modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-06-04 12:29:36
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 468
values | tags
sequencelengths 1
4.05k
| pipeline_tag
stringclasses 54
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-06-04 12:29:27
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
google/multiberts-seed_1-step_1900k | google | 2021-11-06T01:18:58Z | 7 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"bert",
"pretraining",
"multiberts",
"multiberts-seed_1",
"multiberts-seed_1-step_1900k",
"en",
"arxiv:2106.16163",
"arxiv:1908.08962",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language: en
tags:
- multiberts
- multiberts-seed_1
- multiberts-seed_1-step_1900k
license: apache-2.0
---
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 1900k
MultiBERTs is a collection of checkpoints and a statistical library to support
robust research on BERT. We provide 25 BERT-base models trained with
similar hyper-parameters as
[the original BERT model](https://github.com/google-research/bert) but
with different random seeds, which causes variations in the initial weights and order of
training instances. The aim is to distinguish findings that apply to a specific
artifact (i.e., a particular instance of the model) from those that apply to the
more general procedure.
We also provide 140 intermediate checkpoints captured
during the course of pre-training (we saved 28 checkpoints for the first 5 runs).
The models were originally released through
[http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our
paper
[The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163).
This is model #1, captured at step 1900k (max: 2000k, i.e., 2M steps).
## Model Description
This model was captured during a reproduction of
[BERT-base uncased](https://github.com/google-research/bert), for English: it
is a Transformers model pretrained on a large corpus of English data, using the
Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP)
objectives.
The intended uses, limitations, training data and training procedure for the fully trained model are similar
to [BERT-base uncased](https://github.com/google-research/bert). Two major
differences with the original model:
* We pre-trained the MultiBERTs models for 2 million steps using sequence
length 512 (instead of 1 million steps using sequence length 128 then 512).
* We used an alternative version of Wikipedia and Books Corpus, initially
collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962).
This is a best-effort reproduction, and so it is probable that differences with
the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original
BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).
See our [technical report](https://arxiv.org/abs/2106.16163) for more details.
### How to use
Using code from
[BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on
Tensorflow:
```
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_1900k')
model = TFBertModel.from_pretrained("google/multiberts-seed_1-step_1900k")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
PyTorch version:
```
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_1900k')
model = BertModel.from_pretrained("google/multiberts-seed_1-step_1900k")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
## Citation info
```bibtex
@article{sellam2021multiberts,
title={The MultiBERTs: BERT Reproductions for Robustness Analysis},
author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick},
journal={arXiv preprint arXiv:2106.16163},
year={2021}
}
```
|
JazibEijaz/bert-base-uncased-finetuned-semeval2020-task4b-append-e3-b32-l4e5 | JazibEijaz | 2021-11-06T01:17:34Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"multiple-choice",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | multiple-choice | 2022-03-02T23:29:04Z | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
name: bert-base-uncased-finetuned-semeval2020-task4b-append-e3-b32-l4e5
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-uncased-finetuned-semeval2020-task4b-append-e3-b32-l4e5
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5121
- Accuracy: 0.8700
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 344 | 0.3603 | 0.8550 |
| 0.3894 | 2.0 | 688 | 0.4011 | 0.8630 |
| 0.1088 | 3.0 | 1032 | 0.5121 | 0.8700 |
### Framework versions
- Transformers 4.12.3
- Pytorch 1.9.1
- Datasets 1.12.1
- Tokenizers 0.10.3
|
google/multiberts-seed_1-step_1700k | google | 2021-11-06T01:15:38Z | 7 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"bert",
"pretraining",
"multiberts",
"multiberts-seed_1",
"multiberts-seed_1-step_1700k",
"en",
"arxiv:2106.16163",
"arxiv:1908.08962",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language: en
tags:
- multiberts
- multiberts-seed_1
- multiberts-seed_1-step_1700k
license: apache-2.0
---
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 1700k
MultiBERTs is a collection of checkpoints and a statistical library to support
robust research on BERT. We provide 25 BERT-base models trained with
similar hyper-parameters as
[the original BERT model](https://github.com/google-research/bert) but
with different random seeds, which causes variations in the initial weights and order of
training instances. The aim is to distinguish findings that apply to a specific
artifact (i.e., a particular instance of the model) from those that apply to the
more general procedure.
We also provide 140 intermediate checkpoints captured
during the course of pre-training (we saved 28 checkpoints for the first 5 runs).
The models were originally released through
[http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our
paper
[The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163).
This is model #1, captured at step 1700k (max: 2000k, i.e., 2M steps).
## Model Description
This model was captured during a reproduction of
[BERT-base uncased](https://github.com/google-research/bert), for English: it
is a Transformers model pretrained on a large corpus of English data, using the
Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP)
objectives.
The intended uses, limitations, training data and training procedure for the fully trained model are similar
to [BERT-base uncased](https://github.com/google-research/bert). Two major
differences with the original model:
* We pre-trained the MultiBERTs models for 2 million steps using sequence
length 512 (instead of 1 million steps using sequence length 128 then 512).
* We used an alternative version of Wikipedia and Books Corpus, initially
collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962).
This is a best-effort reproduction, and so it is probable that differences with
the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original
BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).
See our [technical report](https://arxiv.org/abs/2106.16163) for more details.
### How to use
Using code from
[BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on
Tensorflow:
```
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_1700k')
model = TFBertModel.from_pretrained("google/multiberts-seed_1-step_1700k")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
PyTorch version:
```
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_1700k')
model = BertModel.from_pretrained("google/multiberts-seed_1-step_1700k")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
## Citation info
```bibtex
@article{sellam2021multiberts,
title={The MultiBERTs: BERT Reproductions for Robustness Analysis},
author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick},
journal={arXiv preprint arXiv:2106.16163},
year={2021}
}
```
|
google/multiberts-seed_1-step_1600k | google | 2021-11-06T01:14:01Z | 11 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"bert",
"pretraining",
"multiberts",
"multiberts-seed_1",
"multiberts-seed_1-step_1600k",
"en",
"arxiv:2106.16163",
"arxiv:1908.08962",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language: en
tags:
- multiberts
- multiberts-seed_1
- multiberts-seed_1-step_1600k
license: apache-2.0
---
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 1600k
MultiBERTs is a collection of checkpoints and a statistical library to support
robust research on BERT. We provide 25 BERT-base models trained with
similar hyper-parameters as
[the original BERT model](https://github.com/google-research/bert) but
with different random seeds, which causes variations in the initial weights and order of
training instances. The aim is to distinguish findings that apply to a specific
artifact (i.e., a particular instance of the model) from those that apply to the
more general procedure.
We also provide 140 intermediate checkpoints captured
during the course of pre-training (we saved 28 checkpoints for the first 5 runs).
The models were originally released through
[http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our
paper
[The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163).
This is model #1, captured at step 1600k (max: 2000k, i.e., 2M steps).
## Model Description
This model was captured during a reproduction of
[BERT-base uncased](https://github.com/google-research/bert), for English: it
is a Transformers model pretrained on a large corpus of English data, using the
Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP)
objectives.
The intended uses, limitations, training data and training procedure for the fully trained model are similar
to [BERT-base uncased](https://github.com/google-research/bert). Two major
differences with the original model:
* We pre-trained the MultiBERTs models for 2 million steps using sequence
length 512 (instead of 1 million steps using sequence length 128 then 512).
* We used an alternative version of Wikipedia and Books Corpus, initially
collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962).
This is a best-effort reproduction, and so it is probable that differences with
the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original
BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).
See our [technical report](https://arxiv.org/abs/2106.16163) for more details.
### How to use
Using code from
[BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on
Tensorflow:
```
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_1600k')
model = TFBertModel.from_pretrained("google/multiberts-seed_1-step_1600k")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
PyTorch version:
```
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_1600k')
model = BertModel.from_pretrained("google/multiberts-seed_1-step_1600k")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
## Citation info
```bibtex
@article{sellam2021multiberts,
title={The MultiBERTs: BERT Reproductions for Robustness Analysis},
author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick},
journal={arXiv preprint arXiv:2106.16163},
year={2021}
}
```
|
google/multiberts-seed_1-step_1100k | google | 2021-11-06T01:05:05Z | 8 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"bert",
"pretraining",
"multiberts",
"multiberts-seed_1",
"multiberts-seed_1-step_1100k",
"en",
"arxiv:2106.16163",
"arxiv:1908.08962",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language: en
tags:
- multiberts
- multiberts-seed_1
- multiberts-seed_1-step_1100k
license: apache-2.0
---
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 1100k
MultiBERTs is a collection of checkpoints and a statistical library to support
robust research on BERT. We provide 25 BERT-base models trained with
similar hyper-parameters as
[the original BERT model](https://github.com/google-research/bert) but
with different random seeds, which causes variations in the initial weights and order of
training instances. The aim is to distinguish findings that apply to a specific
artifact (i.e., a particular instance of the model) from those that apply to the
more general procedure.
We also provide 140 intermediate checkpoints captured
during the course of pre-training (we saved 28 checkpoints for the first 5 runs).
The models were originally released through
[http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our
paper
[The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163).
This is model #1, captured at step 1100k (max: 2000k, i.e., 2M steps).
## Model Description
This model was captured during a reproduction of
[BERT-base uncased](https://github.com/google-research/bert), for English: it
is a Transformers model pretrained on a large corpus of English data, using the
Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP)
objectives.
The intended uses, limitations, training data and training procedure for the fully trained model are similar
to [BERT-base uncased](https://github.com/google-research/bert). Two major
differences with the original model:
* We pre-trained the MultiBERTs models for 2 million steps using sequence
length 512 (instead of 1 million steps using sequence length 128 then 512).
* We used an alternative version of Wikipedia and Books Corpus, initially
collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962).
This is a best-effort reproduction, and so it is probable that differences with
the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original
BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).
See our [technical report](https://arxiv.org/abs/2106.16163) for more details.
### How to use
Using code from
[BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on
Tensorflow:
```
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_1100k')
model = TFBertModel.from_pretrained("google/multiberts-seed_1-step_1100k")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
PyTorch version:
```
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_1100k')
model = BertModel.from_pretrained("google/multiberts-seed_1-step_1100k")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
## Citation info
```bibtex
@article{sellam2021multiberts,
title={The MultiBERTs: BERT Reproductions for Robustness Analysis},
author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick},
journal={arXiv preprint arXiv:2106.16163},
year={2021}
}
```
|
google/multiberts-seed_1-step_800k | google | 2021-11-06T01:00:02Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"bert",
"pretraining",
"multiberts",
"multiberts-seed_1",
"multiberts-seed_1-step_800k",
"en",
"arxiv:2106.16163",
"arxiv:1908.08962",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language: en
tags:
- multiberts
- multiberts-seed_1
- multiberts-seed_1-step_800k
license: apache-2.0
---
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 800k
MultiBERTs is a collection of checkpoints and a statistical library to support
robust research on BERT. We provide 25 BERT-base models trained with
similar hyper-parameters as
[the original BERT model](https://github.com/google-research/bert) but
with different random seeds, which causes variations in the initial weights and order of
training instances. The aim is to distinguish findings that apply to a specific
artifact (i.e., a particular instance of the model) from those that apply to the
more general procedure.
We also provide 140 intermediate checkpoints captured
during the course of pre-training (we saved 28 checkpoints for the first 5 runs).
The models were originally released through
[http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our
paper
[The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163).
This is model #1, captured at step 800k (max: 2000k, i.e., 2M steps).
## Model Description
This model was captured during a reproduction of
[BERT-base uncased](https://github.com/google-research/bert), for English: it
is a Transformers model pretrained on a large corpus of English data, using the
Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP)
objectives.
The intended uses, limitations, training data and training procedure for the fully trained model are similar
to [BERT-base uncased](https://github.com/google-research/bert). Two major
differences with the original model:
* We pre-trained the MultiBERTs models for 2 million steps using sequence
length 512 (instead of 1 million steps using sequence length 128 then 512).
* We used an alternative version of Wikipedia and Books Corpus, initially
collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962).
This is a best-effort reproduction, and so it is probable that differences with
the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original
BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).
See our [technical report](https://arxiv.org/abs/2106.16163) for more details.
### How to use
Using code from
[BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on
Tensorflow:
```
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_800k')
model = TFBertModel.from_pretrained("google/multiberts-seed_1-step_800k")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
PyTorch version:
```
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_800k')
model = BertModel.from_pretrained("google/multiberts-seed_1-step_800k")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
## Citation info
```bibtex
@article{sellam2021multiberts,
title={The MultiBERTs: BERT Reproductions for Robustness Analysis},
author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick},
journal={arXiv preprint arXiv:2106.16163},
year={2021}
}
```
|
google/multiberts-seed_1-step_600k | google | 2021-11-06T00:56:42Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"bert",
"pretraining",
"multiberts",
"multiberts-seed_1",
"multiberts-seed_1-step_600k",
"en",
"arxiv:2106.16163",
"arxiv:1908.08962",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language: en
tags:
- multiberts
- multiberts-seed_1
- multiberts-seed_1-step_600k
license: apache-2.0
---
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 600k
MultiBERTs is a collection of checkpoints and a statistical library to support
robust research on BERT. We provide 25 BERT-base models trained with
similar hyper-parameters as
[the original BERT model](https://github.com/google-research/bert) but
with different random seeds, which causes variations in the initial weights and order of
training instances. The aim is to distinguish findings that apply to a specific
artifact (i.e., a particular instance of the model) from those that apply to the
more general procedure.
We also provide 140 intermediate checkpoints captured
during the course of pre-training (we saved 28 checkpoints for the first 5 runs).
The models were originally released through
[http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our
paper
[The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163).
This is model #1, captured at step 600k (max: 2000k, i.e., 2M steps).
## Model Description
This model was captured during a reproduction of
[BERT-base uncased](https://github.com/google-research/bert), for English: it
is a Transformers model pretrained on a large corpus of English data, using the
Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP)
objectives.
The intended uses, limitations, training data and training procedure for the fully trained model are similar
to [BERT-base uncased](https://github.com/google-research/bert). Two major
differences with the original model:
* We pre-trained the MultiBERTs models for 2 million steps using sequence
length 512 (instead of 1 million steps using sequence length 128 then 512).
* We used an alternative version of Wikipedia and Books Corpus, initially
collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962).
This is a best-effort reproduction, and so it is probable that differences with
the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original
BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).
See our [technical report](https://arxiv.org/abs/2106.16163) for more details.
### How to use
Using code from
[BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on
Tensorflow:
```
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_600k')
model = TFBertModel.from_pretrained("google/multiberts-seed_1-step_600k")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
PyTorch version:
```
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_600k')
model = BertModel.from_pretrained("google/multiberts-seed_1-step_600k")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
## Citation info
```bibtex
@article{sellam2021multiberts,
title={The MultiBERTs: BERT Reproductions for Robustness Analysis},
author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick},
journal={arXiv preprint arXiv:2106.16163},
year={2021}
}
```
|
google/multiberts-seed_1-step_400k | google | 2021-11-06T00:53:30Z | 9 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"bert",
"pretraining",
"multiberts",
"multiberts-seed_1",
"multiberts-seed_1-step_400k",
"en",
"arxiv:2106.16163",
"arxiv:1908.08962",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language: en
tags:
- multiberts
- multiberts-seed_1
- multiberts-seed_1-step_400k
license: apache-2.0
---
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 400k
MultiBERTs is a collection of checkpoints and a statistical library to support
robust research on BERT. We provide 25 BERT-base models trained with
similar hyper-parameters as
[the original BERT model](https://github.com/google-research/bert) but
with different random seeds, which causes variations in the initial weights and order of
training instances. The aim is to distinguish findings that apply to a specific
artifact (i.e., a particular instance of the model) from those that apply to the
more general procedure.
We also provide 140 intermediate checkpoints captured
during the course of pre-training (we saved 28 checkpoints for the first 5 runs).
The models were originally released through
[http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our
paper
[The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163).
This is model #1, captured at step 400k (max: 2000k, i.e., 2M steps).
## Model Description
This model was captured during a reproduction of
[BERT-base uncased](https://github.com/google-research/bert), for English: it
is a Transformers model pretrained on a large corpus of English data, using the
Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP)
objectives.
The intended uses, limitations, training data and training procedure for the fully trained model are similar
to [BERT-base uncased](https://github.com/google-research/bert). Two major
differences with the original model:
* We pre-trained the MultiBERTs models for 2 million steps using sequence
length 512 (instead of 1 million steps using sequence length 128 then 512).
* We used an alternative version of Wikipedia and Books Corpus, initially
collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962).
This is a best-effort reproduction, and so it is probable that differences with
the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original
BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).
See our [technical report](https://arxiv.org/abs/2106.16163) for more details.
### How to use
Using code from
[BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on
Tensorflow:
```
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_400k')
model = TFBertModel.from_pretrained("google/multiberts-seed_1-step_400k")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
PyTorch version:
```
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_400k')
model = BertModel.from_pretrained("google/multiberts-seed_1-step_400k")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
## Citation info
```bibtex
@article{sellam2021multiberts,
title={The MultiBERTs: BERT Reproductions for Robustness Analysis},
author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick},
journal={arXiv preprint arXiv:2106.16163},
year={2021}
}
```
|
google/multiberts-seed_1-step_300k | google | 2021-11-06T00:51:52Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"bert",
"pretraining",
"multiberts",
"multiberts-seed_1",
"multiberts-seed_1-step_300k",
"en",
"arxiv:2106.16163",
"arxiv:1908.08962",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language: en
tags:
- multiberts
- multiberts-seed_1
- multiberts-seed_1-step_300k
license: apache-2.0
---
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 300k
MultiBERTs is a collection of checkpoints and a statistical library to support
robust research on BERT. We provide 25 BERT-base models trained with
similar hyper-parameters as
[the original BERT model](https://github.com/google-research/bert) but
with different random seeds, which causes variations in the initial weights and order of
training instances. The aim is to distinguish findings that apply to a specific
artifact (i.e., a particular instance of the model) from those that apply to the
more general procedure.
We also provide 140 intermediate checkpoints captured
during the course of pre-training (we saved 28 checkpoints for the first 5 runs).
The models were originally released through
[http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our
paper
[The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163).
This is model #1, captured at step 300k (max: 2000k, i.e., 2M steps).
## Model Description
This model was captured during a reproduction of
[BERT-base uncased](https://github.com/google-research/bert), for English: it
is a Transformers model pretrained on a large corpus of English data, using the
Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP)
objectives.
The intended uses, limitations, training data and training procedure for the fully trained model are similar
to [BERT-base uncased](https://github.com/google-research/bert). Two major
differences with the original model:
* We pre-trained the MultiBERTs models for 2 million steps using sequence
length 512 (instead of 1 million steps using sequence length 128 then 512).
* We used an alternative version of Wikipedia and Books Corpus, initially
collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962).
This is a best-effort reproduction, and so it is probable that differences with
the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original
BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).
See our [technical report](https://arxiv.org/abs/2106.16163) for more details.
### How to use
Using code from
[BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on
Tensorflow:
```
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_300k')
model = TFBertModel.from_pretrained("google/multiberts-seed_1-step_300k")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
PyTorch version:
```
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_300k')
model = BertModel.from_pretrained("google/multiberts-seed_1-step_300k")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
## Citation info
```bibtex
@article{sellam2021multiberts,
title={The MultiBERTs: BERT Reproductions for Robustness Analysis},
author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick},
journal={arXiv preprint arXiv:2106.16163},
year={2021}
}
```
|
google/multiberts-seed_1-step_140k | google | 2021-11-06T00:45:09Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"bert",
"pretraining",
"multiberts",
"multiberts-seed_1",
"multiberts-seed_1-step_140k",
"en",
"arxiv:2106.16163",
"arxiv:1908.08962",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language: en
tags:
- multiberts
- multiberts-seed_1
- multiberts-seed_1-step_140k
license: apache-2.0
---
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 140k
MultiBERTs is a collection of checkpoints and a statistical library to support
robust research on BERT. We provide 25 BERT-base models trained with
similar hyper-parameters as
[the original BERT model](https://github.com/google-research/bert) but
with different random seeds, which causes variations in the initial weights and order of
training instances. The aim is to distinguish findings that apply to a specific
artifact (i.e., a particular instance of the model) from those that apply to the
more general procedure.
We also provide 140 intermediate checkpoints captured
during the course of pre-training (we saved 28 checkpoints for the first 5 runs).
The models were originally released through
[http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our
paper
[The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163).
This is model #1, captured at step 140k (max: 2000k, i.e., 2M steps).
## Model Description
This model was captured during a reproduction of
[BERT-base uncased](https://github.com/google-research/bert), for English: it
is a Transformers model pretrained on a large corpus of English data, using the
Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP)
objectives.
The intended uses, limitations, training data and training procedure for the fully trained model are similar
to [BERT-base uncased](https://github.com/google-research/bert). Two major
differences with the original model:
* We pre-trained the MultiBERTs models for 2 million steps using sequence
length 512 (instead of 1 million steps using sequence length 128 then 512).
* We used an alternative version of Wikipedia and Books Corpus, initially
collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962).
This is a best-effort reproduction, and so it is probable that differences with
the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original
BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).
See our [technical report](https://arxiv.org/abs/2106.16163) for more details.
### How to use
Using code from
[BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on
Tensorflow:
```
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_140k')
model = TFBertModel.from_pretrained("google/multiberts-seed_1-step_140k")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
PyTorch version:
```
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_140k')
model = BertModel.from_pretrained("google/multiberts-seed_1-step_140k")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
## Citation info
```bibtex
@article{sellam2021multiberts,
title={The MultiBERTs: BERT Reproductions for Robustness Analysis},
author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick},
journal={arXiv preprint arXiv:2106.16163},
year={2021}
}
```
|
google/multiberts-seed_1-step_120k | google | 2021-11-06T00:43:27Z | 8 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"bert",
"pretraining",
"multiberts",
"multiberts-seed_1",
"multiberts-seed_1-step_120k",
"en",
"arxiv:2106.16163",
"arxiv:1908.08962",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language: en
tags:
- multiberts
- multiberts-seed_1
- multiberts-seed_1-step_120k
license: apache-2.0
---
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 120k
MultiBERTs is a collection of checkpoints and a statistical library to support
robust research on BERT. We provide 25 BERT-base models trained with
similar hyper-parameters as
[the original BERT model](https://github.com/google-research/bert) but
with different random seeds, which causes variations in the initial weights and order of
training instances. The aim is to distinguish findings that apply to a specific
artifact (i.e., a particular instance of the model) from those that apply to the
more general procedure.
We also provide 140 intermediate checkpoints captured
during the course of pre-training (we saved 28 checkpoints for the first 5 runs).
The models were originally released through
[http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our
paper
[The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163).
This is model #1, captured at step 120k (max: 2000k, i.e., 2M steps).
## Model Description
This model was captured during a reproduction of
[BERT-base uncased](https://github.com/google-research/bert), for English: it
is a Transformers model pretrained on a large corpus of English data, using the
Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP)
objectives.
The intended uses, limitations, training data and training procedure for the fully trained model are similar
to [BERT-base uncased](https://github.com/google-research/bert). Two major
differences with the original model:
* We pre-trained the MultiBERTs models for 2 million steps using sequence
length 512 (instead of 1 million steps using sequence length 128 then 512).
* We used an alternative version of Wikipedia and Books Corpus, initially
collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962).
This is a best-effort reproduction, and so it is probable that differences with
the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original
BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).
See our [technical report](https://arxiv.org/abs/2106.16163) for more details.
### How to use
Using code from
[BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on
Tensorflow:
```
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_120k')
model = TFBertModel.from_pretrained("google/multiberts-seed_1-step_120k")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
PyTorch version:
```
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_120k')
model = BertModel.from_pretrained("google/multiberts-seed_1-step_120k")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
## Citation info
```bibtex
@article{sellam2021multiberts,
title={The MultiBERTs: BERT Reproductions for Robustness Analysis},
author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick},
journal={arXiv preprint arXiv:2106.16163},
year={2021}
}
```
|
google/multiberts-seed_1-step_80k | google | 2021-11-06T00:40:03Z | 7 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"bert",
"pretraining",
"multiberts",
"multiberts-seed_1",
"multiberts-seed_1-step_80k",
"en",
"arxiv:2106.16163",
"arxiv:1908.08962",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language: en
tags:
- multiberts
- multiberts-seed_1
- multiberts-seed_1-step_80k
license: apache-2.0
---
# MultiBERTs, Intermediate Checkpoint - Seed 1, Step 80k
MultiBERTs is a collection of checkpoints and a statistical library to support
robust research on BERT. We provide 25 BERT-base models trained with
similar hyper-parameters as
[the original BERT model](https://github.com/google-research/bert) but
with different random seeds, which causes variations in the initial weights and order of
training instances. The aim is to distinguish findings that apply to a specific
artifact (i.e., a particular instance of the model) from those that apply to the
more general procedure.
We also provide 140 intermediate checkpoints captured
during the course of pre-training (we saved 28 checkpoints for the first 5 runs).
The models were originally released through
[http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our
paper
[The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163).
This is model #1, captured at step 80k (max: 2000k, i.e., 2M steps).
## Model Description
This model was captured during a reproduction of
[BERT-base uncased](https://github.com/google-research/bert), for English: it
is a Transformers model pretrained on a large corpus of English data, using the
Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP)
objectives.
The intended uses, limitations, training data and training procedure for the fully trained model are similar
to [BERT-base uncased](https://github.com/google-research/bert). Two major
differences with the original model:
* We pre-trained the MultiBERTs models for 2 million steps using sequence
length 512 (instead of 1 million steps using sequence length 128 then 512).
* We used an alternative version of Wikipedia and Books Corpus, initially
collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962).
This is a best-effort reproduction, and so it is probable that differences with
the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original
BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).
See our [technical report](https://arxiv.org/abs/2106.16163) for more details.
### How to use
Using code from
[BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on
Tensorflow:
```
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_80k')
model = TFBertModel.from_pretrained("google/multiberts-seed_1-step_80k")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
PyTorch version:
```
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_80k')
model = BertModel.from_pretrained("google/multiberts-seed_1-step_80k")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
## Citation info
```bibtex
@article{sellam2021multiberts,
title={The MultiBERTs: BERT Reproductions for Robustness Analysis},
author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick},
journal={arXiv preprint arXiv:2106.16163},
year={2021}
}
```
|
google/multiberts-seed_0-step_1900k | google | 2021-11-06T00:23:42Z | 7 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"bert",
"pretraining",
"multiberts",
"multiberts-seed_0",
"multiberts-seed_0-step_1900k",
"en",
"arxiv:2106.16163",
"arxiv:1908.08962",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language: en
tags:
- multiberts
- multiberts-seed_0
- multiberts-seed_0-step_1900k
license: apache-2.0
---
# MultiBERTs, Intermediate Checkpoint - Seed 0, Step 1900k
MultiBERTs is a collection of checkpoints and a statistical library to support
robust research on BERT. We provide 25 BERT-base models trained with
similar hyper-parameters as
[the original BERT model](https://github.com/google-research/bert) but
with different random seeds, which causes variations in the initial weights and order of
training instances. The aim is to distinguish findings that apply to a specific
artifact (i.e., a particular instance of the model) from those that apply to the
more general procedure.
We also provide 140 intermediate checkpoints captured
during the course of pre-training (we saved 28 checkpoints for the first 5 runs).
The models were originally released through
[http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our
paper
[The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163).
This is model #0, captured at step 1900k (max: 2000k, i.e., 2M steps).
## Model Description
This model was captured during a reproduction of
[BERT-base uncased](https://github.com/google-research/bert), for English: it
is a Transformers model pretrained on a large corpus of English data, using the
Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP)
objectives.
The intended uses, limitations, training data and training procedure for the fully trained model are similar
to [BERT-base uncased](https://github.com/google-research/bert). Two major
differences with the original model:
* We pre-trained the MultiBERTs models for 2 million steps using sequence
length 512 (instead of 1 million steps using sequence length 128 then 512).
* We used an alternative version of Wikipedia and Books Corpus, initially
collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962).
This is a best-effort reproduction, and so it is probable that differences with
the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original
BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).
See our [technical report](https://arxiv.org/abs/2106.16163) for more details.
### How to use
Using code from
[BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on
Tensorflow:
```
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_1900k')
model = TFBertModel.from_pretrained("google/multiberts-seed_0-step_1900k")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
PyTorch version:
```
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_1900k')
model = BertModel.from_pretrained("google/multiberts-seed_0-step_1900k")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
## Citation info
```bibtex
@article{sellam2021multiberts,
title={The MultiBERTs: BERT Reproductions for Robustness Analysis},
author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick},
journal={arXiv preprint arXiv:2106.16163},
year={2021}
}
```
|
google/multiberts-seed_0-step_1800k | google | 2021-11-06T00:22:02Z | 8 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"bert",
"pretraining",
"multiberts",
"multiberts-seed_0",
"multiberts-seed_0-step_1800k",
"en",
"arxiv:2106.16163",
"arxiv:1908.08962",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language: en
tags:
- multiberts
- multiberts-seed_0
- multiberts-seed_0-step_1800k
license: apache-2.0
---
# MultiBERTs, Intermediate Checkpoint - Seed 0, Step 1800k
MultiBERTs is a collection of checkpoints and a statistical library to support
robust research on BERT. We provide 25 BERT-base models trained with
similar hyper-parameters as
[the original BERT model](https://github.com/google-research/bert) but
with different random seeds, which causes variations in the initial weights and order of
training instances. The aim is to distinguish findings that apply to a specific
artifact (i.e., a particular instance of the model) from those that apply to the
more general procedure.
We also provide 140 intermediate checkpoints captured
during the course of pre-training (we saved 28 checkpoints for the first 5 runs).
The models were originally released through
[http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our
paper
[The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163).
This is model #0, captured at step 1800k (max: 2000k, i.e., 2M steps).
## Model Description
This model was captured during a reproduction of
[BERT-base uncased](https://github.com/google-research/bert), for English: it
is a Transformers model pretrained on a large corpus of English data, using the
Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP)
objectives.
The intended uses, limitations, training data and training procedure for the fully trained model are similar
to [BERT-base uncased](https://github.com/google-research/bert). Two major
differences with the original model:
* We pre-trained the MultiBERTs models for 2 million steps using sequence
length 512 (instead of 1 million steps using sequence length 128 then 512).
* We used an alternative version of Wikipedia and Books Corpus, initially
collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962).
This is a best-effort reproduction, and so it is probable that differences with
the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original
BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).
See our [technical report](https://arxiv.org/abs/2106.16163) for more details.
### How to use
Using code from
[BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on
Tensorflow:
```
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_1800k')
model = TFBertModel.from_pretrained("google/multiberts-seed_0-step_1800k")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
PyTorch version:
```
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_1800k')
model = BertModel.from_pretrained("google/multiberts-seed_0-step_1800k")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
## Citation info
```bibtex
@article{sellam2021multiberts,
title={The MultiBERTs: BERT Reproductions for Robustness Analysis},
author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick},
journal={arXiv preprint arXiv:2106.16163},
year={2021}
}
```
|
google/multiberts-seed_0-step_1500k | google | 2021-11-06T00:16:49Z | 7 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"bert",
"pretraining",
"multiberts",
"multiberts-seed_0",
"multiberts-seed_0-step_1500k",
"en",
"arxiv:2106.16163",
"arxiv:1908.08962",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language: en
tags:
- multiberts
- multiberts-seed_0
- multiberts-seed_0-step_1500k
license: apache-2.0
---
# MultiBERTs, Intermediate Checkpoint - Seed 0, Step 1500k
MultiBERTs is a collection of checkpoints and a statistical library to support
robust research on BERT. We provide 25 BERT-base models trained with
similar hyper-parameters as
[the original BERT model](https://github.com/google-research/bert) but
with different random seeds, which causes variations in the initial weights and order of
training instances. The aim is to distinguish findings that apply to a specific
artifact (i.e., a particular instance of the model) from those that apply to the
more general procedure.
We also provide 140 intermediate checkpoints captured
during the course of pre-training (we saved 28 checkpoints for the first 5 runs).
The models were originally released through
[http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our
paper
[The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163).
This is model #0, captured at step 1500k (max: 2000k, i.e., 2M steps).
## Model Description
This model was captured during a reproduction of
[BERT-base uncased](https://github.com/google-research/bert), for English: it
is a Transformers model pretrained on a large corpus of English data, using the
Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP)
objectives.
The intended uses, limitations, training data and training procedure for the fully trained model are similar
to [BERT-base uncased](https://github.com/google-research/bert). Two major
differences with the original model:
* We pre-trained the MultiBERTs models for 2 million steps using sequence
length 512 (instead of 1 million steps using sequence length 128 then 512).
* We used an alternative version of Wikipedia and Books Corpus, initially
collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962).
This is a best-effort reproduction, and so it is probable that differences with
the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original
BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).
See our [technical report](https://arxiv.org/abs/2106.16163) for more details.
### How to use
Using code from
[BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on
Tensorflow:
```
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_1500k')
model = TFBertModel.from_pretrained("google/multiberts-seed_0-step_1500k")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
PyTorch version:
```
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_1500k')
model = BertModel.from_pretrained("google/multiberts-seed_0-step_1500k")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
## Citation info
```bibtex
@article{sellam2021multiberts,
title={The MultiBERTs: BERT Reproductions for Robustness Analysis},
author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick},
journal={arXiv preprint arXiv:2106.16163},
year={2021}
}
```
|
google/multiberts-seed_0-step_1400k | google | 2021-11-06T00:15:06Z | 9 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"bert",
"pretraining",
"multiberts",
"multiberts-seed_0",
"multiberts-seed_0-step_1400k",
"en",
"arxiv:2106.16163",
"arxiv:1908.08962",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language: en
tags:
- multiberts
- multiberts-seed_0
- multiberts-seed_0-step_1400k
license: apache-2.0
---
# MultiBERTs, Intermediate Checkpoint - Seed 0, Step 1400k
MultiBERTs is a collection of checkpoints and a statistical library to support
robust research on BERT. We provide 25 BERT-base models trained with
similar hyper-parameters as
[the original BERT model](https://github.com/google-research/bert) but
with different random seeds, which causes variations in the initial weights and order of
training instances. The aim is to distinguish findings that apply to a specific
artifact (i.e., a particular instance of the model) from those that apply to the
more general procedure.
We also provide 140 intermediate checkpoints captured
during the course of pre-training (we saved 28 checkpoints for the first 5 runs).
The models were originally released through
[http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our
paper
[The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163).
This is model #0, captured at step 1400k (max: 2000k, i.e., 2M steps).
## Model Description
This model was captured during a reproduction of
[BERT-base uncased](https://github.com/google-research/bert), for English: it
is a Transformers model pretrained on a large corpus of English data, using the
Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP)
objectives.
The intended uses, limitations, training data and training procedure for the fully trained model are similar
to [BERT-base uncased](https://github.com/google-research/bert). Two major
differences with the original model:
* We pre-trained the MultiBERTs models for 2 million steps using sequence
length 512 (instead of 1 million steps using sequence length 128 then 512).
* We used an alternative version of Wikipedia and Books Corpus, initially
collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962).
This is a best-effort reproduction, and so it is probable that differences with
the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original
BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).
See our [technical report](https://arxiv.org/abs/2106.16163) for more details.
### How to use
Using code from
[BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on
Tensorflow:
```
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_1400k')
model = TFBertModel.from_pretrained("google/multiberts-seed_0-step_1400k")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
PyTorch version:
```
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_1400k')
model = BertModel.from_pretrained("google/multiberts-seed_0-step_1400k")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
## Citation info
```bibtex
@article{sellam2021multiberts,
title={The MultiBERTs: BERT Reproductions for Robustness Analysis},
author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick},
journal={arXiv preprint arXiv:2106.16163},
year={2021}
}
```
|
google/multiberts-seed_0-step_1200k | google | 2021-11-06T00:11:30Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"bert",
"pretraining",
"multiberts",
"multiberts-seed_0",
"multiberts-seed_0-step_1200k",
"en",
"arxiv:2106.16163",
"arxiv:1908.08962",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language: en
tags:
- multiberts
- multiberts-seed_0
- multiberts-seed_0-step_1200k
license: apache-2.0
---
# MultiBERTs, Intermediate Checkpoint - Seed 0, Step 1200k
MultiBERTs is a collection of checkpoints and a statistical library to support
robust research on BERT. We provide 25 BERT-base models trained with
similar hyper-parameters as
[the original BERT model](https://github.com/google-research/bert) but
with different random seeds, which causes variations in the initial weights and order of
training instances. The aim is to distinguish findings that apply to a specific
artifact (i.e., a particular instance of the model) from those that apply to the
more general procedure.
We also provide 140 intermediate checkpoints captured
during the course of pre-training (we saved 28 checkpoints for the first 5 runs).
The models were originally released through
[http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our
paper
[The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163).
This is model #0, captured at step 1200k (max: 2000k, i.e., 2M steps).
## Model Description
This model was captured during a reproduction of
[BERT-base uncased](https://github.com/google-research/bert), for English: it
is a Transformers model pretrained on a large corpus of English data, using the
Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP)
objectives.
The intended uses, limitations, training data and training procedure for the fully trained model are similar
to [BERT-base uncased](https://github.com/google-research/bert). Two major
differences with the original model:
* We pre-trained the MultiBERTs models for 2 million steps using sequence
length 512 (instead of 1 million steps using sequence length 128 then 512).
* We used an alternative version of Wikipedia and Books Corpus, initially
collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962).
This is a best-effort reproduction, and so it is probable that differences with
the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original
BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).
See our [technical report](https://arxiv.org/abs/2106.16163) for more details.
### How to use
Using code from
[BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on
Tensorflow:
```
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_1200k')
model = TFBertModel.from_pretrained("google/multiberts-seed_0-step_1200k")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
PyTorch version:
```
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_1200k')
model = BertModel.from_pretrained("google/multiberts-seed_0-step_1200k")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
## Citation info
```bibtex
@article{sellam2021multiberts,
title={The MultiBERTs: BERT Reproductions for Robustness Analysis},
author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick},
journal={arXiv preprint arXiv:2106.16163},
year={2021}
}
```
|
google/multiberts-seed_0-step_900k | google | 2021-11-06T00:06:27Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"bert",
"pretraining",
"multiberts",
"multiberts-seed_0",
"multiberts-seed_0-step_900k",
"en",
"arxiv:2106.16163",
"arxiv:1908.08962",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language: en
tags:
- multiberts
- multiberts-seed_0
- multiberts-seed_0-step_900k
license: apache-2.0
---
# MultiBERTs, Intermediate Checkpoint - Seed 0, Step 900k
MultiBERTs is a collection of checkpoints and a statistical library to support
robust research on BERT. We provide 25 BERT-base models trained with
similar hyper-parameters as
[the original BERT model](https://github.com/google-research/bert) but
with different random seeds, which causes variations in the initial weights and order of
training instances. The aim is to distinguish findings that apply to a specific
artifact (i.e., a particular instance of the model) from those that apply to the
more general procedure.
We also provide 140 intermediate checkpoints captured
during the course of pre-training (we saved 28 checkpoints for the first 5 runs).
The models were originally released through
[http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our
paper
[The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163).
This is model #0, captured at step 900k (max: 2000k, i.e., 2M steps).
## Model Description
This model was captured during a reproduction of
[BERT-base uncased](https://github.com/google-research/bert), for English: it
is a Transformers model pretrained on a large corpus of English data, using the
Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP)
objectives.
The intended uses, limitations, training data and training procedure for the fully trained model are similar
to [BERT-base uncased](https://github.com/google-research/bert). Two major
differences with the original model:
* We pre-trained the MultiBERTs models for 2 million steps using sequence
length 512 (instead of 1 million steps using sequence length 128 then 512).
* We used an alternative version of Wikipedia and Books Corpus, initially
collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962).
This is a best-effort reproduction, and so it is probable that differences with
the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original
BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).
See our [technical report](https://arxiv.org/abs/2106.16163) for more details.
### How to use
Using code from
[BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on
Tensorflow:
```
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_900k')
model = TFBertModel.from_pretrained("google/multiberts-seed_0-step_900k")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
PyTorch version:
```
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_900k')
model = BertModel.from_pretrained("google/multiberts-seed_0-step_900k")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
## Citation info
```bibtex
@article{sellam2021multiberts,
title={The MultiBERTs: BERT Reproductions for Robustness Analysis},
author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick},
journal={arXiv preprint arXiv:2106.16163},
year={2021}
}
```
|
google/multiberts-seed_0-step_500k | google | 2021-11-05T23:59:35Z | 7 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"bert",
"pretraining",
"multiberts",
"multiberts-seed_0",
"multiberts-seed_0-step_500k",
"en",
"arxiv:2106.16163",
"arxiv:1908.08962",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language: en
tags:
- multiberts
- multiberts-seed_0
- multiberts-seed_0-step_500k
license: apache-2.0
---
# MultiBERTs, Intermediate Checkpoint - Seed 0, Step 500k
MultiBERTs is a collection of checkpoints and a statistical library to support
robust research on BERT. We provide 25 BERT-base models trained with
similar hyper-parameters as
[the original BERT model](https://github.com/google-research/bert) but
with different random seeds, which causes variations in the initial weights and order of
training instances. The aim is to distinguish findings that apply to a specific
artifact (i.e., a particular instance of the model) from those that apply to the
more general procedure.
We also provide 140 intermediate checkpoints captured
during the course of pre-training (we saved 28 checkpoints for the first 5 runs).
The models were originally released through
[http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our
paper
[The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163).
This is model #0, captured at step 500k (max: 2000k, i.e., 2M steps).
## Model Description
This model was captured during a reproduction of
[BERT-base uncased](https://github.com/google-research/bert), for English: it
is a Transformers model pretrained on a large corpus of English data, using the
Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP)
objectives.
The intended uses, limitations, training data and training procedure for the fully trained model are similar
to [BERT-base uncased](https://github.com/google-research/bert). Two major
differences with the original model:
* We pre-trained the MultiBERTs models for 2 million steps using sequence
length 512 (instead of 1 million steps using sequence length 128 then 512).
* We used an alternative version of Wikipedia and Books Corpus, initially
collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962).
This is a best-effort reproduction, and so it is probable that differences with
the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original
BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).
See our [technical report](https://arxiv.org/abs/2106.16163) for more details.
### How to use
Using code from
[BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on
Tensorflow:
```
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_500k')
model = TFBertModel.from_pretrained("google/multiberts-seed_0-step_500k")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
PyTorch version:
```
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_500k')
model = BertModel.from_pretrained("google/multiberts-seed_0-step_500k")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
## Citation info
```bibtex
@article{sellam2021multiberts,
title={The MultiBERTs: BERT Reproductions for Robustness Analysis},
author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick},
journal={arXiv preprint arXiv:2106.16163},
year={2021}
}
```
|
google/multiberts-seed_0-step_400k | google | 2021-11-05T23:57:51Z | 7 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"bert",
"pretraining",
"multiberts",
"multiberts-seed_0",
"multiberts-seed_0-step_400k",
"en",
"arxiv:2106.16163",
"arxiv:1908.08962",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language: en
tags:
- multiberts
- multiberts-seed_0
- multiberts-seed_0-step_400k
license: apache-2.0
---
# MultiBERTs, Intermediate Checkpoint - Seed 0, Step 400k
MultiBERTs is a collection of checkpoints and a statistical library to support
robust research on BERT. We provide 25 BERT-base models trained with
similar hyper-parameters as
[the original BERT model](https://github.com/google-research/bert) but
with different random seeds, which causes variations in the initial weights and order of
training instances. The aim is to distinguish findings that apply to a specific
artifact (i.e., a particular instance of the model) from those that apply to the
more general procedure.
We also provide 140 intermediate checkpoints captured
during the course of pre-training (we saved 28 checkpoints for the first 5 runs).
The models were originally released through
[http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our
paper
[The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163).
This is model #0, captured at step 400k (max: 2000k, i.e., 2M steps).
## Model Description
This model was captured during a reproduction of
[BERT-base uncased](https://github.com/google-research/bert), for English: it
is a Transformers model pretrained on a large corpus of English data, using the
Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP)
objectives.
The intended uses, limitations, training data and training procedure for the fully trained model are similar
to [BERT-base uncased](https://github.com/google-research/bert). Two major
differences with the original model:
* We pre-trained the MultiBERTs models for 2 million steps using sequence
length 512 (instead of 1 million steps using sequence length 128 then 512).
* We used an alternative version of Wikipedia and Books Corpus, initially
collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962).
This is a best-effort reproduction, and so it is probable that differences with
the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original
BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).
See our [technical report](https://arxiv.org/abs/2106.16163) for more details.
### How to use
Using code from
[BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on
Tensorflow:
```
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_400k')
model = TFBertModel.from_pretrained("google/multiberts-seed_0-step_400k")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
PyTorch version:
```
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_400k')
model = BertModel.from_pretrained("google/multiberts-seed_0-step_400k")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
## Citation info
```bibtex
@article{sellam2021multiberts,
title={The MultiBERTs: BERT Reproductions for Robustness Analysis},
author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick},
journal={arXiv preprint arXiv:2106.16163},
year={2021}
}
```
|
google/multiberts-seed_0-step_300k | google | 2021-11-05T23:56:05Z | 8 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"bert",
"pretraining",
"multiberts",
"multiberts-seed_0",
"multiberts-seed_0-step_300k",
"en",
"arxiv:2106.16163",
"arxiv:1908.08962",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language: en
tags:
- multiberts
- multiberts-seed_0
- multiberts-seed_0-step_300k
license: apache-2.0
---
# MultiBERTs, Intermediate Checkpoint - Seed 0, Step 300k
MultiBERTs is a collection of checkpoints and a statistical library to support
robust research on BERT. We provide 25 BERT-base models trained with
similar hyper-parameters as
[the original BERT model](https://github.com/google-research/bert) but
with different random seeds, which causes variations in the initial weights and order of
training instances. The aim is to distinguish findings that apply to a specific
artifact (i.e., a particular instance of the model) from those that apply to the
more general procedure.
We also provide 140 intermediate checkpoints captured
during the course of pre-training (we saved 28 checkpoints for the first 5 runs).
The models were originally released through
[http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our
paper
[The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163).
This is model #0, captured at step 300k (max: 2000k, i.e., 2M steps).
## Model Description
This model was captured during a reproduction of
[BERT-base uncased](https://github.com/google-research/bert), for English: it
is a Transformers model pretrained on a large corpus of English data, using the
Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP)
objectives.
The intended uses, limitations, training data and training procedure for the fully trained model are similar
to [BERT-base uncased](https://github.com/google-research/bert). Two major
differences with the original model:
* We pre-trained the MultiBERTs models for 2 million steps using sequence
length 512 (instead of 1 million steps using sequence length 128 then 512).
* We used an alternative version of Wikipedia and Books Corpus, initially
collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962).
This is a best-effort reproduction, and so it is probable that differences with
the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original
BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).
See our [technical report](https://arxiv.org/abs/2106.16163) for more details.
### How to use
Using code from
[BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on
Tensorflow:
```
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_300k')
model = TFBertModel.from_pretrained("google/multiberts-seed_0-step_300k")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
PyTorch version:
```
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_300k')
model = BertModel.from_pretrained("google/multiberts-seed_0-step_300k")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
## Citation info
```bibtex
@article{sellam2021multiberts,
title={The MultiBERTs: BERT Reproductions for Robustness Analysis},
author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick},
journal={arXiv preprint arXiv:2106.16163},
year={2021}
}
```
|
google/multiberts-seed_0-step_200k | google | 2021-11-05T23:54:26Z | 1,606 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"bert",
"pretraining",
"multiberts",
"multiberts-seed_0",
"multiberts-seed_0-step_200k",
"en",
"arxiv:2106.16163",
"arxiv:1908.08962",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language: en
tags:
- multiberts
- multiberts-seed_0
- multiberts-seed_0-step_200k
license: apache-2.0
---
# MultiBERTs, Intermediate Checkpoint - Seed 0, Step 200k
MultiBERTs is a collection of checkpoints and a statistical library to support
robust research on BERT. We provide 25 BERT-base models trained with
similar hyper-parameters as
[the original BERT model](https://github.com/google-research/bert) but
with different random seeds, which causes variations in the initial weights and order of
training instances. The aim is to distinguish findings that apply to a specific
artifact (i.e., a particular instance of the model) from those that apply to the
more general procedure.
We also provide 140 intermediate checkpoints captured
during the course of pre-training (we saved 28 checkpoints for the first 5 runs).
The models were originally released through
[http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our
paper
[The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163).
This is model #0, captured at step 200k (max: 2000k, i.e., 2M steps).
## Model Description
This model was captured during a reproduction of
[BERT-base uncased](https://github.com/google-research/bert), for English: it
is a Transformers model pretrained on a large corpus of English data, using the
Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP)
objectives.
The intended uses, limitations, training data and training procedure for the fully trained model are similar
to [BERT-base uncased](https://github.com/google-research/bert). Two major
differences with the original model:
* We pre-trained the MultiBERTs models for 2 million steps using sequence
length 512 (instead of 1 million steps using sequence length 128 then 512).
* We used an alternative version of Wikipedia and Books Corpus, initially
collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962).
This is a best-effort reproduction, and so it is probable that differences with
the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original
BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).
See our [technical report](https://arxiv.org/abs/2106.16163) for more details.
### How to use
Using code from
[BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on
Tensorflow:
```
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_200k')
model = TFBertModel.from_pretrained("google/multiberts-seed_0-step_200k")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
PyTorch version:
```
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_200k')
model = BertModel.from_pretrained("google/multiberts-seed_0-step_200k")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
## Citation info
```bibtex
@article{sellam2021multiberts,
title={The MultiBERTs: BERT Reproductions for Robustness Analysis},
author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick},
journal={arXiv preprint arXiv:2106.16163},
year={2021}
}
```
|
google/multiberts-seed_0-step_160k | google | 2021-11-05T23:50:48Z | 7 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"bert",
"pretraining",
"multiberts",
"multiberts-seed_0",
"multiberts-seed_0-step_160k",
"en",
"arxiv:2106.16163",
"arxiv:1908.08962",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language: en
tags:
- multiberts
- multiberts-seed_0
- multiberts-seed_0-step_160k
license: apache-2.0
---
# MultiBERTs, Intermediate Checkpoint - Seed 0, Step 160k
MultiBERTs is a collection of checkpoints and a statistical library to support
robust research on BERT. We provide 25 BERT-base models trained with
similar hyper-parameters as
[the original BERT model](https://github.com/google-research/bert) but
with different random seeds, which causes variations in the initial weights and order of
training instances. The aim is to distinguish findings that apply to a specific
artifact (i.e., a particular instance of the model) from those that apply to the
more general procedure.
We also provide 140 intermediate checkpoints captured
during the course of pre-training (we saved 28 checkpoints for the first 5 runs).
The models were originally released through
[http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our
paper
[The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163).
This is model #0, captured at step 160k (max: 2000k, i.e., 2M steps).
## Model Description
This model was captured during a reproduction of
[BERT-base uncased](https://github.com/google-research/bert), for English: it
is a Transformers model pretrained on a large corpus of English data, using the
Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP)
objectives.
The intended uses, limitations, training data and training procedure for the fully trained model are similar
to [BERT-base uncased](https://github.com/google-research/bert). Two major
differences with the original model:
* We pre-trained the MultiBERTs models for 2 million steps using sequence
length 512 (instead of 1 million steps using sequence length 128 then 512).
* We used an alternative version of Wikipedia and Books Corpus, initially
collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962).
This is a best-effort reproduction, and so it is probable that differences with
the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original
BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).
See our [technical report](https://arxiv.org/abs/2106.16163) for more details.
### How to use
Using code from
[BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on
Tensorflow:
```
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_160k')
model = TFBertModel.from_pretrained("google/multiberts-seed_0-step_160k")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
PyTorch version:
```
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_160k')
model = BertModel.from_pretrained("google/multiberts-seed_0-step_160k")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
## Citation info
```bibtex
@article{sellam2021multiberts,
title={The MultiBERTs: BERT Reproductions for Robustness Analysis},
author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick},
journal={arXiv preprint arXiv:2106.16163},
year={2021}
}
```
|
google/multiberts-seed_0-step_140k | google | 2021-11-05T23:49:02Z | 9 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"bert",
"pretraining",
"multiberts",
"multiberts-seed_0",
"multiberts-seed_0-step_140k",
"en",
"arxiv:2106.16163",
"arxiv:1908.08962",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language: en
tags:
- multiberts
- multiberts-seed_0
- multiberts-seed_0-step_140k
license: apache-2.0
---
# MultiBERTs, Intermediate Checkpoint - Seed 0, Step 140k
MultiBERTs is a collection of checkpoints and a statistical library to support
robust research on BERT. We provide 25 BERT-base models trained with
similar hyper-parameters as
[the original BERT model](https://github.com/google-research/bert) but
with different random seeds, which causes variations in the initial weights and order of
training instances. The aim is to distinguish findings that apply to a specific
artifact (i.e., a particular instance of the model) from those that apply to the
more general procedure.
We also provide 140 intermediate checkpoints captured
during the course of pre-training (we saved 28 checkpoints for the first 5 runs).
The models were originally released through
[http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our
paper
[The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163).
This is model #0, captured at step 140k (max: 2000k, i.e., 2M steps).
## Model Description
This model was captured during a reproduction of
[BERT-base uncased](https://github.com/google-research/bert), for English: it
is a Transformers model pretrained on a large corpus of English data, using the
Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP)
objectives.
The intended uses, limitations, training data and training procedure for the fully trained model are similar
to [BERT-base uncased](https://github.com/google-research/bert). Two major
differences with the original model:
* We pre-trained the MultiBERTs models for 2 million steps using sequence
length 512 (instead of 1 million steps using sequence length 128 then 512).
* We used an alternative version of Wikipedia and Books Corpus, initially
collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962).
This is a best-effort reproduction, and so it is probable that differences with
the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original
BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).
See our [technical report](https://arxiv.org/abs/2106.16163) for more details.
### How to use
Using code from
[BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on
Tensorflow:
```
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_140k')
model = TFBertModel.from_pretrained("google/multiberts-seed_0-step_140k")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
PyTorch version:
```
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_140k')
model = BertModel.from_pretrained("google/multiberts-seed_0-step_140k")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
## Citation info
```bibtex
@article{sellam2021multiberts,
title={The MultiBERTs: BERT Reproductions for Robustness Analysis},
author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick},
journal={arXiv preprint arXiv:2106.16163},
year={2021}
}
```
|
google/multiberts-seed_0-step_100k | google | 2021-11-05T23:45:48Z | 20 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"bert",
"pretraining",
"multiberts",
"multiberts-seed_0",
"multiberts-seed_0-step_100k",
"en",
"arxiv:2106.16163",
"arxiv:1908.08962",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language: en
tags:
- multiberts
- multiberts-seed_0
- multiberts-seed_0-step_100k
license: apache-2.0
---
# MultiBERTs, Intermediate Checkpoint - Seed 0, Step 100k
MultiBERTs is a collection of checkpoints and a statistical library to support
robust research on BERT. We provide 25 BERT-base models trained with
similar hyper-parameters as
[the original BERT model](https://github.com/google-research/bert) but
with different random seeds, which causes variations in the initial weights and order of
training instances. The aim is to distinguish findings that apply to a specific
artifact (i.e., a particular instance of the model) from those that apply to the
more general procedure.
We also provide 140 intermediate checkpoints captured
during the course of pre-training (we saved 28 checkpoints for the first 5 runs).
The models were originally released through
[http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our
paper
[The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163).
This is model #0, captured at step 100k (max: 2000k, i.e., 2M steps).
## Model Description
This model was captured during a reproduction of
[BERT-base uncased](https://github.com/google-research/bert), for English: it
is a Transformers model pretrained on a large corpus of English data, using the
Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP)
objectives.
The intended uses, limitations, training data and training procedure for the fully trained model are similar
to [BERT-base uncased](https://github.com/google-research/bert). Two major
differences with the original model:
* We pre-trained the MultiBERTs models for 2 million steps using sequence
length 512 (instead of 1 million steps using sequence length 128 then 512).
* We used an alternative version of Wikipedia and Books Corpus, initially
collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962).
This is a best-effort reproduction, and so it is probable that differences with
the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original
BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).
See our [technical report](https://arxiv.org/abs/2106.16163) for more details.
### How to use
Using code from
[BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on
Tensorflow:
```
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_100k')
model = TFBertModel.from_pretrained("google/multiberts-seed_0-step_100k")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
PyTorch version:
```
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_100k')
model = BertModel.from_pretrained("google/multiberts-seed_0-step_100k")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
## Citation info
```bibtex
@article{sellam2021multiberts,
title={The MultiBERTs: BERT Reproductions for Robustness Analysis},
author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick},
journal={arXiv preprint arXiv:2106.16163},
year={2021}
}
```
|
google/multiberts-seed_0-step_80k | google | 2021-11-05T23:44:05Z | 12 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"bert",
"pretraining",
"multiberts",
"multiberts-seed_0",
"multiberts-seed_0-step_80k",
"en",
"arxiv:2106.16163",
"arxiv:1908.08962",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language: en
tags:
- multiberts
- multiberts-seed_0
- multiberts-seed_0-step_80k
license: apache-2.0
---
# MultiBERTs, Intermediate Checkpoint - Seed 0, Step 80k
MultiBERTs is a collection of checkpoints and a statistical library to support
robust research on BERT. We provide 25 BERT-base models trained with
similar hyper-parameters as
[the original BERT model](https://github.com/google-research/bert) but
with different random seeds, which causes variations in the initial weights and order of
training instances. The aim is to distinguish findings that apply to a specific
artifact (i.e., a particular instance of the model) from those that apply to the
more general procedure.
We also provide 140 intermediate checkpoints captured
during the course of pre-training (we saved 28 checkpoints for the first 5 runs).
The models were originally released through
[http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our
paper
[The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163).
This is model #0, captured at step 80k (max: 2000k, i.e., 2M steps).
## Model Description
This model was captured during a reproduction of
[BERT-base uncased](https://github.com/google-research/bert), for English: it
is a Transformers model pretrained on a large corpus of English data, using the
Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP)
objectives.
The intended uses, limitations, training data and training procedure for the fully trained model are similar
to [BERT-base uncased](https://github.com/google-research/bert). Two major
differences with the original model:
* We pre-trained the MultiBERTs models for 2 million steps using sequence
length 512 (instead of 1 million steps using sequence length 128 then 512).
* We used an alternative version of Wikipedia and Books Corpus, initially
collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962).
This is a best-effort reproduction, and so it is probable that differences with
the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original
BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).
See our [technical report](https://arxiv.org/abs/2106.16163) for more details.
### How to use
Using code from
[BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on
Tensorflow:
```
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_80k')
model = TFBertModel.from_pretrained("google/multiberts-seed_0-step_80k")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
PyTorch version:
```
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_80k')
model = BertModel.from_pretrained("google/multiberts-seed_0-step_80k")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
## Citation info
```bibtex
@article{sellam2021multiberts,
title={The MultiBERTs: BERT Reproductions for Robustness Analysis},
author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick},
journal={arXiv preprint arXiv:2106.16163},
year={2021}
}
```
|
google/multiberts-seed_0-step_60k | google | 2021-11-05T23:42:02Z | 8 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"bert",
"pretraining",
"multiberts",
"multiberts-seed_0",
"multiberts-seed_0-step_60k",
"en",
"arxiv:2106.16163",
"arxiv:1908.08962",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language: en
tags:
- multiberts
- multiberts-seed_0
- multiberts-seed_0-step_60k
license: apache-2.0
---
# MultiBERTs, Intermediate Checkpoint - Seed 0, Step 60k
MultiBERTs is a collection of checkpoints and a statistical library to support
robust research on BERT. We provide 25 BERT-base models trained with
similar hyper-parameters as
[the original BERT model](https://github.com/google-research/bert) but
with different random seeds, which causes variations in the initial weights and order of
training instances. The aim is to distinguish findings that apply to a specific
artifact (i.e., a particular instance of the model) from those that apply to the
more general procedure.
We also provide 140 intermediate checkpoints captured
during the course of pre-training (we saved 28 checkpoints for the first 5 runs).
The models were originally released through
[http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our
paper
[The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163).
This is model #0, captured at step 60k (max: 2000k, i.e., 2M steps).
## Model Description
This model was captured during a reproduction of
[BERT-base uncased](https://github.com/google-research/bert), for English: it
is a Transformers model pretrained on a large corpus of English data, using the
Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP)
objectives.
The intended uses, limitations, training data and training procedure for the fully trained model are similar
to [BERT-base uncased](https://github.com/google-research/bert). Two major
differences with the original model:
* We pre-trained the MultiBERTs models for 2 million steps using sequence
length 512 (instead of 1 million steps using sequence length 128 then 512).
* We used an alternative version of Wikipedia and Books Corpus, initially
collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962).
This is a best-effort reproduction, and so it is probable that differences with
the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original
BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).
See our [technical report](https://arxiv.org/abs/2106.16163) for more details.
### How to use
Using code from
[BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on
Tensorflow:
```
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_60k')
model = TFBertModel.from_pretrained("google/multiberts-seed_0-step_60k")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
PyTorch version:
```
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_60k')
model = BertModel.from_pretrained("google/multiberts-seed_0-step_60k")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
## Citation info
```bibtex
@article{sellam2021multiberts,
title={The MultiBERTs: BERT Reproductions for Robustness Analysis},
author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick},
journal={arXiv preprint arXiv:2106.16163},
year={2021}
}
```
|
google/multiberts-seed_0-step_40k | google | 2021-11-05T23:40:21Z | 65 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"bert",
"pretraining",
"multiberts",
"multiberts-seed_0",
"multiberts-seed_0-step_40k",
"en",
"arxiv:2106.16163",
"arxiv:1908.08962",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language: en
tags:
- multiberts
- multiberts-seed_0
- multiberts-seed_0-step_40k
license: apache-2.0
---
# MultiBERTs, Intermediate Checkpoint - Seed 0, Step 40k
MultiBERTs is a collection of checkpoints and a statistical library to support
robust research on BERT. We provide 25 BERT-base models trained with
similar hyper-parameters as
[the original BERT model](https://github.com/google-research/bert) but
with different random seeds, which causes variations in the initial weights and order of
training instances. The aim is to distinguish findings that apply to a specific
artifact (i.e., a particular instance of the model) from those that apply to the
more general procedure.
We also provide 140 intermediate checkpoints captured
during the course of pre-training (we saved 28 checkpoints for the first 5 runs).
The models were originally released through
[http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our
paper
[The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163).
This is model #0, captured at step 40k (max: 2000k, i.e., 2M steps).
## Model Description
This model was captured during a reproduction of
[BERT-base uncased](https://github.com/google-research/bert), for English: it
is a Transformers model pretrained on a large corpus of English data, using the
Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP)
objectives.
The intended uses, limitations, training data and training procedure for the fully trained model are similar
to [BERT-base uncased](https://github.com/google-research/bert). Two major
differences with the original model:
* We pre-trained the MultiBERTs models for 2 million steps using sequence
length 512 (instead of 1 million steps using sequence length 128 then 512).
* We used an alternative version of Wikipedia and Books Corpus, initially
collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962).
This is a best-effort reproduction, and so it is probable that differences with
the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original
BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).
See our [technical report](https://arxiv.org/abs/2106.16163) for more details.
### How to use
Using code from
[BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on
Tensorflow:
```
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_40k')
model = TFBertModel.from_pretrained("google/multiberts-seed_0-step_40k")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
PyTorch version:
```
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_40k')
model = BertModel.from_pretrained("google/multiberts-seed_0-step_40k")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
## Citation info
```bibtex
@article{sellam2021multiberts,
title={The MultiBERTs: BERT Reproductions for Robustness Analysis},
author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick},
journal={arXiv preprint arXiv:2106.16163},
year={2021}
}
```
|
google/multiberts-seed_0-step_20k | google | 2021-11-05T23:38:42Z | 1,846 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"bert",
"pretraining",
"multiberts",
"multiberts-seed_0",
"multiberts-seed_0-step_20k",
"en",
"arxiv:2106.16163",
"arxiv:1908.08962",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language: en
tags:
- multiberts
- multiberts-seed_0
- multiberts-seed_0-step_20k
license: apache-2.0
---
# MultiBERTs, Intermediate Checkpoint - Seed 0, Step 20k
MultiBERTs is a collection of checkpoints and a statistical library to support
robust research on BERT. We provide 25 BERT-base models trained with
similar hyper-parameters as
[the original BERT model](https://github.com/google-research/bert) but
with different random seeds, which causes variations in the initial weights and order of
training instances. The aim is to distinguish findings that apply to a specific
artifact (i.e., a particular instance of the model) from those that apply to the
more general procedure.
We also provide 140 intermediate checkpoints captured
during the course of pre-training (we saved 28 checkpoints for the first 5 runs).
The models were originally released through
[http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our
paper
[The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163).
This is model #0, captured at step 20k (max: 2000k, i.e., 2M steps).
## Model Description
This model was captured during a reproduction of
[BERT-base uncased](https://github.com/google-research/bert), for English: it
is a Transformers model pretrained on a large corpus of English data, using the
Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP)
objectives.
The intended uses, limitations, training data and training procedure for the fully trained model are similar
to [BERT-base uncased](https://github.com/google-research/bert). Two major
differences with the original model:
* We pre-trained the MultiBERTs models for 2 million steps using sequence
length 512 (instead of 1 million steps using sequence length 128 then 512).
* We used an alternative version of Wikipedia and Books Corpus, initially
collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962).
This is a best-effort reproduction, and so it is probable that differences with
the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original
BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).
See our [technical report](https://arxiv.org/abs/2106.16163) for more details.
### How to use
Using code from
[BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on
Tensorflow:
```
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_20k')
model = TFBertModel.from_pretrained("google/multiberts-seed_0-step_20k")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
PyTorch version:
```
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_20k')
model = BertModel.from_pretrained("google/multiberts-seed_0-step_20k")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
## Citation info
```bibtex
@article{sellam2021multiberts,
title={The MultiBERTs: BERT Reproductions for Robustness Analysis},
author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick},
journal={arXiv preprint arXiv:2106.16163},
year={2021}
}
```
|
google/multiberts-seed_22 | google | 2021-11-05T22:47:36Z | 13 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"bert",
"pretraining",
"multiberts",
"multiberts-seed_22",
"en",
"arxiv:2106.16163",
"arxiv:1908.08962",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language: en
tags:
- multiberts
- multiberts-seed_22
license: apache-2.0
---
# MultiBERTs - Seed 22
MultiBERTs is a collection of checkpoints and a statistical library to support
robust research on BERT. We provide 25 BERT-base models trained with
similar hyper-parameters as
[the original BERT model](https://github.com/google-research/bert) but
with different random seeds, which causes variations in the initial weights and order of
training instances. The aim is to distinguish findings that apply to a specific
artifact (i.e., a particular instance of the model) from those that apply to the
more general procedure.
We also provide 140 intermediate checkpoints captured
during the course of pre-training (we saved 28 checkpoints for the first 5 runs).
The models were originally released through
[http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our
paper
[The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163).
This is model #22.
## Model Description
This model is a reproduction of
[BERT-base uncased](https://github.com/google-research/bert), for English: it
is a Transformers model pretrained on a large corpus of English data, using the
Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP)
objectives.
The intended uses, limitations, training data and training procedure are similar
to [BERT-base uncased](https://github.com/google-research/bert). Two major
differences with the original model:
* We pre-trained the MultiBERTs models for 2 million steps using sequence
length 512 (instead of 1 million steps using sequence length 128 then 512).
* We used an alternative version of Wikipedia and Books Corpus, initially
collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962).
This is a best-effort reproduction, and so it is probable that differences with
the original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original
BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).
See our [technical report](https://arxiv.org/abs/2106.16163) for more details.
### How to use
Using code from
[BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on
Tensorflow:
```
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_22')
model = TFBertModel.from_pretrained("google/multiberts-seed_22")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
PyTorch version:
```
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_22')
model = BertModel.from_pretrained("google/multiberts-seed_22")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
## Citation info
```bibtex
@article{sellam2021multiberts,
title={The MultiBERTs: BERT Reproductions for Robustness Analysis},
author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick},
journal={arXiv preprint arXiv:2106.16163},
year={2021}
}
```
|
google/multiberts-seed_21 | google | 2021-11-05T22:45:53Z | 12 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"bert",
"pretraining",
"multiberts",
"multiberts-seed_21",
"en",
"arxiv:2106.16163",
"arxiv:1908.08962",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language: en
tags:
- multiberts
- multiberts-seed_21
license: apache-2.0
---
# MultiBERTs - Seed 21
MultiBERTs is a collection of checkpoints and a statistical library to support
robust research on BERT. We provide 25 BERT-base models trained with
similar hyper-parameters as
[the original BERT model](https://github.com/google-research/bert) but
with different random seeds, which causes variations in the initial weights and order of
training instances. The aim is to distinguish findings that apply to a specific
artifact (i.e., a particular instance of the model) from those that apply to the
more general procedure.
We also provide 140 intermediate checkpoints captured
during the course of pre-training (we saved 28 checkpoints for the first 5 runs).
The models were originally released through
[http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our
paper
[The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163).
This is model #21.
## Model Description
This model is a reproduction of
[BERT-base uncased](https://github.com/google-research/bert), for English: it
is a Transformers model pretrained on a large corpus of English data, using the
Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP)
objectives.
The intended uses, limitations, training data and training procedure are similar
to [BERT-base uncased](https://github.com/google-research/bert). Two major
differences with the original model:
* We pre-trained the MultiBERTs models for 2 million steps using sequence
length 512 (instead of 1 million steps using sequence length 128 then 512).
* We used an alternative version of Wikipedia and Books Corpus, initially
collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962).
This is a best-effort reproduction, and so it is probable that differences with
the original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original
BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).
See our [technical report](https://arxiv.org/abs/2106.16163) for more details.
### How to use
Using code from
[BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on
Tensorflow:
```
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_21')
model = TFBertModel.from_pretrained("google/multiberts-seed_21")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
PyTorch version:
```
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_21')
model = BertModel.from_pretrained("google/multiberts-seed_21")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
## Citation info
```bibtex
@article{sellam2021multiberts,
title={The MultiBERTs: BERT Reproductions for Robustness Analysis},
author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick},
journal={arXiv preprint arXiv:2106.16163},
year={2021}
}
```
|
google/multiberts-seed_20 | google | 2021-11-05T22:43:59Z | 11 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"bert",
"pretraining",
"multiberts",
"multiberts-seed_20",
"en",
"arxiv:2106.16163",
"arxiv:1908.08962",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language: en
tags:
- multiberts
- multiberts-seed_20
license: apache-2.0
---
# MultiBERTs - Seed 20
MultiBERTs is a collection of checkpoints and a statistical library to support
robust research on BERT. We provide 25 BERT-base models trained with
similar hyper-parameters as
[the original BERT model](https://github.com/google-research/bert) but
with different random seeds, which causes variations in the initial weights and order of
training instances. The aim is to distinguish findings that apply to a specific
artifact (i.e., a particular instance of the model) from those that apply to the
more general procedure.
We also provide 140 intermediate checkpoints captured
during the course of pre-training (we saved 28 checkpoints for the first 5 runs).
The models were originally released through
[http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our
paper
[The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163).
This is model #20.
## Model Description
This model is a reproduction of
[BERT-base uncased](https://github.com/google-research/bert), for English: it
is a Transformers model pretrained on a large corpus of English data, using the
Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP)
objectives.
The intended uses, limitations, training data and training procedure are similar
to [BERT-base uncased](https://github.com/google-research/bert). Two major
differences with the original model:
* We pre-trained the MultiBERTs models for 2 million steps using sequence
length 512 (instead of 1 million steps using sequence length 128 then 512).
* We used an alternative version of Wikipedia and Books Corpus, initially
collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962).
This is a best-effort reproduction, and so it is probable that differences with
the original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original
BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).
See our [technical report](https://arxiv.org/abs/2106.16163) for more details.
### How to use
Using code from
[BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on
Tensorflow:
```
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_20')
model = TFBertModel.from_pretrained("google/multiberts-seed_20")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
PyTorch version:
```
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_20')
model = BertModel.from_pretrained("google/multiberts-seed_20")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
## Citation info
```bibtex
@article{sellam2021multiberts,
title={The MultiBERTs: BERT Reproductions for Robustness Analysis},
author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick},
journal={arXiv preprint arXiv:2106.16163},
year={2021}
}
```
|
google/multiberts-seed_19 | google | 2021-11-05T22:42:17Z | 10 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"bert",
"pretraining",
"multiberts",
"multiberts-seed_19",
"en",
"arxiv:2106.16163",
"arxiv:1908.08962",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language: en
tags:
- multiberts
- multiberts-seed_19
license: apache-2.0
---
# MultiBERTs - Seed 19
MultiBERTs is a collection of checkpoints and a statistical library to support
robust research on BERT. We provide 25 BERT-base models trained with
similar hyper-parameters as
[the original BERT model](https://github.com/google-research/bert) but
with different random seeds, which causes variations in the initial weights and order of
training instances. The aim is to distinguish findings that apply to a specific
artifact (i.e., a particular instance of the model) from those that apply to the
more general procedure.
We also provide 140 intermediate checkpoints captured
during the course of pre-training (we saved 28 checkpoints for the first 5 runs).
The models were originally released through
[http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our
paper
[The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163).
This is model #19.
## Model Description
This model is a reproduction of
[BERT-base uncased](https://github.com/google-research/bert), for English: it
is a Transformers model pretrained on a large corpus of English data, using the
Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP)
objectives.
The intended uses, limitations, training data and training procedure are similar
to [BERT-base uncased](https://github.com/google-research/bert). Two major
differences with the original model:
* We pre-trained the MultiBERTs models for 2 million steps using sequence
length 512 (instead of 1 million steps using sequence length 128 then 512).
* We used an alternative version of Wikipedia and Books Corpus, initially
collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962).
This is a best-effort reproduction, and so it is probable that differences with
the original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original
BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).
See our [technical report](https://arxiv.org/abs/2106.16163) for more details.
### How to use
Using code from
[BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on
Tensorflow:
```
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_19')
model = TFBertModel.from_pretrained("google/multiberts-seed_19")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
PyTorch version:
```
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_19')
model = BertModel.from_pretrained("google/multiberts-seed_19")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
## Citation info
```bibtex
@article{sellam2021multiberts,
title={The MultiBERTs: BERT Reproductions for Robustness Analysis},
author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick},
journal={arXiv preprint arXiv:2106.16163},
year={2021}
}
```
|
google/multiberts-seed_17 | google | 2021-11-05T22:38:31Z | 11 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"bert",
"pretraining",
"multiberts",
"multiberts-seed_17",
"en",
"arxiv:2106.16163",
"arxiv:1908.08962",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language: en
tags:
- multiberts
- multiberts-seed_17
license: apache-2.0
---
# MultiBERTs - Seed 17
MultiBERTs is a collection of checkpoints and a statistical library to support
robust research on BERT. We provide 25 BERT-base models trained with
similar hyper-parameters as
[the original BERT model](https://github.com/google-research/bert) but
with different random seeds, which causes variations in the initial weights and order of
training instances. The aim is to distinguish findings that apply to a specific
artifact (i.e., a particular instance of the model) from those that apply to the
more general procedure.
We also provide 140 intermediate checkpoints captured
during the course of pre-training (we saved 28 checkpoints for the first 5 runs).
The models were originally released through
[http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our
paper
[The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163).
This is model #17.
## Model Description
This model is a reproduction of
[BERT-base uncased](https://github.com/google-research/bert), for English: it
is a Transformers model pretrained on a large corpus of English data, using the
Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP)
objectives.
The intended uses, limitations, training data and training procedure are similar
to [BERT-base uncased](https://github.com/google-research/bert). Two major
differences with the original model:
* We pre-trained the MultiBERTs models for 2 million steps using sequence
length 512 (instead of 1 million steps using sequence length 128 then 512).
* We used an alternative version of Wikipedia and Books Corpus, initially
collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962).
This is a best-effort reproduction, and so it is probable that differences with
the original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original
BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).
See our [technical report](https://arxiv.org/abs/2106.16163) for more details.
### How to use
Using code from
[BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on
Tensorflow:
```
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_17')
model = TFBertModel.from_pretrained("google/multiberts-seed_17")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
PyTorch version:
```
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_17')
model = BertModel.from_pretrained("google/multiberts-seed_17")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
## Citation info
```bibtex
@article{sellam2021multiberts,
title={The MultiBERTs: BERT Reproductions for Robustness Analysis},
author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick},
journal={arXiv preprint arXiv:2106.16163},
year={2021}
}
```
|
google/multiberts-seed_16 | google | 2021-11-05T22:36:56Z | 10 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"bert",
"pretraining",
"multiberts",
"multiberts-seed_16",
"en",
"arxiv:2106.16163",
"arxiv:1908.08962",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language: en
tags:
- multiberts
- multiberts-seed_16
license: apache-2.0
---
# MultiBERTs - Seed 16
MultiBERTs is a collection of checkpoints and a statistical library to support
robust research on BERT. We provide 25 BERT-base models trained with
similar hyper-parameters as
[the original BERT model](https://github.com/google-research/bert) but
with different random seeds, which causes variations in the initial weights and order of
training instances. The aim is to distinguish findings that apply to a specific
artifact (i.e., a particular instance of the model) from those that apply to the
more general procedure.
We also provide 140 intermediate checkpoints captured
during the course of pre-training (we saved 28 checkpoints for the first 5 runs).
The models were originally released through
[http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our
paper
[The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163).
This is model #16.
## Model Description
This model is a reproduction of
[BERT-base uncased](https://github.com/google-research/bert), for English: it
is a Transformers model pretrained on a large corpus of English data, using the
Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP)
objectives.
The intended uses, limitations, training data and training procedure are similar
to [BERT-base uncased](https://github.com/google-research/bert). Two major
differences with the original model:
* We pre-trained the MultiBERTs models for 2 million steps using sequence
length 512 (instead of 1 million steps using sequence length 128 then 512).
* We used an alternative version of Wikipedia and Books Corpus, initially
collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962).
This is a best-effort reproduction, and so it is probable that differences with
the original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original
BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).
See our [technical report](https://arxiv.org/abs/2106.16163) for more details.
### How to use
Using code from
[BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on
Tensorflow:
```
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_16')
model = TFBertModel.from_pretrained("google/multiberts-seed_16")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
PyTorch version:
```
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_16')
model = BertModel.from_pretrained("google/multiberts-seed_16")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
## Citation info
```bibtex
@article{sellam2021multiberts,
title={The MultiBERTs: BERT Reproductions for Robustness Analysis},
author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick},
journal={arXiv preprint arXiv:2106.16163},
year={2021}
}
```
|
google/multiberts-seed_14 | google | 2021-11-05T22:33:27Z | 14 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"bert",
"pretraining",
"multiberts",
"multiberts-seed_14",
"en",
"arxiv:2106.16163",
"arxiv:1908.08962",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language: en
tags:
- multiberts
- multiberts-seed_14
license: apache-2.0
---
# MultiBERTs - Seed 14
MultiBERTs is a collection of checkpoints and a statistical library to support
robust research on BERT. We provide 25 BERT-base models trained with
similar hyper-parameters as
[the original BERT model](https://github.com/google-research/bert) but
with different random seeds, which causes variations in the initial weights and order of
training instances. The aim is to distinguish findings that apply to a specific
artifact (i.e., a particular instance of the model) from those that apply to the
more general procedure.
We also provide 140 intermediate checkpoints captured
during the course of pre-training (we saved 28 checkpoints for the first 5 runs).
The models were originally released through
[http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our
paper
[The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163).
This is model #14.
## Model Description
This model is a reproduction of
[BERT-base uncased](https://github.com/google-research/bert), for English: it
is a Transformers model pretrained on a large corpus of English data, using the
Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP)
objectives.
The intended uses, limitations, training data and training procedure are similar
to [BERT-base uncased](https://github.com/google-research/bert). Two major
differences with the original model:
* We pre-trained the MultiBERTs models for 2 million steps using sequence
length 512 (instead of 1 million steps using sequence length 128 then 512).
* We used an alternative version of Wikipedia and Books Corpus, initially
collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962).
This is a best-effort reproduction, and so it is probable that differences with
the original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original
BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).
See our [technical report](https://arxiv.org/abs/2106.16163) for more details.
### How to use
Using code from
[BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on
Tensorflow:
```
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_14')
model = TFBertModel.from_pretrained("google/multiberts-seed_14")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
PyTorch version:
```
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_14')
model = BertModel.from_pretrained("google/multiberts-seed_14")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
## Citation info
```bibtex
@article{sellam2021multiberts,
title={The MultiBERTs: BERT Reproductions for Robustness Analysis},
author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick},
journal={arXiv preprint arXiv:2106.16163},
year={2021}
}
```
|
google/multiberts-seed_12 | google | 2021-11-05T22:30:05Z | 10 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"bert",
"pretraining",
"multiberts",
"multiberts-seed_12",
"en",
"arxiv:2106.16163",
"arxiv:1908.08962",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language: en
tags:
- multiberts
- multiberts-seed_12
license: apache-2.0
---
# MultiBERTs - Seed 12
MultiBERTs is a collection of checkpoints and a statistical library to support
robust research on BERT. We provide 25 BERT-base models trained with
similar hyper-parameters as
[the original BERT model](https://github.com/google-research/bert) but
with different random seeds, which causes variations in the initial weights and order of
training instances. The aim is to distinguish findings that apply to a specific
artifact (i.e., a particular instance of the model) from those that apply to the
more general procedure.
We also provide 140 intermediate checkpoints captured
during the course of pre-training (we saved 28 checkpoints for the first 5 runs).
The models were originally released through
[http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our
paper
[The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163).
This is model #12.
## Model Description
This model is a reproduction of
[BERT-base uncased](https://github.com/google-research/bert), for English: it
is a Transformers model pretrained on a large corpus of English data, using the
Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP)
objectives.
The intended uses, limitations, training data and training procedure are similar
to [BERT-base uncased](https://github.com/google-research/bert). Two major
differences with the original model:
* We pre-trained the MultiBERTs models for 2 million steps using sequence
length 512 (instead of 1 million steps using sequence length 128 then 512).
* We used an alternative version of Wikipedia and Books Corpus, initially
collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962).
This is a best-effort reproduction, and so it is probable that differences with
the original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original
BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).
See our [technical report](https://arxiv.org/abs/2106.16163) for more details.
### How to use
Using code from
[BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on
Tensorflow:
```
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_12')
model = TFBertModel.from_pretrained("google/multiberts-seed_12")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
PyTorch version:
```
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_12')
model = BertModel.from_pretrained("google/multiberts-seed_12")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
## Citation info
```bibtex
@article{sellam2021multiberts,
title={The MultiBERTs: BERT Reproductions for Robustness Analysis},
author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick},
journal={arXiv preprint arXiv:2106.16163},
year={2021}
}
```
|
google/multiberts-seed_11 | google | 2021-11-05T22:28:19Z | 11 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"bert",
"pretraining",
"multiberts",
"multiberts-seed_11",
"en",
"arxiv:2106.16163",
"arxiv:1908.08962",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language: en
tags:
- multiberts
- multiberts-seed_11
license: apache-2.0
---
# MultiBERTs - Seed 11
MultiBERTs is a collection of checkpoints and a statistical library to support
robust research on BERT. We provide 25 BERT-base models trained with
similar hyper-parameters as
[the original BERT model](https://github.com/google-research/bert) but
with different random seeds, which causes variations in the initial weights and order of
training instances. The aim is to distinguish findings that apply to a specific
artifact (i.e., a particular instance of the model) from those that apply to the
more general procedure.
We also provide 140 intermediate checkpoints captured
during the course of pre-training (we saved 28 checkpoints for the first 5 runs).
The models were originally released through
[http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our
paper
[The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163).
This is model #11.
## Model Description
This model is a reproduction of
[BERT-base uncased](https://github.com/google-research/bert), for English: it
is a Transformers model pretrained on a large corpus of English data, using the
Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP)
objectives.
The intended uses, limitations, training data and training procedure are similar
to [BERT-base uncased](https://github.com/google-research/bert). Two major
differences with the original model:
* We pre-trained the MultiBERTs models for 2 million steps using sequence
length 512 (instead of 1 million steps using sequence length 128 then 512).
* We used an alternative version of Wikipedia and Books Corpus, initially
collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962).
This is a best-effort reproduction, and so it is probable that differences with
the original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original
BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).
See our [technical report](https://arxiv.org/abs/2106.16163) for more details.
### How to use
Using code from
[BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on
Tensorflow:
```
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_11')
model = TFBertModel.from_pretrained("google/multiberts-seed_11")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
PyTorch version:
```
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_11')
model = BertModel.from_pretrained("google/multiberts-seed_11")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
## Citation info
```bibtex
@article{sellam2021multiberts,
title={The MultiBERTs: BERT Reproductions for Robustness Analysis},
author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick},
journal={arXiv preprint arXiv:2106.16163},
year={2021}
}
```
|
google/multiberts-seed_10 | google | 2021-11-05T22:26:09Z | 11 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"bert",
"pretraining",
"multiberts",
"multiberts-seed_10",
"en",
"arxiv:2106.16163",
"arxiv:1908.08962",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language: en
tags:
- multiberts
- multiberts-seed_10
license: apache-2.0
---
# MultiBERTs - Seed 10
MultiBERTs is a collection of checkpoints and a statistical library to support
robust research on BERT. We provide 25 BERT-base models trained with
similar hyper-parameters as
[the original BERT model](https://github.com/google-research/bert) but
with different random seeds, which causes variations in the initial weights and order of
training instances. The aim is to distinguish findings that apply to a specific
artifact (i.e., a particular instance of the model) from those that apply to the
more general procedure.
We also provide 140 intermediate checkpoints captured
during the course of pre-training (we saved 28 checkpoints for the first 5 runs).
The models were originally released through
[http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our
paper
[The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163).
This is model #10.
## Model Description
This model is a reproduction of
[BERT-base uncased](https://github.com/google-research/bert), for English: it
is a Transformers model pretrained on a large corpus of English data, using the
Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP)
objectives.
The intended uses, limitations, training data and training procedure are similar
to [BERT-base uncased](https://github.com/google-research/bert). Two major
differences with the original model:
* We pre-trained the MultiBERTs models for 2 million steps using sequence
length 512 (instead of 1 million steps using sequence length 128 then 512).
* We used an alternative version of Wikipedia and Books Corpus, initially
collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962).
This is a best-effort reproduction, and so it is probable that differences with
the original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original
BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).
See our [technical report](https://arxiv.org/abs/2106.16163) for more details.
### How to use
Using code from
[BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on
Tensorflow:
```
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_10')
model = TFBertModel.from_pretrained("google/multiberts-seed_10")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
PyTorch version:
```
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_10')
model = BertModel.from_pretrained("google/multiberts-seed_10")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
## Citation info
```bibtex
@article{sellam2021multiberts,
title={The MultiBERTs: BERT Reproductions for Robustness Analysis},
author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick},
journal={arXiv preprint arXiv:2106.16163},
year={2021}
}
```
|
google/multiberts-seed_9 | google | 2021-11-05T22:23:00Z | 10 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"bert",
"pretraining",
"multiberts",
"multiberts-seed_9",
"en",
"arxiv:2106.16163",
"arxiv:1908.08962",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language: en
tags:
- multiberts
- multiberts-seed_9
license: apache-2.0
---
# MultiBERTs - Seed 9
MultiBERTs is a collection of checkpoints and a statistical library to support
robust research on BERT. We provide 25 BERT-base models trained with
similar hyper-parameters as
[the original BERT model](https://github.com/google-research/bert) but
with different random seeds, which causes variations in the initial weights and order of
training instances. The aim is to distinguish findings that apply to a specific
artifact (i.e., a particular instance of the model) from those that apply to the
more general procedure.
We also provide 140 intermediate checkpoints captured
during the course of pre-training (we saved 28 checkpoints for the first 5 runs).
The models were originally released through
[http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our
paper
[The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163).
This is model #9.
## Model Description
This model is a reproduction of
[BERT-base uncased](https://github.com/google-research/bert), for English: it
is a Transformers model pretrained on a large corpus of English data, using the
Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP)
objectives.
The intended uses, limitations, training data and training procedure are similar
to [BERT-base uncased](https://github.com/google-research/bert). Two major
differences with the original model:
* We pre-trained the MultiBERTs models for 2 million steps using sequence
length 512 (instead of 1 million steps using sequence length 128 then 512).
* We used an alternative version of Wikipedia and Books Corpus, initially
collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962).
This is a best-effort reproduction, and so it is probable that differences with
the original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original
BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).
See our [technical report](https://arxiv.org/abs/2106.16163) for more details.
### How to use
Using code from
[BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on
Tensorflow:
```
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_9')
model = TFBertModel.from_pretrained("google/multiberts-seed_9")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
PyTorch version:
```
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_9')
model = BertModel.from_pretrained("google/multiberts-seed_9")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
## Citation info
```bibtex
@article{sellam2021multiberts,
title={The MultiBERTs: BERT Reproductions for Robustness Analysis},
author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick},
journal={arXiv preprint arXiv:2106.16163},
year={2021}
}
```
|
google/multiberts-seed_7 | google | 2021-11-05T22:19:19Z | 19 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"bert",
"pretraining",
"multiberts",
"multiberts-seed_7",
"en",
"arxiv:2106.16163",
"arxiv:1908.08962",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language: en
tags:
- multiberts
- multiberts-seed_7
license: apache-2.0
---
# MultiBERTs - Seed 7
MultiBERTs is a collection of checkpoints and a statistical library to support
robust research on BERT. We provide 25 BERT-base models trained with
similar hyper-parameters as
[the original BERT model](https://github.com/google-research/bert) but
with different random seeds, which causes variations in the initial weights and order of
training instances. The aim is to distinguish findings that apply to a specific
artifact (i.e., a particular instance of the model) from those that apply to the
more general procedure.
We also provide 140 intermediate checkpoints captured
during the course of pre-training (we saved 28 checkpoints for the first 5 runs).
The models were originally released through
[http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our
paper
[The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163).
This is model #7.
## Model Description
This model is a reproduction of
[BERT-base uncased](https://github.com/google-research/bert), for English: it
is a Transformers model pretrained on a large corpus of English data, using the
Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP)
objectives.
The intended uses, limitations, training data and training procedure are similar
to [BERT-base uncased](https://github.com/google-research/bert). Two major
differences with the original model:
* We pre-trained the MultiBERTs models for 2 million steps using sequence
length 512 (instead of 1 million steps using sequence length 128 then 512).
* We used an alternative version of Wikipedia and Books Corpus, initially
collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962).
This is a best-effort reproduction, and so it is probable that differences with
the original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original
BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).
See our [technical report](https://arxiv.org/abs/2106.16163) for more details.
### How to use
Using code from
[BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on
Tensorflow:
```
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_7')
model = TFBertModel.from_pretrained("google/multiberts-seed_7")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
PyTorch version:
```
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_7')
model = BertModel.from_pretrained("google/multiberts-seed_7")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
## Citation info
```bibtex
@article{sellam2021multiberts,
title={The MultiBERTs: BERT Reproductions for Robustness Analysis},
author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick},
journal={arXiv preprint arXiv:2106.16163},
year={2021}
}
```
|
google/multiberts-seed_6 | google | 2021-11-05T22:17:37Z | 13 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"bert",
"pretraining",
"multiberts",
"multiberts-seed_6",
"en",
"arxiv:2106.16163",
"arxiv:1908.08962",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language: en
tags:
- multiberts
- multiberts-seed_6
license: apache-2.0
---
# MultiBERTs - Seed 6
MultiBERTs is a collection of checkpoints and a statistical library to support
robust research on BERT. We provide 25 BERT-base models trained with
similar hyper-parameters as
[the original BERT model](https://github.com/google-research/bert) but
with different random seeds, which causes variations in the initial weights and order of
training instances. The aim is to distinguish findings that apply to a specific
artifact (i.e., a particular instance of the model) from those that apply to the
more general procedure.
We also provide 140 intermediate checkpoints captured
during the course of pre-training (we saved 28 checkpoints for the first 5 runs).
The models were originally released through
[http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our
paper
[The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163).
This is model #6.
## Model Description
This model is a reproduction of
[BERT-base uncased](https://github.com/google-research/bert), for English: it
is a Transformers model pretrained on a large corpus of English data, using the
Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP)
objectives.
The intended uses, limitations, training data and training procedure are similar
to [BERT-base uncased](https://github.com/google-research/bert). Two major
differences with the original model:
* We pre-trained the MultiBERTs models for 2 million steps using sequence
length 512 (instead of 1 million steps using sequence length 128 then 512).
* We used an alternative version of Wikipedia and Books Corpus, initially
collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962).
This is a best-effort reproduction, and so it is probable that differences with
the original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original
BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).
See our [technical report](https://arxiv.org/abs/2106.16163) for more details.
### How to use
Using code from
[BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on
Tensorflow:
```
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_6')
model = TFBertModel.from_pretrained("google/multiberts-seed_6")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
PyTorch version:
```
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_6')
model = BertModel.from_pretrained("google/multiberts-seed_6")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
## Citation info
```bibtex
@article{sellam2021multiberts,
title={The MultiBERTs: BERT Reproductions for Robustness Analysis},
author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick},
journal={arXiv preprint arXiv:2106.16163},
year={2021}
}
```
|
google/multiberts-seed_3 | google | 2021-11-05T22:12:27Z | 202 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"bert",
"pretraining",
"multiberts",
"multiberts-seed_3",
"en",
"arxiv:2106.16163",
"arxiv:1908.08962",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language: en
tags:
- multiberts
- multiberts-seed_3
license: apache-2.0
---
# MultiBERTs - Seed 3
MultiBERTs is a collection of checkpoints and a statistical library to support
robust research on BERT. We provide 25 BERT-base models trained with
similar hyper-parameters as
[the original BERT model](https://github.com/google-research/bert) but
with different random seeds, which causes variations in the initial weights and order of
training instances. The aim is to distinguish findings that apply to a specific
artifact (i.e., a particular instance of the model) from those that apply to the
more general procedure.
We also provide 140 intermediate checkpoints captured
during the course of pre-training (we saved 28 checkpoints for the first 5 runs).
The models were originally released through
[http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our
paper
[The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163).
This is model #3.
## Model Description
This model is a reproduction of
[BERT-base uncased](https://github.com/google-research/bert), for English: it
is a Transformers model pretrained on a large corpus of English data, using the
Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP)
objectives.
The intended uses, limitations, training data and training procedure are similar
to [BERT-base uncased](https://github.com/google-research/bert). Two major
differences with the original model:
* We pre-trained the MultiBERTs models for 2 million steps using sequence
length 512 (instead of 1 million steps using sequence length 128 then 512).
* We used an alternative version of Wikipedia and Books Corpus, initially
collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962).
This is a best-effort reproduction, and so it is probable that differences with
the original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original
BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).
See our [technical report](https://arxiv.org/abs/2106.16163) for more details.
### How to use
Using code from
[BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on
Tensorflow:
```
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3')
model = TFBertModel.from_pretrained("google/multiberts-seed_3")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
PyTorch version:
```
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3')
model = BertModel.from_pretrained("google/multiberts-seed_3")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
## Citation info
```bibtex
@article{sellam2021multiberts,
title={The MultiBERTs: BERT Reproductions for Robustness Analysis},
author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick},
journal={arXiv preprint arXiv:2106.16163},
year={2021}
}
```
|
google/multiberts-seed_1 | google | 2021-11-05T22:09:07Z | 39 | 0 | transformers | [
"transformers",
"pytorch",
"tf",
"bert",
"pretraining",
"multiberts",
"multiberts-seed_1",
"en",
"arxiv:2106.16163",
"arxiv:1908.08962",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language: en
tags:
- multiberts
- multiberts-seed_1
license: apache-2.0
---
# MultiBERTs - Seed 1
MultiBERTs is a collection of checkpoints and a statistical library to support
robust research on BERT. We provide 25 BERT-base models trained with
similar hyper-parameters as
[the original BERT model](https://github.com/google-research/bert) but
with different random seeds, which causes variations in the initial weights and order of
training instances. The aim is to distinguish findings that apply to a specific
artifact (i.e., a particular instance of the model) from those that apply to the
more general procedure.
We also provide 140 intermediate checkpoints captured
during the course of pre-training (we saved 28 checkpoints for the first 5 runs).
The models were originally released through
[http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our
paper
[The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163).
This is model #1.
## Model Description
This model is a reproduction of
[BERT-base uncased](https://github.com/google-research/bert), for English: it
is a Transformers model pretrained on a large corpus of English data, using the
Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP)
objectives.
The intended uses, limitations, training data and training procedure are similar
to [BERT-base uncased](https://github.com/google-research/bert). Two major
differences with the original model:
* We pre-trained the MultiBERTs models for 2 million steps using sequence
length 512 (instead of 1 million steps using sequence length 128 then 512).
* We used an alternative version of Wikipedia and Books Corpus, initially
collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962).
This is a best-effort reproduction, and so it is probable that differences with
the original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original
BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT).
See our [technical report](https://arxiv.org/abs/2106.16163) for more details.
### How to use
Using code from
[BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on
Tensorflow:
```
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1')
model = TFBertModel.from_pretrained("google/multiberts-seed_1")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
PyTorch version:
```
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1')
model = BertModel.from_pretrained("google/multiberts-seed_1")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
## Citation info
```bibtex
@article{sellam2021multiberts,
title={The MultiBERTs: BERT Reproductions for Robustness Analysis},
author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick},
journal={arXiv preprint arXiv:2106.16163},
year={2021}
}
```
|
zeke/hello-world | zeke | 2021-11-05T21:18:59Z | 0 | 0 | null | [
"region:us"
] | null | 2022-03-02T23:29:05Z | I am a README, masquerading as a "model card" |
adrianmoses/hate-speech-detection | adrianmoses | 2021-11-05T15:53:26Z | 0 | 0 | null | [
"region:us"
] | null | 2022-03-02T23:29:05Z | # Hate Speech Detection Model
Created from dataset provided by ROHAN KHILNANI |
facebook/wav2vec2-large-100k-voxpopuli | facebook | 2021-11-05T12:45:52Z | 1,113 | 4 | transformers | [
"transformers",
"pytorch",
"jax",
"wav2vec2",
"pretraining",
"audio",
"automatic-speech-recognition",
"voxpopuli",
"multilingual",
"arxiv:2101.00390",
"license:cc-by-nc-4.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
language: multilingual
tags:
- audio
- automatic-speech-recognition
- voxpopuli
license: cc-by-nc-4.0
---
# Wav2Vec2-Large-VoxPopuli
[Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) large model pretrained on the 100k unlabeled subset of [VoxPopuli corpus](https://arxiv.org/abs/2101.00390).
**Note**: This model does not have a tokenizer as it was pretrained on audio alone. In order to use this model **speech recognition**, a tokenizer should be created and the model should be fine-tuned on labeled text data. Check out [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more in-detail explanation of how to fine-tune the model.
**Paper**: *[VoxPopuli: A Large-Scale Multilingual Speech Corpus for Representation
Learning, Semi-Supervised Learning and Interpretation](https://arxiv.org/abs/2101.00390)*
**Authors**: *Changhan Wang, Morgane Riviere, Ann Lee, Anne Wu, Chaitanya Talnikar, Daniel Haziza, Mary Williamson, Juan Pino, Emmanuel Dupoux* from *Facebook AI*
See the official website for more information, [here](https://github.com/facebookresearch/voxpopuli/)
# Fine-Tuning
Please refer to [this blog](https://huggingface.co/blog/fine-tune-xlsr-wav2vec2) on how to fine-tune this model on a specific language. Note that you should replace `"facebook/wav2vec2-large-xlsr-53"` with this checkpoint for fine-tuning.
|
facebook/hubert-base-ls960 | facebook | 2021-11-05T12:43:12Z | 449,084 | 50 | transformers | [
"transformers",
"pytorch",
"tf",
"hubert",
"feature-extraction",
"speech",
"en",
"dataset:librispeech_asr",
"arxiv:2106.07447",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | feature-extraction | 2022-03-02T23:29:05Z | ---
language: en
datasets:
- librispeech_asr
tags:
- speech
license: apache-2.0
---
# Hubert-Base
[Facebook's Hubert](https://ai.facebook.com/blog/hubert-self-supervised-representation-learning-for-speech-recognition-generation-and-compression)
The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz.
**Note**: This model does not have a tokenizer as it was pretrained on audio alone. In order to use this model **speech recognition**, a tokenizer should be created and the model should be fine-tuned on labeled text data. Check out [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more in-detail explanation of how to fine-tune the model.
[Paper](https://arxiv.org/abs/2106.07447)
Authors: Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed
**Abstract**
Self-supervised approaches for speech representation learning are challenged by three unique problems: (1) there are multiple sound units in each input utterance, (2) there is no lexicon of input sound units during the pre-training phase, and (3) sound units have variable lengths with no explicit segmentation. To deal with these three problems, we propose the Hidden-Unit BERT (HuBERT) approach for self-supervised speech representation learning, which utilizes an offline clustering step to provide aligned target labels for a BERT-like prediction loss. A key ingredient of our approach is applying the prediction loss over the masked regions only, which forces the model to learn a combined acoustic and language model over the continuous inputs. HuBERT relies primarily on the consistency of the unsupervised clustering step rather than the intrinsic quality of the assigned cluster labels. Starting with a simple k-means teacher of 100 clusters, and using two iterations of clustering, the HuBERT model either matches or improves upon the state-of-the-art wav2vec 2.0 performance on the Librispeech (960h) and Libri-light (60,000h) benchmarks with 10min, 1h, 10h, 100h, and 960h fine-tuning subsets. Using a 1B parameter model, HuBERT shows up to 19% and 13% relative WER reduction on the more challenging dev-other and test-other evaluation subsets.
The original model can be found under https://github.com/pytorch/fairseq/tree/master/examples/hubert .
# Usage
See [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more information on how to fine-tune the model. Note that the class `Wav2Vec2ForCTC` has to be replaced by `HubertForCTC`. |
microsoft/unispeech-large-multi-lingual-1500h-cv | microsoft | 2021-11-05T12:42:09Z | 25 | 1 | transformers | [
"transformers",
"pytorch",
"unispeech",
"pretraining",
"speech",
"it",
"en",
"fr",
"es",
"dataset:common_voice",
"arxiv:2101.07597",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language:
- it
- en
- fr
- es
datasets:
- common_voice
tags:
- speech
---
# UniSpeech-Large-Multi-Lingual
[Microsoft's UniSpeech](https://www.microsoft.com/en-us/research/publication/unispeech-unified-speech-representation-learning-with-labeled-and-unlabeled-data/)
The multi-lingual large model pretrained on 16kHz sampled speech audio and phonetic labels. When using the model make sure that your speech input is also sampled at 16kHz and your text in converted into a sequence of phonemes.
**Note**: This model does not have a tokenizer as it was pretrained on audio alone. In order to use this model **speech recognition**, a tokenizer should be created and the model should be fine-tuned on labeled text data. Check out [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more in-detail explanation of how to fine-tune the model.
[Paper: UniSpeech: Unified Speech Representation Learning
with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597)
Authors: Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang
**Abstract**
*In this paper, we propose a unified pre-training approach called UniSpeech to learn speech representations with both unlabeled and labeled data, in which supervised phonetic CTC learning and phonetically-aware contrastive self-supervised learning are conducted in a multi-task learning manner. The resultant representations can capture information more correlated with phonetic structures and improve the generalization across languages and domains. We evaluate the effectiveness of UniSpeech for cross-lingual representation learning on public CommonVoice corpus. The results show that UniSpeech outperforms self-supervised pretraining and supervised transfer learning for speech recognition by a maximum of 13.4% and 17.8% relative phone error rate reductions respectively (averaged over all testing languages). The transferability of UniSpeech is also demonstrated on a domain-shift speech recognition task, i.e., a relative word error rate reduction of 6% against the previous approach.*
The original model can be found under https://github.com/microsoft/UniSpeech/tree/main/UniSpeech.
# Usage
This is a multi-lingually pre-trained speech model that has to be fine-tuned on a downstream task like speech recognition or audio classification before it can be
used in inference. The model was pre-trained in English, Spanish, French, and Italian and should therefore perform well only in those or similar languages.
**Note**: The model was pre-trained on phonemes rather than characters. This means that one should make sure that the input text is converted to a sequence
of phonemes before fine-tuning.
## Speech Recognition
To fine-tune the model for speech recognition, see [the official speech recognition example](https://github.com/huggingface/transformers/tree/master/examples/pytorch/speech-recognition).
## Speech Classification
To fine-tune the model for speech classification, see [the official audio classification example](https://github.com/huggingface/transformers/tree/master/examples/pytorch/audio-classification).
# Contribution
The model was contributed by [cywang](https://huggingface.co/cywang) and [patrickvonplaten](https://huggingface.co/patrickvonplaten).
# License
The official license can be found [here](https://github.com/microsoft/UniSpeech/blob/main/LICENSE)
 |
filipafcastro/beer_vs_wine | filipafcastro | 2021-11-05T10:55:21Z | 72 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"vit",
"image-classification",
"huggingpics",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | image-classification | 2022-03-02T23:29:05Z | ---
tags:
- image-classification
- pytorch
- huggingpics
metrics:
- accuracy
model-index:
- name: beer_vs_wine
results:
- task:
name: Image Classification
type: image-classification
metrics:
- name: Accuracy
type: accuracy
value: 0.9777777791023254
---
# beer_vs_wine
Autogenerated by HuggingPics🤗🖼️
Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb).
Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics).
## Example Images
#### beer

#### wine
 |
shokiokita/distilbert-base-uncased-finetuned-cola | shokiokita | 2021-11-05T10:27:36Z | 7 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- matthews_correlation
model-index:
- name: distilbert-base-uncased-finetuned-cola
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
args: cola
metrics:
- name: Matthews Correlation
type: matthews_correlation
value: 0.5536405531329313
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-cola
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8455
- Matthews Correlation: 0.5536
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Matthews Correlation |
|:-------------:|:-----:|:----:|:---------------:|:--------------------:|
| 0.524 | 1.0 | 535 | 0.5547 | 0.3891 |
| 0.3463 | 2.0 | 1070 | 0.5250 | 0.5011 |
| 0.2329 | 3.0 | 1605 | 0.6321 | 0.5239 |
| 0.1677 | 4.0 | 2140 | 0.7752 | 0.5372 |
| 0.1197 | 5.0 | 2675 | 0.8455 | 0.5536 |
### Framework versions
- Transformers 4.12.3
- Pytorch 1.9.0+cu111
- Datasets 1.15.1
- Tokenizers 0.10.3
|
JazibEijaz/bert-base-uncased-finetuned-semeval2020-task4b-base-e2-b32-l3e5 | JazibEijaz | 2021-11-05T09:00:25Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"multiple-choice",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | multiple-choice | 2022-03-02T23:29:04Z | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
name: bert-base-uncased-finetuned-semeval2020-task4b-base-e2-b32-l3e5
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-uncased-finetuned-semeval2020-task4b-base-e2-b32-l3e5
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4114
- Accuracy: 0.8700
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 344 | 0.3773 | 0.8490 |
| 0.3812 | 2.0 | 688 | 0.4114 | 0.8700 |
### Framework versions
- Transformers 4.12.3
- Pytorch 1.9.1
- Datasets 1.12.1
- Tokenizers 0.10.3
|
JazibEijaz/bert-base-uncased-finetuned-semeval2020-task4a-append-e2-b32-l5e5 | JazibEijaz | 2021-11-05T07:54:44Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"multiple-choice",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | multiple-choice | 2022-03-02T23:29:04Z | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
name: bert-base-uncased-finetuned-semeval2020-task4a-append-e2-b32-l5e5
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-uncased-finetuned-semeval2020-task4a-append-e2-b32-l5e5
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5466
- Accuracy: 0.8890
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 344 | 0.3057 | 0.8630 |
| 0.4091 | 2.0 | 688 | 0.2964 | 0.8880 |
| 0.1322 | 3.0 | 1032 | 0.4465 | 0.8820 |
| 0.1322 | 4.0 | 1376 | 0.5466 | 0.8890 |
### Framework versions
- Transformers 4.12.3
- Pytorch 1.9.1
- Datasets 1.12.1
- Tokenizers 0.10.3
|
raynardj/ner-disease-ncbi-bionlp-bc5cdr-pubmed | raynardj | 2021-11-05T07:33:08Z | 82 | 11 | transformers | [
"transformers",
"pytorch",
"roberta",
"token-classification",
"ner",
"ncbi",
"disease",
"pubmed",
"bioinfomatics",
"en",
"dataset:ncbi-disease",
"dataset:bc5cdr",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2022-03-02T23:29:05Z | ---
language:
- en
tags:
- ner
- ncbi
- disease
- pubmed
- bioinfomatics
license: apache-2.0
datasets:
- ncbi-disease
- bc5cdr
widget:
- text: "Hepatocyte nuclear factor 4 alpha (HNF4α) is regulated by different promoters to generate two isoforms, one of which functions as a tumor suppressor. Here, the authors reveal that induction of the alternative isoform in hepatocellular carcinoma inhibits the circadian clock by repressing BMAL1, and the reintroduction of BMAL1 prevents HCC tumor growth."
---
# NER to find Gene & Gene products
> The model was trained on ncbi-disease, BC5CDR dataset, pretrained on this [pubmed-pretrained roberta model](/raynardj/roberta-pubmed)
All the labels, the possible token classes.
```json
{"label2id": {
"O": 0,
"Disease":1,
}
}
```
Notice, we removed the 'B-','I-' etc from data label.🗡
## This is the template we suggest for using the model
```python
from transformers import pipeline
PRETRAINED = "raynardj/ner-disease-ncbi-bionlp-bc5cdr-pubmed"
ner = pipeline(task="ner",model=PRETRAINED, tokenizer=PRETRAINED)
ner("Your text", aggregation_strategy="first")
```
And here is to make your output more consecutive ⭐️
```python
import pandas as pd
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(PRETRAINED)
def clean_output(outputs):
results = []
current = []
last_idx = 0
# make to sub group by position
for output in outputs:
if output["index"]-1==last_idx:
current.append(output)
else:
results.append(current)
current = [output, ]
last_idx = output["index"]
if len(current)>0:
results.append(current)
# from tokens to string
strings = []
for c in results:
tokens = []
starts = []
ends = []
for o in c:
tokens.append(o['word'])
starts.append(o['start'])
ends.append(o['end'])
new_str = tokenizer.convert_tokens_to_string(tokens)
if new_str!='':
strings.append(dict(
word=new_str,
start = min(starts),
end = max(ends),
entity = c[0]['entity']
))
return strings
def entity_table(pipeline, **pipeline_kw):
if "aggregation_strategy" not in pipeline_kw:
pipeline_kw["aggregation_strategy"] = "first"
def create_table(text):
return pd.DataFrame(
clean_output(
pipeline(text, **pipeline_kw)
)
)
return create_table
# will return a dataframe
entity_table(ner)(YOUR_VERY_CONTENTFUL_TEXT)
```
> check our NER model on
* [gene and gene products](/raynardj/ner-gene-dna-rna-jnlpba-pubmed)
* [chemical substance](/raynardj/ner-chemical-bionlp-bc5cdr-pubmed).
* [disease](/raynardj/ner-disease-ncbi-bionlp-bc5cdr-pubmed) |
raynardj/ner-gene-dna-rna-jnlpba-pubmed | raynardj | 2021-11-05T07:32:32Z | 126 | 10 | transformers | [
"transformers",
"pytorch",
"roberta",
"token-classification",
"ner",
"gene",
"protein",
"rna",
"bioinfomatics",
"en",
"dataset:jnlpba",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2022-03-02T23:29:05Z | ---
language:
- en
tags:
- ner
- gene
- protein
- rna
- bioinfomatics
license: apache-2.0
datasets:
- jnlpba
widget:
- text: "It consists of 25 exons encoding a 1,278-amino acid glycoprotein that is composed of 13 transmembrane domains"
---
# NER to find Gene & Gene products
> The model was trained on jnlpba dataset, pretrained on this [pubmed-pretrained roberta model](/raynardj/roberta-pubmed)
All the labels, the possible token classes.
```json
{"label2id": {
"DNA": 2,
"O": 0,
"RNA": 5,
"cell_line": 4,
"cell_type": 3,
"protein": 1
}
}
```
Notice, we removed the 'B-','I-' etc from data label.🗡
## This is the template we suggest for using the model
```python
from transformers import pipeline
PRETRAINED = "raynardj/ner-gene-dna-rna-jnlpba-pubmed"
ner = pipeline(task="ner",model=PRETRAINED, tokenizer=PRETRAINED)
ner("Your text", aggregation_strategy="first")
```
And here is to make your output more consecutive ⭐️
```python
import pandas as pd
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(PRETRAINED)
def clean_output(outputs):
results = []
current = []
last_idx = 0
# make to sub group by position
for output in outputs:
if output["index"]-1==last_idx:
current.append(output)
else:
results.append(current)
current = [output, ]
last_idx = output["index"]
if len(current)>0:
results.append(current)
# from tokens to string
strings = []
for c in results:
tokens = []
starts = []
ends = []
for o in c:
tokens.append(o['word'])
starts.append(o['start'])
ends.append(o['end'])
new_str = tokenizer.convert_tokens_to_string(tokens)
if new_str!='':
strings.append(dict(
word=new_str,
start = min(starts),
end = max(ends),
entity = c[0]['entity']
))
return strings
def entity_table(pipeline, **pipeline_kw):
if "aggregation_strategy" not in pipeline_kw:
pipeline_kw["aggregation_strategy"] = "first"
def create_table(text):
return pd.DataFrame(
clean_output(
pipeline(text, **pipeline_kw)
)
)
return create_table
# will return a dataframe
entity_table(ner)(YOUR_VERY_CONTENTFUL_TEXT)
```
> check our NER model on
* [gene and gene products](/raynardj/ner-gene-dna-rna-jnlpba-pubmed)
* [chemical substance](/raynardj/ner-chemical-bionlp-bc5cdr-pubmed).
* [disease](/raynardj/ner-disease-ncbi-bionlp-bc5cdr-pubmed) |
shivkumarganesh/distilbert-base-uncased-finetuned-squad | shivkumarganesh | 2021-11-05T07:25:27Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"distilbert",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | question-answering | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: distilbert-base-uncased-finetuned-squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-squad
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2414
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 20
- eval_batch_size: 20
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.3036 | 1.0 | 4427 | 1.2414 |
### Framework versions
- Transformers 4.12.3
- Pytorch 1.9.0+cu111
- Datasets 1.15.1
- Tokenizers 0.10.3
|
cactode/gpt2_urbandict_textgen_torch | cactode | 2021-11-05T03:53:10Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | # GPT2 Fine Tuned on UrbanDictionary
Honestly a little horrifying, but still funny.
## Usage
Use with GPT2Tokenizer. Pad token should be set to the EOS token.
Inputs should be of the form "define <your word>: ".
## Training Data
All training data was obtained from [Urban Dictionary Words And Definitions on Kaggle](https://www.kaggle.com/therohk/urban-dictionary-words-dataset). Data was additionally filtered, normalized, and spell-checked.
## Bias
This model was trained on public internet data and will almost definitely produce offensive results. Some efforts were made to reduce this (i.e definitions with ethnic / gender-based slurs were removed), but the final model should not be trusted to produce non-offensive definitions. |
Alstractor/distilbert-base-uncased-finetuned-cola | Alstractor | 2021-11-04T21:34:27Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:04Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- matthews_correlation
model-index:
- name: distilbert-base-uncased-finetuned-cola
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
args: cola
metrics:
- name: Matthews Correlation
type: matthews_correlation
value: 0.5343023846000738
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-cola
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7272
- Matthews Correlation: 0.5343
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Matthews Correlation |
|:-------------:|:-----:|:----:|:---------------:|:--------------------:|
| 0.5219 | 1.0 | 535 | 0.5340 | 0.4215 |
| 0.3467 | 2.0 | 1070 | 0.5131 | 0.5181 |
| 0.2331 | 3.0 | 1605 | 0.6406 | 0.5040 |
| 0.1695 | 4.0 | 2140 | 0.7272 | 0.5343 |
| 0.1212 | 5.0 | 2675 | 0.8399 | 0.5230 |
### Framework versions
- Transformers 4.12.3
- Pytorch 1.9.0+cu111
- Datasets 1.15.1
- Tokenizers 0.10.3
|
superb/wav2vec2-large-superb-sid | superb | 2021-11-04T16:03:45Z | 70 | 1 | transformers | [
"transformers",
"pytorch",
"wav2vec2",
"audio-classification",
"speech",
"audio",
"en",
"dataset:superb",
"arxiv:2105.01051",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | audio-classification | 2022-03-02T23:29:05Z | ---
language: en
datasets:
- superb
tags:
- speech
- audio
- wav2vec2
- audio-classification
license: apache-2.0
widget:
- example_title: VoxCeleb Speaker id10003
src: https://cdn-media.huggingface.co/speech_samples/VoxCeleb1_00003.wav
- example_title: VoxCeleb Speaker id10004
src: https://cdn-media.huggingface.co/speech_samples/VoxCeleb_00004.wav
---
# Wav2Vec2-Large for Speaker Identification
## Model description
This is a ported version of
[S3PRL's Wav2Vec2 for the SUPERB Speaker Identification task](https://github.com/s3prl/s3prl/tree/master/s3prl/downstream/voxceleb1).
The base model is [wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60), which is pretrained on 16kHz
sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz.
For more information refer to [SUPERB: Speech processing Universal PERformance Benchmark](https://arxiv.org/abs/2105.01051)
## Task and dataset description
Speaker Identification (SI) classifies each utterance for its speaker identity as a multi-class
classification, where speakers are in the same predefined set for both training and testing. The widely
used [VoxCeleb1](https://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1.html) dataset is adopted
For the original model's training and evaluation instructions refer to the
[S3PRL downstream task README](https://github.com/s3prl/s3prl/tree/master/s3prl/downstream#sid-speaker-identification).
## Usage examples
You can use the model via the Audio Classification pipeline:
```python
from datasets import load_dataset
from transformers import pipeline
dataset = load_dataset("anton-l/superb_demo", "si", split="test")
classifier = pipeline("audio-classification", model="superb/wav2vec2-large-superb-sid")
labels = classifier(dataset[0]["file"], top_k=5)
```
Or use the model directly:
```python
import torch
import librosa
from datasets import load_dataset
from transformers import Wav2Vec2ForSequenceClassification, Wav2Vec2FeatureExtractor
def map_to_array(example):
speech, _ = librosa.load(example["file"], sr=16000, mono=True)
example["speech"] = speech
return example
# load a demo dataset and read audio files
dataset = load_dataset("anton-l/superb_demo", "si", split="test")
dataset = dataset.map(map_to_array)
model = Wav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-large-superb-sid")
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("superb/wav2vec2-large-superb-sid")
# compute attention masks and normalize the waveform if needed
inputs = feature_extractor(dataset[:2]["speech"], sampling_rate=16000, padding=True, return_tensors="pt")
logits = model(**inputs).logits
predicted_ids = torch.argmax(logits, dim=-1)
labels = [model.config.id2label[_id] for _id in predicted_ids.tolist()]
```
## Eval results
The evaluation metric is accuracy.
| | **s3prl** | **transformers** |
|--------|-----------|------------------|
|**test**| `0.8614` | `0.8613` |
### BibTeX entry and citation info
```bibtex
@article{yang2021superb,
title={SUPERB: Speech processing Universal PERformance Benchmark},
author={Yang, Shu-wen and Chi, Po-Han and Chuang, Yung-Sung and Lai, Cheng-I Jeff and Lakhotia, Kushal and Lin, Yist Y and Liu, Andy T and Shi, Jiatong and Chang, Xuankai and Lin, Guan-Ting and others},
journal={arXiv preprint arXiv:2105.01051},
year={2021}
}
``` |
superb/wav2vec2-large-superb-er | superb | 2021-11-04T16:03:41Z | 1,116 | 1 | transformers | [
"transformers",
"pytorch",
"wav2vec2",
"audio-classification",
"speech",
"audio",
"en",
"dataset:superb",
"arxiv:2105.01051",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | audio-classification | 2022-03-02T23:29:05Z | ---
language: en
datasets:
- superb
tags:
- speech
- audio
- wav2vec2
- audio-classification
license: apache-2.0
widget:
- example_title: IEMOCAP clip "happy"
src: https://cdn-media.huggingface.co/speech_samples/IEMOCAP_Ses01F_impro03_F013.wav
- example_title: IEMOCAP clip "neutral"
src: https://cdn-media.huggingface.co/speech_samples/IEMOCAP_Ses01F_impro04_F000.wav
---
# Wav2Vec2-Large for Emotion Recognition
## Model description
This is a ported version of
[S3PRL's Wav2Vec2 for the SUPERB Emotion Recognition task](https://github.com/s3prl/s3prl/tree/master/s3prl/downstream/emotion).
The base model is [wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60), which is pretrained on 16kHz
sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz.
For more information refer to [SUPERB: Speech processing Universal PERformance Benchmark](https://arxiv.org/abs/2105.01051)
## Task and dataset description
Emotion Recognition (ER) predicts an emotion class for each utterance. The most widely used ER dataset
[IEMOCAP](https://sail.usc.edu/iemocap/) is adopted, and we follow the conventional evaluation protocol:
we drop the unbalanced emotion classes to leave the final four classes with a similar amount of data points and
cross-validate on five folds of the standard splits.
For the original model's training and evaluation instructions refer to the
[S3PRL downstream task README](https://github.com/s3prl/s3prl/tree/master/s3prl/downstream#er-emotion-recognition).
## Usage examples
You can use the model via the Audio Classification pipeline:
```python
from datasets import load_dataset
from transformers import pipeline
dataset = load_dataset("anton-l/superb_demo", "er", split="session1")
classifier = pipeline("audio-classification", model="superb/wav2vec2-large-superb-er")
labels = classifier(dataset[0]["file"], top_k=5)
```
Or use the model directly:
```python
import torch
import librosa
from datasets import load_dataset
from transformers import Wav2Vec2ForSequenceClassification, Wav2Vec2FeatureExtractor
def map_to_array(example):
speech, _ = librosa.load(example["file"], sr=16000, mono=True)
example["speech"] = speech
return example
# load a demo dataset and read audio files
dataset = load_dataset("anton-l/superb_demo", "er", split="session1")
dataset = dataset.map(map_to_array)
model = Wav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-large-superb-er")
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("superb/wav2vec2-large-superb-er")
# compute attention masks and normalize the waveform if needed
inputs = feature_extractor(dataset[:4]["speech"], sampling_rate=16000, padding=True, return_tensors="pt")
logits = model(**inputs).logits
predicted_ids = torch.argmax(logits, dim=-1)
labels = [model.config.id2label[_id] for _id in predicted_ids.tolist()]
```
## Eval results
The evaluation metric is accuracy.
| | **s3prl** | **transformers** |
|--------|-----------|------------------|
|**session1**| `0.6564` | `N/A` |
### BibTeX entry and citation info
```bibtex
@article{yang2021superb,
title={SUPERB: Speech processing Universal PERformance Benchmark},
author={Yang, Shu-wen and Chi, Po-Han and Chuang, Yung-Sung and Lai, Cheng-I Jeff and Lakhotia, Kushal and Lin, Yist Y and Liu, Andy T and Shi, Jiatong and Chang, Xuankai and Lin, Guan-Ting and others},
journal={arXiv preprint arXiv:2105.01051},
year={2021}
}
``` |
superb/hubert-base-superb-sid | superb | 2021-11-04T16:03:27Z | 397 | 1 | transformers | [
"transformers",
"pytorch",
"hubert",
"audio-classification",
"speech",
"audio",
"en",
"dataset:superb",
"arxiv:2105.01051",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | audio-classification | 2022-03-02T23:29:05Z | ---
language: en
datasets:
- superb
tags:
- speech
- audio
- hubert
- audio-classification
widget:
- example_title: VoxCeleb Speaker id10003
src: https://cdn-media.huggingface.co/speech_samples/VoxCeleb1_00003.wav
- example_title: VoxCeleb Speaker id10004
src: https://cdn-media.huggingface.co/speech_samples/VoxCeleb_00004.wav
license: apache-2.0
---
# Hubert-Base for Speaker Identification
## Model description
This is a ported version of
[S3PRL's Hubert for the SUPERB Speaker Identification task](https://github.com/s3prl/s3prl/tree/master/s3prl/downstream/voxceleb1).
The base model is [hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960), which is pretrained on 16kHz
sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz.
For more information refer to [SUPERB: Speech processing Universal PERformance Benchmark](https://arxiv.org/abs/2105.01051)
## Task and dataset description
Speaker Identification (SI) classifies each utterance for its speaker identity as a multi-class
classification, where speakers are in the same predefined set for both training and testing. The widely
used [VoxCeleb1](https://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1.html) dataset is adopted
For the original model's training and evaluation instructions refer to the
[S3PRL downstream task README](https://github.com/s3prl/s3prl/tree/master/s3prl/downstream#sid-speaker-identification).
## Usage examples
You can use the model via the Audio Classification pipeline:
```python
from datasets import load_dataset
from transformers import pipeline
dataset = load_dataset("anton-l/superb_demo", "si", split="test")
classifier = pipeline("audio-classification", model="superb/hubert-base-superb-sid")
labels = classifier(dataset[0]["file"], top_k=5)
```
Or use the model directly:
```python
import torch
import librosa
from datasets import load_dataset
from transformers import HubertForSequenceClassification, Wav2Vec2FeatureExtractor
def map_to_array(example):
speech, _ = librosa.load(example["file"], sr=16000, mono=True)
example["speech"] = speech
return example
# load a demo dataset and read audio files
dataset = load_dataset("anton-l/superb_demo", "si", split="test")
dataset = dataset.map(map_to_array)
model = HubertForSequenceClassification.from_pretrained("superb/hubert-base-superb-sid")
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("superb/hubert-base-superb-sid")
# compute attention masks and normalize the waveform if needed
inputs = feature_extractor(dataset[:2]["speech"], sampling_rate=16000, padding=True, return_tensors="pt")
logits = model(**inputs).logits
predicted_ids = torch.argmax(logits, dim=-1)
labels = [model.config.id2label[_id] for _id in predicted_ids.tolist()]
```
## Eval results
The evaluation metric is accuracy.
| | **s3prl** | **transformers** |
|--------|-----------|------------------|
|**test**| `0.8142` | `0.8071` |
### BibTeX entry and citation info
```bibtex
@article{yang2021superb,
title={SUPERB: Speech processing Universal PERformance Benchmark},
author={Yang, Shu-wen and Chi, Po-Han and Chuang, Yung-Sung and Lai, Cheng-I Jeff and Lakhotia, Kushal and Lin, Yist Y and Liu, Andy T and Shi, Jiatong and Chang, Xuankai and Lin, Guan-Ting and others},
journal={arXiv preprint arXiv:2105.01051},
year={2021}
}
``` |
testing/autonlp-ingredient_sentiment_analysis-19126711 | testing | 2021-11-04T15:54:28Z | 16 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"token-classification",
"autonlp",
"en",
"dataset:testing/autonlp-data-ingredient_sentiment_analysis",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2022-03-02T23:29:05Z | ---
tags: autonlp
language: en
widget:
- text: "I love AutoNLP 🤗"
datasets:
- testing/autonlp-data-ingredient_sentiment_analysis
co2_eq_emissions: 1.8458289701133035
---
# Model Trained Using AutoNLP
- Problem type: Entity Extraction
- Model ID: 19126711
- CO2 Emissions (in grams): 1.8458289701133035
## Validation Metrics
- Loss: 0.054593171924352646
- Accuracy: 0.9790668170284748
- Precision: 0.8029411764705883
- Recall: 0.6026490066225165
- F1: 0.6885245901639344
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/testing/autonlp-ingredient_sentiment_analysis-19126711
```
Or Python API:
```
from transformers import AutoModelForTokenClassification, AutoTokenizer
model = AutoModelForTokenClassification.from_pretrained("testing/autonlp-ingredient_sentiment_analysis-19126711", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("testing/autonlp-ingredient_sentiment_analysis-19126711", use_auth_token=True)
inputs = tokenizer("I love AutoNLP", return_tensors="pt")
outputs = model(**inputs)
``` |
osanseviero/hubert_asr_using_hub | osanseviero | 2021-11-04T15:39:06Z | 0 | 0 | superb | [
"superb",
"automatic-speech-recognition",
"benchmark:superb",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
tags:
- superb
- automatic-speech-recognition
- benchmark:superb
library_name: superb
widget:
- example_title: Librispeech sample 1
src: https://cdn-media.huggingface.co/speech_samples/sample1.flac
---
# Test for superb using hubert downstream ASR and upstream hubert model from the HF Hub
This repo uses: https://huggingface.co/osanseviero/hubert_base |
microsoft/unispeech-sat-base-100h-libri-ft | microsoft | 2021-11-04T15:26:40Z | 198,321 | 4 | transformers | [
"transformers",
"pytorch",
"unispeech-sat",
"automatic-speech-recognition",
"audio",
"en",
"dataset:librispeech_asr",
"arxiv:2110.05752",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
language: en
datasets:
- librispeech_asr
tags:
- audio
- automatic-speech-recognition
license: apache-2.0
widget:
- example_title: Librispeech sample 1
src: https://cdn-media.huggingface.co/speech_samples/sample1.flac
- example_title: Librispeech sample 2
src: https://cdn-media.huggingface.co/speech_samples/sample2.flac
---
# UniSpeech-SAT-Base-Finetuned-100h-Libri
[Microsoft's UniSpeech](https://www.microsoft.com/en-us/research/publication/unispeech-unified-speech-representation-learning-with-labeled-and-unlabeled-data/)
A [unispeech-sat-base model]( ) that was fine-tuned on 100h hours of Librispeech on 16kHz sampled speech audio. When using the model
make sure that your speech input is also sampled at 16Khz.
The model was fine-tuned on:
- 100 hours of [LibriSpeech](https://huggingface.co/datasets/librispeech_asr)
[Paper: UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER
AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752)
Authors: Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu
**Abstract**
*Self-supervised learning (SSL) is a long-standing goal for speech processing, since it utilizes large-scale unlabeled data and avoids extensive human labeling. Recent years witness great successes in applying self-supervised learning in speech recognition, while limited exploration was attempted in applying SSL for modeling speaker characteristics. In this paper, we aim to improve the existing SSL framework for speaker representation learning. Two methods are introduced for enhancing the unsupervised speaker information extraction. First, we apply the multi-task learning to the current SSL framework, where we integrate the utterance-wise contrastive loss with the SSL objective function. Second, for better speaker discrimination, we propose an utterance mixing strategy for data augmentation, where additional overlapped utterances are created unsupervisely and incorporate during training. We integrate the proposed methods into the HuBERT framework. Experiment results on SUPERB benchmark show that the proposed system achieves state-of-the-art performance in universal representation learning, especially for speaker identification oriented tasks. An ablation study is performed verifying the efficacy of each proposed method. Finally, we scale up training dataset to 94 thousand hours public audio data and achieve further performance improvement in all SUPERB tasks..*
The original model can be found under https://github.com/microsoft/UniSpeech/tree/main/UniSpeech-SAT.
# Usage
To transcribe audio files the model can be used as a standalone acoustic model as follows:
```python
from transformers import Wav2Vec2Processor, UniSpeechSatForCTC
from datasets import load_dataset
import torch
# load model and tokenizer
processor = Wav2Vec2Processor.from_pretrained("microsoft/unispeech-sat-base-100h-libri-ft")
model = UniSpeechSatForCTC.from_pretrained("microsoft/unispeech-sat-base-100h-libri-ft")
# load dummy dataset
ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
# tokenize
input_values = processor(ds[0]["audio"]["array"], return_tensors="pt", padding="longest").input_values # Batch size 1
# retrieve logits
logits = model(input_values).logits
# take argmax and decode
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)
```
# Contribution
The model was contributed by [cywang](https://huggingface.co/cywang) and [patrickvonplaten](https://huggingface.co/patrickvonplaten).
# License
The official license can be found [here](https://github.com/microsoft/UniSpeech/blob/main/LICENSE)
 |
m3hrdadfi/wav2vec2-large-xlsr-lithuanian | m3hrdadfi | 2021-11-04T15:22:08Z | 5 | 2 | transformers | [
"transformers",
"pytorch",
"jax",
"wav2vec2",
"automatic-speech-recognition",
"audio",
"speech",
"xlsr-fine-tuning-week",
"lt",
"dataset:common_voice",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
language: lt
datasets:
- common_voice
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
license: apache-2.0
widget:
- example_title: Common Voice sample 11
src: https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-lithuanian/resolve/main/sample11.flac
- example_title: Common Voice sample 74
src: https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-lithuanian/resolve/main/sample74.flac
model-index:
- name: XLSR Wav2Vec2 Lithuanian by Mehrdad Farahani
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice lt
type: common_voice
args: lt
metrics:
- name: Test WER
type: wer
value: 34.66
---
# Wav2Vec2-Large-XLSR-53-Lithuanian
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Lithuanian using [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
**Requirements**
```bash
# requirement packages
!pip install git+https://github.com/huggingface/datasets.git
!pip install git+https://github.com/huggingface/transformers.git
!pip install torchaudio
!pip install librosa
!pip install jiwer
```
**Normalizer**
```bash
!wget -O normalizer.py https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-lithuanian/raw/main/normalizer.py
```
**Prediction**
```python
import librosa
import torch
import torchaudio
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
from datasets import load_dataset
import numpy as np
import re
import string
import IPython.display as ipd
from normalizer import normalizer
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
speech_array = speech_array.squeeze().numpy()
speech_array = librosa.resample(np.asarray(speech_array), sampling_rate, 16_000)
batch["speech"] = speech_array
return batch
def predict(batch):
features = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
input_values = features.input_values.to(device)
attention_mask = features.attention_mask.to(device)
with torch.no_grad():
logits = model(input_values, attention_mask=attention_mask).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["predicted"] = processor.batch_decode(pred_ids)[0]
return batch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
processor = Wav2Vec2Processor.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-lithuanian")
model = Wav2Vec2ForCTC.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-lithuanian").to(device)
dataset = load_dataset("common_voice", "lt", split="test[:1%]")
dataset = dataset.map(
normalizer,
fn_kwargs={"remove_extra_space": True},
remove_columns=list(set(dataset.column_names) - set(['sentence', 'path']))
)
dataset = dataset.map(speech_file_to_array_fn)
result = dataset.map(predict)
max_items = np.random.randint(0, len(result), 20).tolist()
for i in max_items:
reference, predicted = result["sentence"][i], result["predicted"][i]
print("reference:", reference)
print("predicted:", predicted)
print('---')
```
**Output:**
```text
reference: jos tikslas buvo rasti kelią į ramųjį vandenyną šiaurės amerikoje
predicted: jos tikstas buvo rasikelia į ramų į vandenyna šiaurės amerikoje
---
reference: pietrytinėje dalyje likusių katalikų kapinių teritorija po antrojo pasaulinio karo dar padidėjo
predicted: pietrytinė daljelikusių gatalikų kapinių teritoriją pontro pasaulnio karo dar padidėjo
---
reference: koplyčioje pakabintas aušros vartų marijos paveikslas
predicted: koplyčioje pakagintas aušos fortų marijos paveikslas
---
reference: yra politinių debatų vedėjas
predicted: yra politinių debatų vedėjas
---
reference: žmogui taip pat gali būti mirtinai pavojingi
predicted: žmogui taip pat gali būti mirtinai pavojingi
---
reference: tuo pačiu metu kijeve nuverstas netekęs vokietijos paramos skoropadskis
predicted: tuo pačiu metu kiei venų verstas netekės vokietijos paramos kropadskis
---
reference: visos dvylika komandų tarpusavyje sužaidžia po dvi rungtynes
predicted: visos dvylika komandų tarpuso vysų žaidžia po dvi rungtynės
---
reference: kaukazo regioną sudaro kaukazo kalnai ir gretimos žemumos
predicted: kau kazo regioną sudaro kaukazo kalnai ir gretimos žemumus
---
reference: tarptautinių ir rusiškų šaškių kandidatas į sporto meistrus
predicted: tarptautinio ir rusiškos šaškių kandidatus į sporto meistrus
---
reference: prasideda putorano plynaukštės pietiniame pakraštyje
predicted: prasideda futorano prynaukštės pietiniame pakraštyje
---
reference: miestas skirstomas į senamiestį ir naujamiestį
predicted: miestas skirstomas į senamėsti ir naujamiestė
---
reference: tais pačiais metais pelnė bronzą pasaulio taurės kolumbijos etape komandinio sprinto rungtyje
predicted: tais pačiais metais pelnį mronsa pasaulio taurės kolumbijos etape komandinio sprento rungtyje
---
reference: prasideda putorano plynaukštės pietiniame pakraštyje
predicted: prasideda futorano prynaukštės pietiniame pakraštyje
---
reference: moterų tarptautinės meistrės vardas yra viena pakopa žemesnis už moterų tarptautinės korespondencinių šachmatų didmeistrės
predicted: moterų tarptautinės meistrės vardas yra gana pakopo žymesnis už moterų tarptautinės kūrespondencinių šachmatų didmesčias
---
reference: teritoriją dengia tropinės džiunglės
predicted: teritorija dengia tropinės žiunglės
---
reference: pastaroji dažnai pereina į nimcovičiaus gynybą arba bogoliubovo gynybą
predicted: pastaruoji dažnai pereina nimcovičiaus gynyba arba bogalių buvo gymyba
---
reference: už tai buvo suimtas ir tris mėnesius sėdėjo butyrkų kalėjime
predicted: užtai buvo sujumtas ir tris mėne susiedėjo butirkų kalėjime
---
reference: tai didžiausias pagal gyventojų skaičių regionas
predicted: tai didžiausias pagal gyventojų skaičių redionus
---
reference: vilkyškių miške taip pat auga raganų eglė
predicted: vilkiškimiškė taip pat auga ragano eglė
---
reference: kitas gavo skaraitiškės dvarą su palivarkais
predicted: kitas gavos karaitiškės dvarą spolivarkais
---
```
## Evaluation
The model can be evaluated as follows on the test data of Common Voice.
```python
import librosa
import torch
import torchaudio
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
from datasets import load_dataset, load_metric
import numpy as np
import re
import string
from normalizer import normalizer
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
speech_array = speech_array.squeeze().numpy()
speech_array = librosa.resample(np.asarray(speech_array), sampling_rate, 16_000)
batch["speech"] = speech_array
return batch
def predict(batch):
features = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
input_values = features.input_values.to(device)
attention_mask = features.attention_mask.to(device)
with torch.no_grad():
logits = model(input_values, attention_mask=attention_mask).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["predicted"] = processor.batch_decode(pred_ids)[0]
return batch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
processor = Wav2Vec2Processor.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-lithuanian")
model = Wav2Vec2ForCTC.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-lithuanian").to(device)
dataset = load_dataset("common_voice", "lt", split="test")
dataset = dataset.map(
normalizer,
fn_kwargs={"remove_extra_space": True},
remove_columns=list(set(dataset.column_names) - set(['sentence', 'path']))
)
dataset = dataset.map(speech_file_to_array_fn)
result = dataset.map(predict)
wer = load_metric("wer")
print("WER: {:.2f}".format(100 * wer.compute(predictions=result["predicted"], references=result["sentence"])))
```
]
**Test Result**:
- WER: 34.66%
## Training & Report
The Common Voice `train`, `validation` datasets were used for training.
You can see the training states [here](https://wandb.ai/m3hrdadfi/wav2vec2_large_xlsr_lt/reports/Fine-Tuning-for-Wav2Vec2-Large-XLSR-53-Lithuanian--Vmlldzo1OTM1MTU?accessToken=kdkpara4hcmjvrlpbfsnu4s8cdk3a0xeyrb84ycpr4k701n13hzr9q7s60b00swx)
The script used for training can be found [here](https://colab.research.google.com/github/m3hrdadfi/notebooks/blob/main/Fine_Tune_XLSR_Wav2Vec2_on_Lithuanian_ASR_with_%F0%9F%A4%97_Transformers_ipynb.ipynb)
## Questions?
Post a Github issue on the [Wav2Vec](https://github.com/m3hrdadfi/wav2vec) repo. |
m3hrdadfi/wav2vec2-large-xlsr-georgian | m3hrdadfi | 2021-11-04T15:22:05Z | 67 | 5 | transformers | [
"transformers",
"pytorch",
"jax",
"wav2vec2",
"automatic-speech-recognition",
"audio",
"speech",
"xlsr-fine-tuning-week",
"ka",
"dataset:common_voice",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
language: ka
datasets:
- common_voice
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
license: apache-2.0
widget:
- example_title: Common Voice sample 566
src: https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-georgian/resolve/main/sample566.flac
- example_title: Common Voice sample 95
src: https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-georgian/resolve/main/sample95.flac
model-index:
- name: XLSR Wav2Vec2 Georgian by Mehrdad Farahani
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice ka
type: common_voice
args: ka
metrics:
- name: Test WER
type: wer
value: 43.86
---
# Wav2Vec2-Large-XLSR-53-Georgian
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Georgian using [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
**Requirements**
```bash
# requirement packages
!pip install git+https://github.com/huggingface/datasets.git
!pip install git+https://github.com/huggingface/transformers.git
!pip install torchaudio
!pip install librosa
!pip install jiwer
```
**Normalizer**
```bash
!wget -O normalizer.py https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-lithuanian/raw/main/normalizer.py
```
**Prediction**
```python
import librosa
import torch
import torchaudio
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
from datasets import load_dataset
import numpy as np
import re
import string
import IPython.display as ipd
from normalizer import normalizer
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
speech_array = speech_array.squeeze().numpy()
speech_array = librosa.resample(np.asarray(speech_array), sampling_rate, 16_000)
batch["speech"] = speech_array
return batch
def predict(batch):
features = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
input_values = features.input_values.to(device)
attention_mask = features.attention_mask.to(device)
with torch.no_grad():
logits = model(input_values, attention_mask=attention_mask).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["predicted"] = processor.batch_decode(pred_ids)[0]
return batch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
processor = Wav2Vec2Processor.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-georgian")
model = Wav2Vec2ForCTC.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-georgian").to(device)
dataset = load_dataset("common_voice", "ka", split="test[:1%]")
dataset = dataset.map(
normalizer,
fn_kwargs={"remove_extra_space": True},
remove_columns=list(set(dataset.column_names) - set(['sentence', 'path']))
)
dataset = dataset.map(speech_file_to_array_fn)
result = dataset.map(predict)
max_items = np.random.randint(0, len(result), 20).tolist()
for i in max_items:
reference, predicted = result["sentence"][i], result["predicted"][i]
print("reference:", reference)
print("predicted:", predicted)
print('---')
```
**Output:**
```text
reference: პრეზიდენტობისას ბუში საქართველოს და უკრაინის დემოკრატიულ მოძრაობების და ნატოში გაწევრიანების აქტიური მხარდამჭერი იყო
predicted: პრეზიდენტო ვისას ბუში საქართველოს და უკრაინის დემოკრატიულ მოძრაობების და ნატიში დაწევრიანების აქტიური მხარდამჭერი იყო
---
reference: შესაძლებელია მისი დამონება და მსახურ დემონად გადაქცევა
predicted: შესაძლებელია მისი დამონებათ და მსახურდემანად გადაქცევა
---
reference: ეს გამოსახულებები აღბეჭდილი იყო მოსკოვის დიდი მთავრებისა და მეფეების ბეჭდებზე
predicted: ეს გამოსახულებები აღბეჭდილი იყო მოსკოვის დიდი მთავრებისა და მეფეების ბეჭდებზე
---
reference: ჯოლიმ ოქროს გლობუსისა და კინომსახიობთა გილდიის ნომინაციები მიიღო
predicted: ჯოლი მოქროს გლობუსისა და კინამსახიობთა გილდიის ნომინაციები მიიღო
---
reference: შემდგომში საქალაქო ბიბლიოთეკა სარაიონო ბიბლიოთეკად გადაკეთდა გაიზარდა წიგნადი ფონდი
predicted: შემდღომში საქალაქო ბიბლიოთეკა სარაიონო ბიბლიოთეკად გადაკეთა გაიზარდა წიგნადი ფოვდი
---
reference: აბრამსი დაუკავშირდა მირანდას და ორი თვის განმავლობაში ისინი მუშაობდნენ აღნიშნული სცენის თანმხლებ მელოდიაზე
predicted: აბრამში და უკავშირდა მირანდეს და ორითვის განმავლობაში ისინი მუშაობდნენა აღნიშნულის ჩენის მთამხლევით მელოდიაში
---
reference: ამჟამად თემთა პალატის ოპოზიციის ლიდერია ლეიბორისტული პარტიის ლიდერი ჯერემი კორბინი
predicted: ამჟამად თემთა პალატის ოპოზიციის ლიდერია ლეიბურისტული პარტიის ლიდერი ჯერემი კორვინი
---
reference: ორი
predicted: ორი
---
reference: მას შემდეგ იგი კოლექტივის მუდმივი წევრია
predicted: მას შემდეგ იგი კოლექტივის ფუდ მივი წევრია
---
reference: აზერბაიჯანულ ფილოსოფიას შეიძლება მივაკუთვნოთ რუსეთის საზოგადო მოღვაწე ჰეიდარ ჯემალი
predicted: აზერგვოიჯანალ ფილოსოფიას შეიძლება მივაკუთვნოთ რუსეთის საზოგადო მოღვაწე ჰეიდარ ჯემალი
---
reference: ბრონქსში ჯერომის ავენიუ ჰყოფს გამჭოლ ქუჩებს აღმოსავლეთ და დასავლეთ ნაწილებად
predicted: რონგში დერომიწ ავენილ პოფს გამ დოლფურქებს აღმოსავლეთ და დასავლეთ ნაწილებად
---
reference: ჰაერი არის ჟანგბადის ის ძირითადი წყარო რომელსაც საჭიროებს ყველა ცოცხალი ორგანიზმი
predicted: არი არის ჯამუბადესის ძირითადი წყარო რომელსაც საჭიროოებს ყველა ცოცხალი ორგანიზმი
---
reference: ჯგუფი უმეტესწილად ასრულებს პოპმუსიკის ჟანრის სიმღერებს
predicted: ჯგუფიუმეტესწევად ასრულებს პოპნუსიკის ჟანრის სიმრერებს
---
reference: ბაბილინა მუდმივად ცდილობდა შესაძლებლობების ფარგლებში მიეღო ცოდნა და ახალი ინფორმაცია
predicted: ბაბილინა მუდმივა ცდილობდა შესაძლებლობების ფარგლებში მიიღო ცოტნა და ახალი ინფორმაცია
---
reference: მრევლის რწმენით რომელი ჯგუფიც გაიმარჯვებდა მთელი წლის მანძილზე სიუხვე და ბარაქა არ მოაკლდებოდა
predicted: მრევრის რწმენით რომელიჯგუფის გაიმარჯვებდა მთელიჭლის მანძილზა სიუყვეტაბარაქა არ მოაკლდებოდა
---
reference: ნინო ჩხეიძეს განსაკუთრებული ღვაწლი მიუძღვის ქუთაისისა და რუსთაველის თეატრების შემოქმედებით ცხოვრებაში
predicted: მინო ჩხეიძეს განსაკუთრებული ღოვაწლი მიოცხვის ქუთაისისა და რუსთაველის თეატრების შემოქმედებით ცხოვრებაში
---
reference: იგი სამი დიალექტისგან შედგება
predicted: იგი სამი დიალეთის გან შედგება
---
reference: ფორმით სირაქლემებს წააგვანან
predicted: ომიცი რაქლემებს ააგვანამ
---
reference: დანი დაიბადა კოლუმბუსში ოჰაიოში
predicted: დონი დაიბაოდა კოლუმბუსში ოხვაიოში
---
reference: მშენებლობისათვის გამოიყო ადგილი ყოფილი აეროპორტის რაიონში
predicted: შენებლობისათვის გამოიყო ადგილი ყოფილი აეროპორტის რაიონში
---
```
## Evaluation
The model can be evaluated as follows on the Georgian test data of Common Voice.
```python
import librosa
import torch
import torchaudio
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
from datasets import load_dataset, load_metric
import numpy as np
import re
import string
from normalizer import normalizer
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
speech_array = speech_array.squeeze().numpy()
speech_array = librosa.resample(np.asarray(speech_array), sampling_rate, 16_000)
batch["speech"] = speech_array
return batch
def predict(batch):
features = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
input_values = features.input_values.to(device)
attention_mask = features.attention_mask.to(device)
with torch.no_grad():
logits = model(input_values, attention_mask=attention_mask).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["predicted"] = processor.batch_decode(pred_ids)[0]
return batch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
processor = Wav2Vec2Processor.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-georgian")
model = Wav2Vec2ForCTC.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-georgian").to(device)
dataset = load_dataset("common_voice", "ka", split="test")
dataset = dataset.map(
normalizer,
fn_kwargs={"remove_extra_space": True},
remove_columns=list(set(dataset.column_names) - set(['sentence', 'path']))
)
dataset = dataset.map(speech_file_to_array_fn)
result = dataset.map(predict)
wer = load_metric("wer")
print("WER: {:.2f}".format(100 * wer.compute(predictions=result["predicted"], references=result["sentence"])))
```
**Test Result**:
- WER: 43.86%
## Training & Report
The Common Voice `train`, `validation` datasets were used for training.
You can see the training states [here](https://wandb.ai/m3hrdadfi/wav2vec2_large_xlsr_ka/reports/Fine-Tuning-for-Wav2Vec2-Large-XLSR-53-Georgian--Vmlldzo1OTQyMzk?accessToken=ytf7jseje66a3byuheh68o6a7215thjviscv5k2ewl5hgq9yqr50yxbko0bnf1d3)
The script used for training can be found [here](https://colab.research.google.com/github/m3hrdadfi/notebooks/blob/main/Fine_Tune_XLSR_Wav2Vec2_on_Georgian_ASR_with_%F0%9F%A4%97_Transformers_ipynb.ipynb)
## Questions?
Post a Github issue on the [Wav2Vec](https://github.com/m3hrdadfi/wav2vec) repo. |
aheba31/zaion-speaker-ident | aheba31 | 2021-11-04T13:44:31Z | 13 | 0 | transformers | [
"transformers",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z | Found. Redirecting to https://cdn-lfs.hf.co/aheba31/zaion-speaker-ident/2be012c6f67c3dde0767c78b91b0b40f6e312101a65a7951cfb2f625205545cd?response-content-disposition=inline%3B+filename*%3DUTF-8%27%27README.md%3B+filename%3D%22README.md%22%3B&response-content-type=text%2Fmarkdown&Expires=1739043836&Policy=eyJTdGF0ZW1lbnQiOlt7IkNvbmRpdGlvbiI6eyJEYXRlTGVzc1RoYW4iOnsiQVdTOkVwb2NoVGltZSI6MTczOTA0MzgzNn19LCJSZXNvdXJjZSI6Imh0dHBzOi8vY2RuLWxmcy5oZi5jby9haGViYTMxL3phaW9uLXNwZWFrZXItaWRlbnQvMmJlMDEyYzZmNjdjM2RkZTA3NjdjNzhiOTFiMGI0MGY2ZTMxMjEwMWE2NWE3OTUxY2ZiMmY2MjUyMDU1NDVjZD9yZXNwb25zZS1jb250ZW50LWRpc3Bvc2l0aW9uPSomcmVzcG9uc2UtY29udGVudC10eXBlPSoifV19&Signature=TaJ3eNq30ATHwG3R3KYr08rZPwbCoxDMG4oLD10iWRsgVqXHx3PQyJwUXUKdXUQeX-HAKih12Y8ULzNsXu4yyX3A5bVB6MwGSqGj8CqauZVK9mPltbX1%7E1GJ-FWJ0C%7ELIPZhC%7EjFum9JEs%7E1KuYcVKq%7ETfztCz8GX9Zuc-aGDKECgZwbxpk0JbqSzCYtIa2rlZg9wBXUTAs5KE%7EdsMNbpr-l7W%7E66jb%7EadSvuc3P9k7fooFMVAXbld65kofpEUaFF-A6D9SIVlxPOHCApIVz4UjlPN9R4mTP1DJGmZ5860aJNs%7EJTn8fuwWNMX3JlHuqY0Xb4TQ7jEiOEZ6fyqLjjQ__&Key-Pair-Id=K3RPWS32NSSJCE |
aheba31/test-predictor | aheba31 | 2021-11-04T13:44:28Z | 8 | 0 | speechbrain | [
"speechbrain",
"embeddings",
"Speaker",
"Verification",
"Identification",
"pytorch",
"ECAPA",
"TDNN",
"en",
"dataset:voxceleb",
"arxiv:2106.04624",
"license:apache-2.0",
"region:us"
] | null | 2022-03-02T23:29:05Z | ---
language: "en"
thumbnail:
tags:
- speechbrain
- embeddings
- Speaker
- Verification
- Identification
- pytorch
- ECAPA
- TDNN
license: "apache-2.0"
datasets:
- voxceleb
metrics:
- EER
widget:
- example_title: VoxCeleb Speaker id10003
src: https://cdn-media.huggingface.co/speech_samples/VoxCeleb1_00003.wav
- example_title: VoxCeleb Speaker id10004
src: https://cdn-media.huggingface.co/speech_samples/VoxCeleb_00004.wav
---
<iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
<br/><br/>
# Speaker Verification with ECAPA-TDNN embeddings on Voxceleb
This repository provides all the necessary tools to perform speaker verification with a pretrained ECAPA-TDNN model using SpeechBrain.
The system can be used to extract speaker embeddings as well.
It is trained on Voxceleb 1+ Voxceleb2 training data.
For a better experience, we encourage you to learn more about
[SpeechBrain](https://speechbrain.github.io). The model performance on Voxceleb1-test set(Cleaned) is:
| Release | EER(%) | minDCF |
|:-------------:|:--------------:|:--------------:|
| 05-03-21 | 0.69 | 0.08258 |
## Pipeline description
This system is composed of an ECAPA-TDNN model. It is a combination of convolutional and residual blocks. The embeddings are extracted using attentive statistical pooling. The system is trained with Additive Margin Softmax Loss. Speaker Verification is performed using cosine distance between speaker embeddings.
## Install SpeechBrain
First of all, please install SpeechBrain with the following command:
```
gh repo clone aheba/speechbrain-aheba-contribs
git checkout pretrain_new
pip install -r requirements.txt
pip install --editable .
```
Please notice that we encourage you to read our tutorials and learn more about
[SpeechBrain](https://speechbrain.github.io).
### Compute your speaker embeddings
```python
import torchaudio
from speechbrain.pretrained import Predictor
classifier = Predictor.import_model(source="aheba31/test-predictor")
signal, fs = torchaudio.load('samples/audio_samples/example1.wav')
embeddings = classifier.encode_batch(signal)
```
### Perform Speaker Verification
```python
from speechbrain.pretrained import SpeakerRecognition
verification = SpeakerRecognition.from_hparams(source="aheba31/test-predictor", savedir="aheba31/test-predictor")
score, prediction = verification.verify_files("speechbrain/spkrec-ecapa-voxceleb/example1.wav", "speechbrain/spkrec-ecapa-voxceleb/example2.flac")
```
The prediction is 1 if the two signals in input are from the same speaker and 0 otherwise.
### Inference on GPU
To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method.
### Training
The model was trained with SpeechBrain (aa018540).
To train it from scratch follows these steps:
1. Clone SpeechBrain:
```bash
git clone https://github.com/speechbrain/speechbrain/
```
2. Install it:
```
cd speechbrain
pip install -r requirements.txt
pip install -e .
```
3. Run Training:
```
cd recipes/VoxCeleb/SpeakerRec
python train_speaker_embeddings.py hparams/train_ecapa_tdnn.yaml --data_folder=your_data_folder
```
You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/1-ahC1xeyPinAHp2oAohL-02smNWO41Cc?usp=sharing).
### Limitations
The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.
#### Referencing ECAPA-TDNN
```
@inproceedings{DBLP:conf/interspeech/DesplanquesTD20,
author = {Brecht Desplanques and
Jenthe Thienpondt and
Kris Demuynck},
editor = {Helen Meng and
Bo Xu and
Thomas Fang Zheng},
title = {{ECAPA-TDNN:} Emphasized Channel Attention, Propagation and Aggregation
in {TDNN} Based Speaker Verification},
booktitle = {Interspeech 2020},
pages = {3830--3834},
publisher = {{ISCA}},
year = {2020},
}
```
# **Citing SpeechBrain**
Please, cite SpeechBrain if you use it for your research or business.
```bibtex
@misc{speechbrain,
title={{SpeechBrain}: A General-Purpose Speech Toolkit},
author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and François Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio},
year={2021},
eprint={2106.04624},
archivePrefix={arXiv},
primaryClass={eess.AS},
note={arXiv:2106.04624}
}
```
# **About SpeechBrain**
- Website: https://speechbrain.github.io/
- Code: https://github.com/speechbrain/speechbrain/
- HuggingFace: https://huggingface.co/speechbrain/
|
mishig/test_regex_searchreplace | mishig | 2021-11-04T12:29:50Z | 0 | 0 | null | [
"speech",
"audio",
"wav2vec2",
"audio-classification",
"en",
"dataset:superb",
"arxiv:2105.01051",
"license:apache-2.0",
"region:us"
] | audio-classification | 2022-03-02T23:29:05Z | ---
language: en
datasets:
- superb
tags:
- speech
- audio
- wav2vec2
- audio-classification
widget:
- example_title: VoxCeleb Speaker id10003
src: https://cdn-media.huggingface.co/speech_samples/VoxCeleb1_00003.wav
- example_title: VoxCeleb Speaker id10004
src: https://cdn-media.huggingface.co/speech_samples/VoxCeleb_00004.wav
license: apache-2.0
---
# Wav2Vec2-Base for Speaker Identification
## Model description
This is a ported version of
[S3PRL's Wav2Vec2 for the SUPERB Speaker Identification task](https://github.com/s3prl/s3prl/tree/master/s3prl/downstream/voxceleb1).
The base model is [wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base), which is pretrained on 16kHz
sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz.
For more information refer to [SUPERB: Speech processing Universal PERformance Benchmark](https://arxiv.org/abs/2105.01051)
## Task and dataset description
Speaker Identification (SI) classifies each utterance for its speaker identity as a multi-class
classification, where speakers are in the same predefined set for both training and testing. The widely
used [VoxCeleb1](https://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1.html) dataset is adopted
For the original model's training and evaluation instructions refer to the
[S3PRL downstream task README](https://github.com/s3prl/s3prl/tree/master/s3prl/downstream#sid-speaker-identification).
## Usage examples
You can use the model via the Audio Classification pipeline:
```python
from datasets import load_dataset
from transformers import pipeline
dataset = load_dataset("anton-l/superb_demo", "si", split="test")
classifier = pipeline("audio-classification", model="superb/wav2vec2-base-superb-sid")
labels = classifier(dataset[0]["file"], top_k=5)
```
Or use the model directly:
```python
import torch
import librosa
from datasets import load_dataset
from transformers import Wav2Vec2ForSequenceClassification, Wav2Vec2FeatureExtractor
def map_to_array(example):
speech, _ = librosa.load(example["file"], sr=16000, mono=True)
example["speech"] = speech
return example
# load a demo dataset and read audio files
dataset = load_dataset("anton-l/superb_demo", "si", split="test")
dataset = dataset.map(map_to_array)
model = Wav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-base-superb-sid")
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("superb/wav2vec2-base-superb-sid")
# compute attention masks and normalize the waveform if needed
inputs = feature_extractor(dataset[:2]["speech"], sampling_rate=16000, padding=True, return_tensors="pt")
logits = model(**inputs).logits
predicted_ids = torch.argmax(logits, dim=-1)
labels = [model.config.id2label[_id] for _id in predicted_ids.tolist()]
```
## Eval results
The evaluation metric is accuracy.
| | **s3prl** | **transformers** |
|--------|-----------|------------------|
|**test**| `0.7518` | `0.7518` |
### BibTeX entry and citation info
```bibtex
@article{yang2021superb,
title={SUPERB: Speech processing Universal PERformance Benchmark},
author={Yang, Shu-wen and Chi, Po-Han and Chuang, Yung-Sung and Lai, Cheng-I Jeff and Lakhotia, Kushal and Lin, Yist Y and Liu, Andy T and Shi, Jiatong and Chang, Xuankai and Lin, Guan-Ting and others},
journal={arXiv preprint arXiv:2105.01051},
year={2021}
}
``` |
gayanin/bart-finetuned-pubmed | gayanin | 2021-11-04T11:03:30Z | 19 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"bart",
"text2text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: bart-finetuned-pubmed
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart-finetuned-pubmed
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5363
- Rouge2 Precision: 0.3459
- Rouge2 Recall: 0.2455
- Rouge2 Fmeasure: 0.2731
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure |
|:-------------:|:-----:|:-----:|:---------------:|:----------------:|:-------------:|:---------------:|
| 1.652 | 1.0 | 1125 | 1.5087 | 0.3647 | 0.2425 | 0.2772 |
| 1.4695 | 2.0 | 2250 | 1.5039 | 0.3448 | 0.2457 | 0.2732 |
| 1.3714 | 3.0 | 3375 | 1.4842 | 0.3509 | 0.2474 | 0.277 |
| 1.2734 | 4.0 | 4500 | 1.4901 | 0.3452 | 0.2426 | 0.2716 |
| 1.1853 | 5.0 | 5625 | 1.5152 | 0.3658 | 0.2371 | 0.2744 |
| 1.0975 | 6.0 | 6750 | 1.5133 | 0.3529 | 0.2417 | 0.2729 |
| 1.0448 | 7.0 | 7875 | 1.5203 | 0.3485 | 0.2464 | 0.275 |
| 0.9999 | 8.0 | 9000 | 1.5316 | 0.3437 | 0.2435 | 0.2719 |
| 0.9732 | 9.0 | 10125 | 1.5338 | 0.3464 | 0.2446 | 0.2732 |
| 0.954 | 10.0 | 11250 | 1.5363 | 0.3459 | 0.2455 | 0.2731 |
### Framework versions
- Transformers 4.12.3
- Pytorch 1.9.0+cu111
- Datasets 1.15.1
- Tokenizers 0.10.3
|
denden/iloko_model | denden | 2021-11-04T10:24:55Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
pipeline_tag: automatic-speech-recognition
model-index:
name: iloko_model
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# iloko_model
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0095
- Wer: 0.0840
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.2784 | 1.11 | 100 | 2.9875 | 1.0 |
| 2.6899 | 2.22 | 200 | 2.6741 | 1.0 |
| 2.6177 | 3.33 | 300 | 2.6516 | 1.0 |
| 2.5327 | 4.44 | 400 | 2.4530 | 1.0 |
| 0.8653 | 5.56 | 500 | 0.5227 | 0.6547 |
| 0.3414 | 6.67 | 600 | 0.1830 | 0.2487 |
| 0.2299 | 7.78 | 700 | 0.1212 | 0.1877 |
| 0.1739 | 8.89 | 800 | 0.0843 | 0.1441 |
| 0.1242 | 10.0 | 900 | 0.0766 | 0.1441 |
| 0.1116 | 11.11 | 1000 | 0.0530 | 0.1145 |
| 0.0861 | 12.22 | 1100 | 0.0442 | 0.1047 |
| 0.1007 | 13.33 | 1200 | 0.0379 | 0.1023 |
| 0.0613 | 14.44 | 1300 | 0.0291 | 0.1006 |
| 0.0629 | 15.56 | 1400 | 0.0264 | 0.0961 |
| 0.047 | 16.67 | 1500 | 0.0238 | 0.0935 |
| 0.0797 | 17.78 | 1600 | 0.0226 | 0.0913 |
| 0.034 | 18.89 | 1700 | 0.0197 | 0.0893 |
| 0.0485 | 20.0 | 1800 | 0.0173 | 0.0905 |
| 0.0402 | 21.11 | 1900 | 0.0148 | 0.0902 |
| 0.0231 | 22.22 | 2000 | 0.0135 | 0.0891 |
| 0.0512 | 23.33 | 2100 | 0.0134 | 0.0861 |
| 0.0181 | 24.44 | 2200 | 0.0118 | 0.0842 |
| 0.0371 | 25.56 | 2300 | 0.0116 | 0.0867 |
| 0.0342 | 26.67 | 2400 | 0.0104 | 0.0863 |
| 0.0344 | 27.78 | 2500 | 0.0100 | 0.0850 |
| 0.0182 | 28.89 | 2600 | 0.0096 | 0.0839 |
| 0.0171 | 30.0 | 2700 | 0.0095 | 0.0840 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu102
- Datasets 1.13.3
- Tokenizers 0.10.3
|
nikhil6041/wav2vec2-large-xlsr-hindi-demo-colab | nikhil6041 | 2021-11-04T09:21:14Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:common_voice",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: wav2vec2-large-xlsr-hindi-demo-colab
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xlsr-hindi-demo-colab
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu102
- Datasets 1.13.3
- Tokenizers 0.10.3
|
nateraw/lightweight-gan-flowers-64 | nateraw | 2021-11-04T09:11:04Z | 0 | 4 | null | [
"region:us"
] | null | 2022-03-02T23:29:05Z | # Flowers GAN
<a href="https://colab.research.google.com/github/nateraw/huggingface-hub-examples/blob/main/pytorch_lightweight_gan.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a>
Give the [Github Repo](https://github.com/nateraw/huggingface-hub-examples) a ⭐️
### Generated Images
<video width="320" height="240" controls>
<source src="https://huggingface.co/nateraw/lightweight-gan-flowers-64/resolve/main/generated.mp4" type="video/mp4">
</video>
### EMA
<video width="320" height="240" controls>
<source src="https://huggingface.co/nateraw/lightweight-gan-flowers-64/resolve/main/ema.mp4" type="video/mp4">
</video>
|
Lucdi90/DialoGPT-medium-XiaoBot | Lucdi90 | 2021-11-04T08:54:27Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:04Z | ---
tags:
- conversational
---
# XiaoBot for Discord
[Tutorial](https://youtu.be/UjDpW_SOrlw) followed for this model. |
Ahmad/parsT5 | Ahmad | 2021-11-04T05:16:46Z | 23 | 1 | transformers | [
"transformers",
"jax",
"t5",
"text2text-generation",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2022-03-02T23:29:04Z | A checkpoint for training Persian T5 model. This repository can be cloned and pre-training can be resumed. This model uses flax and is for training.
For more information and getting the training code please refer to:
https://github.com/puraminy/parsT5
|
ashraq/dv-electra-small-news-classification | ashraq | 2021-11-03T22:31:07Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"electra",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | ---
widget:
- text: 'ގޫގަލް ޕިކްސަލް 6 ގެ ކެމެރާ، އޭއައި ގެ ޖާދޫއިން ފުރިފައި'
---
# The [ELECTRA-small](https://huggingface.co/ashraq/dv-electra-small) fine-tuned for news classification in Dhivehi |
Roy029/distilroberta-base-finetuned-wikitext2 | Roy029 | 2021-11-03T15:01:48Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"roberta",
"fill-mask",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | fill-mask | 2022-03-02T23:29:04Z | ---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: distilroberta-base-finetuned-wikitext2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilroberta-base-finetuned-wikitext2
This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.2005
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 58 | 2.2650 |
| No log | 2.0 | 116 | 2.2408 |
| No log | 3.0 | 174 | 2.1696 |
### Framework versions
- Transformers 4.12.3
- Pytorch 1.9.0+cu111
- Datasets 1.15.1
- Tokenizers 0.10.3
|
brunodorneles/biobertpt-all-finetuned-ner | brunodorneles | 2021-11-03T14:40:02Z | 9 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2022-03-02T23:29:05Z | ---
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: biobertpt-all-finetuned-ner
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# biobertpt-all-finetuned-ner
This model is a fine-tuned version of [pucpr/biobertpt-all](https://huggingface.co/pucpr/biobertpt-all) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.3721
- Precision: 0.0179
- Recall: 0.0149
- F1: 0.0163
- Accuracy: 0.6790
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 1 | 2.7864 | 0.0091 | 0.0448 | 0.0152 | 0.3339 |
| No log | 2.0 | 2 | 2.5096 | 0.0097 | 0.0149 | 0.0118 | 0.6292 |
| No log | 3.0 | 3 | 2.3721 | 0.0179 | 0.0149 | 0.0163 | 0.6790 |
### Framework versions
- Transformers 4.12.0.dev0
- Pytorch 1.9.1+cu102
- Datasets 1.13.3
- Tokenizers 0.10.3
|
kloon99/KML_Eula_generate_v1 | kloon99 | 2021-11-03T10:07:54Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: trained_model2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# trained_model2
This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15.0
### Training results
### Framework versions
- Transformers 4.13.0.dev0
- Pytorch 1.9.1
- Datasets 1.14.0
- Tokenizers 0.10.3
|
JushBJJ/autonlp-bp-29016523 | JushBJJ | 2021-11-03T09:30:13Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"text-classification",
"autonlp",
"en",
"dataset:Jush/autonlp-data-bp",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:04Z | ---
tags: autonlp
language: en
widget:
- text: "I love AutoNLP 🤗"
datasets:
- Jush/autonlp-data-bp
co2_eq_emissions: 3.273303707756322
---
# Model Trained Using AutoNLP
- Problem type: Multi-class Classification
- Model ID: 29016523
- CO2 Emissions (in grams): 3.273303707756322
## Validation Metrics
- Loss: 0.6093757748603821
- Accuracy: 0.8333333333333334
- Macro F1: 0.7937936978656889
- Micro F1: 0.8333333333333334
- Weighted F1: 0.8239843785760546
- Macro Precision: 0.8988882462566673
- Micro Precision: 0.8333333333333334
- Weighted Precision: 0.8404982541824647
- Macro Recall: 0.7805142534864643
- Micro Recall: 0.8333333333333334
- Weighted Recall: 0.8333333333333334
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/Jush/autonlp-bp-29016523
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("Jush/autonlp-bp-29016523", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("Jush/autonlp-bp-29016523", use_auth_token=True)
inputs = tokenizer("I love AutoNLP", return_tensors="pt")
outputs = model(**inputs)
``` |
huggingartists/ariya | huggingartists | 2021-11-03T09:21:45Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm",
"en",
"dataset:huggingartists/ariya",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
language: en
datasets:
- huggingartists/ariya
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/975b03ba317602498bed5321f12caebe.1000x1000x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Ария (Ariya)</div>
<a href="https://genius.com/artists/ariya">
<div style="text-align: center; font-size: 14px;">@ariya</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from Ария (Ariya).
Dataset is available [here](https://huggingface.co/datasets/huggingartists/ariya).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/ariya")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/uo73s5z1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Ария (Ariya)'s lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/69c1r7ea) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/69c1r7ea/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/ariya')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/ariya")
model = AutoModelWithLMHead.from_pretrained("huggingartists/ariya")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
pere/norwegian-gpt2-vgd | pere | 2021-11-02T21:15:41Z | 23 | 0 | transformers | [
"transformers",
"pytorch",
"jax",
"tensorboard",
"gpt2",
"text-generation",
"norwegian",
"GPT2",
"casual language modeling",
"no",
"license:cc-by-4.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
language: no
license: cc-by-4.0
tags:
- norwegian
- GPT2
- casual language modeling
---
# Norwegian GPT-2 - Social
## Description
Private test of gpt fine-tuning based on vgd.
The following sub-corpora are used for the base model:
```bash
wikipedia_download_nb.jsonl
wikipedia_download_nn.jsonl
newspapers_online_nb.jsonl
newspapers_online_nn.jsonl
twitter_2016_2018_no.jsonl
twitter_news_2016_2018_no.jsonl
open_subtitles_no.jsonl
facebook_no.jsonl
reddit_no.jsonl
vgdebatt_no.jsonl
```
Finetuned on the private dataset located at NbAiLab/vgd.
|
chisadi/nice-distilbert-v2 | chisadi | 2021-11-02T19:21:06Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"distilbert",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | ### Distibert model finetuned on the task of classifying product descriptions to one of 45 broad [NICE classifications](https://www.wipo.int/classifications/nice/en/)
|
huggingartists/phish | huggingartists | 2021-11-02T19:07:07Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm",
"en",
"dataset:huggingartists/phish",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
language: en
datasets:
- huggingartists/phish
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/df85b83684e95f87794aa09580ee0463.919x919x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Phish</div>
<a href="https://genius.com/artists/phish">
<div style="text-align: center; font-size: 14px;">@phish</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from Phish.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/phish).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/phish")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/22sghxz4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Phish's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/340yi6e5) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/340yi6e5/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/phish')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/phish")
model = AutoModelWithLMHead.from_pretrained("huggingartists/phish")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
s-nlp/roberta_toxicity_classifier_v1 | s-nlp | 2021-11-02T18:36:13Z | 17 | 0 | transformers | [
"transformers",
"pytorch",
"roberta",
"text-classification",
"arxiv:1911.00536",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | This model is a clone of [SkolkovoInstitute/roberta_toxicity_classifier](https://huggingface.co/SkolkovoInstitute/roberta_toxicity_classifier) trained on a disjoint dataset.
While `roberta_toxicity_classifier` is used for evaluation of detoxification algorithms, `roberta_toxicity_classifier_v1` can be used within these algorithms, as in the paper [Text Detoxification using Large Pre-trained Neural Models](https://arxiv.org/abs/1911.00536). |
s-nlp/t5-paraphrase-paws-msrp-opinosis-paranmt | s-nlp | 2021-11-02T17:58:47Z | 46 | 0 | transformers | [
"transformers",
"pytorch",
"t5",
"text2text-generation",
"arxiv:1711.05732",
"arxiv:1911.00536",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2022-03-02T23:29:05Z | This is a paraphraser based on [ceshine/t5-paraphrase-paws-msrp-opinosis](https://huggingface.co/ceshine/t5-paraphrase-paws-msrp-opinosis)
and additionally fine-tuned on [ParaNMT](https://arxiv.org/abs/1711.05732).
The model was trained for the paper [Text Detoxification using Large Pre-trained Neural Models](https://arxiv.org/abs/1911.00536).
An example of its use is given in https://github.com/skoltech-nlp/detox |
nlpconnect/distilbert-base-cased-wikiproperties-classifier | nlpconnect | 2021-11-02T15:04:32Z | 5 | 2 | transformers | [
"transformers",
"tf",
"distilbert",
"text-classification",
"doi:10.57967/hf/0221",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | {'author': 'P50',
'capital': 'P36',
'child': 'P40',
'country': 'P17',
'country of origin': 'P495',
'creator': 'P170',
'educated at': 'P69',
'founder': 'P112',
'genre': 'P136',
'headquarters location': 'P159',
'language of work or name': 'P407',
'located in the administrative territorial entity': 'P131',
'location': 'P276',
'location of formation': 'P740',
'manufacturer': 'P176',
'notable work': 'P800',
'occupation': 'P106',
'owned by': 'P127',
'performer': 'P175',
'place of birth': 'P19',
'place of death': 'P20',
'position played on team / speciality': 'P413',
'record label': 'P264',
'spouse': 'P26'}
1250/1250 [==============================] - 159s 116ms/step - loss: 0.2096 - accuracy: 0.9570 - val_loss: 0.0407 - val_accuracy: 0.9805
from transformers import pipeline
classfier = pipeline("text-classification", model="nlpconnect/distilbert-base-cased-wikiproperties-classifier") |
jambo/marker-associations-binary-base | jambo | 2021-11-02T12:52:24Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"dataset:marker-associations-binary-base",
"license:mit",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | ---
license: mit
tags:
- generated_from_trainer
datasets:
- marker-associations-binary-base
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: marker-associations-binary-base
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: marker-associations-binary-base
type: marker-associations-binary-base
metrics:
- name: Precision
type: precision
value: 0.7981651376146789
- name: Recall
type: recall
value: 0.9560439560439561
- name: F1
type: f1
value: 0.87
- name: Accuracy
type: accuracy
value: 0.8884120171673819
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# marker-associations-binary-base
This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the marker-associations-binary-base dataset.
It achieves the following results on the evaluation set:
### Gene Results
- Precision = 0.808
- Recall = 0.940
- F1 = 0.869
- Accuracy = 0.862
- AUC = 0.944
### Chemical Results
- Precision = 0.774
- Recall = 1.0
- F1 = 0.873
- Accuracy = 0.926
- AUC = 0.964
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 1
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | Auc |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|:------:|
| No log | 1.0 | 88 | 0.3266 | 0.8191 | 0.8462 | 0.8324 | 0.8670 | 0.9313 |
| No log | 2.0 | 176 | 0.3335 | 0.7870 | 0.9341 | 0.8543 | 0.8755 | 0.9465 |
| No log | 3.0 | 264 | 0.4243 | 0.7982 | 0.9560 | 0.87 | 0.8884 | 0.9516 |
| No log | 4.0 | 352 | 0.5388 | 0.825 | 0.7253 | 0.7719 | 0.8326 | 0.9384 |
| No log | 5.0 | 440 | 0.7101 | 0.8537 | 0.7692 | 0.8092 | 0.8584 | 0.9416 |
| 0.1824 | 6.0 | 528 | 0.6175 | 0.8242 | 0.8242 | 0.8242 | 0.8627 | 0.9478 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.0+cu111
- Tokenizers 0.10.3
|
abhijithneilabraham/stsb_multi_mt_distilbert-base-uncased | abhijithneilabraham | 2021-11-02T12:23:53Z | 162 | 0 | sentence-transformers | [
"sentence-transformers",
"pytorch",
"distilbert",
"feature-extraction",
"sentence-similarity",
"transformers",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] | sentence-similarity | 2022-03-02T23:29:05Z | ---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
---
# {MODEL_NAME}
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('abhijithneilabraham/stsb_multi_mt_distilbert-base-uncased')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('abhijithneilabraham/stsb_multi_mt_distilbert-base-uncased')
model = AutoModel.from_pretrained('abhijithneilabraham/stsb_multi_mt_distilbert-base-uncased')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 360 with parameters:
```
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
Parameters of the fit()-Method:
```
{
"epochs": 25,
"evaluation_steps": 1000,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 900,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information --> |
pgperrone/roberta-base-bne-finetuned-amazon_reviews_multi | pgperrone | 2021-11-01T19:16:08Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"roberta",
"text-classification",
"generated_from_trainer",
"dataset:amazon_reviews_multi",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- amazon_reviews_multi
metrics:
- accuracy
model-index:
- name: roberta-base-bne-finetuned-amazon_reviews_multi
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: amazon_reviews_multi
type: amazon_reviews_multi
args: es
metrics:
- name: Accuracy
type: accuracy
value: 0.93125
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-base-bne-finetuned-amazon_reviews_multi
This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the amazon_reviews_multi dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2259
- Accuracy: 0.9313
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.1996 | 1.0 | 1250 | 0.1736 | 0.9297 |
| 0.1031 | 2.0 | 2500 | 0.2259 | 0.9313 |
### Framework versions
- Transformers 4.12.2
- Pytorch 1.9.0+cu111
- Datasets 1.14.0
- Tokenizers 0.10.3
|
mvonwyl/roberta-base-finetuned-squad2 | mvonwyl | 2021-11-01T17:51:41Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"roberta",
"question-answering",
"generated_from_trainer",
"dataset:squad_v2",
"license:mit",
"endpoints_compatible",
"region:us"
] | question-answering | 2022-03-02T23:29:05Z | ---
license: mit
tags:
- generated_from_trainer
datasets:
- squad_v2
model-index:
- name: roberta-base-finetuned-squad2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-base-finetuned-squad2
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad_v2 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9325
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 0.88 | 1.0 | 8160 | 0.8129 |
| 0.6643 | 2.0 | 16320 | 0.8567 |
| 0.5096 | 3.0 | 24480 | 0.9325 |
### Framework versions
- Transformers 4.12.2
- Pytorch 1.9.0+cu111
- Datasets 1.14.0
- Tokenizers 0.10.3
|
pooyaphoenix/distilbert-base-uncased-finetuned-cola | pooyaphoenix | 2021-11-01T10:54:03Z | 11 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2022-03-02T23:29:05Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- matthews_correlation
model-index:
- name: distilbert-base-uncased-finetuned-cola
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
args: cola
metrics:
- name: Matthews Correlation
type: matthews_correlation
value: 0.5226700639354173
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-cola
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7904
- Matthews Correlation: 0.5227
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Matthews Correlation |
|:-------------:|:-----:|:----:|:---------------:|:--------------------:|
| 0.528 | 1.0 | 535 | 0.5180 | 0.4003 |
| 0.3508 | 2.0 | 1070 | 0.5120 | 0.5019 |
| 0.2409 | 3.0 | 1605 | 0.6374 | 0.5128 |
| 0.1806 | 4.0 | 2140 | 0.7904 | 0.5227 |
| 0.1311 | 5.0 | 2675 | 0.8824 | 0.5227 |
### Framework versions
- Transformers 4.12.2
- Pytorch 1.9.0+cu111
- Datasets 1.14.0
- Tokenizers 0.10.3
|
NhatPham/wav2vec2-base-finetuned-ks | NhatPham | 2021-11-01T04:32:59Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"audio-classification",
"generated_from_trainer",
"dataset:superb",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | audio-classification | 2022-03-02T23:29:04Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- superb
metrics:
- accuracy
model-index:
- name: wav2vec2-base-finetuned-ks
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-finetuned-ks
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the superb dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1258
- Accuracy: 0.9793
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.1561 | 1.0 | 399 | 1.1127 | 0.6643 |
| 0.4803 | 2.0 | 798 | 0.3547 | 0.9687 |
| 0.2855 | 3.0 | 1197 | 0.1663 | 0.9763 |
| 0.1987 | 4.0 | 1596 | 0.1258 | 0.9793 |
| 0.2097 | 5.0 | 1995 | 0.1171 | 0.9791 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.0+cu111
- Datasets 1.14.0
- Tokenizers 0.10.3
|
Philipuss/GPT-Macbeth | Philipuss | 2021-11-01T02:16:42Z | 11 | 1 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"gpt2",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:04Z | ### **GPT-Macbeth**
A custom finetune of GPT-2 trained on a custom dataset of victorian literature
## Information
The goal of this finetune is to output high-quality victorian literature, while being customizable with Author's Note and being light to run (aka not being a GPT-Neo or GPT-Jax finetune, for now at least).
## Authors Note
Author's Note was added manually, so please appreciate it. :)
The format of it is [ Author: George Eliot; Genre: Horror, fantasy, novel; Tags: scary, magical, victorian ]
Some words will work well, some won't. Please make sure to have spaces before each ][.
Most popular victorian authors should work, but keep in mind that some authors (e.g. Mark Twain) will result in a somewhat weird behavior due to a quirk in the dataset that will be addressed in the next version of the finetune.
When it comes to the genres, "novel", "fiction", "horror" and "romance" work best, but from playing around with it, I've noticed that most other not too specific genres work pretty well too.
The tags are a bit complicated. Adding "normal" will result in a story without anything special (like no magic or fantasy element) and tends to be pretty low-pace. Using "real-life" will push the AI towards a historical/biographical path. Almost all tags should work. Using "man" or "woman" is supposed to semi-determine what gender the main character is, but it heavily depends on the chosen author.
## History
Version 0 - This was the first test version of the finetune, trained on GPT-2-small and with a really small dataset. The name was GPT-Kelini before it was renamed to GPT-Macbeth in V1.
Version 1 - The current version of the finetune. Trained on GPT-2-medium with a much, much bigger dataset compared to V0. Supports Author's Note
### Notes
Please use a very low temperature/randomness when using it, if you want to get anything out of it. Pumping the repetition penalty up helps a lot too.
The model was specifically converted to PyTorch so that most front-end GUI's should run it. It has been only tested on KoboldAI, but should theoretically work on others too.
For some odd reason, my finetune is capable of writing victorian NSFW content, if used the right way. No NSFW was in the dataset and considering the size of the model, it's really odd to see it do so. Perhaps the countless romantic novels in the dataset had something naughty in them, but I highly doubt it.
You may sometimes get roman numerals on random occasions, this shouldn't happen often, but if it does, it's again something that will be (manually, unfortunately) addressed in the next version of the finetune.
If you are wondering why I renamed my finetune to Macbeth, there are a few reasons: First, it sounds much better and smoother than Kelini, second, it's a play by Shakespeare that closely matches the writing style of some of the authors in my dataset, and third, the most important reason, it's was mentioned in Hamilton, so yes, my love with Hamilton is bleeding everywhere and yes, the next version of the dataset will try to have a Hamilton easter egg featuring the Author's Note.
### Credits
I want to thank HuggingFace for their tokenizer and everything they've done to make everything easier. Then is OpenAI for making GPT-2. I also want to thank most active people on the AIM Discord server in the community-projects channel. Thanks to Bran for finding a way to convert checkpoints to a PyTorch model, thanks to Mr. Seeker and Aedial for helping me in cleaning the dataset and to *finetune* from the NovelAI team for perhaps making my finetune output much better quality by telling me about the magic of the <\|endoftext\|> token.
P.S. If you happen to use it in something commercial or in an online demo or in any other way that is not for personal use, a credit will be greatly appreciated (and if you do something exciting with it, make sure to let me know, I'd be more than happy to see it being used by someone!).
|
huggingtweets/_f1rewalker_ | huggingtweets | 2021-11-01T00:02:50Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
language: en
thumbnail: https://www.huggingtweets.com/_f1rewalker_/1635724966832/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1421614250116763648/1kZwzXTB_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">PARKER MACMILLAN I</div>
<div style="text-align: center; font-size: 14px;">@_f1rewalker_</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from PARKER MACMILLAN I.
| Data | PARKER MACMILLAN I |
| --- | --- |
| Tweets downloaded | 2420 |
| Retweets | 8 |
| Short tweets | 297 |
| Tweets kept | 2115 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1vlix5az/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @_f1rewalker_'s tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2p23ltmn) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2p23ltmn/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/_f1rewalker_')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/_f1rewalker_-staticmeganito | huggingtweets | 2021-10-31T23:56:27Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
language: en
thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1421614250116763648/1kZwzXTB_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1453022424610525186/0AbfRVqP_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">PARKER MACMILLAN I & megan ito</div>
<div style="text-align: center; font-size: 14px;">@_f1rewalker_-staticmeganito</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from PARKER MACMILLAN I & megan ito.
| Data | PARKER MACMILLAN I | megan ito |
| --- | --- | --- |
| Tweets downloaded | 2420 | 3248 |
| Retweets | 8 | 137 |
| Short tweets | 297 | 416 |
| Tweets kept | 2115 | 2695 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1avcuseb/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @_f1rewalker_-staticmeganito's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3hsk5egr) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3hsk5egr/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/_f1rewalker_-staticmeganito')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/2wyatt2mason | huggingtweets | 2021-10-31T23:45:40Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
language: en
thumbnail: https://www.huggingtweets.com/2wyatt2mason/1635723936956/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1441261735004966923/Slec8aEM_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">di!!! 🎮🕹️🎤</div>
<div style="text-align: center; font-size: 14px;">@2wyatt2mason</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from di!!! 🎮🕹️🎤.
| Data | di!!! 🎮🕹️🎤 |
| --- | --- |
| Tweets downloaded | 389 |
| Retweets | 11 |
| Short tweets | 49 |
| Tweets kept | 329 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/26ny09im/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @2wyatt2mason's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1rslzcw9) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1rslzcw9/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/2wyatt2mason')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/dril-kanyewest-ph4370n | huggingtweets | 2021-10-31T21:42:34Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
language: en
thumbnail: https://www.huggingtweets.com/dril-kanyewest-ph4370n/1635716550756/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1404915829427212289/9npX2HXW_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/847818629840228354/VXyQHfn0_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1276461929934942210/cqNhNk6v_400x400.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">lexi & wint & ye</div>
<div style="text-align: center; font-size: 14px;">@dril-kanyewest-ph4370n</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from lexi & wint & ye.
| Data | lexi | wint | ye |
| --- | --- | --- | --- |
| Tweets downloaded | 2679 | 3226 | 1856 |
| Retweets | 1274 | 468 | 186 |
| Short tweets | 199 | 319 | 573 |
| Tweets kept | 1206 | 2439 | 1097 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3g14a01v/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dril-kanyewest-ph4370n's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1gh1q6ja) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1gh1q6ja/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/dril-kanyewest-ph4370n')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
Trixzy/rickai-v1 | Trixzy | 2021-10-31T20:17:36Z | 4 | 1 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
tags:
- conversational
---
Rick chatbot made with GPT2 ai from the show Rick and Morty, discord bot available now!
https://discord.com/oauth2/authorize?client_id=894569097818431519&permissions=1074113536&scope=bot
(v1 is no longer supported with RickBot) |
huggingtweets/ph4370n | huggingtweets | 2021-10-31T18:55:07Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2022-03-02T23:29:05Z | ---
language: en
thumbnail: https://www.huggingtweets.com/ph4370n/1635706503727/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1404915829427212289/9npX2HXW_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">lexi</div>
<div style="text-align: center; font-size: 14px;">@ph4370n</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from lexi.
| Data | lexi |
| --- | --- |
| Tweets downloaded | 2674 |
| Retweets | 1269 |
| Short tweets | 199 |
| Tweets kept | 1206 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2oj3ctzo/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ph4370n's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/yjm8doqr) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/yjm8doqr/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/ph4370n')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
Subsets and Splits