code readability with its notable use of significant whitespace. Its language constructs and object-oriented approach aim to help programmers write clear, logical code for small and large-scale projects." input_ids = tokenizer.encode(text, max_length=320, truncation=True, return_tensors='pt') outputs = model.generate( input_ids=input_ids, max_length=64, do_sample=True, top_p=0.95, num_return_sequences=5) print("Text:") print(text) print("\nGenerated Queries:") for i in range(len(outputs)): query = tokenizer.decode(outputs[i], skip_special_tokens=True) print(f'{i + 1}: {query}') ``` **Note:** `model.generate()` is non-deterministic. It produces different queries each time you run it. ## Training This model fine-tuned [google/t5-v1_1-base](https://huggingface.co/google/t5-v1_1-base) for 533k training steps. For the training script, see the `train_script.py` in this repository. The input-text was truncated to 320 word pieces. Output text was generated up to 64 word pieces. This model was trained on a (title, body) from Reddit.
VariableZee/DialoGPT-small-ivylia03
VariableZee
2021-10-27T08:50:29Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- tags: - conversational ---
espnet/pengcheng_guo_wenetspeech_asr_train_asr_raw_zh_char
espnet
2021-10-27T02:55:53Z
3
11
espnet
[ "espnet", "audio", "automatic-speech-recognition", "zh", "dataset:wenetspeech", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- tags: - espnet - audio - automatic-speech-recognition language: zh datasets: - wenetspeech license: cc-by-4.0 --- ## ESPnet2 ASR model ### `espnet/pengcheng_guo_wenetspeech_asr_train_asr_raw_zh_char` This model was trained by Pengcheng Guo using wenetspeech recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout 5c21f63e45e0961a5d817017c282b0cafd68a3aa pip install -e . cd egs2/wenetspeech/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/pengcheng_guo_wenetspeech_asr_train_asr_raw_zh_char ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Wed Oct 6 15:11:20 CST 2021` - python version: `3.8.11 (default, Aug 3 2021, 15:09:35) [GCC 7.5.0]` - espnet version: `espnet 0.10.2a1` - pytorch version: `pytorch 1.9.0` - Git hash: `` - Commit date: `` ## asr_train_asr_conformer_raw_zh_char ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_rnn_asr_model_valid.acc.ave_10best/aishell_test|7176|7176|67.1|32.9|0.0|0.1|33.0|32.9| |decode_asr_rnn_asr_model_valid.acc.ave_10best/dev|13825|16684|32.1|54.1|13.8|0.1|68.0|64.2| |decode_asr_rnn_asr_model_valid.acc.ave_10best/test_meeting|8370|8599|13.4|84.6|2.0|0.1|86.7|86.8| |decode_asr_rnn_asr_model_valid.acc.ave_10best/test_net|24774|25995|46.2|50.4|3.4|1.1|54.9|52.5| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_rnn_asr_model_valid.acc.ave_10best/aishell_test|7176|104765|96.3|3.6|0.1|0.2|3.9|32.9| |decode_asr_rnn_asr_model_valid.acc.ave_10bestdev|13825|333357|90.7|3.4|5.9|0.4|9.7|64.2| |decode_asr_rnn_asr_model_valid.acc.ave_10best/test_meeting|8370|220614|84.6|5.0|10.4|0.5|15.9|86.8| |decode_asr_rnn_asr_model_valid.acc.ave_10best/test_net|24774|416968|91.8|5.3|2.9|0.6|8.8|52.5| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| ## ASR config <details><summary>expand</summary> ``` config: conf/train_asr_conformer.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_conformer_raw_zh_char ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: 8 dist_rank: 0 local_rank: 0 dist_master_addr: localhost dist_master_port: 44205 dist_launcher: null multiprocessing_distributed: true unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 30 patience: null val_scheduler_criterion: - valid - acc early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 10 grad_clip: 5 grad_clip_type: 2.0 grad_noise: false accum_grad: 4 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 30000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_zh_char/train/speech_shape - exp/asr_stats_raw_zh_char/train/text_shape.char valid_shape_file: - exp/asr_stats_raw_zh_char/valid/speech_shape - exp/asr_stats_raw_zh_char/valid/text_shape.char batch_type: numel valid_batch_type: null fold_length: - 51200 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train_l/wav.scp - speech - sound - - dump/raw/train_l/text - text - text valid_data_path_and_name_and_type: - - dump/raw/dev/wav.scp - speech - sound - - dump/raw/dev/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.0015 scheduler: warmuplr scheduler_conf: warmup_steps: 30000 token_list: - <blank> - <unk> - 的 - 我 - 是 - 你 - 了 - 一 - 不 - 这 - 个 - 有 - 就 - 们 - 在 - 他 - 人 - 么 - 来 - 说 - 那 - 要 - 好 - 啊 - 大 - 到 - 上 - 也 - 没 - 都 - 去 - 能 - 子 - 会 - 为 - 得 - 时 - 还 - 可 - 以 - 什 - 家 - 后 - 看 - 呢 - 对 - 事 - 天 - 下 - 过 - 想 - 多 - 小 - 出 - 自 - 儿 - 生 - 给 - 里 - 现 - 着 - 然 - 吧 - 样 - 道 - 吗 - 心 - 跟 - 中 - 很 - 点 - 年 - 和 - 地 - 怎 - 知 - 十 - 老 - 当 - 把 - 话 - 别 - 所 - 之 - 情 - 实 - 开 - 面 - 回 - 行 - 国 - 做 - 己 - 经 - 如 - 真 - 起 - 候 - 些 - 让 - 发 - 她 - 觉 - 但 - 成 - 定 - 意 - 二 - 长 - 最 - 方 - 三 - 前 - 因 - 用 - 呀 - 种 - 只 - 走 - 其 - 问 - 再 - 果 - 而 - 分 - 两 - 打 - 学 - 间 - 您 - 本 - 于 - 明 - 手 - 公 - 听 - 比 - 作 - 女 - 太 - 今 - 从 - 关 - 妈 - 同 - 法 - 动 - 已 - 见 - 才 - 孩 - 感 - 吃 - 常 - 次 - 它 - 进 - 先 - 找 - 身 - 全 - 理 - 又 - 力 - 正 - 主 - 应 - 高 - 被 - 钱 - 快 - 等 - 头 - 重 - 车 - 谢 - 日 - 东 - 放 - 无 - 工 - 咱 - 哪 - 五 - 者 - 像 - 西 - 该 - 干 - 相 - 信 - 机 - 百 - 特 - 业 - 活 - 师 - 边 - 爱 - 友 - 新 - 外 - 位 - 更 - 直 - 几 - 第 - 非 - 四 - 题 - 接 - 少 - 哥 - 死 - 完 - 刚 - 电 - 气 - 安 - 爸 - 白 - 告 - 美 - 解 - 叫 - 月 - 带 - 欢 - 谁 - 体 - 喜 - 部 - 场 - 姐 - 军 - 万 - 结 - 合 - 难 - 八 - 每 - 目 - 亲 - 朋 - 认 - 总 - 加 - 通 - 办 - 马 - 件 - 受 - 任 - 请 - 住 - 王 - 思 - 门 - 名 - 平 - 系 - 文 - 帮 - 路 - 变 - 记 - 水 - 九 - 算 - 将 - 口 - 男 - 度 - 报 - 六 - 张 - 管 - 够 - 性 - 表 - 提 - 何 - 讲 - 期 - 拿 - 保 - 嘛 - 司 - 原 - 始 - 此 - 诉 - 处 - 清 - 内 - 产 - 金 - 晚 - 早 - 交 - 离 - 眼 - 队 - 七 - 入 - 山 - 代 - 市 - 海 - 物 - 零 - 望 - 世 - 婚 - 命 - 越 - 收 - 向 - 花 - 房 - 错 - 节 - 父 - 反 - 战 - 买 - 量 - 或 - 员 - 号 - 千 - 怕 - 底 - 且 - 品 - 民 - 化 - 爷 - 并 - 与 - 服 - 需 - 资 - 求 - 教 - 娘 - 医 - 数 - 院 - 书 - 利 - 往 - 确 - 各 - 单 - 风 - 送 - 必 - 条 - 包 - 准 - 光 - 整 - 病 - 弟 - 嗯 - 计 - 照 - 强 - 务 - 影 - 城 - 夫 - 俩 - 决 - 声 - 连 - 乐 - 息 - 远 - 北 - 至 - 饭 - 留 - 宝 - 神 - 近 - 考 - 备 - 案 - 界 - 容 - 况 - 母 - 较 - 持 - 证 - 选 - 制 - 程 - 喝 - 害 - 字 - 失 - 立 - 台 - 玩 - 查 - 块 - 便 - 挺 - 段 - 周 - 由 - 句 - 紧 - 李 - 据 - 杀 - 南 - 商 - 识 - 网 - 式 - 愿 - 传 - 流 - 消 - 伤 - 根 - 演 - 希 - 故 - 坐 - 建 - 注 - 许 - 调 - 共 - 空 - 半 - 却 - 酒 - 联 - 微 - 言 - 肯 - 赶 - 跑 - 笑 - 区 - 岁 - 红 - 达 - 官 - 轻 - 易 - 火 - 线 - 拉 - 首 - 导 - 团 - 慢 - 指 - 写 - 深 - 论 - 片 - 改 - 啥 - 满 - 步 - 音 - 功 - 聊 - 客 - 未 - 格 - 基 - 睡 - 观 - 份 - 视 - 色 - 价 - 政 - 转 - 终 - 复 - 啦 - 呃 - 阿 - 倒 - 义 - 警 - 林 - 使 - 科 - 运 - 苦 - 待 - 费 - 随 - 救 - 试 - 班 - 敢 - 精 - 及 - 术 - 造 - 续 - 养 - 展 - 答 - 绝 - 众 - 站 - 妹 - 差 - 谈 - 卖 - 播 - 创 - 领 - 象 - 志 - 投 - 习 - 兄 - 元 - 皇 - 专 - 态 - 急 - 局 - 兴 - 楚 - 飞 - 护 - 装 - 热 - 奶 - 取 - 设 - 游 - 读 - 福 - 药 - 担 - 历 - 忙 - 规 - 掉 - 刘 - 切 - 断 - 尽 - 社 - 久 - 支 - 板 - 星 - 姑 - 曾 - 突 - 除 - 华 - 责 - 排 - 京 - 值 - 士 - 统 - 换 - 德 - 衣 - 组 - 示 - 脸 - 刻 - 黑 - 遇 - 虽 - 顾 - 戏 - 怪 - 懂 - 叔 - 夜 - 陈 - 亮 - 江 - 兵 - 负 - 布 - 青 - 落 - 推 - 假 - 类 - 令 - 技 - 英 - 质 - 黄 - 治 - 形 - 助 - 球 - 歌 - 参 - 广 - 继 - 简 - 画 - 奇 - 陪 - 阳 - 险 - 须 - 念 - 迎 - 幸 - 抓 - 破 - 另 - 争 - 竟 - 户 - 律 - 择 - 究 - 龙 - 足 - 店 - 脑 - 斯 - 党 - 权 - 约 - 疑 - 议 - 严 - 密 - 克 - 存 - 穿 - 承 - 校 - 击 - 际 - 标 - 云 - 营 - 察 - 超 - 食 - 集 - 级 - 礼 - 静 - 背 - 武 - 初 - 拍 - 梦 - 验 - 响 - 角 - 石 - 股 - 追 - 怀 - 婆 - 适 - 独 - 忘 - 血 - 醒 - 具 - 罪 - 享 - 毛 - 香 - 状 - 配 - 靠 - 语 - 仅 - 低 - 细 - 米 - 既 - 钟 - 极 - 停 - 味 - 则 - 油 - 器 - 楼 - 菜 - 研 - 互 - 压 - 贵 - 村 - 属 - 派 - 乎 - 坏 - 控 - 显 - 图 - 双 - 职 - 永 - 哈 - 鬼 - 依 - 料 - 按 - 府 - 坚 - 某 - 甚 - 居 - 练 - 顺 - 模 - 即 - 州 - 引 - 乱 - 速 - 庭 - 朝 - 室 - 似 - 付 - 划 - 尔 - 境 - 犯 - 烦 - 环 - 伙 - 巴 - 春 - 古 - 妇 - 势 - 款 - 增 - 财 - 河 - 守 - 虑 - 汉 - 枪 - 妻 - 爹 - 弄 - 委 - 企 - 冲 - 置 - 麻 - 育 - 项 - 防 - 胡 - 杨 - 致 - 辈 - 括 - 毕 - 卫 - 修 - 史 - 型 - 牌 - 嘴 - 苏 - 群 - 举 - 痛 - 座 - 概 - 搞 - 围 - 土 - 毒 - 唱 - 冷 - 累 - 玉 - 获 - 误 - 跳 - 脚 - 雨 - 剧 - 休 - 皮 - 止 - 济 - 肉 - 丽 - 借 - 铁 - 牛 - 哭 - 招 - 闹 - 银 - 优 - 温 - 狗 - 退 - 洗 - 拜 - 否 - 票 - 偷 - 抱 - 博 - 般 - 效 - 套 - 维 - 普 - 康 - 富 - 宫 - 索 - 罗 - 堂 - 智 - 省 - 介 - 孙 - 灵 - 评 - 藏 - 称 - 课 - 货 - 姨 - 艺 - 骗 - 雪 - 赛 - 景 - 昨 - 健 - 鱼 - 激 - 危 - 熟 - 圈 - 闻 - 监 - 替 - 君 - 恋 - 良 - 掌 - 草 - 松 - 供 - 努 - 例 - 短 - 帝 - 姓 - 率 - 族 - 亿 - 赵 - 蛋 - 判 - 预 - 频 - 卡 - 架 - 纪 - 弃 - 秀 - 兰 - 层 - 检 - 伴 - 抗 - 讨 - 源 - 夏 - 咋 - 惊 - 录 - 善 - 补 - 刀 - 充 - 升 - 章 - 午 - 若 - 私 - 吴 - 素 - 旅 - 临 - 挑 - 唐 - 露 - 树 - 斗 - 舞 - 左 - 叶 - 副 - 晓 - 厂 - 弹 - 印 - 秘 - 屋 - 田 - 木 - 困 - 园 - 封 - 逃 - 批 - 馆 - 疼 - 败 - 陆 - 敌 - 散 - 采 - 翻 - 缺 - 胜 - 免 - 销 - 鸡 - 降 - 波 - 测 - 限 - 释 - 忍 - 归 - 床 - 餐 - 茶 - 码 - 宁 - 乡 - 辛 - 彩 - 亚 - 浪 - 漂 - 庆 - 训 - 范 - 烧 - 词 - 吵 - 媳 - 探 - 余 - 恐 - 积 - 农 - 遍 - 舒 - 顶 - 构 - 呼 - 丝 - 执 - 雅 - 惯 - 右 - 脱 - 恩 - 野 - 折 - 趣 - 笔 - 谓 - 盘 - 贝 - 宣 - 绍 - 嘉 - 宋 - 抢 - 嫌 - 尊 - 碰 - 绪 - 丢 - 厉 - 沙 - 轮 - 施 - 织 - 托 - 县 - 策 - 杯 - 逼 - 傻 - 束 - 街 - 疗 - 益 - 骨 - 迷 - 姻 - 恶 - 默 - 寻 - 搜 - 哦 - 材 - 吸 - 劳 - 勇 - 占 - 暴 - 船 - 徐 - 虎 - 融 - 异 - 审 - 攻 - 雷 - 稳 - 呗 - 输 - 睛 - 臣 - 端 - 威 - 秋 - 欧 - 冰 - 韩 - 减 - <space> - 操 - 混 - 汽 - 暗 - 隐 - 嫂 - 沉 - 烟 - 顿 - 凭 - 洋 - 嫁 - 购 - 粉 - 遗 - 杂 - 协 - 尝 - 键 - 亡 - 秦 - 纸 - 拥 - 革 - 猫 - 伯 - 祝 - 签 - 傅 - 牙 - 湖 - 莫 - 杰 - 旁 - 港 - 劲 - 宗 - 偏 - 触 - 唯 - 吓 - 辆 - 沈 - 列 - 梅 - 祖 - 舍 - 尤 - 赚 - 疫 - 腾 - 拼 - 奖 - 刺 - 齐 - 诚 - 媒 - 戴 - 账 - 炸 - 骂 - 避 - 麦 - 爆 - 域 - 烈 - 暖 - 季 - 猜 - 佳 - 净 - 腿 - 磨 - 曲 - 虚 - 阵 - 荣 - 访 - 核 - 鲜 - 阶 - 镇 - 灯 - 估 - 剩 - 硬 - 租 - 敬 - 损 - 惜 - 挂 - 董 - 巨 - 忆 - 登 - 丈 - 帅 - 童 - 耳 - 央 - 软 - 移 - 略 - 额 - 厅 - 挥 - 透 - 络 - 弱 - 珍 - 恨 - 巧 - 丁 - 谋 - 孤 - 豆 - 诗 - 冒 - 狼 - 渐 - 峰 - 售 - 凡 - 聚 - 洞 - 抽 - 劝 - 闭 - 摆 - 冬 - 凶 - 魔 - 灭 - 雄 - 挣 - 搬 - 龄 - 朱 - 编 - 航 - 席 - 驾 - 授 - 鼓 - 握 - 隔 - 猪 - 仙 - 颜 - 镜 - 胖 - 赢 - 仇 - 晨 - 欺 - 刑 - 谷 - 旦 - 亏 - 盖 - 症 - 喊 - 蓝 - 讯 - 殿 - 梁 - 躲 - 旧 - 针 - 箱 - 丰 - 洲 - 鞋 - 征 - 蒙 - 伟 - 袋 - 庄 - 患 - 怨 - 佛 - 稍 - 朵 - 纳 - 吉 - 川 - 典 - 迹 - 瑞 - 废 - 搭 - 涨 - 汤 - 启 - 桌 - 摸 - 赔 - 宜 - 纯 - 贴 - 聪 - 熊 - 延 - 瓶 - 版 - 缘 - 距 - 甜 - 析 - 盛 - 孕 - 彻 - 桥 - 尚 - 染 - 撞 - 途 - 沟 - 疯 - 敏 - 瞧 - 漫 - 胆 - 诺 - 刷 - 饿 - 仍 - 喂 - 辞 - 迟 - 淡 - 郑 - 歉 - 扰 - 宾 - 圆 - 赞 - 肚 - 慧 - 泪 - 吹 - 拖 - 遭 - 穷 - 罚 - 悔 - 绿 - 忽 - 唉 - 毫 - 绩 - 暂 - 射 - 岛 - 拾 - 珠 - 欠 - 忠 - 陷 - 阴 - 尼 - 悲 - 糊 - 撤 - 徒 - 剑 - 币 - 娜 - 违 - 泡 - 仗 - 粮 - 培 - 趟 - 菲 - 拒 - 棒 - 脾 - 赏 - 窗 - 宇 - 闲 - 附 - 踏 - 彼 - 涉 - 锁 - 撒 - 魂 - 羊 - 述 - 屈 - 库 - 滚 - 凉 - 颗 - 寒 - 呐 - 墙 - 娃 - 序 - 迪 - 丹 - 扬 - 瞎 - 递 - 凤 - 碗 - 屁 - 锅 - 奔 - 幅 - 债 - 糖 - 奋 - 汇 - 圣 - 订 - 偶 - 残 - 宽 - 狂 - 鼠 - 狠 - 幕 - 固 - 竞 - 蜜 - 吐 - 摄 - 骑 - 篇 - 毁 - 尾 - 摇 - 奥 - 厚 - 妖 - 禁 - 逐 - 均 - 尸 - 冠 - 阅 - 辑 - 捕 - 载 - 郭 - 俺 - 诊 - 欲 - 扎 - 鸟 - 柔 - 迫 - 豪 - 踪 - 扔 - 碎 - 末 - 娶 - 扫 - 朕 - 励 - 乔 - 闺 - 档 - 厨 - 倍 - 湾 - 郎 - 幼 - 纷 - 奴 - 阻 - 饮 - 怒 - 妙 - 琴 - 曹 - 脏 - 牵 - 瓜 - 滴 - 炮 - 缓 - 含 - 献 - 柜 - 仔 - 艾 - 潜 - 赌 - 震 - 础 - 添 - 兔 - 焦 - 躺 - 森 - 肥 - 洪 - 孝 - 偿 - 悉 - 撑 - 甘 - 桃 - 苹 - 魏 - 鲁 - 池 - 狱 - 厌 - 纠 - 朗 - 贷 - 铺 - 殊 - 坦 - 爬 - 擦 - 酸 - 钢 - 咖 - 瞒 - 蛮 - 谅 - 耐 - 申 - 夸 - 欣 - 诶 - 驶 - 屏 - 烂 - 凌 - 甲 - 胎 - 仪 - 貌 - 番 - 涂 - 抬 - 舅 - 扯 - 鹿 - 摩 - 诸 - 秒 - 泽 - 埋 - 蒋 - 隆 - 赖 - 奸 - 咬 - 恢 - 宿 - 乖 - 邀 - 抵 - 臭 - 闪 - 莉 - 熬 - 链 - 盯 - 侦 - 灾 - 堆 - 灰 - 卷 - 盾 - 障 - 截 - 恰 - 佩 - 戒 - 莲 - 裁 - 芬 - 戚 - 匪 - 滑 - 趁 - 询 - 绑 - 辣 - 挖 - 俗 - 祸 - 符 - 扣 - 插 - 仁 - 壁 - 腰 - 斤 - 燕 - 筑 - 柱 - 夺 - 援 - 映 - 壮 - 杜 - 摔 - 润 - 恭 - 乌 - 慰 - 啡 - 著 - 井 - 跌 - 牢 - 荐 - 拔 - 惹 - 侯 - 玲 - 炎 - 胸 - 旗 - 牲 - 喽 - 涛 - 衡 - 矛 - 伍 - 贤 - 惨 - 糟 - 慌 - 伏 - 醉 - 仓 - 拆 - 乘 - 疾 - 鼻 - 潮 - 予 - 奉 - 伦 - 劫 - 伊 - 怜 - 孟 - 肺 - 忧 - 倾 - 矩 - 荒 - 奏 - 塔 - 塞 - 迅 - 轨 - 瞬 - 丫 - 狐 - 叛 - 繁 - 眠 - 孔 - 谱 - 悄 - 泰 - 姜 - 侵 - 妃 - 冯 - 柳 - 洛 - 岸 - 凯 - 陛 - 幺 - 仿 - 氏 - 窝 - 曼 - 挡 - 浩 - 盟 - 轩 - 牺 - 贫 - 绕 - 谎 - 措 - 扶 - 梯 - 炼 - 勤 - 霸 - 横 - 罢 - 呆 - 税 - 桂 - 哎 - 慕 - 植 - 允 - 荡 - 洁 - 肖 - 耗 - 贼 - 艰 - 贺 - 幻 - 饱 - 胃 - 袭 - 廷 - 泥 - 丧 - 缩 - 砸 - 姥 - 拦 - 扮 - 糕 - 肤 - 猴 - 脆 - 炒 - 耀 - 盗 - 邓 - 扩 - 纵 - 振 - 敲 - 鹏 - 姆 - 湿 - 丑 - 召 - 苗 - 伸 - 惑 - 碍 - 萨 - 瘦 - 闯 - 迁 - 坑 - 弯 - 卑 - 尖 - 遥 - 侠 - 犹 - 押 - 冤 - 钻 - 汗 - 闷 - 邻 - 淘 - 抛 - 妆 - 贾 - 侧 - 傲 - 描 - 耍 - 猛 - 薇 - 裤 - 憾 - 督 - 贸 - 墨 - 勒 - 薄 - 嘞 - 渡 - 紫 - 悟 - 锦 - 溜 - 逆 - 惠 - 辉 - 贪 - 圾 - 垃 - 券 - 燃 - 虫 - 悠 - 伪 - 尿 - 懒 - 俊 - 寄 - 歇 - 盒 - 潘 - 储 - 愈 - 脉 - 粗 - 返 - 昌 - 泉 - 蔡 - 愧 - 赤 - 岳 - 婷 - 猎 - 饼 - 肩 - 勾 - 巡 - 竹 - 催 - 陌 - 踩 - 促 - 扭 - 堵 - 酷 - 芳 - 逛 - 陵 - 耽 - 凑 - 寿 - 缝 - 剪 - 郁 - 宅 - 抚 - 筹 - 沿 - 烤 - 奈 - 挨 - 晋 - 崩 - 浮 - 阁 - 彭 - 裂 - 崇 - 眉 - 桑 - 辩 - 漏 - 稀 - 液 - 汪 - 袁 - 掩 - 浑 - 坡 - 晕 - 缠 - 仰 - 挤 - 睁 - 羽 - 岗 - 捡 - 墓 - 综 - 矿 - 妥 - 厕 - 辱 - 惧 - 逗 - 帽 - 寸 - 搁 - 跨 - 渴 - 饰 - 璃 - 琳 - 爽 - 愤 - 饶 - 卧 - 誓 - 滋 - 鉴 - 腐 - 鸭 - 蛇 - 妮 - 莱 - 哟 - 钥 - 甄 - 肠 - 畅 - 慎 - 悬 - 逻 - 胁 - 辰 - 呈 - 棋 - 寨 - 萌 - 覆 - 姚 - 津 - 笨 - 轰 - 乏 - 匙 - 摊 - 陶 - 恼 - 昏 - 抑 - 姿 - 愁 - 誉 - 椅 - 羞 - 澡 - 踢 - 晶 - 萧 - 箭 - 罩 - 宠 - 羡 - 亦 - 祥 - 串 - 昆 - 煮 - 疏 - 纹 - 泄 - 痕 - 喷 - 册 - 跃 - 卢 - 岩 - 跪 - 兽 - 桶 - 飘 - 漠 - 堪 - 哄 - 寂 - 崔 - 腹 - 癌 - 拳 - 驻 - 霍 - 拨 - 诞 - 捐 - 御 - 榜 - 唤 - 荷 - 径 - 署 - 锋 - 玛 - 匆 - 恒 - 吕 - 邮 - 圳 - 黎 - 掏 - 莎 - 寞 - 佐 - 诈 - 牧 - 盐 - 叹 - 尬 - 匹 - 狸 - 膀 - 谨 - 尘 - 驱 - 乳 - 晒 - 宴 - 辜 - 哲 - 铜 - 薪 - 盆 - 割 - 忌 - 旋 - 翼 - 哀 - 咨 - 遵 - 夹 - 侣 - 译 - 胞 - 浅 - 邦 - 俄 - 弗 - 豫 - 甭 - 乃 - 扛 - 杭 - 瓦 - 槽 - 污 - 尴 - 琢 - 枝 - 详 - 柴 - 佑 - 盼 - 抖 - 惩 - 捷 - 葬 - 贡 - 艳 - 塑 - 茫 - 叨 - 浓 - 拐 - 捉 - 憋 - 稿 - 苍 - 葛 - 扑 - 娱 - 赋 - 杆 - 绘 - 聆 - 肌 - 婴 - 摘 - 岂 - 呵 - 冻 - 泳 - 揭 - 坤 - 盈 - 毅 - 撕 - 娇 - 唠 - 宏 - 吊 - 籍 - 楠 - 肃 - 抹 - 玄 - 湘 - 迈 - 酱 - 骄 - 咐 - 扇 - 幽 - 疲 - 邪 - 吞 - 趋 - 尺 - 玻 - 溃 - 诱 - 翠 - 兼 - 辅 - 岭 - 栏 - 柏 - 址 - 寺 - 逢 - 琪 - 慈 - 愣 - 契 - 渠 - 齿 - 薛 - 拟 - 填 - 坛 - 抄 - 痴 - 绳 - 役 - 擅 - 晃 - 斌 - 愉 - 届 - 悦 - 旨 - 砍 - 弥 - 挽 - 肝 - 鸣 - 庙 - 烫 - 聘 - 皆 - 婶 - 舌 - 枉 - 赫 - 蓉 - 瞅 - 阔 - 俱 - 循 - 鸿 - 彪 - 伺 - 堡 - 谦 - 剂 - 洒 - 赴 - 妨 - 磊 - 嘱 - 蝶 - 兆 - 豹 - 绣 - 篮 - 锻 - 陕 - 霉 - 涵 - 疆 - 丸 - 蠢 - 铃 - 浙 - 庞 - 萝 - 泛 - 芝 - 煤 - 甩 - 氛 - 页 - 逸 - 袖 - 携 - 躁 - 夕 - 匠 - 蹈 - 坊 - 雾 - 蹲 - 颠 - 脂 - 塌 - 棵 - 鹰 - 澳 - 哇 - 筋 - 纽 - 脖 - 棉 - 渣 - 寡 - 践 - 侄 - 披 - 魅 - 虹 - 肿 - 胶 - 霞 - 罐 - 晴 - 拓 - 卿 - 耻 - 砖 - 宪 - 歪 - 兜 - 衰 - 捧 - 歹 - 雕 - 穆 - 栋 - 瑶 - 毙 - 衷 - 膜 - 囊 - 莹 - 垫 - 吻 - 嘟 - 舰 - 虾 - 壳 - 穴 - 勉 - 裙 - 旺 - 柯 - 磕 - 贩 - 腻 - 蹦 - 卜 - 茹 - 驴 - 臂 - 删 - 菌 - 妾 - 蜂 - 祭 - 菊 - 咸 - 淑 - 笼 - 涯 - 碧 - 宙 - 骚 - 皓 - 赐 - 晰 - 腔 - 龟 - 泼 - 鹅 - 啪 - 巾 - 炉 - 沾 - 醋 - 澜 - 朴 - 棍 - 伞 - 雀 - 赠 - 妞 - 淋 - 刮 - 汁 - 椒 - 埃 - 嚷 - 盲 - 窃 - 辽 - 贱 - 滩 - 昭 - 贯 - 珊 - 涌 - 辨 - 捞 - 仲 - 拘 - 碑 - 侍 - 剿 - 搅 - 狮 - 藤 - 旭 - 翅 - 滨 - 禀 - 遮 - 瑟 - 斩 - 攒 - 犬 - 挫 - 僧 - 吩 - 渊 - 蒂 - 萍 - 庸 - 蓄 - 鼎 - 咪 - 姬 - 溪 - 郡 - 镖 - 怡 - 杉 - 畏 - 瓷 - 枚 - 煎 - 劣 - 饺 - 妄 - 卓 - 蔽 - 蒸 - 垂 - 嘲 - 慨 - 谊 - 蹭 - 逮 - 锐 - 钉 - 舟 - 沃 - 凝 - 翔 - 颈 - 靖 - 灌 - 膊 - 崖 - 娟 - 胳 - 铭 - 灿 - 亭 - 粒 - 卸 - 咕 - 坎 - 攀 - 婿 - 奢 - 茂 - 趴 - 耿 - 捏 - 怖 - 浴 - 婉 - 煌 - 霖 - 揍 - 昂 - 驰 - 壶 - 械 - 卦 - 粥 - 尹 - 瘾 - 雇 - 翰 - 肆 - 寇 - 曦 - 厢 - 杠 - 屠 - 芒 - 谣 - 沫 - 掘 - 酬 - 讼 - 乾 - 玫 - 瑰 - 逊 - 惦 - 儒 - 肾 - 粹 - 愚 - 渔 - 暑 - 伐 - 潇 - 喘 - 敦 - 翁 - 斥 - 帖 - 纱 - 梳 - 缴 - 茅 - 谭 - 氧 - 遣 - 履 - 刹 - 枕 - 婢 - 徽 - 轿 - 寓 - 咽 - 叉 - 嗓 - 捣 - 裹 - 览 - 拯 - 疚 - 蜀 - 丛 - 框 - 斑 - 宵 - 郝 - 蛙 - 熙 - 祁 - 哑 - 葱 - 唇 - 韦 - 媛 - 魄 - 锤 - 绵 - 炫 - 吨 - 稻 - 碌 - 刊 - 漆 - 搏 - 讶 - 痒 - 枫 - 妒 - 冥 - 郊 - 爵 - 逝 - 栽 - 叠 - 蚁 - 裕 - 帕 - 剥 - 谐 - 巫 - 颇 - 娥 - 廊 - 蕾 - 丘 - 丞 - 葡 - 坠 - 鸦 - 糗 - 虐 - 唬 - 屎 - 顽 - 巷 - 硅 - 罕 - 殖 - 嘿 - 韵 - 歧 - 垮 - 淮 - 馈 - 昊 - 宰 - 钦 - 霜 - 兑 - 萄 - 塘 - 胀 - 樱 - 枯 - 咳 - 窑 - 募 - 缸 - 昧 - 仑 - 恕 - 氓 - 叮 - 吼 - 坟 - 轴 - 贞 - 赎 - 帆 - 嫩 - 蚂 - 僵 - 颖 - 噜 - 咒 - 琐 - 勃 - 芯 - 绸 - 哼 - 仨 - 挪 - 狡 - 禅 - 粘 - 雯 - 扒 - 恳 - 蔬 - 匈 - 钓 - 桐 - 菇 - 哒 - 稚 - 膏 - 纲 - 狄 - 硕 - 廉 - 衙 - 艘 - 廖 - 腊 - 蟹 - 邱 - 缉 - 曝 - 桩 - 啤 - 嫉 - 棚 - 矮 - 汰 - 衍 - 拽 - 削 - 彤 - 斜 - 揉 - 樊 - 馨 - 钩 - 浦 - 肢 - 敷 - 喻 - 鞭 - 瞪 - 耕 - 掐 - 屡 - 榴 - 勋 - 泊 - 竭 - 鹤 - 溢 - 淳 - 倩 - 驳 - 抠 - 捅 - 筒 - 窄 - 鄙 - 嗦 - 袍 - 劈 - 炖 - 裸 - 贬 - 敞 - 嘎 - 淹 - 耶 - 秩 - 舱 - 厦 - 叙 - 孽 - 筷 - 浇 - 饥 - 噩 - 蚊 - 兮 - 皱 - 侃 - 辟 - 弊 - 袜 - 吾 - 俘 - 芸 - 夷 - 芦 - 囚 - 倡 - 琦 - 哨 - 巢 - 烛 - 帐 - 燥 - 讽 - 俞 - 馅 - 柿 - 墅 - 妍 - 瘤 - 沦 - 衬 - 瑜 - 蒜 - 蛛 - 窟 - 勿 - 沛 - 磁 - 狭 - 栈 - 懵 - 酿 - 戈 - 邵 - 龚 - 衫 - 勺 - 哗 - 叽 - 畜 - 爪 - 惫 - 颁 - 浸 - 摧 - 勘 - 惕 - 蔓 - 馒 - 挠 - 陀 - 豁 - 帘 - 淀 - 藩 - 蜡 - 凳 - 蘑 - 琼 - 棺 - 蝴 - 骆 - 掰 - 枣 - 遂 - 飙 - 咧 - 掀 - 梨 - 杏 - 嗑 - 棠 - 绽 - 捆 - 舆 - 肇 - 葩 - 呦 - 膝 - 鹊 - 揣 - 瓣 - 靓 - 卵 - 鲍 - 炭 - 戳 - 颤 - 禄 - 菩 - 崛 - 驸 - 佣 - 眨 - 聂 - 乙 - 嘻 - 拧 - 喵 - 佟 - 靳 - 阎 - 拢 - 厘 - 凰 - 疤 - 螺 - 淇 - 涩 - 拎 - 嗨 - 魁 - 薯 - 歼 - 沪 - 筛 - 谍 - 揪 - 刁 - 秃 - 谜 - 撇 - 肪 - 绊 - 逞 - 滥 - 寝 - 麟 - 奕 - 侮 - 喉 - 柄 - 荆 - 撼 - 窦 - 姗 - 乞 - 艇 - 竖 - 剖 - 嗽 - 捂 - 腕 - 鸽 - 刃 - 弓 - 辙 - 粤 - 泣 - 梗 - 茄 - 茜 - 驼 - 冈 - 倔 - 啃 - 蹄 - 唧 - 祈 - 腺 - 焰 - 睿 - 崽 - A - 苛 - 窍 - 凿 - 倭 - 骤 - 槛 - 碳 - 诏 - 芽 - 浆 - 隶 - 搂 - 睦 - 彬 - 岔 - 诀 - 嚼 - 掺 - 殷 - 吁 - 啰 - 侈 - 亩 - 纤 - 倦 - 揽 - 媚 - 潭 - 莽 - 赃 - 睹 - 脊 - 逍 - 淼 - 沸 - 峡 - 仆 - 眷 - 屯 - 璐 - 雁 - 澄 - 渗 - 咔 - 啸 - 怂 - 娄 - 惶 - 恍 - 锡 - 秉 - 猾 - 挟 - 舔 - 弦 - 阱 - 俭 - 嚣 - 搓 - 懈 - 诡 - 隙 - 苟 - 倘 - 瘫 - 扁 - 鑫 - 撩 - 蓬 - 铲 - 峥 - 巅 - 葫 - 膳 - 狙 - 晏 - 祠 - 峻 - 尉 - 毯 - 沧 - 熏 - 咯 - 株 - 沐 - 奎 - 锣 - 霄 - 彦 - 叭 - 臻 - 昔 - 灶 - 傍 - 腥 - 屑 - 禾 - 彰 - 冉 - 矫 - 滞 - 瘩 - 匀 - 椎 - 槐 - 岚 - 跷 - 剔 - 倪 - 盏 - 泌 - 灸 - 隧 - 函 - 壤 - 剃 - 蹊 - 葵 - 拌 - 琅 - 炳 - 跋 - 瑾 - 哩 - 蔷 - 鳌 - 莺 - 诵 - 疙 - 吱 - 蓓 - 绎 - 匿 - 铮 - 怼 - 踹 - 嗅 - 焚 - 躯 - 蝇 - 橘 - 祟 - 辖 - 砂 - 韧 - 粪 - 诬 - 擒 - 黏 - 衔 - 溺 - 蜘 - 篷 - 贿 - 闫 - 焕 - 邢 - 兹 - 窖 - 旬 - 铸 - 咚 - 惭 - 佬 - 裴 - 裳 - 犀 - 弘 - 莓 - 钏 - 鄂 - 陋 - 伽 - 鞠 - 氪 - 垒 - 窜 - 橙 - 讳 - 甥 - 淫 - 拱 - 袱 - 坨 - 暧 - 渺 - 蕉 - 晗 - 茬 - 盔 - 妓 - 蚕 - 僻 - 朽 - 呛 - 挚 - 擎 - 绅 - 喇 - 鳄 - 巩 - 蜗 - 遛 - 俯 - 汹 - 猩 - 奠 - 钙 - 悍 - 躬 - 菱 - 翘 - 琉 - 虏 - 凄 - 稼 - 炕 - 皂 - 漱 - 斋 - 撂 - 敛 - 阮 - 芭 - 阀 - 缚 - 懦 - 亨 - 螃 - 侥 - 膨 - 筝 - 惟 - 黛 - 眯 - 茨 - 怠 - 辐 - 捎 - 殴 - 桓 - 瞄 - 冀 - 雍 - 霾 - 酵 - 檬 - 哺 - 裔 - 兢 - 麒 - 烹 - 绒 - 丐 - 娅 - 钞 - 垄 - 笛 - 赣 - 蕊 - 暮 - 噪 - 沮 - 肋 - 庇 - 橡 - 摁 - 痘 - 棘 - 拂 - 绷 - 刨 - 晾 - 蹬 - 鸥 - 璇 - 掠 - 瘟 - 俐 - 糙 - 骏 - 牡 - 撵 - 嘘 - 沥 - 庶 - 赁 - 喧 - 涡 - 瞳 - 迭 - 肘 - 颂 - 珑 - 觅 - 埔 - G - 跤 - 朔 - 詹 - 梭 - 暇 - 惺 - 甸 - 怯 - 聋 - 赦 - 屉 - 闸 - 坝 - 吟 - 凸 - 拴 - 堤 - 矣 - 斧 - 呸 - 啼 - 韬 - 钧 - 坞 - 纺 - 氢 - 嵩 - 镯 - 髓 - 檐 - 涕 - 剁 - 稽 - 烨 - 钮 - 闽 - 仕 - 驯 - 吭 - 漓 - 眸 - 鞅 - 枢 - 煞 - 昕 - 畔 - 疹 - 矶 - 呱 - 熄 - 吏 - 泻 - 拙 - 蛤 - 禽 - 甫 - 厮 - 乍 - 蝉 - 撬 - 嘀 - 衅 - 鲨 - 萱 - 霹 - 旷 - 辫 - 坷 - 眶 - 蟆 - 呜 - 猬 - 嬷 - 萎 - 靶 - 雳 - 煲 - 溯 - 蚀 - 狈 - 滤 - 恙 - 瑛 - 栓 - 嫣 - 碟 - 祷 - 驿 - 犊 - 灼 - 哆 - 宛 - 榨 - 寥 - 翟 - 栗 - 滔 - 馋 - 杖 - 茉 - 饲 - 庐 - 隋 - 旱 - 崎 - 颅 - 焉 - 墩 - 篱 - 晟 - 扳 - 咎 - 竿 - 僚 - 溶 - 俏 - 霆 - 堕 - 冕 - 叩 - 绰 - 洽 - 襄 - 蛊 - 缅 - 侨 - 伶 - 蕴 - 酥 - 坂 - 拇 - 庚 - 卒 - 诛 - 禧 - 瓢 - 锯 - 扉 - 饷 - 诅 - 烘 - 浏 - 痰 - 榆 - 窥 - 鲸 - 捋 - 戎 - 笋 - 璋 - 诫 - 珈 - 癫 - 囤 - 厥 - 癖 - 翩 - 芹 - 匣 - 噬 - 栖 - 蝎 - 锄 - 玺 - 疮 - 缕 - 猥 - 槿 - 蔑 - 汝 - 珂 - 撮 - 坪 - 蒲 - 倚 - 嗷 - 撰 - 荧 - 芙 - 豚 - 筱 - 敖 - 孵 - 猝 - D - 弈 - 徊 - 辗 - 赘 - 徘 - 烙 - 娲 - 嚎 - 迢 - 绥 - 羁 - 屌 - 铅 - 澎 - S - 嬛 - 晦 - 煽 - 逾 - 饵 - 虞 - 筐 - 哧 - 抒 - 醇 - 祀 - 瑕 - 岐 - 潼 - 惚 - C - 苑 - 靡 - 菠 - 赡 - 惰 - 梓 - 铛 - 澈 - 莞 - 呕 - 驭 - 邝 - 砰 - 轼 - 窒 - 慷 - 绞 - 絮 - 虔 - 惮 - 柬 - 嗡 - 拣 - 羲 - 蹋 - 隘 - 帜 - 卤 - 雌 - 唾 - 邹 - 俑 - 碾 - 婪 - 咏 - 粟 - 崭 - 钝 - 彝 - 陡 - 谛 - 秤 - 磅 - 淌 - 炊 - 鲤 - 羹 - 殉 - 曰 - 萤 - 阐 - 鬟 - 拭 - T - 沁 - 滇 - 梧 - 烁 - 瞻 - 淤 - 凹 - 撸 - 棕 - 腌 - 缪 - 祺 - 痊 - 忑 - 柠 - 矜 - 忐 - 讹 - 瀚 - 尧 - 昼 - 芊 - 憨 - 鳞 - 匮 - 鸳 - 鸯 - 湃 - 屿 - 馍 - 沽 - 栾 - 蝠 - 窘 - 绛 - 巍 - 悯 - 焊 - 谴 - 浊 - 娴 - 畴 - 湛 - 螂 - 韭 - 哮 - 拷 - 攥 - 凛 - 颓 - 恺 - 蝙 - 襟 - 粑 - 洼 - 笃 - 渝 - 骁 - 殃 - 酌 - 乒 - 臊 - 疵 - 诧 - 谬 - 锈 - 袄 - 膛 - 瘸 - 嫖 - 梢 - 沼 - 棱 - 嚓 - 耸 - 喳 - 舵 - 橱 - 涮 - 檀 - 瞩 - 腑 - 岑 - 痪 - 墟 - 蔚 - 捍 - 徙 - 棣 - 猖 - 掷 - 恬 - 嫦 - 噔 - 饪 - 掂 - 恤 - 叱 - 芷 - 弩 - 楷 - 镶 - 茧 - 诠 - 咙 - 匡 - 擂 - 亵 - 杞 - 乓 - 渤 - 藉 - 憔 - 渭 - 禹 - 睐 - 趾 - 抉 - 悴 - 忒 - 茸 - 纬 - 懊 - 浚 - 溅 - 遏 - 琛 - 靴 - 戮 - 翎 - 谕 - 濒 - 锵 - 嬉 - 籽 - 殆 - 叼 - 苔 - 灏 - 嗖 - 俪 - 亢 - 冶 - 嗜 - 磋 - 汀 - 讪 - 萃 - 菁 - 镑 - 紊 - 脯 - 缆 - 哉 - 赂 - 婊 - B - 蕃 - 迄 - 蜓 - 舜 - 嚏 - 昱 - 黔 - 犟 - 汐 - 昵 - 嗣 - 唆 - 蛾 - 黯 - 绯 - 瀑 - 憬 - 狩 - 掖 - 崴 - 褪 - 髦 - 酝 - 弧 - 咄 - 吝 - 馄 - 娩 - 窿 - 蜻 - 袒 - 玮 - 阙 - 篡 - 邯 - 朦 - 邑 - 喃 - 粽 - 捶 - 嫔 - 钗 - 穗 - 骼 - 胭 - 寐 - 噎 - M - 碱 - 荤 - 笙 - 矢 - 芥 - 廓 - 扼 - 厄 - 毋 - 糯 - 惋 - 纶 - 碜 - 胧 - 懿 - 偃 - 沏 - 痹 - 慑 - 鹦 - 娠 - 铐 - 绢 - 傀 - 孜 - 饨 - 儡 - 孰 - 焱 - 峭 - 伎 - 幌 - 椰 - 譬 - 藕 - 坍 - 铝 - 鞍 - 蘸 - 貂 - 猿 - 炙 - 琊 - 峙 - 硝 - 幂 - 钰 - 眩 - 亥 - 簇 - 鹉 - 睫 - 斟 - 簧 - 颐 - 薰 - 癞 - 祛 - 燎 - 缎 - 簸 - 咣 - 绚 - 簿 - 邋 - 嵌 - 肮 - 稷 - 辍 - 闵 - 枸 - 撅 - 曙 - 苇 - K - 悼 - 汶 - 匕 - 皖 - 腮 - 琶 - 汲 - 鼹 - 礁 - 颊 - 怔 - 汕 - 喀 - 砌 - 釜 - 畸 - 鹃 - 峨 - 奄 - 骡 - 斐 - 芈 - 莘 - 蟑 - 荔 - 缇 - 犒 - 宓 - 汾 - 沌 - 宦 - 憧 - 咤 - 吆 - 攘 - 漩 - 梵 - 阂 - 吒 - 芜 - 缔 - 秧 - 翊 - 晌 - 剐 - 蜕 - 芋 - 彷 - 牟 - 诲 - 臀 - 徨 - Q - 杵 - 荫 - 榄 - 蹿 - 豌 - 迂 - 琵 - 拗 - 帷 - 楞 - 嘶 - 橄 - 胺 - 圭 - 砚 - 藻 - 凋 - 啄 - 褒 - 嗝 - 殡 - 嫡 - 恃 - 濡 - 缜 - 孺 - 泸 - 妊 - 衩 - 驹 - 榻 - 腆 - 鹂 - 箍 - 璧 - 熔 - 悚 - 遢 - 弛 - 诋 - 羚 - 鹭 - 嘚 - 骸 - 瘪 - 铠 - 瞿 - 屹 - 邸 - 痨 - 辘 - 浒 - 忏 - 钊 - 潦 - 怅 - 肴 - 蚯 - 胚 - 茵 - 蚓 - 戬 - 瘀 - 翡 - 恪 - 卉 - 蝌 - 雏 - 祯 - 谏 - 蚪 - 钵 - 馊 - 嗒 - 犁 - 寅 - V - 锥 - 娼 - 晖 - 啬 - 纣 - 淆 - 丙 - 夯 - 竣 - 褚 - 褥 - 轧 - 氨 - 褂 - 钳 - 轲 - 竺 - 疡 - 淞 - 胤 - 摹 - 鳅 - 珀 - 偕 - 匾 - 觑 - 扈 - 傣 - 绫 - 枷 - 阑 - 柚 - 烊 - 怦 - 腼 - 珺 - 缀 - 裘 - 碉 - 峪 - 俸 - 羯 - 姊 - 疟 - 砺 - 盎 - 嘣 - 釉 - 溥 - 熠 - 垢 - 摞 - 哽 - 槟 - 囧 - 胰 - 遁 - 痞 - 熹 - 忡 - 稠 - 顷 - 瑚 - 卯 - 渎 - 炅 - 褶 - 烽 - 瞑 - 嘈 - 硫 - 壹 - 悖 - 酪 - 跺 - 阜 - 帛 - 漪 - 蝗 - 迦 - 蟒 - 咀 - 谤 - 睬 - 辕 - 绮 - 搀 - 裆 - 鳖 - 囡 - 羔 - 痣 - 滕 - 佘 - 樟 - 韶 - 霓 - 劾 - 赈 - 唏 - 闰 - 脐 - 沓 - 瓮 - 篓 - 笠 - 暄 - 涅 - 诽 - 洱 - 栅 - 蚱 - 囔 - 攸 - 酣 - 阪 - 榕 - 骇 - 婧 - 陨 - 憎 - 沂 - 磷 - 壕 - 醺 - 惬 - 璀 - 璨 - 喋 - P - 炽 - 瘁 - 羿 - 褐 - 簪 - 冽 - 驮 - 芮 - 辄 - 咆 - 渍 - 觐 - 炷 - 蛰 - 驷 - 帚 - 蜷 - O - X - 邂 - 逅 - 缭 - 秽 - 琰 - 龌 - 龊 - 俨 - 涟 - 噼 - 掇 - 哔 - 炬 - 佯 - 粱 - 霁 - 鱿 - 夭 - 擀 - 陇 - 瞥 - 壑 - 盹 - 馁 - 蚌 - 焖 - 蛟 - 囱 - 蚝 - 抿 - 脓 - 蒿 - 飓 - 渲 - 宸 - 酗 - 荻 - 缥 - 弑 - 偎 - 宕 - 耘 - 瞌 - 瘴 - 溉 - 涝 - 咿 - 垛 - 垦 - 缈 - 苞 - 惆 - 汛 - 鹑 - 町 - 抡 - 慵 - 浣 - 耙 - 砥 - 噱 - 孬 - 札 - 弼 - 酋 - 镳 - 萦 - 泾 - 挞 - 钾 - 讷 - 圃 - 舶 - 穹 - 戾 - 汴 - 锂 - 昀 - 镀 - 眺 - 捺 - 猕 - 阚 - 骋 - 悸 - 蜚 - 咩 - 讥 - 篆 - 鸠 - 哐 - 锚 - 幢 - 翱 - 螳 - 徇 - 踞 - 蔗 - 蔼 - 漉 - 衲 - N - 漳 - 枭 - 漾 - 歆 - 烬 - 曳 - 岌 - 孚 - 戛 - 呲 - 箫 - 娓 - 桨 - 涓 - 獭 - 芃 - 摒 - 戍 - 踝 - 轱 - 沱 - 锢 - 堰 - 抨 - 昙 - 鹌 - 蔻 - 迸 - 泯 - 龈 - 痔 - 骛 - 淄 - 泵 - 烯 - 蔫 - F - 胥 - 忱 - 纫 - 搪 - 茎 - 暨 - 泞 - 踵 - 璞 - 佗 - 荃 - 鬓 - 蚣 - 罔 - 臆 - 贻 - 橇 - 麓 - 槌 - 琥 - I - 纥 - 薅 - 樵 - 苓 - 熨 - 钨 - 骞 - 诣 - 涤 - 踊 - 醛 - 碴 - 蹴 - 缤 - 赊 - 岖 - 戊 - 禺 - 坯 - 戟 - 楂 - 隅 - 酶 - 邃 - 蛀 - 皎 - 炯 - 垣 - 锹 - 镰 - 夙 - 甬 - 叵 - 茁 - 珞 - 妲 - 涸 - 兀 - 嘤 - 谙 - 噗 - 榔 - 稣 - 剽 - 奚 - 啕 - 袅 - 讧 - 钠 - 怄 - 晤 - 肛 - 氰 - 迥 - 唰 - 诩 - 籁 - 砒 - 谩 - 诟 - 斓 - 泷 - 幡 - 爻 - 痫 - 眈 - 漕 - 惘 - 挎 - 噶 - 喱 - 氯 - U - 跆 - 嗤 - 锏 - 睽 - 缮 - 蟋 - 蠕 - 扪 - 狞 - 飒 - 吮 - 弋 - 奘 - 蟠 - 梆 - 拈 - 帧 - 蟀 - 胯 - 掳 - 蝈 - 帼 - 瞰 - 嵇 - 阉 - 篝 - 笆 - 亘 - L - 喔 - 愕 - 谚 - 轶 - 岱 - 丕 - 婕 - 羌 - 毡 - 呻 - 鼾 - 蜥 - 偌 - 庵 - 敝 - 蛐 - 麝 - 鞘 - 拮 - 涣 - 葆 - 雹 - 踌 - 蜈 - 馥 - 跻 - 狰 - 桀 - 毗 - 皿 - 缨 - 磐 - 啾 - 牒 - 缰 - 躇 - 踮 - 糠 - 嗲 - 刽 - 咫 - 殇 - 瀛 - 胱 - 炀 - 虱 - 砾 - 獒 - 涎 - 袤 - 鄱 - 瓯 - 锭 - 塾 - 蹉 - 珏 - 豺 - 锌 - 蜿 - 牦 - 瓒 - 莆 - 蜴 - 氮 - 跎 - 咛 - 骜 - 郸 - 搐 - 堑 - 涞 - 寰 - 跛 - 鸵 - 毂 - 妩 - 铤 - 薏 - 烩 - 遐 - 煦 - 仃 - 髅 - 酮 - 榷 - 腋 - 珩 - 臃 - 愫 - 蜒 - 荼 - 侬 - 淬 - 婵 - 偻 - 焯 - 骊 - 恻 - 濮 - 泱 - 庖 - 惴 - 鲫 - 硌 - 肓 - 芪 - 礴 - 磺 - 腱 - 冢 - 谪 - 骷 - 哏 - 腩 - 蓦 - 焙 - 桢 - 阖 - 睾 - 疱 - 郴 - 铿 - 铡 - 祉 - 跄 - 桦 - 椭 - 拄 - 皙 - 膈 - 裱 - 髋 - 伢 - 罹 - 鳍 - 赝 - 嬴 - 痤 - 藿 - 镐 - 铎 - 瘠 - 簌 - 杳 - 铢 - 阡 - 忤 - 舀 - 悻 - 媲 - 茗 - 湍 - 舫 - 瘙 - 瞟 - 擞 - 荀 - 刍 - J - 潍 - 莴 - 斛 - 郦 - 栩 - 绾 - 蕙 - 黜 - 湄 - 藓 - 躏 - 锱 - 捻 - 佼 - 砝 - E - 罡 - 忻 - 鹜 - 滟 - 傥 - 蛳 - W - 铀 - 魇 - 觎 - 蹂 - 佞 - 诃 - 灞 - 镣 - 痱 - 侏 - 峦 - 榛 - 饽 - 龋 - 嗔 - 芍 - 椿 - 璎 - 渥 - 蟾 - 骰 - 吠 - 挛 - 倜 - 鳝 - 糜 - 噢 - 黝 - 藐 - 绡 - 掣 - 鳗 - 璜 - 犷 - 痉 - 膺 - 罄 - 阄 - 纨 - 纭 - 彗 - 嵘 - 埠 - 潢 - 桔 - 耷 - 逵 - 诓 - 怵 - 蚤 - 苯 - 邈 - 谑 - 颌 - 珐 - 踱 - 髻 - 倏 - 啷 - 篑 - 冗 - 蹶 - 荥 - 涧 - 镂 - 踉 - 呷 - 衢 - 荟 - 箴 - 桧 - 恿 - 坳 - 瑙 - 珅 - 莅 - 膘 - 宥 - 氟 - 秆 - 诙 - 蹑 - 茴 - 翳 - 渚 - H - 唁 - 诿 - 窈 - 窕 - 膻 - 荨 - 蛔 - 筵 - 钛 - 獾 - 琏 - 箩 - 栀 - 隼 - 煸 - 罂 - 蛎 - 咂 - 谗 - 颦 - 佝 - 苣 - 搡 - 仄 - 垠 - 濂 - 泗 - 亟 - 蔺 - 蛆 - 霏 - 榈 - 裟 - 瑁 - 酚 - 蝼 - 怆 - 犄 - 沣 - 揖 - 斡 - 刎 - 鲟 - 峒 - 瞭 - 晁 - 袈 - 蓟 - 镁 - 骥 - 掸 - 玳 - 娑 - 馀 - 跚 - 槃 - 缄 - 猢 - 粕 - 隍 - 佃 - 獗 - 唢 - 菏 - 酰 - 腚 - 笈 - 哙 - 孢 - 飕 - 嘹 - 茱 - 蹒 - 殓 - 柩 - 谀 - 姣 - 戌 - 柑 - 粼 - 淅 - 啧 - 盅 - 鼬 - 啜 - 绉 - 咻 - 锲 - 铆 - Y - 螨 - 茯 - 憩 - 臼 - 谄 - 讴 - 濠 - 雎 - 噻 - 淦 - 懋 - 尕 - 氦 - 褛 - 颉 - 喆 - 铬 - 褴 - 燮 - 銮 - 侗 - 蹙 - 煜 - 邺 - 锃 - 麋 - 矗 - 娆 - 匐 - 噌 - 潸 - 碘 - 浔 - 檄 - 皈 - 铂 - 遨 - 炜 - 曜 - 饴 - 舷 - 胫 - 叟 - 祎 - 沅 - 潺 - 楣 - 埂 - 瞠 - 幔 - 稞 - 抻 - 匝 - 幄 - 殒 - 瑭 - 袂 - 囫 - 瓴 - 攫 - 鲈 - 箔 - 哝 - 馗 - 蜍 - 痧 - 脘 - 姘 - 苒 - 缢 - 觞 - 蛹 - 饬 - 胄 - 筏 - 鸾 - 儆 - 痿 - 矬 - 酊 - 纾 - 铖 - 荏 - 掬 - 膑 - 贮 - 觊 - 囵 - 泓 - 搔 - 汞 - 蚩 - 婀 - 谧 - 恣 - 霎 - 饕 - 赅 - 鲶 - 梏 - 獠 - 俶 - 龛 - 桅 - 鹄 - 旌 - 鲲 - 姒 - 蠡 - 繇 - 祜 - 诨 - 汩 - 觥 - 孀 - R - 谥 - 蕨 - 祐 - 榭 - 皑 - 纂 - 獐 - 覃 - 痂 - 孑 - 砧 - 圩 - 桎 - 啵 - 葚 - 嗫 - 浃 - 荠 - 阈 - 遴 - 枇 - 狒 - 秸 - 筠 - 硒 - 卞 - 玷 - 杈 - 狲 - 忿 - 俎 - 拚 - 颍 - 睢 - 颧 - 滦 - 霭 - 雉 - 毽 - 蓑 - 歙 - 鳃 - 鹬 - 墉 - 楔 - 舐 - 绔 - 弭 - 馏 - 挝 - 奂 - 嘭 - 忪 - 箕 - 诌 - 谒 - 颚 - 滂 - 醍 - 洵 - 鹫 - 虢 - 苋 - 玥 - 臾 - 蹩 - Z - 杷 - 痍 - 酉 - 疸 - 鄢 - 垩 - 烷 - 湮 - 钎 - 樽 - 旮 - 葭 - 邬 - 缱 - 糍 - 亳 - 咦 - 苷 - 伉 - 隽 - 伫 - 聒 - 匍 - 飚 - 桠 - 睑 - 脍 - 焘 - 谶 - 赳 - 萸 - 讣 - 疽 - 臧 - 巽 - 毓 - 鸢 - 纰 - 啐 - 噙 - 舛 - 敕 - 醐 - 痢 - 嚯 - 婺 - 勖 - 岷 - 溧 - 骅 - 犸 - 麾 - 嗟 - 诘 - 懑 - 貔 - 貅 - 啉 - 崂 - 鸩 - 镭 - 绻 - 逑 - 煨 - 褓 - 姝 - 藜 - 溟 - 儋 - 谡 - 欸 - 郢 - 荚 - 疝 - 遽 - 陂 - 饯 - 孪 - 巳 - 荞 - 泔 - 岿 - 谆 - 镍 - 洙 - 佻 - 盂 - 睨 - 铄 - 餮 - 酯 - 癣 - 浜 - 酩 - 焗 - 挲 - 鬃 - 鲠 - 仞 - 诰 - 谔 - 胛 - 萼 - 涿 - 莠 - 珲 - 旯 - 蜢 - 黍 - 肽 - 涪 - 髡 - 氙 - 陉 - 鬶 - 侩 - 糅 - 氤 - 芾 - 砷 - 鳕 - 钣 - 锒 - 闱 - 铵 - 镊 - 玑 - 砀 - 癜 - 颔 - 楹 - 螈 - 醚 - 琮 - 铩 - 笄 - 瓤 - 裨 - 潋 - 悌 - 聿 - 祢 - 郜 - 汨 - 棂 - 氲 - 嶙 - 聩 - 菅 - 腧 - 妯 - 龇 - 谲 - 耄 - 耋 - 囿 - 黢 - 揄 - 鲇 - 仝 - 個 - 忖 - 峋 - 揶 - 迩 - 诳 - 踽 - 骐 - 趸 - 颞 - 撺 - 辇 - 猷 - 铉 - 羸 - 徜 - 徉 - 襁 - 镌 - 孱 - 钒 - 铣 - 呤 - 遑 - 俾 - 皋 - 笕 - 笺 - 趔 - 趄 - 辋 - 鄞 - 殚 - 岫 - 跬 - 嘌 - 苻 - 绶 - 郅 - 瑄 - 萋 - 蘼 - 湎 - 砣 - 钜 - 捭 - 喹 - 恹 - 娌 - 螯 - 锰 - 祚 - 阆 - 矾 - 厩 - 龅 - 炝 - 黠 - 妁 - 濑 - 鞑 - 柒 - 滁 - 淖 - 鸬 - 鬣 - 晔 - 恸 - 赓 - 侉 - 溏 - 還 - 珮 - 鸨 - 嚅 - 笤 - 靥 - 啮 - 滓 - 俚 - 唳 - 苜 - 蓿 - 鹚 - 耦 - 莜 - 麸 - 粳 - 綦 - 盱 - 噤 - 遒 - 玟 - 魍 - 魉 - 旖 - 栉 - 锷 - 醴 - 泮 - 恁 - 甾 - 琬 - 丶 - 擤 - 桉 - 踟 - 誊 - 谟 - 澧 - 玖 - 畿 - 顼 - 兖 - 贰 - 茏 - 愎 - 豇 - 旎 - 蹰 - 蜃 - 屐 - 芡 - 鎏 - 癸 - 卅 - 枥 - 陟 - 琨 - 粝 - 掮 - 妪 - 姹 - 鏖 - 捯 - 钴 - 竽 - 恽 - 佰 - 胗 - 崧 - 磴 - 绺 - 鳏 - 槁 - 啖 - 矍 - 徕 - 忾 - 烃 - 喏 - 囹 - 圄 - 砭 - 邕 - 犍 - 鸮 - 剜 - 琚 - 瘢 - 魑 - 眦 - 锉 - 柘 - 痦 - 苕 - 牯 - 湟 - 厝 - 濛 - 赭 - 馐 - 蜇 - 嶂 - 贲 - 靼 - 臬 - 陲 - 潞 - 芩 - 腓 - 锨 - 寮 - 於 - 洇 - 愠 - 疖 - 鹧 - 鸪 - 茕 - 戕 - 壬 - 庾 - 莒 - 鹈 - 鹕 - 蠹 - 勐 - 疥 - 辎 - 耒 - 嗬 - 沔 - 睥 - 邙 - 篾 - 揩 - 肱 - 胍 - 磬 - 菟 - 豢 - 垓 - 唑 - 剌 - 阗 - 汜 - 佤 - 璟 - 麽 - 鬻 - 怏 - 蕤 - 茭 - 睚 - 淙 - 牍 - 榫 - 濯 - 稹 - 媾 - 悱 - 骶 - 蛭 - 鞣 - 椁 - 槊 - 擢 - 滢 - 佚 - 菡 - 沭 - 扦 - 镆 - 闾 - 缛 - 窠 - 疣 - 骠 - 俅 - 喙 - 蹼 - 硼 - 黩 - 腴 - 醮 - 邛 - 漯 - 豉 - 昶 - 刿 - 凇 - 鲅 - 舸 - 邳 - 俟 - 铰 - 翌 - 鳟 - 葳 - 寤 - 碣 - 秭 - 揠 - 熵 - 燧 - 靛 - 嵊 - 窨 - 鹗 - 芎 - 颢 - 佶 - 骢 - 圜 - 岘 - 燊 - 壅 - 畲 - 萘 - 煊 - 粲 - 倌 - 嗳 - 橹 - 椽 - 夔 - 鲑 - 赧 - 殄 - 沆 - 瀣 - 廪 - 舢 - 狍 - 挈 - 鹳 - 蚜 - 彧 - 羟 - 盥 - 镛 - 痈 - 蜊 - 皲 - 篦 - 喑 - 鲢 - 邡 - 蕲 - 僳 - 秣 - 蛉 - 讫 - 祗 - 鹩 - 撷 - 狎 - 郓 - 镕 - 榉 - 鲷 - 娣 - 淝 - 桷 - 镉 - 郫 - 髌 - 醪 - 僭 - 伧 - 嵬 - 苁 - 鹘 - 徭 - 歃 - 阕 - 鸱 - 貉 - 闳 - 坻 - 缙 - 媪 - 莨 - 菪 - 绦 - 恫 - 崆 - 喟 - 葺 - 逶 - 迤 - 骈 - 馔 - 苎 - 溘 - 垭 - 樯 - 诤 - 魃 - 搽 - 绀 - 蚴 - 澶 - 蒺 - 罘 - 眙 - 怍 - 來 - 荪 - 贶 - 亓 - 唻 - 畈 - 谌 - 芨 - 鲀 - 窸 - 窣 - 荜 - 楫 - 衮 - 趵 - 勰 - 髯 - 椴 - 缶 - 荸 - 秫 - 菖 - 甙 - 翦 - 椟 - 峤 - 掼 - 謇 - 洄 - 鄯 - 妗 - 浐 - 颀 - 箸 - 畦 - 痼 - 橛 - 鲛 - 蝾 - 愍 - 蒹 - 嘁 - 韪 - 劭 - 垅 - 暹 - 僮 - 稗 - 筚 - 煅 - 嬅 - 蜉 - 骝 - 碚 - 冼 - 吶 - 洹 - 郧 - 炴 - 绌 - 泠 - 呓 - 簋 - 溴 - 篁 - 仟 - 锟 - 羧 - 鹞 - 嘬 - 渌 - 笸 - 霰 - 稔 - 钡 - 齁 - 胪 - 衾 - 尻 - 洮 - 蘅 - 鲳 - 殂 - 腭 - 涔 - 蝣 - 孳 - 澍 - 钼 - 蒡 - 枳 - 渑 - 茼 - 馕 - 埙 - 珣 - 菘 - 邰 - 樾 - 铱 - 鳐 - 唔 - 篙 - 箜 - 篌 - 耆 - 啫 - 枞 - 杼 - 嵋 - 舂 - 娉 - 铨 - 崃 - 笳 - 邗 - 逡 - 僖 - 泫 - 疴 - 捱 - 醅 - 堇 - 肄 - 荇 - 虬 - 谯 - 酞 - 桡 - 艮 - 膦 - 艹 - 啻 - 滏 - 茆 - 圪 - 磡 - 麼 - 闼 - 郯 - 仡 - 氐 - 贽 - 俦 - 蓖 - 跹 - 帏 - 氅 - 趿 - 暝 - 缟 - 棹 - 滹 - 毖 - 蝰 - 虻 - 缫 - 诮 - 闩 - ○ - 潴 - 樨 - 瘘 - 襦 - 妤 - 郾 - 衿 - 鸷 - 旰 - 镢 - 傈 - 倨 - 笏 - 蒽 - 醌 - 驽 - 浠 - 涠 - 蓁 - 柞 - 钺 - 蜮 - 诂 - 徵 - 锆 - 椋 - 叻 - 廿 - 藁 - 乜 - 摈 - 這 - 茌 - 辊 - 岬 - 郇 - 杓 - 轳 - 酎 - 蟥 - 時 - 镒 - 蚬 - 澹 - 赟 - 後 - 怿 - 箐 - 囍 - 揆 - 蹁 - 鬄 - 苫 - 蕖 - 卺 - 辔 - 偈 - 俳 - 吲 - 哚 - 瘆 - 蕞 - 笞 - 氩 - 嫘 - 墁 - 帔 - 褡 - 裢 - 乩 - 褊 - 颏 - 喒 - 錾 - 皌 - 戗 - 唪 - 啭 - 伥 - 茔 - 斫 - 齉 - 仵 - 赉 - 吡 - 啶 - 蹇 - 螅 - 汊 - 湓 - 凫 - 珙 - 腈 - 洌 - Ω - 憷 - 跶 - 抔 - 濞 - 崤 - 殍 - 浥 - 铳 - 酽 - 馑 - 髂 - 隗 - 韫 - 晷 - 诒 - 埭 - 鹪 - 蕻 - 昃 - 瓠 - 萁 - 癔 - 怩 - 疳 - 跖 - 疔 - 簟 - 汆 - 疠 - 卟 - 墒 - 穰 - 铍 - 珥 - 钤 - 隻 - 樓 - 墎 - 鳜 - 沒 - 岀 - 杪 - 単 - 鲧 - 呋 - 彀 - 祇 - 豸 - 胴 - 唷 - 丨 - 燚 - 麴 - 觇 - 缑 - 橐 - 蚡 - 朊 - 俣 - 垡 - <sos/eos> init: null input_size: null ctc_conf: ignore_nan_grad: true model_conf: ctc_weight: 0.3 lsm_weight: 0.1 length_normalized_loss: false use_preprocessor: true use_preprocessor_valid: false token_type: char bpemodel: null non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_utt_prefix: null rir_apply_prob: 1.0 noise_scp: null noise_utt_prefix: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: default frontend_conf: fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 30 num_freq_mask: 2 apply_time_mask: true time_mask_width_range: - 0 - 40 num_time_mask: 2 normalize: global_mvn normalize_conf: stats_file: exp/asr_stats_raw_zh_char/train/feats_stats.npz preencoder: null preencoder_conf: {} encoder: conformer encoder_conf: output_size: 512 attention_heads: 8 linear_units: 2048 num_blocks: 12 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.0 input_layer: conv2d normalize_before: true rel_pos_type: latest pos_enc_layer_type: rel_pos selfattention_layer_type: rel_selfattn activation_type: swish macaron_style: true use_cnn_module: true cnn_module_kernel: 15 postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: attention_heads: 8 linear_units: 2048 num_blocks: 6 dropout_rate: 0.1 positional_dropout_rate: 0.1 self_attention_dropout_rate: 0.0 src_attention_dropout_rate: 0.0 required: - output_dir - token_list version: 0.10.2a1 distributed: true ``` </details> ## LM config <details><summary>expand</summary> ``` NONE ``` </details>
Tuana/eigenfaces-sklearn-lfw
Tuana
2021-10-27T01:53:23Z
0
1
null
[ "joblib", "region:us" ]
null
2022-03-02T23:29:05Z
# Model to Recognize Faces using eigenfaces and scikit-learn Simple model that was trained on a preprocessed excerpt of the “Labeled Faces in the Wild”, aka [LFW](http://vis-www.cs.umass.edu/lfw/) This demo was taken from [Scikit-learn](https://scikit-learn.org/stable/auto_examples/applications/plot_face_recognition.html) The dataset includes 7 classes (individuals): ![Eigenfaces](https://duchesnay.github.io/pystatsml/_images/sphx_glr_ml_lab_face_recognition_001.png)
chandank/bart-base-finetuned-kagglenews-entityfiltering
chandank
2021-10-27T01:06:10Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-base-finetuned-kagglenews-entityfiltering results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-base-finetuned-kagglenews-entityfiltering This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5703 - Rouge1: 28.2719 - Rouge2: 15.6883 - Rougel: 24.0674 - Rougelsum: 25.616 - Gen Len: 20.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.9187 | 1.0 | 863 | 1.5703 | 28.2719 | 15.6883 | 24.0674 | 25.616 | 20.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu102 - Datasets 1.14.0 - Tokenizers 0.10.3
pritoms/gpt2-finetuned-python2
pritoms
2021-10-26T23:15:08Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2-finetuned-python2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-finetuned-python2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9454 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 25 | 2.0135 | | No log | 2.0 | 50 | 1.9618 | | No log | 3.0 | 75 | 1.9454 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
chaitanya97/german_pretrained
chaitanya97
2021-10-26T13:35:37Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: german_pretrained results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # german_pretrained This model is a fine-tuned version of [flozi00/wav2vec-xlsr-german](https://huggingface.co/flozi00/wav2vec-xlsr-german) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.9812 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 12.5229 | 5.0 | 5 | 12.9520 | 1.0 | | 4.3782 | 10.0 | 10 | 5.5689 | 1.0 | | 2.56 | 15.0 | 15 | 4.8410 | 1.0 | | 2.2895 | 20.0 | 20 | 4.0380 | 1.0 | | 1.872 | 25.0 | 25 | 3.9558 | 1.0 | | 1.6992 | 30.0 | 30 | 3.9812 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu102 - Datasets 1.13.3 - Tokenizers 0.10.3
chaitanya97/german_trained
chaitanya97
2021-10-26T12:37:19Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: german_trained results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # german_trained This model is a fine-tuned version of [flozi00/wav2vec-xlsr-german](https://huggingface.co/flozi00/wav2vec-xlsr-german) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.9367 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 12.0352 | 5.0 | 5 | 12.6165 | 1.0 | | 4.0249 | 10.0 | 10 | 6.6453 | 1.0 | | 2.6661 | 15.0 | 15 | 5.7873 | 1.0 | | 2.4123 | 20.0 | 20 | 4.3250 | 1.0 | | 1.9481 | 25.0 | 25 | 3.9899 | 1.0 | | 1.7533 | 30.0 | 30 | 3.9367 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu102 - Datasets 1.13.3 - Tokenizers 0.10.3
Jihyun22/bert-base-finetuned-nli
Jihyun22
2021-10-26T11:07:39Z
17
3
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "dataset:klue", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- tags: - generated_from_trainer datasets: - klue metrics: - accuracy model_index: - name: bert-base-finetuned-nli results: - task: name: Text Classification type: text-classification dataset: name: klue type: klue args: nli metric: name: Accuracy type: accuracy value: 0.756 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-finetuned-nli This model is a fine-tuned version of [klue/bert-base](https://huggingface.co/klue/bert-base) on the klue dataset. It achieves the following results on the evaluation set: - Loss: 0.1357 - Accuracy: 0.756 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 196 | 0.7357 | 0.156 | | No log | 2.0 | 392 | 0.5952 | 0.0993 | | 0.543 | 3.0 | 588 | 0.5630 | 0.099 | | 0.543 | 4.0 | 784 | 0.5670 | 0.079 | | 0.543 | 5.0 | 980 | 0.5795 | 0.078 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
AyushPJ/ai-club-inductions-21-nlp-ELECTRA-base-squad
AyushPJ
2021-10-26T10:41:20Z
7
0
transformers
[ "transformers", "pytorch", "electra", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:04Z
--- tags: - generated_from_trainer model-index: - name: ai-club-inductions-21-nlp-ELECTRA-base-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ai-club-inductions-21-nlp-ELECTRA-base-squad This model is the deepset/electra-base-squad2 pre-trained model trained on data from AI Inductions 21 NLP competition (https://www.kaggle.com/c/ai-inductions-21-nlp) for extractive QA. ## Model description More information needed ## Intended uses & limitations AI Inductions 21 NLP competition ## Training and evaluation data AI Inductions 21 NLP competition data ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - max_length = 512 - doc_stride = 384 - learning_rate: 2e-05 - weight_decay=0.01 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Framework versions - Transformers 4.11.3 - Pytorch 1.7.1+cpu - Datasets 1.14.0 - Tokenizers 0.10.3
mujerry/bert-base-uncased-finetuned-QnA-v1
mujerry
2021-10-26T09:19:02Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-uncased-finetuned-QnA-v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-QnA-v1 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.7610 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 39 | 3.3668 | | No log | 2.0 | 78 | 3.2134 | | No log | 3.0 | 117 | 3.1685 | | No log | 4.0 | 156 | 3.1042 | | No log | 5.0 | 195 | 3.1136 | | No log | 6.0 | 234 | 2.9051 | | No log | 7.0 | 273 | 2.9077 | | No log | 8.0 | 312 | 2.9774 | | No log | 9.0 | 351 | 2.9321 | | No log | 10.0 | 390 | 2.9501 | | No log | 11.0 | 429 | 2.8544 | | No log | 12.0 | 468 | 2.8761 | | 3.0255 | 13.0 | 507 | 2.8152 | | 3.0255 | 14.0 | 546 | 2.8046 | | 3.0255 | 15.0 | 585 | 2.6979 | | 3.0255 | 16.0 | 624 | 2.6379 | | 3.0255 | 17.0 | 663 | 2.7091 | | 3.0255 | 18.0 | 702 | 2.6914 | | 3.0255 | 19.0 | 741 | 2.7403 | | 3.0255 | 20.0 | 780 | 2.7479 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
owen99630/catexp2
owen99630
2021-10-26T04:58:10Z
3
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
{0: 'Anorexia', 1: 'Anxiety', 2: 'Bullying', 3: 'Care', 4: 'Creativity', 5: 'Culture', 6: 'Depression', 7: 'Friends', 8: 'Getting help', 9: 'Happiness', 10: 'Helping others', 11: 'Helping yourself', 12: 'Hope', 13: 'Learning', 14: 'Life Issues', 15: 'Mental Health', 16: 'Mental Health Matters', 17: 'Mental health awareness', 18: 'PTSD', 19: 'Positivity', 20: 'Resilience', 21: 'Self-care', 22: 'Sharing', 23: 'Support', 24: 'University'}
huggingtweets/theonion
huggingtweets
2021-10-26T04:42:42Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/theonion/1635223358201/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/875392068125769732/yrN-1k0Y_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">The Onion</div> <div style="text-align: center; font-size: 14px;">@theonion</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from The Onion. | Data | The Onion | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 2 | | Short tweets | 10 | | Tweets kept | 3238 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/tl5cqc3f/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @theonion's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1y8p1w9v) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1y8p1w9v/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/theonion') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
AndreLiu1225/t5-news
AndreLiu1225
2021-10-26T02:49:39Z
6
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
This is a pretrained model that was loaded from t5-base. It has been adapted and changed by changing the max_length and summary_length.
kornesh/xlm-roberta-base
kornesh
2021-10-26T01:25:22Z
146
1
transformers
[ "transformers", "tf", "xlm-roberta", "feature-extraction", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
Converted for Tensorflow ``` !pip install transformers sentencepiece from transformers import TFAutoModel, AutoTokenizer name = "xlm-roberta-base" model = TFAutoModel.from_pretrained(name, from_pt=True) tokenizer = AutoTokenizer.from_pretrained(name) model.save_pretrained("local-xlm-roberta-base") tokenizer.save_pretrained("local-xlm-roberta-base") ```
espnet/siddhana_fsc_asr_train_asr_hubert_transformer_adam_specaug_raw_en_word_valid.acc.ave_5best
espnet
2021-10-25T23:21:36Z
0
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:fsc", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- tags: - espnet - audio - automatic-speech-recognition language: en datasets: - fsc license: cc-by-4.0 --- ## ESPnet2 SLU pretrained model ### `siddhana/fsc_asr_train_asr_hubert_transformer_adam_specaug_raw_en_word_valid.acc.ave_5best` ♻️ Imported from https://zenodo.org/record/5590204 This model was trained by siddhana using fsc/asr1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
danielvasic/en_acnl_electra_pipeline
danielvasic
2021-10-25T18:45:15Z
4
0
spacy
[ "spacy", "token-classification", "en", "model-index", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- tags: - spacy - token-classification language: - en model-index: - name: en_acnl_electra_pipeline results: - task: name: POS type: token-classification metrics: - name: POS Accuracy type: accuracy value: 0.9769257272 - task: name: SENTER type: token-classification metrics: - name: SENTER Precision type: precision value: 0.9508884151 - name: SENTER Recall type: recall value: 0.94805839 - name: SENTER F Score type: f_score value: 0.9494712937 - task: name: UNLABELED_DEPENDENCIES type: token-classification metrics: - name: Unlabeled Dependencies Accuracy type: accuracy value: 0.9577103137 - task: name: LABELED_DEPENDENCIES type: token-classification metrics: - name: Labeled Dependencies Accuracy type: accuracy value: 0.9577103137 --- | Feature | Description | | --- | --- | | **Name** | `en_acnl_electra_pipeline` | | **Version** | `0.0.1` | | **spaCy** | `>=3.1.3,<3.2.0` | | **Default Pipeline** | `transformer`, `tagger`, `parser` | | **Components** | `transformer`, `tagger`, `parser` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | n/a | | **License** | GPL | | **Author** | Daniel Vasić() | ### Label Scheme <details> <summary>View label scheme (87 labels for 2 components)</summary> | Component | Labels | | --- | --- | | **`tagger`** | `$`, `''`, `,`, `-LRB-`, `-RRB-`, `.`, `:`, `ADD`, `AFX`, `CC`, `CD`, `DT`, `EX`, `FW`, `HYPH`, `IN`, `JJ`, `JJR`, `JJS`, `LS`, `MD`, `NFP`, `NN`, `NNP`, `NNPS`, `NNS`, `PDT`, `POS`, `PRP`, `PRP$`, `RB`, `RBR`, `RBS`, `RP`, `SYM`, `TO`, `UH`, `VB`, `VBD`, `VBG`, `VBN`, `VBP`, `VBZ`, `VERB`, `WDT`, `WP`, `WP$`, `WRB`, `XX`, ```` | | **`parser`** | `ROOT`, `acl`, `acomp`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `auxpass`, `case`, `cc`, `ccomp`, `compound`, `conj`, `dative`, `dep`, `det`, `dobj`, `intj`, `mark`, `meta`, `neg`, `nmod`, `npadvmod`, `nummod`, `parataxis`, `pcomp`, `pobj`, `poss`, `preconj`, `predet`, `prep`, `prt`, `punct`, `quantmod`, `relcl`, `xcomp` | </details> ### Accuracy | Type | Score | | --- | --- | | `TAG_ACC` | 97.69 | | `DEP_UAS` | 95.77 | | `DEP_LAS` | 94.52 | | `SENTS_P` | 95.09 | | `SENTS_R` | 94.81 | | `SENTS_F` | 94.95 | | `TRANSFORMER_LOSS` | 6123357.72 | | `TAGGER_LOSS` | 338995.26 | | `PARSER_LOSS` | 4101825.66 |
chaitanya97/custom_german
chaitanya97
2021-10-25T16:27:15Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: custom_german results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # custom_german This model is a fine-tuned version of [flozi00/wav2vec-xlsr-german](https://huggingface.co/flozi00/wav2vec-xlsr-german) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.6832 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 8.7718 | 5.0 | 5 | 8.5148 | 1.0 | | 3.7125 | 10.0 | 10 | 5.4304 | 1.0 | | 2.7679 | 15.0 | 15 | 5.0388 | 1.0 | | 2.0516 | 20.0 | 20 | 4.4628 | 1.0 | | 1.6702 | 25.0 | 25 | 4.5341 | 1.0 | | 1.515 | 30.0 | 30 | 4.6832 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu102 - Datasets 1.13.3 - Tokenizers 0.10.3
kwang2049/TSDAE-twitterpara
kwang2049
2021-10-25T16:18:44Z
4
1
transformers
[ "transformers", "pytorch", "bert", "feature-extraction", "arxiv:2104.06979", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
# kwang2049/TSDAE-twitterpara2nli_stsb This is a model from the paper ["TSDAE: Using Transformer-based Sequential Denoising Auto-Encoder for Unsupervised Sentence Embedding Learning"](https://arxiv.org/abs/2104.06979). This model was only trained with the TSDAE objective on twitterpara in an unsupervised manner. Training procedure of this model: 1. Initialized with [bert-base-uncased](https://huggingface.co/bert-base-uncased); 2. Unsupervised training on twitterpara with the TSDAE objective; The pooling method is CLS-pooling. ## Usage To use this model, an convenient way is through [SentenceTransformers](https://github.com/UKPLab/sentence-transformers). So please install it via: ```bash pip install sentence-transformers ``` And then load the model and use it to encode sentences: ```python from sentence_transformers import SentenceTransformer, models dataset = 'twitterpara' model_name_or_path = f'kwang2049/TSDAE-{dataset}' model = SentenceTransformer(model_name_or_path) model[1] = models.Pooling(model[0].get_word_embedding_dimension(), pooling_mode='cls') # Note this model uses CLS-pooling sentence_embeddings = model.encode(['This is the first sentence.', 'This is the second one.']) ``` ## Evaluation To evaluate the model against the datasets used in the paper, please install our evaluation toolkit [USEB](https://github.com/UKPLab/useb): ```bash pip install useb # Or git clone and pip install . python -m useb.downloading all # Download both training and evaluation data ``` And then do the evaluation: ```python from sentence_transformers import SentenceTransformer, models import torch from useb import run_on dataset = 'twitterpara' model_name_or_path = f'kwang2049/TSDAE-{dataset}' model = SentenceTransformer(model_name_or_path) model[1] = models.Pooling(model[0].get_word_embedding_dimension(), pooling_mode='cls') # Note this model uses CLS-pooling @torch.no_grad() def semb_fn(sentences) -> torch.Tensor: return torch.Tensor(model.encode(sentences, show_progress_bar=False)) result = run_on( dataset, semb_fn=semb_fn, eval_type='test', data_eval_path='data-eval' ) ``` ## Training Please refer to [the page of TSDAE training](https://github.com/UKPLab/sentence-transformers/tree/master/examples/unsupervised_learning/TSDAE) in SentenceTransformers. ## Cite & Authors If you use the code for evaluation, feel free to cite our publication [TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning](https://arxiv.org/abs/2104.06979): ```bibtex @article{wang-2021-TSDAE, title = "TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning", author = "Wang, Kexin and Reimers, Nils and Gurevych, Iryna", journal= "arXiv preprint arXiv:2104.06979", month = "4", year = "2021", url = "https://arxiv.org/abs/2104.06979", } ```
kwang2049/TSDAE-cqadupstack
kwang2049
2021-10-25T16:18:29Z
5
0
transformers
[ "transformers", "pytorch", "bert", "feature-extraction", "arxiv:2104.06979", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
# kwang2049/TSDAE-cqadupstack2nli_stsb This is a model from the paper ["TSDAE: Using Transformer-based Sequential Denoising Auto-Encoder for Unsupervised Sentence Embedding Learning"](https://arxiv.org/abs/2104.06979). This model was only trained with the TSDAE objective on cqadupstack in an unsupervised manner. Training procedure of this model: 1. Initialized with [bert-base-uncased](https://huggingface.co/bert-base-uncased); 2. Unsupervised training on cqadupstack with the TSDAE objective; The pooling method is CLS-pooling. ## Usage To use this model, an convenient way is through [SentenceTransformers](https://github.com/UKPLab/sentence-transformers). So please install it via: ```bash pip install sentence-transformers ``` And then load the model and use it to encode sentences: ```python from sentence_transformers import SentenceTransformer, models dataset = 'cqadupstack' model_name_or_path = f'kwang2049/TSDAE-{dataset}' model = SentenceTransformer(model_name_or_path) model[1] = models.Pooling(model[0].get_word_embedding_dimension(), pooling_mode='cls') # Note this model uses CLS-pooling sentence_embeddings = model.encode(['This is the first sentence.', 'This is the second one.']) ``` ## Evaluation To evaluate the model against the datasets used in the paper, please install our evaluation toolkit [USEB](https://github.com/UKPLab/useb): ```bash pip install useb # Or git clone and pip install . python -m useb.downloading all # Download both training and evaluation data ``` And then do the evaluation: ```python from sentence_transformers import SentenceTransformer, models import torch from useb import run_on dataset = 'cqadupstack' model_name_or_path = f'kwang2049/TSDAE-{dataset}' model = SentenceTransformer(model_name_or_path) model[1] = models.Pooling(model[0].get_word_embedding_dimension(), pooling_mode='cls') # Note this model uses CLS-pooling @torch.no_grad() def semb_fn(sentences) -> torch.Tensor: return torch.Tensor(model.encode(sentences, show_progress_bar=False)) result = run_on( dataset, semb_fn=semb_fn, eval_type='test', data_eval_path='data-eval' ) ``` ## Training Please refer to [the page of TSDAE training](https://github.com/UKPLab/sentence-transformers/tree/master/examples/unsupervised_learning/TSDAE) in SentenceTransformers. ## Cite & Authors If you use the code for evaluation, feel free to cite our publication [TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning](https://arxiv.org/abs/2104.06979): ```bibtex @article{wang-2021-TSDAE, title = "TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning", author = "Wang, Kexin and Reimers, Nils and Gurevych, Iryna", journal= "arXiv preprint arXiv:2104.06979", month = "4", year = "2021", url = "https://arxiv.org/abs/2104.06979", } ```
patrickvonplaten/wav2vec2-base-repro-timit
patrickvonplaten
2021-10-25T16:17:50Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "timit_asr", "generated_from_trainer", "dataset:timit_asr", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- tags: - automatic-speech-recognition - timit_asr - generated_from_trainer datasets: - timit_asr model-index: - name: wav2vec2-base-repro-timit results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-repro-timit This model is a fine-tuned version of [patrickvonplaten/wav2vec2-base-repro-960h-libri-85k-steps](https://huggingface.co/patrickvonplaten/wav2vec2-base-repro-960h-libri-85k-steps) on the TIMIT_ASR - NA dataset. It achieves the following results on the evaluation set: - Loss: 0.8562 - Wer: 0.5484 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.9793 | 0.69 | 100 | 5.4532 | 1.0 | | 2.9066 | 1.38 | 200 | 2.9070 | 1.0 | | 2.2562 | 2.07 | 300 | 2.0323 | 1.0 | | 1.5273 | 2.76 | 400 | 1.1510 | 0.8001 | | 1.1085 | 3.45 | 500 | 0.9521 | 0.7053 | | 0.813 | 4.14 | 600 | 0.8617 | 0.6702 | | 0.8434 | 4.83 | 700 | 0.8068 | 0.6393 | | 0.9631 | 5.52 | 800 | 0.7863 | 0.6248 | | 0.707 | 6.21 | 900 | 0.7476 | 0.5973 | | 0.5568 | 6.9 | 1000 | 0.7350 | 0.5911 | | 0.6171 | 7.59 | 1100 | 0.7171 | 0.5841 | | 0.7011 | 8.28 | 1200 | 0.7318 | 0.5798 | | 0.5546 | 8.97 | 1300 | 0.7447 | 0.5767 | | 0.4278 | 9.66 | 1400 | 0.7481 | 0.5650 | | 0.3576 | 10.34 | 1500 | 0.7443 | 0.5713 | | 0.5506 | 11.03 | 1600 | 0.7574 | 0.5664 | | 0.4127 | 11.72 | 1700 | 0.8043 | 0.5631 | | 0.3251 | 12.41 | 1800 | 0.7738 | 0.5550 | | 0.3119 | 13.1 | 1900 | 0.7829 | 0.5516 | | 0.4371 | 13.79 | 2000 | 0.8025 | 0.5556 | | 0.3772 | 14.48 | 2100 | 0.8451 | 0.5559 | | 0.2942 | 15.17 | 2200 | 0.8300 | 0.5556 | | 0.2503 | 15.86 | 2300 | 0.8417 | 0.5541 | | 0.3671 | 16.55 | 2400 | 0.8568 | 0.5528 | | 0.3867 | 17.24 | 2500 | 0.8521 | 0.5510 | | 0.2614 | 17.93 | 2600 | 0.8479 | 0.5523 | | 0.2441 | 18.62 | 2700 | 0.8558 | 0.5494 | | 0.3059 | 19.31 | 2800 | 0.8553 | 0.5474 | | 0.3734 | 20.0 | 2900 | 0.8562 | 0.5484 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.8.1 - Datasets 1.14.1.dev0 - Tokenizers 0.10.3
kwang2049/TSDAE-cqadupstack2nli_stsb
kwang2049
2021-10-25T16:14:19Z
5
0
transformers
[ "transformers", "pytorch", "bert", "feature-extraction", "arxiv:2104.06979", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
# kwang2049/TSDAE-cqadupstack2nli_stsb This is a model from the paper ["TSDAE: Using Transformer-based Sequential Denoising Auto-Encoder for Unsupervised Sentence Embedding Learning"](https://arxiv.org/abs/2104.06979). This model adapts the knowledge from the NLI and STSb data to the specific domain cqadupstack. Training procedure of this model: 1. Initialized with [bert-base-uncased](https://huggingface.co/bert-base-uncased); 2. Unsupervised training on cqadupstack with the TSDAE objective; 3. Supervised training on the NLI data with cross-entropy loss; 4. Supervised training on the STSb data with MSE loss. The pooling method is CLS-pooling. ## Usage To use this model, an convenient way is through [SentenceTransformers](https://github.com/UKPLab/sentence-transformers). So please install it via: ```bash pip install sentence-transformers ``` And then load the model and use it to encode sentences: ```python from sentence_transformers import SentenceTransformer, models dataset = 'cqadupstack' model_name_or_path = f'kwang2049/TSDAE-{dataset}2nli_stsb' model = SentenceTransformer(model_name_or_path) model[1] = models.Pooling(model[0].get_word_embedding_dimension(), pooling_mode='cls') # Note this model uses CLS-pooling sentence_embeddings = model.encode(['This is the first sentence.', 'This is the second one.']) ``` ## Evaluation To evaluate the model against the datasets used in the paper, please install our evaluation toolkit [USEB](https://github.com/UKPLab/useb): ```bash pip install useb # Or git clone and pip install . python -m useb.downloading all # Download both training and evaluation data ``` And then do the evaluation: ```python from sentence_transformers import SentenceTransformer, models import torch from useb import run_on dataset = 'cqadupstack' model_name_or_path = f'kwang2049/TSDAE-{dataset}2nli_stsb' model = SentenceTransformer(model_name_or_path) model[1] = models.Pooling(model[0].get_word_embedding_dimension(), pooling_mode='cls') # Note this model uses CLS-pooling @torch.no_grad() def semb_fn(sentences) -> torch.Tensor: return torch.Tensor(model.encode(sentences, show_progress_bar=False)) result = run_on( dataset, semb_fn=semb_fn, eval_type='test', data_eval_path='data-eval' ) ``` ## Training Please refer to [the page of TSDAE training](https://github.com/UKPLab/sentence-transformers/tree/master/examples/unsupervised_learning/TSDAE) in SentenceTransformers. ## Cite & Authors If you use the code for evaluation, feel free to cite our publication [TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning](https://arxiv.org/abs/2104.06979): ```bibtex @article{wang-2021-TSDAE, title = "TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning", author = "Wang, Kexin and Reimers, Nils and Gurevych, Iryna", journal= "arXiv preprint arXiv:2104.06979", month = "4", year = "2021", url = "https://arxiv.org/abs/2104.06979", } ```
kwang2049/TSDAE-askubuntu2nli_stsb
kwang2049
2021-10-25T16:13:34Z
5
0
transformers
[ "transformers", "pytorch", "bert", "feature-extraction", "arxiv:2104.06979", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
# kwang2049/TSDAE-askubuntu2nli_stsb This is a model from the paper ["TSDAE: Using Transformer-based Sequential Denoising Auto-Encoder for Unsupervised Sentence Embedding Learning"](https://arxiv.org/abs/2104.06979). This model adapts the knowledge from the NLI and STSb data to the specific domain AskUbuntu. Training procedure of this model: 1. Initialized with [bert-base-uncased](https://huggingface.co/bert-base-uncased); 2. Unsupervised training on AskUbuntu with the TSDAE objective; 3. Supervised training on the NLI data with cross-entropy loss; 4. Supervised training on the STSb data with MSE loss. The pooling method is CLS-pooling. ## Usage To use this model, an convenient way is through [SentenceTransformers](https://github.com/UKPLab/sentence-transformers). So please install it via: ```bash pip install sentence-transformers ``` And then load the model and use it to encode sentences: ```python from sentence_transformers import SentenceTransformer, models dataset = 'askubuntu' model_name_or_path = f'kwang2049/TSDAE-{dataset}2nli_stsb' model = SentenceTransformer(model_name_or_path) model[1] = models.Pooling(model[0].get_word_embedding_dimension(), pooling_mode='cls') # Note this model uses CLS-pooling sentence_embeddings = model.encode(['This is the first sentence.', 'This is the second one.']) ``` ## Evaluation To evaluate the model against the datasets used in the paper, please install our evaluation toolkit [USEB](https://github.com/UKPLab/useb): ```bash pip install useb # Or git clone and pip install . python -m useb.downloading all # Download both training and evaluation data ``` And then do the evaluation: ```python from sentence_transformers import SentenceTransformer, models import torch from useb import run_on dataset = 'askubuntu' model_name_or_path = f'kwang2049/TSDAE-{dataset}2nli_stsb' model = SentenceTransformer(model_name_or_path) model[1] = models.Pooling(model[0].get_word_embedding_dimension(), pooling_mode='cls') # Note this model uses CLS-pooling @torch.no_grad() def semb_fn(sentences) -> torch.Tensor: return torch.Tensor(model.encode(sentences, show_progress_bar=False)) result = run_on( dataset, semb_fn=semb_fn, eval_type='test', data_eval_path='data-eval' ) ``` ## Training Please refer to [the page of TSDAE training](https://github.com/UKPLab/sentence-transformers/tree/master/examples/unsupervised_learning/TSDAE) in SentenceTransformers. ## Cite & Authors If you use the code for evaluation, feel free to cite our publication [TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning](https://arxiv.org/abs/2104.06979): ```bibtex @article{wang-2021-TSDAE, title = "TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning", author = "Wang, Kexin and Reimers, Nils and Gurevych, Iryna", journal= "arXiv preprint arXiv:2104.06979", month = "4", year = "2021", url = "https://arxiv.org/abs/2104.06979", } ```
napoler/bart-chinese-6-960-words-pkuseg
napoler
2021-10-25T15:05:51Z
6
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
# 使用 这个模型是在uer/bart-chinese-6-960-cluecorpussmall基础上训练的,数据量不是很大,但是修改了默认分词。 使用pkuseg分词,禁用BertTokenizer的do_basic_tokenize分词,不禁用do_basic_tokenize的话会把正常词汇按照逐字分词,禁用后可以导入自己的分词方案。 pip install git+https://github.com/napoler/tkit-AutoTokenizerPosition ```python import pkuseg from tkitAutoTokenizerPosition.AutoPos import AutoPos seg = pkuseg.pkuseg(model_name='medicine') # 程序会自动下载所对应的细领域模型 tokenizer = BertTokenizer.from_pretrained("uer/chinese_roberta_L-2_H-128",do_basic_tokenize=False) ATP=AutoPos(seg,tokenizer) # 清理文本中的问题 ATP.getTokenize(text) ``` 分词结果如下 ``` ['他', '##们', '的', '伤', '##害', ',', '以', '##及', '陷', '##阱', '能', '##力', '的', '组', '##合', ',', '猎', '##人', '对', '##于', '任', '##何', '团', '##队', '都', '是', '最', '##好', '的', '拉', '##怪', '##者', '.'], 'cut': ['他们', '的', '伤害', ',', '以及', '陷阱', '能力', '的', '组合', ',', '猎人', '对于', '任何', '团队', '都', '是', '最好', '的', '拉怪者', '.'] ``` https://www.kaggle.com/terrychanorg/napolerbartchinese6960wordspkuseg https://www.kaggle.com/terrychanorg/buliddataforbert-7803feff2 https://www.kaggle.com/terrychanorg/bart-notebook8wewew6eeb0f8af https://www.kaggle.com/terrychanorg/fork-of-bart-notebook8wewew6eeb0f8af/data?scriptVersionId=77962540
teacookies/autonlp-more_fine_tune_24465520-26265908
teacookies
2021-10-25T09:36:35Z
3
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "question-answering", "autonlp", "unk", "dataset:teacookies/autonlp-data-more_fine_tune_24465520", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - autonlp - question-answering language: unk widget: - text: "Who loves AutoNLP?" context: "Everyone loves AutoNLP" datasets: - teacookies/autonlp-data-more_fine_tune_24465520 co2_eq_emissions: 96.32087452115675 --- # Model Trained Using AutoNLP - Problem type: Extractive Question Answering - Model ID: 26265908 - CO2 Emissions (in grams): 96.32087452115675 ## Validation Metrics - Loss: 0.5696008801460266 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/teacookies/autonlp-more_fine_tune_24465520-26265908 ``` Or Python API: ``` import torch from transformers import AutoModelForQuestionAnswering, AutoTokenizer model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265908", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265908", use_auth_token=True) from transformers import BertTokenizer, BertForQuestionAnswering question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP" inputs = tokenizer(question, text, return_tensors='pt') start_positions = torch.tensor([1]) end_positions = torch.tensor([3]) outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions) loss = outputs.loss start_scores = outputs.start_logits end_scores = outputs.end_logits ```
teacookies/autonlp-more_fine_tune_24465520-26265911
teacookies
2021-10-25T09:35:36Z
4
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "question-answering", "autonlp", "unk", "dataset:teacookies/autonlp-data-more_fine_tune_24465520", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - autonlp - question-answering language: unk widget: - text: "Who loves AutoNLP?" context: "Everyone loves AutoNLP" datasets: - teacookies/autonlp-data-more_fine_tune_24465520 co2_eq_emissions: 97.58591836686978 --- # Model Trained Using AutoNLP - Problem type: Extractive Question Answering - Model ID: 26265911 - CO2 Emissions (in grams): 97.58591836686978 ## Validation Metrics - Loss: 6.2383246421813965 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/teacookies/autonlp-more_fine_tune_24465520-26265911 ``` Or Python API: ``` import torch from transformers import AutoModelForQuestionAnswering, AutoTokenizer model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265911", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265911", use_auth_token=True) from transformers import BertTokenizer, BertForQuestionAnswering question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP" inputs = tokenizer(question, text, return_tensors='pt') start_positions = torch.tensor([1]) end_positions = torch.tensor([3]) outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions) loss = outputs.loss start_scores = outputs.start_logits end_scores = outputs.end_logits ```
teacookies/autonlp-more_fine_tune_24465520-26265907
teacookies
2021-10-25T09:35:36Z
5
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "question-answering", "autonlp", "unk", "dataset:teacookies/autonlp-data-more_fine_tune_24465520", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - autonlp - question-answering language: unk widget: - text: "Who loves AutoNLP?" context: "Everyone loves AutoNLP" datasets: - teacookies/autonlp-data-more_fine_tune_24465520 co2_eq_emissions: 103.5636883689371 --- # Model Trained Using AutoNLP - Problem type: Extractive Question Answering - Model ID: 26265907 - CO2 Emissions (in grams): 103.5636883689371 ## Validation Metrics - Loss: 0.6072460412979126 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/teacookies/autonlp-more_fine_tune_24465520-26265907 ``` Or Python API: ``` import torch from transformers import AutoModelForQuestionAnswering, AutoTokenizer model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265907", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265907", use_auth_token=True) from transformers import BertTokenizer, BertForQuestionAnswering question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP" inputs = tokenizer(question, text, return_tensors='pt') start_positions = torch.tensor([1]) end_positions = torch.tensor([3]) outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions) loss = outputs.loss start_scores = outputs.start_logits end_scores = outputs.end_logits ```
teacookies/autonlp-more_fine_tune_24465520-26265905
teacookies
2021-10-25T09:32:48Z
4
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "question-answering", "autonlp", "unk", "dataset:teacookies/autonlp-data-more_fine_tune_24465520", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - autonlp - question-answering language: unk widget: - text: "Who loves AutoNLP?" context: "Everyone loves AutoNLP" datasets: - teacookies/autonlp-data-more_fine_tune_24465520 co2_eq_emissions: 103.35758036182682 --- # Model Trained Using AutoNLP - Problem type: Extractive Question Answering - Model ID: 26265905 - CO2 Emissions (in grams): 103.35758036182682 ## Validation Metrics - Loss: 0.5223112106323242 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/teacookies/autonlp-more_fine_tune_24465520-26265905 ``` Or Python API: ``` import torch from transformers import AutoModelForQuestionAnswering, AutoTokenizer model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265905", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265905", use_auth_token=True) from transformers import BertTokenizer, BertForQuestionAnswering question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP" inputs = tokenizer(question, text, return_tensors='pt') start_positions = torch.tensor([1]) end_positions = torch.tensor([3]) outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions) loss = outputs.loss start_scores = outputs.start_logits end_scores = outputs.end_logits ```
teacookies/autonlp-more_fine_tune_24465520-26265898
teacookies
2021-10-25T09:22:22Z
4
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "question-answering", "autonlp", "unk", "dataset:teacookies/autonlp-data-more_fine_tune_24465520", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - autonlp - question-answering language: unk widget: - text: "Who loves AutoNLP?" context: "Everyone loves AutoNLP" datasets: - teacookies/autonlp-data-more_fine_tune_24465520 co2_eq_emissions: 82.78379967029494 --- # Model Trained Using AutoNLP - Problem type: Extractive Question Answering - Model ID: 26265898 - CO2 Emissions (in grams): 82.78379967029494 ## Validation Metrics - Loss: 0.5732079148292542 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/teacookies/autonlp-more_fine_tune_24465520-26265898 ``` Or Python API: ``` import torch from transformers import AutoModelForQuestionAnswering, AutoTokenizer model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265898", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265898", use_auth_token=True) from transformers import BertTokenizer, BertForQuestionAnswering question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP" inputs = tokenizer(question, text, return_tensors='pt') start_positions = torch.tensor([1]) end_positions = torch.tensor([3]) outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions) loss = outputs.loss start_scores = outputs.start_logits end_scores = outputs.end_logits ```
teacookies/autonlp-more_fine_tune_24465520-26265902
teacookies
2021-10-25T09:22:00Z
4
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "question-answering", "autonlp", "unk", "dataset:teacookies/autonlp-data-more_fine_tune_24465520", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - autonlp - question-answering language: unk widget: - text: "Who loves AutoNLP?" context: "Everyone loves AutoNLP" datasets: - teacookies/autonlp-data-more_fine_tune_24465520 co2_eq_emissions: 83.78453848505326 --- # Model Trained Using AutoNLP - Problem type: Extractive Question Answering - Model ID: 26265902 - CO2 Emissions (in grams): 83.78453848505326 ## Validation Metrics - Loss: 0.5470030903816223 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/teacookies/autonlp-more_fine_tune_24465520-26265902 ``` Or Python API: ``` import torch from transformers import AutoModelForQuestionAnswering, AutoTokenizer model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265902", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265902", use_auth_token=True) from transformers import BertTokenizer, BertForQuestionAnswering question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP" inputs = tokenizer(question, text, return_tensors='pt') start_positions = torch.tensor([1]) end_positions = torch.tensor([3]) outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions) loss = outputs.loss start_scores = outputs.start_logits end_scores = outputs.end_logits ```
teacookies/autonlp-more_fine_tune_24465520-26265910
teacookies
2021-10-25T09:21:45Z
3
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "question-answering", "autonlp", "unk", "dataset:teacookies/autonlp-data-more_fine_tune_24465520", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - autonlp - question-answering language: unk widget: - text: "Who loves AutoNLP?" context: "Everyone loves AutoNLP" datasets: - teacookies/autonlp-data-more_fine_tune_24465520 co2_eq_emissions: 77.64468929470678 --- # Model Trained Using AutoNLP - Problem type: Extractive Question Answering - Model ID: 26265910 - CO2 Emissions (in grams): 77.64468929470678 ## Validation Metrics - Loss: 5.950643062591553 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/teacookies/autonlp-more_fine_tune_24465520-26265910 ``` Or Python API: ``` import torch from transformers import AutoModelForQuestionAnswering, AutoTokenizer model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265910", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265910", use_auth_token=True) from transformers import BertTokenizer, BertForQuestionAnswering question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP" inputs = tokenizer(question, text, return_tensors='pt') start_positions = torch.tensor([1]) end_positions = torch.tensor([3]) outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions) loss = outputs.loss start_scores = outputs.start_logits end_scores = outputs.end_logits ```
teacookies/autonlp-more_fine_tune_24465520-26265897
teacookies
2021-10-25T09:21:10Z
4
1
transformers
[ "transformers", "pytorch", "xlm-roberta", "question-answering", "autonlp", "unk", "dataset:teacookies/autonlp-data-more_fine_tune_24465520", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - autonlp - question-answering language: unk widget: - text: "Who loves AutoNLP?" context: "Everyone loves AutoNLP" datasets: - teacookies/autonlp-data-more_fine_tune_24465520 co2_eq_emissions: 81.7509252560808 --- # Model Trained Using AutoNLP - Problem type: Extractive Question Answering - Model ID: 26265897 - CO2 Emissions (in grams): 81.7509252560808 ## Validation Metrics - Loss: 0.5754176378250122 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/teacookies/autonlp-more_fine_tune_24465520-26265897 ``` Or Python API: ``` import torch from transformers import AutoModelForQuestionAnswering, AutoTokenizer model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265897", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265897", use_auth_token=True) from transformers import BertTokenizer, BertForQuestionAnswering question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP" inputs = tokenizer(question, text, return_tensors='pt') start_positions = torch.tensor([1]) end_positions = torch.tensor([3]) outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions) loss = outputs.loss start_scores = outputs.start_logits end_scores = outputs.end_logits ```
teacookies/autonlp-more_fine_tune_24465520-26265901
teacookies
2021-10-25T09:21:03Z
3
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "question-answering", "autonlp", "unk", "dataset:teacookies/autonlp-data-more_fine_tune_24465520", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - autonlp - question-answering language: unk widget: - text: "Who loves AutoNLP?" context: "Everyone loves AutoNLP" datasets: - teacookies/autonlp-data-more_fine_tune_24465520 co2_eq_emissions: 80.04360178242067 --- # Model Trained Using AutoNLP - Problem type: Extractive Question Answering - Model ID: 26265901 - CO2 Emissions (in grams): 80.04360178242067 ## Validation Metrics - Loss: 0.5551259517669678 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/teacookies/autonlp-more_fine_tune_24465520-26265901 ``` Or Python API: ``` import torch from transformers import AutoModelForQuestionAnswering, AutoTokenizer model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265901", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265901", use_auth_token=True) from transformers import BertTokenizer, BertForQuestionAnswering question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP" inputs = tokenizer(question, text, return_tensors='pt') start_positions = torch.tensor([1]) end_positions = torch.tensor([3]) outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions) loss = outputs.loss start_scores = outputs.start_logits end_scores = outputs.end_logits ```
teacookies/autonlp-more_fine_tune_24465520-26265909
teacookies
2021-10-25T09:20:12Z
5
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "question-answering", "autonlp", "unk", "dataset:teacookies/autonlp-data-more_fine_tune_24465520", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - autonlp - question-answering language: unk widget: - text: "Who loves AutoNLP?" context: "Everyone loves AutoNLP" datasets: - teacookies/autonlp-data-more_fine_tune_24465520 co2_eq_emissions: 80.25874179679201 --- # Model Trained Using AutoNLP - Problem type: Extractive Question Answering - Model ID: 26265909 - CO2 Emissions (in grams): 80.25874179679201 ## Validation Metrics - Loss: 5.950643062591553 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/teacookies/autonlp-more_fine_tune_24465520-26265909 ``` Or Python API: ``` import torch from transformers import AutoModelForQuestionAnswering, AutoTokenizer model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265909", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265909", use_auth_token=True) from transformers import BertTokenizer, BertForQuestionAnswering question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP" inputs = tokenizer(question, text, return_tensors='pt') start_positions = torch.tensor([1]) end_positions = torch.tensor([3]) outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions) loss = outputs.loss start_scores = outputs.start_logits end_scores = outputs.end_logits ```
tftransformers/t5-small
tftransformers
2021-10-25T08:13:06Z
4
0
transformers
[ "transformers", "summarization", "translation", "en", "fr", "ro", "de", "dataset:c4", "arxiv:1910.10683", "license:apache-2.0", "endpoints_compatible", "region:us" ]
translation
2022-03-02T23:29:05Z
--- language: - en - fr - ro - de datasets: - c4 tags: - summarization - translation license: apache-2.0 --- [Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) Pretraining Dataset: [C4](https://huggingface.co/datasets/c4) Other Community Checkpoints: [here](https://huggingface.co/models?search=t5) Paper: [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/pdf/1910.10683.pdf) Authors: *Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu* ## Abstract Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness of transfer learning has given rise to a diversity of approaches, methodology, and practice. In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts every language problem into a text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled datasets, transfer approaches, and other factors on dozens of language understanding tasks. By combining the insights from our exploration with scale and our new “Colossal Clean Crawled Corpus”, we achieve state-of-the-art results on many benchmarks covering summarization, question answering, text classification, and more. To facilitate future work on transfer learning for NLP, we release our dataset, pre-trained models, and code. ![model image](https://camo.githubusercontent.com/623b4dea0b653f2ad3f36c71ebfe749a677ac0a1/68747470733a2f2f6d69726f2e6d656469756d2e636f6d2f6d61782f343030362f312a44304a31674e51663876727255704b657944387750412e706e67) ## Usage ``` from tf_transformers.models import T5Model # Any T5 model (t5-small, t5-base, t5-large etc) model_name = 't5-small' model = T5Model.from_pretrained(model_name) ```
ydshieh/vit-gpt2-coco-en-ckpts
ydshieh
2021-10-24T12:01:42Z
32
11
generic
[ "generic", "pytorch", "jax", "tensorboard", "vision-encoder-decoder", "image-classification", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- tags: - image-classification library_name: generic --- ## Example The model is by no means a state-of-the-art model, but nevertheless produces reasonable image captioning results. It was mainly fine-tuned as a proof-of-concept for the 🤗 FlaxVisionEncoderDecoder Framework. The model can be used as follows: ```python import requests from PIL import Image from transformers import ViTFeatureExtractor, AutoTokenizer, FlaxVisionEncoderDecoderModel loc = "ydshieh/vit-gpt2-coco-en" feature_extractor = ViTFeatureExtractor.from_pretrained(loc) tokenizer = AutoTokenizer.from_pretrained(loc) model = FlaxVisionEncoderDecoderModel.from_pretrained(loc) # We will verify our results on an image of cute cats url = "http://images.cocodataset.org/val2017/000000039769.jpg" with Image.open(requests.get(url, stream=True).raw) as img: pixel_values = feature_extractor(images=img, return_tensors="np").pixel_values def generate_step(pixel_values): output_ids = model.generate(pixel_values, max_length=16, num_beams=4).sequences preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True) preds = [pred.strip() for pred in preds] return preds preds = generate_step(pixel_values) print(preds) # should produce # ['a cat laying on top of a couch next to another cat'] ```
tftransformers/gpt2
tftransformers
2021-10-24T08:41:46Z
1
0
transformers
[ "transformers", "exbert", "en", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: en tags: - exbert license: mit --- # GPT-2 Pretrained model on English language using a causal language modeling (CLM) objective. It was introduced in [this paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) and first released at [this page](https://openai.com/blog/better-language-models/). Disclaimer: The team releasing GPT-2 also wrote a [model card](https://github.com/openai/gpt-2/blob/master/model_card.md) for their model. Content from this model card has been written by the Hugging Face team to complete the information they provided and give specific examples of bias. ## Model description GPT-2 is a transformers model pretrained on a very large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was trained to guess the next word in sentences. More precisely, inputs are sequences of continuous text of a certain length and the targets are the same sequence, shifted one token (word or piece of word) to the right. The model uses internally a mask-mechanism to make sure the predictions for the token `i` only uses the inputs from `1` to `i` but not the future tokens. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks. The model is best at what it was pretrained for however, which is generating texts from a prompt. ## Intended uses & limitations You can use the raw model for text generation or fine-tune it to a downstream task. See the [model hub](https://huggingface.co/models?filter=gpt2) to look for fine-tuned versions on a task that interests you. ### How to use You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, we set a seed for reproducibility: ```python from tf_transformers.models import GPT2Model from transformers import GPT2Tokenizer tokenizer = GPT2Tokenizer.from_pretrained('gpt2') model = GPT2Model.from_pretrained("gpt2") text = "Replace me by any text you'd like." inputs_tf = {} inputs = tokenizer(text, return_tensors='tf') inputs_tf["input_ids"] = inputs["input_ids"] outputs_tf = model(inputs_tf) ``` ### Limitations and bias The training data used for this model has not been released as a dataset one can browse. We know it contains a lot of unfiltered content from the internet, which is far from neutral. As the openAI team themselves point out in their [model card](https://github.com/openai/gpt-2/blob/master/model_card.md#out-of-scope-use-cases): > Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don’t support use-cases > that require the generated text to be true. > > Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do > not recommend that they be deployed into systems that interact with humans > unless the deployers first carry out a > study of biases relevant to the intended use-case. We found no statistically significant difference in gender, race, > and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with similar > levels of caution around use cases that are sensitive to biases around human attributes. ## Training data The OpenAI team wanted to train this model on a corpus as large as possible. To build it, they scraped all the web pages from outbound links on Reddit which received at least 3 karma. Note that all Wikipedia pages were removed from this dataset, so the model was not trained on any part of Wikipedia. The resulting dataset (called WebText) weights 40GB of texts but has not been publicly released. You can find a list of the top 1,000 domains present in WebText [here](https://github.com/openai/gpt-2/blob/master/domains.txt). ## Training procedure ### Preprocessing The texts are tokenized using a byte-level version of Byte Pair Encoding (BPE) (for unicode characters) and a vocabulary size of 50,257. The inputs are sequences of 1024 consecutive tokens. The larger model was trained on 256 cloud TPU v3 cores. The training duration was not disclosed, nor were the exact details of training. ## Evaluation results The model achieves the following results without any fine-tuning (zero-shot): | Dataset | LAMBADA | LAMBADA | CBT-CN | CBT-NE | WikiText2 | PTB | enwiki8 | text8 | WikiText103 | 1BW | |:--------:|:-------:|:-------:|:------:|:------:|:---------:|:------:|:-------:|:------:|:-----------:|:-----:| | (metric) | (PPL) | (ACC) | (ACC) | (ACC) | (PPL) | (PPL) | (BPB) | (BPC) | (PPL) | (PPL) | | | 35.13 | 45.99 | 87.65 | 83.4 | 29.41 | 65.85 | 1.16 | 1,17 | 37.50 | 75.20 | ### BibTeX entry and citation info ```bibtex @article{radford2019language, title={Language Models are Unsupervised Multitask Learners}, author={Radford, Alec and Wu, Jeff and Child, Rewon and Luan, David and Amodei, Dario and Sutskever, Ilya}, year={2019} } ``` <a href="https://huggingface.co/exbert/?model=gpt2"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
tftransformers/albert-xxlarge-v2
tftransformers
2021-10-24T08:39:00Z
3
0
transformers
[ "transformers", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1909.11942", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: en license: apache-2.0 datasets: - bookcorpus - wikipedia --- # ALBERT XXLarge v2 Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/abs/1909.11942) and first released in [this repository](https://github.com/google-research/albert). This model, as all ALBERT models, is uncased: it does not make a difference between english and English. Disclaimer: The team releasing ALBERT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description ALBERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Sentence Ordering Prediction (SOP): ALBERT uses a pretraining loss based on predicting the ordering of two consecutive segments of text. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the ALBERT model as inputs. ALBERT is particular in that it shares its layers across its Transformer. Therefore, all layers have the same weights. Using repeating layers results in a small memory footprint, however, the computational cost remains similar to a BERT-like architecture with the same number of hidden layers as it has to iterate through the same number of (repeating) layers. This is the second version of the base model. Version 2 is different from version 1 due to different dropout rates, additional training data, and longer training. It has better results in nearly all downstream tasks. This model has the following configuration: - 12 repeating layers - 128 embedding dimension - 768 hidden dimension - 12 attention heads - 11M parameters ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=albert) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use You can use this model directly with a pipeline for masked language modeling: In tf_transformers ```python from tf_transformers.models import AlbertModel from transformers import AlbertTokenizer tokenizer = AlbertTokenizer.from_pretrained('albert-xxlarge-v2') model = AlbertModel.from_pretrained("albert-xxlarge-v2") text = "Replace me by any text you'd like." inputs_tf = {} inputs = tokenizer(text, return_tensors='tf') inputs_tf["input_ids"] = inputs["input_ids"] inputs_tf["input_type_ids"] = inputs["token_type_ids"] inputs_tf["input_mask"] = inputs["attention_mask"] outputs_tf = model(inputs_tf) ``` ## Training data The ALBERT model was pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using SentencePiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` ### Training The ALBERT procedure follows the BERT setup. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ## Evaluation results When fine-tuned on downstream tasks, the ALBERT models achieve the following results: | | Average | SQuAD1.1 | SQuAD2.0 | MNLI | SST-2 | RACE | |----------------|----------|----------|----------|----------|----------|----------| |V2 | |ALBERT-base |82.3 |90.2/83.2 |82.1/79.3 |84.6 |92.9 |66.8 | |ALBERT-large |85.7 |91.8/85.2 |84.9/81.8 |86.5 |94.9 |75.2 | |ALBERT-xlarge |87.9 |92.9/86.4 |87.9/84.1 |87.9 |95.4 |80.7 | |ALBERT-xxlarge |90.9 |94.6/89.1 |89.8/86.9 |90.6 |96.8 |86.8 | |V1 | |ALBERT-base |80.1 |89.3/82.3 | 80.0/77.1|81.6 |90.3 | 64.0 | |ALBERT-large |82.4 |90.6/83.9 | 82.3/79.4|83.5 |91.7 | 68.5 | |ALBERT-xlarge |85.5 |92.5/86.1 | 86.1/83.1|86.4 |92.4 | 74.8 | |ALBERT-xxlarge |91.0 |94.8/89.3 | 90.2/87.4|90.8 |96.9 | 86.5 | ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-1909-11942, author = {Zhenzhong Lan and Mingda Chen and Sebastian Goodman and Kevin Gimpel and Piyush Sharma and Radu Soricut}, title = {{ALBERT:} {A} Lite {BERT} for Self-supervised Learning of Language Representations}, journal = {CoRR}, volume = {abs/1909.11942}, year = {2019}, url = {http://arxiv.org/abs/1909.11942}, archivePrefix = {arXiv}, eprint = {1909.11942}, timestamp = {Fri, 27 Sep 2019 13:04:21 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-1909-11942.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
tftransformers/albert-base-v1
tftransformers
2021-10-24T08:34:54Z
2
0
transformers
[ "transformers", "exbert", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1909.11942", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- tags: - exbert language: en license: apache-2.0 datasets: - bookcorpus - wikipedia --- # ALBERT Base v1 Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/abs/1909.11942) and first released in [this repository](https://github.com/google-research/albert). This model, as all ALBERT models, is uncased: it does not make a difference between english and English. Disclaimer: The team releasing ALBERT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description ALBERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Sentence Ordering Prediction (SOP): ALBERT uses a pretraining loss based on predicting the ordering of two consecutive segments of text. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the ALBERT model as inputs. ALBERT is particular in that it shares its layers across its Transformer. Therefore, all layers have the same weights. Using repeating layers results in a small memory footprint, however, the computational cost remains similar to a BERT-like architecture with the same number of hidden layers as it has to iterate through the same number of (repeating) layers. This is the first version of the base model. Version 2 is different from version 1 due to different dropout rates, additional training data, and longer training. It has better results in nearly all downstream tasks. This model has the following configuration: - 12 repeating layers - 128 embedding dimension - 768 hidden dimension - 12 attention heads - 11M parameters ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=albert) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use You can use this model directly with a pipeline for masked language modeling: In tf_transformers ```python from tf_transformers.models import AlbertModel from transformers import AlbertTokenizer tokenizer = AlbertTokenizer.from_pretrained('albert-base-v1') model = AlbertModel.from_pretrained("albert-base-v1") text = "Replace me by any text you'd like." inputs_tf = {} inputs = tokenizer(text, return_tensors='tf') inputs_tf["input_ids"] = inputs["input_ids"] inputs_tf["input_type_ids"] = inputs["token_type_ids"] inputs_tf["input_mask"] = inputs["attention_mask"] outputs_tf = model(inputs_tf) ``` This bias will also affect all fine-tuned versions of this model. ## Training data The ALBERT model was pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using SentencePiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` ### Training The ALBERT procedure follows the BERT setup. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ## Evaluation results When fine-tuned on downstream tasks, the ALBERT models achieve the following results: | | Average | SQuAD1.1 | SQuAD2.0 | MNLI | SST-2 | RACE | |----------------|----------|----------|----------|----------|----------|----------| |V2 | |ALBERT-base |82.3 |90.2/83.2 |82.1/79.3 |84.6 |92.9 |66.8 | |ALBERT-large |85.7 |91.8/85.2 |84.9/81.8 |86.5 |94.9 |75.2 | |ALBERT-xlarge |87.9 |92.9/86.4 |87.9/84.1 |87.9 |95.4 |80.7 | |ALBERT-xxlarge |90.9 |94.6/89.1 |89.8/86.9 |90.6 |96.8 |86.8 | |V1 | |ALBERT-base |80.1 |89.3/82.3 | 80.0/77.1|81.6 |90.3 | 64.0 | |ALBERT-large |82.4 |90.6/83.9 | 82.3/79.4|83.5 |91.7 | 68.5 | |ALBERT-xlarge |85.5 |92.5/86.1 | 86.1/83.1|86.4 |92.4 | 74.8 | |ALBERT-xxlarge |91.0 |94.8/89.3 | 90.2/87.4|90.8 |96.9 | 86.5 | ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-1909-11942, author = {Zhenzhong Lan and Mingda Chen and Sebastian Goodman and Kevin Gimpel and Piyush Sharma and Radu Soricut}, title = {{ALBERT:} {A} Lite {BERT} for Self-supervised Learning of Language Representations}, journal = {CoRR}, volume = {abs/1909.11942}, year = {2019}, url = {http://arxiv.org/abs/1909.11942}, archivePrefix = {arXiv}, eprint = {1909.11942}, timestamp = {Fri, 27 Sep 2019 13:04:21 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-1909-11942.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <a href="https://huggingface.co/exbert/?model=albert-base-v1"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
tftransformers/mt5-small
tftransformers
2021-10-24T08:18:10Z
4
0
transformers
[ "transformers", "multilingual", "dataset:mc4", "arxiv:2010.11934", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: multilingual datasets: - mc4 license: apache-2.0 --- [Google's mT5](https://github.com/google-research/multilingual-t5) mT5 is pretrained on the [mC4](https://www.tensorflow.org/datasets/catalog/c4#c4multilingual) corpus, covering 101 languages: Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bulgarian, Burmese, Catalan, Cebuano, Chichewa, Chinese, Corsican, Czech, Danish, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Korean, Kurdish, Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Nepali, Norwegian, Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scottish Gaelic, Serbian, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Sotho, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Telugu, Thai, Turkish, Ukrainian, Urdu, Uzbek, Vietnamese, Welsh, West Frisian, Xhosa, Yiddish, Yoruba, Zulu. **Note**: mT5 was only pre-trained on mC4 excluding any supervised training. Therefore, this model has to be fine-tuned before it is useable on a downstream task. Pretraining Dataset: [mC4](https://www.tensorflow.org/datasets/catalog/c4#c4multilingual) Other Community Checkpoints: [here](https://huggingface.co/models?search=mt5) Paper: [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) Authors: *Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel* ## Abstract The recent "Text-to-Text Transfer Transformer" (T5) leveraged a unified text-to-text format and scale to attain state-of-the-art results on a wide variety of English-language NLP tasks. In this paper, we introduce mT5, a multilingual variant of T5 that was pre-trained on a new Common Crawl-based dataset covering 101 languages. We describe the design and modified training of mT5 and demonstrate its state-of-the-art performance on many multilingual benchmarks. All of the code and model checkpoints used in this work are publicly available. ## Usage ``` from tf_transformers.models import MT5Model # Any MT5 model (mt5-small, mt5-base etc) model_name = 'mt5-small' model = MT5Model.from_pretrained(model_name) ```
tftransformers/t5-base
tftransformers
2021-10-24T08:16:17Z
3
0
transformers
[ "transformers", "summarization", "translation", "en", "fr", "ro", "de", "dataset:c4", "arxiv:1910.10683", "license:apache-2.0", "endpoints_compatible", "region:us" ]
translation
2022-03-02T23:29:05Z
--- language: - en - fr - ro - de datasets: - c4 tags: - summarization - translation license: apache-2.0 --- [Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) Pretraining Dataset: [C4](https://huggingface.co/datasets/c4) Other Community Checkpoints: [here](https://huggingface.co/models?search=t5) Paper: [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/pdf/1910.10683.pdf) Authors: *Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu* ## Abstract Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness of transfer learning has given rise to a diversity of approaches, methodology, and practice. In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts every language problem into a text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled datasets, transfer approaches, and other factors on dozens of language understanding tasks. By combining the insights from our exploration with scale and our new “Colossal Clean Crawled Corpus”, we achieve state-of-the-art results on many benchmarks covering summarization, question answering, text classification, and more. To facilitate future work on transfer learning for NLP, we release our dataset, pre-trained models, and code. ![model image](https://camo.githubusercontent.com/623b4dea0b653f2ad3f36c71ebfe749a677ac0a1/68747470733a2f2f6d69726f2e6d656469756d2e636f6d2f6d61782f343030362f312a44304a31674e51663876727255704b657944387750412e706e67) ## Usage ``` from tf_transformers.models import T5Model # Any T5 model (t5-small, t5-base, t5-large etc) model_name = 't5-small' model = T5Model.from_pretrained(model_name) ```
tftransformers/t5-large
tftransformers
2021-10-24T08:15:07Z
2
0
transformers
[ "transformers", "summarization", "translation", "en", "fr", "ro", "de", "dataset:c4", "arxiv:1910.10683", "license:apache-2.0", "endpoints_compatible", "region:us" ]
translation
2022-03-02T23:29:05Z
--- language: - en - fr - ro - de datasets: - c4 tags: - summarization - translation license: apache-2.0 --- [Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) Pretraining Dataset: [C4](https://huggingface.co/datasets/c4) Other Community Checkpoints: [here](https://huggingface.co/models?search=t5) Paper: [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/pdf/1910.10683.pdf) Authors: *Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu* ## Abstract Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness of transfer learning has given rise to a diversity of approaches, methodology, and practice. In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts every language problem into a text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled datasets, transfer approaches, and other factors on dozens of language understanding tasks. By combining the insights from our exploration with scale and our new “Colossal Clean Crawled Corpus”, we achieve state-of-the-art results on many benchmarks covering summarization, question answering, text classification, and more. To facilitate future work on transfer learning for NLP, we release our dataset, pre-trained models, and code. ![model image](https://camo.githubusercontent.com/623b4dea0b653f2ad3f36c71ebfe749a677ac0a1/68747470733a2f2f6d69726f2e6d656469756d2e636f6d2f6d61782f343030362f312a44304a31674e51663876727255704b657944387750412e706e67) ## Usage ``` from tf_transformers.models import T5Model # Any T5 model (t5-small, t5-base, t5-large etc) model_name = 't5-small' model = T5Model.from_pretrained(model_name) ```
mathew/layoutlmv2-finetuned-funsd-1024
mathew
2021-10-24T06:13:48Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "layoutlmv2", "token-classification", "generated_from_trainer", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: cc-by-sa-4.0 tags: - generated_from_trainer model-index: - name: layoutlmv2-finetuned-funsd-1024 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlmv2-finetuned-funsd-1024 This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.8.0+cu101 - Datasets 1.14.0 - Tokenizers 0.10.3
huggingartists/sqwore
huggingartists
2021-10-24T04:23:45Z
4
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/sqwore", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/sqwore tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/3557a234d4c5912569afbea078a23eff.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Sqwore</div> <a href="https://genius.com/artists/sqwore"> <div style="text-align: center; font-size: 14px;">@sqwore</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Sqwore. Dataset is available [here](https://huggingface.co/datasets/huggingartists/sqwore). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/sqwore") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3gzd5crq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Sqwore's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/vzeft23g) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/vzeft23g/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/sqwore') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/sqwore") model = AutoModelWithLMHead.from_pretrained("huggingartists/sqwore") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingtweets/praisegodbarbon
huggingtweets
2021-10-24T03:47:17Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/praisegodbarbon/1635047234116/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1381764452098437120/74IgKP07_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Boston Psychology PhD</div> <div style="text-align: center; font-size: 14px;">@praisegodbarbon</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Boston Psychology PhD. | Data | Boston Psychology PhD | | --- | --- | | Tweets downloaded | 3212 | | Retweets | 810 | | Short tweets | 265 | | Tweets kept | 2137 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/h4r5tyq8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @praisegodbarbon's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1o2225sd) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1o2225sd/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/praisegodbarbon') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
ddddd/EDCLasVegas
ddddd
2021-10-24T01:16:07Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
https://teespring.com/dashboard/listings/113925135/edit
huggingtweets/nikkihaleyfan93
huggingtweets
2021-10-23T22:45:26Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/nikkihaleyfan93/1635029077906/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1329566476987232256/wpiYdhhz_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Richard Smit 🦅 🚁 🚔 💰 🇻🇦 🇳🇱 🇺🇸 🇬🇧 🇮🇱</div> <div style="text-align: center; font-size: 14px;">@nikkihaleyfan93</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Richard Smit 🦅 🚁 🚔 💰 🇻🇦 🇳🇱 🇺🇸 🇬🇧 🇮🇱. | Data | Richard Smit 🦅 🚁 🚔 💰 🇻🇦 🇳🇱 🇺🇸 🇬🇧 🇮🇱 | | --- | --- | | Tweets downloaded | 3248 | | Retweets | 406 | | Short tweets | 255 | | Tweets kept | 2587 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/20va5xqa/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @nikkihaleyfan93's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1v26x5ax) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1v26x5ax/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/nikkihaleyfan93') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
espnet/kan-bayashi_ljspeech_joint_finetune_conformer_fastspeech2_hifigan
espnet
2021-10-23T20:55:12Z
17
16
espnet
[ "espnet", "audio", "text-to-speech", "en", "dataset:ljspeech", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
text-to-speech
2022-03-02T23:29:05Z
--- tags: - espnet - audio - text-to-speech language: en datasets: - ljspeech license: cc-by-4.0 --- ## ESPnet2 TTS pretrained model ### `kan-bayashi/ljspeech_joint_finetune_conformer_fastspeech2_hifigan` ♻️ Imported from https://zenodo.org/record/5498896/ This model was trained by kan-bayashi using ljspeech/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/kan-bayashi_ljspeech_joint_train_conformer_fastspeech2_hifigan
espnet
2021-10-23T20:54:48Z
3
0
espnet
[ "espnet", "audio", "text-to-speech", "en", "dataset:ljspeech", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
text-to-speech
2022-03-02T23:29:05Z
--- tags: - espnet - audio - text-to-speech language: en datasets: - ljspeech license: cc-by-4.0 --- ## ESPnet2 TTS pretrained model ### `kan-bayashi/ljspeech_joint_train_conformer_fastspeech2_hifigan` ♻️ Imported from https://zenodo.org/record/5498487/ This model was trained by kan-bayashi using ljspeech/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/kan-bayashi_libritts_tts_train_xvector_vits_raw_phn_tacotron_g2p_en_no-truncated-09d645
espnet
2021-10-23T20:51:46Z
0
0
espnet
[ "espnet", "audio", "text-to-speech", "en", "dataset:libritts", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
text-to-speech
2022-03-02T23:29:05Z
--- tags: - espnet - audio - text-to-speech language: en datasets: - libritts license: cc-by-4.0 --- ## ESPnet2 TTS pretrained model ### `kan-bayashi/libritts_tts_train_xvector_vits_raw_phn_tacotron_g2p_en_no_space_train.total_count.ave` ♻️ Imported from https://zenodo.org/record/5521416/ This model was trained by kan-bayashi using libritts/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/kan-bayashi_tsukuyomi_tts_finetune_full_band_jsut_vits_raw_phn_jaconv_pyopenjtalk_prosody_latest
espnet
2021-10-23T20:50:21Z
0
3
espnet
[ "espnet", "audio", "text-to-speech", "ja", "dataset:tsukuyomi", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
text-to-speech
2022-03-02T23:29:05Z
--- tags: - espnet - audio - text-to-speech language: ja datasets: - tsukuyomi license: cc-by-4.0 --- ## ESPnet2 TTS pretrained model ### `kan-bayashi/tsukuyomi_tts_finetune_full_band_jsut_vits_raw_phn_jaconv_pyopenjtalk_prosody_latest` ♻️ Imported from https://zenodo.org/record/5521446/ This model was trained by kan-bayashi using tsukuyomi/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```