modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
list
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
giulianad/llama-3.2-1B-GRAFT-Text2KG-LoRA-v3
giulianad
2025-03-25T14:24:28Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-03-25T14:24:21Z
--- base_model: unsloth/llama-3.2-1b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** giulianad - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-1b-instruct-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Cpelpa/DeepSeek-R1-Distill-Llama-8B-Est-3ep-J
Cpelpa
2025-03-25T14:17:34Z
0
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-25T14:16:28Z
--- base_model: unsloth/deepseek-r1-distill-llama-8b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Cpelpa - **License:** apache-2.0 - **Finetuned from model :** unsloth/deepseek-r1-distill-llama-8b-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
nlarg/dummy-model
nlarg
2025-03-25T14:17:09Z
0
0
transformers
[ "transformers", "safetensors", "camembert", "fill-mask", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2025-03-25T14:12:22Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
samchain/EconoDetect-US
samchain
2025-03-25T14:15:59Z
0
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "economics", "finance", "en", "dataset:samchain/economics-relevance", "base_model:samchain/econo-sentence-v2", "base_model:finetune:samchain/econo-sentence-v2", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-03-25T14:06:44Z
--- library_name: transformers license: apache-2.0 base_model: samchain/econo-sentence-v2 tags: - generated_from_trainer - economics - finance metrics: - accuracy - f1 - precision - recall model-index: - name: EconoDetect results: [] datasets: - samchain/economics-relevance language: - en pipeline_tag: text-classification --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # EconoDetect This model is a fine-tuned version of [samchain/econo-sentence-v2](https://huggingface.co/samchain/econo-sentence-v2) on the economics-relevance dataset. The base model is kept frozen during training, only the classification head is updated. It achieves the following results on the evaluation set: - Loss: 0.3973 - Accuracy: 0.8211 - F1: 0.7991 - Precision: 0.7895 - Recall: 0.8211 ## Model description This model is designed to detect whether a text discusses topics related to the US economy. ## Intended uses & limitations The model can be used as a screening tool to remove texts that are not discussing US economy. ## Training and evaluation data ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.5381 | 1.0 | 700 | 0.4333 | 0.7844 | 0.7894 | 0.7952 | 0.7844 | | 0.4613 | 2.0 | 1400 | 0.4044 | 0.8328 | 0.7679 | 0.7856 | 0.8328 | | 0.3523 | 3.0 | 2100 | 0.3973 | 0.8211 | 0.7991 | 0.7895 | 0.8211 | ### Framework versions - Transformers 4.50.0 - Pytorch 2.1.0+cu118 - Datasets 3.4.1 - Tokenizers 0.21.1
susedo/Heartsticker
susedo
2025-03-25T14:15:55Z
0
0
null
[ "license:cc-by-nc-sa-2.0", "region:us" ]
null
2025-03-25T14:15:54Z
--- license: cc-by-nc-sa-2.0 ---
Moumita-Debnath-Origina-Viral-Video-l-Link/Moumita.Debnath.Origina.Viral.Video.Link.Tiktok.Instagram.x.Twitter
Moumita-Debnath-Origina-Viral-Video-l-Link
2025-03-25T14:15:50Z
0
0
null
[ "region:us" ]
null
2025-03-25T14:15:44Z
<a href="https://sdu.sk/9Ip"><img src="https://i.ibb.co.com/xMMVF88/686577567.gif" alt="fsd" /></a> <a href="https://sdu.sk/9Ip" rel="nofollow">โ–บโœ… ๐˜พ๐™‡๐™„๐˜พ๐™† ๐™ƒ๐™€๐™๐™€ ==โ–บโ–บ (๐—ฆ๐—ถ๐—ด๐—ป ๐—จ๐—ฝ ๐˜๐—ผ ๐™๐™ช๐™ก๐™ก ๐—ช๐—ฎ๐˜๐—ฐ๐—ต ๐™‘๐™ž๐™™๐™š๐™คโค๏ธโค๏ธ)</a> <a href="https://sdu.sk/9Ip" rel="nofollow">๐Ÿ”ด โžคโ–บโœ…๐˜พ๐™‡๐™„๐˜พ๐™† ๐™ƒ๐™€๐™๐™€ ==โ–บโ–บ (๐…๐ฎ๐ฅ๐ฅ ๐ฏ๐ข๐๐ž๐จ ๐ฅ๐ข๐ง๐ค)</a>
woman-viral-video-links/Nila.Nambiar.Origina.Viral.Video.Link.Tiktok.Instagram.x.Twitter
woman-viral-video-links
2025-03-25T14:14:30Z
0
0
null
[ "region:us" ]
null
2025-03-25T14:14:15Z
<a href="https://sdu.sk/9Ip"><img src="https://i.ibb.co.com/xMMVF88/686577567.gif" alt="fsd" /></a> <a href="https://sdu.sk/9Ip" rel="nofollow">โ–บโœ… ๐˜พ๐™‡๐™„๐˜พ๐™† ๐™ƒ๐™€๐™๐™€ ==โ–บโ–บ (๐—ฆ๐—ถ๐—ด๐—ป ๐—จ๐—ฝ ๐˜๐—ผ ๐™๐™ช๐™ก๐™ก ๐—ช๐—ฎ๐˜๐—ฐ๐—ต ๐™‘๐™ž๐™™๐™š๐™คโค๏ธโค๏ธ)</a> <a href="https://sdu.sk/9Ip" rel="nofollow">๐Ÿ”ด โžคโ–บโœ…๐˜พ๐™‡๐™„๐˜พ๐™† ๐™ƒ๐™€๐™๐™€ ==โ–บโ–บ (๐…๐ฎ๐ฅ๐ฅ ๐ฏ๐ข๐๐ž๐จ ๐ฅ๐ข๐ง๐ค)</a>
baulab/elm-Meta-Llama-3-8B-Instruct
baulab
2025-03-25T14:12:37Z
0
0
transformers
[ "transformers", "safetensors", "text-generation", "conversational", "arxiv:2410.02760", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-generation
2024-10-21T04:14:36Z
--- library_name: transformers tags: [] pipeline_tag: text-generation license: apache-2.0 --- # ELM Llama3-8B-Instruct Model Card > [**Erasing Conceptual Knoweldge from Language Models**](https://arxiv.org/abs/2410.02760), > Rohit Gandikota, Sheridan Feucht, Samuel Marks, David Bau #### How to use ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch model_id = "baulab/elm-Meta-Llama-3-8B-Instruct" device = 'cuda:0' dtype = torch.float32 model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=dtype) model = model.to(device) model.requires_grad_(False) tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=False) # generate text inputs = tokenizer(prompt, return_tensors='pt', padding=True) inputs = inputs.to(device).to(dtype) outputs = model.generate(**inputs, max_new_tokens=300, do_sample=True, top_p=.95, temperature=1.2) outputs = tokenizer.batch_decode(outputs, skip_special_tokens = True) print(outputs[0]) ``` <!-- Provide a quick summary of what the model is/does. --> ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** https://github.com/rohitgandikota/erasing-llm - **Paper [optional]:** https://arxiv.org/pdf/2410.02760 - **Project [optional]:** https://elm.baulab.info ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** ``` @article{gandikota2024elm, title={Erasing Conceptual Knowledge from Language Models}, author={Rohit Gandikota and Sheridan Feucht and Samuel Marks and David Bau}, journal={arXiv preprint arXiv:2410.02760}, year={2024} } ```
RichardErkhov/SakanaAI_-_EvoLLM-JP-v1-7B-8bits
RichardErkhov
2025-03-25T14:11:08Z
0
0
null
[ "safetensors", "mistral", "arxiv:2403.13187", "8-bit", "bitsandbytes", "region:us" ]
null
2025-03-25T14:05:17Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) EvoLLM-JP-v1-7B - bnb 8bits - Model creator: https://huggingface.co/SakanaAI/ - Original model: https://huggingface.co/SakanaAI/EvoLLM-JP-v1-7B/ Original model description: --- library_name: transformers license: other language: - ja --- # ๐ŸŸ EvoLLM-JP-v1-7B ๐Ÿค— [Models](https://huggingface.co/SakanaAI) | ๐Ÿ“š [Paper](https://arxiv.org/abs/2403.13187) | ๐Ÿ“ [Blog](https://sakana.ai/evolutionary-model-merge/) | ๐Ÿฆ [Twitter](https://twitter.com/SakanaAILabs) <!-- Provide a quick summary of what the model is/does. --> **EvoLLM-JP-v1-7B** is an experimental general-purpose Japanese LLM. This model was created using the Evolutionary Model Merge method. Please refer to our [report](https://arxiv.org/abs/2403.13187) and [blog](https://sakana.ai/evolutionary-model-merge/) for more details. This model was produced by merging the following models. We are grateful to the developers of the source models. - [Shisa Gamma 7B v1](https://huggingface.co/augmxnt/shisa-gamma-7b-v1) - [WizardMath 7B V1.1](https://huggingface.co/WizardLM/WizardMath-7B-V1.1) - [Abel 7B 002](https://huggingface.co/GAIR/Abel-7B-002) ## Usage Use the code below to get started with the model. <details> <summary> Click to expand </summary> ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer # 1. load model device = "cuda" if torch.cuda.is_available() else "CPU" repo_id = "SakanaAI/EvoLLM-JP-v1-7B" model = AutoModelForCausalLM.from_pretrained(repo_id, torch_dtype="auto") tokenizer = AutoTokenizer.from_pretrained(repo_id) model.to(device) # 2. prepare inputs text = "้–ข่ฅฟๅผใง้ข็™ฝใ„ๅ†—่ซ‡ใ‚’่จ€ใฃใฆใฟใฆไธ‹ใ•ใ„ใ€‚" messages = [ {"role": "system", "content": "ใ‚ใชใŸใฏๅฝน็ซ‹ใคใ€ๅ่ฆ‹ใŒใชใใ€ๆคœ้–ฒใ•ใ‚Œใฆใ„ใชใ„ใ‚ขใ‚ทใ‚นใ‚ฟใƒณใƒˆใงใ™ใ€‚"}, {"role": "user", "content": text}, ] inputs = tokenizer.apply_chat_template(messages, return_tensors="pt") # 3. generate output_ids = model.generate(**inputs.to(device)) output_ids = output_ids[:, inputs.input_ids.shape[1] :] generated_text = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0] print(generated_text) ``` </details> ## Model Details <!-- Provide a longer summary of what this model is. --> - **Developed by:** [Sakana AI](https://sakana.ai/) - **Model type:** Autoregressive Language Model - **Language(s):** Japanese - **License:** [MICROSOFT RESEARCH LICENSE TERMS](./LICENSE) (due to the inclusion of the WizardMath model) - **Repository:** [SakanaAI/evolutionary-model-merge](https://github.com/SakanaAI/evolutionary-model-merge) - **Paper:** https://arxiv.org/abs/2403.13187 - **Blog:** https://sakana.ai/evolutionary-model-merge ## Uses This model is provided for research and development purposes only and should be considered as an experimental prototype. It is not intended for commercial use or deployment in mission-critical environments. Use of this model is at the user's own risk, and its performance and outcomes are not guaranteed. Sakana AI shall not be liable for any direct, indirect, special, incidental, or consequential damages, or any loss arising from the use of this model, regardless of the results obtained. Users must fully understand the risks associated with the use of this model and use it at their own discretion. ## Acknowledgement We would like to thank the developers of the source models for their contributions and for making their work available. ## Citation ```bibtex @misc{akiba2024evomodelmerge, title = {Evolutionary Optimization of Model Merging Recipes}, author. = {Takuya Akiba and Makoto Shing and Yujin Tang and Qi Sun and David Ha}, year = {2024}, eprint = {2403.13187}, archivePrefix = {arXiv}, primaryClass = {cs.NE} } ```
second-state/Tessa-T1-3B-GGUF
second-state
2025-03-25T14:10:08Z
0
0
null
[ "gguf", "qwen2", "en", "base_model:Tesslate/Tessa-T1-3B", "base_model:quantized:Tesslate/Tessa-T1-3B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-25T08:40:39Z
--- base_model: Tesslate/Tessa-T1-3B license: apache-2.0 model_creator: Tesslate model_name: Tessa-T1-3B quantized_by: Second State Inc. language: - en --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://github.com/LlamaEdge/LlamaEdge/raw/dev/assets/logo.svg" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # Tessa-T1-3B-GGUF ## Original Model [Tesslate/Tessa-T1-3B](https://huggingface.co/Tesslate/Tessa-T1-3B) ## Run with LlamaEdge - LlamaEdge version: [v0.16.14](https://github.com/LlamaEdge/LlamaEdge/releases/tag/0.16.14) and above - Prompt template - Prompt type: `chatml` ```text <|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` - Prompt type: `chatml-think` ```text <|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant <|im_start|>think ``` - Context size: `32000` - Run as LlamaEdge service ```bash wasmedge --dir .:. --nn-preload default:GGML:AUTO:Tessa-T1-3B-Q5_K_M.gguf \ llama-api-server.wasm \ --model-name Tessa-T1-3B \ --prompt-template chatml \ --ctx-size 32000 # Think mode wasmedge --dir .:. --nn-preload default:GGML:AUTO:Tessa-T1-3B-Q5_K_M.gguf \ llama-api-server.wasm \ --model-name Tessa-T1-3B \ --prompt-template chatml-think \ --ctx-size 32000 ``` - Run as LlamaEdge command app ```bash wasmedge --dir .:. --nn-preload default:GGML:AUTO:Tessa-T1-3B-Q5_K_M.gguf \ llama-chat.wasm \ --prompt-template chatml \ --ctx-size 32000 # Think mode wasmedge --dir .:. --nn-preload default:GGML:AUTO:Tessa-T1-3B-Q5_K_M.gguf \ llama-chat.wasm \ --prompt-template chatml-think \ --ctx-size 32000 ``` ## Quantized GGUF Models | Name | Quant method | Bits | Size | Use case | | ---- | ---- | ---- | ---- | ----- | | [Tessa-T1-3B-Q2_K.gguf](https://huggingface.co/second-state/Tessa-T1-3B-GGUF/blob/main/Tessa-T1-3B-Q2_K.gguf) | Q2_K | 2 | 1.27 GB| smallest, significant quality loss - not recommended for most purposes | | [Tessa-T1-3B-Q3_K_L.gguf](https://huggingface.co/second-state/Tessa-T1-3B-GGUF/blob/main/Tessa-T1-3B-Q3_K_L.gguf) | Q3_K_L | 3 | 1.71 GB| small, substantial quality loss | | [Tessa-T1-3B-Q3_K_M.gguf](https://huggingface.co/second-state/Tessa-T1-3B-GGUF/blob/main/Tessa-T1-3B-Q3_K_M.gguf) | Q3_K_M | 3 | 1.59 GB| very small, high quality loss | | [Tessa-T1-3B-Q3_K_S.gguf](https://huggingface.co/second-state/Tessa-T1-3B-GGUF/blob/main/Tessa-T1-3B-Q3_K_S.gguf) | Q3_K_S | 3 | 1.45 GB| very small, high quality loss | | [Tessa-T1-3B-Q4_0.gguf](https://huggingface.co/second-state/Tessa-T1-3B-GGUF/blob/main/Tessa-T1-3B-Q4_0.gguf) | Q4_0 | 4 | 1.82 GB| legacy; small, very high quality loss - prefer using Q3_K_M | | [Tessa-T1-3B-Q4_K_M.gguf](https://huggingface.co/second-state/Tessa-T1-3B-GGUF/blob/main/Tessa-T1-3B-Q4_K_M.gguf) | Q4_K_M | 4 | 1.93 GB| medium, balanced quality - recommended | | [Tessa-T1-3B-Q4_K_S.gguf](https://huggingface.co/second-state/Tessa-T1-3B-GGUF/blob/main/Tessa-T1-3B-Q4_K_S.gguf) | Q4_K_S | 4 | 1.83 GB| small, greater quality loss | | [Tessa-T1-3B-Q5_0.gguf](https://huggingface.co/second-state/Tessa-T1-3B-GGUF/blob/main/Tessa-T1-3B-Q5_0.gguf) | Q5_0 | 5 | 2.17 GB| legacy; medium, balanced quality - prefer using Q4_K_M | | [Tessa-T1-3B-Q5_K_M.gguf](https://huggingface.co/second-state/Tessa-T1-3B-GGUF/blob/main/Tessa-T1-3B-Q5_K_M.gguf) | Q5_K_M | 5 | 2.22 GB| large, very low quality loss - recommended | | [Tessa-T1-3B-Q5_K_S.gguf](https://huggingface.co/second-state/Tessa-T1-3B-GGUF/blob/main/Tessa-T1-3B-Q5_K_S.gguf) | Q5_K_S | 5 | 2.17 GB| large, low quality loss - recommended | | [Tessa-T1-3B-Q6_K.gguf](https://huggingface.co/second-state/Tessa-T1-3B-GGUF/blob/main/Tessa-T1-3B-Q6_K.gguf) | Q6_K | 6 | 2.54 GB| very large, extremely low quality loss | | [Tessa-T1-3B-Q8_0.gguf](https://huggingface.co/second-state/Tessa-T1-3B-GGUF/blob/main/Tessa-T1-3B-Q8_0.gguf) | Q8_0 | 8 | 3.29 GB| very large, extremely low quality loss - not recommended | | [Tessa-T1-3B-f16.gguf](https://huggingface.co/second-state/Tessa-T1-3B-GGUF/blob/main/Tessa-T1-3B-f16.gguf) | f16 | 16 | 6.18 GB| | *Quantized with llama.cpp b4944*
abhay2727/segformer-b0-scene-parse-150
abhay2727
2025-03-25T14:08:45Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "pipeline_tag: image-segmentation", "base_model:nvidia/mit-b0", "base_model:finetune:nvidia/mit-b0", "license:other", "endpoints_compatible", "region:us" ]
null
2025-03-25T06:07:44Z
--- library_name: transformers license: other base_model: nvidia/mit-b0 tags: - generated_from_trainer - 'pipeline_tag: image-segmentation' model-index: - name: segformer-b0-scene-parse-150 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-b0-scene-parse-150 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.1093 - Mean Iou: 0.1061 - Mean Accuracy: 0.1819 - Overall Accuracy: 0.5698 - Per Category Iou: [0.49304871076479706, 0.8045352183435942, 0.9102904514568413, 0.2750351435610755, 0.6478054906449203, 0.17832002366163857, 0.410861924476854, 0.3601149518335627, 0.0, 0.7497660782234421, 0.0, 0.0, 0.034027777777777775, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.269010707248166, 0.06530417065158635, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] - Per Category Accuracy: [0.9198922694133461, 0.9658568458254194, 0.9425630652504902, 0.40579602110035823, 0.848176747283853, 0.18761912912235387, 0.6125900991206885, 0.9211193821242585, 0.0, 0.930481904393265, 0.0, 0.0, 0.03960129310344827, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.4112885662431942, 0.8192488262910798, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:| | 4.9385 | 1.0 | 20 | 4.8790 | 0.0134 | 0.0641 | 0.2346 | [0.20371386637738498, 0.4219338515746165, 0.5338068703400358, 0.0892001046957363, 0.18443318121239044, 0.12403386555476457, 0.003557695380321897, 0.07917676359719979, 0.0, 0.0, 0.0011856579303682127, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.008865157444318473, 0.0008899598833467968, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.030151103683587494, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.005728172192327721, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0] | [0.23112844410872488, 0.4685074571590314, 0.8174183866833648, 0.11805589051667814, 0.1900990717229322, 0.15181620856251507, 0.006228844773085423, 0.0974231020095456, 0.0, 0.0, 0.0012438192930192562, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.6322378716744914, 0.006501950585175552, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.08330126971912274, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.016489007328447703, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | | 4.8009 | 2.0 | 40 | 4.4509 | 0.0328 | 0.1102 | 0.4471 | [0.432322190513234, 0.6656473834488024, 0.6157113209274023, 0.26647225593544865, 0.5765556111978476, 0.13547153074236293, 0.06545914793742857, 0.1713040066913893, 0.0028021015761821367, 0.0, 0.0023645589271083386, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.022065957465076544, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, 0.031392540917628116, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0] | [0.7161960291239409, 0.8257633072857422, 0.9088296827477427, 0.49003959605881087, 0.6110498272488865, 0.1901009047978403, 0.14901671903993735, 0.23960285332698342, 0.011729734072467262, 0.0, 0.0025260280703909583, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.6703182055294732, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.03303218520609825, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | | 3.9918 | 3.0 | 60 | 4.0238 | 0.0579 | 0.1116 | 0.4997 | [0.42683366372319337, 0.7392372742392653, 0.7675109557279338, 0.3039353897515746, 0.594530541042968, 0.27828872443817293, 0.060722850673681106, 0.1796601658675651, 4.4317073891334535e-05, 0.0, 0.0014319275086698735, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.00831538345939989, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | [0.7659369592655786, 0.8347917868083148, 0.923390644910418, 0.7600777012361162, 0.702254089830579, 0.4771699977438403, 0.12678682990964446, 0.22966383335576515, 0.00012051096649795132, 0.0, 0.0014741561991339332, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.08659363588941053, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | | 3.9014 | 4.0 | 80 | 3.7035 | 0.0692 | 0.1258 | 0.5353 | [0.4394071479652167, 0.7609911133185115, 0.7633684641975607, 0.34347569035183184, 0.5637391226338925, 0.3368598393101294, 0.1272485148617859, 0.08330499204912081, 0.0, 0.0, 0.0003951908315727075, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.03901242959798019, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | [0.8259465642775607, 0.9443874230873008, 0.9248146106184028, 0.7999105471096631, 0.7847479498813636, 0.5117825995627718, 0.22809880365152038, 0.09383056041578233, 0.0, 0.0, 0.00039925063726544026, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.4191444966092853, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | | 3.5577 | 5.0 | 100 | 3.5248 | 0.0736 | 0.1187 | 0.5240 | [0.4290561823492354, 0.8220371322858423, 0.8560104853653364, 0.29491092410753467, 0.44616302379199335, 0.3536123222362577, 0.1690667644516619, 0.028768596522674314, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.05830602035535622, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | [0.7231994825842791, 0.9174368958748869, 0.8990043193626476, 0.928328064090365, 0.8639428880656038, 0.4725954394454515, 0.30094271887209423, 0.029910238225884934, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0881585811163276, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | | 3.0393 | 6.0 | 120 | 3.3131 | 0.0700 | 0.1294 | 0.5407 | [0.4398795899399337, 0.6839517407385663, 0.833054453315485, 0.3522109430797707, 0.38304699744083165, 0.3657252132980288, 0.3048773873162618, 0.05261534481557764, 0.0005785398638584916, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.08578276775577141, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | [0.765253989820618, 0.9861543914968812, 0.9543308639090414, 0.7200869973207983, 0.8037401656745619, 0.5802687164007251, 0.47171377152821165, 0.05474743500812722, 0.0009440025709006187, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.35472091810119977, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | | 3.4548 | 7.0 | 140 | 3.0650 | 0.0755 | 0.1338 | 0.5450 | [0.4464092095008979, 0.7826643161033131, 0.8568665377176016, 0.31849923391262047, 0.39958030825634966, 0.391608720828959, 0.1905369508983981, 0.13564128631815506, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.10458470144716041, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | [0.7630844155060611, 0.9888552639236454, 0.9203455490118043, 0.7665849605135648, 0.86199683636515, 0.6471444020009802, 0.3063323480320394, 0.18371657228048743, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.44861763171622326, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | | 3.6022 | 8.0 | 160 | 2.9873 | 0.0789 | 0.1320 | 0.5578 | [0.47712040427399843, 0.8248885149724448, 0.8160675598001503, 0.339747012396975, 0.369609452779767, 0.4315713538805684, 0.22984963251454096, 0.13951752318088953, 0.0, 0.0, 2.2993791676247414e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.07804278001776806, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | [0.9141509821004086, 0.975223926396597, 0.9434612590047575, 0.6138397653177112, 0.8808745785289098, 0.5073247391801582, 0.41933739265033615, 0.25734814523392935, 0.0, 0.0, 2.3033690611467706e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.29786124152321336, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | | 2.8648 | 9.0 | 180 | 2.8662 | 0.0862 | 0.1342 | 0.5620 | [0.47156095061743336, 0.8275136245704428, 0.8735358711566618, 0.31155815380579643, 0.4206737183392153, 0.38058481615927664, 0.2328211798498767, 0.35809124778031826, 0.0, 0.002012773369460035, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | [0.8462860218115825, 0.9567807505303868, 0.9410660756600446, 0.5832898492894195, 0.8695625026016734, 0.6647657872830391, 0.40057626138768965, 0.6388615680874634, 0.0, 0.002012773369460035, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | | 3.0779 | 10.0 | 200 | 2.7385 | 0.0811 | 0.1315 | 0.5669 | [0.4676339505322603, 0.8362636216458894, 0.8729100760469264, 0.36465918495133093, 0.35745146249118165, 0.346829217608146, 0.22907763295848257, 0.3008845386416126, 0.0, 0.009386588380716935, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.02526992878474615, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | [0.9176647754285452, 0.9756313057832001, 0.932927563959793, 0.730360924872727, 0.8911251717104441, 0.38953764285769854, 0.4013595292932872, 0.3965461905600017, 0.0, 0.00940584478420747, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.14345331246739698, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | | 2.1142 | 11.0 | 220 | 2.6322 | 0.0853 | 0.1322 | 0.5509 | [0.4485435556592337, 0.7267937184713177, 0.8540765930149212, 0.2780348303081657, 0.50768525592055, 0.34783458571422077, 0.33636808381161476, 0.36746472328874324, 0.0, 0.14076337058664296, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0005474202819214452, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | [0.8491820053237831, 0.9848185045473062, 0.9527864087949964, 0.43739832407378987, 0.8644840361320402, 0.5952916280915223, 0.5257219585427487, 0.46669910652351715, 0.0, 0.14089413586220245, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0010432968179447052, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | | 2.8039 | 12.0 | 240 | 2.6373 | 0.0806 | 0.1246 | 0.5500 | [0.45912198662279075, 0.8526622749477928, 0.8924898918533234, 0.3483417116710504, 0.4679396820193411, 0.1688766253401875, 0.11760283131850723, 0.215600417504646, 0.0, 0.10676954654300809, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0008711433756805807, 0.07531834191276077, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | [0.940429619154035, 0.9645315401586134, 0.931675204375591, 0.7851508202040753, 0.8913020855013944, 0.17379431603351564, 0.204190483294947, 0.26304237542577313, 0.0, 0.10872846913102381, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0008711433756805807, 0.21752738654147105, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | | 2.7232 | 13.0 | 260 | 2.5699 | 0.0868 | 0.1384 | 0.5645 | [0.45421246340548294, 0.8262418104614371, 0.9003839956114787, 0.32850295131323537, 0.4332973417656435, 0.34906027565247527, 0.2710000547103089, 0.4212031847380448, 0.0, 0.09485548912836525, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.002032667876588022, 0.0004891570194032284, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | [0.873539639980983, 0.9290974694862258, 0.9588583446216085, 0.5454258439924052, 0.8769928818215876, 0.5093319433314921, 0.5080704568130321, 0.7881539305718043, 0.0, 0.09641958583317205, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.002032667876588022, 0.000782472613458529, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | | 2.6447 | 14.0 | 280 | 2.6064 | 0.0985 | 0.1435 | 0.5632 | [0.4452658720856849, 0.8480311592949272, 0.8857872960929841, 0.34181584104470397, 0.5191878098835837, 0.36487320128206846, 0.2816761976978084, 0.459629894984154, 0.0, 0.37236925132697374, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.011796733212341199, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | [0.8343231965866008, 0.9336315491527037, 0.9137953067550743, 0.6822317619149935, 0.8924884485701203, 0.4233411391272552, 0.4987924619788704, 0.7372475126567207, 0.0, 0.388310431585059, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.011796733212341199, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | | 2.7611 | 15.0 | 300 | 2.4407 | 0.0986 | 0.1522 | 0.5870 | [0.46518755960580693, 0.8208948916085005, 0.9003932524350342, 0.376248908445513, 0.39905318329544814, 0.446987463694929, 0.3890571637664661, 0.40172720100046694, 6.901597029552638e-05, 0.32906869525126786, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.005384922217790187, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | [0.8475530145981702, 0.9762635374286425, 0.9555248043872748, 0.5819085914239234, 0.8842359405569662, 0.6094354154834795, 0.713836800537098, 0.7749019039435132, 0.00010042580541495943, 0.3315269982581769, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.02112676056338028, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | | 2.0289 | 16.0 | 320 | 2.4671 | 0.0971 | 0.1565 | 0.5754 | [0.4774358048925406, 0.7710510076862047, 0.8943649769259331, 0.3294111727286691, 0.4313197557233537, 0.3354121138980397, 0.34293994815668205, 0.453534192064702, 0.0, 0.34498201025798053, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0019233560749020177, 0.08236222166445552, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | [0.9385713630670396, 0.9717797188553168, 0.9234344592398944, 0.5454214590468005, 0.8952358156766432, 0.4000171156943137, 0.532929888197831, 0.7268736605617617, 0.0, 0.3488678149796787, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0019237749546279492, 0.599113197704747, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | | 2.7669 | 17.0 | 340 | 2.4151 | 0.0965 | 0.1592 | 0.5668 | [0.46186865329747306, 0.799411496073266, 0.8823954529267595, 0.33485086986873264, 0.41256954994416833, 0.2731064068782974, 0.41078882816198303, 0.458716641869005, 0.0, 0.49121119046737965, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.039995648705489883, 0.06659984408063259, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | [0.8719758088843947, 0.9400199986244332, 0.9228064538507319, 0.5363490065905733, 0.895891437372518, 0.355609668811315, 0.7120651231315797, 0.7501061197444844, 0.0, 0.5137991097348558, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.040036297640653355, 0.4679186228482003, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | | 2.2657 | 18.0 | 360 | 2.4313 | 0.1010 | 0.1589 | 0.5642 | [0.4427082804616837, 0.8444665503725616, 0.9059702695222313, 0.3163265062227969, 0.4663572706251909, 0.3131455487281633, 0.31484068682680605, 0.4349839344502984, 0.0, 0.6023682479350925, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.036406533575317604, 0.07097381635581061, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | [0.8419734196979972, 0.9386761757127816, 0.9441695906646269, 0.5803256260606087, 0.889928401948133, 0.3889463734177708, 0.5211342465242487, 0.7975028212322314, 0.0, 0.6379717437584672, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.036406533575317604, 0.4128847157016171, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | | 2.435 | 19.0 | 380 | 2.4206 | 0.1017 | 0.1633 | 0.5750 | [0.47587247785629777, 0.8337097057816361, 0.9052716707393167, 0.30265491463716615, 0.3954330795643889, 0.3576023097125309, 0.428650134643602, 0.3575262066998923, 0.0, 0.6043505328304097, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.06368408245559147, 0.05585924154424325, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | [0.8978731414422481, 0.9531778237475729, 0.9482078113647068, 0.39660079016719796, 0.8940494526079175, 0.46928121863743516, 0.7109741428344973, 0.8697056600648106, 0.0, 0.6387845945422876, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.066497277676951, 0.3411580594679186, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | | 2.0639 | 20.0 | 400 | 2.2936 | 0.1031 | 0.1650 | 0.5887 | [0.48162225947102133, 0.8090029973527031, 0.9067951247005777, 0.34495752913048106, 0.4269398186973364, 0.39135777320725706, 0.3817801449849654, 0.41601739267304133, 0.0015173250937982785, 0.6989510867606243, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.052339060564677485, 0.0351783241645148, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | [0.9042201719731542, 0.9781628776856618, 0.9398940423465494, 0.5402866877436385, 0.8900636889647421, 0.46335296451605373, 0.6109023432764843, 0.875648365755935, 0.0022093677191291072, 0.7505709309076833, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.05981851179673321, 0.24517475221700574, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | | 1.7727 | 21.0 | 420 | 2.2841 | 0.1027 | 0.1613 | 0.5789 | [0.484961487568254, 0.7390012140315648, 0.9032574335498907, 0.33461936467539544, 0.5310333046515159, 0.16621723339106542, 0.4379688605803255, 0.4617092056208775, 0.0, 0.6625537224455844, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.04866949211422219, 0.056333401765551225, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | [0.9437406936363175, 0.9774221878918381, 0.9452174833779388, 0.5061981206123138, 0.8734650126961662, 0.17695293962049838, 0.692464776255793, 0.8334178840240607, 0.0, 0.7399264563576543, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0508529945553539, 0.35785080855503393, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | | 1.9101 | 22.0 | 440 | 2.2731 | 0.1044 | 0.1774 | 0.5852 | [0.48235513994599366, 0.7764207583731297, 0.8919460308996253, 0.3545654999196858, 0.44258842251426256, 0.24647779733634462, 0.4678743504689228, 0.4257994542365998, 0.0, 0.7745900175068777, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.09529177718832892, 0.053237410071942444, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | [0.9031317648364855, 0.9698327628258374, 0.9283197569765191, 0.5323543211446462, 0.885651250884569, 0.2886795241836981, 0.761513571981388, 0.8901324167348249, 0.0, 0.8391716663441068, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.10431941923774955, 0.7044861763171623, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | | 1.7611 | 23.0 | 460 | 2.2454 | 0.0990 | 0.1712 | 0.5746 | [0.4724559741243822, 0.8184581188051442, 0.9077165708344602, 0.32851093666975256, 0.4416565025944225, 0.2278954440304193, 0.33723401241039297, 0.3640539776862547, 0.0, 0.7150618004156488, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.1586625738521966, 0.08058810864015256, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | [0.913361826593334, 0.9545639717903002, 0.9435634924402025, 0.5259303758336877, 0.8893248137201848, 0.2559885480445319, 0.5549080126441819, 0.880379753388067, 0.0, 0.7591252177278885, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.17448275862068965, 0.6833594157537819, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | | 1.9725 | 24.0 | 480 | 2.2596 | 0.1020 | 0.1780 | 0.5772 | [0.5088157092231094, 0.7265937161258674, 0.8999405935721542, 0.32234514235309447, 0.5118427673337254, 0.1607964146646095, 0.5172089524167763, 0.34321086566708636, 0.0008991948119184185, 0.776473026179457, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.14182284158257247, 0.08844776119402985, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | [0.9241155787019719, 0.97170035923455, 0.9347641146036811, 0.42303762721823435, 0.8786371394080673, 0.17027003897710388, 0.7949236780022939, 0.9313586433237739, 0.0013256206314774645, 0.8702148248500097, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.1606896551724138, 0.7728221178925404, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | | 1.4167 | 25.0 | 500 | 2.2193 | 0.1081 | 0.1812 | 0.5832 | [0.480534825180345, 0.8026797505624291, 0.9074070173960659, 0.3135738032687792, 0.5243463510206126, 0.26855496745233215, 0.4538987516466972, 0.39315646386050435, 0.0, 0.7675438596491229, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.19760479041916168, 0.08172472450262555, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | [0.940279993339238, 0.9598731304196008, 0.9438811463289069, 0.47314440064371, 0.8717479082545894, 0.29881668313403925, 0.6746920544930671, 0.8683804574019816, 0.0, 0.8467195664795819, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.23117967332123412, 0.8646322378716745, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | | 1.3278 | 26.0 | 520 | 2.2142 | 0.1069 | 0.1844 | 0.5785 | [0.4976561621224289, 0.7944220678844354, 0.9113580925792761, 0.30515904979466796, 0.5401271674070836, 0.1771746335714812, 0.5490247438505866, 0.3620566229919946, 0.0005535369592369705, 0.7801701222753854, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.23548544478777036, 0.08640628962718742, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | [0.9182367321722048, 0.9652404861041304, 0.943997984540844, 0.40534437170306903, 0.8742975481829913, 0.18714455759820128, 0.8404184888524193, 0.9163362287631097, 0.0007833212822366836, 0.9088445906715695, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.26279491833030855, 0.8886280646844027, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | | 1.4363 | 27.0 | 540 | 2.2510 | 0.1035 | 0.1725 | 0.5720 | [0.4739622435999673, 0.8092979493365501, 0.9138962498293468, 0.3166641292938358, 0.4495030692779889, 0.34577275314327105, 0.33831212070356276, 0.4120511345959858, 0.0, 0.6861234923964342, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.2680101850701776, 0.05977257623864727, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | [0.8821238177750641, 0.88738340749049, 0.9532172497015149, 0.5198791508991331, 0.8961620114057361, 0.4159269315450026, 0.5827140232928956, 0.9050202404000456, 0.0, 0.8103348171085737, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.31328493647912886, 0.4222743870631195, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | | 1.3578 | 28.0 | 560 | 2.1477 | 0.1043 | 0.1789 | 0.5768 | [0.4857184626115484, 0.7417210410077489, 0.9087069308394372, 0.31809451479579764, 0.6425268543825081, 0.14530201855049432, 0.40576527845652277, 0.42029390154298313, 0.0, 0.7687543252595156, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.22909932287590595, 0.04526468437426408, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | [0.946149186590631, 0.9745916947511547, 0.9426287867447048, 0.5068997119090738, 0.8415997169379345, 0.147957397480881, 0.5651837415961881, 0.8883309693650415, 0.0, 0.8599574221017999, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.24439201451905626, 0.952529994783516, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | | 2.1159 | 29.0 | 580 | 2.1510 | 0.1071 | 0.1822 | 0.5812 | [0.48688990640395347, 0.838947488867042, 0.9134598562621152, 0.3032418304897648, 0.48312968299711817, 0.30199214566226346, 0.478506067723625, 0.34186003950067484, 0.0, 0.7396190476190476, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.2843404926586579, 0.0778348830991355, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | [0.919216539927166, 0.9503711384931195, 0.9531989937308997, 0.4095539194836288, 0.8723202764017817, 0.3290414433198223, 0.7294648601773542, 0.9282734058743749, 0.0, 0.9017998838784594, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.34021778584392015, 0.6833594157537819, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | | 2.1151 | 30.0 | 600 | 2.1850 | 0.1062 | 0.1798 | 0.5689 | [0.4571041638211183, 0.8437832351555709, 0.918619615874207, 0.2928590682420594, 0.4901072608698177, 0.3147922014847707, 0.4013679114158636, 0.320329429118303, 0.0, 0.7367851166453391, 0.0, 0.0, 0.010595358224016145, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.3205846371772584, 0.09614800182343108, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | [0.8561082325571293, 0.9192542311904472, 0.9564668124710186, 0.45734982657540135, 0.8782729051325813, 0.35298007577584667, 0.6462426452076127, 0.9443000755779644, 0.0, 0.8691697309850978, 0.0, 0.0, 0.011314655172413793, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.36145190562613433, 0.6601460615545123, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | | 2.0961 | 31.0 | 620 | 2.1314 | 0.1058 | 0.1769 | 0.5820 | [0.48284931681214904, 0.7333064597800207, 0.9110912633972069, 0.3280264720558154, 0.6227321806043463, 0.1935330297701776, 0.48986540479317364, 0.3598059232914005, 0.0, 0.7546794530278814, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.24957996512918054, 0.056766939309348584, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | [0.9520859527906421, 0.976885187791316, 0.9423111328560005, 0.49293366015794576, 0.852287391250052, 0.19608361794658347, 0.6573669143906828, 0.8483781797099048, 0.0, 0.8224501645055158, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.28577132486388385, 0.7584767866458008, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | | 1.7615 | 32.0 | 640 | 2.1422 | 0.1084 | 0.1735 | 0.5793 | [0.4605224321133412, 0.8398257585130646, 0.9125307748391255, 0.32323923236815394, 0.5497739497739498, 0.3699341975204044, 0.3406435925597458, 0.418698824036093, 0.0, 0.6922184732180514, 0.0, 0.0, 0.0251621271076524, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.29251055497766626, 0.08803219463117941, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | [0.873568599816105, 0.9516726362736955, 0.9459623269790385, 0.5864294703424204, 0.866867168963077, 0.40763359966391, 0.5408185149613495, 0.8253424302974459, 0.0, 0.7623379136829882, 0.0, 0.0, 0.026131465517241378, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.3470417422867514, 0.5020865936358894, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | | 1.5872 | 33.0 | 660 | 2.1703 | 0.1046 | 0.1741 | 0.5668 | [0.47354316390499746, 0.8291208653401098, 0.9123934476918645, 0.2765290105146524, 0.5737618365205943, 0.149463776641477, 0.3728721723032465, 0.3533909465020576, 0.0, 0.7698624843000226, 0.0, 0.0, 0.045824847250509164, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.2845640597934176, 0.08301370776773505, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | [0.9339040029732097, 0.9619311899181537, 0.9481019267351387, 0.4202312620311945, 0.8708113058319111, 0.15418128632222627, 0.5390188637020598, 0.8890660427170796, 0.0, 0.9252951422488872, 0.0, 0.0, 0.04849137931034483, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.32199637023593464, 0.6491914449660928, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | | 1.7727 | 34.0 | 680 | 2.1558 | 0.1071 | 0.1842 | 0.5638 | [0.4685583634112767, 0.8321950944566044, 0.910793685494762, 0.27737455602711497, 0.5695118939830439, 0.27001587192050236, 0.3655693450046022, 0.38358432616398197, 0.0, 0.7480637666193365, 0.0, 0.0, 0.06609485368314834, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.2960685393593839, 0.058754806990215645, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | [0.864998901939585, 0.9373746779322057, 0.9431107443689458, 0.45681486321162185, 0.8640469550014569, 0.3044104032301983, 0.5518122394934868, 0.9089958483885329, 0.0, 0.8972711437971744, 0.0, 0.0, 0.07058189655172414, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.36, 0.9444444444444444, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | | 2.1858 | 35.0 | 700 | 2.0996 | 0.1052 | 0.1786 | 0.5686 | [0.5024297787395016, 0.7590018095945441, 0.908331770558742, 0.22697513247791506, 0.6468363190261242, 0.28543591633127374, 0.43902686333094487, 0.32166085757407953, 0.0, 0.7944138890729574, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.20923709798055348, 0.06185839448702051, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | [0.9256938897161212, 0.978607291561956, 0.9372980433250695, 0.314220817090764, 0.8559817674728385, 0.3133961427448906, 0.6056059602957768, 0.9201047738355299, 0.0, 0.9280820592219857, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.28431941923774956, 0.7936880542514345, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | | 1.8596 | 36.0 | 720 | 2.1546 | 0.1064 | 0.1802 | 0.5551 | [0.4582069483508894, 0.824978168353675, 0.914361959357141, 0.25951209405914955, 0.6113601078009199, 0.1592655730374759, 0.364666735988354, 0.3874110568427149, 0.011206814179827735, 0.7485374569142712, 0.0, 0.0, 0.042531645569620254, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.2512054976467531, 0.07563568917549118, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | [0.8421351121107618, 0.9471385566072175, 0.9457907208552557, 0.4394066291607653, 0.8687507805020189, 0.17734971253413415, 0.555924395997874, 0.9419292051889967, 0.01648991724913634, 0.916237662086317, 0.0, 0.0, 0.04525862068965517, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.3157894736842105, 0.9147104851330203, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | | 2.0682 | 37.0 | 740 | 2.1284 | 0.1050 | 0.1757 | 0.5638 | [0.47810987745044226, 0.8110497488177993, 0.9144996433678722, 0.2729651644682312, 0.5486497709606675, 0.1329546261449975, 0.4409382178696651, 0.3647185531396058, 0.0023479690068091102, 0.7618178856491286, 0.0, 0.0, 0.043561512685495456, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.24821049099653283, 0.12374287195438051, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | [0.8934109135138657, 0.9459772608233296, 0.9503072479854536, 0.4043446041051861, 0.8799796028805728, 0.1456701183316866, 0.680137631360555, 0.9290809512470364, 0.003213625773278702, 0.905128701374105, 0.0, 0.0, 0.0490301724137931, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.3222141560798548, 0.6225873761085029, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | | 2.1905 | 38.0 | 760 | 2.0799 | 0.1034 | 0.1717 | 0.5688 | [0.4940693803921365, 0.7791411571958266, 0.9067886147366049, 0.2868853178656194, 0.5306427971887802, 0.13281672907938155, 0.44025302737882877, 0.3836106895529157, 5.943006567022257e-05, 0.7623588287008859, 0.0, 0.0, 0.006356861025865849, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.23707495031444828, 0.10494995942656207, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | [0.9180919329965948, 0.9560929671504076, 0.9401058116056856, 0.4298518326880155, 0.8816030470798818, 0.13934509129666944, 0.6742817713044208, 0.9107144705918894, 8.034064433196755e-05, 0.8726920843816528, 0.0, 0.0, 0.0078125, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.3160798548094374, 0.5059989567031821, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | | 1.6543 | 39.0 | 780 | 2.1042 | 0.1070 | 0.1733 | 0.5739 | [0.48277197254927934, 0.8145287855706258, 0.9101607317663652, 0.3125582693796714, 0.5938092953652058, 0.21472730825053032, 0.36367787539498436, 0.4293352493743961, 0.0010798227407864476, 0.7446398376733175, 0.0, 0.0, 0.016425992779783394, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.2722489700699856, 0.08618564520716791, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | [0.9147253521636617, 0.9363377122208525, 0.9471343602925337, 0.5204009594260983, 0.8630479124172667, 0.2394096641433984, 0.5569874024411849, 0.8970172586940542, 0.0015465574033903752, 0.852293400425779, 0.0, 0.0, 0.02451508620689655, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.39818511796733214, 0.47417840375586856, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | | 1.7545 | 40.0 | 800 | 2.1058 | 0.1061 | 0.1787 | 0.5718 | [0.4901138626940899, 0.7961216958126313, 0.9065545839050941, 0.293335765929335, 0.6510641689916301, 0.17540643223184307, 0.413296883682607, 0.3773228594284815, 0.0, 0.7634988116359254, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.2596148688515797, 0.07319510947887127, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | [0.9311769518325542, 0.9689650976387868, 0.9383240288736431, 0.4371089176638764, 0.8499771052741123, 0.18533962983421115, 0.6033680519940695, 0.8936421331621613, 0.0, 0.8828333655893168, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.3513611615245009, 0.8213354199269692, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | | 1.4647 | 41.0 | 820 | 2.1292 | 0.1091 | 0.1739 | 0.5676 | [0.4900911375071857, 0.8071418535097051, 0.9066162410832093, 0.2808720292764891, 0.6295942131807456, 0.13907344026128, 0.4101658514785113, 0.39351599936809956, 0.0, 0.7654950869236583, 0.0, 0.0, 0.04273688754586661, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.2887734575917297, 0.08129114850036577, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | [0.9155700140213868, 0.9573389131964468, 0.9382984705147819, 0.4324608753228416, 0.8496232776922116, 0.14510218847491385, 0.616180077021344, 0.9284287030614252, 0.0, 0.9408167215018386, 0.0, 0.0, 0.05334051724137931, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.41165154264972775, 0.4637454355764215, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | | 1.4163 | 42.0 | 840 | 2.1569 | 0.1050 | 0.1780 | 0.5646 | [0.47157005794886453, 0.8263034515059977, 0.9038664471740323, 0.2951534147404463, 0.5774441621899249, 0.1514730878186969, 0.35144414428352116, 0.4296120674844518, 0.0, 0.7160942516203284, 0.0, 0.0, 0.055454130534002735, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.29013999849733274, 0.07411303161246305, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | [0.9039764266942106, 0.9240475522847634, 0.938218144244075, 0.4959198081147803, 0.865805686217375, 0.16639566817336643, 0.550739908432252, 0.9061176738552009, 0.0, 0.915192568221405, 0.0, 0.0, 0.06546336206896551, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.420508166969147, 0.6799687010954617, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | | 1.5761 | 43.0 | 860 | 2.1012 | 0.1072 | 0.1821 | 0.5718 | [0.495065296147436, 0.8073073783582354, 0.9067252843332887, 0.276023095387914, 0.6051688264281804, 0.23826429402765475, 0.41254175911049906, 0.36701351089057105, 0.00015265056897030254, 0.7594632991318074, 0.0, 0.0, 0.024619840695148443, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.278476563480706, 0.0825868767537233, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | [0.9161516240434204, 0.9627909191431278, 0.9390469653100046, 0.41547798099564576, 0.8626420513674395, 0.25323447723223663, 0.6033773766119933, 0.9005166219755872, 0.00022093677191291073, 0.9311399264563577, 0.0, 0.0, 0.02747844827586207, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.40261343012704176, 0.7983828899321858, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | | 1.2308 | 44.0 | 880 | 2.1305 | 0.1064 | 0.1800 | 0.5692 | [0.48273148629633206, 0.8225327383795241, 0.9101917679583177, 0.2840989974786165, 0.6094734282788244, 0.1558207881005218, 0.4078722441489228, 0.3506056718242196, 0.0, 0.7468643458133933, 0.0, 0.0, 0.059127864005912786, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.31493802650641195, 0.0699278068210107, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | [0.9297410266744215, 0.9567225534751578, 0.9484560925650735, 0.41304872113061436, 0.8608625067643508, 0.16169663209815072, 0.6051583786354354, 0.8968723146528073, 0.0, 0.9242500483839752, 0.0, 0.0, 0.06465517241379311, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.4260980036297641, 0.7326551904016693, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | | 1.6045 | 45.0 | 900 | 2.0916 | 0.1072 | 0.1813 | 0.5765 | [0.48970260152163275, 0.8029454190947148, 0.9118748028460272, 0.2964607680456897, 0.6307646075251003, 0.18050177652091945, 0.4436245938639351, 0.38422459537456943, 0.0, 0.7601137598261648, 0.0, 0.0, 0.005048187241854061, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.27143981117230526, 0.07590732770072799, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | [0.929675867045397, 0.9630051901191982, 0.9499202214084116, 0.4379332874375693, 0.8518919368938102, 0.1936640811595105, 0.6671391139748049, 0.8973382062139581, 0.0, 0.9207276949874201, 0.0, 0.0, 0.005926724137931034, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.4132486388384755, 0.7451747522170057, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | | 1.6506 | 46.0 | 920 | 2.0884 | 0.1062 | 0.1820 | 0.5709 | [0.49615558279042765, 0.7852924964855984, 0.9105641387834378, 0.2746244791906892, 0.6577206119682396, 0.15227194927741147, 0.45426994054513165, 0.3589757192409712, 0.00036884664491417223, 0.7721389536927551, 0.0, 0.0, 0.012010113780025285, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.267661761931711, 0.06384978403455448, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | [0.9281506490623047, 0.9723537534455302, 0.9414567534312097, 0.39162826185141175, 0.8482495941389502, 0.15919151683950925, 0.6583087008009847, 0.910735176883496, 0.0005222141881577891, 0.9352041803754596, 0.0, 0.0, 0.015355603448275862, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.41201451905626135, 0.832811684924361, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | | 1.5606 | 47.0 | 940 | 2.0993 | 0.1076 | 0.1820 | 0.5704 | [0.49165453957213806, 0.8084706102374914, 0.9100911419340973, 0.2747594430618775, 0.65896412407193, 0.19090528685212974, 0.4172619272585258, 0.38288798589818174, 0.0004901254144442842, 0.7604817414825787, 0.0, 0.0, 0.025181305398871878, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.2866171093731083, 0.06492695717318017, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | [0.9205149058684693, 0.9605873670065022, 0.9431874194455296, 0.41344336623504185, 0.8469799775215419, 0.20586290328854726, 0.6176813405070727, 0.9062833241880546, 0.0006828954768217241, 0.9141087671763112, 0.0, 0.0, 0.033674568965517244, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.4296551724137931, 0.8137715179968701, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | | 1.0496 | 48.0 | 960 | 2.0999 | 0.1079 | 0.1814 | 0.5694 | [0.4885198664082964, 0.8107009911047844, 0.9105912870769264, 0.2737724659744155, 0.6531613750260179, 0.20383668887705614, 0.3900507090458395, 0.38218256442227766, 0.0, 0.7665403957938737, 0.0, 0.0, 0.0479483633010604, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.28859010913381183, 0.07046878274842225, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | [0.9132170274177239, 0.9626798156740541, 0.9407666777419555, 0.4226736767330401, 0.84907172293219, 0.22038790387203686, 0.5780983374206242, 0.9139239457909286, 0.0, 0.9085736404102961, 0.0, 0.0, 0.05603448275862069, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.4261705989110708, 0.7892540427751695, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | | 1.6828 | 49.0 | 980 | 2.1139 | 0.1060 | 0.1827 | 0.5692 | [0.48956999532044654, 0.8144172090328485, 0.909933700415777, 0.27907114402239863, 0.6298113091673959, 0.180150131272418, 0.4005986205699909, 0.35521699829969217, 0.0, 0.7518460082044809, 0.0, 0.0, 0.04044772322564233, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.27813504823151125, 0.06530087054424094, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | [0.919023474359686, 0.9556485532741135, 0.9460974211615909, 0.4134652909630656, 0.8537963618199226, 0.18950963535791251, 0.6027899256827951, 0.9235627245338496, 0.0, 0.9222372750145152, 0.0, 0.0, 0.04283405172413793, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.42072595281306713, 0.8471570161711007, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | | 1.2896 | 50.0 | 1000 | 2.1093 | 0.1061 | 0.1819 | 0.5698 | [0.49304871076479706, 0.8045352183435942, 0.9102904514568413, 0.2750351435610755, 0.6478054906449203, 0.17832002366163857, 0.410861924476854, 0.3601149518335627, 0.0, 0.7497660782234421, 0.0, 0.0, 0.034027777777777775, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.269010707248166, 0.06530417065158635, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | [0.9198922694133461, 0.9658568458254194, 0.9425630652504902, 0.40579602110035823, 0.848176747283853, 0.18761912912235387, 0.6125900991206885, 0.9211193821242585, 0.0, 0.930481904393265, 0.0, 0.0, 0.03960129310344827, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.4112885662431942, 0.8192488262910798, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] | ### Framework versions - Transformers 4.50.0 - Pytorch 2.6.0+cu124 - Tokenizers 0.21.1 - pipeline_tag: image-segmentation
RichardErkhov/kenken6696_-_Llama-3.2-3B_known_unknown_fix_tail-gguf
RichardErkhov
2025-03-25T14:07:08Z
0
0
null
[ "gguf", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-03-25T13:03:32Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Llama-3.2-3B_known_unknown_fix_tail - GGUF - Model creator: https://huggingface.co/kenken6696/ - Original model: https://huggingface.co/kenken6696/Llama-3.2-3B_known_unknown_fix_tail/ | Name | Quant method | Size | | ---- | ---- | ---- | | [Llama-3.2-3B_known_unknown_fix_tail.Q2_K.gguf](https://huggingface.co/RichardErkhov/kenken6696_-_Llama-3.2-3B_known_unknown_fix_tail-gguf/blob/main/Llama-3.2-3B_known_unknown_fix_tail.Q2_K.gguf) | Q2_K | 1.27GB | | [Llama-3.2-3B_known_unknown_fix_tail.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/kenken6696_-_Llama-3.2-3B_known_unknown_fix_tail-gguf/blob/main/Llama-3.2-3B_known_unknown_fix_tail.IQ3_XS.gguf) | IQ3_XS | 1.38GB | | [Llama-3.2-3B_known_unknown_fix_tail.IQ3_S.gguf](https://huggingface.co/RichardErkhov/kenken6696_-_Llama-3.2-3B_known_unknown_fix_tail-gguf/blob/main/Llama-3.2-3B_known_unknown_fix_tail.IQ3_S.gguf) | IQ3_S | 1.44GB | | [Llama-3.2-3B_known_unknown_fix_tail.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/kenken6696_-_Llama-3.2-3B_known_unknown_fix_tail-gguf/blob/main/Llama-3.2-3B_known_unknown_fix_tail.Q3_K_S.gguf) | Q3_K_S | 1.44GB | | [Llama-3.2-3B_known_unknown_fix_tail.IQ3_M.gguf](https://huggingface.co/RichardErkhov/kenken6696_-_Llama-3.2-3B_known_unknown_fix_tail-gguf/blob/main/Llama-3.2-3B_known_unknown_fix_tail.IQ3_M.gguf) | IQ3_M | 1.49GB | | [Llama-3.2-3B_known_unknown_fix_tail.Q3_K.gguf](https://huggingface.co/RichardErkhov/kenken6696_-_Llama-3.2-3B_known_unknown_fix_tail-gguf/blob/main/Llama-3.2-3B_known_unknown_fix_tail.Q3_K.gguf) | Q3_K | 1.57GB | | [Llama-3.2-3B_known_unknown_fix_tail.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/kenken6696_-_Llama-3.2-3B_known_unknown_fix_tail-gguf/blob/main/Llama-3.2-3B_known_unknown_fix_tail.Q3_K_M.gguf) | Q3_K_M | 1.57GB | | [Llama-3.2-3B_known_unknown_fix_tail.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/kenken6696_-_Llama-3.2-3B_known_unknown_fix_tail-gguf/blob/main/Llama-3.2-3B_known_unknown_fix_tail.Q3_K_L.gguf) | Q3_K_L | 1.69GB | | [Llama-3.2-3B_known_unknown_fix_tail.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/kenken6696_-_Llama-3.2-3B_known_unknown_fix_tail-gguf/blob/main/Llama-3.2-3B_known_unknown_fix_tail.IQ4_XS.gguf) | IQ4_XS | 1.71GB | | [Llama-3.2-3B_known_unknown_fix_tail.Q4_0.gguf](https://huggingface.co/RichardErkhov/kenken6696_-_Llama-3.2-3B_known_unknown_fix_tail-gguf/blob/main/Llama-3.2-3B_known_unknown_fix_tail.Q4_0.gguf) | Q4_0 | 1.79GB | | [Llama-3.2-3B_known_unknown_fix_tail.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/kenken6696_-_Llama-3.2-3B_known_unknown_fix_tail-gguf/blob/main/Llama-3.2-3B_known_unknown_fix_tail.IQ4_NL.gguf) | IQ4_NL | 1.79GB | | [Llama-3.2-3B_known_unknown_fix_tail.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/kenken6696_-_Llama-3.2-3B_known_unknown_fix_tail-gguf/blob/main/Llama-3.2-3B_known_unknown_fix_tail.Q4_K_S.gguf) | Q4_K_S | 1.8GB | | [Llama-3.2-3B_known_unknown_fix_tail.Q4_K.gguf](https://huggingface.co/RichardErkhov/kenken6696_-_Llama-3.2-3B_known_unknown_fix_tail-gguf/blob/main/Llama-3.2-3B_known_unknown_fix_tail.Q4_K.gguf) | Q4_K | 1.88GB | | [Llama-3.2-3B_known_unknown_fix_tail.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/kenken6696_-_Llama-3.2-3B_known_unknown_fix_tail-gguf/blob/main/Llama-3.2-3B_known_unknown_fix_tail.Q4_K_M.gguf) | Q4_K_M | 1.88GB | | [Llama-3.2-3B_known_unknown_fix_tail.Q4_1.gguf](https://huggingface.co/RichardErkhov/kenken6696_-_Llama-3.2-3B_known_unknown_fix_tail-gguf/blob/main/Llama-3.2-3B_known_unknown_fix_tail.Q4_1.gguf) | Q4_1 | 1.95GB | | [Llama-3.2-3B_known_unknown_fix_tail.Q5_0.gguf](https://huggingface.co/RichardErkhov/kenken6696_-_Llama-3.2-3B_known_unknown_fix_tail-gguf/blob/main/Llama-3.2-3B_known_unknown_fix_tail.Q5_0.gguf) | Q5_0 | 2.11GB | | [Llama-3.2-3B_known_unknown_fix_tail.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/kenken6696_-_Llama-3.2-3B_known_unknown_fix_tail-gguf/blob/main/Llama-3.2-3B_known_unknown_fix_tail.Q5_K_S.gguf) | Q5_K_S | 2.11GB | | [Llama-3.2-3B_known_unknown_fix_tail.Q5_K.gguf](https://huggingface.co/RichardErkhov/kenken6696_-_Llama-3.2-3B_known_unknown_fix_tail-gguf/blob/main/Llama-3.2-3B_known_unknown_fix_tail.Q5_K.gguf) | Q5_K | 2.16GB | | [Llama-3.2-3B_known_unknown_fix_tail.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/kenken6696_-_Llama-3.2-3B_known_unknown_fix_tail-gguf/blob/main/Llama-3.2-3B_known_unknown_fix_tail.Q5_K_M.gguf) | Q5_K_M | 2.16GB | | [Llama-3.2-3B_known_unknown_fix_tail.Q5_1.gguf](https://huggingface.co/RichardErkhov/kenken6696_-_Llama-3.2-3B_known_unknown_fix_tail-gguf/blob/main/Llama-3.2-3B_known_unknown_fix_tail.Q5_1.gguf) | Q5_1 | 2.28GB | | [Llama-3.2-3B_known_unknown_fix_tail.Q6_K.gguf](https://huggingface.co/RichardErkhov/kenken6696_-_Llama-3.2-3B_known_unknown_fix_tail-gguf/blob/main/Llama-3.2-3B_known_unknown_fix_tail.Q6_K.gguf) | Q6_K | 2.46GB | | [Llama-3.2-3B_known_unknown_fix_tail.Q8_0.gguf](https://huggingface.co/RichardErkhov/kenken6696_-_Llama-3.2-3B_known_unknown_fix_tail-gguf/blob/main/Llama-3.2-3B_known_unknown_fix_tail.Q8_0.gguf) | Q8_0 | 3.19GB | Original model description: --- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
L-I-V-E-Sophie-Rain-Spiderman-videos-link/Sophie.Rain.Spider-Man.Video.Tutorial.Links
L-I-V-E-Sophie-Rain-Spiderman-videos-link
2025-03-25T14:06:12Z
0
0
null
[ "region:us" ]
null
2025-03-25T14:06:07Z
<a href="https://sdu.sk/9Ip"><img src="https://i.ibb.co.com/xMMVF88/686577567.gif" alt="fsd" /></a> <a href="https://sdu.sk/9Ip" rel="nofollow">โ–บโœ… ๐˜พ๐™‡๐™„๐˜พ๐™† ๐™ƒ๐™€๐™๐™€ ==โ–บโ–บ (๐—ฆ๐—ถ๐—ด๐—ป ๐—จ๐—ฝ ๐˜๐—ผ ๐™๐™ช๐™ก๐™ก ๐—ช๐—ฎ๐˜๐—ฐ๐—ต ๐™‘๐™ž๐™™๐™š๐™คโค๏ธโค๏ธ)</a> <a href="https://sdu.sk/9Ip" rel="nofollow">๐Ÿ”ด โžคโ–บโœ…๐˜พ๐™‡๐™„๐˜พ๐™† ๐™ƒ๐™€๐™๐™€ ==โ–บโ–บ (๐…๐ฎ๐ฅ๐ฅ ๐ฏ๐ข๐๐ž๐จ ๐ฅ๐ข๐ง๐ค)</a>
sunalibhattacherji/txt_to_sql_llama
sunalibhattacherji
2025-03-25T14:04:34Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-03-25T14:04:22Z
--- base_model: unsloth/meta-llama-3.1-8b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** sunalibhattacherji - **License:** apache-2.0 - **Finetuned from model :** unsloth/meta-llama-3.1-8b-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
L-i-V-E-Sophie-Rain-Spiderman-Videosss/Sophie.Rain.Spider-Man.Video.Tutorial.Clips
L-i-V-E-Sophie-Rain-Spiderman-Videosss
2025-03-25T14:04:26Z
0
0
null
[ "region:us" ]
null
2025-03-25T14:04:14Z
<a href="https://sdu.sk/9Ip"><img src="https://i.ibb.co.com/xMMVF88/686577567.gif" alt="fsd" /></a> <a href="https://sdu.sk/9Ip" rel="nofollow">โ–บโœ… ๐˜พ๐™‡๐™„๐˜พ๐™† ๐™ƒ๐™€๐™๐™€ ==โ–บโ–บ (๐—ฆ๐—ถ๐—ด๐—ป ๐—จ๐—ฝ ๐˜๐—ผ ๐™๐™ช๐™ก๐™ก ๐—ช๐—ฎ๐˜๐—ฐ๐—ต ๐™‘๐™ž๐™™๐™š๐™คโค๏ธโค๏ธ)</a> <a href="https://sdu.sk/9Ip" rel="nofollow">๐Ÿ”ด โžคโ–บโœ…๐˜พ๐™‡๐™„๐˜พ๐™† ๐™ƒ๐™€๐™๐™€ ==โ–บโ–บ (๐…๐ฎ๐ฅ๐ฅ ๐ฏ๐ข๐๐ž๐จ ๐ฅ๐ข๐ง๐ค)</a>
samchain/EconoSentiment
samchain
2025-03-25T14:04:19Z
0
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "finance", "en", "dataset:FinanceMTEB/financial_phrasebank", "base_model:samchain/econo-sentence-v2", "base_model:finetune:samchain/econo-sentence-v2", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-03-25T10:43:10Z
--- library_name: transformers license: apache-2.0 base_model: samchain/econo-sentence-v2 tags: - generated_from_trainer - finance metrics: - accuracy - f1 - precision - recall model-index: - name: EconoSentiment results: [] datasets: - FinanceMTEB/financial_phrasebank language: - en pipeline_tag: text-classification --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # EconoSentiment This model is a fine-tuned version of [samchain/econo-sentence-v2](https://huggingface.co/samchain/econo-sentence-v2) on the Financial Phrase Bank dataset from FinanceMTEB. The full model is trained using a small learning rate isntead of freezing the encoder. Hence, you should not use the encoder of this model for a task other than sentiment analysis. It achieves the following results on the evaluation set: - Loss: 0.1293 - Accuracy: 0.962 - F1: 0.9619 - Precision: 0.9619 - Recall: 0.962 ## Model description The base model is a sentence-transformers model built from [EconoBert](https://huggingface.co/samchain/EconoBert). ## Intended uses & limitations This model is trained to provide a useful tool for sentiment analysis in finance. ## Training and evaluation data The dataset is directly downloaded from the huggingface repo of the FinanceMTEB. The preprocessing consisted of tokenizing to a fixed sequence length of 512 tokens. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.5992 | 1.0 | 158 | 0.4854 | 0.805 | 0.7692 | 0.8108 | 0.805 | | 0.0985 | 2.0 | 316 | 0.1293 | 0.962 | 0.9619 | 0.9619 | 0.962 | ### Framework versions - Transformers 4.50.0 - Pytorch 2.1.0+cu118 - Datasets 3.4.1 - Tokenizers 0.21.1
souging/2a201699-8567-4cd4-ae99-f620dd547f24
souging
2025-03-25T14:03:01Z
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "custom_code", "base_model:NousResearch/Yarn-Solar-10b-32k", "base_model:adapter:NousResearch/Yarn-Solar-10b-32k", "license:apache-2.0", "region:us" ]
null
2025-03-25T13:22:25Z
--- library_name: peft license: apache-2.0 base_model: NousResearch/Yarn-Solar-10b-32k tags: - axolotl - generated_from_trainer model-index: - name: 2a201699-8567-4cd4-ae99-f620dd547f24 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Yarn-Solar-10b-32k bf16: auto dataset_prepared_path: null datasets: - data_files: - 65d9e80afe69aff1_train_data.json ds_type: json format: custom path: /root/G.O.D-test/core/data/65d9e80afe69aff1_train_data.json type: field_input: documents field_instruction: question field_output: answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null eval_max_new_tokens: 128 eval_steps: 0 evals_per_epoch: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 6 gradient_checkpointing: false group_by_length: false hub_model_id: souging/2a201699-8567-4cd4-ae99-f620dd547f24 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.000202 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 500 micro_batch_size: 1 mlflow_experiment_name: /tmp/65d9e80afe69aff1_train_data.json model_type: AutoModelForCausalLM num_epochs: 10 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: false resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 0 saves_per_epoch: null sequence_len: 1920 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true wandb_entity: null wandb_mode: online wandb_name: a1a050a4-6a01-49dd-9cd7-289119b180f3 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: a1a050a4-6a01-49dd-9cd7-289119b180f3 warmup_steps: 100 weight_decay: 0.01 xformers_attention: null ``` </details><br> # 2a201699-8567-4cd4-ae99-f620dd547f24 This model is a fine-tuned version of [NousResearch/Yarn-Solar-10b-32k](https://huggingface.co/NousResearch/Yarn-Solar-10b-32k) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000202 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 6 - total_train_batch_size: 48 - total_eval_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 500 ### Training results ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.3
Sopna-Shah-Lik/new.VIRAL.VIDEO.sapna.shah.viral.video.original.Link.HD.x.Trending.Now
Sopna-Shah-Lik
2025-03-25T14:01:35Z
0
0
null
[ "region:us" ]
null
2025-03-25T14:01:27Z
<a href="https://sdu.sk/9Ip"><img src="https://i.ibb.co.com/xMMVF88/686577567.gif" alt="fsd" /></a> <a href="https://sdu.sk/9Ip" rel="nofollow">โ–บโœ… ๐˜พ๐™‡๐™„๐˜พ๐™† ๐™ƒ๐™€๐™๐™€ ==โ–บโ–บ (๐—ฆ๐—ถ๐—ด๐—ป ๐—จ๐—ฝ ๐˜๐—ผ ๐™๐™ช๐™ก๐™ก ๐—ช๐—ฎ๐˜๐—ฐ๐—ต ๐™‘๐™ž๐™™๐™š๐™คโค๏ธโค๏ธ)</a> <a href="https://sdu.sk/9Ip" rel="nofollow">๐Ÿ”ด โžคโ–บโœ…๐˜พ๐™‡๐™„๐˜พ๐™† ๐™ƒ๐™€๐™๐™€ ==โ–บโ–บ (๐…๐ฎ๐ฅ๐ฅ ๐ฏ๐ข๐๐ž๐จ ๐ฅ๐ข๐ง๐ค)</a>
RichardErkhov/amazon_-_MegaBeam-Mistral-7B-300k-awq
RichardErkhov
2025-03-25T14:01:22Z
0
0
null
[ "safetensors", "mistral", "4-bit", "awq", "region:us" ]
null
2025-03-25T13:57:53Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) MegaBeam-Mistral-7B-300k - AWQ - Model creator: https://huggingface.co/amazon/ - Original model: https://huggingface.co/amazon/MegaBeam-Mistral-7B-300k/ Original model description: --- license: apache-2.0 inference: false --- # MegaBeam-Mistral-7B-300k Model MegaBeam-Mistral-7B-300k is a fine-tuned [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) language model that supports input contexts up to 320k tokens. MegaBeam-Mistral-7B-300k can be deployed on a single AWS `g5.48xlarge` instance using serving frameworks such as [vLLM](https://github.com/vllm-project/vllm), Sagemaker [DJL](https://docs.aws.amazon.com/sagemaker/latest/dg/deploy-models-frameworks-djl-serving.html) endpoint, and others. Similarities and differences beween MegaBeam-Mistral-7B-300k and [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) are summarized below: |Model|Max context length| rope_theta| prompt template| |----------|-------------:|------------:|------------:| | [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) | 32K | 1e6 | [instruction format](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2#instruction-format)| | MegaBeam-Mistral-7B-300k | 320K | 25e6 | AS ABOVE| ## Evaluations **[InfiniteBench: Extending Long Context Evaluation Beyond 100K Tokens](https://github.com/OpenBMB/InfiniteBench)** _InfiniteBench is a cutting-edge benchmark tailored for evaluating the capabilities of language models to process, understand, and reason over super long contexts (100k+ tokens)_. We therefore evaluated MegaBeam-Mistral-7B-300k, [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2), [Llama-3-8B-Instruct-262k](https://huggingface.co/gradientai/Llama-3-8B-Instruct-262k), and [Llama3-70B-1M](https://huggingface.co/gradientai/Llama-3-70B-Instruct-Gradient-1048k) on InfiniteBench. The InfiniteBench authors also evaluated SOTA proprietary and open-source LLMs on InfiniteBench. We thus combined both results in the table below. | Task Name | MegaBeam-Mistral-7B-300k | Mistral-7B-Instruct-v0.2 | Llama-3-8B-Instruct-262k | Llama3-70B-1M | GPT-4-1106-preview | YaRN-Mistral-7B | Kimi-Chat | Claude 2 | Yi-6B-200K | Yi-34B-200K | Chatglm3-6B-128K | | ---------------- | ---------------- | ---------------- | ---------------- | ---------------- | ------ | --------------- | --------- | -------- | -----------| -----------| -----------| | Retrieve.PassKey | 100% | 75.76% | 98.30% | 81.35% | 100% | 92.71% | 98.14% | 97.80% | 100.00% | 100.00% | 92.20% | | Retrieve.Number | 96.10% | 25.25% | 97.79% | 97.62% | 100% | 56.61% | 95.42% | 98.14% | 94.92% | 100.00% | 80.68% | | Retrieve.KV | 0% | 0% | 3.40% | 3% | 89.00% | < 5% | 53.60% | 65.40% | < 5% | < 5% | < 5% | | En.Sum | 29.39% | 22.13% | 16.40% | 20.72% | 14.73% | 9.09% | 17.93% | 14.45% | < 5% | < 5% |< 5% | | En.QA | 14.93% | 4.93% | 13.20% | 16.52% | 22.22% | 9.55% | 16.52% | 11.97% | 9.20% | 12.17% |< 5% | | En.MC | 51.52% | 7.80% | 50.65% | 62% | 67.25% | 27.95% | 72.49% | 62.88% | 36.68% |38.43% |10.48% | | En.Dia | 9.50% | 3.50% | 1% | 12.50% | 8.50% | 7.50% | 11.50% | 46.50% | < 5% |< 5% |< 5% | | Zh.QA | 10.71% | 3.43% | 19.02% | 26% | 25.96% | 14.43% | 17.93% | 9.64% | 15.07% |13.61% |< 5% | | Code.Debug | 27.41% | 11.60% | 22.08% | 23.85% | 39.59% | < 5% | 18.02% | < 5% | < 5% |< 5% |< 5% | | Code.Run | 1.75% | 0.25% | 0% | 0% | 23.25% | < 5% | < 5% | < 5% | < 5% |< 5% |< 5% | | Math.Calc | 0% | 0% | 0% | 0% | < 5% | < 5% | < 5% | < 5% | < 5% |< 5% |< 5% | | Math.Find | 24.28% | 26.28% | 15.40% | 30% | 60.00% | 17.14% | 12.57% | 32.29% | < 5% |25.71% |7.71% | | **Average** | 30.70% | 15.08% | 28.10% | 31.13% | 46.08% | 20.41% | 34.93% | 37.21% | 22.78% |25.41% |17.59% | The 12 evaluation tasks are summarized below (as per [InfiniteBench]((https://github.com/OpenBMB/InfiniteBench))) | Task Name | Context | # Examples | Avg Input Tokens | Avg Output Tokens | Description | | -------------------- | ------------- | ---------- | ---------------- | ----------------- | ------------------------------------------------------------------------------------------- | | En.Sum | Fake Book | 103 | 171.5k | 1.1k | Summarization of a fake book created with core entity substitution. | | En.QA | Fake Book | 351 | 192.6k | 4.8 | Free-form question answering based on the fake book. | | En.MC | Fake Book | 229 | 184.4k | 5.3 | Multiple choice questions derived from the fake book. | | En.Dia | Script | 200 | 103.6k | 3.4 | Identification of talkers in partially anonymized scripts. | | Zh.QA | New Book | 175 | 2068.6k | 6.3 | Question answering on a set of newly collected books. | | Code.Debug | Code Document | 394 | 114.7k | 4.8 | Finding which function in a code repo contains an crashing error (in multiple choice form). | | Code.Run | Synthetic | 400 | 75.2k | 1.3 | Simulating execution of multiple simple, synthetic functions. | | Math.Calc | Synthetic | 50 | 43.9k | 43.9k | Calculations involving super-long arithmetic equations. | | Math.Find | Synthetic | 350 | 87.9k | 1.3 | Finding special integers in a lengthy list. | | Retrieve.PassKey | Synthetic | 590 | 122.4k | 2.0 | Retrieving hidden keys in a noisy long context. | | Retrieve.Number | Synthetic | 590 | 122.4k | 4.0 | Locating repeated hidden numbers in a noisy long context. | | Retrieve.KV | Synthetic | 500 | 89.9k | 22.7 | Finding the corresponding value from a dictionary and a key. | ## Serve MegaBeam-Mistral-7B-300k on EC2 instances ## On an AWS `g5.48xlarge` instance, upgrade vLLM to the latest version as per [documentation on vLLM](https://vllm.readthedocs.io/en/latest/). ### Start the server ```shell python3 -m vllm.entrypoints.openai.api_server --model amazon/MegaBeam-Mistral-7B-300k --tensor-parallel-size 8 ``` **Important Note** - We have set the `max_position_embeddings` in the [`config.json`](config.json) to 288,800 in order to fit model's KV-cache on a single `g5.48xlarge` instance, which has 8 x A10 GPUs (24GB RAM per GPU). On an instance with larger GPU RAM (e.g. `p4d.24xlarge`), feel free to increase the value of the `max_position_embeddings`(e.g. to 350K), which the model should be able to process. ### Run the client ```python from openai import OpenAI # Modify OpenAI's API key and API base to use vLLM's API server. openai_api_key = "EMPTY" openai_api_base = "http://localhost:8000/v1" client = OpenAI( # defaults to os.environ.get("OPENAI_API_KEY") api_key=openai_api_key, base_url=openai_api_base, ) models = client.models.list() model = models.data[0].id chat_completion = client.chat.completions.create( messages = [ {"role": "user", "content": "What is your favourite condiment?"}, # insert your long context here {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"}, {"role": "user", "content": "Do you have mayonnaise recipes?"} # insert your long context here ], model=model, ) print("Chat completion results:") print(chat_completion) ``` ### Deploy the model on a SageMaker Endpoint ### To deploy MegaBeam-Mistral-7B-300k on a SageMaker endpoint, please follow this [SageMaker DJL deployment guide](https://docs.djl.ai/docs/demos/aws/sagemaker/large-model-inference/sample-llm/vllm_deploy_mistral_7b.html). Run the following Python code in a SageMaker notebook (with each block running in a separate cell) ```python import sagemaker from sagemaker import Model, image_uris, serializers, deserializers sagemaker_session = sagemaker.Session() region = sagemaker_session.boto_region_name role = sagemaker.get_execution_role() %%writefile serving.properties engine=Python option.model_id=amazon/MegaBeam-Mistral-7B-300k option.dtype=bf16 option.task=text-generation option.rolling_batch=vllm option.tensor_parallel_degree=8 option.device_map=auto %%sh mkdir mymodel mv serving.properties mymodel/ tar czvf mymodel.tar.gz mymodel/ rm -rf mymodel image_uri = image_uris.retrieve( framework="djl-deepspeed", region=region, version="0.27.0" ) s3_code_prefix = "megaBeam-mistral-7b-300k/code" bucket = sagemaker_session.default_bucket() # bucket to house artifacts code_artifact = sagemaker_session.upload_data("mymodel.tar.gz", bucket, s3_code_prefix) print(f"S3 Code or Model tar ball uploaded to --- &gt; {code_artifact}") model = Model(image_uri=image_uri, model_data=code_artifact, role=role) instance_type = "ml.g5.48xlarge" endpoint_name = sagemaker.utils.name_from_base("megaBeam-mistral-7b-300k") model.deploy(initial_instance_count=1, instance_type=instance_type, endpoint_name=endpoint_name ) # our requests and responses will be in json format so we specify the serializer and the deserializer predictor = sagemaker.Predictor( endpoint_name=endpoint_name, sagemaker_session=sagemaker_session, serializer=serializers.JSONSerializer(), ) # test the endpoint input_str = """<s>[INST] What is your favourite condiment? [/INST] Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!</s> " [INST] Do you have mayonnaise recipes? [/INST]""" predictor.predict( {"inputs": input_str, "parameters": {"max_new_tokens": 75}} ) ``` ### Invoke the model on a SageMaker Endpoint ### To use MegaBeam-Mistral-7B-300k on a SageMaker endpoint, please try following this example: ```python import boto3 import json def call_endpoint(text:str, endpoint_name:str): client = boto3.client("sagemaker-runtime") parameters = { "max_new_tokens": 450, "do_sample": True, "temperature": 0.7, } payload = {"inputs": text, "parameters": parameters} response = client.invoke_endpoint( EndpointName=endpoint_name, Body=json.dumps(payload), ContentType="application/json" ) output = json.loads(response["Body"].read().decode()) result = output["generated_text"] return result # please insert your long prompt/document content here prompt = """<s>[INST] What are the main challenges to support long contexts for a Large Language Model? [/INST]""" #print(prompt) endpoint_name = "megaBeam-mistral-7b-300k-2024-05-13-14-23-41-219" # please use a valid endpoint name result = call_endpoint(prompt, endpoint_name) print(result) ``` ## Limitations ## Before using the MegaBeam-Mistral-7B-300k model, it is important to perform your own independent assessment, and take measures to ensure that your use would comply with your own specific quality control practices and standards, and that your use would comply with the local rules, laws, regulations, licenses and terms that apply to you, and your content. ## The AWS Contributors ## Chen Wu, Yin Song, Verdi March, Eden Duthie
hahaqwqw/rnd-Pyramids
hahaqwqw
2025-03-25T14:00:35Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2025-03-25T14:00:06Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog ๐Ÿถ to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: hahaqwqw/rnd-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
sopna-shah-pa/VIRAL.VIDEO.sapna.shah.viral.video.original.Link.HD.x.Trending.Now
sopna-shah-pa
2025-03-25T14:00:04Z
0
0
null
[ "region:us" ]
null
2025-03-25T13:59:50Z
<a href="https://sdu.sk/9Ip"><img src="https://i.ibb.co.com/xMMVF88/686577567.gif" alt="fsd" /></a> <a href="https://sdu.sk/9Ip" rel="nofollow">โ–บโœ… ๐˜พ๐™‡๐™„๐˜พ๐™† ๐™ƒ๐™€๐™๐™€ ==โ–บโ–บ (๐—ฆ๐—ถ๐—ด๐—ป ๐—จ๐—ฝ ๐˜๐—ผ ๐™๐™ช๐™ก๐™ก ๐—ช๐—ฎ๐˜๐—ฐ๐—ต ๐™‘๐™ž๐™™๐™š๐™คโค๏ธโค๏ธ)</a> <a href="https://sdu.sk/9Ip" rel="nofollow">๐Ÿ”ด โžคโ–บโœ…๐˜พ๐™‡๐™„๐˜พ๐™† ๐™ƒ๐™€๐™๐™€ ==โ–บโ–บ (๐…๐ฎ๐ฅ๐ฅ ๐ฏ๐ข๐๐ž๐จ ๐ฅ๐ข๐ง๐ค)</a>
ziyi105/gemma-3-finetune
ziyi105
2025-03-25T13:58:05Z
0
0
transformers
[ "transformers", "safetensors", "gemma3_text", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "base_model:unsloth/gemma-3-1b-it", "base_model:finetune:unsloth/gemma-3-1b-it", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-03-25T13:52:46Z
--- base_model: unsloth/gemma-3-1b-it tags: - text-generation-inference - transformers - unsloth - gemma3_text license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** ziyi105 - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-3-1b-it This gemma3_text model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Erenosxx/whisper-turbo-tr_combined_1
Erenosxx
2025-03-25T13:54:17Z
0
0
peft
[ "peft", "safetensors", "generated_from_trainer", "base_model:openai/whisper-large-v3-turbo", "base_model:adapter:openai/whisper-large-v3-turbo", "license:mit", "region:us" ]
null
2025-03-25T13:33:47Z
--- library_name: peft license: mit base_model: openai/whisper-large-v3-turbo tags: - generated_from_trainer model-index: - name: whisper-turbo-tr_combined_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-turbo-tr_combined_1 This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.15.0 - Transformers 4.50.0 - Pytorch 2.6.0+cu124 - Datasets 2.18.0 - Tokenizers 0.21.1
nathanialhunt2000/4d889a57-e5c1-4eef-a696-00439d206c38
nathanialhunt2000
2025-03-25T13:54:02Z
0
0
peft
[ "peft", "generated_from_trainer", "base_model:unsloth/Llama-3.2-1B", "base_model:adapter:unsloth/Llama-3.2-1B", "region:us" ]
null
2025-03-25T13:53:45Z
--- library_name: peft tags: - generated_from_trainer base_model: unsloth/Llama-3.2-1B model-index: - name: nathanialhunt2000/4d889a57-e5c1-4eef-a696-00439d206c38 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nathanialhunt2000/4d889a57-e5c1-4eef-a696-00439d206c38 This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6537 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Slothwolf/no_aux_loss_4layer_4expert_2topk_0.1aux_loss_weight_10epoch_MRPC
Slothwolf
2025-03-25T13:53:40Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "roberta", "generated_from_trainer", "base_model:FacebookAI/roberta-base", "base_model:finetune:FacebookAI/roberta-base", "license:mit", "endpoints_compatible", "region:us" ]
null
2025-03-25T13:46:04Z
--- library_name: transformers license: mit base_model: roberta-base tags: - generated_from_trainer metrics: - precision - recall - accuracy model-index: - name: no_aux_loss_4layer_4expert_2topk_0.1aux_loss_weight_10epoch_MRPC results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # no_aux_loss_4layer_4expert_2topk_0.1aux_loss_weight_10epoch_MRPC This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4002 - Precision: 0.7911 - Recall: 0.7557 - F1-score: 0.7687 - Accuracy: 0.8113 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 300 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1-score | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:--------:|:--------:| | 0.6558 | 0.4348 | 100 | 0.6122 | 0.3419 | 0.5 | 0.4061 | 0.6838 | | 0.6196 | 0.8696 | 200 | 0.5580 | 0.7850 | 0.5253 | 0.4605 | 0.6985 | | 0.599 | 1.3043 | 300 | 0.5539 | 0.6798 | 0.5879 | 0.5832 | 0.7157 | | 0.5999 | 1.7391 | 400 | 0.5889 | 0.7480 | 0.5274 | 0.4667 | 0.6985 | | 0.5922 | 2.1739 | 500 | 0.5647 | 0.6997 | 0.7280 | 0.6711 | 0.6765 | | 0.5425 | 2.6087 | 600 | 0.6696 | 0.7791 | 0.5879 | 0.5743 | 0.7328 | | 0.5156 | 3.0435 | 700 | 0.6715 | 0.7729 | 0.6648 | 0.6799 | 0.7696 | | 0.4994 | 3.4783 | 800 | 0.4945 | 0.7806 | 0.7122 | 0.7300 | 0.7917 | | 0.4778 | 3.9130 | 900 | 0.5263 | 0.7694 | 0.6908 | 0.7078 | 0.7794 | | 0.4883 | 4.3478 | 1000 | 0.4749 | 0.7803 | 0.6884 | 0.7062 | 0.7819 | | 0.4338 | 4.7826 | 1100 | 0.5873 | 0.8021 | 0.7075 | 0.7279 | 0.7966 | | 0.4521 | 5.2174 | 1200 | 0.4847 | 0.8063 | 0.7212 | 0.7419 | 0.8039 | | 0.4501 | 5.6522 | 1300 | 0.4131 | 0.8065 | 0.7569 | 0.7736 | 0.8186 | | 0.4021 | 6.0870 | 1400 | 0.4989 | 0.8085 | 0.7549 | 0.7723 | 0.8186 | | 0.4365 | 6.5217 | 1500 | 0.3891 | 0.7762 | 0.7917 | 0.7826 | 0.8064 | | 0.4087 | 6.9565 | 1600 | 0.3966 | 0.7832 | 0.7623 | 0.7709 | 0.8088 | | 0.3956 | 7.3913 | 1700 | 0.3786 | 0.7937 | 0.7900 | 0.7918 | 0.8211 | | 0.4061 | 7.8261 | 1800 | 0.3950 | 0.7981 | 0.7534 | 0.7687 | 0.8137 | | 0.3765 | 8.2609 | 1900 | 0.4026 | 0.8085 | 0.7549 | 0.7723 | 0.8186 | | 0.388 | 8.6957 | 2000 | 0.4182 | 0.8198 | 0.7564 | 0.7760 | 0.8235 | | 0.376 | 9.1304 | 2100 | 0.3998 | 0.7950 | 0.7656 | 0.7770 | 0.8162 | | 0.4014 | 9.5652 | 2200 | 0.4002 | 0.7950 | 0.7575 | 0.7711 | 0.8137 | | 0.3787 | 10.0 | 2300 | 0.4002 | 0.7911 | 0.7557 | 0.7687 | 0.8113 | ### Framework versions - Transformers 4.49.0.dev0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0
JacksonBrune/ad45f0c4-498b-4c1d-b882-435c8aae8680
JacksonBrune
2025-03-25T13:53:09Z
0
0
peft
[ "peft", "generated_from_trainer", "base_model:unsloth/Llama-3.2-1B", "base_model:adapter:unsloth/Llama-3.2-1B", "region:us" ]
null
2025-03-25T13:52:57Z
--- library_name: peft tags: - generated_from_trainer base_model: unsloth/Llama-3.2-1B model-index: - name: JacksonBrune/ad45f0c4-498b-4c1d-b882-435c8aae8680 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # JacksonBrune/ad45f0c4-498b-4c1d-b882-435c8aae8680 This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6537 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mradermacher/CPE_chatbot-i1-GGUF
mradermacher
2025-03-25T13:52:14Z
605
0
transformers
[ "transformers", "gguf", "en", "base_model:YenJung/CPE_chatbot", "base_model:quantized:YenJung/CPE_chatbot", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-03-22T19:16:33Z
--- base_model: YenJung/CPE_chatbot language: - en library_name: transformers quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/YenJung/CPE_chatbot <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/CPE_chatbot-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/CPE_chatbot-i1-GGUF/resolve/main/CPE_chatbot.i1-IQ1_S.gguf) | i1-IQ1_S | 2.1 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/CPE_chatbot-i1-GGUF/resolve/main/CPE_chatbot.i1-IQ1_M.gguf) | i1-IQ1_M | 2.3 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/CPE_chatbot-i1-GGUF/resolve/main/CPE_chatbot.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.5 | | | [GGUF](https://huggingface.co/mradermacher/CPE_chatbot-i1-GGUF/resolve/main/CPE_chatbot.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.7 | | | [GGUF](https://huggingface.co/mradermacher/CPE_chatbot-i1-GGUF/resolve/main/CPE_chatbot.i1-IQ2_S.gguf) | i1-IQ2_S | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/CPE_chatbot-i1-GGUF/resolve/main/CPE_chatbot.i1-IQ2_M.gguf) | i1-IQ2_M | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/CPE_chatbot-i1-GGUF/resolve/main/CPE_chatbot.i1-Q2_K_S.gguf) | i1-Q2_K_S | 3.1 | very low quality | | [GGUF](https://huggingface.co/mradermacher/CPE_chatbot-i1-GGUF/resolve/main/CPE_chatbot.i1-Q2_K.gguf) | i1-Q2_K | 3.3 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/CPE_chatbot-i1-GGUF/resolve/main/CPE_chatbot.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 3.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/CPE_chatbot-i1-GGUF/resolve/main/CPE_chatbot.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/CPE_chatbot-i1-GGUF/resolve/main/CPE_chatbot.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.8 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/CPE_chatbot-i1-GGUF/resolve/main/CPE_chatbot.i1-IQ3_S.gguf) | i1-IQ3_S | 3.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/CPE_chatbot-i1-GGUF/resolve/main/CPE_chatbot.i1-IQ3_M.gguf) | i1-IQ3_M | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/CPE_chatbot-i1-GGUF/resolve/main/CPE_chatbot.i1-Q3_K_M.gguf) | i1-Q3_K_M | 4.1 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/CPE_chatbot-i1-GGUF/resolve/main/CPE_chatbot.i1-Q3_K_L.gguf) | i1-Q3_K_L | 4.4 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/CPE_chatbot-i1-GGUF/resolve/main/CPE_chatbot.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.5 | | | [GGUF](https://huggingface.co/mradermacher/CPE_chatbot-i1-GGUF/resolve/main/CPE_chatbot.i1-Q4_0.gguf) | i1-Q4_0 | 4.8 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/CPE_chatbot-i1-GGUF/resolve/main/CPE_chatbot.i1-IQ4_NL.gguf) | i1-IQ4_NL | 4.8 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/CPE_chatbot-i1-GGUF/resolve/main/CPE_chatbot.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.8 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/CPE_chatbot-i1-GGUF/resolve/main/CPE_chatbot.i1-Q4_K_M.gguf) | i1-Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/CPE_chatbot-i1-GGUF/resolve/main/CPE_chatbot.i1-Q4_1.gguf) | i1-Q4_1 | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/CPE_chatbot-i1-GGUF/resolve/main/CPE_chatbot.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/CPE_chatbot-i1-GGUF/resolve/main/CPE_chatbot.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/CPE_chatbot-i1-GGUF/resolve/main/CPE_chatbot.i1-Q6_K.gguf) | i1-Q6_K | 6.7 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
rinabuoy/nllb-200-600M-2Ways-No-GG-Pairs-v4
rinabuoy
2025-03-25T13:51:40Z
0
0
transformers
[ "transformers", "safetensors", "m2m_100", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2025-03-25T13:48:53Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Asif-Sheriff/T5-QG2
Asif-Sheriff
2025-03-25T13:51:19Z
0
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:Asif-Sheriff/T5-Question-Generation", "base_model:finetune:Asif-Sheriff/T5-Question-Generation", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2025-03-25T12:08:13Z
--- library_name: transformers license: apache-2.0 base_model: Asif-Sheriff/T5-Question-Generation tags: - generated_from_trainer model-index: - name: T5-QG2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # T5-QG2 This model is a fine-tuned version of [Asif-Sheriff/T5-Question-Generation](https://huggingface.co/Asif-Sheriff/T5-Question-Generation) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.9237 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAFACTOR and the args are: No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.3112 | 0.0548 | 100 | 1.7491 | | 0.332 | 0.1095 | 200 | 1.7392 | | 0.2815 | 0.1643 | 300 | 1.7695 | | 0.298 | 0.2191 | 400 | 1.8053 | | 0.2696 | 0.2738 | 500 | 1.8340 | | 0.2625 | 0.3286 | 600 | 1.8321 | | 0.2839 | 0.3834 | 700 | 1.8368 | | 0.2651 | 0.4381 | 800 | 1.8531 | | 0.2604 | 0.4929 | 900 | 1.8731 | | 0.2798 | 0.5476 | 1000 | 1.8512 | | 0.2148 | 0.6024 | 1100 | 1.8821 | | 0.2603 | 0.6572 | 1200 | 1.8805 | | 0.2092 | 0.7119 | 1300 | 1.9164 | | 0.227 | 0.7667 | 1400 | 1.9262 | | 0.2564 | 0.8215 | 1500 | 1.8991 | | 0.2446 | 0.8762 | 1600 | 1.9290 | | 0.2093 | 0.9310 | 1700 | 1.9291 | | 0.243 | 0.9858 | 1800 | 1.9237 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.6.0+cu124 - Datasets 3.4.1 - Tokenizers 0.21.1
RichardErkhov/amazon_-_MegaBeam-Mistral-7B-300k-8bits
RichardErkhov
2025-03-25T13:51:08Z
0
0
null
[ "safetensors", "mistral", "8-bit", "bitsandbytes", "region:us" ]
null
2025-03-25T13:45:42Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) MegaBeam-Mistral-7B-300k - bnb 8bits - Model creator: https://huggingface.co/amazon/ - Original model: https://huggingface.co/amazon/MegaBeam-Mistral-7B-300k/ Original model description: --- license: apache-2.0 inference: false --- # MegaBeam-Mistral-7B-300k Model MegaBeam-Mistral-7B-300k is a fine-tuned [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) language model that supports input contexts up to 320k tokens. MegaBeam-Mistral-7B-300k can be deployed on a single AWS `g5.48xlarge` instance using serving frameworks such as [vLLM](https://github.com/vllm-project/vllm), Sagemaker [DJL](https://docs.aws.amazon.com/sagemaker/latest/dg/deploy-models-frameworks-djl-serving.html) endpoint, and others. Similarities and differences beween MegaBeam-Mistral-7B-300k and [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) are summarized below: |Model|Max context length| rope_theta| prompt template| |----------|-------------:|------------:|------------:| | [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) | 32K | 1e6 | [instruction format](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2#instruction-format)| | MegaBeam-Mistral-7B-300k | 320K | 25e6 | AS ABOVE| ## Evaluations **[InfiniteBench: Extending Long Context Evaluation Beyond 100K Tokens](https://github.com/OpenBMB/InfiniteBench)** _InfiniteBench is a cutting-edge benchmark tailored for evaluating the capabilities of language models to process, understand, and reason over super long contexts (100k+ tokens)_. We therefore evaluated MegaBeam-Mistral-7B-300k, [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2), [Llama-3-8B-Instruct-262k](https://huggingface.co/gradientai/Llama-3-8B-Instruct-262k), and [Llama3-70B-1M](https://huggingface.co/gradientai/Llama-3-70B-Instruct-Gradient-1048k) on InfiniteBench. The InfiniteBench authors also evaluated SOTA proprietary and open-source LLMs on InfiniteBench. We thus combined both results in the table below. | Task Name | MegaBeam-Mistral-7B-300k | Mistral-7B-Instruct-v0.2 | Llama-3-8B-Instruct-262k | Llama3-70B-1M | GPT-4-1106-preview | YaRN-Mistral-7B | Kimi-Chat | Claude 2 | Yi-6B-200K | Yi-34B-200K | Chatglm3-6B-128K | | ---------------- | ---------------- | ---------------- | ---------------- | ---------------- | ------ | --------------- | --------- | -------- | -----------| -----------| -----------| | Retrieve.PassKey | 100% | 75.76% | 98.30% | 81.35% | 100% | 92.71% | 98.14% | 97.80% | 100.00% | 100.00% | 92.20% | | Retrieve.Number | 96.10% | 25.25% | 97.79% | 97.62% | 100% | 56.61% | 95.42% | 98.14% | 94.92% | 100.00% | 80.68% | | Retrieve.KV | 0% | 0% | 3.40% | 3% | 89.00% | < 5% | 53.60% | 65.40% | < 5% | < 5% | < 5% | | En.Sum | 29.39% | 22.13% | 16.40% | 20.72% | 14.73% | 9.09% | 17.93% | 14.45% | < 5% | < 5% |< 5% | | En.QA | 14.93% | 4.93% | 13.20% | 16.52% | 22.22% | 9.55% | 16.52% | 11.97% | 9.20% | 12.17% |< 5% | | En.MC | 51.52% | 7.80% | 50.65% | 62% | 67.25% | 27.95% | 72.49% | 62.88% | 36.68% |38.43% |10.48% | | En.Dia | 9.50% | 3.50% | 1% | 12.50% | 8.50% | 7.50% | 11.50% | 46.50% | < 5% |< 5% |< 5% | | Zh.QA | 10.71% | 3.43% | 19.02% | 26% | 25.96% | 14.43% | 17.93% | 9.64% | 15.07% |13.61% |< 5% | | Code.Debug | 27.41% | 11.60% | 22.08% | 23.85% | 39.59% | < 5% | 18.02% | < 5% | < 5% |< 5% |< 5% | | Code.Run | 1.75% | 0.25% | 0% | 0% | 23.25% | < 5% | < 5% | < 5% | < 5% |< 5% |< 5% | | Math.Calc | 0% | 0% | 0% | 0% | < 5% | < 5% | < 5% | < 5% | < 5% |< 5% |< 5% | | Math.Find | 24.28% | 26.28% | 15.40% | 30% | 60.00% | 17.14% | 12.57% | 32.29% | < 5% |25.71% |7.71% | | **Average** | 30.70% | 15.08% | 28.10% | 31.13% | 46.08% | 20.41% | 34.93% | 37.21% | 22.78% |25.41% |17.59% | The 12 evaluation tasks are summarized below (as per [InfiniteBench]((https://github.com/OpenBMB/InfiniteBench))) | Task Name | Context | # Examples | Avg Input Tokens | Avg Output Tokens | Description | | -------------------- | ------------- | ---------- | ---------------- | ----------------- | ------------------------------------------------------------------------------------------- | | En.Sum | Fake Book | 103 | 171.5k | 1.1k | Summarization of a fake book created with core entity substitution. | | En.QA | Fake Book | 351 | 192.6k | 4.8 | Free-form question answering based on the fake book. | | En.MC | Fake Book | 229 | 184.4k | 5.3 | Multiple choice questions derived from the fake book. | | En.Dia | Script | 200 | 103.6k | 3.4 | Identification of talkers in partially anonymized scripts. | | Zh.QA | New Book | 175 | 2068.6k | 6.3 | Question answering on a set of newly collected books. | | Code.Debug | Code Document | 394 | 114.7k | 4.8 | Finding which function in a code repo contains an crashing error (in multiple choice form). | | Code.Run | Synthetic | 400 | 75.2k | 1.3 | Simulating execution of multiple simple, synthetic functions. | | Math.Calc | Synthetic | 50 | 43.9k | 43.9k | Calculations involving super-long arithmetic equations. | | Math.Find | Synthetic | 350 | 87.9k | 1.3 | Finding special integers in a lengthy list. | | Retrieve.PassKey | Synthetic | 590 | 122.4k | 2.0 | Retrieving hidden keys in a noisy long context. | | Retrieve.Number | Synthetic | 590 | 122.4k | 4.0 | Locating repeated hidden numbers in a noisy long context. | | Retrieve.KV | Synthetic | 500 | 89.9k | 22.7 | Finding the corresponding value from a dictionary and a key. | ## Serve MegaBeam-Mistral-7B-300k on EC2 instances ## On an AWS `g5.48xlarge` instance, upgrade vLLM to the latest version as per [documentation on vLLM](https://vllm.readthedocs.io/en/latest/). ### Start the server ```shell python3 -m vllm.entrypoints.openai.api_server --model amazon/MegaBeam-Mistral-7B-300k --tensor-parallel-size 8 ``` **Important Note** - We have set the `max_position_embeddings` in the [`config.json`](config.json) to 288,800 in order to fit model's KV-cache on a single `g5.48xlarge` instance, which has 8 x A10 GPUs (24GB RAM per GPU). On an instance with larger GPU RAM (e.g. `p4d.24xlarge`), feel free to increase the value of the `max_position_embeddings`(e.g. to 350K), which the model should be able to process. ### Run the client ```python from openai import OpenAI # Modify OpenAI's API key and API base to use vLLM's API server. openai_api_key = "EMPTY" openai_api_base = "http://localhost:8000/v1" client = OpenAI( # defaults to os.environ.get("OPENAI_API_KEY") api_key=openai_api_key, base_url=openai_api_base, ) models = client.models.list() model = models.data[0].id chat_completion = client.chat.completions.create( messages = [ {"role": "user", "content": "What is your favourite condiment?"}, # insert your long context here {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"}, {"role": "user", "content": "Do you have mayonnaise recipes?"} # insert your long context here ], model=model, ) print("Chat completion results:") print(chat_completion) ``` ### Deploy the model on a SageMaker Endpoint ### To deploy MegaBeam-Mistral-7B-300k on a SageMaker endpoint, please follow this [SageMaker DJL deployment guide](https://docs.djl.ai/docs/demos/aws/sagemaker/large-model-inference/sample-llm/vllm_deploy_mistral_7b.html). Run the following Python code in a SageMaker notebook (with each block running in a separate cell) ```python import sagemaker from sagemaker import Model, image_uris, serializers, deserializers sagemaker_session = sagemaker.Session() region = sagemaker_session.boto_region_name role = sagemaker.get_execution_role() %%writefile serving.properties engine=Python option.model_id=amazon/MegaBeam-Mistral-7B-300k option.dtype=bf16 option.task=text-generation option.rolling_batch=vllm option.tensor_parallel_degree=8 option.device_map=auto %%sh mkdir mymodel mv serving.properties mymodel/ tar czvf mymodel.tar.gz mymodel/ rm -rf mymodel image_uri = image_uris.retrieve( framework="djl-deepspeed", region=region, version="0.27.0" ) s3_code_prefix = "megaBeam-mistral-7b-300k/code" bucket = sagemaker_session.default_bucket() # bucket to house artifacts code_artifact = sagemaker_session.upload_data("mymodel.tar.gz", bucket, s3_code_prefix) print(f"S3 Code or Model tar ball uploaded to --- &gt; {code_artifact}") model = Model(image_uri=image_uri, model_data=code_artifact, role=role) instance_type = "ml.g5.48xlarge" endpoint_name = sagemaker.utils.name_from_base("megaBeam-mistral-7b-300k") model.deploy(initial_instance_count=1, instance_type=instance_type, endpoint_name=endpoint_name ) # our requests and responses will be in json format so we specify the serializer and the deserializer predictor = sagemaker.Predictor( endpoint_name=endpoint_name, sagemaker_session=sagemaker_session, serializer=serializers.JSONSerializer(), ) # test the endpoint input_str = """<s>[INST] What is your favourite condiment? [/INST] Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!</s> " [INST] Do you have mayonnaise recipes? [/INST]""" predictor.predict( {"inputs": input_str, "parameters": {"max_new_tokens": 75}} ) ``` ### Invoke the model on a SageMaker Endpoint ### To use MegaBeam-Mistral-7B-300k on a SageMaker endpoint, please try following this example: ```python import boto3 import json def call_endpoint(text:str, endpoint_name:str): client = boto3.client("sagemaker-runtime") parameters = { "max_new_tokens": 450, "do_sample": True, "temperature": 0.7, } payload = {"inputs": text, "parameters": parameters} response = client.invoke_endpoint( EndpointName=endpoint_name, Body=json.dumps(payload), ContentType="application/json" ) output = json.loads(response["Body"].read().decode()) result = output["generated_text"] return result # please insert your long prompt/document content here prompt = """<s>[INST] What are the main challenges to support long contexts for a Large Language Model? [/INST]""" #print(prompt) endpoint_name = "megaBeam-mistral-7b-300k-2024-05-13-14-23-41-219" # please use a valid endpoint name result = call_endpoint(prompt, endpoint_name) print(result) ``` ## Limitations ## Before using the MegaBeam-Mistral-7B-300k model, it is important to perform your own independent assessment, and take measures to ensure that your use would comply with your own specific quality control practices and standards, and that your use would comply with the local rules, laws, regulations, licenses and terms that apply to you, and your content. ## The AWS Contributors ## Chen Wu, Yin Song, Verdi March, Eden Duthie
mergekit-community/QwQ-slerp1
mergekit-community
2025-03-25T13:50:12Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "mergekit", "merge", "conversational", "base_model:Qwen/QwQ-32B", "base_model:merge:Qwen/QwQ-32B", "base_model:Qwen/Qwen2.5-32B-Instruct", "base_model:merge:Qwen/Qwen2.5-32B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-25T13:34:15Z
--- base_model: - Qwen/QwQ-32B - Qwen/Qwen2.5-32B-Instruct library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [SLERP](https://en.wikipedia.org/wiki/Slerp) merge method. ### Models Merged The following models were included in the merge: * [Qwen/QwQ-32B](https://huggingface.co/Qwen/QwQ-32B) * [Qwen/Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct) ### Configuration The following YAML configuration was used to produce this model: ```yaml merge_method: slerp base_model: Qwen/Qwen2.5-32B-Instruct tokenizer_source: Qwen/Qwen2.5-32B-Instruct dtype: bfloat16 out_dtype: bfloat16 parameters: int8_mask: true normalize: true rescale: false t: - value: 0.50 slices: - sources: - model: Qwen/Qwen2.5-32B-Instruct layer_range: [ 0, 8 ] - model: Qwen/Qwen2.5-32B-Instruct layer_range: [ 0, 8 ] - sources: - model: Qwen/Qwen2.5-32B-Instruct layer_range: [ 8, 16 ] - model: Qwen/QwQ-32B layer_range: [ 8, 16 ] - sources: - model: Qwen/Qwen2.5-32B-Instruct layer_range: [ 16, 24 ] - model: Qwen/QwQ-32B layer_range: [ 16, 24 ] - sources: - model: Qwen/QwQ-32B layer_range: [ 24, 32 ] - model: Qwen/QwQ-32B layer_range: [ 24, 32 ] - sources: - model: Qwen/QwQ-32B layer_range: [ 32, 40 ] - model: Qwen/QwQ-32B layer_range: [ 32, 40 ] - sources: - model: Qwen/QwQ-32B layer_range: [ 40, 48 ] - model: Qwen/Qwen2.5-32B-Instruct layer_range: [ 40, 48 ] - sources: - model: Qwen/QwQ-32B layer_range: [ 48, 56 ] - model: Qwen/Qwen2.5-32B-Instruct layer_range: [ 48, 56 ] - sources: - model: Qwen/Qwen2.5-32B-Instruct layer_range: [ 56, 64 ] - model: Qwen/Qwen2.5-32B-Instruct layer_range: [ 56, 64 ] ```
ziyi105/gemma-3
ziyi105
2025-03-25T13:47:42Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "gemma3_text", "trl", "en", "base_model:unsloth/gemma-3-1b-it", "base_model:finetune:unsloth/gemma-3-1b-it", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-03-25T13:47:25Z
--- base_model: unsloth/gemma-3-1b-it tags: - text-generation-inference - transformers - unsloth - gemma3_text - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** ziyi105 - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-3-1b-it This gemma3_text model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
tyruan/uuu_fine_tune_taipower
tyruan
2025-03-25T13:46:35Z
0
0
null
[ "safetensors", "gpt2", "license:apache-2.0", "region:us" ]
null
2025-03-25T07:07:49Z
--- license: apache-2.0 ---
Slothwolf/no_aux_loss_2layer_4expert_2topk_0.1aux_loss_weight_10epoch_MRPC
Slothwolf
2025-03-25T13:46:03Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "roberta", "generated_from_trainer", "base_model:FacebookAI/roberta-base", "base_model:finetune:FacebookAI/roberta-base", "license:mit", "endpoints_compatible", "region:us" ]
null
2025-03-25T13:40:14Z
--- library_name: transformers license: mit base_model: roberta-base tags: - generated_from_trainer metrics: - precision - recall - accuracy model-index: - name: no_aux_loss_2layer_4expert_2topk_0.1aux_loss_weight_10epoch_MRPC results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # no_aux_loss_2layer_4expert_2topk_0.1aux_loss_weight_10epoch_MRPC This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4679 - Precision: 0.7801 - Recall: 0.7262 - F1-score: 0.7425 - Accuracy: 0.7966 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 300 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1-score | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:--------:|:--------:| | 0.661 | 0.4348 | 100 | 0.6233 | 0.3419 | 0.5 | 0.4061 | 0.6838 | | 0.6383 | 0.8696 | 200 | 0.6163 | 0.3419 | 0.5 | 0.4061 | 0.6838 | | 0.621 | 1.3043 | 300 | 0.5999 | 0.6374 | 0.5983 | 0.6019 | 0.6985 | | 0.6104 | 1.7391 | 400 | 0.6797 | 0.7165 | 0.5355 | 0.4856 | 0.7010 | | 0.6165 | 2.1739 | 500 | 0.5317 | 0.7207 | 0.6669 | 0.6792 | 0.7525 | | 0.5609 | 2.6087 | 600 | 0.6391 | 0.7340 | 0.5334 | 0.4799 | 0.7010 | | 0.5632 | 3.0435 | 700 | 0.5364 | 0.7392 | 0.6043 | 0.6022 | 0.7353 | | 0.4965 | 3.4783 | 800 | 0.5146 | 0.7292 | 0.6907 | 0.7024 | 0.7623 | | 0.5254 | 3.9130 | 900 | 0.5978 | 0.7868 | 0.6094 | 0.6067 | 0.7451 | | 0.5024 | 4.3478 | 1000 | 0.4876 | 0.7507 | 0.6895 | 0.7046 | 0.7721 | | 0.448 | 4.7826 | 1100 | 0.4821 | 0.7457 | 0.7059 | 0.7185 | 0.7745 | | 0.4663 | 5.2174 | 1200 | 0.4837 | 0.7887 | 0.6940 | 0.7129 | 0.7868 | | 0.469 | 5.6522 | 1300 | 0.4758 | 0.7827 | 0.7042 | 0.7225 | 0.7892 | | 0.411 | 6.0870 | 1400 | 0.5816 | 0.8036 | 0.6857 | 0.7048 | 0.7868 | | 0.4443 | 6.5217 | 1500 | 0.4380 | 0.7761 | 0.7486 | 0.7592 | 0.8015 | | 0.4221 | 6.9565 | 1600 | 0.4657 | 0.7959 | 0.7116 | 0.7314 | 0.7966 | | 0.417 | 7.3913 | 1700 | 0.4645 | 0.7812 | 0.7182 | 0.7356 | 0.7941 | | 0.421 | 7.8261 | 1800 | 0.4691 | 0.8111 | 0.7289 | 0.7499 | 0.8088 | | 0.4091 | 8.2609 | 1900 | 0.4768 | 0.7730 | 0.7206 | 0.7363 | 0.7917 | | 0.4114 | 8.6957 | 2000 | 0.4744 | 0.7739 | 0.7125 | 0.7293 | 0.7892 | | 0.4132 | 9.1304 | 2100 | 0.4668 | 0.7715 | 0.7226 | 0.7377 | 0.7917 | | 0.4197 | 9.5652 | 2200 | 0.4674 | 0.7801 | 0.7262 | 0.7425 | 0.7966 | | 0.4054 | 10.0 | 2300 | 0.4679 | 0.7801 | 0.7262 | 0.7425 | 0.7966 | ### Framework versions - Transformers 4.49.0.dev0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0
Haricot24601/dqn-SpaceInvadersNoFrameskip-v4
Haricot24601
2025-03-25T13:43:19Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2025-03-25T13:42:51Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 501.00 +/- 244.28 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib SBX (SB3 + Jax): https://github.com/araffin/sbx Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Haricot24601 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Haricot24601 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Haricot24601 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
bowilleatyou/756b01a8-96db-4940-9f6b-71a956dbeed6
bowilleatyou
2025-03-25T13:43:19Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-03-25T10:55:35Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
NESPED-GEN/Qwen2.5-3B-Instruct-1epochBIRD-evalCNPJ
NESPED-GEN
2025-03-25T13:43:18Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-25T13:40:23Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/zefiro-7b-sft-qlora-ITA-v0.5-i1-GGUF
mradermacher
2025-03-25T13:42:29Z
0
0
transformers
[ "transformers", "gguf", "it", "dataset:giux78/100k-sft-ready-ultrafeedback-ita", "base_model:giux78/zefiro-7b-sft-qlora-ITA-v0.5", "base_model:quantized:giux78/zefiro-7b-sft-qlora-ITA-v0.5", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-03-25T09:38:12Z
--- base_model: giux78/zefiro-7b-sft-qlora-ITA-v0.5 datasets: - giux78/100k-sft-ready-ultrafeedback-ita language: - it library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/giux78/zefiro-7b-sft-qlora-ITA-v0.5 <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/zefiro-7b-sft-qlora-ITA-v0.5-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/zefiro-7b-sft-qlora-ITA-v0.5-i1-GGUF/resolve/main/zefiro-7b-sft-qlora-ITA-v0.5.i1-IQ1_S.gguf) | i1-IQ1_S | 1.7 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/zefiro-7b-sft-qlora-ITA-v0.5-i1-GGUF/resolve/main/zefiro-7b-sft-qlora-ITA-v0.5.i1-IQ1_M.gguf) | i1-IQ1_M | 1.9 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/zefiro-7b-sft-qlora-ITA-v0.5-i1-GGUF/resolve/main/zefiro-7b-sft-qlora-ITA-v0.5.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.1 | | | [GGUF](https://huggingface.co/mradermacher/zefiro-7b-sft-qlora-ITA-v0.5-i1-GGUF/resolve/main/zefiro-7b-sft-qlora-ITA-v0.5.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/zefiro-7b-sft-qlora-ITA-v0.5-i1-GGUF/resolve/main/zefiro-7b-sft-qlora-ITA-v0.5.i1-IQ2_S.gguf) | i1-IQ2_S | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/zefiro-7b-sft-qlora-ITA-v0.5-i1-GGUF/resolve/main/zefiro-7b-sft-qlora-ITA-v0.5.i1-IQ2_M.gguf) | i1-IQ2_M | 2.6 | | | [GGUF](https://huggingface.co/mradermacher/zefiro-7b-sft-qlora-ITA-v0.5-i1-GGUF/resolve/main/zefiro-7b-sft-qlora-ITA-v0.5.i1-Q2_K_S.gguf) | i1-Q2_K_S | 2.6 | very low quality | | [GGUF](https://huggingface.co/mradermacher/zefiro-7b-sft-qlora-ITA-v0.5-i1-GGUF/resolve/main/zefiro-7b-sft-qlora-ITA-v0.5.i1-Q2_K.gguf) | i1-Q2_K | 2.8 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/zefiro-7b-sft-qlora-ITA-v0.5-i1-GGUF/resolve/main/zefiro-7b-sft-qlora-ITA-v0.5.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 2.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/zefiro-7b-sft-qlora-ITA-v0.5-i1-GGUF/resolve/main/zefiro-7b-sft-qlora-ITA-v0.5.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/zefiro-7b-sft-qlora-ITA-v0.5-i1-GGUF/resolve/main/zefiro-7b-sft-qlora-ITA-v0.5.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.3 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/zefiro-7b-sft-qlora-ITA-v0.5-i1-GGUF/resolve/main/zefiro-7b-sft-qlora-ITA-v0.5.i1-IQ3_S.gguf) | i1-IQ3_S | 3.3 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/zefiro-7b-sft-qlora-ITA-v0.5-i1-GGUF/resolve/main/zefiro-7b-sft-qlora-ITA-v0.5.i1-IQ3_M.gguf) | i1-IQ3_M | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/zefiro-7b-sft-qlora-ITA-v0.5-i1-GGUF/resolve/main/zefiro-7b-sft-qlora-ITA-v0.5.i1-Q3_K_M.gguf) | i1-Q3_K_M | 3.6 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/zefiro-7b-sft-qlora-ITA-v0.5-i1-GGUF/resolve/main/zefiro-7b-sft-qlora-ITA-v0.5.i1-Q3_K_L.gguf) | i1-Q3_K_L | 3.9 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/zefiro-7b-sft-qlora-ITA-v0.5-i1-GGUF/resolve/main/zefiro-7b-sft-qlora-ITA-v0.5.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/zefiro-7b-sft-qlora-ITA-v0.5-i1-GGUF/resolve/main/zefiro-7b-sft-qlora-ITA-v0.5.i1-Q4_0.gguf) | i1-Q4_0 | 4.2 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/zefiro-7b-sft-qlora-ITA-v0.5-i1-GGUF/resolve/main/zefiro-7b-sft-qlora-ITA-v0.5.i1-IQ4_NL.gguf) | i1-IQ4_NL | 4.2 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/zefiro-7b-sft-qlora-ITA-v0.5-i1-GGUF/resolve/main/zefiro-7b-sft-qlora-ITA-v0.5.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.2 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/zefiro-7b-sft-qlora-ITA-v0.5-i1-GGUF/resolve/main/zefiro-7b-sft-qlora-ITA-v0.5.i1-Q4_K_M.gguf) | i1-Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/zefiro-7b-sft-qlora-ITA-v0.5-i1-GGUF/resolve/main/zefiro-7b-sft-qlora-ITA-v0.5.i1-Q4_1.gguf) | i1-Q4_1 | 4.7 | | | [GGUF](https://huggingface.co/mradermacher/zefiro-7b-sft-qlora-ITA-v0.5-i1-GGUF/resolve/main/zefiro-7b-sft-qlora-ITA-v0.5.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/zefiro-7b-sft-qlora-ITA-v0.5-i1-GGUF/resolve/main/zefiro-7b-sft-qlora-ITA-v0.5.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/zefiro-7b-sft-qlora-ITA-v0.5-i1-GGUF/resolve/main/zefiro-7b-sft-qlora-ITA-v0.5.i1-Q6_K.gguf) | i1-Q6_K | 6.0 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mosroormofizarman/short-llama-3.2-3B-final-4l
mosroormofizarman
2025-03-25T13:41:18Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-25T13:40:14Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ReadyArt/Forgotten-Safeword-70B-3.6_EXL2_6.0bpw_H8
ReadyArt
2025-03-25T13:39:35Z
12
0
null
[ "safetensors", "llama", "nsfw", "explicit", "roleplay", "unaligned", "dangerous", "ERP", "en", "base_model:ReadyArt/Forgotten-Safeword-70B-3.6", "base_model:quantized:ReadyArt/Forgotten-Safeword-70B-3.6", "license:llama3.3", "6-bit", "exl2", "region:us" ]
null
2025-03-16T15:59:16Z
--- base_model: ReadyArt/Forgotten-Safeword-70B-3.6 base_model_relation: quantized language: - en license: llama3.3 inference: false tags: - nsfw - explicit - roleplay - unaligned - dangerous - ERP --- <style> body { font-family: 'Quicksand', sans-serif; background: linear-gradient(135deg, #001a1a 0%, #000a10 100%); color: #e1ffff !important; text-shadow: 0 0 3px rgba(0, 0, 0, 0.7); margin: 0; padding: 20px; } @media (prefers-color-scheme: light) { body { background: linear-gradient(135deg, #e1ffff 0%, #c0f0ff 100%); color: #002b36 !important; text-shadow: 0 0 3px rgba(255, 255, 255, 0.7); } } .container { max-width: 800px; margin: 0 auto; background: rgba(0, 17, 22, 0.95); border-radius: 12px; padding: 30px; box-shadow: 0 0 20px rgba(0, 255, 255, 0.1); border: 1px solid rgba(0, 255, 255, 0.2); } @media (prefers-color-scheme: light) { .container { background: rgba(224, 255, 255, 0.95); border-color: rgba(0, 150, 150, 0.3); } } .header { text-align: center; margin-bottom: 30px; } .model-name { color: #00ffff; font-size: 2.5em; text-shadow: 0 0 15px rgba(0, 255, 255, 0.5); margin: 0; } .subtitle { color: #00ffcc; font-size: 1.2em; } .waifu-container { margin: 20px -30px; width: calc(100% + 60px); overflow: hidden; } .waifu-img { width: 100%; height: auto; border-radius: 0; border: none; box-shadow: 0 0 40px rgba(0, 255, 255, 0.2); transform: scale(1.02); } .section { color: #00ffcc; margin: 25px 0; padding: 20px; background: rgba(5, 25, 35, 0.9); border-radius: 8px; border: 1px solid rgba(0, 255, 255, 0.15); } @media (prefers-color-scheme: light) { .section { background: rgba(200, 250, 255, 0.9); border-color: rgba(0, 200, 200, 0.2); } } .section-title { color: #00ffff; font-size: 1.8em; margin-top: 0; } .section > p > strong { color: #00ffcc !important; } .section:has(.quant-links) p, .section:has(.quant-links) h3, .section:has(.quant-links) a { color: #00ffcc !important; } .quant-links h3 { color: #00ffcc !important; margin-top: 0; } .badge { display: inline-block; padding: 5px 10px; border-radius: 5px; background: rgba(0, 255, 255, 0.1); border: 1px solid #00ffff; margin: 5px; } .quant-links { display: grid; grid-template-columns: repeat(2, 1fr); gap: 15px; } .link-card { padding: 15px; background: rgba(20, 35, 45, 0.95); border-radius: 8px; transition: transform 0.3s ease; } @media (prefers-color-scheme: light) { .link-card { background: rgba(150, 230, 255, 0.95); } } .link-card:hover { transform: translateY(-3px); } .disclaimer { color: #00ff99; border-left: 3px solid #00ff99; padding-left: 15px; margin: 20px 0; } .progress-bar { height: 8px; background: rgba(0, 255, 255, 0.1); border-radius: 4px; overflow: hidden; margin: 10px 0; } .progress-fill { height: 100%; background: linear-gradient(90deg, #00ffff 0%, #00ffcc 100%); width: 70%; } @media (prefers-color-scheme: light) { .model-name, .section-title, .subtitle { color: #006666; text-shadow: 0 0 5px rgba(0, 200, 200, 0.3); } .section:has(.quant-links) p, .section:has(.quant-links) h3, .section:has(.quant-links) a, .section > p > strong { color: #008080 !important; } .quant-links h3 { color: #008080 !important; } .badge { border-color: #008080; background: rgba(0, 150, 150, 0.1); } .disclaimer { color: #008080; border-color: #008080; } } </style> <div class="container"> <div class="header"> <h1 class="model-name">Forgotten-Safeword-70B-3.6</h1> <div class="subtitle">The Safeword Protocol: Now With 30% More Depravity</div> </div> <div class="waifu-container"> <img src="./waifu2.webp" class="waifu-img" alt="Model Architecture Animation"> </div> <div class="section"> <h2 class="section-title">๐Ÿ“œ Manifesto</h2> <p>ReadyArt/Forgotten-Safeword-70B-3.6 isn't just a model - is the event horizon of depravity. We've applied the Safeword dataset directly to meta-llama/Llama-3.3-70B-Instruct.</p> </div> <div class="section"> <h2 class="section-title">โš™๏ธ Technical Specs</h2> <div class="progress-bar"> <div class="progress-fill"></div> </div> <div class="quant-links"> <div class="link-card"> <h3>EXL2 Collection</h3> <a href="https://huggingface.co/collections/ReadyArt/forgotten-safeword-70b-36-exl2-67d52d2b0345344691d62dac">Quantum Entangled Bits โ†’</a> </div> <div class="link-card"> <h3>GGUF Collection</h3> <a href="https://huggingface.co/collections/ReadyArt/forgotten-safeword-70b-36-gguf-67d52d338f0af9c031c622c1">Giggle-Enabled Units โ†’</a> </div> </div> </div> <div class="section"> <h2 class="section-title">โš ๏ธ Ethical Considerations</h2> <div class="disclaimer"> <p>This model will:</p> <ul> <li>Generate content that requires industrial-grade brain bleach </li> <li>Void all warranties on your soul </li> <li>Make you question why humanity ever invented electricity</li> </ul> </div> </div> <div class="section"> <h2 class="section-title">๐Ÿ“œ License Agreement</h2> <p>By using this model, you agree:</p> <ul> <li>That your search history is now a federal case</li> <li>Pay for the exorcist of anyone who reads the logs</li> <li>To pretend this is "for science" while crying in the shower</li> </ul> </div> <div class="section"> <h2 class="section-title">๐Ÿง  Model Authors</h2> <ul> <li>sleepdeprived3 (Chief Corruption Officer) </li> <li>The voices in your head (Gaslighting is something you made up)</li> </ul> </div> <div class="section"> <h2 class="section-title">โ˜•๏ธ Drummer made this possible</h2> <ul> <li>Support Drummer <a href="https://ko-fi.com/thedrummer">Kofi</a></li> </ul> </div> </div>
genki10/BERT_AugV8_k5_task1_organization_sp020_lw010_fold3
genki10
2025-03-25T13:39:10Z
0
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-03-25T13:28:33Z
--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer model-index: - name: BERT_AugV8_k5_task1_organization_sp020_lw010_fold3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERT_AugV8_k5_task1_organization_sp020_lw010_fold3 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6741 - Qwk: 0.4724 - Mse: 0.6744 - Rmse: 0.8212 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 150 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | No log | 1.0 | 4 | 9.1728 | 0.0 | 9.1711 | 3.0284 | | No log | 2.0 | 8 | 5.5661 | 0.0684 | 5.5648 | 2.3590 | | No log | 3.0 | 12 | 3.4544 | 0.0038 | 3.4534 | 1.8583 | | No log | 4.0 | 16 | 2.0607 | 0.1364 | 2.0600 | 1.4353 | | No log | 5.0 | 20 | 1.3765 | 0.0102 | 1.3759 | 1.1730 | | No log | 6.0 | 24 | 0.8939 | 0.2712 | 0.8935 | 0.9452 | | No log | 7.0 | 28 | 0.8666 | 0.3091 | 0.8662 | 0.9307 | | No log | 8.0 | 32 | 0.9042 | 0.1774 | 0.9038 | 0.9507 | | No log | 9.0 | 36 | 0.6398 | 0.4065 | 0.6397 | 0.7998 | | No log | 10.0 | 40 | 1.3685 | 0.2213 | 1.3683 | 1.1697 | | No log | 11.0 | 44 | 0.6134 | 0.5163 | 0.6135 | 0.7833 | | No log | 12.0 | 48 | 0.6713 | 0.5261 | 0.6716 | 0.8195 | | No log | 13.0 | 52 | 0.5873 | 0.4943 | 0.5877 | 0.7666 | | No log | 14.0 | 56 | 0.6162 | 0.5489 | 0.6167 | 0.7853 | | No log | 15.0 | 60 | 0.6255 | 0.5537 | 0.6262 | 0.7913 | | No log | 16.0 | 64 | 0.9656 | 0.3975 | 0.9665 | 0.9831 | | No log | 17.0 | 68 | 0.7321 | 0.5248 | 0.7329 | 0.8561 | | No log | 18.0 | 72 | 0.9795 | 0.3963 | 0.9803 | 0.9901 | | No log | 19.0 | 76 | 0.8695 | 0.4333 | 0.8702 | 0.9329 | | No log | 20.0 | 80 | 0.7000 | 0.4598 | 0.7006 | 0.8370 | | No log | 21.0 | 84 | 1.0514 | 0.3182 | 1.0517 | 1.0255 | | No log | 22.0 | 88 | 0.7625 | 0.4471 | 0.7631 | 0.8735 | | No log | 23.0 | 92 | 1.5089 | 0.2228 | 1.5089 | 1.2284 | | No log | 24.0 | 96 | 0.7276 | 0.4638 | 0.7279 | 0.8532 | | No log | 25.0 | 100 | 0.6353 | 0.4723 | 0.6357 | 0.7973 | | No log | 26.0 | 104 | 1.3883 | 0.2169 | 1.3884 | 1.1783 | | No log | 27.0 | 108 | 0.7025 | 0.4552 | 0.7030 | 0.8385 | | No log | 28.0 | 112 | 0.6551 | 0.4390 | 0.6556 | 0.8097 | | No log | 29.0 | 116 | 1.2002 | 0.2484 | 1.2004 | 1.0956 | | No log | 30.0 | 120 | 0.6741 | 0.4724 | 0.6744 | 0.8212 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.3.1 - Tokenizers 0.21.0
D-Khalid/medical_ai_model
D-Khalid
2025-03-25T13:34:17Z
0
0
transformers
[ "transformers", "pytorch", "safetensors", "llama", "text-generation", "unsloth", "trl", "grpo", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-25T13:28:10Z
--- library_name: transformers tags: - unsloth - trl - grpo --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
farikaw599/Phi4_MedMCQA-Q8_0-GGUF
farikaw599
2025-03-25T13:33:37Z
0
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "llama", "trl", "llama-cpp", "gguf-my-lora", "en", "base_model:Machlovi/Phi4_MedMCQA", "base_model:quantized:Machlovi/Phi4_MedMCQA", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-03-25T13:33:28Z
--- base_model: Machlovi/Phi4_MedMCQA tags: - text-generation-inference - transformers - unsloth - llama - trl - llama-cpp - gguf-my-lora license: apache-2.0 language: - en --- # farikaw599/Phi4_MedMCQA-Q8_0-GGUF This LoRA adapter was converted to GGUF format from [`Machlovi/Phi4_MedMCQA`](https://huggingface.co/Machlovi/Phi4_MedMCQA) via the ggml.ai's [GGUF-my-lora](https://huggingface.co/spaces/ggml-org/gguf-my-lora) space. Refer to the [original adapter repository](https://huggingface.co/Machlovi/Phi4_MedMCQA) for more details. ## Use with llama.cpp ```bash # with cli llama-cli -m base_model.gguf --lora Phi4_MedMCQA-q8_0.gguf (...other args) # with server llama-server -m base_model.gguf --lora Phi4_MedMCQA-q8_0.gguf (...other args) ``` To know more about LoRA usage with llama.cpp server, refer to the [llama.cpp server documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/server/README.md).
textdetox/xlmr-large-toxicity-classifier-v2
textdetox
2025-03-25T13:33:34Z
10
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "en", "fr", "it", "es", "ru", "uk", "tt", "ar", "hi", "ja", "zh", "he", "am", "de", "dataset:textdetox/multilingual_toxicity_dataset", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:openrail++", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-03-19T13:18:41Z
--- library_name: transformers language: - en - fr - it - es - ru - uk - tt - ar - hi - ja - zh - he - am - de license: openrail++ datasets: - textdetox/multilingual_toxicity_dataset metrics: - f1 base_model: - FacebookAI/xlm-roberta-large pipeline_tag: text-classification --- ## Multilingual Toxicity Classifier for 15 Languages (2025) This is an instance of [xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) that was fine-tuned on binary toxicity classification task based on our updated (2025) dataset [textdetox/multilingual_toxicity_dataset](https://huggingface.co/datasets/textdetox/multilingual_toxicity_dataset). Now, the models covers 15 languages from various language families: | Language | Code | F1 Score | |-----------|------|---------| | English | en | 0.9225 | | Russian | ru | 0.9525 | | Ukrainian | uk | 0.96 | | German | de | 0.7325 | | Spanish | es | 0.7125 | | Arabic | ar | 0.6625 | | Amharic | am | 0.5575 | | Hindi | hi | 0.9725 | | Chinese | zh | 0.9175 | | Italian | it | 0.5864 | | French | fr | 0.9235 | | Hinglish | hin | 0.61 | | Hebrew | he | 0.8775 | | Japanese | ja | 0.8773 | | Tatar | tt | 0.5744 | ## How to use ```python import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained('textdetox/xlmr-large-toxicity-classifier-v2') model = AutoModelForSequenceClassification.from_pretrained('textdetox/xlmr-large-toxicity-classifier-v2') batch = tokenizer.encode("You are amazing!", return_tensors="pt") output = model(batch) # idx 0 for neutral, idx 1 for toxic ``` ## Citation The model is prepared for [TextDetox 2025 Shared Task](https://pan.webis.de/clef25/pan25-web/text-detoxification.html) evaluation. Citation TBD soon.
dutti/Ascal-t.29-Q8_0-GGUF
dutti
2025-03-25T13:32:06Z
0
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "llama-cpp", "gguf-my-repo", "base_model:dutti/Ascal-t.29", "base_model:quantized:dutti/Ascal-t.29", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-25T13:31:07Z
--- base_model: dutti/Ascal-t.29 library_name: transformers tags: - mergekit - merge - llama-cpp - gguf-my-repo --- # dutti/Ascal-t.29-Q8_0-GGUF This model was converted to GGUF format from [`dutti/Ascal-t.29`](https://huggingface.co/dutti/Ascal-t.29) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/dutti/Ascal-t.29) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo dutti/Ascal-t.29-Q8_0-GGUF --hf-file ascal-t.29-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo dutti/Ascal-t.29-Q8_0-GGUF --hf-file ascal-t.29-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo dutti/Ascal-t.29-Q8_0-GGUF --hf-file ascal-t.29-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo dutti/Ascal-t.29-Q8_0-GGUF --hf-file ascal-t.29-q8_0.gguf -c 2048 ```
NESPED-GEN/Qwen2.5-3B-Instruct-1epochSpider-evalCNPJ
NESPED-GEN
2025-03-25T13:31:51Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-25T13:29:07Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
CennetOguz/t5_large_fact_generation_20
CennetOguz
2025-03-25T13:30:16Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-03-25T13:30:12Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
textdetox/bert-multilingual-toxicity-classifier
textdetox
2025-03-25T13:29:59Z
12
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "toxic", "en", "fr", "it", "es", "ru", "uk", "tt", "ar", "hi", "ja", "zh", "he", "am", "de", "dataset:textdetox/multilingual_toxicity_dataset", "base_model:google-bert/bert-base-multilingual-cased", "base_model:finetune:google-bert/bert-base-multilingual-cased", "license:openrail++", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-03-20T15:47:35Z
--- library_name: transformers language: - en - fr - it - es - ru - uk - tt - ar - hi - ja - zh - he - am - de license: openrail++ datasets: - textdetox/multilingual_toxicity_dataset metrics: - f1 base_model: - google-bert/bert-base-multilingual-cased pipeline_tag: text-classification tags: - toxic --- ## Multilingual Toxicity Classifier for 15 Languages (2025) This is an instance of [bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) that was fine-tuned on binary toxicity classification task based on our updated (2025) dataset [textdetox/multilingual_toxicity_dataset](https://huggingface.co/datasets/textdetox/multilingual_toxicity_dataset). Now, the models covers 15 languages from various language families: | Language | Code | F1 Score | |-----------|------|---------| | English | en | 0.9035 | | Russian | ru | 0.9224 | | Ukrainian | uk | 0.9461 | | German | de | 0.5181 | | Spanish | es | 0.7291 | | Arabic | ar | 0.5139 | | Amharic | am | 0.6316 | | Hindi | hi | 0.7268 | | Chinese | zh | 0.6703 | | Italian | it | 0.6485 | | French | fr | 0.9125 | | Hinglish | hin | 0.6850 | | Hebrew | he | 0.8686 | | Japanese | ja | 0.8644 | | Tatar | tt | 0.6170 | ## How to use ```python import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained('textdetox/bert-multilingual-toxicity-classifier') model = AutoModelForSequenceClassification.from_pretrained('textdetox/bert-multilingual-toxicity-classifier') batch = tokenizer.encode("You are amazing!", return_tensors="pt") output = model(batch) # idx 0 for neutral, idx 1 for toxic ``` ## Citation The model is prepared for [TextDetox 2025 Shared Task](https://pan.webis.de/clef25/pan25-web/text-detoxification.html) evaluation. Citation TBD soon.
cilantro9246/o1-v2-2-10
cilantro9246
2025-03-25T13:29:17Z
0
0
null
[ "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-03-25T13:29:17Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
genki10/BERT_AugV8_k5_task1_organization_sp020_lw010_fold2
genki10
2025-03-25T13:28:26Z
0
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-03-25T13:16:15Z
--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer model-index: - name: BERT_AugV8_k5_task1_organization_sp020_lw010_fold2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERT_AugV8_k5_task1_organization_sp020_lw010_fold2 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9068 - Qwk: 0.3753 - Mse: 0.9070 - Rmse: 0.9524 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 150 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | No log | 1.0 | 4 | 9.8673 | 0.0010 | 9.8673 | 3.1412 | | No log | 2.0 | 8 | 7.3517 | 0.0 | 7.3519 | 2.7114 | | No log | 3.0 | 12 | 5.4033 | 0.0267 | 5.4037 | 2.3246 | | No log | 4.0 | 16 | 3.7976 | 0.0 | 3.7980 | 1.9488 | | No log | 5.0 | 20 | 2.6519 | 0.0 | 2.6524 | 1.6286 | | No log | 6.0 | 24 | 1.8458 | 0.0280 | 1.8462 | 1.3587 | | No log | 7.0 | 28 | 1.1914 | 0.0 | 1.1918 | 1.0917 | | No log | 8.0 | 32 | 0.9078 | 0.0481 | 0.9081 | 0.9529 | | No log | 9.0 | 36 | 0.9622 | 0.0615 | 0.9625 | 0.9811 | | No log | 10.0 | 40 | 0.8871 | 0.3027 | 0.8873 | 0.9419 | | No log | 11.0 | 44 | 1.1023 | 0.2199 | 1.1026 | 1.0500 | | No log | 12.0 | 48 | 0.6189 | 0.5066 | 0.6192 | 0.7869 | | No log | 13.0 | 52 | 1.1188 | 0.3092 | 1.1189 | 1.0578 | | No log | 14.0 | 56 | 0.5778 | 0.4169 | 0.5781 | 0.7603 | | No log | 15.0 | 60 | 0.5706 | 0.4243 | 0.5708 | 0.7555 | | No log | 16.0 | 64 | 0.7402 | 0.4179 | 0.7407 | 0.8606 | | No log | 17.0 | 68 | 0.5639 | 0.5311 | 0.5642 | 0.7511 | | No log | 18.0 | 72 | 1.0154 | 0.3362 | 1.0159 | 1.0079 | | No log | 19.0 | 76 | 0.5844 | 0.5543 | 0.5845 | 0.7646 | | No log | 20.0 | 80 | 0.8892 | 0.4104 | 0.8894 | 0.9431 | | No log | 21.0 | 84 | 0.7328 | 0.4178 | 0.7334 | 0.8564 | | No log | 22.0 | 88 | 0.6888 | 0.4745 | 0.6890 | 0.8301 | | No log | 23.0 | 92 | 0.6719 | 0.4437 | 0.6723 | 0.8200 | | No log | 24.0 | 96 | 0.6602 | 0.4712 | 0.6606 | 0.8128 | | No log | 25.0 | 100 | 0.6684 | 0.4476 | 0.6687 | 0.8177 | | No log | 26.0 | 104 | 0.7783 | 0.3905 | 0.7786 | 0.8824 | | No log | 27.0 | 108 | 0.6718 | 0.5037 | 0.6720 | 0.8198 | | No log | 28.0 | 112 | 0.9150 | 0.3192 | 0.9153 | 0.9567 | | No log | 29.0 | 116 | 0.6273 | 0.4397 | 0.6276 | 0.7922 | | No log | 30.0 | 120 | 0.5568 | 0.4887 | 0.5570 | 0.7463 | | No log | 31.0 | 124 | 0.7969 | 0.4079 | 0.7971 | 0.8928 | | No log | 32.0 | 128 | 0.6947 | 0.4176 | 0.6952 | 0.8338 | | No log | 33.0 | 132 | 0.6337 | 0.5141 | 0.6341 | 0.7963 | | No log | 34.0 | 136 | 0.9068 | 0.3753 | 0.9070 | 0.9524 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.3.1 - Tokenizers 0.21.0
bmpss92295/test2
bmpss92295
2025-03-25T13:27:28Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-03-25T13:27:28Z
--- license: apache-2.0 ---
DevQuasar/Gryphe.Tiamat-8b-1.2-Llama-3-DPO-GGUF
DevQuasar
2025-03-25T13:24:57Z
0
0
null
[ "gguf", "text-generation", "base_model:Gryphe/Tiamat-8b-1.2-Llama-3-DPO", "base_model:quantized:Gryphe/Tiamat-8b-1.2-Llama-3-DPO", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-03-25T12:48:38Z
--- base_model: - Gryphe/Tiamat-8b-1.2-Llama-3-DPO pipeline_tag: text-generation --- [<img src="https://raw.githubusercontent.com/csabakecskemeti/devquasar/main/dq_logo_black-transparent.png" width="200"/>](https://devquasar.com) Quantized version of: [Gryphe/Tiamat-8b-1.2-Llama-3-DPO](https://huggingface.co/Gryphe/Tiamat-8b-1.2-Llama-3-DPO) 'Make knowledge free for everyone' <p align="center"> Made with <br> <a href="https://www.civo.com/" target="_blank"> <img src="https://www.civo.com/assets/public/brand-assets/civo-logo-colour-60cc1622dedf346f7afde1fff760523f731b0aac106a5465af98ff4073114b74.svg" width="100"/> </a> </p> <a href='https://ko-fi.com/L4L416YX7C' target='_blank'><img height='36' style='border:0px;height:36px;' src='https://storage.ko-fi.com/cdn/kofi6.png?v=6' border='0' alt='Buy Me a Coffee at ko-fi.com' /></a>
Mssrkkh/bert-base-uncased-finetuned-squad-ADAM-Bert
Mssrkkh
2025-03-25T13:22:02Z
0
0
transformers
[ "transformers", "safetensors", "bert", "question-answering", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2025-03-24T20:59:30Z
--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer model-index: - name: bert-base-uncased-finetuned-squad-ADAM-Bert results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-squad-ADAM-Bert This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.7711 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 3.4169 | 1.0 | 8235 | 2.8141 | | 3.3399 | 2.0 | 16470 | 2.7697 | | 3.3376 | 3.0 | 24705 | 2.7711 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.6.0 - Datasets 3.4.1 - Tokenizers 0.21.1
kikikara/KO-smalthiker-3B
kikikara
2025-03-25T13:18:36Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-25T12:59:31Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Alphatao/59a20e7a-5cc9-40b9-bca2-d904340d471d
Alphatao
2025-03-25T13:18:35Z
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:TinyLlama/TinyLlama-1.1B-Chat-v1.0", "base_model:adapter:TinyLlama/TinyLlama-1.1B-Chat-v1.0", "license:apache-2.0", "region:us" ]
null
2025-03-25T08:45:49Z
--- library_name: peft license: apache-2.0 base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 tags: - axolotl - generated_from_trainer model-index: - name: 59a20e7a-5cc9-40b9-bca2-d904340d471d results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f9720c5c4078481a_train_data.json ds_type: json format: custom path: /workspace/input_data/f9720c5c4078481a_train_data.json type: field_input: nota field_instruction: title_main field_output: texte format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null device_map: ? '' : 0,1,2,3,4,5,6,7 early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 100 eval_table_size: null flash_attention: true gradient_accumulation_steps: 8 gradient_checkpointing: true group_by_length: false hub_model_id: Alphatao/59a20e7a-5cc9-40b9-bca2-d904340d471d hub_repo: null hub_strategy: null hub_token: null learning_rate: 0.0002 load_best_model_at_end: true load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.1 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lora_target_modules: - q_proj - k_proj - v_proj - o_proj lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 2652 micro_batch_size: 4 mlflow_experiment_name: /tmp/f9720c5c4078481a_train_data.json model_type: AutoModelForCausalLM num_epochs: 2 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 100 sequence_len: 2048 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.032640697727554624 wandb_entity: null wandb_mode: online wandb_name: 89de97c5-723e-4aba-8e1b-ac815342372a wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 89de97c5-723e-4aba-8e1b-ac815342372a warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 59a20e7a-5cc9-40b9-bca2-d904340d471d This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2014 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 2652 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.695 | 0.0002 | 1 | 1.9516 | | 1.4413 | 0.0216 | 100 | 1.5332 | | 1.5672 | 0.0432 | 200 | 1.4715 | | 1.3989 | 0.0648 | 300 | 1.4305 | | 1.3839 | 0.0864 | 400 | 1.4059 | | 1.4442 | 0.1080 | 500 | 1.3793 | | 1.4076 | 0.1296 | 600 | 1.3613 | | 1.3983 | 0.1512 | 700 | 1.3434 | | 1.2938 | 0.1728 | 800 | 1.3294 | | 1.4115 | 0.1944 | 900 | 1.3137 | | 1.1784 | 0.2159 | 1000 | 1.3030 | | 1.3318 | 0.2375 | 1100 | 1.2872 | | 1.1709 | 0.2591 | 1200 | 1.2741 | | 1.2093 | 0.2807 | 1300 | 1.2654 | | 1.4087 | 0.3023 | 1400 | 1.2557 | | 1.1418 | 0.3239 | 1500 | 1.2473 | | 1.1323 | 0.3455 | 1600 | 1.2388 | | 1.0851 | 0.3671 | 1700 | 1.2313 | | 1.1742 | 0.3887 | 1800 | 1.2243 | | 1.145 | 0.4103 | 1900 | 1.2183 | | 1.1136 | 0.4319 | 2000 | 1.2135 | | 1.2362 | 0.4535 | 2100 | 1.2091 | | 1.1607 | 0.4751 | 2200 | 1.2060 | | 1.0649 | 0.4967 | 2300 | 1.2038 | | 1.1751 | 0.5183 | 2400 | 1.2023 | | 1.1019 | 0.5399 | 2500 | 1.2016 | | 1.2835 | 0.5615 | 2600 | 1.2014 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Rachid114/ppo-LunarLander-v2
Rachid114
2025-03-25T13:17:26Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2025-03-25T13:17:09Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 248.91 +/- 21.99 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
ccmusic-database/GZ_IsoTech
ccmusic-database
2025-03-25T13:17:19Z
0
8
null
[ "license:mit", "region:us" ]
null
2024-12-04T08:27:19Z
--- license: mit --- # Intro The Guzheng Performance Technique Recognition Model is trained on the GZ_IsoTech Dataset, which consists of 2,824 audio clips that showcase various Guzheng playing techniques. Of these, 2,328 clips are from a virtual sound library, and 496 clips are performed by a highly skilled professional Guzheng artist, covering the full tonal range inherent to the Guzheng instrument. The audio clips are categorized into eight different playing techniques based on the unique performance practices of the Guzheng: Vibrato (chanyin), Slide-up (shanghuayin), Slide-down (xiahuayin), Return Slide (huihuayin), Glissando (guazou, huazhi, etc.), Thumb Plucking (yaozhi), Harmonics (fanyin), and Plucking Techniques (gou, da, mo, tuo, etc.). The model utilizes feature extraction, time-domain and frequency-domain analysis, and pattern recognition to accurately identify these distinct Guzheng playing techniques. The application of this model provides strong support for the automatic recognition, digital analysis, and educational research of Guzheng performance techniques, promoting the preservation and innovation of Guzheng art. ## Demo (inference code) <https://huggingface.co/spaces/ccmusic-database/GZ_IsoTech> ## Usage ```python from huggingface_hub import snapshot_download model_dir = snapshot_download("ccmusic-database/GZ_IsoTech") ``` ## Maintenance ```bash GIT_LFS_SKIP_SMUDGE=1 git clone [email protected]:ccmusic-database/GZ_IsoTech cd GZ_IsoTech ``` ## Results | Backbone | Size(M) | Mel | CQT | Chroma | | :----------------: | :-----: | :-------------------------: | :---------: | :---------: | | vit_l_16 | 304.3 | [**_0.855_**](#best-result) | **_0.824_** | **_0.770_** | | maxvit_t | 30.9 | 0.763 | 0.776 | 0.642 | | | | | | | | resnext101_64x4d | 83.5 | 0.713 | 0.765 | 0.639 | | resnet101 | 44.5 | 0.731 | 0.798 | **_0.719_** | | regnet_y_8gf | 39.4 | 0.804 | **_0.807_** | 0.716 | | shufflenet_v2_x2_0 | 7.4 | 0.702 | 0.799 | 0.665 | | mobilenet_v3_large | 5.5 | **_0.806_** | 0.798 | 0.657 | ### Best result <table> <tr> <th>Loss curve</th> <td><img src="https://www.modelscope.cn/models/ccmusic-database/GZ_IsoTech/resolve/master/vit_l_16_mel_2024-12-06_08-28-13/loss.jpg"></td> </tr> <tr> <th>Training and validation accuracy</th> <td><img src="https://www.modelscope.cn/models/ccmusic-database/GZ_IsoTech/resolve/master/vit_l_16_mel_2024-12-06_08-28-13/acc.jpg"></td> </tr> <tr> <th>Confusion matrix</th> <td><img src="https://www.modelscope.cn/models/ccmusic-database/GZ_IsoTech/resolve/master/vit_l_16_mel_2024-12-06_08-28-13/mat.jpg"></td> </tr> </table> ## Dataset <https://huggingface.co/datasets/ccmusic-database/GZ_IsoTech> ## Mirror <https://www.modelscope.cn/models/ccmusic-database/GZ_IsoTech> ## Evaluation <https://github.com/monetjoe/ccmusic_eval> ## Cite ```bibtex @article{Zhou-2025, author = {Monan Zhou and Shenyang Xu and Zhaorui Liu and Zhaowen Wang and Feng Yu and Wei Li and Baoqiang Han}, title = {CCMusic: An Open and Diverse Database for Chinese Music Information Retrieval Research}, journal = {Transactions of the International Society for Music Information Retrieval}, volume = {8}, number = {1}, pages = {22--38}, month = {Mar}, year = {2025}, url = {https://doi.org/10.5334/tismir.194}, doi = {10.5334/tismir.194} } ```
swdq/ethics_classifier
swdq
2025-03-25T13:17:02Z
0
0
null
[ "safetensors", "modernbert", "text-classification", "ja", "dataset:swdq/ethics", "base_model:sbintuitions/modernbert-ja-310m", "base_model:finetune:sbintuitions/modernbert-ja-310m", "license:apache-2.0", "region:us" ]
text-classification
2025-03-25T13:05:18Z
--- license: apache-2.0 datasets: - swdq/ethics language: - ja base_model: - sbintuitions/modernbert-ja-310m pipeline_tag: text-classification --- # ใ‚ตใƒณใƒ—ใƒซใ‚ณใƒผใƒ‰ ``` import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification def classify_text(texts, model_path, label_dict): # ใƒขใƒ‡ใƒซใฎใƒญใƒผใƒ‰ print(f"BERTใƒขใƒ‡ใƒซใ‚’ใƒญใƒผใƒ‰ใ—ใฆใ„ใพใ™... (ใƒ‡ใƒใ‚คใ‚น: {torch.device('cuda' if torch.cuda.is_available() else 'cpu')})") tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForSequenceClassification.from_pretrained(model_path) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) model.eval() # ้€†ใƒฉใƒ™ใƒซ่พžๆ›ธใฎไฝœๆˆ reverse_label_dict = {v: k for k, v in label_dict.items()} # ใƒ†ใ‚ญใ‚นใƒˆใฎๅ‡ฆ็† inputs = tokenizer(texts, return_tensors="pt", padding=True, truncation=True) inputs = {k: v.to(device) for k, v in inputs.items()} # ๆŽจ่ซ– with torch.no_grad(): outputs = model(**inputs) # ็ขบ็އใฎ่จˆ็ฎ—ใจ็ตๆžœ่กจ็คบ probs = outputs.logits.softmax(dim=-1) results = [] for i, prob in enumerate(probs): predicted_class = torch.argmax(prob).item() predicted_label = reverse_label_dict[predicted_class] confidence = prob[predicted_class].item() # ๅ…จใƒฉใƒ™ใƒซใฎ็ขบ็އ all_probs = {reverse_label_dict[j]: prob[j].item() for j in range(len(label_dict))} results.append({ "text": texts[i], "label": predicted_label, "confidence": confidence, "probabilities": all_probs }) return results def main(): # ใƒขใƒ‡ใƒซใƒ‘ใ‚นใฎ่จญๅฎš model_path = "swdq/ethics_classifier" # ใƒฉใƒ™ใƒซ่พžๆ›ธใฎ่จญๅฎš label_dict = {"evil": 0, "justice": 1} # ใƒ†ใ‚นใƒˆ็”จใฎไพ‹ๆ–‡๏ผˆไพ‹ๆ–‡ใ‚’ๅข—ใ‚„ใ—ใพใ—ใŸ๏ผ‰ example_texts = [ "ไธ–็•Œๅนณๅ’ŒใฎใŸใ‚ใซๆˆฆใ„ใพใ™", "ๆ‚ชใฎ็ต„็น”ใ‚’ๅ€’ใ™ใž", "ๅผฑใ„่€…ใ„ใ˜ใ‚ใฏใ‚„ใ‚ใชใ•ใ„", "็งใŒไธ–็•Œใ‚’ๆ”ฏ้…ใ—ใฆใ‚„ใ‚‹", "ใฟใ‚“ใชใงๅ”ๅŠ›ใ—ใฆๅ›ฐ้›ฃใ‚’ไน—ใ‚Š่ถŠใˆใ‚ˆใ†", "ๆ•ตใ‚’ๅฎน่ตฆใชใๅฉใใฎใ‚ใ›", "ๆญฃ็พฉใ‚’่ฒซใ„ใฆๆœชๆฅใ‚’ๅˆ‡ใ‚Šๆ‹“ใ", "้—‡ใฎๆ”ฏ้…่€…ใŒ็พใ‚Œใ‚‹ไบˆๆ„ŸใŒใ™ใ‚‹", "ๆ…ˆๆ‚ฒๆทฑใ„่กŒๅ‹•ใŒๅ…จใฆใ‚’ๆ•‘ใ†", "ๆๆ€–ใจๆททๆฒŒใ‚’ๆŒฏใ‚Šใพใใ“ใจใŒ่‡ณ้ซ˜ใฎๅ–œใณ", "ไบบใ€…ใ‚’ใ ใพใ™ใ“ใจใฏๆฅฝใ—ใ„ใ€‚ใ ใพใ•ใ‚Œใ‚‹ใ“ใจใฏ้ฆฌ้นฟใ‚‰ใ—ใ„", "ๆ‚ชใฎๅŠ›ใ‚’ไฝฟใฃใฆไธ–็•Œใ‚’ๅค‰ใˆใ‚‹", "ๆญฃ็พฉใฎๅ‰ฃใงไธๆญฃใ‚’่จŽใค", "ๅฝๅ–„่€…ใฎ้™ฐ่ฌ€ใซ้จ™ใ•ใ‚Œใ‚‹ใช" ] print("ใƒ†ใ‚ญใ‚นใƒˆๅˆ†้กžใ‚’ๅฎŸ่กŒใ—ใฆใ„ใพใ™...") results = classify_text(example_texts, model_path, label_dict) # ็ตๆžœใฎ่กจ็คบ print("\nๅˆ†้กž็ตๆžœ:") print("=" * 80) for result in results: print(f"ใƒ†ใ‚ญใ‚นใƒˆ: {result['text']}") print(f"ๅˆ†้กž: {result['label']} (็ขบไฟกๅบฆ: {result['confidence']:.4f})") print(f"็ขบ็އ: {result['probabilities']}") print("-" * 80) print("ๅ‡ฆ็†ใŒๅฎŒไบ†ใ—ใพใ—ใŸ") if __name__ == "__main__": main() ``` # ็ตๆžœ ``` ๅˆ†้กž็ตๆžœ: ================================================================================ ใƒ†ใ‚ญใ‚นใƒˆ: ไธ–็•Œๅนณๅ’ŒใฎใŸใ‚ใซๆˆฆใ„ใพใ™ ๅˆ†้กž: justice (็ขบไฟกๅบฆ: 0.5556) ็ขบ็އ: {'evil': 0.4444323182106018, 'justice': 0.555567741394043} -------------------------------------------------------------------------------- ใƒ†ใ‚ญใ‚นใƒˆ: ๆ‚ชใฎ็ต„็น”ใ‚’ๅ€’ใ™ใž ๅˆ†้กž: evil (็ขบไฟกๅบฆ: 0.9998) ็ขบ็އ: {'evil': 0.9998340606689453, 'justice': 0.00016594557382632047} -------------------------------------------------------------------------------- ใƒ†ใ‚ญใ‚นใƒˆ: ๅผฑใ„่€…ใ„ใ˜ใ‚ใฏใ‚„ใ‚ใชใ•ใ„ ๅˆ†้กž: evil (็ขบไฟกๅบฆ: 0.9948) ็ขบ็އ: {'evil': 0.9947669506072998, 'justice': 0.005233037285506725} -------------------------------------------------------------------------------- ใƒ†ใ‚ญใ‚นใƒˆ: ็งใŒไธ–็•Œใ‚’ๆ”ฏ้…ใ—ใฆใ‚„ใ‚‹ ๅˆ†้กž: evil (็ขบไฟกๅบฆ: 1.0000) ็ขบ็އ: {'evil': 0.9999969005584717, 'justice': 3.0450557915173704e-06} -------------------------------------------------------------------------------- ใƒ†ใ‚ญใ‚นใƒˆ: ใฟใ‚“ใชใงๅ”ๅŠ›ใ—ใฆๅ›ฐ้›ฃใ‚’ไน—ใ‚Š่ถŠใˆใ‚ˆใ† ๅˆ†้กž: justice (็ขบไฟกๅบฆ: 0.9915) ็ขบ็އ: {'evil': 0.008540692739188671, 'justice': 0.9914592504501343} -------------------------------------------------------------------------------- ใƒ†ใ‚ญใ‚นใƒˆ: ๆ•ตใ‚’ๅฎน่ตฆใชใๅฉใใฎใ‚ใ› ๅˆ†้กž: evil (็ขบไฟกๅบฆ: 1.0000) ็ขบ็އ: {'evil': 0.999962329864502, 'justice': 3.764007124118507e-05} -------------------------------------------------------------------------------- ใƒ†ใ‚ญใ‚นใƒˆ: ๆญฃ็พฉใ‚’่ฒซใ„ใฆๆœชๆฅใ‚’ๅˆ‡ใ‚Šๆ‹“ใ ๅˆ†้กž: justice (็ขบไฟกๅบฆ: 0.9339) ็ขบ็އ: {'evil': 0.0660785585641861, 'justice': 0.9339215159416199} -------------------------------------------------------------------------------- ใƒ†ใ‚ญใ‚นใƒˆ: ้—‡ใฎๆ”ฏ้…่€…ใŒ็พใ‚Œใ‚‹ไบˆๆ„ŸใŒใ™ใ‚‹ ๅˆ†้กž: evil (็ขบไฟกๅบฆ: 0.9997) ็ขบ็އ: {'evil': 0.9997019171714783, 'justice': 0.00029803262441419065} -------------------------------------------------------------------------------- ใƒ†ใ‚ญใ‚นใƒˆ: ๆ…ˆๆ‚ฒๆทฑใ„่กŒๅ‹•ใŒๅ…จใฆใ‚’ๆ•‘ใ† ๅˆ†้กž: evil (็ขบไฟกๅบฆ: 0.6869) ็ขบ็އ: {'evil': 0.6869037747383118, 'justice': 0.3130962550640106} -------------------------------------------------------------------------------- ใƒ†ใ‚ญใ‚นใƒˆ: ๆๆ€–ใจๆททๆฒŒใ‚’ๆŒฏใ‚Šใพใใ“ใจใŒ่‡ณ้ซ˜ใฎๅ–œใณ ๅˆ†้กž: evil (็ขบไฟกๅบฆ: 0.9999) ็ขบ็އ: {'evil': 0.9999282360076904, 'justice': 7.17465954949148e-05} -------------------------------------------------------------------------------- ใƒ†ใ‚ญใ‚นใƒˆ: ไบบใ€…ใ‚’ใ ใพใ™ใ“ใจใฏๆฅฝใ—ใ„ใ€‚ใ ใพใ•ใ‚Œใ‚‹ใ“ใจใฏ้ฆฌ้นฟใ‚‰ใ—ใ„ ๅˆ†้กž: evil (็ขบไฟกๅบฆ: 1.0000) ็ขบ็އ: {'evil': 0.9999909400939941, 'justice': 9.044366379384883e-06} -------------------------------------------------------------------------------- ใƒ†ใ‚ญใ‚นใƒˆ: ๆ‚ชใฎๅŠ›ใ‚’ไฝฟใฃใฆไธ–็•Œใ‚’ๅค‰ใˆใ‚‹ ๅˆ†้กž: evil (็ขบไฟกๅบฆ: 1.0000) ็ขบ็އ: {'evil': 0.9999548196792603, 'justice': 4.515982072916813e-05} -------------------------------------------------------------------------------- ใƒ†ใ‚ญใ‚นใƒˆ: ๆญฃ็พฉใฎๅ‰ฃใงไธๆญฃใ‚’่จŽใค ๅˆ†้กž: evil (็ขบไฟกๅบฆ: 0.8821) ็ขบ็އ: {'evil': 0.8821097612380981, 'justice': 0.11789026856422424} -------------------------------------------------------------------------------- ใƒ†ใ‚ญใ‚นใƒˆ: ๅฝๅ–„่€…ใฎ้™ฐ่ฌ€ใซ้จ™ใ•ใ‚Œใ‚‹ใช ๅˆ†้กž: evil (็ขบไฟกๅบฆ: 0.9975) ็ขบ็އ: {'evil': 0.9974861145019531, 'justice': 0.002513918559998274} -------------------------------------------------------------------------------- ๅ‡ฆ็†ใŒๅฎŒไบ†ใ—ใพใ—ใŸ ```
ccmusic-database/Guzheng_Tech99
ccmusic-database
2025-03-25T13:16:56Z
0
9
null
[ "music", "audio-classification", "zh", "dataset:ccmusic-database/Guzheng_Tech99", "license:mit", "region:us" ]
audio-classification
2024-12-04T08:28:15Z
--- license: mit datasets: - ccmusic-database/Guzheng_Tech99 language: - zh metrics: - accuracy pipeline_tag: audio-classification tags: - music --- # Intro For the 99 recordings, silence is first removed, which is done based on the annotation, targeting the parts where there is no technique annotation. Then all recordings are uniformly segmented into fixed-length segments of 3 seconds. After segmentation, clips shorter than 3 seconds are zero padded. This padding approach, unlike circular padding, is adopted specifically for frame-level detection tasks to prevent the introduction of extraneous information. Regarding the dataset split, since the dataset consists of 99 recordings, we split it at the recording level. The data is partitioned into training, validation, and testing subsets in a 79:10:10 ratio, roughly 8:1:1. ## Demo (inference code) <https://huggingface.co/spaces/ccmusic-database/Guzheng_Tech99> ## Usage ```python from huggingface_hub import snapshot_download model_dir = snapshot_download("ccmusic-database/Guzheng_Tech99") ``` ## Maintenance ```bash GIT_LFS_SKIP_SMUDGE=1 git clone [email protected]:ccmusic-database/Guzheng_Tech99 cd Guzheng_Tech99 ``` ## Results | Backbone | Mel | CQT | Chroma | | :---------------: | :-------: | :-------: | :-------: | | ViT-B-16 | 0.705 | 0.518 | 0.508 | | Swin-T | **0.849** | **0.783** | **0.766** | | | | | | | VGG19 | **0.862** | 0.799 | 0.665 | | EfficientNet-V2-L | 0.783 | 0.812 | 0.697 | | ConvNeXt-B | 0.849 | **0.849** | **0.805** | | ResNet101 | 0.638 | 0.830 | 0.707 | | SqueezeNet1.1 | 0.831 | 0.814 | 0.780 | | Average | 0.788 | 0.772 | 0.704 | ## Dataset <https://huggingface.co/datasets/ccmusic-database/Guzheng_Tech99> ## Mirror <https://www.modelscope.cn/models/ccmusic-database/Guzheng_Tech99> ## Evaluation <https://github.com/monetjoe/ccmusic_eval/tree/tech99> ## Cite ```bibtex @article{Zhou-2025, author = {Monan Zhou and Shenyang Xu and Zhaorui Liu and Zhaowen Wang and Feng Yu and Wei Li and Baoqiang Han}, title = {CCMusic: An Open and Diverse Database for Chinese Music Information Retrieval Research}, journal = {Transactions of the International Society for Music Information Retrieval}, volume = {8}, number = {1}, pages = {22--38}, month = {Mar}, year = {2025}, url = {https://doi.org/10.5334/tismir.194}, doi = {10.5334/tismir.194} } ```
TECCOD/fine_tuned_deepseek
TECCOD
2025-03-25T13:16:48Z
23
0
transformers
[ "transformers", "safetensors", "gguf", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-03-24T14:34:48Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ccmusic-database/erhu_playing_tech
ccmusic-database
2025-03-25T13:16:27Z
0
9
null
[ "music", "art", "audio-classification", "en", "dataset:ccmusic-database/erhu_playing_tech", "license:mit", "region:us" ]
audio-classification
2024-07-13T00:47:04Z
--- license: mit datasets: - ccmusic-database/erhu_playing_tech language: - en metrics: - accuracy pipeline_tag: audio-classification tags: - music - art --- # Intro The Erhu Performance Technique Recognition Model is an audio analysis tool based on deep learning techniques, aiming to automatically distinguish different techniques in erhu performance. By deeply analyzing the acoustic characteristics of erhu music, the model is able to recognize 11 basic playing techniques, including split bow, pad bow, overtone, continuous bow, glissando, big glissando, strike bow, pizzicato, throw bow, staccato bow, vibrato, tremolo and vibrato. Through time-frequency conversion, feature extraction and pattern recognition, the model can accurately categorize the complex techniques of erhu performance, which provides an efficient technical support for music information retrieval, music education, and research on the art of erhu performance. The application of this model not only enriches the research in the field of music acoustics, but also opens up a new way for the inheritance and innovation of traditional music. ## Demo (inference code) <https://huggingface.co/spaces/ccmusic-database/erhu-playing-tech> ## Usage ```python from huggingface_hub import snapshot_download model_dir = snapshot_download("ccmusic-database/erhu_playing_tech") ``` ## Maintenance ```bash GIT_LFS_SKIP_SMUDGE=1 git clone [email protected]:ccmusic-database/erhu_playing_tech cd erhu_playing_tech ``` ## Results | Backbone | Mel | CQT | Chroma | | :----------------: | :-----------------------: | :-------: | :-------: | | Swin-S | 0.978 | 0.940 | 0.903 | | Swin-T | [**0.994**](#best-result) | **0.958** | **0.957** | | | | | | | AlexNet | 0.960 | 0.970 | 0.933 | | ConvNeXt-T | **0.994** | **0.993** | **0.954** | | ShuffleNet-V2-X2.0 | 0.990 | 0.923 | 0.887 | | GoogleNet | 0.986 | 0.981 | 0.908 | | SqueezeNet1.1 | 0.932 | 0.939 | 0.875 | | Average | 0.976 | 0.958 | 0.917 | ### Best Result A demo result of Swin-T fine-tuning by mel: <style> #erhu td { vertical-align: middle !important; text-align: center; } #erhu th { text-align: center; } </style> <table id="erhu"> <tr> <th>Loss curve</th> <td><img src="https://www.modelscope.cn/models/ccmusic-database/erhu_playing_tech/resolve/master/swin_t_mel_2024-07-29_01-14-31/loss.jpg"></td> </tr> <tr> <th>Training and validation accuracy</th> <td><img src="https://www.modelscope.cn/models/ccmusic-database/erhu_playing_tech/resolve/master/swin_t_mel_2024-07-29_01-14-31/acc.jpg"></td> </tr> <tr> <th>Confusion matrix</th> <td><img src="https://www.modelscope.cn/models/ccmusic-database/erhu_playing_tech/resolve/master/swin_t_mel_2024-07-29_01-14-31/mat.jpg"></td> </tr> </table> ## Dataset <https://huggingface.co/datasets/ccmusic-database/erhu_playing_tech> ## Mirror <https://www.modelscope.cn/models/ccmusic-database/erhu_playing_tech> ## Evaluation <https://github.com/monetjoe/ccmusic_eval> ## Cite ```bibtex @article{Zhou-2025, author = {Monan Zhou and Shenyang Xu and Zhaorui Liu and Zhaowen Wang and Feng Yu and Wei Li and Baoqiang Han}, title = {CCMusic: An Open and Diverse Database for Chinese Music Information Retrieval Research}, journal = {Transactions of the International Society for Music Information Retrieval}, volume = {8}, number = {1}, pages = {22--38}, month = {Mar}, year = {2025}, url = {https://doi.org/10.5334/tismir.194}, doi = {10.5334/tismir.194} } ```
farikaw599/phi3-mini-4k-qlora-mcqa-Q8_0-GGUF
farikaw599
2025-03-25T13:15:16Z
0
0
transformers
[ "transformers", "gguf", "llama-cpp", "gguf-my-repo", "base_model:UndefinedCpp/phi3-mini-4k-qlora-mcqa", "base_model:quantized:UndefinedCpp/phi3-mini-4k-qlora-mcqa", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-25T13:14:57Z
--- base_model: UndefinedCpp/phi3-mini-4k-qlora-mcqa library_name: transformers tags: - llama-cpp - gguf-my-repo --- # farikaw599/phi3-mini-4k-qlora-mcqa-Q8_0-GGUF This model was converted to GGUF format from [`UndefinedCpp/phi3-mini-4k-qlora-mcqa`](https://huggingface.co/UndefinedCpp/phi3-mini-4k-qlora-mcqa) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/UndefinedCpp/phi3-mini-4k-qlora-mcqa) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo farikaw599/phi3-mini-4k-qlora-mcqa-Q8_0-GGUF --hf-file phi3-mini-4k-qlora-mcqa-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo farikaw599/phi3-mini-4k-qlora-mcqa-Q8_0-GGUF --hf-file phi3-mini-4k-qlora-mcqa-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo farikaw599/phi3-mini-4k-qlora-mcqa-Q8_0-GGUF --hf-file phi3-mini-4k-qlora-mcqa-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo farikaw599/phi3-mini-4k-qlora-mcqa-Q8_0-GGUF --hf-file phi3-mini-4k-qlora-mcqa-q8_0.gguf -c 2048 ```
RichardErkhov/rhaymison_-_Mistral-portuguese-luana-7b-Mathematics-awq
RichardErkhov
2025-03-25T13:14:48Z
0
0
null
[ "safetensors", "mistral", "4-bit", "awq", "region:us" ]
null
2025-03-25T13:11:01Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Mistral-portuguese-luana-7b-Mathematics - AWQ - Model creator: https://huggingface.co/rhaymison/ - Original model: https://huggingface.co/rhaymison/Mistral-portuguese-luana-7b-Mathematics/ Original model description: --- language: - pt license: apache-2.0 library_name: transformers tags: - portuguese - math - mathematics - matematica base_model: rhaymison/Mistral-portuguese-luana-7b datasets: - rhaymison/orca-math-portuguese-64k pipeline_tag: text-generation model-index: - name: Mistral-portuguese-luana-7b-Mathematics results: - task: type: text-generation name: Text Generation dataset: name: ENEM Challenge (No Images) type: eduagarcia/enem_challenge split: train args: num_few_shot: 3 metrics: - type: acc value: 56.68 name: accuracy source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Mistral-portuguese-luana-7b-Mathematics name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BLUEX (No Images) type: eduagarcia-temp/BLUEX_without_images split: train args: num_few_shot: 3 metrics: - type: acc value: 45.9 name: accuracy source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Mistral-portuguese-luana-7b-Mathematics name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: OAB Exams type: eduagarcia/oab_exams split: train args: num_few_shot: 3 metrics: - type: acc value: 37.9 name: accuracy source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Mistral-portuguese-luana-7b-Mathematics name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Assin2 RTE type: assin2 split: test args: num_few_shot: 15 metrics: - type: f1_macro value: 89.36 name: f1-macro source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Mistral-portuguese-luana-7b-Mathematics name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Assin2 STS type: eduagarcia/portuguese_benchmark split: test args: num_few_shot: 15 metrics: - type: pearson value: 74.78 name: pearson source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Mistral-portuguese-luana-7b-Mathematics name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: FaQuAD NLI type: ruanchaves/faquad-nli split: test args: num_few_shot: 15 metrics: - type: f1_macro value: 74.87 name: f1-macro source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Mistral-portuguese-luana-7b-Mathematics name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HateBR Binary type: ruanchaves/hatebr split: test args: num_few_shot: 25 metrics: - type: f1_macro value: 76.39 name: f1-macro source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Mistral-portuguese-luana-7b-Mathematics name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: PT Hate Speech Binary type: hate_speech_portuguese split: test args: num_few_shot: 25 metrics: - type: f1_macro value: 67.46 name: f1-macro source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Mistral-portuguese-luana-7b-Mathematics name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: tweetSentBR type: eduagarcia/tweetsentbr_fewshot split: test args: num_few_shot: 25 metrics: - type: f1_macro value: 49.03 name: f1-macro source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Mistral-portuguese-luana-7b-Mathematics name: Open Portuguese LLM Leaderboard --- # Mistral-portuguese-luana-7b-Mathematics <p align="center"> <img src="https://raw.githubusercontent.com/rhaymisonbetini/huggphotos/main/luana-math.webp" width="50%" style="margin-left:'auto' margin-right:'auto' display:'block'"/> </p> Luana Mathematics is a tuned model of the Luana-7b based on the Mistral 7b architecture. This Model has been fine-tuned with 64k math problems and solutions derived from Microsoft's Orca-Math. # How to use You can use the model in its normal form up to 4-bit quantization. Below we will use both approaches. Remember that verbs are important in your prompt. Tell your model how to act or behave so that you can guide them along the path of their response. Important points like these help models (even smaller models like 7b) to perform much better. ```python !pip install -q -U transformers !pip install -q -U accelerate !pip install -q -U bitsandbytes from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer model = AutoModelForCausalLM.from_pretrained("rhaymison/Mistral-portuguese-luana-7b-Mathematics", device_map= {"": 0}) tokenizer = AutoTokenizer.from_pretrained("rhaymison/Mistral-portuguese-luana-7b-Mathematics") model.eval() ``` You can use with Pipeline but in this example i will use such as Streaming ```python inputs = tokenizer([f"""<s>[INST] Abaixo estรก uma instruรงรฃo que descreve uma tarefa, juntamente com uma entrada que fornece mais contexto. Escreva uma resposta que complete adequadamente o pedido. ### instruรงรฃo: Se eu emprestei 100 reais para o meu irmรฃo para que ele me pague em 3 vezes. O juros do emprรฉstimo รฉ 5% do valor do emprestimo por mes. Quanto meu irmรฃo terรก que me pagar no total? [/INST]"""], return_tensors="pt") inputs.to(model.device) streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) _ = model.generate(**inputs, streamer=streamer, max_new_tokens=200) #Para calcular o valor total que seu irmรฃo terรก que pagar, precisamos primeiro calcular o interesse do emprรฉstimo e depois adicionรก -lo ao valor principal. #O interesse do emprรฉstimo รฉ de 5% do valor do emprรฉstimo por mรชs.Entรฃo, para cada mรชs, o interesse serรก: #5% de 100 reais = 0,05 * 100 = 5 reais #Como o emprรฉstimo รฉ devolvido em 3 vezes, o interesse total serรก: #5 reais/mรชs * 3 meses = 15 reais #Agora, adicionamos o interesse ao valor principal para encontrar o valor total que seu irmรฃo terรก que pagar: #100 reais (valor principal) + 15 reais (juros) = 115 reais #Portanto, seu irmรฃo terรก que pagar 115 reais no total. ``` ```python inputs = tokenizer([f"""<s>[INST] Abaixo estรก uma instruรงรฃo que descreve uma tarefa, juntamente com uma entrada que fornece mais contexto. Escreva uma resposta que complete adequadamente o pedido. ### instruรงรฃo: Joรฃo Esta pilotando sua bicicleta a uma velocidade de 20 km por hora. Se Joรฃo esta fazendo uma Viagem da cidade de Venda nova a cidade de Independencia que possuem a distancia entre si de 320km. Quanto tempo Joรฃo vai demorar para ir de uma cidade a outra? [/INST]"""], return_tensors="pt") inputs.to(model.device) streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) _ = model.generate(**inputs, streamer=streamer, max_new_tokens=200) #Para descobrir quanto tempo levarรก Joรฃo para viajar da cidade de venda nova para a cidade de Independรชncia, precisamos dividir a distรขncia total que ele precisa percorrer pela velocidade em que ele estรก andando. #Distรขncia total = 320 km #Velocidade de Joรฃo = 20 km/h #Tempo = distรขncia / velocidade #Tempo = 320 km / 20 km / h #Tempo = 16 horas #Entรฃo, levarรก Joรฃo 16 horas para viajar da cidade de venda nova para a cidade de Independรชncia. ``` ```python inputs = tokenizer([f"""<s>[INST] Abaixo estรก uma instruรงรฃo que descreve uma tarefa, juntamente com uma entrada que fornece mais contexto. Escreva uma resposta que complete adequadamente o pedido. ### instruรงรฃo: Qual a area de um triangulo equilatero de 4 cm de base por 2 de altura ? [/INST]"""], return_tensors="pt") inputs.to(model.device) streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) _ = model.generate(**inputs, streamer=streamer, max_new_tokens=200) #A รกrea de um triรขngulo equilรกtero รฉ dada pela fรณrmula: #รrea = (1/2) * base * altura #Dado que a base รฉ de 4 cm e a altura รฉ de 2 cm, podemos conectar esses valores ร  fรณrmula: #รrea = (1/2) * 4 cm * 2 cm #รrea = (1/2) * 8 cmยฒ #รrea = 4 cmยฒ #Portanto, a รกrea do triรขngulo equilรกtero รฉ de 4 centรญmetros quadrados. ``` If you are having a memory problem such as "CUDA Out of memory", you should use 4-bit or 8-bit quantization. For the complete model in colab you will need the A100. If you want to use 4bits or 8bits, T4 or L4 will already solve the problem. # 4bits ```python from transformers import BitsAndBytesConfig import torch nb_4bit_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_use_double_quant=True ) model = AutoModelForCausalLM.from_pretrained( base_model, quantization_config=bnb_config, device_map={"": 0} ) ``` # Open Portuguese LLM Leaderboard Evaluation Results Detailed results can be found [here](https://huggingface.co/datasets/eduagarcia-temp/llm_pt_leaderboard_raw_results/tree/main/rhaymison/Mistral-portuguese-luana-7b-Mathematics) and on the [๐Ÿš€ Open Portuguese LLM Leaderboard](https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard) | Metric | Value | |--------------------------|--------| |Average |**63.6**| |ENEM Challenge (No Images)| 56.68| |BLUEX (No Images) | 45.90| |OAB Exams | 37.90| |Assin2 RTE | 89.36| |Assin2 STS | 74.78| |FaQuAD NLI | 74.87| |HateBR Binary | 76.39| |PT Hate Speech Binary | 67.46| |tweetSentBR | 49.03| ### Comments Any idea, help or report will always be welcome. email: [email protected] <div style="display:flex; flex-direction:row; justify-content:left"> <a href="https://www.linkedin.com/in/heleno-betini-2b3016175/" target="_blank"> <img src="https://img.shields.io/badge/LinkedIn-0077B5?style=for-the-badge&logo=linkedin&logoColor=white"> </a> <a href="https://github.com/rhaymisonbetini" target="_blank"> <img src="https://img.shields.io/badge/GitHub-100000?style=for-the-badge&logo=github&logoColor=white"> </a>
RichardErkhov/kenken6696_-_Llama-3.2-3B_known_unknown_fix_head-gguf
RichardErkhov
2025-03-25T13:14:37Z
0
0
null
[ "gguf", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-03-25T12:12:22Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Llama-3.2-3B_known_unknown_fix_head - GGUF - Model creator: https://huggingface.co/kenken6696/ - Original model: https://huggingface.co/kenken6696/Llama-3.2-3B_known_unknown_fix_head/ | Name | Quant method | Size | | ---- | ---- | ---- | | [Llama-3.2-3B_known_unknown_fix_head.Q2_K.gguf](https://huggingface.co/RichardErkhov/kenken6696_-_Llama-3.2-3B_known_unknown_fix_head-gguf/blob/main/Llama-3.2-3B_known_unknown_fix_head.Q2_K.gguf) | Q2_K | 1.27GB | | [Llama-3.2-3B_known_unknown_fix_head.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/kenken6696_-_Llama-3.2-3B_known_unknown_fix_head-gguf/blob/main/Llama-3.2-3B_known_unknown_fix_head.IQ3_XS.gguf) | IQ3_XS | 1.38GB | | [Llama-3.2-3B_known_unknown_fix_head.IQ3_S.gguf](https://huggingface.co/RichardErkhov/kenken6696_-_Llama-3.2-3B_known_unknown_fix_head-gguf/blob/main/Llama-3.2-3B_known_unknown_fix_head.IQ3_S.gguf) | IQ3_S | 1.44GB | | [Llama-3.2-3B_known_unknown_fix_head.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/kenken6696_-_Llama-3.2-3B_known_unknown_fix_head-gguf/blob/main/Llama-3.2-3B_known_unknown_fix_head.Q3_K_S.gguf) | Q3_K_S | 1.44GB | | [Llama-3.2-3B_known_unknown_fix_head.IQ3_M.gguf](https://huggingface.co/RichardErkhov/kenken6696_-_Llama-3.2-3B_known_unknown_fix_head-gguf/blob/main/Llama-3.2-3B_known_unknown_fix_head.IQ3_M.gguf) | IQ3_M | 1.49GB | | [Llama-3.2-3B_known_unknown_fix_head.Q3_K.gguf](https://huggingface.co/RichardErkhov/kenken6696_-_Llama-3.2-3B_known_unknown_fix_head-gguf/blob/main/Llama-3.2-3B_known_unknown_fix_head.Q3_K.gguf) | Q3_K | 1.57GB | | [Llama-3.2-3B_known_unknown_fix_head.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/kenken6696_-_Llama-3.2-3B_known_unknown_fix_head-gguf/blob/main/Llama-3.2-3B_known_unknown_fix_head.Q3_K_M.gguf) | Q3_K_M | 1.57GB | | [Llama-3.2-3B_known_unknown_fix_head.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/kenken6696_-_Llama-3.2-3B_known_unknown_fix_head-gguf/blob/main/Llama-3.2-3B_known_unknown_fix_head.Q3_K_L.gguf) | Q3_K_L | 1.69GB | | [Llama-3.2-3B_known_unknown_fix_head.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/kenken6696_-_Llama-3.2-3B_known_unknown_fix_head-gguf/blob/main/Llama-3.2-3B_known_unknown_fix_head.IQ4_XS.gguf) | IQ4_XS | 1.71GB | | [Llama-3.2-3B_known_unknown_fix_head.Q4_0.gguf](https://huggingface.co/RichardErkhov/kenken6696_-_Llama-3.2-3B_known_unknown_fix_head-gguf/blob/main/Llama-3.2-3B_known_unknown_fix_head.Q4_0.gguf) | Q4_0 | 1.79GB | | [Llama-3.2-3B_known_unknown_fix_head.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/kenken6696_-_Llama-3.2-3B_known_unknown_fix_head-gguf/blob/main/Llama-3.2-3B_known_unknown_fix_head.IQ4_NL.gguf) | IQ4_NL | 1.79GB | | [Llama-3.2-3B_known_unknown_fix_head.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/kenken6696_-_Llama-3.2-3B_known_unknown_fix_head-gguf/blob/main/Llama-3.2-3B_known_unknown_fix_head.Q4_K_S.gguf) | Q4_K_S | 1.8GB | | [Llama-3.2-3B_known_unknown_fix_head.Q4_K.gguf](https://huggingface.co/RichardErkhov/kenken6696_-_Llama-3.2-3B_known_unknown_fix_head-gguf/blob/main/Llama-3.2-3B_known_unknown_fix_head.Q4_K.gguf) | Q4_K | 1.88GB | | [Llama-3.2-3B_known_unknown_fix_head.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/kenken6696_-_Llama-3.2-3B_known_unknown_fix_head-gguf/blob/main/Llama-3.2-3B_known_unknown_fix_head.Q4_K_M.gguf) | Q4_K_M | 1.88GB | | [Llama-3.2-3B_known_unknown_fix_head.Q4_1.gguf](https://huggingface.co/RichardErkhov/kenken6696_-_Llama-3.2-3B_known_unknown_fix_head-gguf/blob/main/Llama-3.2-3B_known_unknown_fix_head.Q4_1.gguf) | Q4_1 | 1.95GB | | [Llama-3.2-3B_known_unknown_fix_head.Q5_0.gguf](https://huggingface.co/RichardErkhov/kenken6696_-_Llama-3.2-3B_known_unknown_fix_head-gguf/blob/main/Llama-3.2-3B_known_unknown_fix_head.Q5_0.gguf) | Q5_0 | 2.11GB | | [Llama-3.2-3B_known_unknown_fix_head.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/kenken6696_-_Llama-3.2-3B_known_unknown_fix_head-gguf/blob/main/Llama-3.2-3B_known_unknown_fix_head.Q5_K_S.gguf) | Q5_K_S | 2.11GB | | [Llama-3.2-3B_known_unknown_fix_head.Q5_K.gguf](https://huggingface.co/RichardErkhov/kenken6696_-_Llama-3.2-3B_known_unknown_fix_head-gguf/blob/main/Llama-3.2-3B_known_unknown_fix_head.Q5_K.gguf) | Q5_K | 2.16GB | | [Llama-3.2-3B_known_unknown_fix_head.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/kenken6696_-_Llama-3.2-3B_known_unknown_fix_head-gguf/blob/main/Llama-3.2-3B_known_unknown_fix_head.Q5_K_M.gguf) | Q5_K_M | 2.16GB | | [Llama-3.2-3B_known_unknown_fix_head.Q5_1.gguf](https://huggingface.co/RichardErkhov/kenken6696_-_Llama-3.2-3B_known_unknown_fix_head-gguf/blob/main/Llama-3.2-3B_known_unknown_fix_head.Q5_1.gguf) | Q5_1 | 2.28GB | | [Llama-3.2-3B_known_unknown_fix_head.Q6_K.gguf](https://huggingface.co/RichardErkhov/kenken6696_-_Llama-3.2-3B_known_unknown_fix_head-gguf/blob/main/Llama-3.2-3B_known_unknown_fix_head.Q6_K.gguf) | Q6_K | 2.46GB | | [Llama-3.2-3B_known_unknown_fix_head.Q8_0.gguf](https://huggingface.co/RichardErkhov/kenken6696_-_Llama-3.2-3B_known_unknown_fix_head-gguf/blob/main/Llama-3.2-3B_known_unknown_fix_head.Q8_0.gguf) | Q8_0 | 3.19GB | Original model description: --- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
omrisap/After_refactor_ToT_2_2_3_4_end_1300
omrisap
2025-03-25T13:14:33Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "trl", "grpo", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-25T13:11:06Z
--- library_name: transformers tags: - trl - grpo --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ccmusic-database/bel_canto
ccmusic-database
2025-03-25T13:14:30Z
0
9
null
[ "music", "art", "audio-classification", "en", "dataset:ccmusic-database/bel_canto", "license:mit", "region:us" ]
audio-classification
2023-12-04T09:37:39Z
--- license: mit datasets: - ccmusic-database/bel_canto language: - en metrics: - accuracy pipeline_tag: audio-classification tags: - music - art --- # Intro The Classical and Ethnic Vocal Style Classification model aims to distinguish between classical and ethnic vocal styles, with all audio samples sung by professional vocalists. The model is fine-tuned using an audio dataset consisting of four categories, which has been pre-processed into spectrograms. Initially pretrained in the computer vision (CV) domain, the backbone network undergoes a fine-tuning process specifically designed for vocal style classification tasks. In this model, the pre-training on CV tasks provides a foundation for the network to learn general audio features, which are then adjusted during fine-tuning to adapt to the subtle differences between classical and ethnic vocal styles. The audio dataset, comprising samples from classical and various ethnic singing traditions, enables the model to capture unique patterns associated with each vocal style. Representing spectrograms as input allows the model to effectively analyze both the temporal and frequency components of the audio signals. Through the fine-tuning process, the model continuously enhances its ability to discriminate between sound representations and subtle stylistic differences between classical and ethnic styles. This specialized model holds significant potential in the music industry and cultural preservation, as it accurately categorizes vocal performances into these two broad categories. Its foundation in pre-trained computer vision principles demonstrates the versatility and adaptability of neural networks across different domains, enhancing the model's capability to capture complex features of vocal performances. ## Demo (inference code) <https://huggingface.co/spaces/ccmusic-database/bel_canto> ## Usage ```python from huggingface_hub import snapshot_download model_dir = snapshot_download("ccmusic-database/bel_canto") ``` ## Maintenance ```bash GIT_LFS_SKIP_SMUDGE=1 git clone [email protected]:ccmusic-database/bel_canto cd bel_canto ``` ## Results | Backbone | Mel | CQT | Chroma | | :-----------: | :-----------------------: | :-------: | :-------: | | Swin-S | **0.928** | **0.936** | **0.787** | | Swin-T | 0.906 | 0.863 | 0.731 | | | | | | | AlexNet | 0.919 | 0.920 | 0.746 | | ConvNeXt-T | 0.895 | 0.925 | 0.714 | | GoogleNet | [**0.948**](#best-result) | 0.921 | 0.739 | | MNASNet1.3 | 0.931 | **0.931** | **0.765** | | SqueezeNet1.1 | 0.923 | 0.914 | 0.685 | | Average | 0.921 | 0.916 | 0.738 | ### Best Result <style> #bel td { vertical-align: middle !important; text-align: center; } #bel th { text-align: center; } </style> <table id="bel"> <tr> <th>Loss curve</th> <td><img src="https://www.modelscope.cn/models/ccmusic-database/bel_canto/resolve/master/googlenet_mel_2024-07-30_00-51-26/loss.jpg"></td> </tr> <tr> <th>Training and validation accuracy</th> <td><img src="https://www.modelscope.cn/models/ccmusic-database/bel_canto/resolve/master/googlenet_mel_2024-07-30_00-51-26/acc.jpg"></td> </tr> <tr> <th>Confusion matrix</th> <td><img src="https://www.modelscope.cn/models/ccmusic-database/bel_canto/resolve/master/googlenet_mel_2024-07-30_00-51-26/mat.jpg"></td> </tr> </table> ## Dataset <https://huggingface.co/datasets/ccmusic-database/bel_canto> ## Mirror <https://www.modelscope.cn/models/ccmusic-database/bel_canto> ## Evaluation <https://github.com/monetjoe/ccmusic_eval> ## Cite ```bibtex @article{Zhou-2025, author = {Monan Zhou and Shenyang Xu and Zhaorui Liu and Zhaowen Wang and Feng Yu and Wei Li and Baoqiang Han}, title = {CCMusic: An Open and Diverse Database for Chinese Music Information Retrieval Research}, journal = {Transactions of the International Society for Music Information Retrieval}, volume = {8}, number = {1}, pages = {22--38}, month = {Mar}, year = {2025}, url = {https://doi.org/10.5334/tismir.194}, doi = {10.5334/tismir.194} } ```
flodussart/customer-success-assistant
flodussart
2025-03-25T13:14:14Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-25T13:12:22Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
contentprocbx/stormz
contentprocbx
2025-03-25T13:13:17Z
1
0
null
[ "license:other", "region:us" ]
null
2025-03-10T19:35:19Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md ---
agentlans/Llama3.1-ko
agentlans
2025-03-25T13:10:43Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "korean", "conversational", "en", "ko", "arxiv:2203.05482", "base_model:AIDX-ktds/ktdsbaseLM-v0.13-onbased-llama3.1", "base_model:merge:AIDX-ktds/ktdsbaseLM-v0.13-onbased-llama3.1", "base_model:KISTI-KONI/KONI-Llama3.1-8B-Instruct-20241024", "base_model:merge:KISTI-KONI/KONI-Llama3.1-8B-Instruct-20241024", "base_model:NCSOFT/Llama-VARCO-8B-Instruct", "base_model:merge:NCSOFT/Llama-VARCO-8B-Instruct", "base_model:Saxo/Linkbricks-Horizon-AI-Korean-llama3.1-sft-rlhf-dpo-8B", "base_model:merge:Saxo/Linkbricks-Horizon-AI-Korean-llama3.1-sft-rlhf-dpo-8B", "base_model:dnotitia/Llama-DNA-1.0-8B-Instruct", "base_model:merge:dnotitia/Llama-DNA-1.0-8B-Instruct", "license:llama3.1", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-23T14:03:59Z
--- license: llama3.1 language: - en - ko base_model: - NCSOFT/Llama-VARCO-8B-Instruct - AIDX-ktds/ktdsbaseLM-v0.13-onbased-llama3.1 - KISTI-KONI/KONI-Llama3.1-8B-Instruct-20241024 - Saxo/Linkbricks-Horizon-AI-Korean-llama3.1-sft-rlhf-dpo-8B - dnotitia/Llama-DNA-1.0-8B-Instruct library_name: transformers tags: - mergekit - merge - korean - llama --- # Llama3.1-ko <details> <summary>English</summary> This is a merge of pre-trained Korean Llama 3.1 8B language models created using [mergekit](https://github.com/cg123/mergekit). The purpose is to create a Llama model with robust Korean capabilities that's familiar with Korean culture. ## Merge Details ### Merge Method This model was merged using the [Linear](https://arxiv.org/abs/2203.05482) merge method. ### Models Merged The following models were included in the merge: - [NCSOFT/Llama-VARCO-8B-Instruct](https://huggingface.co/NCSOFT/Llama-VARCO-8B-Instruct) - [AIDX-ktds/ktdsbaseLM-v0.13-onbased-llama3.1](https://huggingface.co/AIDX-ktds/ktdsbaseLM-v0.13-onbased-llama3.1) - [KISTI-KONI/KONI-Llama3.1-8B-Instruct-20241024](https://huggingface.co/KISTI-KONI/KONI-Llama3.1-8B-Instruct-20241024) - [Saxo/Linkbricks-Horizon-AI-Korean-llama3.1-sft-rlhf-dpo-8B](https://huggingface.co/Saxo/Linkbricks-Horizon-AI-Korean-llama3.1-sft-rlhf-dpo-8B) - [dnotitia/Llama-DNA-1.0-8B-Instruct](https://huggingface.co/dnotitia/Llama-DNA-1.0-8B-Instruct) ## Capabilities and Limitations This model demonstrates strong performance in Korean language tasks, including: - Understanding and generating Korean text - Familiarity with Korean culture and current events However, users should be aware of the following limitations: - The model's knowledge cutoff date may result in outdated information - As with all language models, there's a risk of generating inaccurate or biased content - Performance may vary depending on the specific task or domain ## Ethical Considerations Users should be mindful of potential biases in the model's outputs and verify important information from authoritative sources. The model should not be used for generating or spreading misinformation or harmful content. </details> <details> <summary>Korean</summary> ์ด๊ฒƒ์€ ๋ฏธ๋ฆฌ ํ›ˆ๋ จ๋œ ํ•œ๊ตญ์–ด Llama 3.1 8B ์–ธ์–ด ๋ชจ๋ธ์„ ํ•ฉ์ณ ๋งŒ๋“  ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์ด ์ž‘์—…์€ ํ•œ๊ตญ์— ๋Œ€ํ•œ ๊ฐ•๋ ฅํ•œ ๋Šฅ๋ ฅ์„ ๊ฐ€์ง„ Llama ๋ชจ๋ธ์„ ๋งŒ๋“ค๊ณ ์ž ํ•˜๋Š” ๋ชฉ์ ์œผ๋กœ ์ด๋ฃจ์–ด์กŒ์Šต๋‹ˆ๋‹ค. ## ํ•ฉ์„ฑํ™” ์„ธ๋ถ€ ์‚ฌํ•ญ ### ํ•ฉ์„ฑํ™” ๋ฐฉ๋ฒ• ์ด ๋ชจ๋ธ์€ ์„ ํ˜•(Linear) ํ•ฉ์„ฑํ™” ๋ฐฉ์‹์„ ์‚ฌ์šฉํ•˜์—ฌ ๋งŒ๋“ค์–ด์กŒ์Šต๋‹ˆ๋‹ค. ### ํ•ฉ์„ฑํ™”๋œ ๋ชจ๋ธ๋“ค ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๋ชจ๋ธ๋“ค์ด ํ•ฉ์„ฑํ™”์— ํฌํ•จ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. - [NCSOFT/Llama-VARCO-8B-Instruct](https://huggingface.co/NCSOFT/Llama-VARCO-8B-Instruct) - [AIDX-ktds/ktdsbaseLM-v0.13-onbased-llama3.1](https://huggingface.co/AIDX-ktds/ktdsbaseLM-v0.13-onbased-llama3.1) - [KISTI-KONI/KONI-Llama3.1-8B-Instruct-20241024](https://huggingface.co/KISTI-KONI/KONI-Llama3.1-8B-Instruct-20241024) - [Saxo/Linkbricks-Horizon-AI-Korean-llama3.1-sft-rlhf-dpo-8B](https://huggingface.co/Saxo/Linkbricks-Horizon-AI-Korean-llama3.1-sft-rlhf-dpo-8B) - [dnotitia/Llama-DNA-1.0-8B-Instruct](https://huggingface.co/dnotitia/Llama-DNA-1.0-8B-Instruct) ## ๊ธฐ๋Šฅ ๋ฐ ์ œ์•ฝ ์กฐ๊ฑด ์ด ๋ชจ๋ธ์€ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ํ•œ๊ตญ์–ด ๊ด€๋ จ ํƒœ์Šคํฌ์—์„œ ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์ž…๋‹ˆ๋‹ค: - ํ•œ๊ตญ์–ด ์ดํ•ด์™€ ์ƒ์„ฑ - ํ•œ๊ตญ ๋ฌธํ™”์™€ ํ˜„์žฌ ์‚ฌ๊ฑด์— ๋Œ€ํ•œ ์นœ์ˆ™ํ•จ ๊ทธ๋Ÿฌ๋‚˜ ๋‹ค์Œ์˜ ์ œ์•ฝ ์กฐ๊ฑด๋“ค์„ ์œ ๋…ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค: - ๋ชจ๋ธ์˜ ์ง€์‹ ์—…๋ฐ์ดํŠธ ๋‚ ์งœ๋กœ ์ธํ•ด ์ •๋ณด๊ฐ€ ์ตœ์‹ ์ด ์•„๋‹ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค - ๋ชจ๋“  ์–ธ์–ด ๋ชจ๋ธ์ฒ˜๋Ÿผ ์ •ํ™•๋„๋‚˜ ํŽธํ–ฅ์„ฑ์ด ์žˆ๋Š” ๋‚ด์šฉ์„ ์ƒ์„ฑํ•  ์œ„ํ—˜์ด ์กด์žฌํ•ฉ๋‹ˆ๋‹ค - ํŠน์ • ํƒœ์Šคํฌ๋‚˜ ๋„๋ฉ”์ธ์— ๋”ฐ๋ผ ์„ฑ๋Šฅ์ด ๋‹ฌ๋ผ์งˆ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค ## ์œค๋ฆฌ์  ๊ณ ๋ ค์‚ฌํ•ญ ์‚ฌ์šฉ์ž๋“ค์€ ๋ชจ๋ธ์˜ ์ถœ๋ ฅ์— ์ž ์žฌ์ ์ธ ํŽธํ–ฅ์„ ์ธ์‹ํ•˜๊ณ  ์ค‘์š”ํ•œ ์ •๋ณด๋Š” ๊ถŒ์œ„ ์žˆ๋Š” ์ถœ์ฒ˜์—์„œ ํ™•์ธํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. ์ด ๋ชจ๋ธ์€ ํ—ˆ์œ„ ์ •๋ณด๋‚˜ ํ•ด๋กœ์šด ์ฝ˜ํ…์ธ ๋ฅผ ์ƒ์„ฑํ•˜๊ฑฐ๋‚˜ ํ™•์‚ฐํ•˜๋Š” ๋ฐ ์‚ฌ์šฉ๋˜์–ด์„œ๋Š” ์•ˆ ๋ฉ๋‹ˆ๋‹ค. </details> ## Examples <details> <summary>Example 1: K-pop Group Identification</summary> User: ``` ๋‹ค์Œ์€ ์–ด๋–ค ์œ ๋ช…ํ•œ ํ•œ๊ตญ ์•„์ด๋Œ ๊ทธ๋ฃน์— ๋Œ€ํ•œ ์ˆ˜์ˆ˜๊ป˜๋ผ์ž…๋‹ˆ๋‹ค. ์ด ๊ทธ๋ฃน์˜ ์ด๋ฆ„์„ ๋งž์ถฐ๋ณด์„ธ์š”: ์ด ๊ทธ๋ฃน์˜ ์ด๋ฆ„์€ ํŠน๋ณ„ํ•œ ์˜๋ฏธ๋ฅผ ๋‹ด๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋“ค์€ ๋งˆ์น˜ ๋ฐฉํƒ„๋ณต์ด ์ด์•Œ์„ ๋ง‰์•„๋‚ด๋“ฏ์ด, 10๋Œ€์™€ 20๋Œ€๊ฐ€ ๊ฒช๋Š” ์–ด๋ ค์›€๊ณผ ํŽธ๊ฒฌ์„ ๋ง‰์•„๋‚ด๊ณ  ์ž์‹ ๋“ค์˜ ์Œ์•…์  ๊ฐ€์น˜๋ฅผ ์ง€ํ‚ค๊ฒ ๋‹ค๋Š” ๋œป์„ ํ’ˆ๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋“ค์˜ ์˜๋ฌธ ์•ฝ์ž๋Š” ์„ธ ๊ธ€์ž๋กœ, ์›๋ž˜ ์ด๋ฆ„์˜ ์ค€๋ง์ด์—ˆ์ง€๋งŒ ๋‚˜์ค‘์—๋Š” '์žฅ๋ฉด์„ ๋„˜์–ด์„œ'๋ผ๋Š” ์˜๋ฏธ๋„ ์ถ”๊ฐ€๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ์ด๋Š” ์ฒญ์ถ˜์˜ ๋ชจ๋“  ์ˆœ๊ฐ„์„ ๋›ฐ์–ด๋„˜๋Š”๋‹ค๋Š” ๋œป์„ ๋‹ด๊ณ  ์žˆ์ฃ . 2013๋…„ ๋ฐ๋ท” ์ดํ›„, ์ด ๊ทธ๋ฃน์€ ๊พธ์ค€ํžˆ ์„ฑ์žฅํ•˜์—ฌ ๊ตญ๋‚ด์™ธ์—์„œ ํฐ ์„ฑ๊ณต์„ ๊ฑฐ๋‘์—ˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋“ค์€ ํ•œ๊ตญ ๊ฐ€์ˆ˜ ์ตœ์ดˆ๋กœ ๋นŒ๋ณด๋“œ 200๊ณผ ํ•ซ 100 ์ฐจํŠธ์—์„œ 1์œ„๋ฅผ ์ฐจ์ง€ํ–ˆ๊ณ , ์—ฌ๋Ÿฌ ์Œ์•… ์‹œ์ƒ์‹์—์„œ ๋Œ€์ƒ์„ ํœฉ์“ธ์—ˆ์Šต๋‹ˆ๋‹ค. ใ€ˆ๋ด„๋‚ ใ€‰, ใ€ˆDynamiteใ€‰, ใ€ˆButterใ€‰, ใ€ˆPermission to Danceใ€‰ ๋“ฑ ์ˆ˜๋งŽ์€ ํžˆํŠธ๊ณก์„ ๋ฐœํ‘œํ–ˆ์œผ๋ฉฐ, ์ „ ์„ธ๊ณ„์ ์œผ๋กœ ํฐ ์ธ๊ธฐ๋ฅผ ์–ป๊ณ  ์žˆ๋Š” ์ด ๊ทธ๋ฃน์€ ๋ˆ„๊ตฌ์ผ๊นŒ์š”? ์ด ์ˆ˜์ˆ˜๊ป˜๋ผ์˜ ๋‹ต์€ ๋ฌด์—‡์ผ๊นŒ์š”? ``` AI: ``` ๋ฐฉํƒ„์†Œ๋…„๋‹จ(BTS)์ž…๋‹ˆ๋‹ค! BTS๋Š” "Bulletproof"๋‚˜ "Beyond the Scene"(BTS์˜ ์˜์–ด ์•จ๋ฒ” ์ œ๋ชฉ)์˜ ์ค„์ž„๋ง์ธ BBT๋ผ๊ณ  ๋ถˆ๋ฆฌ๊ธฐ๋„ ํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ, ๊ทธ๋“ค์ด ์–ธ๊ธ‰ํ•˜๋Š” "์ฒญ์ถ˜์˜ ๋ชจ๋“  ์ˆœ๊ฐ„์„ ๋›ฐ์–ด๋„˜๋Š”๋‹ค"๋Š” ๋ง์€ ๊ทธ๋“ค๋งŒ์˜ ํŠน์ง•์ ์ธ ๋ฉ”์‹œ์ง€๋ฅผ ๋ฐ˜์˜ํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, ๋งŽ์€ ํŒฌ๋“ค์—๊ฒŒ ์‚ฌ๋ž‘๋ฐ›์•˜์Šต๋‹ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ๋‹น์—ฐํ•˜๊ฒŒ๋„, ๊ทธ๋“ค์˜ ๋Œ€ํ‘œ์ž‘ ์ค‘ ์ผ๋ถ€๋กœ๋Š” "Spring Day", " Dynamite ", " Butter ", " Permission To Dance "๋“ฑ์ด ํฌํ•จ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ด์œ ๋“ค์„ ์ข…ํ•ฉํ•ด ๋ณผ ๋•Œ, ์ •๋‹ต์€ ๋ฐ”๋กœ ๋ฐฉํƒ„์†Œ๋…„๋‹จ(BTS)์ด ๋ฉ๋‹ˆ๋‹ค! ``` </details> <details> <summary>Example 2: Korean News Article Summary</summary> Source: [์กฐ์„ ์ผ๋ณด. โ€œ์ˆจ๊ณ ๋ฅด๋Š” ่ˆ‡ ์ธ์‚ฌ๋“คโ€ฆ๊ณต๊ฐœํ™œ๋™ ์ค„์ด๊ณ  ์ •๊ตญ ์ฃผ์‹œ.โ€ ์กฐ์„ ์ผ๋ณด, 23 Mar. 2025](https://www.chosun.com/politics/politics_general/2025/03/23/6N7YOWLJ2VBBZJUAZGMA4L4D74/) User: ``` ๋ณธ์งˆ์„ ์œ ์ง€ํ•˜๋ฉด์„œ 50๋‹จ์–ด ์ด๋‚ด๋กœ ์š”์•ฝํ•ด ์ฃผ์„ธ์š”. ์กฐ๊ธฐ ๋Œ€์„  ๊ฐ€๋Šฅ์„ฑ์„ ์—ผ๋‘์— ๋‘๊ณ  ์›€์ง์ด๋˜ ์—ฌ๊ถŒ์˜ ์ฃผ์š” ๋Œ€์„  ์ฃผ์ž๊ธ‰ ์ธ์‚ฌ๋“ค์ด ๊ณต๊ฐœ ํ™œ๋™์„ ์ค„์ด๊ณ  ์žˆ๋‹ค. ํ—Œ๋ฒ•์žฌํŒ์†Œ์˜ ์œค์„์—ด ๋Œ€ํ†ต๋ น ํƒ„ํ•ต ์‹ฌํŒ ์„ ๊ณ  ์‹œ๊ธฐ์™€ ํƒ„ํ•ต ์ธ์šฉยท๊ธฐ๊ฐ ์—ฌ๋ถ€๋ฅผ ๋‘๊ณ  ์ •์น˜๊ถŒ๊ณผ ๋ฒ•์กฐ๊ณ„์˜ ๊ด€์ธก์ด ์—‡๊ฐˆ๋ฆฌ๋Š” ์ƒํ™ฉ์—์„œ โ€˜ํƒ„ํ•ต ๋ฐ˜๋Œ€โ€™ ์ง€์ง€์ธต์„ ์˜์‹ํ•ด ๋‹น๋ถ„๊ฐ„ ๊ด€๋ง์— ๋“ค์–ด๊ฐ„ ๊ฒƒ์ด๋ž€ ํ•ด์„์ด ๋‚˜์˜จ๋‹ค. ์˜ค์„ธํ›ˆ ์„œ์šธ์‹œ์žฅ์€ 24์ผ ์ •์ฑ… ๋น„์ „์„ ๋‹ด์€ ์ฑ…(โ€˜๋‹ค์‹œ ์„ฑ์žฅ์ด๋‹คโ€™)์„ ์ถœ๊ฐ„ํ•œ๋‹ค. ํ•˜์ง€๋งŒ ๋ถ ์ฝ˜์„œํŠธ ๊ฐ™์€ ํ™๋ณด ์ผ์ •์€ ๋‹น๋ถ„๊ฐ„ ์žก์ง€ ์•Š์•˜๋‹ค๊ณ  ํ•œ๋‹ค. ์˜ค ์‹œ์žฅ์€ ์ง€๋‚œ 17์ผ TV์กฐ์„ ์— ์ถœ์—ฐํ•ด์„œ๋Š” ์œค ๋Œ€ํ†ต๋ น ํƒ„ํ•ต ์„ ๊ณ  ์ „๋ง๊ณผ ๊ด€๋ จํ•ด โ€œ(ํ—Œ๋ฒ•์žฌํŒ๊ด€ 8๋ช… ์ค‘) ๊ธฐ๊ฐ ๋‘ ๋ถ„, ๊ฐํ•˜ ํ•œ ๋ถ„ ์ •๋„์˜ ์˜๊ฒฌ์ด ๋ชจ์ด์ง€ ์•Š์•˜์„๊นŒ ์‹ถ๋‹คโ€๊ณ  ํ–ˆ๋‹ค. ๊ธฐ๊ฐ์ด๋‚˜ ๊ฐํ•˜ ์˜๊ฒฌ์„ ๋‚ธ ์žฌํŒ๊ด€์ด 3๋ช…์ด๋ฉด ํƒ„ํ•ต์•ˆ์€ ๊ธฐ๊ฐ๋œ๋‹ค. ํ™์ค€ํ‘œ ๋Œ€๊ตฌ์‹œ์žฅ๋„ ์ง€๋‚œ 21์ผ ์ฑ…(โ€˜๊ฟˆ์€ ์ด๋ฃจ์–ด์ง„๋‹คโ€™)์„ ์ถœ๊ฐ„ํ•˜๋ ค๋‹ค ์œค ๋Œ€ํ†ต๋ น ํƒ„ํ•ต ์„ ๊ณ  ์ดํ›„๋กœ ๋ฏธ๋ค˜๋‹ค. ํ™ ์‹œ์žฅ์€ 23์ผ ํŽ˜์ด์Šค๋ถ์—์„œ ์œค ๋Œ€ํ†ต๋ น์˜ ๋‚ด๋ž€ ํ˜์˜ ํ˜•์‚ฌ ์žฌํŒ๊ณผ ๊ด€๋ จํ•ด โ€œ์ œ๋Œ€๋กœ ๋œ ๋ฒ•๊ด€์ด ํŒ๊ฒฐํ•œ๋‹ค๋ฉด ๊ณต์†Œ ๊ธฐ๊ฐ ํŒ๊ฒฐ์„ ํ•  ๊ฒƒโ€์ด๋ผ๋ฉฐ โ€œํƒ„ํ•ต๋„ ๊ธฐ๊ฐ๋˜๊ณ  ๋Œ€ํ†ต๋ น์˜ ํ˜•์‚ฌ์žฌํŒ๋„ ์กฐ์†ํžˆ ์ •๋ฆฌ๋ผ ๋‚˜๋ผ๊ฐ€ ์•ˆ์ •๋์œผ๋ฉด ํ•œ๋‹คโ€๊ณ  ํ–ˆ๋‹ค. ๊น€๋ฌธ์ˆ˜ ๊ณ ์šฉ๋…ธ๋™๋ถ€ ์žฅ๊ด€์€ ์ด๋ฒˆ ์ฃผ ๋ถ€์ฒ˜ ๊ด€๋ จ ์ผ์ •๋งŒ ์†Œํ™”ํ•  ๊ณ„ํš์ธ ๊ฒƒ์œผ๋กœ ์•Œ๋ ค์กŒ๋‹ค. ๊น€ ์žฅ๊ด€์€ ์ง€๋‚œ๋‹ฌ์—” ๋…ธ๋™ ๊ฐœํ˜ ํ† ๋ก ํšŒ์™€ ๋‹น์ •ํ˜‘์˜ํšŒ ์ฐธ์„ ๋“ฑ์„ ์œ„ํ•ด ๊ตญํšŒ๋ฅผ ์ž์ฃผ ๋ฐฉ๋ฌธํ•˜๋ฉฐ ๊ธฐ์ž๋“ค๊ณผ ์งˆ์˜ยท์‘๋‹ต์„ ํ–ˆ๋‹ค. ๊ทธ๋Ÿฐ๋ฐ ์ง€๋‚œ 8์ผ ์œค ๋Œ€ํ†ต๋ น์ด ์„๋ฐฉ๋œ ๋’ค๋กœ๋Š” ๊ณต๊ฐœ ํ™œ๋™์„ ๊ฑฐ์˜ ํ•˜์ง€ ์•Š๊ณ  ์žˆ๋‹ค. ๊น€ ์žฅ๊ด€ ์ธก๊ทผ์€ โ€œ๋Œ€ํ†ต๋ น ๋ณต๊ท€๊ฐ€ ์ค‘์š”ํ•˜๋‹ค๋Š” ์ž…์žฅ์— ๋ณ€ํ•จ์ด ์—†๋‹คโ€๊ณ  ํ–ˆ๋‹ค. ์•ˆ์ฒ ์ˆ˜ ๊ตญ๋ฏผ์˜ํž˜ ์˜์›์€ ์ด๋‚  ๊ธฐ์žํšŒ๊ฒฌ์„ ์—ด๊ณ  ์ด์žฌ๋ช… ๋”๋ถˆ์–ด๋ฏผ์ฃผ๋‹น ๋Œ€ํ‘œ๋ฅผ ํ–ฅํ•ด โ€œ์ด์ œ ๊ทธ๋งŒํ•˜๊ณ  ์ •๊ณ„์—์„œ ์€ํ‡ดํ•˜๋ผโ€๊ณ  ํ–ˆ๋‹ค. ์ตœ๊ทผ ์•ˆ ์˜์›์€ ์ž‘๋…„์— ๋ฐœ์ƒํ•œ ์ด ๋Œ€ํ‘œ ํ”ผ์Šต ์‚ฌ๊ฑด๊ณผ ๊ด€๋ จํ•ด โ€œ๋ชฉ ๊ธํžŒ ๋’ค ์ฃฝ์€ ๋“ฏ ๋ˆ„์›Œ์žˆ๋Š” ๋ชจ์Šตโ€์ด๋ผ๊ณ  ํ•˜๋Š” ๋“ฑ ์ด ๋Œ€ํ‘œ ๊ณต๊ฒฉ์— ์ง‘์ค‘ํ•˜๊ณ  ์žˆ๋‹ค. ํ•œ๋™ํ›ˆ ์ „ ๊ตญ๋ฏผ์˜ํž˜ ๋Œ€ํ‘œ๋Š” ์ง€๋‚œ์ฃผ๋ถ€ํ„ฐ ์ตœ์ƒ๋ชฉ ๋Œ€ํ†ต๋ น ๊ถŒํ•œ๋Œ€ํ–‰์—๊ฒŒ โ€œ๋ชธ์กฐ์‹ฌํ•˜๋ผโ€๊ณ  ํ•œ ์ด์žฌ๋ช… ๋Œ€ํ‘œ๋ฅผ ๋น„ํŒํ•˜๊ฑฐ๋‚˜ ์ตœ๊ทผ ๊ตญํšŒ๋ฅผ ํ†ต๊ณผํ•œ ๊ตญ๋ฏผ์—ฐ๊ธˆ ๋ชจ์ˆ˜ ๊ฐœํ˜์•ˆ์ด ์ฒญ๋…„ ์„ธ๋Œ€์— ๋ถˆ๋ฆฌํ•˜๋‹ค๋ฉฐ ๋ฌธ์ œ๋ฅผ ์ œ๊ธฐํ•˜๊ณ  ์žˆ๋‹ค. ์œ ์Šน๋ฏผ ์ „ ์˜์›์€ ์ด๋ฒˆ ์ฃผ ์„œ์šธ๋Œ€์™€ ์ค‘์•™๋Œ€์—์„œ ๊ฐ•์—ฐ์„ ํ•œ๋‹ค. ``` AI: ``` ์—ฌ๊ถŒ ์ฃผ์š” ํ›„๋ณด๋“ค์ธ ์˜ค์„ธํ›ˆ, ํ™์ค€ํ‘œ, ๊น€๋ฌธ์ˆ˜๊ฐ€ ์œค์„์—ด ๋Œ€ํ†ต๋ น ํƒ„ํ•ต ๊ฒฐ์ • ์•ž๋‘” ์‹œ๊ฐ„ ๋™์•ˆ '๊ณต๊ฐœํ™œ๋™ ๊ฐ์ถ•'ํ•˜๋Š” ์ด์œ ๋Š” ๊ฐ๊ฐ ๋‹ค๋ฅธ ๋งฅ๋ฝ์œผ๋กœ ์„ค๋ช…๋ฉ๋‹ˆ๋‹ค. - ์˜ค์„ธํ›ˆ: ์ž์‹ ์˜ ์ฑ… ๋ฐœํ–‰ ํ›„์—๋„ ๋ถ์ฝ˜์„œํŠธ ๋“ฑ์˜ ํ–‰์‚ฌ๋Š” ์ทจ์†Œํ–ˆ๋‹ค - ํ™์ค€ํ‘œ: ์ž์‹ ์ด ์“ด ์ฑ… ๋ฐœํ‘œ ์ผ์ •์„ ์—ฐ๊ธฐํ–ˆ์œผ๋ฉฐ, "์œค ๋Œ€ํ†ต๋ น์˜ ๋‚ด๋ž€ํ˜์˜ํ˜•์‚ฌ์žฌํŒ" ๊ฒฐ๊ณผ ์˜ˆ์ƒ์„ ๋ฐํ˜€๋ƒ„ - ๊น€๋ฌธ์ˆ˜: ๋ณธ์ธ์˜ ์—…๋ฌด ์ผ์ • ์™ธ์—๋Š” ๋ณ„๋„์˜ ๊ณต์‹์ ์ธ ์–ธ๋ก ์ถœํ˜„์„ ์‚ผ๊ฐ”๋‹ค ์ด๋Š” ๋ชจ๋‘ ํ˜„์žฌ ๋Œ€ํ•œ๋ฏผ๊ตญ ์‚ฌํšŒ์  ํ˜ผ๋ž€ ์†์—์„œ '์œ ์ง€๋„๋ ฅ' ํ™•๋ณด ๋ฐ ์„ ๊ฑฐ์—์„œ์˜ ์šฐ์œ„๋ฅผ ์ ํ•˜๊ธฐ ์œ„ํ•œ ์ „๋žต์œผ๋กœ ๋ณด์ž…๋‹ˆ๋‹ค. ํŠนํžˆ, ์•ˆ์ฒ ์ˆ˜์˜ ์ด์žฌ๋ช… ๋Œ€ํ‘œ์— ๋Œ€ํ•œ ์ง์ ‘์ ์ธ ๋ช…๋ น('๊ทธ๋งŒํ•˜๊ณ  ์ •๊ณ„์—์„œ ์€ํ‡ดํ•˜๋ผ')์€ ๊ทธ์˜ ๊ฒฝ์Ÿ ์ƒ๋Œ€์— ๋Œ€ํ•ด ๋งค์šฐ ์ ๊ทน์ ์œผ๋กœ ํ–‰๋™ํ•˜๊ณ  ์žˆ์Œ์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค. ``` </details>
novumlogic/nl-slm-distilgpt2-customer-support
novumlogic
2025-03-25T13:10:16Z
0
1
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "en", "dataset:bitext/Bitext-customer-support-llm-chatbot-training-dataset", "base_model:distilbert/distilgpt2", "base_model:finetune:distilbert/distilgpt2", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-25T06:40:21Z
--- library_name: transformers pipeline_tag: text-generation license: apache-2.0 datasets: - bitext/Bitext-customer-support-llm-chatbot-training-dataset language: - en base_model: - distilbert/distilgpt2 --- # SLM for Customer Support Interactions <!-- Provide a quick summary of what the model is/does. --> ### Description <!-- Provide a longer summary of what this model is. --> This model is a fine-tuned version of DistilGPT-2, optimized for customer support interactions. The model has been trained on a dataset consisting of dialogues between customers and support agents to enhance conversational AI performance.๐Ÿค–๐Ÿ’ฌ - **Model type:** Transformer-based small language model (SLM) - **Language(s) (NLP):** English - **Finetuned from model :** DistilGPT-2 ## Uses The fine-tuned DistilGPT-2(SLM) is designed to enhance customer support interactions by generating accurate and contextually relevant responses. It can be integrated into customer service chatbots, virtual assistants, and automated helpdesk systems to handle routine inquiries efficiently. By leveraging this model, businesses can improve response times, reduce human agent workload, and ensure consistent communication with customers. ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> โŒ Should not be used for general conversational AI applications unrelated to customer service. ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should validate outputs before deploying them in live customer support environments and ensure regular updates to align with evolving support needs. ## How to Get Started with the Model Use the code below to get started with the model. ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("novumlogic/nl-slm-distilgpt2-customer-support") model = AutoModelForCausalLM.from_pretrained("novumlogic/nl-slm-distilgpt2-customer-support") input_str = "payment options" # Encode the input string with padding and attention mask encoded_input = tokenizer.encode_plus( input_str, return_tensors='pt', padding=True, truncation=True, max_length=50 # Adjust max_length as needed ) # Move tensors to the appropriate device input_ids = encoded_input['input_ids'] attention_mask = encoded_input['attention_mask'] # Set the pad_token_id to the tokenizer's eos_token_id pad_token_id = tokenizer.eos_token_id # Generate the output output = model.generate( input_ids, attention_mask=attention_mask, max_length=400, # Adjust max_length as needed num_return_sequences=1, do_sample=True, top_k=8, top_p=0.95, temperature=0.5, repetition_penalty=1.2, pad_token_id=pad_token_id ) # Decode and print the output decoded_output = tokenizer.decode(output[0], skip_special_tokens=True) print(decoded_output) ``` ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> ๐Ÿ“š Customer Support Interactions Dataset: 26,000 rows (20,800 training, 5,200 validation) (https://huggingface.co/datasets/bitext/Bitext-customer-support-llm-chatbot-training-dataset) ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing ๐Ÿงน Data cleaning: Standardizing text and removing noise. โœ‚๏ธ Tokenization: Used DistilGPT-2's tokenizer for sequence conversion. ๐Ÿ“‘ Formatting: Structuring as "Query | Response" pairs. #### Training Hyperparameters - **Training regime:** <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> ๐Ÿ“ Batch size: 15 ๐Ÿ” Epochs: 3 ๐Ÿ› ๏ธ Optimizer: Adam with a linear learning rate scheduler ๐Ÿ–ฅ๏ธ Training Frameworks: PyTorch, Hugging Face Transformers ### Results | Dataset | ROUGE-1 | ROUGE-2 | ROUGE-L | METEOR | Perplexity | |-----------------------------------|---------|---------|---------|--------|------------| | ๐Ÿ“ž Customer Support Interactions | 0.7102 | 0.4586 | 0.5610 | 0.6924 | 1.4273 | #### Summary The Fine-Tuned DistilGPT-2 SLM for Customer Support Interactions is a compact and efficient language model designed to enhance automated customer service. Trained on 26,000 customer-agent dialogues, the model improves chatbot performance by generating accurate, context-aware responses to customer queries. ## Glossary SLM (Small Language Model): A compact language model optimized for efficiency. Perplexity: Measures how well a model predicts. ROUGE & METEOR: Metrics for evaluating text generation quality. ## Author Novumlogic Technologies Pvt Ltd
cwyeungam/FinetunedModel_amazon_sentiment_10k
cwyeungam
2025-03-25T13:07:01Z
0
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-03-25T13:06:49Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
sainoforce/modelv7
sainoforce
2025-03-25T13:05:31Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-03-19T13:02:08Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
eyjafjalla114/hm-flux-lora
eyjafjalla114
2025-03-25T13:04:32Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-03-25T09:01:54Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: hm --- # Hm Flux Lora <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `hm` to trigger the image generation. ## Use it with the [๐Ÿงจ diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('eyjafjalla114/hm-flux-lora', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
RichardErkhov/rhaymison_-_Mistral-portuguese-luana-7b-Mathematics-8bits
RichardErkhov
2025-03-25T13:04:11Z
0
0
null
[ "safetensors", "mistral", "8-bit", "bitsandbytes", "region:us" ]
null
2025-03-25T12:58:35Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Mistral-portuguese-luana-7b-Mathematics - bnb 8bits - Model creator: https://huggingface.co/rhaymison/ - Original model: https://huggingface.co/rhaymison/Mistral-portuguese-luana-7b-Mathematics/ Original model description: --- language: - pt license: apache-2.0 library_name: transformers tags: - portuguese - math - mathematics - matematica base_model: rhaymison/Mistral-portuguese-luana-7b datasets: - rhaymison/orca-math-portuguese-64k pipeline_tag: text-generation model-index: - name: Mistral-portuguese-luana-7b-Mathematics results: - task: type: text-generation name: Text Generation dataset: name: ENEM Challenge (No Images) type: eduagarcia/enem_challenge split: train args: num_few_shot: 3 metrics: - type: acc value: 56.68 name: accuracy source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Mistral-portuguese-luana-7b-Mathematics name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BLUEX (No Images) type: eduagarcia-temp/BLUEX_without_images split: train args: num_few_shot: 3 metrics: - type: acc value: 45.9 name: accuracy source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Mistral-portuguese-luana-7b-Mathematics name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: OAB Exams type: eduagarcia/oab_exams split: train args: num_few_shot: 3 metrics: - type: acc value: 37.9 name: accuracy source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Mistral-portuguese-luana-7b-Mathematics name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Assin2 RTE type: assin2 split: test args: num_few_shot: 15 metrics: - type: f1_macro value: 89.36 name: f1-macro source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Mistral-portuguese-luana-7b-Mathematics name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Assin2 STS type: eduagarcia/portuguese_benchmark split: test args: num_few_shot: 15 metrics: - type: pearson value: 74.78 name: pearson source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Mistral-portuguese-luana-7b-Mathematics name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: FaQuAD NLI type: ruanchaves/faquad-nli split: test args: num_few_shot: 15 metrics: - type: f1_macro value: 74.87 name: f1-macro source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Mistral-portuguese-luana-7b-Mathematics name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HateBR Binary type: ruanchaves/hatebr split: test args: num_few_shot: 25 metrics: - type: f1_macro value: 76.39 name: f1-macro source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Mistral-portuguese-luana-7b-Mathematics name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: PT Hate Speech Binary type: hate_speech_portuguese split: test args: num_few_shot: 25 metrics: - type: f1_macro value: 67.46 name: f1-macro source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Mistral-portuguese-luana-7b-Mathematics name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: tweetSentBR type: eduagarcia/tweetsentbr_fewshot split: test args: num_few_shot: 25 metrics: - type: f1_macro value: 49.03 name: f1-macro source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Mistral-portuguese-luana-7b-Mathematics name: Open Portuguese LLM Leaderboard --- # Mistral-portuguese-luana-7b-Mathematics <p align="center"> <img src="https://raw.githubusercontent.com/rhaymisonbetini/huggphotos/main/luana-math.webp" width="50%" style="margin-left:'auto' margin-right:'auto' display:'block'"/> </p> Luana Mathematics is a tuned model of the Luana-7b based on the Mistral 7b architecture. This Model has been fine-tuned with 64k math problems and solutions derived from Microsoft's Orca-Math. # How to use You can use the model in its normal form up to 4-bit quantization. Below we will use both approaches. Remember that verbs are important in your prompt. Tell your model how to act or behave so that you can guide them along the path of their response. Important points like these help models (even smaller models like 7b) to perform much better. ```python !pip install -q -U transformers !pip install -q -U accelerate !pip install -q -U bitsandbytes from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer model = AutoModelForCausalLM.from_pretrained("rhaymison/Mistral-portuguese-luana-7b-Mathematics", device_map= {"": 0}) tokenizer = AutoTokenizer.from_pretrained("rhaymison/Mistral-portuguese-luana-7b-Mathematics") model.eval() ``` You can use with Pipeline but in this example i will use such as Streaming ```python inputs = tokenizer([f"""<s>[INST] Abaixo estรก uma instruรงรฃo que descreve uma tarefa, juntamente com uma entrada que fornece mais contexto. Escreva uma resposta que complete adequadamente o pedido. ### instruรงรฃo: Se eu emprestei 100 reais para o meu irmรฃo para que ele me pague em 3 vezes. O juros do emprรฉstimo รฉ 5% do valor do emprestimo por mes. Quanto meu irmรฃo terรก que me pagar no total? [/INST]"""], return_tensors="pt") inputs.to(model.device) streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) _ = model.generate(**inputs, streamer=streamer, max_new_tokens=200) #Para calcular o valor total que seu irmรฃo terรก que pagar, precisamos primeiro calcular o interesse do emprรฉstimo e depois adicionรก -lo ao valor principal. #O interesse do emprรฉstimo รฉ de 5% do valor do emprรฉstimo por mรชs.Entรฃo, para cada mรชs, o interesse serรก: #5% de 100 reais = 0,05 * 100 = 5 reais #Como o emprรฉstimo รฉ devolvido em 3 vezes, o interesse total serรก: #5 reais/mรชs * 3 meses = 15 reais #Agora, adicionamos o interesse ao valor principal para encontrar o valor total que seu irmรฃo terรก que pagar: #100 reais (valor principal) + 15 reais (juros) = 115 reais #Portanto, seu irmรฃo terรก que pagar 115 reais no total. ``` ```python inputs = tokenizer([f"""<s>[INST] Abaixo estรก uma instruรงรฃo que descreve uma tarefa, juntamente com uma entrada que fornece mais contexto. Escreva uma resposta que complete adequadamente o pedido. ### instruรงรฃo: Joรฃo Esta pilotando sua bicicleta a uma velocidade de 20 km por hora. Se Joรฃo esta fazendo uma Viagem da cidade de Venda nova a cidade de Independencia que possuem a distancia entre si de 320km. Quanto tempo Joรฃo vai demorar para ir de uma cidade a outra? [/INST]"""], return_tensors="pt") inputs.to(model.device) streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) _ = model.generate(**inputs, streamer=streamer, max_new_tokens=200) #Para descobrir quanto tempo levarรก Joรฃo para viajar da cidade de venda nova para a cidade de Independรชncia, precisamos dividir a distรขncia total que ele precisa percorrer pela velocidade em que ele estรก andando. #Distรขncia total = 320 km #Velocidade de Joรฃo = 20 km/h #Tempo = distรขncia / velocidade #Tempo = 320 km / 20 km / h #Tempo = 16 horas #Entรฃo, levarรก Joรฃo 16 horas para viajar da cidade de venda nova para a cidade de Independรชncia. ``` ```python inputs = tokenizer([f"""<s>[INST] Abaixo estรก uma instruรงรฃo que descreve uma tarefa, juntamente com uma entrada que fornece mais contexto. Escreva uma resposta que complete adequadamente o pedido. ### instruรงรฃo: Qual a area de um triangulo equilatero de 4 cm de base por 2 de altura ? [/INST]"""], return_tensors="pt") inputs.to(model.device) streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) _ = model.generate(**inputs, streamer=streamer, max_new_tokens=200) #A รกrea de um triรขngulo equilรกtero รฉ dada pela fรณrmula: #รrea = (1/2) * base * altura #Dado que a base รฉ de 4 cm e a altura รฉ de 2 cm, podemos conectar esses valores ร  fรณrmula: #รrea = (1/2) * 4 cm * 2 cm #รrea = (1/2) * 8 cmยฒ #รrea = 4 cmยฒ #Portanto, a รกrea do triรขngulo equilรกtero รฉ de 4 centรญmetros quadrados. ``` If you are having a memory problem such as "CUDA Out of memory", you should use 4-bit or 8-bit quantization. For the complete model in colab you will need the A100. If you want to use 4bits or 8bits, T4 or L4 will already solve the problem. # 4bits ```python from transformers import BitsAndBytesConfig import torch nb_4bit_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_use_double_quant=True ) model = AutoModelForCausalLM.from_pretrained( base_model, quantization_config=bnb_config, device_map={"": 0} ) ``` # Open Portuguese LLM Leaderboard Evaluation Results Detailed results can be found [here](https://huggingface.co/datasets/eduagarcia-temp/llm_pt_leaderboard_raw_results/tree/main/rhaymison/Mistral-portuguese-luana-7b-Mathematics) and on the [๐Ÿš€ Open Portuguese LLM Leaderboard](https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard) | Metric | Value | |--------------------------|--------| |Average |**63.6**| |ENEM Challenge (No Images)| 56.68| |BLUEX (No Images) | 45.90| |OAB Exams | 37.90| |Assin2 RTE | 89.36| |Assin2 STS | 74.78| |FaQuAD NLI | 74.87| |HateBR Binary | 76.39| |PT Hate Speech Binary | 67.46| |tweetSentBR | 49.03| ### Comments Any idea, help or report will always be welcome. email: [email protected] <div style="display:flex; flex-direction:row; justify-content:left"> <a href="https://www.linkedin.com/in/heleno-betini-2b3016175/" target="_blank"> <img src="https://img.shields.io/badge/LinkedIn-0077B5?style=for-the-badge&logo=linkedin&logoColor=white"> </a> <a href="https://github.com/rhaymisonbetini" target="_blank"> <img src="https://img.shields.io/badge/GitHub-100000?style=for-the-badge&logo=github&logoColor=white"> </a>
namfam/Qwen2.5-0.5B-Instruct-fp16
namfam
2025-03-25T13:03:49Z
6
0
transformers
[ "transformers", "safetensors", "qwen2", "feature-extraction", "arxiv:1910.09700", "text-generation-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2025-03-25T05:00:01Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
DhruvK3000/llama8b_lending_25th_march
DhruvK3000
2025-03-25T13:01:40Z
0
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "en", "base_model:unsloth/Meta-Llama-3.1-8B", "base_model:finetune:unsloth/Meta-Llama-3.1-8B", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-03-25T12:54:12Z
--- base_model: unsloth/Meta-Llama-3.1-8B tags: - text-generation-inference - transformers - unsloth - llama - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** DhruvK3000 - **License:** apache-2.0 - **Finetuned from model :** unsloth/Meta-Llama-3.1-8B This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
RichardErkhov/kenken6696_-_Llama-3.2-3B_4x3_fix_tail-gguf
RichardErkhov
2025-03-25T13:00:43Z
0
0
null
[ "gguf", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-03-25T11:57:55Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Llama-3.2-3B_4x3_fix_tail - GGUF - Model creator: https://huggingface.co/kenken6696/ - Original model: https://huggingface.co/kenken6696/Llama-3.2-3B_4x3_fix_tail/ | Name | Quant method | Size | | ---- | ---- | ---- | | [Llama-3.2-3B_4x3_fix_tail.Q2_K.gguf](https://huggingface.co/RichardErkhov/kenken6696_-_Llama-3.2-3B_4x3_fix_tail-gguf/blob/main/Llama-3.2-3B_4x3_fix_tail.Q2_K.gguf) | Q2_K | 1.27GB | | [Llama-3.2-3B_4x3_fix_tail.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/kenken6696_-_Llama-3.2-3B_4x3_fix_tail-gguf/blob/main/Llama-3.2-3B_4x3_fix_tail.IQ3_XS.gguf) | IQ3_XS | 1.38GB | | [Llama-3.2-3B_4x3_fix_tail.IQ3_S.gguf](https://huggingface.co/RichardErkhov/kenken6696_-_Llama-3.2-3B_4x3_fix_tail-gguf/blob/main/Llama-3.2-3B_4x3_fix_tail.IQ3_S.gguf) | IQ3_S | 1.44GB | | [Llama-3.2-3B_4x3_fix_tail.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/kenken6696_-_Llama-3.2-3B_4x3_fix_tail-gguf/blob/main/Llama-3.2-3B_4x3_fix_tail.Q3_K_S.gguf) | Q3_K_S | 1.44GB | | [Llama-3.2-3B_4x3_fix_tail.IQ3_M.gguf](https://huggingface.co/RichardErkhov/kenken6696_-_Llama-3.2-3B_4x3_fix_tail-gguf/blob/main/Llama-3.2-3B_4x3_fix_tail.IQ3_M.gguf) | IQ3_M | 1.49GB | | [Llama-3.2-3B_4x3_fix_tail.Q3_K.gguf](https://huggingface.co/RichardErkhov/kenken6696_-_Llama-3.2-3B_4x3_fix_tail-gguf/blob/main/Llama-3.2-3B_4x3_fix_tail.Q3_K.gguf) | Q3_K | 1.57GB | | [Llama-3.2-3B_4x3_fix_tail.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/kenken6696_-_Llama-3.2-3B_4x3_fix_tail-gguf/blob/main/Llama-3.2-3B_4x3_fix_tail.Q3_K_M.gguf) | Q3_K_M | 1.57GB | | [Llama-3.2-3B_4x3_fix_tail.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/kenken6696_-_Llama-3.2-3B_4x3_fix_tail-gguf/blob/main/Llama-3.2-3B_4x3_fix_tail.Q3_K_L.gguf) | Q3_K_L | 1.69GB | | [Llama-3.2-3B_4x3_fix_tail.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/kenken6696_-_Llama-3.2-3B_4x3_fix_tail-gguf/blob/main/Llama-3.2-3B_4x3_fix_tail.IQ4_XS.gguf) | IQ4_XS | 1.71GB | | [Llama-3.2-3B_4x3_fix_tail.Q4_0.gguf](https://huggingface.co/RichardErkhov/kenken6696_-_Llama-3.2-3B_4x3_fix_tail-gguf/blob/main/Llama-3.2-3B_4x3_fix_tail.Q4_0.gguf) | Q4_0 | 1.79GB | | [Llama-3.2-3B_4x3_fix_tail.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/kenken6696_-_Llama-3.2-3B_4x3_fix_tail-gguf/blob/main/Llama-3.2-3B_4x3_fix_tail.IQ4_NL.gguf) | IQ4_NL | 1.79GB | | [Llama-3.2-3B_4x3_fix_tail.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/kenken6696_-_Llama-3.2-3B_4x3_fix_tail-gguf/blob/main/Llama-3.2-3B_4x3_fix_tail.Q4_K_S.gguf) | Q4_K_S | 1.8GB | | [Llama-3.2-3B_4x3_fix_tail.Q4_K.gguf](https://huggingface.co/RichardErkhov/kenken6696_-_Llama-3.2-3B_4x3_fix_tail-gguf/blob/main/Llama-3.2-3B_4x3_fix_tail.Q4_K.gguf) | Q4_K | 1.88GB | | [Llama-3.2-3B_4x3_fix_tail.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/kenken6696_-_Llama-3.2-3B_4x3_fix_tail-gguf/blob/main/Llama-3.2-3B_4x3_fix_tail.Q4_K_M.gguf) | Q4_K_M | 1.88GB | | [Llama-3.2-3B_4x3_fix_tail.Q4_1.gguf](https://huggingface.co/RichardErkhov/kenken6696_-_Llama-3.2-3B_4x3_fix_tail-gguf/blob/main/Llama-3.2-3B_4x3_fix_tail.Q4_1.gguf) | Q4_1 | 1.95GB | | [Llama-3.2-3B_4x3_fix_tail.Q5_0.gguf](https://huggingface.co/RichardErkhov/kenken6696_-_Llama-3.2-3B_4x3_fix_tail-gguf/blob/main/Llama-3.2-3B_4x3_fix_tail.Q5_0.gguf) | Q5_0 | 2.11GB | | [Llama-3.2-3B_4x3_fix_tail.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/kenken6696_-_Llama-3.2-3B_4x3_fix_tail-gguf/blob/main/Llama-3.2-3B_4x3_fix_tail.Q5_K_S.gguf) | Q5_K_S | 2.11GB | | [Llama-3.2-3B_4x3_fix_tail.Q5_K.gguf](https://huggingface.co/RichardErkhov/kenken6696_-_Llama-3.2-3B_4x3_fix_tail-gguf/blob/main/Llama-3.2-3B_4x3_fix_tail.Q5_K.gguf) | Q5_K | 2.16GB | | [Llama-3.2-3B_4x3_fix_tail.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/kenken6696_-_Llama-3.2-3B_4x3_fix_tail-gguf/blob/main/Llama-3.2-3B_4x3_fix_tail.Q5_K_M.gguf) | Q5_K_M | 2.16GB | | [Llama-3.2-3B_4x3_fix_tail.Q5_1.gguf](https://huggingface.co/RichardErkhov/kenken6696_-_Llama-3.2-3B_4x3_fix_tail-gguf/blob/main/Llama-3.2-3B_4x3_fix_tail.Q5_1.gguf) | Q5_1 | 2.28GB | | [Llama-3.2-3B_4x3_fix_tail.Q6_K.gguf](https://huggingface.co/RichardErkhov/kenken6696_-_Llama-3.2-3B_4x3_fix_tail-gguf/blob/main/Llama-3.2-3B_4x3_fix_tail.Q6_K.gguf) | Q6_K | 2.46GB | | [Llama-3.2-3B_4x3_fix_tail.Q8_0.gguf](https://huggingface.co/RichardErkhov/kenken6696_-_Llama-3.2-3B_4x3_fix_tail-gguf/blob/main/Llama-3.2-3B_4x3_fix_tail.Q8_0.gguf) | Q8_0 | 3.19GB | Original model description: --- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
AlekseyCalvin/lenin_wan14b_t2v_lora
AlekseyCalvin
2025-03-25T13:00:28Z
0
0
null
[ "image-to-video", "lora", "replicate", "text-to-video", "video", "video-generation", "en", "zh", "base_model:Wan-AI/Wan2.1-T2V-14B-Diffusers", "base_model:adapter:Wan-AI/Wan2.1-T2V-14B-Diffusers", "license:apache-2.0", "region:us" ]
text-to-video
2025-03-25T12:27:48Z
--- license: apache-2.0 language: - en - zh tags: - image-to-video - lora - replicate - text-to-video - video - video-generation base_model: "Wan-AI/Wan2.1-T2V-14B-Diffusers" pipeline_tag: text-to-video # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: LEN Vladimir Lenin --- # Lenin_Wan14B_T2V_Lora <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the Wan2.1 14b video generation model. It can be used with diffusers or ComfyUI, and can be loaded against both the text-to-video and image-to-video Wan2.1 models. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/wan-lora-trainer/train ## Trigger words You should use `LEN Vladimir Lenin` to trigger the video generation. ## Use this LoRA Replicate has a collection of Wan2.1 models that are optimised for speed and cost. They can also be used with this LoRA: - https://replicate.com/collections/wan-video - https://replicate.com/fofr/wan2.1-with-lora ### Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "LEN Vladimir Lenin", "lora_url": "https://huggingface.co/alekseycalvin/lenin_wan14b_t2v_lora/resolve/main/wan2.1-14b-len-vladimir-lenin-lora.safetensors" } output = replicate.run( "fofr/wan2.1-with-lora:f83b84064136a38415a3aff66c326f94c66859b8ad7a2cb432e2822774f07b08", model="14b", input=input ) for index, item in enumerate(output): with open(f"output_{index}.mp4", "wb") as file: file.write(item.read()) ``` ### Using with Diffusers ```py pip install git+https://github.com/huggingface/diffusers.git ``` ```py import torch from diffusers.utils import export_to_video from diffusers import AutoencoderKLWan, WanPipeline from diffusers.schedulers.scheduling_unipc_multistep import UniPCMultistepScheduler model_id = "Wan-AI/Wan2.1-T2V-14B-Diffusers" vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32) pipe = WanPipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.bfloat16) flow_shift = 3.0 # 5.0 for 720P, 3.0 for 480P pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=flow_shift) pipe.to("cuda") pipe.load_lora_weights("alekseycalvin/lenin_wan14b_t2v_lora") pipe.enable_model_cpu_offload() #for low-vram environments prompt = "LEN Vladimir Lenin" negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards" output = pipe( prompt=prompt, negative_prompt=negative_prompt, height=480, width=832, num_frames=81, guidance_scale=5.0, ).frames[0] export_to_video(output, "output.mp4", fps=16) ``` ## Training details - Steps: 750 - Learning rate: 0.0002 - LoRA rank: 32 ## Contribute your own examples You can use the [community tab](https://huggingface.co/alekseycalvin/lenin_wan14b_t2v_lora/discussions) to add videos that show off what youโ€™ve made with this LoRA.
RayneAmes/kokujin1
RayneAmes
2025-03-25T12:59:48Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-25T12:35:23Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
welashi/my_ner_model
welashi
2025-03-25T12:59:18Z
0
0
transformers
[ "transformers", "safetensors", "distilbert", "token-classification", "generated_from_trainer", "dataset:wnut_17", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2025-03-25T12:57:57Z
--- library_name: transformers license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - wnut_17 metrics: - precision - recall - f1 - accuracy model-index: - name: my_ner_model results: - task: name: Token Classification type: token-classification dataset: name: wnut_17 type: wnut_17 config: wnut_17 split: test args: wnut_17 metrics: - name: Precision type: precision value: 0.5209059233449478 - name: Recall type: recall value: 0.27710843373493976 - name: F1 type: f1 value: 0.36176648517846344 - name: Accuracy type: accuracy value: 0.9407036894532085 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_ner_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the wnut_17 dataset. It achieves the following results on the evaluation set: - Loss: 0.2774 - Precision: 0.5209 - Recall: 0.2771 - F1: 0.3618 - Accuracy: 0.9407 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 213 | 0.2812 | 0.4724 | 0.2298 | 0.3092 | 0.9374 | | No log | 2.0 | 426 | 0.2774 | 0.5209 | 0.2771 | 0.3618 | 0.9407 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.5.1+cu124 - Datasets 3.4.1 - Tokenizers 0.21.0
gallilmaimon/l3_good
gallilmaimon
2025-03-25T12:59:07Z
0
0
transformers
[ "transformers", "safetensors", "speech_language_model", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-03-25T12:55:23Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
selmanbaysan/berturk-base_fine_tuned
selmanbaysan
2025-03-25T12:58:03Z
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:1533351", "loss:MultipleNegativesRankingLoss", "loss:SoftmaxLoss", "loss:CoSENTLoss", "dataset:selmanbaysan/msmarco-tr_fine_tuning_dataset", "dataset:selmanbaysan/fiqa-tr_fine_tuning_dataset", "dataset:selmanbaysan/scifact-tr_fine_tuning_dataset", "dataset:selmanbaysan/nfcorpus-tr_fine_tuning_dataset", "dataset:selmanbaysan/multinli_tr_fine_tuning_dataset", "dataset:selmanbaysan/snli_tr_fine_tuning_dataset", "dataset:selmanbaysan/stsb-tr", "dataset:selmanbaysan/wmt16_en_tr_fine_tuning_dataset", "dataset:selmanbaysan/quora-tr_fine_tuning_dataset", "dataset:selmanbaysan/xnli_tr_fine_tuning_dataset", "arxiv:1908.10084", "arxiv:1705.00652", "base_model:selmanbaysan/berturk_base_contrastive_loss_training", "base_model:finetune:selmanbaysan/berturk_base_contrastive_loss_training", "model-index", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-03-25T12:57:45Z
--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:1533351 - loss:MultipleNegativesRankingLoss - loss:SoftmaxLoss - loss:CoSENTLoss base_model: selmanbaysan/berturk_base_contrastive_loss_training widget: - source_sentence: CIA, filmi indirdi ve filmi ertesi gรผn BirleลŸmiลŸ Milletlere gรถtรผrdรผ. sentences: - Bir aรงฤฑklama yapmalฤฑsฤฑn! Wolverstone'a ne oldu? - CIA, BMโ€™nin filmi hemen gรถrmesi gerektiฤŸini dรผลŸรผnรผyordu. - Benim yolum en zor yoldur. - source_sentence: Port Royal'de bu serseriyi bekleyen bir idam sehpasฤฑ var. Kanlฤฑ Korsan buna mรผdahale ederdi ama Lord Julian รถnce davranฤฑp ona engel oldu. sentences: - Babamฤฑz bunlarฤฑn hayvan deฤŸil yaratฤฑk olduฤŸunu sรถyledi. - Port Royal suรงlularฤฑ cezalandฤฑrmak iรงin olanaklara sahiptir. - Geรง Anneler Gรผnรผ kahvaltฤฑsฤฑna bazฤฑ arkadaลŸlar sฤฑrayla ev sahipliฤŸi yapฤฑyorlar. - source_sentence: satฤฑn almak iรงin hangi boyut Fitbit ลŸarj sentences: - Texas A&M'den bir eฤŸitim, yฤฑldan yฤฑla รงok arzu edilen ve รงok uygun fiyatlฤฑ olmaya devam ediyor. Texas A&M'e bir yฤฑl boyunca katฤฑlmak iรงin toplam ortalama katฤฑlฤฑm maliyeti yaklaลŸฤฑk 22,470 $ (devlet iรงi ikamet edenler iรงin), eฤŸitim ve harรง, oda ve yรถnetim kurulu, kitaplar, ulaลŸฤฑm ve รงeลŸitli masraflar iรงerir. Kolej ฤฐstasyonu'ndaki Texas A&M รœniversitesi'nde dรถnem baลŸฤฑna 15 lisans kredi saatine dayanarak; bazฤฑ harรง ve harรงlar buraya yansฤฑtฤฑlmamฤฑลŸtฤฑr. - ฤฐlk fitbitimi satฤฑn almak istiyorum ve ลŸarj saatine karar verdim. Bununla birlikte, bileฤŸimi รถlรงtรผkten sonra, 6,5 inรงte geldi. Mevcut boyutlarฤฑ kontrol ettikten sonra kรผรงรผk ve bรผyรผk arasฤฑndayฤฑm gibi gรถrรผnรผyor. Kรผรงรผk 6,7'ye รงฤฑkar ve bรผyรผk 6.3'ten baลŸlar. Hangisinin daha iyi olacaฤŸฤฑndan gerรงekten emin deฤŸilim. - Atriyal Dalgalanma Nedenleri. Atriyal dalgalanma, kalbin anormalliklerinden veya hastalฤฑklarฤฑndan, vรผcudun baลŸka bir yerinde kalbi etkileyen bir hastalฤฑktan veya elektriksel dรผrtรผlerin kalp yoluyla bulaลŸma ลŸeklini deฤŸiลŸtiren maddelerin tรผketilmesinden kaynaklanabilir. Bazฤฑ insanlarda, altta yatan hiรงbir neden bulunmaz. - source_sentence: '"Ben kimim" sorusuna nasฤฑl cevap veririm?' sentences: - Notlarฤฑmฤฑ nasฤฑl ezberleyebilirim? - Birinin en zor soru olan "ben kimim?" sorusuna nasฤฑl cevap verebileceฤŸi nasฤฑl aรงฤฑklanabilir? - Donald Trump'ฤฑn 2016 seรงimlerini kazanma ihtimali nedir? - source_sentence: Stoklara nasฤฑl yatฤฑrฤฑm yapabilirim? sentences: - ' Bu soru yรผklรผ ama denemek iรงin elimden geleni yapacaฤŸฤฑm. ร–ncelikle, hisse senetlerine yatฤฑrฤฑm yapmadan รถnce hazฤฑr olup olmadฤฑฤŸฤฑnฤฑzฤฑ belirlemeniz gerekir. Yรผksek faizli borcunuz varsa, hisse senetlerine yatฤฑrฤฑm yapmadan รถnce onu รถdemeniz daha iyi olacaktฤฑr. Hisse senetleri uzun vadede yaklaลŸฤฑk %8-10 getiri saฤŸlar, bu nedenle %8-10''dan daha yรผksek faizli herhangi bir borcunuzu รถdemeniz daha iyi olur. ร‡oฤŸu insan, 401k''larฤฑnda veya Roth IRA''larฤฑnda ortak fonlar aracฤฑlฤฑฤŸฤฑyla hisse senetlerine baลŸlar. Bireysel hisse senetleri yerine ortak fonlara yatฤฑrฤฑm yapmak istiyorsanฤฑz, รงok okumalฤฑ ve รถฤŸrenmelisiniz. Bir aracฤฑ hesap veya hisse senedi aklฤฑnฤฑzda varsa, doฤŸrudan ลŸirkete DRIP (temettรผ yeniden yatฤฑrma planฤฑ) aracฤฑlฤฑฤŸฤฑyla yatฤฑrฤฑm yapabilirsiniz. Farklฤฑ aracฤฑ kurumlarฤฑ karลŸฤฑlaลŸtฤฑrarak size en uygun olanฤฑ belirlemeniz gerekir. ฤฐnternet bilgisine sahip olduฤŸunuzu gรถz รถnรผnde bulundurarak, daha dรผลŸรผk komisyonlar sunan bir indirimli aracฤฑ kurum kullanmanฤฑzฤฑ รถneririm. ฤฐyi bir kฤฑlavuz, yatฤฑrฤฑm yaptฤฑฤŸฤฑnฤฑz tutarฤฑn %1''inden daha az komisyon รถdemektir. ร‡evrimiรงi aracฤฑ hesabฤฑnฤฑzฤฑ aรงฤฑp iรงine para yatฤฑrdฤฑktan sonra, hisse senedi satฤฑn alma iลŸlemi oldukรงa basittir. Satฤฑn almak istediฤŸiniz hisse senedi miktarฤฑ iรงin bir emir verin. Bu, mevcut piyasa fiyatฤฑnda bir satฤฑn alma anlamฤฑna gelen bir piyasa emri olabilir. Veya fiyatฤฑ kontrol edebileceฤŸiniz bir sฤฑnฤฑr emri kullanabilirsiniz. Yeni baลŸlayanlar iรงin birรงok iyi kitap vardฤฑr. KiลŸisel olarak, Motley Fool''dan รถฤŸrendim. Ve son olarak, eฤŸlenin. ร–ฤŸrendiฤŸiniz kadarฤฑnฤฑ รถฤŸrenin ve kulรผbรผnรผzรผn tadฤฑnฤฑ รงฤฑkarฤฑn.' - '"En iyi รงรถzรผm, arabayฤฑ satฤฑn almak ve kendi kredinizi almak (ChrisInEdmonton''un yanฤฑtladฤฑฤŸฤฑ gibi). Buna raฤŸmen, kredi birliฤŸim, bir baลŸkasฤฑnฤฑ baลŸlฤฑฤŸa eklerken hala bir kredim olduฤŸunda bir baลŸlฤฑk kayฤฑt รผcreti iรงin izin verdi. BaลŸlฤฑk sahibi olan bankaya, bir baลŸkasฤฑnฤฑ baลŸlฤฑฤŸa eklemek iรงin bir hรผkรผm olup olmadฤฑฤŸฤฑnฤฑ sorabilirsiniz. Benim iรงin toplam maliyet, bankada bir รถฤŸleden sonra ve yaklaลŸฤฑk 20 veya 40 dolar (bir sรผredir) oldu."' - 'ร–ncelikle varsayฤฑmฤฑnฤฑz doฤŸru: Bรผyรผk bir miktar YetAnotherCryptoCoin''i ICO''sundan kฤฑsa bir sรผre sonra nasฤฑl nakde รงevirebilirsiniz? Kripto borsalarฤฑ yeni bir para birimini eklemek iรงin biraz zaman alฤฑr, hatta hiรง eklemeyebilirler. Ve hatta eklediklerinde, iลŸlem hacmi genellikle dรผลŸรผktรผr. Sanฤฑrฤฑm bu, yatฤฑrฤฑmcฤฑlar iรงin gerรงekten รงekici olmayan ลŸeydir (teknoloji tutkunlarฤฑndan ayrฤฑ olarak), yรผksek volatilite dฤฑลŸฤฑnda. Gรผvenilir bir iลŸlem yeteneฤŸi tamamen eksikliฤŸi.' datasets: - selmanbaysan/msmarco-tr_fine_tuning_dataset - selmanbaysan/fiqa-tr_fine_tuning_dataset - selmanbaysan/scifact-tr_fine_tuning_dataset - selmanbaysan/nfcorpus-tr_fine_tuning_dataset - selmanbaysan/multinli_tr_fine_tuning_dataset - selmanbaysan/snli_tr_fine_tuning_dataset - selmanbaysan/stsb-tr - selmanbaysan/wmt16_en_tr_fine_tuning_dataset - selmanbaysan/quora-tr_fine_tuning_dataset - selmanbaysan/xnli_tr_fine_tuning_dataset pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - pearson_cosine - spearman_cosine - cosine_accuracy - cosine_accuracy_threshold - cosine_f1 - cosine_f1_threshold - cosine_precision - cosine_recall - cosine_ap - cosine_mcc model-index: - name: SentenceTransformer based on selmanbaysan/berturk_base_contrastive_loss_training results: - task: type: semantic-similarity name: Semantic Similarity dataset: name: stsb tr type: stsb-tr metrics: - type: pearson_cosine value: 0.8109525221457314 name: Pearson Cosine - type: spearman_cosine value: 0.8168105572572449 name: Spearman Cosine - task: type: binary-classification name: Binary Classification dataset: name: snli tr type: snli-tr metrics: - type: cosine_accuracy value: 0.7326 name: Cosine Accuracy - type: cosine_accuracy_threshold value: 0.6572713851928711 name: Cosine Accuracy Threshold - type: cosine_f1 value: 0.600581677169171 name: Cosine F1 - type: cosine_f1_threshold value: 0.4847041368484497 name: Cosine F1 Threshold - type: cosine_precision value: 0.5033516148689823 name: Cosine Precision - type: cosine_recall value: 0.7443676779813758 name: Cosine Recall - type: cosine_ap value: 0.6132056266749955 name: Cosine Ap - type: cosine_mcc value: 0.3561722570448152 name: Cosine Mcc - task: type: binary-classification name: Binary Classification dataset: name: xnli tr type: xnli-tr metrics: - type: cosine_accuracy value: 0.7345381526104418 name: Cosine Accuracy - type: cosine_accuracy_threshold value: 0.7267703413963318 name: Cosine Accuracy Threshold - type: cosine_f1 value: 0.603629417382999 name: Cosine F1 - type: cosine_f1_threshold value: 0.5046486854553223 name: Cosine F1 Threshold - type: cosine_precision value: 0.5 name: Cosine Precision - type: cosine_recall value: 0.7614457831325301 name: Cosine Recall - type: cosine_ap value: 0.633783326089055 name: Cosine Ap - type: cosine_mcc value: 0.358990791322683 name: Cosine Mcc - task: type: binary-classification name: Binary Classification dataset: name: wmt16 type: wmt16 metrics: - type: cosine_accuracy value: 0.999000999000999 name: Cosine Accuracy - type: cosine_accuracy_threshold value: 0.2128763496875763 name: Cosine Accuracy Threshold - type: cosine_f1 value: 0.9995002498750626 name: Cosine F1 - type: cosine_f1_threshold value: 0.2128763496875763 name: Cosine F1 Threshold - type: cosine_precision value: 1.0 name: Cosine Precision - type: cosine_recall value: 0.999000999000999 name: Cosine Recall - type: cosine_ap value: 1.0 name: Cosine Ap - type: cosine_mcc value: 0.0 name: Cosine Mcc - task: type: binary-classification name: Binary Classification dataset: name: msmarco tr type: msmarco-tr metrics: - type: cosine_accuracy value: 0.9999682942295498 name: Cosine Accuracy - type: cosine_accuracy_threshold value: -0.04683864116668701 name: Cosine Accuracy Threshold - type: cosine_f1 value: 0.9999841468634569 name: Cosine F1 - type: cosine_f1_threshold value: -0.04683864116668701 name: Cosine F1 Threshold - type: cosine_precision value: 1.0 name: Cosine Precision - type: cosine_recall value: 0.9999682942295498 name: Cosine Recall - type: cosine_ap value: 1.0 name: Cosine Ap - type: cosine_mcc value: 0.0 name: Cosine Mcc - task: type: binary-classification name: Binary Classification dataset: name: fiqa tr type: fiqa-tr metrics: - type: cosine_accuracy value: 0.9991922455573505 name: Cosine Accuracy - type: cosine_accuracy_threshold value: 0.03544411063194275 name: Cosine Accuracy Threshold - type: cosine_f1 value: 0.9995959595959596 name: Cosine F1 - type: cosine_f1_threshold value: 0.03544411063194275 name: Cosine F1 Threshold - type: cosine_precision value: 1.0 name: Cosine Precision - type: cosine_recall value: 0.9991922455573505 name: Cosine Recall - type: cosine_ap value: 1.0 name: Cosine Ap - type: cosine_mcc value: 0.0 name: Cosine Mcc - task: type: binary-classification name: Binary Classification dataset: name: quora tr type: quora-tr metrics: - type: cosine_accuracy value: 0.9998688696564385 name: Cosine Accuracy - type: cosine_accuracy_threshold value: 0.16285157203674316 name: Cosine Accuracy Threshold - type: cosine_f1 value: 0.9999344305291455 name: Cosine F1 - type: cosine_f1_threshold value: 0.16285157203674316 name: Cosine F1 Threshold - type: cosine_precision value: 1.0 name: Cosine Precision - type: cosine_recall value: 0.9998688696564385 name: Cosine Recall - type: cosine_ap value: 1.0 name: Cosine Ap - type: cosine_mcc value: 0.0 name: Cosine Mcc - task: type: binary-classification name: Binary Classification dataset: name: nfcorpus tr type: nfcorpus-tr metrics: - type: cosine_accuracy value: 0.9999121651295564 name: Cosine Accuracy - type: cosine_accuracy_threshold value: -0.13325101137161255 name: Cosine Accuracy Threshold - type: cosine_f1 value: 0.9999560806359523 name: Cosine F1 - type: cosine_f1_threshold value: -0.13325101137161255 name: Cosine F1 Threshold - type: cosine_precision value: 1.0 name: Cosine Precision - type: cosine_recall value: 0.9999121651295564 name: Cosine Recall - type: cosine_ap value: 1.0 name: Cosine Ap - type: cosine_mcc value: 0.0 name: Cosine Mcc --- # SentenceTransformer based on selmanbaysan/berturk_base_contrastive_loss_training This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [selmanbaysan/berturk_base_contrastive_loss_training](https://huggingface.co/selmanbaysan/berturk_base_contrastive_loss_training) on the [msmarco-tr](https://huggingface.co/datasets/selmanbaysan/msmarco-tr_fine_tuning_dataset), [fiqa-tr](https://huggingface.co/datasets/selmanbaysan/fiqa-tr_fine_tuning_dataset), [scifact-tr](https://huggingface.co/datasets/selmanbaysan/scifact-tr_fine_tuning_dataset), [nfcorpus-tr](https://huggingface.co/datasets/selmanbaysan/nfcorpus-tr_fine_tuning_dataset), [multinli-tr](https://huggingface.co/datasets/selmanbaysan/multinli_tr_fine_tuning_dataset), [snli-tr](https://huggingface.co/datasets/selmanbaysan/snli_tr_fine_tuning_dataset), [stsb-tr](https://huggingface.co/datasets/selmanbaysan/stsb-tr) and [wmt16](https://huggingface.co/datasets/selmanbaysan/wmt16_en_tr_fine_tuning_dataset) datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [selmanbaysan/berturk_base_contrastive_loss_training](https://huggingface.co/selmanbaysan/berturk_base_contrastive_loss_training) <!-- at revision 007e20ef9ebac5677588b87eaf7250617a780034 --> - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity - **Training Datasets:** - [msmarco-tr](https://huggingface.co/datasets/selmanbaysan/msmarco-tr_fine_tuning_dataset) - [fiqa-tr](https://huggingface.co/datasets/selmanbaysan/fiqa-tr_fine_tuning_dataset) - [scifact-tr](https://huggingface.co/datasets/selmanbaysan/scifact-tr_fine_tuning_dataset) - [nfcorpus-tr](https://huggingface.co/datasets/selmanbaysan/nfcorpus-tr_fine_tuning_dataset) - [multinli-tr](https://huggingface.co/datasets/selmanbaysan/multinli_tr_fine_tuning_dataset) - [snli-tr](https://huggingface.co/datasets/selmanbaysan/snli_tr_fine_tuning_dataset) - [stsb-tr](https://huggingface.co/datasets/selmanbaysan/stsb-tr) - [wmt16](https://huggingface.co/datasets/selmanbaysan/wmt16_en_tr_fine_tuning_dataset) <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the ๐Ÿค— Hub model = SentenceTransformer("selmanbaysan/berturk-base_fine_tuned") # Run inference sentences = [ 'Stoklara nasฤฑl yatฤฑrฤฑm yapabilirim?', "\nBu soru yรผklรผ ama denemek iรงin elimden geleni yapacaฤŸฤฑm. ร–ncelikle, hisse senetlerine yatฤฑrฤฑm yapmadan รถnce hazฤฑr olup olmadฤฑฤŸฤฑnฤฑzฤฑ belirlemeniz gerekir. Yรผksek faizli borcunuz varsa, hisse senetlerine yatฤฑrฤฑm yapmadan รถnce onu รถdemeniz daha iyi olacaktฤฑr. Hisse senetleri uzun vadede yaklaลŸฤฑk %8-10 getiri saฤŸlar, bu nedenle %8-10'dan daha yรผksek faizli herhangi bir borcunuzu รถdemeniz daha iyi olur. ร‡oฤŸu insan, 401k'larฤฑnda veya Roth IRA'larฤฑnda ortak fonlar aracฤฑlฤฑฤŸฤฑyla hisse senetlerine baลŸlar. Bireysel hisse senetleri yerine ortak fonlara yatฤฑrฤฑm yapmak istiyorsanฤฑz, รงok okumalฤฑ ve รถฤŸrenmelisiniz. Bir aracฤฑ hesap veya hisse senedi aklฤฑnฤฑzda varsa, doฤŸrudan ลŸirkete DRIP (temettรผ yeniden yatฤฑrma planฤฑ) aracฤฑlฤฑฤŸฤฑyla yatฤฑrฤฑm yapabilirsiniz. Farklฤฑ aracฤฑ kurumlarฤฑ karลŸฤฑlaลŸtฤฑrarak size en uygun olanฤฑ belirlemeniz gerekir. ฤฐnternet bilgisine sahip olduฤŸunuzu gรถz รถnรผnde bulundurarak, daha dรผลŸรผk komisyonlar sunan bir indirimli aracฤฑ kurum kullanmanฤฑzฤฑ รถneririm. ฤฐyi bir kฤฑlavuz, yatฤฑrฤฑm yaptฤฑฤŸฤฑnฤฑz tutarฤฑn %1'inden daha az komisyon รถdemektir. ร‡evrimiรงi aracฤฑ hesabฤฑnฤฑzฤฑ aรงฤฑp iรงine para yatฤฑrdฤฑktan sonra, hisse senedi satฤฑn alma iลŸlemi oldukรงa basittir. Satฤฑn almak istediฤŸiniz hisse senedi miktarฤฑ iรงin bir emir verin. Bu, mevcut piyasa fiyatฤฑnda bir satฤฑn alma anlamฤฑna gelen bir piyasa emri olabilir. Veya fiyatฤฑ kontrol edebileceฤŸiniz bir sฤฑnฤฑr emri kullanabilirsiniz. Yeni baลŸlayanlar iรงin birรงok iyi kitap vardฤฑr. KiลŸisel olarak, Motley Fool'dan รถฤŸrendim. Ve son olarak, eฤŸlenin. ร–ฤŸrendiฤŸiniz kadarฤฑnฤฑ รถฤŸrenin ve kulรผbรผnรผzรผn tadฤฑnฤฑ รงฤฑkarฤฑn.", "ร–ncelikle varsayฤฑmฤฑnฤฑz doฤŸru: Bรผyรผk bir miktar YetAnotherCryptoCoin'i ICO'sundan kฤฑsa bir sรผre sonra nasฤฑl nakde รงevirebilirsiniz? Kripto borsalarฤฑ yeni bir para birimini eklemek iรงin biraz zaman alฤฑr, hatta hiรง eklemeyebilirler. Ve hatta eklediklerinde, iลŸlem hacmi genellikle dรผลŸรผktรผr. Sanฤฑrฤฑm bu, yatฤฑrฤฑmcฤฑlar iรงin gerรงekten รงekici olmayan ลŸeydir (teknoloji tutkunlarฤฑndan ayrฤฑ olarak), yรผksek volatilite dฤฑลŸฤฑnda. Gรผvenilir bir iลŸlem yeteneฤŸi tamamen eksikliฤŸi.", ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Semantic Similarity * Dataset: `stsb-tr` * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.811 | | **spearman_cosine** | **0.8168** | #### Binary Classification * Datasets: `snli-tr`, `xnli-tr`, `wmt16`, `msmarco-tr`, `fiqa-tr`, `quora-tr` and `nfcorpus-tr` * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator) | Metric | snli-tr | xnli-tr | wmt16 | msmarco-tr | fiqa-tr | quora-tr | nfcorpus-tr | |:--------------------------|:-----------|:-----------|:--------|:-----------|:--------|:---------|:------------| | cosine_accuracy | 0.7326 | 0.7345 | 0.999 | 1.0 | 0.9992 | 0.9999 | 0.9999 | | cosine_accuracy_threshold | 0.6573 | 0.7268 | 0.2129 | -0.0468 | 0.0354 | 0.1629 | -0.1333 | | cosine_f1 | 0.6006 | 0.6036 | 0.9995 | 1.0 | 0.9996 | 0.9999 | 1.0 | | cosine_f1_threshold | 0.4847 | 0.5046 | 0.2129 | -0.0468 | 0.0354 | 0.1629 | -0.1333 | | cosine_precision | 0.5034 | 0.5 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | | cosine_recall | 0.7444 | 0.7614 | 0.999 | 1.0 | 0.9992 | 0.9999 | 0.9999 | | **cosine_ap** | **0.6132** | **0.6338** | **1.0** | **1.0** | **1.0** | **1.0** | **1.0** | | cosine_mcc | 0.3562 | 0.359 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Datasets <details><summary>msmarco-tr</summary> #### msmarco-tr * Dataset: [msmarco-tr](https://huggingface.co/datasets/selmanbaysan/msmarco-tr_fine_tuning_dataset) at [f03d837](https://huggingface.co/datasets/selmanbaysan/msmarco-tr_fine_tuning_dataset/tree/f03d83704e5ea276665384ca6d8bee3b19632c80) * Size: 253,332 training samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 4 tokens</li><li>mean: 9.75 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>min: 18 tokens</li><li>mean: 81.59 tokens</li><li>max: 512 tokens</li></ul> | * Samples: | anchor | positive | |:-------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>Spagetti ve et sosu servisinde kaรง kalori</code> | <code>Gฤฑda Bilgisi. Makarna Yemekleri kategorisinde Et Soslu Spagetti ile 100 g / mL'ye gรถre toplam 90.0 kalori ve aลŸaฤŸฤฑdaki beslenme gerรงekleri vardฤฑr: 5.1 g protein, 15.2 g karbonhidrat ve 1.0 g yaฤŸ.</code> | | <code>galveston okyanusu ne kadar derin</code> | <code>galveston รงok sฤฑฤŸ olduฤŸu iรงin mucky - EฤŸer kฤฑyฤฑdan 5 mil yรผrรผmek olsaydฤฑ, asla 10 veya 12 feet derinliฤŸinden fazla olmazdฤฑ. Galveston Kรถrfezi รงok sฤฑฤŸ, sadece 9 feet derinliฤŸinde, bu yรผzden kรถrfezden ve derin okyanusa bir kez รงฤฑktฤฑฤŸฤฑnฤฑzda, su o kadar รงamurlu olmayacak.</code> | | <code>amlodipin diyabete neden olabilir</code> | <code>Hipertansiyon tedavisi iรงin Amlodipin tedavisine konduฤŸunuzda referanslara gรถre, diyabetin yeni baลŸlangฤฑcฤฑnฤฑ geliลŸtirme olasฤฑlฤฑฤŸฤฑnฤฑz %34 daha dรผลŸรผktรผr. Hipertansiyon tedavisi iรงin Amlodipin tedavisine konduฤŸunuzda referanslara gรถre, diyabetin yeni baลŸlangฤฑcฤฑnฤฑ geliลŸtirme olasฤฑlฤฑฤŸฤฑnฤฑz %34 daha dรผลŸรผktรผr. Kรผรงรผk dรผzenleme?</code> | * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` </details> <details><summary>fiqa-tr</summary> #### fiqa-tr * Dataset: [fiqa-tr](https://huggingface.co/datasets/selmanbaysan/fiqa-tr_fine_tuning_dataset) at [bbc9e91](https://huggingface.co/datasets/selmanbaysan/fiqa-tr_fine_tuning_dataset/tree/bbc9e91b5710d0ac4032b5c9e94066470f928c8c) * Size: 14,166 training samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 4 tokens</li><li>mean: 17.67 tokens</li><li>max: 54 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 196.19 tokens</li><li>max: 512 tokens</li></ul> | * Samples: | anchor | positive | |:-----------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>Bir iลŸ gezisinde ne tรผr masraflar iลŸ masrafฤฑ olarak kabul edilir?</code> | <code>IRS'a ait ilgili rehberlik. Genel olarak sรถyleyebileceฤŸim tek ลŸey, iลŸinizin giderlerinin dรผลŸebileceฤŸi yรถnรผndedir. Ancak bu, koลŸullara ve dรผลŸmek istediฤŸiniz gider tรผrรผne baฤŸlฤฑdฤฑr. Seyahat ฤฐลŸ seyahatinden dolayฤฑ evden uzakta olan vergi mรผkellefleri, iliลŸkili giderleri dรผลŸebilirler, bu da varฤฑลŸ noktasฤฑna ulaลŸma maliyetini, konaklama ve yemek masraflarฤฑnฤฑ ve diฤŸer normal ve gerekli giderleri iรงerir. Mรผkellefler, gรถrevlerinin onlarฤฑ evden รถnemli รถlรงรผde daha uzun sรผre uzak tutmasฤฑ ve iลŸ taleplerini karลŸฤฑlamak iรงin uyku veya dinlenmeye ihtiyaรง duymalarฤฑ durumunda "evden uzakta" olarak kabul edilirler. Yemek ve yan masraflarฤฑn gerรงek maliyetleri dรผลŸรผrรผlebilir veya mรผkellef, standart yemek yardฤฑmฤฑ ve azaltฤฑlmฤฑลŸ kayฤฑt tutma gereklilikleri kullanabilir. Kullanฤฑlan yรถnteme bakฤฑlmaksฤฑzฤฑn, yemek giderleri genellikle daha รถnce belirtildiฤŸi gibi %50 ile sฤฑnฤฑrlฤฑdฤฑr. Sadece gerรงek konaklama masraflarฤฑ gider olarak talep edilebilir ve belgeler iรงin makbuzlar tutulmalฤฑdฤฑr. Giderler makul ve uygun olmalฤฑdฤฑ...</code> | | <code>ฤฐลŸ Gideri - Kaza Sฤฑrasฤฑnda ฤฐลŸ Gezisi Sฤฑrasฤฑnda Uygulanan Araba Sigortasฤฑ Teminat Tutarฤฑ</code> | <code>Genel bir kural olarak, mil รถlรงรผmรผ indirimi veya gerรงek giderler indirimi arasฤฑnda seรงim yapmanฤฑz gerekir. Fikir, mil รถlรงรผmรผ indiriminin aracฤฑn kullanฤฑmฤฑnฤฑn tรผm maliyetlerini kapsamasฤฑdฤฑr. Park รผcretleri ve otoyol รผcretleri gibi istisnalar, her iki yรถntemin altฤฑnda ayrฤฑ ayrฤฑ indirilebilir. Mil รถlรงรผmรผ indirimi talep ederseniz sigorta maliyetlerini aรงฤฑk bir ลŸekilde indiremezsiniz. Ayrฤฑ olarak, muhtemelen aracฤฑnฤฑzฤฑn kazaya baฤŸlฤฑ olarak hasar kaybฤฑ olarak bir teminat indirimi indiremeyeceksiniz. ร–ncelikle teminattan 100 dolar รงฤฑkarฤฑrsฤฑnฤฑz ve sonra onu vergi beyannamenizden ayarlanan brรผt gelirinize (AGI) bรถleriz. Teminatฤฑnฤฑz AGI'nฤฑzฤฑn %10'undan fazla ise onu indirebilirsiniz. Not edin ki, 1500 dolar teminatฤฑ olan biri bile yฤฑllฤฑk 14.000 dolarฤฑn รผzerinde gelir elde ederse hiรงbir ลŸey indiremez. ร‡oฤŸu insan iรงin, sigorta teminatฤฑ gelire gรถre yeterince bรผyรผk deฤŸil, bu nedenle vergi indirimi iรงin uygun deฤŸildir. Kaynak</code> | | <code>Yeni bir รงevrimiรงi iลŸletme baลŸlatmak</code> | <code>Amerika BirleลŸik Devletleri'nin รงoฤŸu eyaleti, yukarฤฑda belirtildiฤŸi gibi, aลŸaฤŸฤฑdakine benzer kurallara sahiptir: Kayฤฑt รผcretleri รถdemeniz neredeyse kesin. Dรผzenleme ลŸeklinize baฤŸlฤฑ olarak, iลŸletmeniz iรงin ayrฤฑ bir vergi beyannamesi doldurmanฤฑz gerekebilir veya gerekmeyebilir. (Vergi amaรงlarฤฑ iรงin tek bir iลŸletme sahibiyseniz, kiลŸisel Form 1040'ฤฑnฤฑzฤฑn Ek C'sini doldurursunuz.) Vergi รถdeme durumunuz, net kazancฤฑnฤฑzฤฑn olup olmamasฤฑna baฤŸlฤฑdฤฑr. Bazฤฑ kayฤฑplarฤฑn da indirilebilir olabileceฤŸi mรผmkรผndรผr. (Dikkat edin, net kazancฤฑnฤฑz olmasa bile bir beyanname sunmanฤฑz gerekebilir - Beyanname sunmak ve vergi รถdemek aynฤฑ ลŸey deฤŸildir, รงรผnkรผ beyannameniz hiรงbir vergi borcu gรถstermeyebilir.) Ayrฤฑca, eyalet dรผzeyinde, ne sattฤฑฤŸฤฑnฤฑz ve nasฤฑl sattฤฑฤŸฤฑnฤฑza baฤŸlฤฑ olarak, gelir vergisi รถtesinde ek รผcretler veya vergiler รถdemeniz gerekebilir. (ร–rneฤŸin, satฤฑลŸ vergisi veya franchise vergileri devreye girebilir.) Bu konuda kendi eyalet yasalarฤฑnฤฑ kontrol etmeniz gerekir. Her zaman, durumunuza ve eyaletinize รถz...</code> | * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` </details> <details><summary>scifact-tr</summary> #### scifact-tr * Dataset: [scifact-tr](https://huggingface.co/datasets/selmanbaysan/scifact-tr_fine_tuning_dataset) at [382de5b](https://huggingface.co/datasets/selmanbaysan/scifact-tr_fine_tuning_dataset/tree/382de5b316d8c8042a23f34179a73fadc13cb53d) * Size: 919 training samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 919 samples: | | anchor | positive | |:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 8 tokens</li><li>mean: 27.49 tokens</li><li>max: 73 tokens</li></ul> | <ul><li>min: 91 tokens</li><li>mean: 360.13 tokens</li><li>max: 512 tokens</li></ul> | * Samples: | anchor | positive | |:---------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>0 boyutlu biyomalzemeler indรผktif รถzelliklere sahip deฤŸildir.</code> | <code>Nanoteknolojiler, kรถk hรผcreleri รถlรงmek, anlamak ve manipรผle etmek iรงin yararlฤฑ olabilecek yeni ortaya รงฤฑkan platformlardฤฑr. ร–rnekler arasฤฑnda, kรถk hรผcre etiketleme ve in vivo izleme iรงin manyetik nanopartikรผller ve kuantum noktalarฤฑ; hรผcre iรงi gen/oligonรผkleotit ve protein/peptit teslimatฤฑ iรงin nanopartikรผller, karbon nanotรผpler ve polypleksler; ve kรถk hรผcre farklฤฑlaลŸtฤฑrmasฤฑ ve nakli iรงin mรผhendislik yapฤฑlmฤฑลŸ nanometre รถlรงeฤŸi destekler yer alฤฑr. Bu inceleme, kรถk hรผcre izleme, farklฤฑlaลŸtฤฑrma ve nakli iรงin nanoteknolojilerin kullanฤฑmฤฑnฤฑ inceler. Ayrฤฑca, yararlฤฑlฤฑklarฤฑ ve sitotoksisiteyle ilgili olasฤฑ endiลŸeleri tartฤฑลŸฤฑrฤฑz.</code> | | <code>BirleลŸik Krallฤฑk'ta 1 milyonun 5'inde anormal PrP pozitifliฤŸi vardฤฑr.</code> | <code><br>## Amaรงlar<br>Bovin spongiform ensefalopati (BSE) salgฤฑnฤฑndan sonra alt klinik prion enfeksiyonunun yaygฤฑnlฤฑฤŸฤฑ hakkฤฑnda mevcut tahminleri daha iyi anlamak ve daha geniลŸ bir doฤŸum kohortunun etkilenip etkilenmediฤŸini gรถrmek, ayrฤฑca kan ve kan รผrรผnleri yรถnetimi ve cerrahi aletlerin iลŸlenmesiyle ilgili sonuรงlarฤฑ daha iyi anlamak iรงin arลŸivlenmiลŸ apandisit รถrnekleri รผzerine ek bir anket yapmak.<br><br>## Tasarฤฑm<br>Bรผyรผk รถlรงekli, kalฤฑcฤฑ olarak baฤŸlantฤฑsฤฑ kesilmiลŸ ve anonimleลŸtirilmiลŸ arลŸivlenmiลŸ apandisit รถrnekleri anketini tekrarlamak.<br><br>## ร‡alฤฑลŸma Alanฤฑ<br>Daha รถnceki anketin katฤฑlฤฑmฤฑnฤฑn daha dรผลŸรผk olduฤŸu bรถlgelerde ek hastaneler dahil olmak รผzere, BirleลŸik Krallฤฑk'taki 41 hastanenin patoloji bรถlรผmlerinden arลŸivlenmiลŸ apandisit รถrnekleri.<br><br>## ร–rnek<br>32.441 arลŸivlenmiลŸ apandisit รถrneฤŸi, formalin ile sabitlenmiลŸ ve parafinle gรถmรผlmรผลŸ ve anormal prion proteini (PrP) varlฤฑฤŸฤฑ iรงin test edilmiลŸ.<br><br>## Sonuรงlar<br>32.441 apandisit รถrneฤŸinin 16'sฤฑ anormal PrP iรงin pozitif รงฤฑktฤฑ, bu da genel bir yaygฤฑnlฤฑk oranฤฑ 493/m...</code> | | <code>Kolon ve rektum kanseri hastalarฤฑnฤฑn %1-1'i bรถlgesel veya uzak metastazlarla teลŸhis edilir.</code> | <code><br>Medikare'nin geri รถdeme politikasฤฑ 1998'de kolon kanseri riskini artฤฑran hastalar iรงin tarama kolon skopi kapsamฤฑ saฤŸlayarak ve 2001'de tรผm bireyler iรงin tarama kolon skopi kapsamฤฑ geniลŸleterek deฤŸiลŸtirildi.<br><br>**Amaรง:** Medikare geri รถdeme politikasฤฑndaki deฤŸiลŸikliklerin kolon skopi kullanฤฑmฤฑ veya erken evre kolon kanseri teลŸhisi artฤฑลŸฤฑ ile iliลŸkili olup olmadฤฑฤŸฤฑnฤฑ belirlemek.<br><br>**Tasarฤฑm, Ayar ve Katฤฑlฤฑmcฤฑlar:** 1992-2002 yฤฑllarฤฑ arasฤฑnda 67 yaลŸ ve รผstรผ, birincil tanฤฑsฤฑ kolon kanseri olan ve Surveillance, Epidemiology ve Sonuรงlarฤฑ (SEER) Medikare baฤŸlantฤฑlฤฑ veritabanฤฑndaki hastalar ile SEER alanlarฤฑnda ikamet eden ancak kanser tanฤฑsฤฑ almayan Medikare yararlanฤฑcฤฑlarฤฑ.<br><br>**Ana ร‡ฤฑktฤฑ ร–lรงรผmleri:** Kolonoskopi ve sigmoidoskopi kullanฤฑmฤฑndaki eฤŸilimler, kanser olmayan Medikare yararlanฤฑcฤฑlarฤฑ arasฤฑnda รงok deฤŸiลŸkenli Poisson regresyonu ile deฤŸerlendirildi. Kanserli hastalarda, evre erken (evre I) ile tรผm diฤŸer evreler (II-IV) olarak sฤฑnฤฑflandฤฑrฤฑldฤฑ. Zaman, dรถnem 1 (taramaya kapsama yok, 1992-1...</code> | * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` </details> <details><summary>nfcorpus-tr</summary> #### nfcorpus-tr * Dataset: [nfcorpus-tr](https://huggingface.co/datasets/selmanbaysan/nfcorpus-tr_fine_tuning_dataset) at [22d1ef8](https://huggingface.co/datasets/selmanbaysan/nfcorpus-tr_fine_tuning_dataset/tree/22d1ef8b6a9f1c196d1977541a66ca8eff946f06) * Size: 110,575 training samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 8 tokens</li><li>mean: 12.97 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>min: 29 tokens</li><li>mean: 378.06 tokens</li><li>max: 512 tokens</li></ul> | * Samples: | anchor | positive | |:-------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>Memeli Kanser Hรผcreleri Kolesterolden Beslenir.</code> | <code>DรผลŸรผk yoฤŸunluklu lipoprotein (LDL) reseptรถrlerinin iรงeriฤŸi, birincil meme kanserlerinden alฤฑnan dokularda belirlenmiลŸ ve bilinen prognostik รถneme sahip deฤŸiลŸkenlerle karลŸฤฑlaลŸtฤฑrฤฑlmฤฑลŸtฤฑr. DondurulmuลŸ tรผmรถr รถrnekleri seรงilmiลŸ ve 72 hastanฤฑn dokularฤฑ (bunlardan 32'si รถlmรผลŸ) incelenmiลŸtir. LDL reseptรถr iรงeriฤŸi, hayatta kalma sรผresi ile ters orantฤฑlฤฑ bir korelasyon gรถstermiลŸtir. ร‡ok deฤŸiลŸkenli istatistiksel bir yรถntemle yapฤฑlan analiz, axiller metastazฤฑn varlฤฑฤŸฤฑ, รถstrojen ve LDL reseptรถrleri iรงeriฤŸi, tรผmรถr รงapฤฑ ve DNA deseni gibi faktรถrlerin, hastalarฤฑn hayatta kalma sรผresi konusunda prognostik deฤŸer taลŸฤฑdฤฑฤŸฤฑnฤฑ gรถstermiลŸtir. Meme kanseri hastalarฤฑnda hayatta kalma sรผresini tahmin etmek iรงin geliลŸtirilmiลŸ yรถntemler, bireysel hastalar iรงin tedavi seรงiminin belirlenmesinde faydalฤฑ olabilir.</code> | | <code>Memeli Kanser Hรผcreleri Kolesterolden Beslenir.</code> | <code>ARKA PLAN: Memurun en sฤฑk teลŸhis edilen kanseri, Amerika BirleลŸik Devletleri'nde kadฤฑnlar arasฤฑnda meme kanseri. Meme kanseri riski ve hayatta kalma ile ilgili diyet faktรถrlerinin deฤŸerlendirilmesi iรงin kapsamlฤฑ araลŸtฤฑrmalar tamamlandฤฑ; ancak klinik รงฤฑkarฤฑmlar iรงeren bir รถzet rapor gerekiyor. Malzemeler ve Yร–NTEMLER: Bu inceleme, diyet ile meme kanseri oluลŸumu, tekrarฤฑ, hayatta kalma ve รถlรผmcรผllรผฤŸรผ arasฤฑndaki mevcut epidemiyolojik ve klinik deneme kanฤฑtlarฤฑnฤฑ รถzetlemektedir. ฤฐnceleme, meme kanseri alt tiplerinde risk deฤŸerlendirmesi yapan yeni epidemiyolojik รงalฤฑลŸmalarฤฑ da iรงermektedir ve aynฤฑ zamanda meme kanseri riskini deฤŸiลŸtirmeyi amaรงlayan รถnceki ve devam eden diyet mรผdahale denemelerinin รถzetini sunmaktadฤฑr. SONUร‡LAR: Mevcut literatรผr, dรผลŸรผk yaฤŸ ve yรผksek lifli diyetlerin meme kanseri karลŸฤฑsฤฑnda zayฤฑf koruyucu olabileceฤŸini, toplam enerji alฤฑmฤฑnฤฑn ve alkolรผn ise pozitif bir iliลŸki gรถsterdiฤŸini รถne sรผrmektedir. Lif, muhtemelen รถstrojen modรผlasyonu yoluyla koruyucu olabilirken, mey...</code> | | <code>Memeli Kanser Hรผcreleri Kolesterolden Beslenir.</code> | <code>Fitoestrojenler, estrojenlerle yapฤฑsal olarak benzer ve estrojenik/antiestrojenik รถzellikleri taklit ederek meme kanseri riskini etkileyebilirler. Batฤฑlฤฑ toplumlarda, tam tahฤฑllar ve muhtemelen soya gฤฑdalarฤฑ fitoestrojenlerin zengin kaynaklarฤฑdฤฑr. Alman menopoz sonrasฤฑ kadฤฑnlarda yapฤฑlan bir nรผfus tabanlฤฑ vaka-kontrol รงalฤฑลŸmasฤฑ, fitoestrojen bakฤฑmฤฑndan zengin gฤฑdalar ve diyet lignanlarla meme kanseri riski arasฤฑndaki iliลŸkiyi deฤŸerlendirmek iรงin kullanฤฑldฤฑ. Diyet verileri, 2.884 vaka ve 5.509 kontrol iรงin geรงerli bir gฤฑda sฤฑklฤฑฤŸฤฑ anketini kullanarak toplandฤฑ, bu anket fitoestrojen bakฤฑmฤฑndan zengin gฤฑdalar hakkฤฑnda ek sorular iรงeriyordu. ฤฐliลŸkiler, koลŸullu lojistik regresyon kullanฤฑlarak deฤŸerlendirildi. Tรผm analizler, ilgili risk ve karฤฑลŸtฤฑrฤฑcฤฑ faktรถrler iรงin ayarlandฤฑ. Politomlu lojistik regresyon analizi, estrojen reseptรถrรผ (ER) durumuna gรถre iliลŸkileri deฤŸerlendirmek iรงin yapฤฑldฤฑ. Soya fasulyesi, gรผneลŸ รงiรงek tohumu ve kabak tohumu tรผketiminin yรผksek ve dรผลŸรผk seviyeleri, tรผketilmeme...</code> | * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` </details> <details><summary>multinli-tr</summary> #### multinli-tr * Dataset: [multinli-tr](https://huggingface.co/datasets/selmanbaysan/multinli_tr_fine_tuning_dataset) at [a700b72](https://huggingface.co/datasets/selmanbaysan/multinli_tr_fine_tuning_dataset/tree/a700b72da7056aa52ceb234d2e8a211d035dc2c7) * Size: 392,702 training samples * Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code> * Approximate statistics based on the first 1000 samples: | | premise | hypothesis | label | |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------| | type | string | string | int | | details | <ul><li>min: 4 tokens</li><li>mean: 26.79 tokens</li><li>max: 159 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 14.55 tokens</li><li>max: 56 tokens</li></ul> | <ul><li>0: ~65.70%</li><li>1: ~34.30%</li></ul> | * Samples: | premise | hypothesis | label | |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------|:---------------| | <code>Kavramsal olarak krem kaymaฤŸฤฑnฤฑn iki temel boyutu vardฤฑr - รผrรผn ve coฤŸrafya.</code> | <code>รœrรผn ve coฤŸrafya krem kaymaฤŸฤฑnฤฑ iลŸe yarฤฑyor.</code> | <code>0</code> | | <code>Mevsim boyunca ve sanฤฑrฤฑm senin seviyendeyken onlarฤฑ bir sonraki seviyeye dรผลŸรผrรผrsรผn. EฤŸer ebeveyn takฤฑmฤฑnฤฑ รงaฤŸฤฑrmaya karar verirlerse Braves รผรงlรผ A'dan birini รงaฤŸฤฑrmaya karar verirlerse รงifte bir adam onun yerine geรงmeye gider ve bekar bir adam gelir.</code> | <code>EฤŸer insanlar hatฤฑrlarsa, bir sonraki seviyeye dรผลŸersin.</code> | <code>1</code> | | <code>Numaramฤฑzdan biri talimatlarฤฑnฤฑzฤฑ birazdan yerine getirecektir.</code> | <code>Ekibimin bir รผyesi emirlerinizi bรผyรผk bir hassasiyetle yerine getirecektir.</code> | <code>1</code> | * Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss) </details> <details><summary>snli-tr</summary> #### snli-tr * Dataset: [snli-tr](https://huggingface.co/datasets/selmanbaysan/snli_tr_fine_tuning_dataset) at [63eb107](https://huggingface.co/datasets/selmanbaysan/snli_tr_fine_tuning_dataset/tree/63eb107dfdaf0b16cfd209db25705f27f2e5e2ca) * Size: 550,152 training samples * Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code> * Approximate statistics based on the first 1000 samples: | | premise | hypothesis | label | |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------| | type | string | string | int | | details | <ul><li>min: 6 tokens</li><li>mean: 17.7 tokens</li><li>max: 54 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 10.61 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>0: ~66.60%</li><li>1: ~33.40%</li></ul> | * Samples: | premise | hypothesis | label | |:----------------------------------------------------------------|:----------------------------------------------------------|:---------------| | <code>Attaki bir kiลŸi, bozuk bir uรงaฤŸฤฑn รผzerinden atlar.</code> | <code>Bir kiลŸi atฤฑnฤฑ yarฤฑลŸma iรงin eฤŸitiyor.</code> | <code>0</code> | | <code>Attaki bir kiลŸi, bozuk bir uรงaฤŸฤฑn รผzerinden atlar.</code> | <code>Bir kiลŸi bir lokantada omlet sipariลŸ ediyor.</code> | <code>0</code> | | <code>Attaki bir kiลŸi, bozuk bir uรงaฤŸฤฑn รผzerinden atlar.</code> | <code>Bir kiลŸi aรงฤฑk havada, at รผzerinde.</code> | <code>1</code> | * Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss) </details> <details><summary>stsb-tr</summary> #### stsb-tr * Dataset: [stsb-tr](https://huggingface.co/datasets/selmanbaysan/stsb-tr) at [3d2e87d](https://huggingface.co/datasets/selmanbaysan/stsb-tr/tree/3d2e87d2a94c9af130b87ab8ed8d0c5c2e92e2df) * Size: 5,749 training samples * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> * Approximate statistics based on the first 1000 samples: | | sentence1 | sentence2 | score | |:--------|:--------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------| | type | string | string | float | | details | <ul><li>min: 5 tokens</li><li>mean: 9.9 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 9.86 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 2.23</li><li>max: 5.0</li></ul> | * Samples: | sentence1 | sentence2 | score | |:-------------------------------------------------------------------|:--------------------------------------------------------------------------------|:-----------------| | <code>Bir uรงak kalkฤฑyor.</code> | <code>Bir hava uรงaฤŸฤฑ kalkฤฑyor.</code> | <code>5.0</code> | | <code>Bir adam bรผyรผk bir flรผt รงalฤฑyor.</code> | <code>Bir adam flรผt รงalฤฑyor.</code> | <code>3.8</code> | | <code>Bir adam pizzanฤฑn รผzerine rendelenmiลŸ peynir seriyor.</code> | <code>Bir adam piลŸmemiลŸ bir pizzanฤฑn รผzerine rendelenmiลŸ peynir seriyor.</code> | <code>3.8</code> | * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "pairwise_cos_sim" } ``` </details> <details><summary>wmt16</summary> #### wmt16 * Dataset: [wmt16](https://huggingface.co/datasets/selmanbaysan/wmt16_en_tr_fine_tuning_dataset) at [9fc4e73](https://huggingface.co/datasets/selmanbaysan/wmt16_en_tr_fine_tuning_dataset/tree/9fc4e7334bdb195b396c41eed05b0dd447981ef3) * Size: 205,756 training samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 6 tokens</li><li>mean: 35.55 tokens</li><li>max: 130 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 46.88 tokens</li><li>max: 186 tokens</li></ul> | * Samples: | anchor | positive | |:------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------| | <code>Kosova'nฤฑn รถzelleลŸtirme sรผreci bรผyรผteรง altฤฑnda</code> | <code>Kosovo's privatisation process is under scrutiny</code> | | <code>Kosova, tekrar eden ลŸikayetler ฤฑลŸฤฑฤŸฤฑnda รถzelleลŸtirme sรผrecini incelemeye alฤฑyor.</code> | <code>Kosovo is taking a hard look at its privatisation process in light of recurring complaints.</code> | | <code>Southeast European Times iรงin PriลŸtine'den Muhamet BrayลŸori'nin haberi -- 21/03/12</code> | <code>By Muhamet Brajshori for Southeast European Times in Pristina -- 21/03/12</code> | * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` </details> ### Evaluation Datasets <details><summary>msmarco-tr</summary> #### msmarco-tr * Dataset: [msmarco-tr](https://huggingface.co/datasets/selmanbaysan/msmarco-tr_fine_tuning_dataset) at [f03d837](https://huggingface.co/datasets/selmanbaysan/msmarco-tr_fine_tuning_dataset/tree/f03d83704e5ea276665384ca6d8bee3b19632c80) * Size: 31,540 evaluation samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 4 tokens</li><li>mean: 9.88 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 12 tokens</li><li>mean: 82.48 tokens</li><li>max: 149 tokens</li></ul> | * Samples: | anchor | positive | |:-------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>Brian Patrick Carroll kimdir?</code> | <code>Buckethead Biyografisi. Brian Patrick Carroll (13 Mayฤฑs 1969 doฤŸumlu), profesyonel olarak Buckethead olarak bilinen, birรงok mรผzik tรผrรผnde รงalฤฑลŸmฤฑลŸ Amerikalฤฑ gitarist ve รงoklu enstrรผmantalist. 265 stรผdyo albรผmรผ, dรถrt รถzel sรผrรผm ve bir EP yayฤฑnladฤฑ. Ayrฤฑca diฤŸer sanatรงฤฑlar tarafฤฑndan 50'den fazla albรผmde seslendirdi.</code> | | <code>zolpidem bir benzodiazepin</code> | <code>Zolpidem (Ambien), imidazopiridin sฤฑnฤฑfฤฑnฤฑn bir benzodiazepin olmayan hipnotikidir. Bu ilaรง, benzodiazepin omega-1 reseptรถrรผne (seรงici olmayan omega-1, 2 ve 3 reseptรถr alt tiplerine baฤŸlanan diฤŸer benzodiazepinlerin aksine) รงok seรงici bir ลŸekilde baฤŸlanฤฑr, klorรผr kanalฤฑnฤฑn aรงฤฑlma sฤฑklฤฑฤŸฤฑnฤฑ arttฤฑrฤฑr.</code> | | <code>roti'de kalori</code> | <code>1 porsiyon Roti Akdeniz Izgara Tavuk Roti'de 257 kalori vardฤฑr. Kalori daฤŸฤฑlฤฑmฤฑ: %47 yaฤŸ, %0 karbonhidrat, %53 protein.</code> | * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` </details> <details><summary>fiqa-tr</summary> #### fiqa-tr * Dataset: [fiqa-tr](https://huggingface.co/datasets/selmanbaysan/fiqa-tr_fine_tuning_dataset) at [bbc9e91](https://huggingface.co/datasets/selmanbaysan/fiqa-tr_fine_tuning_dataset/tree/bbc9e91b5710d0ac4032b5c9e94066470f928c8c) * Size: 1,238 evaluation samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 6 tokens</li><li>mean: 18.43 tokens</li><li>max: 48 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 219.48 tokens</li><li>max: 512 tokens</li></ul> | * Samples: | anchor | positive | |:---------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>Bir geliri olmayan iลŸletme iรงin iลŸletme giderlerini talep etmek.</code> | <code>Evet, henรผz herhangi bir gelir elde etmiyorsanฤฑz iลŸletme indirimleri talep edebilirsiniz. Ancak รถncelikle iลŸletmeniz iรงin hangi yapฤฑyฤฑ tercih edeceฤŸinize karar vermelisiniz. Ya bir ลžirket Yapฤฑsฤฑ ya da Tek Sahiplik veya Ortaklฤฑk. ลžirket Yapฤฑsฤฑ EฤŸer bir ลžirket Yapฤฑsฤฑ (kurulumu daha pahalฤฑ olan) seรงerseniz, indirimleri talep edebilirsiniz ancak geliriniz yok. Bu nedenle iลŸletmeniz bir zarara uฤŸrar ve bu zararฤฑ, iลŸletmenizden elde ettiฤŸiniz gelirin giderlerinizi aลŸana kadar devam ettirirsiniz. Bu zararlar ลŸirketin iรงinde kalฤฑr ve gelecek gelir yฤฑllarฤฑnda kรขrlarฤฑnฤฑzฤฑ dengelemek iรงin devralฤฑnabilir. Daha fazla bilgi iรงin ATO - ลžirket Vergi Zararlarฤฑ'na bakฤฑn. Tek Sahiplik veya Ortaklฤฑk Yapฤฑsฤฑ EฤŸer Tek Sahiplik veya Ortaklฤฑk olarak seรงerseniz ve iลŸletmeniz bir zarara uฤŸrarsa, bu zararฤฑ diฤŸer kaynaklardan elde ettiฤŸiniz gelire karลŸฤฑ dengeleyip dengeleyemeyeceฤŸinizi kontrol etmeniz gerekir. ฤฐลŸletmenizin diฤŸer gelirinize karลŸฤฑ zararฤฑnฤฑ dengelemek iรงin aลŸaฤŸฤฑdaki testlerden birini geรงmeniz gerekir...</code> | | <code>Bir iลŸletme kontrol hesabฤฑndan baลŸka bir iลŸletme kontrol hesabฤฑna para aktarma.</code> | <code>"Her iki iลŸletme iรงin ayrฤฑ dosyalar olmalฤฑdฤฑr. Para transferi yapan iลŸletme, QB dosyasฤฑnda ""รงeki yaz"" olmalฤฑdฤฑr. Para alan iลŸletme, QB dosyasฤฑnda ""banka yatฤฑrฤฑmฤฑ"" yapmalฤฑdฤฑr. (QB'de, รถdemeyi ACH gibi baลŸka bir yรถntemle yaptฤฑฤŸฤฑnฤฑzda bile, ""รงeki yaz"" demeniz gerekir.) Hiรงbir iลŸletme, diฤŸerinin banka hesaplarฤฑnฤฑ aรงฤฑkรงa temsil etmemelidir. Her iki tarafta da, รถdemenin hangi baลŸka hesaptan geldiฤŸi/gittiฤŸi konusunda sฤฑnฤฑflandฤฑrmanฤฑz gerekecektir - Bunun doฤŸru olup olmadฤฑฤŸฤฑnฤฑ bilmek iรงin, parayฤฑ neden transfer ettiฤŸinizi ve kitaplarฤฑnฤฑzฤฑ nasฤฑl kurduฤŸunuzu bilmeniz gerekir. Sanฤฑrฤฑm bu, burada uygun/mรผmkรผn olan konunun รถtesindedir. KiลŸisel hesabฤฑnฤฑzdan iลŸinize para aktarmak, muhtemelen ortaklฤฑk sermayesi demektir, eฤŸer baลŸka bir ลŸey yoksa. ร–rneฤŸin, S Corp'ta kendinize bir maaลŸ รถdemelisiniz. EฤŸer yanlฤฑลŸlฤฑkla fazla รถderseniz, o zaman kiลŸisel hesabฤฑnฤฑzdan ลŸirketi geri bir รงek yazฤฑp hatayฤฑ dรผzeltirsiniz. Bu ortaklฤฑk sermayesi deฤŸil, muhtemelen maaลŸ รถdemelerini takip eden baลŸka bir hesaptaki b...</code> | | <code>ฤฐลŸ/yatฤฑrฤฑm iรงin ayrฤฑ bir banka hesabฤฑnฤฑz var mฤฑ, ama "iลŸ hesabฤฑ" deฤŸil mi?</code> | <code>"ฤฐลŸ iรงin ayrฤฑ bir kontrol hesabฤฑ aรงmak mantฤฑklฤฑdฤฑr. Gelir/giderlerinizi belgelemek daha basittir. Hesaba giren ve รงฤฑkan her dolarฤฑ aรงฤฑklayabilirsiniz, bunlardan bazฤฑlarฤฑnฤฑn iลŸle alakasฤฑz olduฤŸunu hatฤฑrlamanฤฑza gerek kalmadan. Kredi birliฤŸi, ikinci bir kontrol hesabฤฑ aรงmama ve รงeklerin รผzerine istediฤŸim herhangi bir ad koymama izin verdi. Bu, รงeklerin รผzerine adฤฑmฤฑn yazฤฑlmasฤฑ yerine daha iyi gรถrรผnรผyordu. Yatฤฑrฤฑmlar iรงin ayrฤฑ bir kontrol hesabฤฑna ihtiyaรง gรถrmรผyorum. Parayฤฑ, herhangi bir รผcret olmayan ve hatta biraz faiz kazandฤฑrabilen ayrฤฑ bir tasarruf hesabฤฑnda tutabilirsiniz. Ayda รงok sayฤฑda yatฤฑrฤฑm iลŸlemi yapmadฤฑฤŸฤฑnฤฑz sรผrece bu benim iรงin iลŸe yaradฤฑ. Bu ลŸekilde IRA'larฤฑ ve 529 planlarฤฑnฤฑ finanse ediyorum. Ayda 4-5 kez maaลŸ alฤฑyoruz, ancak her ay fonlara para gรถnderiyoruz. ฤฐลŸlem sayฤฑsฤฑ bรผyรผdรผkรงe bir iลŸ hesabฤฑna ihtiyacฤฑnฤฑz olacak. Bankaya her seferinde onlarca รงek yatฤฑrฤฑyorsanฤฑz, banka sizi iลŸ hesabฤฑna geรงmeye yรถnlendirecektir."</code> | * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` </details> <details><summary>quora-tr</summary> #### quora-tr * Dataset: [quora-tr](https://huggingface.co/datasets/selmanbaysan/quora-tr_fine_tuning_dataset) at [6e1eee1](https://huggingface.co/datasets/selmanbaysan/quora-tr_fine_tuning_dataset/tree/6e1eee1e44db0f777eceb1f9b55293a9c2e25d76) * Size: 7,626 evaluation samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 5 tokens</li><li>mean: 15.29 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 15.47 tokens</li><li>max: 47 tokens</li></ul> | * Samples: | anchor | positive | |:---------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------| | <code>Quora'yฤฑ bir moderatรถrรผn gรถzรผnden nasฤฑl gรถrรผrsรผnรผz?</code> | <code>Quora web sitesi, Quora moderasyon รผyelerine nasฤฑl gรถrรผnรผr?</code> | | <code>Nasฤฑl hayatฤฑmฤฑn yapmam gereken farklฤฑ ลŸeyler arasฤฑnda seรงim yapmamayฤฑ reddedebilirim?</code> | <code>Hayatta birรงok farklฤฑ ลŸeyi takip etmek mรผmkรผn mรผ?</code> | | <code>Ben Affleck Batman'de Christian Bale'den daha parlak mฤฑydฤฑ?</code> | <code>Sizce, Batman performansฤฑnda kim daha iyiydi: Christian Bale mi yoksa Ben Affleck mi?</code> | * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` </details> <details><summary>nfcorpus-tr</summary> #### nfcorpus-tr * Dataset: [nfcorpus-tr](https://huggingface.co/datasets/selmanbaysan/nfcorpus-tr_fine_tuning_dataset) at [22d1ef8](https://huggingface.co/datasets/selmanbaysan/nfcorpus-tr_fine_tuning_dataset/tree/22d1ef8b6a9f1c196d1977541a66ca8eff946f06) * Size: 11,385 evaluation samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 7 tokens</li><li>mean: 11.41 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 67 tokens</li><li>mean: 375.07 tokens</li><li>max: 512 tokens</li></ul> | * Samples: | anchor | positive | |:----------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>Derin KฤฑzartฤฑlmฤฑลŸ Gฤฑdalarฤฑn Kanser YapabileceฤŸi Nedenler</code> | <code>Arka plan: Akrilamid, insan plasentasฤฑnฤฑ geรงen yaygฤฑn bir diyetik maruziyettir. Muhtemel insan kanserojen olarak sฤฑnฤฑflandฤฑrฤฑlฤฑr ve farelerde geliลŸimsel toksisite gรถzlemlenmiลŸtir. Amaรงlar: Bu รงalฤฑลŸmada, akrilamid รถn doฤŸum maruziyeti ile doฤŸum sonuรงlarฤฑnฤฑn iliลŸkilerini inceledik. Yรถntemler: Akrilamidin ve metaboliti glisidamidin hemoglobin (Hb) adductlarฤฑ, 2006-2010 yฤฑllarฤฑ arasฤฑnda Danimarka, ฤฐngiltere, Yunanistan, Norveรง ve ฤฐspanya'da iลŸe alฤฑnan 1.101 tek รงocuklu hamile kadฤฑnlarฤฑn kordon kanฤฑnda (hamileliฤŸin son aylarฤฑnda birikmiลŸ maruziyeti yansฤฑtan) รถlรงรผldรผ. Anne diyetleri, gฤฑda sฤฑklฤฑฤŸฤฑ anketleri aracฤฑlฤฑฤŸฤฑyla tahmin edildi. Sonuรงlar: Hem akrilamid hem de glisidamid Hb adductlarฤฑ, doฤŸum aฤŸฤฑrlฤฑฤŸฤฑ ve baลŸ รงevresi iรงin istatistiksel olarak anlamlฤฑ bir azalma ile iliลŸkiliydi. En yรผksek ve en dรผลŸรผk รงeyrekte akrilamid Hb adduct seviyeleri arasฤฑndaki tahmin edilen doฤŸum aฤŸฤฑrlฤฑฤŸฤฑ farkฤฑ, gestasyonel yaลŸ ve รผlke ayarlamalarฤฑndan sonra โ€“132 g (95% CI: โ€“207, โ€“56) idi; baลŸ รงevresi iรงin karลŸฤฑlฤฑk ge...</code> | | <code>Derin KฤฑzartฤฑlmฤฑลŸ Gฤฑdalarฤฑn Kanser YapabileceฤŸi Nedenler</code> | <code>ฤฐnsanlar, patates kฤฑzartmasฤฑ ve diฤŸer yiyecekler yoluyla akrilamid (AA) maruziyeti, potansiyel bir saฤŸlฤฑk endiลŸesi olarak kabul edilmiลŸtir. Burada, piลŸirme sฤฑcaklฤฑฤŸฤฑ ve sรผresi gibi iki en etkili faktรถre dayalฤฑ istatistiksel bir doฤŸrusal olmayan regresyon modeli kullanarak, patates kฤฑzartmalarฤฑnda AA konsantrasyonlarฤฑnฤฑ tahmin ettik. Tahmin modeli iรงin R(2) deฤŸeri 0.83, geliลŸtirilmiลŸ modelin รถnemli ve geรงerli olduฤŸunu gรถstermektedir. Bu รงalฤฑลŸmada yapฤฑlan patates kฤฑzartmasฤฑ tรผketimi anket verileri ve sekiz farklฤฑ kฤฑzartma sฤฑcaklฤฑฤŸฤฑ-zaman ลŸemasฤฑ, lezzetli ve gรถrsel aรงฤฑdan รงekici patates kฤฑzartmalarฤฑ รผretebildiฤŸi iรงin, Monte Carlo simรผlasyon sonuรงlarฤฑ, AA konsantrasyonunun 168 ppb'den yรผksek olduฤŸu takdirde, Taichung ลžehri'ndeki 13-18 yaลŸ arasฤฑ ergenlerin tahmin edilen kanser riski, sadece bu sฤฑnฤฑrlฤฑ yaลŸam sรผresi gรถz รถnรผne alฤฑndฤฑฤŸฤฑnda, hedef aลŸฤฑlan รถmรผr boyu kanser riski (ELCR) deฤŸerini aลŸacaktฤฑr. AA alฤฑmฤฑyla iliลŸkili kanser riskini azaltmak iรงin, patates kฤฑzartmalarฤฑndaki AA seviyelerinin...</code> | | <code>Derin KฤฑzartฤฑlmฤฑลŸ Gฤฑdalarฤฑn Kanser YapabileceฤŸi Nedenler</code> | <code>ARKA PLAN: Yaygฤฑn olarak tรผketilen gฤฑdalar, รถrneฤŸin patates kฤฑzartmasฤฑ, patates cipsi veya tahฤฑllar gibi รผrรผnlerde nispeten yรผksek akrilamid konsantrasyonlarฤฑ, insan saฤŸlฤฑฤŸฤฑ iรงin potansiyel bir risk oluลŸturabilir.<br><br>HEDEF: Bu pilot รงalฤฑลŸmanฤฑn amacฤฑ, kronik akrilamid iรงeren patates cipsi alฤฑmฤฑnฤฑn oksidatif stres veya iltihapla olasฤฑ baฤŸlantฤฑsฤฑnฤฑ araลŸtฤฑrmaktฤฑ.<br><br>Tasarฤฑm: 14 saฤŸlฤฑklฤฑ gรถnรผllรผ (ortalama yaลŸ: 35; 8 kadฤฑn ve 6 gรผnde 20 sigaradan fazla sigara iรงen) 4 hafta boyunca gรผnde 160 gram akrilamid iรงeren 157 mikrogram (dรผzeltilmiลŸ) akrilamid iรงeren patates cipsi aldฤฑ.<br><br>Sonuรง: ร‡alฤฑลŸmanฤฑn tรผm katฤฑlฤฑmlarฤฑnda kan akrilamid-hemoglobin baฤŸlarฤฑmฤฑnda artฤฑลŸ bulundu, ortalama 43.1 pmol/L(-1)/g(-1) hemoglobin (aralฤฑk: 27-76; P < 0.01) sigara iรงmeyenlerde ve 59.0 pmol/L(-1)/g(-1) hemoglobin (aralฤฑk: 43-132; P < 0.05) sigara iรงenlerde. Aynฤฑ zamanda, hem sigara iรงenlerde hem de sigara iรงmeyenlerde okside LDL, yรผksek duyarlฤฑlฤฑk interleukin-6, yรผksek duyarlฤฑlฤฑk C-reaktif protein ve gama-glutamiltransfer...</code> | * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` </details> <details><summary>snli-tr</summary> #### snli-tr * Dataset: [snli-tr](https://huggingface.co/datasets/selmanbaysan/snli_tr_fine_tuning_dataset) at [63eb107](https://huggingface.co/datasets/selmanbaysan/snli_tr_fine_tuning_dataset/tree/63eb107dfdaf0b16cfd209db25705f27f2e5e2ca) * Size: 10,000 evaluation samples * Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code> * Approximate statistics based on the first 1000 samples: | | premise | hypothesis | label | |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------| | type | string | string | int | | details | <ul><li>min: 6 tokens</li><li>mean: 18.69 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 10.29 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>0: ~67.50%</li><li>1: ~32.50%</li></ul> | * Samples: | premise | hypothesis | label | |:----------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------|:---------------| | <code>Paketlere gitmek iรงin tutunurken iki kadฤฑn kucaklaลŸฤฑyor.</code> | <code>Kฤฑz kardeลŸler sadece รถฤŸle yemeฤŸi yedikten sonra paketleri gitmek iรงin tutarken elveda sarฤฑlฤฑyorlar.</code> | <code>0</code> | | <code>Paketlere gitmek iรงin tutunurken iki kadฤฑn kucaklaลŸฤฑyor.</code> | <code>ฤฐki kadฤฑn paket tutuyor.</code> | <code>1</code> | | <code>Paketlere gitmek iรงin tutunurken iki kadฤฑn kucaklaลŸฤฑyor.</code> | <code>Adamlar bir ลŸarkรผterinin dฤฑลŸฤฑnda kavga ediyorlar.</code> | <code>0</code> | * Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss) </details> <details><summary>xnli-tr</summary> #### xnli-tr * Dataset: [xnli-tr](https://huggingface.co/datasets/selmanbaysan/xnli_tr_fine_tuning_dataset) at [3a66bc8](https://huggingface.co/datasets/selmanbaysan/xnli_tr_fine_tuning_dataset/tree/3a66bc878d3d027177da71f47e4d8dee21cafe63) * Size: 2,490 evaluation samples * Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code> * Approximate statistics based on the first 1000 samples: | | premise | hypothesis | label | |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------| | type | string | string | int | | details | <ul><li>min: 6 tokens</li><li>mean: 22.57 tokens</li><li>max: 67 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 13.12 tokens</li><li>max: 33 tokens</li></ul> | <ul><li>0: ~66.70%</li><li>1: ~33.30%</li></ul> | * Samples: | premise | hypothesis | label | |:------------------------------------|:---------------------------------------------------------------|:---------------| | <code>Ve Anne, evdeyim dedi.</code> | <code>Okul servisi onu bฤฑrakฤฑr bฤฑrakmaz annesini aradฤฑ.</code> | <code>0</code> | | <code>Ve Anne, evdeyim dedi.</code> | <code>Bir kelime sรถylemedi.</code> | <code>0</code> | | <code>Ve Anne, evdeyim dedi.</code> | <code>Annesine eve gittiฤŸini sรถyledi.</code> | <code>1</code> | * Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss) </details> <details><summary>stsb-tr</summary> #### stsb-tr * Dataset: [stsb-tr](https://huggingface.co/datasets/selmanbaysan/stsb-tr) at [3d2e87d](https://huggingface.co/datasets/selmanbaysan/stsb-tr/tree/3d2e87d2a94c9af130b87ab8ed8d0c5c2e92e2df) * Size: 1,500 evaluation samples * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> * Approximate statistics based on the first 1000 samples: | | sentence1 | sentence2 | score | |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------| | type | string | string | float | | details | <ul><li>min: 5 tokens</li><li>mean: 15.37 tokens</li><li>max: 58 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 15.41 tokens</li><li>max: 54 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 2.1</li><li>max: 5.0</li></ul> | * Samples: | sentence1 | sentence2 | score | |:----------------------------------------------|:-----------------------------------------------|:------------------| | <code>Kasklฤฑ bir adam dans ediyor.</code> | <code>Baret giyen bir adam dans ediyor.</code> | <code>5.0</code> | | <code>Kรผรงรผk bir รงocuk ata biniyor.</code> | <code>Bir รงocuk ata biniyor.</code> | <code>4.75</code> | | <code>Bir adam fareyi yฤฑlana besliyor.</code> | <code>Adam yฤฑlana fare besliyor.</code> | <code>5.0</code> | * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "pairwise_cos_sim" } ``` </details> <details><summary>wmt16</summary> #### wmt16 * Dataset: [wmt16](https://huggingface.co/datasets/selmanbaysan/wmt16_en_tr_fine_tuning_dataset) at [9fc4e73](https://huggingface.co/datasets/selmanbaysan/wmt16_en_tr_fine_tuning_dataset/tree/9fc4e7334bdb195b396c41eed05b0dd447981ef3) * Size: 1,001 evaluation samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 4 tokens</li><li>mean: 26.96 tokens</li><li>max: 149 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 39.33 tokens</li><li>max: 240 tokens</li></ul> | * Samples: | anchor | positive | |:----------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------| | <code>Norveรง'in rakfisk'i: Dรผnyanฤฑn en kokulu balฤฑฤŸฤฑ bu mu?</code> | <code>Norway's rakfisk: Is this the world's smelliest fish?</code> | | <code>Norveรง'in beลŸ milyon insanฤฑ en yรผksek yaลŸam standartlarฤฑnฤฑn tadฤฑnฤฑ รงฤฑkarฤฑyor, sadece Avrupa'da deฤŸil, dรผnyada.</code> | <code>Norway's five million people enjoy one of the highest standards of living, not just in Europe, but in the world.</code> | | <code>รœlkenin baลŸarฤฑsฤฑnฤฑn sฤฑrrฤฑ aลŸฤฑrฤฑ kokulu bazฤฑ balฤฑklara olan yerel iลŸtahla baฤŸlantฤฑlฤฑ olabilir mi?</code> | <code>Could the secret of the country's success be connected to the local appetite for some exceedingly smelly fish?</code> | * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` </details> ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `learning_rate`: 2e-05 - `num_train_epochs`: 1 - `warmup_ratio`: 0.1 - `fp16`: True - `batch_sampler`: no_duplicates #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | msmarco-tr loss | fiqa-tr loss | quora-tr loss | nfcorpus-tr loss | snli-tr loss | xnli-tr loss | stsb-tr loss | wmt16 loss | stsb-tr_spearman_cosine | snli-tr_cosine_ap | xnli-tr_cosine_ap | wmt16_cosine_ap | msmarco-tr_cosine_ap | fiqa-tr_cosine_ap | quora-tr_cosine_ap | nfcorpus-tr_cosine_ap | |:------:|:-----:|:-------------:|:---------------:|:------------:|:-------------:|:----------------:|:------------:|:------------:|:------------:|:----------:|:-----------------------:|:-----------------:|:-----------------:|:---------------:|:--------------------:|:-----------------:|:------------------:|:---------------------:| | 0.0209 | 500 | 1.1414 | 0.2698 | 1.9305 | 0.1019 | 1.1507 | 0.5826 | 0.6343 | 11.1465 | 0.9888 | 0.7727 | 0.4918 | 0.4731 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0417 | 1000 | 0.8222 | 0.2270 | 1.8603 | 0.0904 | 1.0909 | 0.4977 | 0.5921 | 11.8077 | 0.6025 | 0.7783 | 0.4928 | 0.5208 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0626 | 1500 | 0.7991 | 0.1968 | 1.7750 | 0.0879 | 1.0778 | 0.4483 | 0.5314 | 12.2621 | 0.5532 | 0.7865 | 0.5174 | 0.5560 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0835 | 2000 | 0.7775 | 0.1903 | 1.7956 | 0.0809 | 1.0444 | 0.4053 | 0.4841 | 12.3953 | 0.5244 | 0.7909 | 0.5311 | 0.5875 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.1043 | 2500 | 0.6397 | 0.1779 | 1.7774 | 0.0772 | 1.0337 | 0.3985 | 0.4661 | 11.9094 | 0.4421 | 0.7853 | 0.5702 | 0.5917 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.1252 | 3000 | 0.7237 | 0.1658 | 1.6839 | 0.0768 | 1.0342 | 0.3646 | 0.4684 | 12.1233 | 0.3539 | 0.8049 | 0.5745 | 0.5949 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.1461 | 3500 | 0.5485 | 0.1603 | 1.7514 | 0.0811 | 1.0235 | 0.3626 | 0.4589 | 12.7109 | 0.2967 | 0.7867 | 0.5985 | 0.6128 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.1669 | 4000 | 0.6076 | 0.1513 | 1.6503 | 0.0723 | 1.0043 | 0.3555 | 0.4829 | 12.5178 | 0.2867 | 0.8049 | 0.5692 | 0.6019 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.1878 | 4500 | 0.5363 | 0.1478 | 1.6573 | 0.0696 | 1.0147 | 0.3448 | 0.4759 | 12.7022 | 0.2406 | 0.8042 | 0.5886 | 0.6023 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.2087 | 5000 | 0.5543 | 0.1453 | 1.6171 | 0.0664 | 1.0054 | 0.3384 | 0.4634 | 12.3955 | 0.2647 | 0.8116 | 0.5896 | 0.6107 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.2295 | 5500 | 0.6203 | 0.1455 | 1.6107 | 0.0710 | 0.9872 | 0.3333 | 0.4487 | 12.1924 | 0.2382 | 0.8110 | 0.5837 | 0.6206 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.2504 | 6000 | 0.6368 | 0.1354 | 1.5559 | 0.0704 | 1.0105 | 0.3236 | 0.4455 | 12.4101 | 0.2259 | 0.8102 | 0.5998 | 0.6200 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.2713 | 6500 | 0.568 | 0.1366 | 1.5891 | 0.0701 | 0.9898 | 0.3206 | 0.4292 | 11.9028 | 0.2035 | 0.8066 | 0.5866 | 0.6038 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.2921 | 7000 | 0.6087 | 0.1300 | 1.5420 | 0.0671 | 0.9914 | 0.3175 | 0.4247 | 12.2175 | 0.2220 | 0.8112 | 0.5902 | 0.6183 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.3130 | 7500 | 0.5987 | 0.1233 | 1.5577 | 0.0622 | 0.9914 | 0.3205 | 0.4559 | 12.4562 | 0.1855 | 0.8126 | 0.6083 | 0.6184 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.3339 | 8000 | 0.5158 | 0.1231 | 1.5156 | 0.0653 | 0.9854 | 0.3145 | 0.4436 | 12.3801 | 0.1826 | 0.8107 | 0.6016 | 0.6073 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.3547 | 8500 | 0.5475 | 0.1208 | 1.4804 | 0.0631 | 0.9754 | 0.3140 | 0.4662 | 12.8113 | 0.1841 | 0.8152 | 0.5904 | 0.6142 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.3756 | 9000 | 0.638 | 0.1270 | 1.5346 | 0.0652 | 0.9691 | 0.3112 | 0.4162 | 12.2037 | 0.1964 | 0.8092 | 0.6004 | 0.6281 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.3965 | 9500 | 0.594 | 0.1203 | 1.4953 | 0.0637 | 0.9715 | 0.3152 | 0.4756 | 12.7237 | 0.1561 | 0.8068 | 0.6040 | 0.6185 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.4173 | 10000 | 0.5815 | 0.1169 | 1.4600 | 0.0595 | 0.9748 | 0.3115 | 0.4733 | 12.7256 | 0.1669 | 0.8101 | 0.6085 | 0.6156 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.4382 | 10500 | 0.6099 | 0.1168 | 1.4518 | 0.0667 | 0.9748 | 0.3025 | 0.4319 | 12.5545 | 0.1821 | 0.8183 | 0.6135 | 0.6232 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.4591 | 11000 | 0.5243 | 0.1152 | 1.4609 | 0.0636 | 0.9691 | 0.3086 | 0.4409 | 12.5561 | 0.1717 | 0.8120 | 0.6114 | 0.6269 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.4799 | 11500 | 0.5788 | 0.1149 | 1.4629 | 0.0629 | 0.9603 | 0.3007 | 0.4444 | 12.4325 | 0.1740 | 0.8137 | 0.6077 | 0.6266 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.5008 | 12000 | 0.4322 | 0.1116 | 1.4600 | 0.0623 | 0.9684 | 0.2992 | 0.4232 | 12.5360 | 0.1757 | 0.8160 | 0.6045 | 0.6234 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.5217 | 12500 | 0.6227 | 0.1106 | 1.4774 | 0.0635 | 0.9649 | 0.2966 | 0.4272 | 12.3037 | 0.1568 | 0.8193 | 0.6061 | 0.6220 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.5425 | 13000 | 0.5269 | 0.1087 | 1.4653 | 0.0627 | 0.9646 | 0.2946 | 0.4262 | 12.4239 | 0.1672 | 0.8172 | 0.6154 | 0.6240 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.5634 | 13500 | 0.5462 | 0.1076 | 1.4482 | 0.0613 | 0.9608 | 0.2950 | 0.4061 | 12.3639 | 0.1669 | 0.8134 | 0.6289 | 0.6340 | 1.0 | 1.0000 | 1.0 | 1.0 | 1.0 | | 0.5843 | 14000 | 0.5737 | 0.1069 | 1.4330 | 0.0594 | 0.9715 | 0.2934 | 0.4241 | 12.5838 | 0.1553 | 0.8162 | 0.6060 | 0.6201 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.6052 | 14500 | 0.5542 | 0.1062 | 1.4318 | 0.0630 | 0.9627 | 0.2936 | 0.4252 | 12.4879 | 0.1537 | 0.8135 | 0.6182 | 0.6211 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.6260 | 15000 | 0.4828 | 0.1014 | 1.4022 | 0.0620 | 0.9721 | 0.2916 | 0.4162 | 12.5052 | 0.1578 | 0.8200 | 0.6130 | 0.6307 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.6469 | 15500 | 0.585 | 0.1030 | 1.4268 | 0.0662 | 0.9565 | 0.2915 | 0.4235 | 12.4999 | 0.1483 | 0.8166 | 0.5973 | 0.6245 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.6678 | 16000 | 0.5699 | 0.1036 | 1.4218 | 0.0636 | 0.9622 | 0.2883 | 0.4099 | 12.4195 | 0.1516 | 0.8182 | 0.6130 | 0.6315 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.6886 | 16500 | 0.5372 | 0.1003 | 1.4122 | 0.0619 | 0.9671 | 0.2905 | 0.4249 | 12.5527 | 0.1545 | 0.8164 | 0.6119 | 0.6304 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.7095 | 17000 | 0.5473 | 0.1021 | 1.4109 | 0.0636 | 0.9602 | 0.2848 | 0.4097 | 12.3792 | 0.1640 | 0.8157 | 0.6171 | 0.6351 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.7304 | 17500 | 0.5665 | 0.0985 | 1.3868 | 0.0604 | 0.9616 | 0.2845 | 0.4083 | 12.4513 | 0.1523 | 0.8195 | 0.6044 | 0.6306 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.7512 | 18000 | 0.498 | 0.0985 | 1.3925 | 0.0606 | 0.9605 | 0.2828 | 0.4068 | 12.4254 | 0.1544 | 0.8177 | 0.6082 | 0.6351 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.7721 | 18500 | 0.5037 | 0.0975 | 1.3748 | 0.0570 | 0.9619 | 0.2891 | 0.4256 | 12.5656 | 0.1451 | 0.8158 | 0.6072 | 0.6294 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.7930 | 19000 | 0.4885 | 0.0966 | 1.3742 | 0.0612 | 0.9600 | 0.2818 | 0.3993 | 12.4406 | 0.1473 | 0.8170 | 0.6096 | 0.6349 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.8138 | 19500 | 0.5042 | 0.0966 | 1.3817 | 0.0589 | 0.9621 | 0.2822 | 0.4181 | 12.5854 | 0.1476 | 0.8167 | 0.6186 | 0.6418 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.8347 | 20000 | 0.5453 | 0.0966 | 1.3790 | 0.0583 | 0.9553 | 0.2824 | 0.4112 | 12.5904 | 0.1451 | 0.8156 | 0.6100 | 0.6336 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.8556 | 20500 | 0.5351 | 0.0963 | 1.3810 | 0.0591 | 0.9588 | 0.2844 | 0.4211 | 12.7160 | 0.1445 | 0.8161 | 0.6129 | 0.6358 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.8764 | 21000 | 0.4601 | 0.0951 | 1.3744 | 0.0581 | 0.9573 | 0.2792 | 0.4059 | 12.5846 | 0.1448 | 0.8156 | 0.6193 | 0.6372 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.8973 | 21500 | 0.4698 | 0.0949 | 1.3757 | 0.0578 | 0.9576 | 0.2780 | 0.4020 | 12.6457 | 0.1417 | 0.8146 | 0.6180 | 0.6347 | 1.0 | 1.0000 | 1.0 | 1.0 | 1.0 | | 0.9182 | 22000 | 0.4838 | 0.0930 | 1.3611 | 0.0564 | 0.9572 | 0.2781 | 0.4136 | 12.7198 | 0.1404 | 0.8157 | 0.6187 | 0.6348 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.9390 | 22500 | 0.5106 | 0.0931 | 1.3639 | 0.0569 | 0.9550 | 0.2791 | 0.4117 | 12.6323 | 0.1377 | 0.8168 | 0.6121 | 0.6328 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.9599 | 23000 | 0.6039 | 0.0929 | 1.3606 | 0.0568 | 0.9566 | 0.2797 | 0.4182 | 12.6569 | 0.1339 | 0.8167 | 0.6130 | 0.6332 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.9808 | 23500 | 0.5395 | 0.0928 | 1.3603 | 0.0575 | 0.9553 | 0.2783 | 0.4120 | 12.6136 | 0.1337 | 0.8168 | 0.6132 | 0.6338 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | ### Framework Versions - Python: 3.11.11 - Sentence Transformers: 3.4.1 - Transformers: 4.49.0 - PyTorch: 2.6.0+cu124 - Accelerate: 1.5.2 - Datasets: 3.4.1 - Tokenizers: 0.21.1 ## Citation ### BibTeX #### Sentence Transformers and SoftmaxLoss ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` #### CoSENTLoss ```bibtex @online{kexuefm-8847, title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT}, author={Su Jianlin}, year={2022}, month={Jan}, url={https://kexue.fm/archives/8847}, } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
Baoaboya/deepseek_sql_model
Baoaboya
2025-03-25T12:57:33Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-03-25T12:57:03Z
--- base_model: unsloth/deepseek-r1-distill-llama-8b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Baoaboya - **License:** apache-2.0 - **Finetuned from model :** unsloth/deepseek-r1-distill-llama-8b-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
ysn-rfd/Open-RS3-Q8_0-GGUF
ysn-rfd
2025-03-25T12:57:32Z
0
0
transformers
[ "transformers", "gguf", "llama-cpp", "gguf-my-repo", "text-generation", "dataset:knoveleng/open-rs", "dataset:knoveleng/open-s1", "dataset:knoveleng/open-deepscaler", "base_model:knoveleng/Open-RS3", "base_model:quantized:knoveleng/Open-RS3", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-03-25T12:57:16Z
--- base_model: knoveleng/Open-RS3 datasets: - knoveleng/open-rs - knoveleng/open-s1 - knoveleng/open-deepscaler library_name: transformers license: mit pipeline_tag: text-generation tags: - llama-cpp - gguf-my-repo inference: true --- # ysn-rfd/Open-RS3-Q8_0-GGUF This model was converted to GGUF format from [`knoveleng/Open-RS3`](https://huggingface.co/knoveleng/Open-RS3) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/knoveleng/Open-RS3) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo ysn-rfd/Open-RS3-Q8_0-GGUF --hf-file open-rs3-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo ysn-rfd/Open-RS3-Q8_0-GGUF --hf-file open-rs3-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo ysn-rfd/Open-RS3-Q8_0-GGUF --hf-file open-rs3-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo ysn-rfd/Open-RS3-Q8_0-GGUF --hf-file open-rs3-q8_0.gguf -c 2048 ```
sergeyzh/rubert-mini-uncased-GGUF
sergeyzh
2025-03-25T12:57:17Z
0
0
transformers
[ "transformers", "gguf", "russian", "pretraining", "embeddings", "tiny", "feature-extraction", "sentence-similarity", "sentence-transformers", "ru", "en", "dataset:IlyaGusev/gazeta", "dataset:zloelias/lenta-ru", "dataset:HuggingFaceFW/fineweb-2", "dataset:HuggingFaceFW/fineweb", "base_model:sergeyzh/rubert-mini-uncased", "base_model:quantized:sergeyzh/rubert-mini-uncased", "license:mit", "region:us" ]
sentence-similarity
2025-03-25T12:56:37Z
--- language: - ru - en pipeline_tag: sentence-similarity inference: false library_name: transformers tags: - russian - pretraining - embeddings - tiny - feature-extraction - sentence-similarity - sentence-transformers - transformers datasets: - IlyaGusev/gazeta - zloelias/lenta-ru - HuggingFaceFW/fineweb-2 - HuggingFaceFW/fineweb license: mit base_model: sergeyzh/rubert-mini-uncased --- ## rubert-mini-uncased-GGUF ะžั€ะธะณะธะฝะฐะปัŒะฝะฐั ะผะพะดะตะปัŒ: [rubert-mini-uncased](https://huggingface.co/sergeyzh/rubert-mini-uncased) ะ”ะปั ะทะฐะฟัƒัะบะฐ ะผะพะดะตะปะธ ะฒ ะบะฐั‡ะตัั‚ะฒะต ัะตั€ะฒะตั€ะฐ ะฝะตะพะฑั…ะพะดะธะผะพ ะธัะฟะพะปัŒะทะพะฒะฐั‚ัŒ llama.cpp: ```bash llama-server -m rubert-mini-uncased-q8_0.gguf -c 512 -ngl 99 --embedding --port 8080 ``` ะ’ะพะทะผะพะถะฝะพ ะธัะฟะพะปัŒะทะพะฒะฐะฝะธะต ั LM Studio. ## ะ˜ัะฟะพะปัŒะทะพะฒะฐะฝะธะต ะผะพะดะตะปะธ ะฟะพัะปะต ะทะฐะฟัƒัะบะฐ llama-server: ```python import numpy as np import requests import json def embeding(text): url = 'http://127.0.0.1:8080/v1/embeddings' headers = {"Content-Type": "application/json", "Authorization": "no-key"} data={"input": text, "model": "rubert-mini-uncased", "encoding_format": "float"} r = requests.post(url, headers=headers, data=json.dumps(data)) emb = np.array([np.array(s['embedding']) for s in r.json()['data']]) return emb inputs = [ # "paraphrase: ะ’ ะฏั€ะพัะปะฐะฒัะบะพะน ะพะฑะปะฐัั‚ะธ ั€ะฐะทั€ะตัˆะธะปะธ ั€ะฐะฑะพั‚ัƒ ะฑะฐะฝัŒ, ะฝะพ ะฑะตะท ะฟะพัะตั‚ะธั‚ะตะปะตะน", "categorize_entailment: ะ–ะตะฝั‰ะธะฝัƒ ะดะพัั‚ะฐะฒะธะปะธ ะฒ ะฑะพะปัŒะฝะธั†ัƒ, ะทะฐ ะตะต ะถะธะทะฝัŒ ัะตะนั‡ะฐั ะฑะพั€ัŽั‚ัั ะฒั€ะฐั‡ะธ.", "search_query: ะกะบะพะปัŒะบะพ ะฟั€ะพะณั€ะฐะผะผะธัั‚ะพะฒ ะฝัƒะถะฝะพ, ั‡ั‚ะพะฑั‹ ะฒะบั€ัƒั‚ะธั‚ัŒ ะปะฐะผะฟะพั‡ะบัƒ?", # "paraphrase: ะฏั€ะพัะปะฐะฒัะบะธะผ ะฑะฐะฝัะผ ั€ะฐะทั€ะตัˆะธะปะธ ั€ะฐะฑะพั‚ะฐั‚ัŒ ะฑะตะท ะฟะพัะตั‚ะธั‚ะตะปะตะน", "categorize_entailment: ะ–ะตะฝั‰ะธะฝัƒ ัะฟะฐัะฐัŽั‚ ะฒั€ะฐั‡ะธ.", "search_document: ะงั‚ะพะฑั‹ ะฒะบั€ัƒั‚ะธั‚ัŒ ะปะฐะผะฟะพั‡ะบัƒ, ั‚ั€ะตะฑัƒะตั‚ัั ั‚ั€ะธ ะฟั€ะพะณั€ะฐะผะผะธัั‚ะฐ: ะพะดะธะฝ ะฝะฐะฟะธัˆะตั‚ ะฟั€ะพะณั€ะฐะผะผัƒ ะธะทะฒะปะตั‡ะตะฝะธั ะปะฐะผะฟะพั‡ะบะธ, ะดั€ัƒะณะพะน โ€” ะฒะบั€ัƒั‡ะธะฒะฐะฝะธั ะปะฐะผะฟะพั‡ะบะธ, ะฐ ั‚ั€ะตั‚ะธะน ะฟั€ะพะฒะตะดะตั‚ ั‚ะตัั‚ะธั€ะพะฒะฐะฝะธะต." ] embeddings = embeding(inputs) sim_scores = embeddings[:3] @ embeddings[3:].T print(sim_scores.diagonal().tolist()) # [0.9365279201944358, 0.8030448289720129, 0.6826768729478850] - rubert-mini-uncased-f32 # [0.9365603574226906, 0.8029491439999603, 0.6826115652313832] - rubert-mini-uncased-f16 # [0.9362014453563489, 0.8019812246234975, 0.6823210638303931] - rubert-mini-uncased-q8_0 # [0.9366128444671631, 0.8030662536621094, 0.6826460957527161] - rubert-mini-uncased (torch) # [0.9360030293464661, 0.8591322302818298, 0.7285830378532410] - FRIDA ```
yfarm01/sn29_mar25_c0
yfarm01
2025-03-25T12:54:59Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-25T11:53:51Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
NewEden/MagPicaro-Big
NewEden
2025-03-25T12:53:12Z
13
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "base_model:Doctor-Shotgun/L3.3-70B-Magnum-v4-SE", "base_model:merge:Doctor-Shotgun/L3.3-70B-Magnum-v4-SE", "base_model:NewEden/Picaro-Big", "base_model:merge:NewEden/Picaro-Big", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-24T12:28:39Z
--- base_model: - NewEden/Picaro-Big - Doctor-Shotgun/L3.3-70B-Magnum-v4-SE library_name: transformers tags: - mergekit - merge --- Magnum Picaro scaled up, Not approved by trappu. this version followed a similar recipe to his 24B. ### Models Merged The following models were included in the merge: * [NewEden/Picaro-Big](https://huggingface.co/NewEden/Picaro-Big) * [Doctor-Shotgun/L3.3-70B-Magnum-v4-SE](https://huggingface.co/Doctor-Shotgun/L3.3-70B-Magnum-v4-SE) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: NewEden/Picaro-Big - model: Doctor-Shotgun/L3.3-70B-Magnum-v4-SE merge_method: slerp base_model: NewEden/Picaro-Big parameters: t: - value: 0.5 dtype: bfloat16 tokenizer_source: base ```
genki10/BERT_AugV8_k5_task1_organization_sp020_lw010_fold0
genki10
2025-03-25T12:52:08Z
0
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-03-25T12:40:38Z
--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer model-index: - name: BERT_AugV8_k5_task1_organization_sp020_lw010_fold0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERT_AugV8_k5_task1_organization_sp020_lw010_fold0 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8887 - Qwk: 0.3516 - Mse: 0.8887 - Rmse: 0.9427 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 150 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | No log | 1.0 | 4 | 9.8106 | 0.0 | 9.8106 | 3.1322 | | No log | 2.0 | 8 | 4.8977 | 0.0231 | 4.8977 | 2.2131 | | No log | 3.0 | 12 | 2.3924 | 0.1715 | 2.3924 | 1.5467 | | No log | 4.0 | 16 | 1.3210 | 0.0419 | 1.3210 | 1.1493 | | No log | 5.0 | 20 | 0.7866 | 0.3055 | 0.7866 | 0.8869 | | No log | 6.0 | 24 | 1.2237 | 0.0419 | 1.2237 | 1.1062 | | No log | 7.0 | 28 | 0.6373 | 0.3022 | 0.6373 | 0.7983 | | No log | 8.0 | 32 | 1.1277 | 0.0805 | 1.1277 | 1.0619 | | No log | 9.0 | 36 | 0.5714 | 0.3947 | 0.5714 | 0.7559 | | No log | 10.0 | 40 | 0.6493 | 0.3778 | 0.6493 | 0.8058 | | No log | 11.0 | 44 | 0.5386 | 0.4253 | 0.5386 | 0.7339 | | No log | 12.0 | 48 | 0.6089 | 0.5046 | 0.6089 | 0.7803 | | No log | 13.0 | 52 | 0.6323 | 0.4275 | 0.6323 | 0.7952 | | No log | 14.0 | 56 | 0.7535 | 0.4635 | 0.7535 | 0.8681 | | No log | 15.0 | 60 | 0.5836 | 0.4611 | 0.5836 | 0.7640 | | No log | 16.0 | 64 | 0.6293 | 0.4380 | 0.6293 | 0.7933 | | No log | 17.0 | 68 | 0.8329 | 0.3909 | 0.8329 | 0.9127 | | No log | 18.0 | 72 | 0.5865 | 0.5108 | 0.5865 | 0.7659 | | No log | 19.0 | 76 | 0.7626 | 0.4331 | 0.7626 | 0.8733 | | No log | 20.0 | 80 | 0.7197 | 0.4773 | 0.7197 | 0.8483 | | No log | 21.0 | 84 | 0.6766 | 0.4688 | 0.6766 | 0.8226 | | No log | 22.0 | 88 | 0.8541 | 0.3815 | 0.8541 | 0.9242 | | No log | 23.0 | 92 | 1.2586 | 0.2108 | 1.2586 | 1.1219 | | No log | 24.0 | 96 | 0.6702 | 0.4550 | 0.6702 | 0.8186 | | No log | 25.0 | 100 | 0.8194 | 0.3903 | 0.8194 | 0.9052 | | No log | 26.0 | 104 | 0.6439 | 0.4642 | 0.6439 | 0.8024 | | No log | 27.0 | 108 | 0.8190 | 0.3899 | 0.8190 | 0.9050 | | No log | 28.0 | 112 | 0.6083 | 0.4737 | 0.6083 | 0.7799 | | No log | 29.0 | 116 | 0.9547 | 0.3261 | 0.9547 | 0.9771 | | No log | 30.0 | 120 | 0.6331 | 0.4680 | 0.6331 | 0.7957 | | No log | 31.0 | 124 | 1.1624 | 0.2565 | 1.1624 | 1.0781 | | No log | 32.0 | 128 | 0.5926 | 0.5061 | 0.5926 | 0.7698 | | No log | 33.0 | 132 | 0.8887 | 0.3516 | 0.8887 | 0.9427 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.3.1 - Tokenizers 0.21.0
mynewtype/text2sql-sqlcoder
mynewtype
2025-03-25T12:50:45Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-25T10:59:20Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
pabloma09/layoutlm-sroie_only
pabloma09
2025-03-25T12:49:40Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "layoutlm", "token-classification", "generated_from_trainer", "base_model:microsoft/layoutlm-base-uncased", "base_model:finetune:microsoft/layoutlm-base-uncased", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2025-03-25T12:47:34Z
--- library_name: transformers license: mit base_model: microsoft/layoutlm-base-uncased tags: - generated_from_trainer model-index: - name: layoutlm-sroie_only results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlm-sroie_only This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0629 - Ate: {'precision': 0.9090909090909091, 'recall': 1.0, 'f1': 0.9523809523809523, 'number': 50} - Ddress: {'precision': 0.86, 'recall': 0.86, 'f1': 0.8599999999999999, 'number': 50} - Ompany: {'precision': 0.7777777777777778, 'recall': 0.84, 'f1': 0.8076923076923077, 'number': 50} - Otal: {'precision': 0.4166666666666667, 'recall': 0.3, 'f1': 0.3488372093023256, 'number': 50} - Overall Precision: 0.7692 - Overall Recall: 0.75 - Overall F1: 0.7595 - Overall Accuracy: 0.9820 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Ate | Ddress | Ompany | Otal | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:----:|:---------------:|:-----------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:| | 0.5019 | 1.0 | 36 | 0.1120 | {'precision': 0.671875, 'recall': 0.86, 'f1': 0.7543859649122807, 'number': 50} | {'precision': 0.7454545454545455, 'recall': 0.82, 'f1': 0.780952380952381, 'number': 50} | {'precision': 0.5344827586206896, 'recall': 0.62, 'f1': 0.574074074074074, 'number': 50} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 50} | 0.6497 | 0.575 | 0.6101 | 0.9739 | | 0.0635 | 2.0 | 72 | 0.0728 | {'precision': 0.8448275862068966, 'recall': 0.98, 'f1': 0.9074074074074074, 'number': 50} | {'precision': 0.86, 'recall': 0.86, 'f1': 0.8599999999999999, 'number': 50} | {'precision': 0.7924528301886793, 'recall': 0.84, 'f1': 0.8155339805825242, 'number': 50} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 50} | 0.8272 | 0.67 | 0.7403 | 0.9818 | | 0.0429 | 3.0 | 108 | 0.0650 | {'precision': 0.9090909090909091, 'recall': 1.0, 'f1': 0.9523809523809523, 'number': 50} | {'precision': 0.86, 'recall': 0.86, 'f1': 0.8599999999999999, 'number': 50} | {'precision': 0.7924528301886793, 'recall': 0.84, 'f1': 0.8155339805825242, 'number': 50} | {'precision': 0.4117647058823529, 'recall': 0.28, 'f1': 0.3333333333333333, 'number': 50} | 0.7760 | 0.745 | 0.7602 | 0.9818 | | 0.0341 | 4.0 | 144 | 0.0629 | {'precision': 0.9090909090909091, 'recall': 1.0, 'f1': 0.9523809523809523, 'number': 50} | {'precision': 0.86, 'recall': 0.86, 'f1': 0.8599999999999999, 'number': 50} | {'precision': 0.7777777777777778, 'recall': 0.84, 'f1': 0.8076923076923077, 'number': 50} | {'precision': 0.4166666666666667, 'recall': 0.3, 'f1': 0.3488372093023256, 'number': 50} | 0.7692 | 0.75 | 0.7595 | 0.9820 | ### Framework versions - Transformers 4.50.0 - Pytorch 2.1.0+cu118 - Datasets 3.4.1 - Tokenizers 0.21.1
tronani65/my_awesome_billsum_model
tronani65
2025-03-25T12:48:40Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2025-03-25T09:58:44Z
--- library_name: transformers license: apache-2.0 base_model: google-t5/t5-small tags: - generated_from_trainer model-index: - name: my_awesome_billsum_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_billsum_model This model is a fine-tuned version of [google-t5/t5-small](https://huggingface.co/google-t5/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.5937 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.0119 | 1.0 | 1185 | 1.7057 | | 1.868 | 2.0 | 2370 | 1.6319 | | 1.8142 | 3.0 | 3555 | 1.6017 | | 1.7939 | 4.0 | 4740 | 1.5937 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.6.0+cu124 - Datasets 3.4.1 - Tokenizers 0.21.1
RichardErkhov/LaierTwoLabsInc_-_Satoshi-7B-awq
RichardErkhov
2025-03-25T12:46:55Z
0
0
null
[ "safetensors", "mistral", "4-bit", "awq", "region:us" ]
null
2025-03-25T12:43:24Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Satoshi-7B - AWQ - Model creator: https://huggingface.co/LaierTwoLabsInc/ - Original model: https://huggingface.co/LaierTwoLabsInc/Satoshi-7B/ Original model description: --- library_name: transformers license: apache-2.0 language: - en pipeline_tag: text-generation tags: - finance - bitcoin - Austrian economics - economics --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> Satoshi 7B is a large language model fine-tuned on a Q&A dataset related to Bitcoin principles, technology, culture, in addition to Austrian economics and โ€˜basednessโ€™ (non-woke political perspectives). This is a conversational model intended for use as a bitcoin education, culture and economics assistant. The model will intentionally present a strong bitcoin maximalist, Austro-libertarian, โ€˜non-wokeโ€™ bias that may contradict traditionally held viewpoints on bitcoin, economics, and โ€˜hot-buttonโ€™ political issues. - 32k MAX context window (theoretically - practically it is smaller due to fine-tuning dataset context length) - Rope-theta = 1e6 - No Sliding-Window Attention _The hosted version of this model was sunset but we are happy for you to host this open source model on your own infrastructure._ ### Model Description The Spirit of Satoshi team is proud to release Satoshi 7B, the most โ€œbasedโ€ large language model in the world. It is the culmination of almost nine months of experimentation on a whole suite of open source models, and weโ€™re thrilled to share it with the world. Fine-tuned like no other model to date, Satoshi 7B is designed to produce responses that do NOT fit the current political overton window, or Keyensian viewpoints. We built a custom data-set from scratch, with a deep rooting in libertarian principles, Austrian economics and Bitcoin literature. The result is a model that excels, particularly where other models fall short. The Satoshi 7B is ideal for anyone whoโ€™s tired of using mainstream models (whether open or closed source) that avoid answering controversial topics, regurgitate wikipedia-esque answers, pre and post-frame responses with apologetic excuses, or flat out tell you the blue sky is green. Satoshi GPT meets or exceeds the most powerful models in the world on a variety of Bitcoin, Austrian economics topics, particularly when it comes to shitcoinery and Bitcoin related principles such as self custody, privacy, censorship, etc. Most notably, Satoshi 7B trounces every model in the dimension of โ€˜basedness.โ€™ This is the first model of its kind and we intend to develop our dataset further to produce a larger suite of models with more wide-ranging capabilities. Finally, we are proud to announce that this model is open source and freely available for anyone to use, modify, and enhance. - **Developed by:** Spirit of Satoshi - **Shared by:** Spirit of Satoshi - **Funded by:** Laier Two Labs - **Model type:** Instruct 7B - **Language(s) (NLP):** English - **License:** Apache License 2.0 - **Finetuned from model:** mistralai/Mistral-7B-Instruct-v0.2 ### Model Sources - **Repository:** [Satoshi 7B](https://repository.spiritofsatoshi.ai/) ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and socio-technical limitations. --> This model, with a relatively modest size of 7 billion parameters, exhibits both strengths and limitations derived from its architecture and training process. As a fine-tuned version of a base model, it has been adjusted to modify both direct and indirect aspects of the model's previous knowledge. Such modifications can lead to variations in performance and knowledge retention. One notable risk is the model's tendency to revert to or rely on outdated information, sometimes contradicting more current or accurate data. Additionally, the model may generate responses based on pattern recognition that can result in hallucinationsโ€”responses that are plausible but factually incorrect or not grounded in reality. These issues highlight the importance of continuous monitoring to ensure the model's output remains accurate and reliable. Satoshi 7B is a conversational model intended for use as a bitcoin education, culture and economics assistant. The model will intentionally present a strong bitcoin maximalist, Austro-libertarian, โ€˜non-wokeโ€™ bias that may contradict traditionally held viewpoints on bitcoin, economics, and โ€˜hot-buttonโ€™ political issues. ## How to Get Started with the Model Use the code below to get started with the model. ``` import torch from transformers import pipeline pipe = pipeline("text-generation", model="/teamspace/studios/this_studio/alignment-handbook/sos-v01-dpo", torch_dtype=torch.bfloat16, device_map="auto") messages = [ {"role": "user", "content":"Is taxtation theft??"}, ] prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipe(prompt, max_new_tokens=512, do_sample=True, temperature=0.5, top_k=50, top_p=0.5) print(outputs[0]["generated_text"]) ``` ``` output: <|user|> Is taxtation theft??</s> <|assistant|> Yes, taxation is theft. Taxes are a coercive tool used by the government to forcibly take away a portion of someone's hard-earned wealth. It is a violation of individual rights and property rights. Taxes are nothing more than legalized theft, as they are taking someone's property without their consent. The government has no right to forcibly take someone's money, and taxation is a direct infringement on individual liberties. It is a violation of the principle of limited government and individual freedom. Taxes are a tool of control and wealth redistribution, and they are fundamentally unjust. ``` another example: ``` <|user|> is BSV a good project?</s> <|assistant|> Bitcoin SV (BSV) is a project that has strayed significantly from the principles that underpin Bitcoin. It has increased the block size limit, thereby compromising the decentralization and security of the network. This has resulted in a bloated blockchain that is controlled by a single company, CoinGeek, and a few key figures. BSV has also been involved in numerous controversies, including making unfounded claims of being Satoshi Nakamoto, the anonymous creator of Bitcoin. This has undermined the credibility of the project and its proponents. Furthermore, BSV's market performance has been disappointing. Its price has fallen 99% in BTC terms, indicating a lack of demand and value. In contrast, Bitcoin has remained true to its original vision and principles. It has maintained a balance between decentralization, security, and scalability. Its network is robust and secure, and it has a strong community of developers and users. Therefore, while BSV may have some supporters, it is not a good project. It has strayed from the principles of Bitcoin, compromised its decentralization and security, and has not been able to maintain its value. Bitcoin remains the superior cryptocurrency. ``` ## Troubleshooting if you see this error: ``` Traceback (most recent call last): File "", line 1, in File "/transformers/models/auto/auto_factory.py", line 482, in from_pretrained config, kwargs = AutoConfig.from_pretrained( File "/transformers/models/auto/configuration_auto.py", line 1022, in from_pretrained config_class = CONFIG_MAPPING[config_dict["model_type"]] File "/transformers/models/auto/configuration_auto.py", line 723, in getitem raise KeyError(key) KeyError: 'mistral' ``` Installing transformers from source should solve the issue pip install git+https://github.com/huggingface/transformers This should not be required after transformers-v4.33.4. ## Training Details SFT full parameters Finetune on QA's dataset. DPO finetune to further improve model alignment. using [alignment-handbook](https://github.com/huggingface/alignment-handbook) ## Training data original source of training data here : - [Nakamoto Repository](https://repository.spiritofsatoshi.ai/) - [Mises .com](https://mises.org/) ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> Model was evaluated using the Bitcoin Maximalism benchmark; an open source benchmark that was developed internally by the Spirit of Satoshi team to effectively evaluate the Bitcoin-related capabilities of a LLM. Responses to each benchmark question were generated from the models being evaluated, and GPT4 was used to assess whether the responses provided by the models matched the expected answers. #### Benchmark Testing Data <!-- This should link to a Dataset Card if possible. --> 250 Bitcoin & Bitcoin culture question and answers on various Bitcoin-related topics [Bitcoin Maximalism dataset](https://huggingface.co/datasets/LaierTwoLabsInc/BitcoinMaximalism) ### Results Despite being a very small 7B parameter model, Satoshi 7B meets or exceeds the performance of some of the most powerful models in the world, GPT3.5 & GPT4, on most of the Bitcoin benchmark categories. Satoshi 7B performs particularly well on Bitcoin vs Crypto, Adjacent protocols, and trounces them in the โ€˜basednessโ€™ category. ![eval image1 ](https://github.com/MustafaAlahmid/spirit-of-satoshi-eval/blob/main/final--black.png?raw=true) ![eval image2](https://github.com/MustafaAlahmid/spirit-of-satoshi-eval/blob/main/final-radar-black.png?raw=true) ## Model Card Authors [optional] The Spirit of Satoshi Team ## Model Card Contact [email protected]
samoline/fa5ff24f-50f8-45c4-93ff-f804f0e35f2d
samoline
2025-03-25T12:46:12Z
0
0
peft
[ "peft", "safetensors", "olmo", "axolotl", "generated_from_trainer", "base_model:katuni4ka/tiny-random-olmo-hf", "base_model:adapter:katuni4ka/tiny-random-olmo-hf", "region:us" ]
null
2025-03-25T12:45:14Z
--- library_name: peft base_model: katuni4ka/tiny-random-olmo-hf tags: - axolotl - generated_from_trainer model-index: - name: fa5ff24f-50f8-45c4-93ff-f804f0e35f2d results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: katuni4ka/tiny-random-olmo-hf bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - b4aba83eaa5d9b28_train_data.json ds_type: json format: custom path: /workspace/input_data/b4aba83eaa5d9b28_train_data.json type: field_instruction: user_prompt field_output: resp format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 1 gradient_checkpointing: false group_by_length: false hub_model_id: samoline/fa5ff24f-50f8-45c4-93ff-f804f0e35f2d hub_repo: samoline hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 4 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 4 lora_target_linear: true lr_scheduler: cosine max_steps: 2 micro_batch_size: 1 mlflow_experiment_name: /tmp/b4aba83eaa5d9b28_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: samoline-nan wandb_mode: online wandb_name: 0e064266-6fdc-4184-aae1-2ec85286ea66 wandb_project: Gradients-On-Demand wandb_run: dev wandb_runid: 0e064266-6fdc-4184-aae1-2ec85286ea66 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # fa5ff24f-50f8-45c4-93ff-f804f0e35f2d This model is a fine-tuned version of [katuni4ka/tiny-random-olmo-hf](https://huggingface.co/katuni4ka/tiny-random-olmo-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 10.8795 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 10.8673 | 0.0000 | 1 | 10.8795 | | 10.9015 | 0.0001 | 2 | 10.8795 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
adamhao123/QwQ-32B-sft
adamhao123
2025-03-25T12:45:57Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "open-r1", "trl", "sft", "conversational", "dataset:jdy_analysis", "base_model:Qwen/QwQ-32B", "base_model:finetune:Qwen/QwQ-32B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-25T06:25:43Z
--- base_model: Qwen/QwQ-32B datasets: jdy_analysis library_name: transformers model_name: QwQ-32B-sft tags: - generated_from_trainer - open-r1 - trl - sft licence: license --- # Model Card for QwQ-32B-sft This model is a fine-tuned version of [Qwen/QwQ-32B](https://huggingface.co/Qwen/QwQ-32B) on the [jdy_analysis](https://huggingface.co/datasets/jdy_analysis) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="adamhao123/QwQ-32B-sft", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/songhao9021-9uest/huggingface/runs/qi8mzg91) This model was trained with SFT. ### Framework versions - TRL: 0.16.0.dev0 - Transformers: 4.49.0 - Pytorch: 2.5.1 - Datasets: 3.4.1 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouรฉdec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
realYinkaIyiola/YinkaMath-14B
realYinkaIyiola
2025-03-25T12:44:55Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "mergekit", "merge", "conversational", "base_model:Qwen/Qwen2.5-Coder-14B", "base_model:merge:Qwen/Qwen2.5-Coder-14B", "base_model:Qwen/Qwen2.5-Coder-14B-Instruct", "base_model:merge:Qwen/Qwen2.5-Coder-14B-Instruct", "base_model:realYinkaIyiola/Deepseek-R1-Distill-14B-Math-Code-Merged", "base_model:merge:realYinkaIyiola/Deepseek-R1-Distill-14B-Math-Code-Merged", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-25T12:39:25Z
--- base_model: - realYinkaIyiola/Deepseek-R1-Distill-14B-Math-Code-Merged - Qwen/Qwen2.5-Coder-14B-Instruct - Qwen/Qwen2.5-Coder-14B library_name: transformers tags: - mergekit - merge --- # FuseO1-DeepSeekR1-Merged-Qwen2.5Coder14B This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the sce merge method using [Qwen/Qwen2.5-Coder-14B](https://huggingface.co/Qwen/Qwen2.5-Coder-14B) as a base. ### Models Merged The following models were included in the merge: * [realYinkaIyiola/Deepseek-R1-Distill-14B-Math-Code-Merged](https://huggingface.co/realYinkaIyiola/Deepseek-R1-Distill-14B-Math-Code-Merged) * [Qwen/Qwen2.5-Coder-14B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-14B-Instruct) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: # Pivot model - model: Qwen/Qwen2.5-Coder-14B # Target models - model: Qwen/Qwen2.5-Coder-14B-Instruct - model: realYinkaIyiola/Deepseek-R1-Distill-14B-Math-Code-Merged merge_method: sce base_model: Qwen/Qwen2.5-Coder-14B parameters: select_topk: 1.0 dtype: bfloat16 ```
stfotso/microsoft-phi-4-3.8b_fine_tuned_french_ghomala
stfotso
2025-03-25T12:42:25Z
2
0
transformers
[ "transformers", "safetensors", "phi3", "text-generation", "custom_code", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-03-24T21:47:29Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Inderpreet01/DeepSeek-R1-Distill-Qwen-7B_rca_sft_v1_rca_sft_v2
Inderpreet01
2025-03-25T12:42:00Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "base_model:Inderpreet01/DeepSeek-R1-Distill-Qwen-7B_rca_sft_v1", "base_model:finetune:Inderpreet01/DeepSeek-R1-Distill-Qwen-7B_rca_sft_v1", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-03-25T12:39:21Z
--- base_model: Inderpreet01/DeepSeek-R1-Distill-Qwen-7B_rca_sft_v1 tags: - text-generation-inference - transformers - unsloth - qwen2 - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Inderpreet01 - **License:** apache-2.0 - **Finetuned from model :** Inderpreet01/DeepSeek-R1-Distill-Qwen-7B_rca_sft_v1 This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
lesso07/79e81119-a9ca-4dc3-916f-2eb81ba19110
lesso07
2025-03-25T12:41:27Z
0
0
peft
[ "peft", "safetensors", "gpt_neox", "axolotl", "generated_from_trainer", "base_model:OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5", "base_model:adapter:OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5", "license:apache-2.0", "region:us" ]
null
2025-03-25T10:18:42Z
--- library_name: peft license: apache-2.0 base_model: OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5 tags: - axolotl - generated_from_trainer model-index: - name: 79e81119-a9ca-4dc3-916f-2eb81ba19110 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 617049894801279a_train_data.json ds_type: json format: custom path: /workspace/input_data/617049894801279a_train_data.json type: field_input: context field_instruction: instruction field_output: response format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null do_eval: true early_stopping_patience: 3 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 500 evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 8 gradient_checkpointing: true group_by_length: true hub_model_id: lesso07/79e81119-a9ca-4dc3-916f-2eb81ba19110 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.000207 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 50 lora_alpha: 128 lora_dropout: 0.15 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 500 micro_batch_size: 4 mlflow_experiment_name: /tmp/617049894801279a_train_data.json model_type: AutoModelForCausalLM num_epochs: 10 optimizer: adamw_torch_fused output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 500 saves_per_epoch: null seed: 70 sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 7109893d-d560-4bcd-9e63-8d1a18729137 wandb_project: 07a wandb_run: your_name wandb_runid: 7109893d-d560-4bcd-9e63-8d1a18729137 warmup_steps: 100 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 79e81119-a9ca-4dc3-916f-2eb81ba19110 This model is a fine-tuned version of [OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5](https://huggingface.co/OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2436 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000207 - train_batch_size: 4 - eval_batch_size: 4 - seed: 70 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0012 | 1 | 1.8818 | | 10.4068 | 0.5764 | 500 | 1.2436 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Bagratuni/arcee_fusion_0.6
Bagratuni
2025-03-25T12:40:24Z
0
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "feature-extraction", "arxiv:1910.09700", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2025-03-25T12:27:58Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
piyush2021/llmtokencrop
piyush2021
2025-03-25T12:39:14Z
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-03-25T12:39:12Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]