modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-03 00:49:08
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
549 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-03 00:44:12
card
stringlengths
11
1.01M
djtar/adiba
djtar
2025-02-01T12:12:08Z
23
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "base_model:unsloth/Meta-Llama-3.1-8B-bnb-4bit", "base_model:quantized:unsloth/Meta-Llama-3.1-8B-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-02-01T12:08:12Z
--- base_model: unsloth/Meta-Llama-3.1-8B-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** djtar - **License:** apache-2.0 - **Finetuned from model :** unsloth/Meta-Llama-3.1-8B-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
bhavnicksm/brown-fairy-base-v0
bhavnicksm
2025-02-01T12:11:52Z
105
1
model2vec
[ "model2vec", "safetensors", "embeddings", "static-embeddings", "sentence-transformers", "mteb", "en", "license:mit", "model-index", "region:us" ]
null
2025-01-30T21:43:50Z
--- base_model: baai/bge-base-en-v1.5 language: - en library_name: model2vec license: mit model_name: brown-fairy-base-v0 tags: - embeddings - static-embeddings - sentence-transformers - mteb model-index: - name: bhavnicksm/brown-fairy-base-v0 results: - dataset: config: en name: MTEB AmazonCounterfactualClassification (en) revision: e8379541af4e31359cca9fbcf4b00f2671dba205 split: test type: mteb/amazon_counterfactual metrics: - type: accuracy value: 69.52239999999999 - type: f1 value: 63.4127 - type: f1_weighted value: 72.48599999999999 - type: ap value: 31.8446 - type: ap_weighted value: 31.8446 - type: main_score value: 69.52239999999999 task: type: Classification - dataset: config: default name: MTEB AmazonPolarityClassification (default) revision: e2d317d38cd51312af73b3d32a06d1a08b442046 split: test type: mteb/amazon_polarity metrics: - type: accuracy value: 68.709 - type: f1 value: 68.2583 - type: f1_weighted value: 68.2583 - type: ap value: 63.728899999999996 - type: ap_weighted value: 63.728899999999996 - type: main_score value: 68.709 task: type: Classification - dataset: config: en name: MTEB AmazonReviewsClassification (en) revision: 1399c76144fd37290681b995c656ef9b2e06e26d split: test type: mteb/amazon_reviews_multi metrics: - type: accuracy value: 34.014 - type: f1 value: 33.4588 - type: f1_weighted value: 33.4588 - type: main_score value: 34.014 task: type: Classification - dataset: config: default name: MTEB ArguAna (default) revision: c22ab2a51041ffd869aaddef7af8d8215647e41a split: test type: mteb/arguana metrics: - type: ndcg_at_1 value: 20.341 - type: ndcg_at_3 value: 30.547 - type: ndcg_at_5 value: 34.963 - type: ndcg_at_10 value: 39.805 - type: ndcg_at_20 value: 42.397 - type: ndcg_at_100 value: 45.216 - type: ndcg_at_1000 value: 46.339999999999996 - type: map_at_1 value: 20.341 - type: map_at_3 value: 27.962999999999997 - type: map_at_5 value: 30.409999999999997 - type: map_at_10 value: 32.4 - type: map_at_20 value: 33.113 - type: map_at_100 value: 33.512 - type: map_at_1000 value: 33.556000000000004 - type: recall_at_1 value: 20.341 - type: recall_at_3 value: 38.051 - type: recall_at_5 value: 48.791000000000004 - type: recall_at_10 value: 63.798 - type: recall_at_20 value: 74.03999999999999 - type: recall_at_100 value: 89.118 - type: recall_at_1000 value: 97.866 - type: precision_at_1 value: 20.341 - type: precision_at_3 value: 12.684000000000001 - type: precision_at_5 value: 9.758 - type: precision_at_10 value: 6.38 - type: precision_at_20 value: 3.702 - type: precision_at_100 value: 0.8909999999999999 - type: precision_at_1000 value: 0.098 - type: mrr_at_1 value: 20.6259 - type: mrr_at_3 value: 28.058300000000003 - type: mrr_at_5 value: 30.4979 - type: mrr_at_10 value: 32.5131 - type: mrr_at_20 value: 33.222699999999996 - type: mrr_at_100 value: 33.6243 - type: mrr_at_1000 value: 33.6687 - type: nauc_ndcg_at_1_max value: -6.208 - type: nauc_ndcg_at_1_std value: 0.6887 - type: nauc_ndcg_at_1_diff1 value: 5.5123 - type: nauc_ndcg_at_3_max value: -1.8608 - type: nauc_ndcg_at_3_std value: 3.7832999999999997 - type: nauc_ndcg_at_3_diff1 value: 7.5778 - type: nauc_ndcg_at_5_max value: 0.0929 - type: nauc_ndcg_at_5_std value: 5.8453 - type: nauc_ndcg_at_5_diff1 value: 9.316 - type: nauc_ndcg_at_10_max value: 0.557 - type: nauc_ndcg_at_10_std value: 5.8692 - type: nauc_ndcg_at_10_diff1 value: 8.3828 - type: nauc_ndcg_at_20_max value: 1.567 - type: nauc_ndcg_at_20_std value: 8.2355 - type: nauc_ndcg_at_20_diff1 value: 9.1907 - type: nauc_ndcg_at_100_max value: 1.0833000000000002 - type: nauc_ndcg_at_100_std value: 8.6248 - type: nauc_ndcg_at_100_diff1 value: 9.0073 - type: nauc_ndcg_at_1000_max value: -0.166 - type: nauc_ndcg_at_1000_std value: 7.394100000000001 - type: nauc_ndcg_at_1000_diff1 value: 8.1955 - type: nauc_map_at_1_max value: -6.208 - type: nauc_map_at_1_std value: 0.6887 - type: nauc_map_at_1_diff1 value: 5.5123 - type: nauc_map_at_3_max value: -3.0332999999999997 - type: nauc_map_at_3_std value: 2.9010000000000002 - type: nauc_map_at_3_diff1 value: 6.8088 - type: nauc_map_at_5_max value: -1.9215 - type: nauc_map_at_5_std value: 4.023000000000001 - type: nauc_map_at_5_diff1 value: 7.8248999999999995 - type: nauc_map_at_10_max value: -1.8037 - type: nauc_map_at_10_std value: 3.9838 - type: nauc_map_at_10_diff1 value: 7.3617 - type: nauc_map_at_20_max value: -1.5614 - type: nauc_map_at_20_std value: 4.6065000000000005 - type: nauc_map_at_20_diff1 value: 7.5846 - type: nauc_map_at_100_max value: -1.6330999999999998 - type: nauc_map_at_100_std value: 4.693 - type: nauc_map_at_100_diff1 value: 7.5309 - type: nauc_map_at_1000_max value: -1.6847999999999999 - type: nauc_map_at_1000_std value: 4.6508 - type: nauc_map_at_1000_diff1 value: 7.5036000000000005 - type: nauc_recall_at_1_max value: -6.208 - type: nauc_recall_at_1_std value: 0.6887 - type: nauc_recall_at_1_diff1 value: 5.5123 - type: nauc_recall_at_3_max value: 1.2662 - type: nauc_recall_at_3_std value: 6.1506 - type: nauc_recall_at_3_diff1 value: 9.6919 - type: nauc_recall_at_5_max value: 5.7511 - type: nauc_recall_at_5_std value: 11.0652 - type: nauc_recall_at_5_diff1 value: 13.5713 - type: nauc_recall_at_10_max value: 8.5342 - type: nauc_recall_at_10_std value: 12.2161 - type: nauc_recall_at_10_diff1 value: 11.6188 - type: nauc_recall_at_20_max value: 15.7488 - type: nauc_recall_at_20_std value: 25.6755 - type: nauc_recall_at_20_diff1 value: 16.3568 - type: nauc_recall_at_100_max value: 24.424799999999998 - type: nauc_recall_at_100_std value: 47.6945 - type: nauc_recall_at_100_diff1 value: 22.4622 - type: nauc_recall_at_1000_max value: 3.0951 - type: nauc_recall_at_1000_std value: 84.10419999999999 - type: nauc_recall_at_1000_diff1 value: -2.6364 - type: nauc_precision_at_1_max value: -6.208 - type: nauc_precision_at_1_std value: 0.6887 - type: nauc_precision_at_1_diff1 value: 5.5123 - type: nauc_precision_at_3_max value: 1.2662 - type: nauc_precision_at_3_std value: 6.1506 - type: nauc_precision_at_3_diff1 value: 9.6919 - type: nauc_precision_at_5_max value: 5.7511 - type: nauc_precision_at_5_std value: 11.0652 - type: nauc_precision_at_5_diff1 value: 13.5713 - type: nauc_precision_at_10_max value: 8.5342 - type: nauc_precision_at_10_std value: 12.2161 - type: nauc_precision_at_10_diff1 value: 11.6188 - type: nauc_precision_at_20_max value: 15.7488 - type: nauc_precision_at_20_std value: 25.6755 - type: nauc_precision_at_20_diff1 value: 16.3568 - type: nauc_precision_at_100_max value: 24.424799999999998 - type: nauc_precision_at_100_std value: 47.6945 - type: nauc_precision_at_100_diff1 value: 22.4622 - type: nauc_precision_at_1000_max value: 3.0951 - type: nauc_precision_at_1000_std value: 84.10419999999999 - type: nauc_precision_at_1000_diff1 value: -2.6364 - type: nauc_mrr_at_1_max value: -5.611800000000001 - type: nauc_mrr_at_1_std value: 0.2596 - type: nauc_mrr_at_1_diff1 value: 4.5101 - type: nauc_mrr_at_3_max value: -3.1917 - type: nauc_mrr_at_3_std value: 2.7559 - type: nauc_mrr_at_3_diff1 value: 5.756 - type: nauc_mrr_at_5_max value: -2.1292999999999997 - type: nauc_mrr_at_5_std value: 3.7653 - type: nauc_mrr_at_5_diff1 value: 6.7995 - type: nauc_mrr_at_10_max value: -1.8915000000000002 - type: nauc_mrr_at_10_std value: 3.778 - type: nauc_mrr_at_10_diff1 value: 6.4253 - type: nauc_mrr_at_20_max value: -1.6753 - type: nauc_mrr_at_20_std value: 4.389 - type: nauc_mrr_at_20_diff1 value: 6.6081 - type: nauc_mrr_at_100_max value: -1.7302000000000002 - type: nauc_mrr_at_100_std value: 4.4796000000000005 - type: nauc_mrr_at_100_diff1 value: 6.563199999999999 - type: nauc_mrr_at_1000_max value: -1.7819000000000003 - type: nauc_mrr_at_1000_std value: 4.4372 - type: nauc_mrr_at_1000_diff1 value: 6.5346 - type: main_score value: 39.805 task: type: Retrieval - dataset: config: default name: MTEB ArxivClusteringP2P (default) revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d split: test type: mteb/arxiv-clustering-p2p metrics: - type: v_measure value: 30.9023 - type: v_measure_std value: 14.6095 - type: main_score value: 30.9023 task: type: Clustering - dataset: config: default name: MTEB ArxivClusteringS2S (default) revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 split: test type: mteb/arxiv-clustering-s2s metrics: - type: v_measure value: 19.1012 - type: v_measure_std value: 15.511800000000001 - type: main_score value: 19.1012 task: type: Clustering - dataset: config: default name: MTEB AskUbuntuDupQuestions (default) revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 split: test type: mteb/askubuntudupquestions-reranking metrics: - type: map value: 54.0474 - type: mrr value: 67.00150000000001 - type: nAUC_map_max value: 14.266100000000002 - type: nAUC_map_std value: 11.7906 - type: nAUC_map_diff1 value: 7.5044 - type: nAUC_mrr_max value: 20.1721 - type: nAUC_mrr_std value: 13.1225 - type: nAUC_mrr_diff1 value: 14.3512 - type: main_score value: 54.0474 task: type: Reranking - dataset: config: default name: MTEB BIOSSES (default) revision: d3fb88f8f02e40887cd149695127462bbcf29b4a split: test type: mteb/biosses-sts metrics: - type: pearson value: 73.3465 - type: spearman value: 69.6932 - type: cosine_pearson value: 73.3465 - type: cosine_spearman value: 69.6932 - type: manhattan_pearson value: 54.115899999999996 - type: manhattan_spearman value: 54.1759 - type: euclidean_pearson value: 54.2153 - type: euclidean_spearman value: 54.0488 - type: main_score value: 69.6932 task: type: STS - dataset: config: default name: MTEB Banking77Classification (default) revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 split: test type: mteb/banking77 metrics: - type: accuracy value: 74.2987 - type: f1 value: 73.85119999999999 - type: f1_weighted value: 73.85119999999999 - type: main_score value: 74.2987 task: type: Classification - dataset: config: default name: MTEB BiorxivClusteringP2P (default) revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 split: test type: mteb/biorxiv-clustering-p2p metrics: - type: v_measure value: 29.8415 - type: v_measure_std value: 0.7605 - type: main_score value: 29.8415 task: type: Clustering - dataset: config: default name: MTEB BiorxivClusteringS2S (default) revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 split: test type: mteb/biorxiv-clustering-s2s metrics: - type: v_measure value: 16.4917 - type: v_measure_std value: 1.2364 - type: main_score value: 16.4917 task: type: Clustering - dataset: config: default name: MTEB CQADupstackRetrieval (default) revision: '1' split: test type: CQADupstackRetrieval_is_a_combined_dataset metrics: - type: ndcg_at_10 value: 21.9561 - type: main_score value: 21.9561 task: type: Retrieval - dataset: config: default name: MTEB ClimateFEVER (default) revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380 split: test type: mteb/climate-fever metrics: - type: ndcg_at_1 value: 18.826999999999998 - type: ndcg_at_3 value: 16.482 - type: ndcg_at_5 value: 17.9 - type: ndcg_at_10 value: 20.948 - type: ndcg_at_20 value: 23.665 - type: ndcg_at_100 value: 28.192 - type: ndcg_at_1000 value: 31.846999999999998 - type: map_at_1 value: 8.221 - type: map_at_3 value: 11.72 - type: map_at_5 value: 12.844 - type: map_at_10 value: 14.17 - type: map_at_20 value: 15.043000000000001 - type: map_at_100 value: 15.842 - type: map_at_1000 value: 16.04 - type: recall_at_1 value: 8.221 - type: recall_at_3 value: 15.214 - type: recall_at_5 value: 19.185 - type: recall_at_10 value: 26.14 - type: recall_at_20 value: 33.931 - type: recall_at_100 value: 51.429 - type: recall_at_1000 value: 72.269 - type: precision_at_1 value: 18.826999999999998 - type: precision_at_3 value: 12.4 - type: precision_at_5 value: 9.707 - type: precision_at_10 value: 6.84 - type: precision_at_20 value: 4.557 - type: precision_at_100 value: 1.461 - type: precision_at_1000 value: 0.212 - type: mrr_at_1 value: 18.8274 - type: mrr_at_3 value: 25.2226 - type: mrr_at_5 value: 27.163999999999998 - type: mrr_at_10 value: 28.6116 - type: mrr_at_20 value: 29.3082 - type: mrr_at_100 value: 29.7302 - type: mrr_at_1000 value: 29.786600000000004 - type: nauc_ndcg_at_1_max value: 23.3019 - type: nauc_ndcg_at_1_std value: 14.4153 - type: nauc_ndcg_at_1_diff1 value: 21.8879 - type: nauc_ndcg_at_3_max value: 22.2746 - type: nauc_ndcg_at_3_std value: 15.487300000000001 - type: nauc_ndcg_at_3_diff1 value: 17.8275 - type: nauc_ndcg_at_5_max value: 23.0993 - type: nauc_ndcg_at_5_std value: 16.4617 - type: nauc_ndcg_at_5_diff1 value: 16.7855 - type: nauc_ndcg_at_10_max value: 24.7783 - type: nauc_ndcg_at_10_std value: 20.1484 - type: nauc_ndcg_at_10_diff1 value: 17.0753 - type: nauc_ndcg_at_20_max value: 26.1465 - type: nauc_ndcg_at_20_std value: 22.3842 - type: nauc_ndcg_at_20_diff1 value: 16.777900000000002 - type: nauc_ndcg_at_100_max value: 27.703100000000003 - type: nauc_ndcg_at_100_std value: 25.3223 - type: nauc_ndcg_at_100_diff1 value: 16.1821 - type: nauc_ndcg_at_1000_max value: 28.778599999999997 - type: nauc_ndcg_at_1000_std value: 27.9877 - type: nauc_ndcg_at_1000_diff1 value: 16.223499999999998 - type: nauc_map_at_1_max value: 22.4083 - type: nauc_map_at_1_std value: 9.546000000000001 - type: nauc_map_at_1_diff1 value: 29.008499999999998 - type: nauc_map_at_3_max value: 22.0196 - type: nauc_map_at_3_std value: 11.7774 - type: nauc_map_at_3_diff1 value: 21.7038 - type: nauc_map_at_5_max value: 22.7222 - type: nauc_map_at_5_std value: 12.8126 - type: nauc_map_at_5_diff1 value: 20.288 - type: nauc_map_at_10_max value: 23.566200000000002 - type: nauc_map_at_10_std value: 14.8877 - type: nauc_map_at_10_diff1 value: 19.9221 - type: nauc_map_at_20_max value: 24.1809 - type: nauc_map_at_20_std value: 15.9395 - type: nauc_map_at_20_diff1 value: 19.6606 - type: nauc_map_at_100_max value: 24.7213 - type: nauc_map_at_100_std value: 16.8474 - type: nauc_map_at_100_diff1 value: 19.5227 - type: nauc_map_at_1000_max value: 24.8168 - type: nauc_map_at_1000_std value: 17.0802 - type: nauc_map_at_1000_diff1 value: 19.496199999999998 - type: nauc_recall_at_1_max value: 22.4083 - type: nauc_recall_at_1_std value: 9.546000000000001 - type: nauc_recall_at_1_diff1 value: 29.008499999999998 - type: nauc_recall_at_3_max value: 19.4585 - type: nauc_recall_at_3_std value: 14.3753 - type: nauc_recall_at_3_diff1 value: 15.7 - type: nauc_recall_at_5_max value: 20.5273 - type: nauc_recall_at_5_std value: 16.2058 - type: nauc_recall_at_5_diff1 value: 12.1747 - type: nauc_recall_at_10_max value: 22.6961 - type: nauc_recall_at_10_std value: 22.400000000000002 - type: nauc_recall_at_10_diff1 value: 13.2301 - type: nauc_recall_at_20_max value: 23.9165 - type: nauc_recall_at_20_std value: 25.392300000000002 - type: nauc_recall_at_20_diff1 value: 11.8797 - type: nauc_recall_at_100_max value: 26.6031 - type: nauc_recall_at_100_std value: 31.7759 - type: nauc_recall_at_100_diff1 value: 8.9369 - type: nauc_recall_at_1000_max value: 32.4917 - type: nauc_recall_at_1000_std value: 47.7736 - type: nauc_recall_at_1000_diff1 value: 9.5485 - type: nauc_precision_at_1_max value: 23.3019 - type: nauc_precision_at_1_std value: 14.4153 - type: nauc_precision_at_1_diff1 value: 21.8879 - type: nauc_precision_at_3_max value: 23.9748 - type: nauc_precision_at_3_std value: 21.5474 - type: nauc_precision_at_3_diff1 value: 10.6452 - type: nauc_precision_at_5_max value: 24.9076 - type: nauc_precision_at_5_std value: 23.9797 - type: nauc_precision_at_5_diff1 value: 7.1156999999999995 - type: nauc_precision_at_10_max value: 26.721 - type: nauc_precision_at_10_std value: 30.1734 - type: nauc_precision_at_10_diff1 value: 7.0459 - type: nauc_precision_at_20_max value: 27.9059 - type: nauc_precision_at_20_std value: 33.1933 - type: nauc_precision_at_20_diff1 value: 5.7082 - type: nauc_precision_at_100_max value: 25.7203 - type: nauc_precision_at_100_std value: 35.108 - type: nauc_precision_at_100_diff1 value: 2.2525 - type: nauc_precision_at_1000_max value: 23.6155 - type: nauc_precision_at_1000_std value: 39.4567 - type: nauc_precision_at_1000_diff1 value: -1.2073 - type: nauc_mrr_at_1_max value: 23.3019 - type: nauc_mrr_at_1_std value: 14.4153 - type: nauc_mrr_at_1_diff1 value: 21.8879 - type: nauc_mrr_at_3_max value: 23.340700000000002 - type: nauc_mrr_at_3_std value: 18.1166 - type: nauc_mrr_at_3_diff1 value: 16.4821 - type: nauc_mrr_at_5_max value: 23.5278 - type: nauc_mrr_at_5_std value: 19.023200000000003 - type: nauc_mrr_at_5_diff1 value: 15.7295 - type: nauc_mrr_at_10_max value: 24.199 - type: nauc_mrr_at_10_std value: 20.218600000000002 - type: nauc_mrr_at_10_diff1 value: 16.173199999999998 - type: nauc_mrr_at_20_max value: 24.4813 - type: nauc_mrr_at_20_std value: 20.5169 - type: nauc_mrr_at_20_diff1 value: 16.2274 - type: nauc_mrr_at_100_max value: 24.378800000000002 - type: nauc_mrr_at_100_std value: 20.4327 - type: nauc_mrr_at_100_diff1 value: 16.220499999999998 - type: nauc_mrr_at_1000_max value: 24.3802 - type: nauc_mrr_at_1000_std value: 20.4123 - type: nauc_mrr_at_1000_diff1 value: 16.2191 - type: main_score value: 20.948 task: type: Retrieval - dataset: config: default name: MTEB DBPedia (default) revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659 split: test type: mteb/dbpedia metrics: - type: ndcg_at_1 value: 30.375000000000004 - type: ndcg_at_3 value: 26.590999999999998 - type: ndcg_at_5 value: 24.586 - type: ndcg_at_10 value: 23.246 - type: ndcg_at_20 value: 23.025000000000002 - type: ndcg_at_100 value: 26.994 - type: ndcg_at_1000 value: 33.591 - type: map_at_1 value: 4.104 - type: map_at_3 value: 6.869 - type: map_at_5 value: 7.949000000000001 - type: map_at_10 value: 9.511 - type: map_at_20 value: 10.959000000000001 - type: map_at_100 value: 13.444999999999999 - type: map_at_1000 value: 14.482999999999999 - type: recall_at_1 value: 4.104 - type: recall_at_3 value: 8.394 - type: recall_at_5 value: 10.453 - type: recall_at_10 value: 14.413 - type: recall_at_20 value: 19.421 - type: recall_at_100 value: 34.134 - type: recall_at_1000 value: 56.74 - type: precision_at_1 value: 43.0 - type: precision_at_3 value: 32.25 - type: precision_at_5 value: 26.650000000000002 - type: precision_at_10 value: 20.575 - type: precision_at_20 value: 15.587000000000002 - type: precision_at_100 value: 6.784999999999999 - type: precision_at_1000 value: 1.465 - type: mrr_at_1 value: 43.0 - type: mrr_at_3 value: 50.416700000000006 - type: mrr_at_5 value: 51.554199999999994 - type: mrr_at_10 value: 52.5436 - type: mrr_at_20 value: 53.0818 - type: mrr_at_100 value: 53.3559 - type: mrr_at_1000 value: 53.3775 - type: nauc_ndcg_at_1_max value: 32.3654 - type: nauc_ndcg_at_1_std value: 10.134799999999998 - type: nauc_ndcg_at_1_diff1 value: 30.7456 - type: nauc_ndcg_at_3_max value: 35.7454 - type: nauc_ndcg_at_3_std value: 11.2598 - type: nauc_ndcg_at_3_diff1 value: 28.8957 - type: nauc_ndcg_at_5_max value: 37.3094 - type: nauc_ndcg_at_5_std value: 12.0986 - type: nauc_ndcg_at_5_diff1 value: 30.1683 - type: nauc_ndcg_at_10_max value: 37.8415 - type: nauc_ndcg_at_10_std value: 13.6007 - type: nauc_ndcg_at_10_diff1 value: 27.7172 - type: nauc_ndcg_at_20_max value: 36.201899999999995 - type: nauc_ndcg_at_20_std value: 14.508399999999998 - type: nauc_ndcg_at_20_diff1 value: 25.6504 - type: nauc_ndcg_at_100_max value: 37.8181 - type: nauc_ndcg_at_100_std value: 22.2808 - type: nauc_ndcg_at_100_diff1 value: 22.156100000000002 - type: nauc_ndcg_at_1000_max value: 43.2943 - type: nauc_ndcg_at_1000_std value: 29.2433 - type: nauc_ndcg_at_1000_diff1 value: 24.593 - type: nauc_map_at_1_max value: 3.9762 - type: nauc_map_at_1_std value: 2.929 - type: nauc_map_at_1_diff1 value: 21.787699999999997 - type: nauc_map_at_3_max value: 7.2749 - type: nauc_map_at_3_std value: 4.1128 - type: nauc_map_at_3_diff1 value: 19.4785 - type: nauc_map_at_5_max value: 11.6105 - type: nauc_map_at_5_std value: 3.9446000000000003 - type: nauc_map_at_5_diff1 value: 21.250700000000002 - type: nauc_map_at_10_max value: 17.3344 - type: nauc_map_at_10_std value: 6.990200000000001 - type: nauc_map_at_10_diff1 value: 20.962 - type: nauc_map_at_20_max value: 23.447200000000002 - type: nauc_map_at_20_std value: 11.8169 - type: nauc_map_at_20_diff1 value: 21.0181 - type: nauc_map_at_100_max value: 32.9328 - type: nauc_map_at_100_std value: 21.3233 - type: nauc_map_at_100_diff1 value: 19.3584 - type: nauc_map_at_1000_max value: 34.9988 - type: nauc_map_at_1000_std value: 23.3726 - type: nauc_map_at_1000_diff1 value: 19.9623 - type: nauc_recall_at_1_max value: 3.9762 - type: nauc_recall_at_1_std value: 2.929 - type: nauc_recall_at_1_diff1 value: 21.787699999999997 - type: nauc_recall_at_3_max value: 2.7925999999999997 - type: nauc_recall_at_3_std value: -2.4797 - type: nauc_recall_at_3_diff1 value: 13.525 - type: nauc_recall_at_5_max value: 6.8843000000000005 - type: nauc_recall_at_5_std value: -3.7343 - type: nauc_recall_at_5_diff1 value: 17.638499999999997 - type: nauc_recall_at_10_max value: 11.6201 - type: nauc_recall_at_10_std value: -1.0245 - type: nauc_recall_at_10_diff1 value: 15.4671 - type: nauc_recall_at_20_max value: 15.815999999999999 - type: nauc_recall_at_20_std value: 3.6186999999999996 - type: nauc_recall_at_20_diff1 value: 15.407000000000002 - type: nauc_recall_at_100_max value: 24.712 - type: nauc_recall_at_100_std value: 22.0841 - type: nauc_recall_at_100_diff1 value: 10.1828 - type: nauc_recall_at_1000_max value: 33.821 - type: nauc_recall_at_1000_std value: 36.807 - type: nauc_recall_at_1000_diff1 value: 12.8396 - type: nauc_precision_at_1_max value: 39.2878 - type: nauc_precision_at_1_std value: 15.6774 - type: nauc_precision_at_1_diff1 value: 31.384 - type: nauc_precision_at_3_max value: 43.498 - type: nauc_precision_at_3_std value: 17.592299999999998 - type: nauc_precision_at_3_diff1 value: 25.154799999999998 - type: nauc_precision_at_5_max value: 47.632600000000004 - type: nauc_precision_at_5_std value: 19.6694 - type: nauc_precision_at_5_diff1 value: 26.762399999999996 - type: nauc_precision_at_10_max value: 50.91139999999999 - type: nauc_precision_at_10_std value: 23.6363 - type: nauc_precision_at_10_diff1 value: 23.097 - type: nauc_precision_at_20_max value: 52.53489999999999 - type: nauc_precision_at_20_std value: 28.8839 - type: nauc_precision_at_20_diff1 value: 18.9418 - type: nauc_precision_at_100_max value: 48.79 - type: nauc_precision_at_100_std value: 31.642500000000002 - type: nauc_precision_at_100_diff1 value: 13.646700000000001 - type: nauc_precision_at_1000_max value: 27.015099999999997 - type: nauc_precision_at_1000_std value: 13.613900000000001 - type: nauc_precision_at_1000_diff1 value: 12.138300000000001 - type: nauc_mrr_at_1_max value: 39.2878 - type: nauc_mrr_at_1_std value: 15.6774 - type: nauc_mrr_at_1_diff1 value: 31.384 - type: nauc_mrr_at_3_max value: 41.747299999999996 - type: nauc_mrr_at_3_std value: 14.7682 - type: nauc_mrr_at_3_diff1 value: 29.8219 - type: nauc_mrr_at_5_max value: 42.408699999999996 - type: nauc_mrr_at_5_std value: 14.769099999999998 - type: nauc_mrr_at_5_diff1 value: 31.1068 - type: nauc_mrr_at_10_max value: 42.571999999999996 - type: nauc_mrr_at_10_std value: 14.8256 - type: nauc_mrr_at_10_diff1 value: 31.156299999999998 - type: nauc_mrr_at_20_max value: 42.4832 - type: nauc_mrr_at_20_std value: 14.7993 - type: nauc_mrr_at_20_diff1 value: 31.260700000000003 - type: nauc_mrr_at_100_max value: 42.5018 - type: nauc_mrr_at_100_std value: 14.9009 - type: nauc_mrr_at_100_diff1 value: 31.2395 - type: nauc_mrr_at_1000_max value: 42.4996 - type: nauc_mrr_at_1000_std value: 14.9098 - type: nauc_mrr_at_1000_diff1 value: 31.230400000000003 - type: main_score value: 23.246 task: type: Retrieval - dataset: config: default name: MTEB EmotionClassification (default) revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 split: test type: mteb/emotion metrics: - type: accuracy value: 45.68 - type: f1 value: 43.1207 - type: f1_weighted value: 48.0349 - type: main_score value: 45.68 task: type: Classification - dataset: config: default name: MTEB FEVER (default) revision: bea83ef9e8fb933d90a2f1d5515737465d613e12 split: test type: mteb/fever metrics: - type: ndcg_at_1 value: 16.742 - type: ndcg_at_3 value: 23.316 - type: ndcg_at_5 value: 25.738 - type: ndcg_at_10 value: 28.68 - type: ndcg_at_20 value: 30.959999999999997 - type: ndcg_at_100 value: 34.037 - type: ndcg_at_1000 value: 36.004999999999995 - type: map_at_1 value: 15.797 - type: map_at_3 value: 21.209 - type: map_at_5 value: 22.547 - type: map_at_10 value: 23.762 - type: map_at_20 value: 24.401 - type: map_at_100 value: 24.83 - type: map_at_1000 value: 24.901 - type: recall_at_1 value: 15.797 - type: recall_at_3 value: 28.233000000000004 - type: recall_at_5 value: 33.997 - type: recall_at_10 value: 42.888 - type: recall_at_20 value: 51.635 - type: recall_at_100 value: 67.801 - type: recall_at_1000 value: 82.998 - type: precision_at_1 value: 16.742 - type: precision_at_3 value: 10.096 - type: precision_at_5 value: 7.335999999999999 - type: precision_at_10 value: 4.65 - type: precision_at_20 value: 2.817 - type: precision_at_100 value: 0.748 - type: precision_at_1000 value: 0.093 - type: mrr_at_1 value: 16.7417 - type: mrr_at_3 value: 22.4122 - type: mrr_at_5 value: 23.8374 - type: mrr_at_10 value: 25.101000000000003 - type: mrr_at_20 value: 25.739800000000002 - type: mrr_at_100 value: 26.164199999999997 - type: mrr_at_1000 value: 26.227800000000002 - type: nauc_ndcg_at_1_max value: 13.991500000000002 - type: nauc_ndcg_at_1_std value: -25.4382 - type: nauc_ndcg_at_1_diff1 value: 21.2751 - type: nauc_ndcg_at_3_max value: 15.4019 - type: nauc_ndcg_at_3_std value: -25.9724 - type: nauc_ndcg_at_3_diff1 value: 16.3365 - type: nauc_ndcg_at_5_max value: 16.4606 - type: nauc_ndcg_at_5_std value: -26.063599999999997 - type: nauc_ndcg_at_5_diff1 value: 15.334900000000001 - type: nauc_ndcg_at_10_max value: 17.1297 - type: nauc_ndcg_at_10_std value: -26.709 - type: nauc_ndcg_at_10_diff1 value: 14.072799999999999 - type: nauc_ndcg_at_20_max value: 18.0756 - type: nauc_ndcg_at_20_std value: -25.849899999999998 - type: nauc_ndcg_at_20_diff1 value: 13.3475 - type: nauc_ndcg_at_100_max value: 18.5017 - type: nauc_ndcg_at_100_std value: -25.1975 - type: nauc_ndcg_at_100_diff1 value: 13.128200000000001 - type: nauc_ndcg_at_1000_max value: 18.570500000000003 - type: nauc_ndcg_at_1000_std value: -24.5199 - type: nauc_ndcg_at_1000_diff1 value: 13.608600000000001 - type: nauc_map_at_1_max value: 14.4553 - type: nauc_map_at_1_std value: -25.291999999999998 - type: nauc_map_at_1_diff1 value: 21.4966 - type: nauc_map_at_3_max value: 15.1199 - type: nauc_map_at_3_std value: -25.8608 - type: nauc_map_at_3_diff1 value: 17.5 - type: nauc_map_at_5_max value: 15.748599999999998 - type: nauc_map_at_5_std value: -25.928 - type: nauc_map_at_5_diff1 value: 16.8883 - type: nauc_map_at_10_max value: 16.036 - type: nauc_map_at_10_std value: -26.2116 - type: nauc_map_at_10_diff1 value: 16.335 - type: nauc_map_at_20_max value: 16.305500000000002 - type: nauc_map_at_20_std value: -25.965500000000002 - type: nauc_map_at_20_diff1 value: 16.1305 - type: nauc_map_at_100_max value: 16.380200000000002 - type: nauc_map_at_100_std value: -25.870199999999997 - type: nauc_map_at_100_diff1 value: 16.1253 - type: nauc_map_at_1000_max value: 16.3924 - type: nauc_map_at_1000_std value: -25.838499999999996 - type: nauc_map_at_1000_diff1 value: 16.1408 - type: nauc_recall_at_1_max value: 14.4553 - type: nauc_recall_at_1_std value: -25.291999999999998 - type: nauc_recall_at_1_diff1 value: 21.4966 - type: nauc_recall_at_3_max value: 16.1074 - type: nauc_recall_at_3_std value: -25.916099999999997 - type: nauc_recall_at_3_diff1 value: 13.5176 - type: nauc_recall_at_5_max value: 18.0189 - type: nauc_recall_at_5_std value: -25.795299999999997 - type: nauc_recall_at_5_diff1 value: 11.3842 - type: nauc_recall_at_10_max value: 19.4035 - type: nauc_recall_at_10_std value: -27.2015 - type: nauc_recall_at_10_diff1 value: 7.9085 - type: nauc_recall_at_20_max value: 22.5578 - type: nauc_recall_at_20_std value: -24.1674 - type: nauc_recall_at_20_diff1 value: 5.0956 - type: nauc_recall_at_100_max value: 25.2855 - type: nauc_recall_at_100_std value: -19.9378 - type: nauc_recall_at_100_diff1 value: 1.3199 - type: nauc_recall_at_1000_max value: 29.253400000000003 - type: nauc_recall_at_1000_std value: -8.519599999999999 - type: nauc_recall_at_1000_diff1 value: 0.1057 - type: nauc_precision_at_1_max value: 13.991500000000002 - type: nauc_precision_at_1_std value: -25.4382 - type: nauc_precision_at_1_diff1 value: 21.2751 - type: nauc_precision_at_3_max value: 15.758700000000001 - type: nauc_precision_at_3_std value: -26.3494 - type: nauc_precision_at_3_diff1 value: 13.6081 - type: nauc_precision_at_5_max value: 17.851300000000002 - type: nauc_precision_at_5_std value: -26.3818 - type: nauc_precision_at_5_diff1 value: 11.4331 - type: nauc_precision_at_10_max value: 19.5748 - type: nauc_precision_at_10_std value: -27.594400000000004 - type: nauc_precision_at_10_diff1 value: 8.0539 - type: nauc_precision_at_20_max value: 22.453799999999998 - type: nauc_precision_at_20_std value: -23.707800000000002 - type: nauc_precision_at_20_diff1 value: 5.2 - type: nauc_precision_at_100_max value: 24.1067 - type: nauc_precision_at_100_std value: -16.6068 - type: nauc_precision_at_100_diff1 value: 1.1200999999999999 - type: nauc_precision_at_1000_max value: 22.516 - type: nauc_precision_at_1000_std value: -0.621 - type: nauc_precision_at_1000_diff1 value: -0.26749999999999996 - type: nauc_mrr_at_1_max value: 13.991500000000002 - type: nauc_mrr_at_1_std value: -25.4382 - type: nauc_mrr_at_1_diff1 value: 21.2751 - type: nauc_mrr_at_3_max value: 14.95 - type: nauc_mrr_at_3_std value: -25.885 - type: nauc_mrr_at_3_diff1 value: 17.3215 - type: nauc_mrr_at_5_max value: 15.5568 - type: nauc_mrr_at_5_std value: -25.963 - type: nauc_mrr_at_5_diff1 value: 16.699 - type: nauc_mrr_at_10_max value: 15.901299999999999 - type: nauc_mrr_at_10_std value: -26.2471 - type: nauc_mrr_at_10_diff1 value: 16.189899999999998 - type: nauc_mrr_at_20_max value: 16.1798 - type: nauc_mrr_at_20_std value: -25.989600000000003 - type: nauc_mrr_at_20_diff1 value: 15.984499999999999 - type: nauc_mrr_at_100_max value: 16.2602 - type: nauc_mrr_at_100_std value: -25.9187 - type: nauc_mrr_at_100_diff1 value: 16.0136 - type: nauc_mrr_at_1000_max value: 16.2577 - type: nauc_mrr_at_1000_std value: -25.9039 - type: nauc_mrr_at_1000_diff1 value: 16.0318 - type: main_score value: 28.68 task: type: Retrieval - dataset: config: default name: MTEB FiQA2018 (default) revision: 27a168819829fe9bcd655c2df245fb19452e8e06 split: test type: mteb/fiqa metrics: - type: ndcg_at_1 value: 14.198 - type: ndcg_at_3 value: 14.018 - type: ndcg_at_5 value: 14.857000000000001 - type: ndcg_at_10 value: 16.509999999999998 - type: ndcg_at_20 value: 18.499 - type: ndcg_at_100 value: 22.658 - type: ndcg_at_1000 value: 26.894000000000002 - type: map_at_1 value: 7.061000000000001 - type: map_at_3 value: 10.151 - type: map_at_5 value: 11.0 - type: map_at_10 value: 11.883000000000001 - type: map_at_20 value: 12.5 - type: map_at_100 value: 13.154 - type: map_at_1000 value: 13.343 - type: recall_at_1 value: 7.061000000000001 - type: recall_at_3 value: 13.339 - type: recall_at_5 value: 16.689999999999998 - type: recall_at_10 value: 21.435000000000002 - type: recall_at_20 value: 27.779999999999998 - type: recall_at_100 value: 45.381 - type: recall_at_1000 value: 71.61699999999999 - type: precision_at_1 value: 14.198 - type: precision_at_3 value: 9.568 - type: precision_at_5 value: 7.099 - type: precision_at_10 value: 4.7379999999999995 - type: precision_at_20 value: 3.1329999999999996 - type: precision_at_100 value: 1.083 - type: precision_at_1000 value: 0.181 - type: mrr_at_1 value: 14.1975 - type: mrr_at_3 value: 18.5185 - type: mrr_at_5 value: 19.8302 - type: mrr_at_10 value: 20.6685 - type: mrr_at_20 value: 21.273 - type: mrr_at_100 value: 21.8076 - type: mrr_at_1000 value: 21.9063 - type: nauc_ndcg_at_1_max value: 12.2117 - type: nauc_ndcg_at_1_std value: -10.7059 - type: nauc_ndcg_at_1_diff1 value: 27.4415 - type: nauc_ndcg_at_3_max value: 12.4823 - type: nauc_ndcg_at_3_std value: -10.252500000000001 - type: nauc_ndcg_at_3_diff1 value: 20.6834 - type: nauc_ndcg_at_5_max value: 10.3316 - type: nauc_ndcg_at_5_std value: -9.8648 - type: nauc_ndcg_at_5_diff1 value: 19.6879 - type: nauc_ndcg_at_10_max value: 9.2057 - type: nauc_ndcg_at_10_std value: -9.3284 - type: nauc_ndcg_at_10_diff1 value: 19.5253 - type: nauc_ndcg_at_20_max value: 8.3092 - type: nauc_ndcg_at_20_std value: -6.686400000000001 - type: nauc_ndcg_at_20_diff1 value: 19.0031 - type: nauc_ndcg_at_100_max value: 9.321200000000001 - type: nauc_ndcg_at_100_std value: -4.4703 - type: nauc_ndcg_at_100_diff1 value: 19.2995 - type: nauc_ndcg_at_1000_max value: 11.754199999999999 - type: nauc_ndcg_at_1000_std value: -2.6593999999999998 - type: nauc_ndcg_at_1000_diff1 value: 20.3056 - type: nauc_map_at_1_max value: 17.227899999999998 - type: nauc_map_at_1_std value: -6.8508 - type: nauc_map_at_1_diff1 value: 25.9133 - type: nauc_map_at_3_max value: 13.716999999999999 - type: nauc_map_at_3_std value: -8.86 - type: nauc_map_at_3_diff1 value: 21.0714 - type: nauc_map_at_5_max value: 12.146700000000001 - type: nauc_map_at_5_std value: -8.909400000000002 - type: nauc_map_at_5_diff1 value: 20.3887 - type: nauc_map_at_10_max value: 11.417 - type: nauc_map_at_10_std value: -8.9141 - type: nauc_map_at_10_diff1 value: 20.7165 - type: nauc_map_at_20_max value: 11.0988 - type: nauc_map_at_20_std value: -7.9453 - type: nauc_map_at_20_diff1 value: 20.7809 - type: nauc_map_at_100_max value: 11.1694 - type: nauc_map_at_100_std value: -7.4639 - type: nauc_map_at_100_diff1 value: 20.9252 - type: nauc_map_at_1000_max value: 11.3405 - type: nauc_map_at_1000_std value: -7.3102 - type: nauc_map_at_1000_diff1 value: 20.9959 - type: nauc_recall_at_1_max value: 17.227899999999998 - type: nauc_recall_at_1_std value: -6.8508 - type: nauc_recall_at_1_diff1 value: 25.9133 - type: nauc_recall_at_3_max value: 11.2722 - type: nauc_recall_at_3_std value: -9.4755 - type: nauc_recall_at_3_diff1 value: 15.1741 - type: nauc_recall_at_5_max value: 6.7860000000000005 - type: nauc_recall_at_5_std value: -8.9743 - type: nauc_recall_at_5_diff1 value: 14.091999999999999 - type: nauc_recall_at_10_max value: 4.5781 - type: nauc_recall_at_10_std value: -8.4828 - type: nauc_recall_at_10_diff1 value: 13.1033 - type: nauc_recall_at_20_max value: 3.0408999999999997 - type: nauc_recall_at_20_std value: -1.0319 - type: nauc_recall_at_20_diff1 value: 11.2412 - type: nauc_recall_at_100_max value: 4.6371 - type: nauc_recall_at_100_std value: 5.6984 - type: nauc_recall_at_100_diff1 value: 10.648399999999999 - type: nauc_recall_at_1000_max value: 14.4284 - type: nauc_recall_at_1000_std value: 20.471 - type: nauc_recall_at_1000_diff1 value: 13.6603 - type: nauc_precision_at_1_max value: 12.2117 - type: nauc_precision_at_1_std value: -10.7059 - type: nauc_precision_at_1_diff1 value: 27.4415 - type: nauc_precision_at_3_max value: 8.3303 - type: nauc_precision_at_3_std value: -12.3434 - type: nauc_precision_at_3_diff1 value: 20.3774 - type: nauc_precision_at_5_max value: 5.46 - type: nauc_precision_at_5_std value: -10.6964 - type: nauc_precision_at_5_diff1 value: 19.3914 - type: nauc_precision_at_10_max value: 5.8885 - type: nauc_precision_at_10_std value: -9.0149 - type: nauc_precision_at_10_diff1 value: 21.8392 - type: nauc_precision_at_20_max value: 3.8181 - type: nauc_precision_at_20_std value: -4.2505 - type: nauc_precision_at_20_diff1 value: 19.9848 - type: nauc_precision_at_100_max value: 9.6538 - type: nauc_precision_at_100_std value: 1.8809 - type: nauc_precision_at_100_diff1 value: 18.6529 - type: nauc_precision_at_1000_max value: 15.5018 - type: nauc_precision_at_1000_std value: 5.4286 - type: nauc_precision_at_1000_diff1 value: 13.2946 - type: nauc_mrr_at_1_max value: 12.2117 - type: nauc_mrr_at_1_std value: -10.7059 - type: nauc_mrr_at_1_diff1 value: 27.4415 - type: nauc_mrr_at_3_max value: 10.5481 - type: nauc_mrr_at_3_std value: -10.7069 - type: nauc_mrr_at_3_diff1 value: 22.1345 - type: nauc_mrr_at_5_max value: 9.463000000000001 - type: nauc_mrr_at_5_std value: -10.5558 - type: nauc_mrr_at_5_diff1 value: 21.8622 - type: nauc_mrr_at_10_max value: 9.6679 - type: nauc_mrr_at_10_std value: -10.399600000000001 - type: nauc_mrr_at_10_diff1 value: 21.7847 - type: nauc_mrr_at_20_max value: 9.422600000000001 - type: nauc_mrr_at_20_std value: -9.8865 - type: nauc_mrr_at_20_diff1 value: 21.4703 - type: nauc_mrr_at_100_max value: 9.640500000000001 - type: nauc_mrr_at_100_std value: -9.8299 - type: nauc_mrr_at_100_diff1 value: 21.5227 - type: nauc_mrr_at_1000_max value: 9.6734 - type: nauc_mrr_at_1000_std value: -9.8079 - type: nauc_mrr_at_1000_diff1 value: 21.5451 - type: main_score value: 16.509999999999998 task: type: Retrieval - dataset: config: default name: MTEB HotpotQA (default) revision: ab518f4d6fcca38d87c25209f94beba119d02014 split: test type: mteb/hotpotqa metrics: - type: ndcg_at_1 value: 40.297 - type: ndcg_at_3 value: 31.719 - type: ndcg_at_5 value: 33.744 - type: ndcg_at_10 value: 35.72 - type: ndcg_at_20 value: 37.266 - type: ndcg_at_100 value: 39.778000000000006 - type: ndcg_at_1000 value: 42.056 - type: map_at_1 value: 20.149 - type: map_at_3 value: 25.899 - type: map_at_5 value: 27.157999999999998 - type: map_at_10 value: 28.105000000000004 - type: map_at_20 value: 28.586 - type: map_at_100 value: 29.000999999999998 - type: map_at_1000 value: 29.098000000000003 - type: recall_at_1 value: 20.149 - type: recall_at_3 value: 29.932 - type: recall_at_5 value: 33.93 - type: recall_at_10 value: 38.92 - type: recall_at_20 value: 43.903 - type: recall_at_100 value: 55.057 - type: recall_at_1000 value: 70.27 - type: precision_at_1 value: 40.297 - type: precision_at_3 value: 19.955000000000002 - type: precision_at_5 value: 13.572000000000001 - type: precision_at_10 value: 7.784000000000001 - type: precision_at_20 value: 4.390000000000001 - type: precision_at_100 value: 1.101 - type: precision_at_1000 value: 0.14100000000000001 - type: mrr_at_1 value: 40.2971 - type: mrr_at_3 value: 46.041 - type: mrr_at_5 value: 47.199600000000004 - type: mrr_at_10 value: 47.9631 - type: mrr_at_20 value: 48.3871 - type: mrr_at_100 value: 48.661500000000004 - type: mrr_at_1000 value: 48.707 - type: nauc_ndcg_at_1_max value: 27.8706 - type: nauc_ndcg_at_1_std value: -8.272300000000001 - type: nauc_ndcg_at_1_diff1 value: 57.8385 - type: nauc_ndcg_at_3_max value: 27.852500000000003 - type: nauc_ndcg_at_3_std value: -6.4216 - type: nauc_ndcg_at_3_diff1 value: 48.365 - type: nauc_ndcg_at_5_max value: 27.509099999999997 - type: nauc_ndcg_at_5_std value: -5.6179 - type: nauc_ndcg_at_5_diff1 value: 46.5015 - type: nauc_ndcg_at_10_max value: 27.002 - type: nauc_ndcg_at_10_std value: -4.5545 - type: nauc_ndcg_at_10_diff1 value: 45.7081 - type: nauc_ndcg_at_20_max value: 26.984799999999996 - type: nauc_ndcg_at_20_std value: -3.6883 - type: nauc_ndcg_at_20_diff1 value: 44.9584 - type: nauc_ndcg_at_100_max value: 27.283600000000003 - type: nauc_ndcg_at_100_std value: -2.3537 - type: nauc_ndcg_at_100_diff1 value: 44.1115 - type: nauc_ndcg_at_1000_max value: 27.417399999999997 - type: nauc_ndcg_at_1000_std value: -1.2178 - type: nauc_ndcg_at_1000_diff1 value: 44.0544 - type: nauc_map_at_1_max value: 27.8706 - type: nauc_map_at_1_std value: -8.272300000000001 - type: nauc_map_at_1_diff1 value: 57.8385 - type: nauc_map_at_3_max value: 27.584799999999998 - type: nauc_map_at_3_std value: -5.9387 - type: nauc_map_at_3_diff1 value: 47.2019 - type: nauc_map_at_5_max value: 27.242 - type: nauc_map_at_5_std value: -5.3224 - type: nauc_map_at_5_diff1 value: 45.831 - type: nauc_map_at_10_max value: 26.9723 - type: nauc_map_at_10_std value: -4.7007 - type: nauc_map_at_10_diff1 value: 45.3311 - type: nauc_map_at_20_max value: 26.919700000000002 - type: nauc_map_at_20_std value: -4.3851 - type: nauc_map_at_20_diff1 value: 45.0687 - type: nauc_map_at_100_max value: 26.995400000000004 - type: nauc_map_at_100_std value: -4.0821000000000005 - type: nauc_map_at_100_diff1 value: 44.9062 - type: nauc_map_at_1000_max value: 26.998499999999996 - type: nauc_map_at_1000_std value: -4.0238000000000005 - type: nauc_map_at_1000_diff1 value: 44.8961 - type: nauc_recall_at_1_max value: 27.8706 - type: nauc_recall_at_1_std value: -8.272300000000001 - type: nauc_recall_at_1_diff1 value: 57.8385 - type: nauc_recall_at_3_max value: 27.3795 - type: nauc_recall_at_3_std value: -5.1751 - type: nauc_recall_at_3_diff1 value: 42.3825 - type: nauc_recall_at_5_max value: 25.634800000000002 - type: nauc_recall_at_5_std value: -3.3379 - type: nauc_recall_at_5_diff1 value: 37.0532 - type: nauc_recall_at_10_max value: 23.5746 - type: nauc_recall_at_10_std value: -0.5226 - type: nauc_recall_at_10_diff1 value: 34.071200000000005 - type: nauc_recall_at_20_max value: 22.1536 - type: nauc_recall_at_20_std value: 2.3993 - type: nauc_recall_at_20_diff1 value: 29.439 - type: nauc_recall_at_100_max value: 20.7576 - type: nauc_recall_at_100_std value: 8.468499999999999 - type: nauc_recall_at_100_diff1 value: 21.221799999999998 - type: nauc_recall_at_1000_max value: 18.7522 - type: nauc_recall_at_1000_std value: 18.916800000000002 - type: nauc_recall_at_1000_diff1 value: 13.558200000000001 - type: nauc_precision_at_1_max value: 27.8706 - type: nauc_precision_at_1_std value: -8.272300000000001 - type: nauc_precision_at_1_diff1 value: 57.8385 - type: nauc_precision_at_3_max value: 27.3795 - type: nauc_precision_at_3_std value: -5.1751 - type: nauc_precision_at_3_diff1 value: 42.3825 - type: nauc_precision_at_5_max value: 25.634800000000002 - type: nauc_precision_at_5_std value: -3.3379 - type: nauc_precision_at_5_diff1 value: 37.0532 - type: nauc_precision_at_10_max value: 23.5746 - type: nauc_precision_at_10_std value: -0.5226 - type: nauc_precision_at_10_diff1 value: 34.071200000000005 - type: nauc_precision_at_20_max value: 22.1536 - type: nauc_precision_at_20_std value: 2.3993 - type: nauc_precision_at_20_diff1 value: 29.439 - type: nauc_precision_at_100_max value: 20.7576 - type: nauc_precision_at_100_std value: 8.468499999999999 - type: nauc_precision_at_100_diff1 value: 21.221799999999998 - type: nauc_precision_at_1000_max value: 18.7522 - type: nauc_precision_at_1000_std value: 18.916800000000002 - type: nauc_precision_at_1000_diff1 value: 13.558200000000001 - type: nauc_mrr_at_1_max value: 27.8706 - type: nauc_mrr_at_1_std value: -8.272300000000001 - type: nauc_mrr_at_1_diff1 value: 57.8385 - type: nauc_mrr_at_3_max value: 28.256700000000002 - type: nauc_mrr_at_3_std value: -8.050699999999999 - type: nauc_mrr_at_3_diff1 value: 54.5601 - type: nauc_mrr_at_5_max value: 28.2928 - type: nauc_mrr_at_5_std value: -7.8317 - type: nauc_mrr_at_5_diff1 value: 54.046499999999995 - type: nauc_mrr_at_10_max value: 28.151500000000002 - type: nauc_mrr_at_10_std value: -7.6431 - type: nauc_mrr_at_10_diff1 value: 53.9751 - type: nauc_mrr_at_20_max value: 28.215 - type: nauc_mrr_at_20_std value: -7.5285 - type: nauc_mrr_at_20_diff1 value: 53.9177 - type: nauc_mrr_at_100_max value: 28.215600000000002 - type: nauc_mrr_at_100_std value: -7.524699999999999 - type: nauc_mrr_at_100_diff1 value: 53.9393 - type: nauc_mrr_at_1000_max value: 28.2194 - type: nauc_mrr_at_1000_std value: -7.5150999999999994 - type: nauc_mrr_at_1000_diff1 value: 53.95290000000001 - type: main_score value: 35.72 task: type: Retrieval - dataset: config: default name: MTEB ImdbClassification (default) revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 split: test type: mteb/imdb metrics: - type: accuracy value: 65.8656 - type: f1 value: 65.385 - type: f1_weighted value: 65.385 - type: ap value: 60.506899999999995 - type: ap_weighted value: 60.506899999999995 - type: main_score value: 65.8656 task: type: Classification - dataset: config: default name: MTEB MSMARCO (default) revision: c5a29a104738b98a9e76336939199e264163d4a0 split: dev type: mteb/msmarco metrics: - type: ndcg_at_1 value: 6.877 - type: ndcg_at_3 value: 10.963000000000001 - type: ndcg_at_5 value: 12.845 - type: ndcg_at_10 value: 14.918000000000001 - type: ndcg_at_20 value: 16.721 - type: ndcg_at_100 value: 20.041 - type: ndcg_at_1000 value: 23.296 - type: map_at_1 value: 6.717 - type: map_at_3 value: 9.846 - type: map_at_5 value: 10.886999999999999 - type: map_at_10 value: 11.74 - type: map_at_20 value: 12.237 - type: map_at_100 value: 12.683 - type: map_at_1000 value: 12.792 - type: recall_at_1 value: 6.717 - type: recall_at_3 value: 13.963999999999999 - type: recall_at_5 value: 18.498 - type: recall_at_10 value: 24.869 - type: recall_at_20 value: 31.901000000000003 - type: recall_at_100 value: 49.786 - type: recall_at_1000 value: 75.913 - type: precision_at_1 value: 6.877 - type: precision_at_3 value: 4.809 - type: precision_at_5 value: 3.8280000000000003 - type: precision_at_10 value: 2.5829999999999997 - type: precision_at_20 value: 1.6650000000000003 - type: precision_at_100 value: 0.523 - type: precision_at_1000 value: 0.08 - type: mrr_at_1 value: 6.876799999999999 - type: mrr_at_3 value: 10.093100000000002 - type: mrr_at_5 value: 11.1526 - type: mrr_at_10 value: 12.0074 - type: mrr_at_20 value: 12.5083 - type: mrr_at_100 value: 12.9529 - type: mrr_at_1000 value: 13.057099999999998 - type: nauc_ndcg_at_1_max value: 4.7264 - type: nauc_ndcg_at_1_std value: -16.2439 - type: nauc_ndcg_at_1_diff1 value: 27.4463 - type: nauc_ndcg_at_3_max value: 6.1734 - type: nauc_ndcg_at_3_std value: -16.8949 - type: nauc_ndcg_at_3_diff1 value: 22.7183 - type: nauc_ndcg_at_5_max value: 6.493 - type: nauc_ndcg_at_5_std value: -15.7852 - type: nauc_ndcg_at_5_diff1 value: 21.0805 - type: nauc_ndcg_at_10_max value: 7.099600000000001 - type: nauc_ndcg_at_10_std value: -15.1727 - type: nauc_ndcg_at_10_diff1 value: 20.3957 - type: nauc_ndcg_at_20_max value: 7.9073 - type: nauc_ndcg_at_20_std value: -14.596200000000001 - type: nauc_ndcg_at_20_diff1 value: 20.0084 - type: nauc_ndcg_at_100_max value: 9.112 - type: nauc_ndcg_at_100_std value: -12.0562 - type: nauc_ndcg_at_100_diff1 value: 19.3717 - type: nauc_ndcg_at_1000_max value: 10.1474 - type: nauc_ndcg_at_1000_std value: -10.3955 - type: nauc_ndcg_at_1000_diff1 value: 19.2427 - type: nauc_map_at_1_max value: 4.4801 - type: nauc_map_at_1_std value: -16.4499 - type: nauc_map_at_1_diff1 value: 27.5511 - type: nauc_map_at_3_max value: 5.8799 - type: nauc_map_at_3_std value: -16.7696 - type: nauc_map_at_3_diff1 value: 23.531299999999998 - type: nauc_map_at_5_max value: 6.0905000000000005 - type: nauc_map_at_5_std value: -16.0525 - type: nauc_map_at_5_diff1 value: 22.395799999999998 - type: nauc_map_at_10_max value: 6.3876 - type: nauc_map_at_10_std value: -15.774 - type: nauc_map_at_10_diff1 value: 22.0367 - type: nauc_map_at_20_max value: 6.6676 - type: nauc_map_at_20_std value: -15.5729 - type: nauc_map_at_20_diff1 value: 21.8952 - type: nauc_map_at_100_max value: 6.912400000000001 - type: nauc_map_at_100_std value: -15.162400000000002 - type: nauc_map_at_100_diff1 value: 21.7666 - type: nauc_map_at_1000_max value: 6.952500000000001 - type: nauc_map_at_1000_std value: -15.085799999999999 - type: nauc_map_at_1000_diff1 value: 21.7618 - type: nauc_recall_at_1_max value: 4.4801 - type: nauc_recall_at_1_std value: -16.4499 - type: nauc_recall_at_1_diff1 value: 27.5511 - type: nauc_recall_at_3_max value: 6.7195 - type: nauc_recall_at_3_std value: -17.2961 - type: nauc_recall_at_3_diff1 value: 20.9572 - type: nauc_recall_at_5_max value: 7.199 - type: nauc_recall_at_5_std value: -15.260599999999998 - type: nauc_recall_at_5_diff1 value: 18.4745 - type: nauc_recall_at_10_max value: 8.3289 - type: nauc_recall_at_10_std value: -14.0152 - type: nauc_recall_at_10_diff1 value: 17.3142 - type: nauc_recall_at_20_max value: 10.1702 - type: nauc_recall_at_20_std value: -12.7265 - type: nauc_recall_at_20_diff1 value: 16.5162 - type: nauc_recall_at_100_max value: 13.9363 - type: nauc_recall_at_100_std value: -4.0486 - type: nauc_recall_at_100_diff1 value: 14.5015 - type: nauc_recall_at_1000_max value: 24.3013 - type: nauc_recall_at_1000_std value: 12.3673 - type: nauc_recall_at_1000_diff1 value: 10.9827 - type: nauc_precision_at_1_max value: 4.7264 - type: nauc_precision_at_1_std value: -16.2439 - type: nauc_precision_at_1_diff1 value: 27.4463 - type: nauc_precision_at_3_max value: 6.895700000000001 - type: nauc_precision_at_3_std value: -17.0973 - type: nauc_precision_at_3_diff1 value: 20.7819 - type: nauc_precision_at_5_max value: 7.3601 - type: nauc_precision_at_5_std value: -15.189400000000001 - type: nauc_precision_at_5_diff1 value: 18.2284 - type: nauc_precision_at_10_max value: 8.5933 - type: nauc_precision_at_10_std value: -13.9345 - type: nauc_precision_at_10_diff1 value: 17.1801 - type: nauc_precision_at_20_max value: 10.5732 - type: nauc_precision_at_20_std value: -12.2593 - type: nauc_precision_at_20_diff1 value: 16.3194 - type: nauc_precision_at_100_max value: 14.462800000000001 - type: nauc_precision_at_100_std value: -2.7812 - type: nauc_precision_at_100_diff1 value: 13.8556 - type: nauc_precision_at_1000_max value: 22.7827 - type: nauc_precision_at_1000_std value: 13.1185 - type: nauc_precision_at_1000_diff1 value: 8.331199999999999 - type: nauc_mrr_at_1_max value: 4.7264 - type: nauc_mrr_at_1_std value: -16.2439 - type: nauc_mrr_at_1_diff1 value: 27.4463 - type: nauc_mrr_at_3_max value: 5.9976 - type: nauc_mrr_at_3_std value: -16.5493 - type: nauc_mrr_at_3_diff1 value: 23.5058 - type: nauc_mrr_at_5_max value: 6.1958 - type: nauc_mrr_at_5_std value: -15.893699999999999 - type: nauc_mrr_at_5_diff1 value: 22.4454 - type: nauc_mrr_at_10_max value: 6.514200000000001 - type: nauc_mrr_at_10_std value: -15.5116 - type: nauc_mrr_at_10_diff1 value: 22.0264 - type: nauc_mrr_at_20_max value: 6.7813 - type: nauc_mrr_at_20_std value: -15.2942 - type: nauc_mrr_at_20_diff1 value: 21.8857 - type: nauc_mrr_at_100_max value: 7.0158 - type: nauc_mrr_at_100_std value: -14.894599999999999 - type: nauc_mrr_at_100_diff1 value: 21.757299999999997 - type: nauc_mrr_at_1000_max value: 7.0534 - type: nauc_mrr_at_1000_std value: -14.8351 - type: nauc_mrr_at_1000_diff1 value: 21.7544 - type: main_score value: 14.918000000000001 task: type: Retrieval - dataset: config: en name: MTEB MTOPDomainClassification (en) revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf split: test type: mteb/mtop_domain metrics: - type: accuracy value: 82.4669 - type: f1 value: 81.3346 - type: f1_weighted value: 82.6885 - type: main_score value: 82.4669 task: type: Classification - dataset: config: en name: MTEB MTOPIntentClassification (en) revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba split: test type: mteb/mtop_intent metrics: - type: accuracy value: 58.1145 - type: f1 value: 40.7841 - type: f1_weighted value: 62.343 - type: main_score value: 58.1145 task: type: Classification - dataset: config: en name: MTEB MassiveIntentClassification (en) revision: 4672e20407010da34463acc759c162ca9734bca6 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 60.24549999999999 - type: f1 value: 59.534 - type: f1_weighted value: 60.47670000000001 - type: main_score value: 60.24549999999999 task: type: Classification - dataset: config: en name: MTEB MassiveScenarioClassification (en) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 66.32820000000001 - type: f1 value: 65.2929 - type: f1_weighted value: 66.51979999999999 - type: main_score value: 66.32820000000001 task: type: Classification - dataset: config: default name: MTEB MedrxivClusteringP2P (default) revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 split: test type: mteb/medrxiv-clustering-p2p metrics: - type: v_measure value: 25.8495 - type: v_measure_std value: 1.6320000000000001 - type: main_score value: 25.8495 task: type: Clustering - dataset: config: default name: MTEB MedrxivClusteringS2S (default) revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 split: test type: mteb/medrxiv-clustering-s2s metrics: - type: v_measure value: 20.0754 - type: v_measure_std value: 1.3306 - type: main_score value: 20.0754 task: type: Clustering - dataset: config: default name: MTEB MindSmallReranking (default) revision: 59042f120c80e8afa9cdbb224f67076cec0fc9a7 split: test type: mteb/mind_small metrics: - type: map value: 28.5611 - type: mrr value: 29.4014 - type: nAUC_map_max value: -20.8019 - type: nAUC_map_std value: -5.307300000000001 - type: nAUC_map_diff1 value: 20.6483 - type: nAUC_mrr_max value: -14.9738 - type: nAUC_mrr_std value: -2.9508 - type: nAUC_mrr_diff1 value: 18.6743 - type: main_score value: 28.5611 task: type: Reranking - dataset: config: default name: MTEB NFCorpus (default) revision: ec0fa4fe99da2ff19ca1214b7966684033a58814 split: test type: mteb/nfcorpus metrics: - type: ndcg_at_1 value: 32.972 - type: ndcg_at_3 value: 29.965000000000003 - type: ndcg_at_5 value: 28.773 - type: ndcg_at_10 value: 26.434 - type: ndcg_at_20 value: 24.922 - type: ndcg_at_100 value: 24.852 - type: ndcg_at_1000 value: 33.388 - type: map_at_1 value: 3.737 - type: map_at_3 value: 6.387 - type: map_at_5 value: 7.420999999999999 - type: map_at_10 value: 8.652 - type: map_at_20 value: 9.745 - type: map_at_100 value: 11.247 - type: map_at_1000 value: 12.494 - type: recall_at_1 value: 3.737 - type: recall_at_3 value: 7.889 - type: recall_at_5 value: 10.026 - type: recall_at_10 value: 12.615000000000002 - type: recall_at_20 value: 16.184 - type: recall_at_100 value: 26.988 - type: recall_at_1000 value: 57.594 - type: precision_at_1 value: 34.675 - type: precision_at_3 value: 28.173 - type: precision_at_5 value: 25.201 - type: precision_at_10 value: 20.0 - type: precision_at_20 value: 15.356 - type: precision_at_100 value: 6.898 - type: precision_at_1000 value: 1.936 - type: mrr_at_1 value: 34.674899999999994 - type: mrr_at_3 value: 42.0537 - type: mrr_at_5 value: 43.741 - type: mrr_at_10 value: 44.277699999999996 - type: mrr_at_20 value: 44.819700000000005 - type: mrr_at_100 value: 45.1552 - type: mrr_at_1000 value: 45.2048 - type: nauc_ndcg_at_1_max value: 27.6992 - type: nauc_ndcg_at_1_std value: 13.1387 - type: nauc_ndcg_at_1_diff1 value: 33.7772 - type: nauc_ndcg_at_3_max value: 32.4741 - type: nauc_ndcg_at_3_std value: 19.264 - type: nauc_ndcg_at_3_diff1 value: 26.1486 - type: nauc_ndcg_at_5_max value: 32.6623 - type: nauc_ndcg_at_5_std value: 21.435499999999998 - type: nauc_ndcg_at_5_diff1 value: 24.0412 - type: nauc_ndcg_at_10_max value: 33.217400000000005 - type: nauc_ndcg_at_10_std value: 22.591900000000003 - type: nauc_ndcg_at_10_diff1 value: 22.3637 - type: nauc_ndcg_at_20_max value: 33.3978 - type: nauc_ndcg_at_20_std value: 22.520200000000003 - type: nauc_ndcg_at_20_diff1 value: 22.0163 - type: nauc_ndcg_at_100_max value: 33.0608 - type: nauc_ndcg_at_100_std value: 20.4305 - type: nauc_ndcg_at_100_diff1 value: 21.1175 - type: nauc_ndcg_at_1000_max value: 38.198100000000004 - type: nauc_ndcg_at_1000_std value: 26.8712 - type: nauc_ndcg_at_1000_diff1 value: 22.78 - type: nauc_map_at_1_max value: 18.898300000000003 - type: nauc_map_at_1_std value: -11.0976 - type: nauc_map_at_1_diff1 value: 55.1605 - type: nauc_map_at_3_max value: 20.451800000000002 - type: nauc_map_at_3_std value: -12.0342 - type: nauc_map_at_3_diff1 value: 45.2096 - type: nauc_map_at_5_max value: 21.199 - type: nauc_map_at_5_std value: -9.8514 - type: nauc_map_at_5_diff1 value: 42.0142 - type: nauc_map_at_10_max value: 23.1645 - type: nauc_map_at_10_std value: -5.8333 - type: nauc_map_at_10_diff1 value: 38.048 - type: nauc_map_at_20_max value: 24.9482 - type: nauc_map_at_20_std value: -1.5368 - type: nauc_map_at_20_diff1 value: 36.241299999999995 - type: nauc_map_at_100_max value: 27.1413 - type: nauc_map_at_100_std value: 5.6268 - type: nauc_map_at_100_diff1 value: 33.3298 - type: nauc_map_at_1000_max value: 28.7674 - type: nauc_map_at_1000_std value: 10.9326 - type: nauc_map_at_1000_diff1 value: 31.700899999999997 - type: nauc_recall_at_1_max value: 18.898300000000003 - type: nauc_recall_at_1_std value: -11.0976 - type: nauc_recall_at_1_diff1 value: 55.1605 - type: nauc_recall_at_3_max value: 19.4721 - type: nauc_recall_at_3_std value: -13.496 - type: nauc_recall_at_3_diff1 value: 35.0178 - type: nauc_recall_at_5_max value: 19.5024 - type: nauc_recall_at_5_std value: -12.3428 - type: nauc_recall_at_5_diff1 value: 29.517 - type: nauc_recall_at_10_max value: 21.215500000000002 - type: nauc_recall_at_10_std value: -8.7165 - type: nauc_recall_at_10_diff1 value: 24.282 - type: nauc_recall_at_20_max value: 21.735 - type: nauc_recall_at_20_std value: -5.0988999999999995 - type: nauc_recall_at_20_diff1 value: 20.3041 - type: nauc_recall_at_100_max value: 19.9243 - type: nauc_recall_at_100_std value: 3.4522999999999997 - type: nauc_recall_at_100_diff1 value: 5.9747 - type: nauc_recall_at_1000_max value: 21.7819 - type: nauc_recall_at_1000_std value: 13.6785 - type: nauc_recall_at_1000_diff1 value: -0.25980000000000003 - type: nauc_precision_at_1_max value: 28.624899999999997 - type: nauc_precision_at_1_std value: 12.709599999999998 - type: nauc_precision_at_1_diff1 value: 33.308 - type: nauc_precision_at_3_max value: 35.1699 - type: nauc_precision_at_3_std value: 25.9338 - type: nauc_precision_at_3_diff1 value: 18.5464 - type: nauc_precision_at_5_max value: 33.4433 - type: nauc_precision_at_5_std value: 32.4517 - type: nauc_precision_at_5_diff1 value: 12.5543 - type: nauc_precision_at_10_max value: 32.3973 - type: nauc_precision_at_10_std value: 37.7554 - type: nauc_precision_at_10_diff1 value: 6.7227 - type: nauc_precision_at_20_max value: 31.591599999999996 - type: nauc_precision_at_20_std value: 44.658 - type: nauc_precision_at_20_diff1 value: 2.2702 - type: nauc_precision_at_100_max value: 25.163600000000002 - type: nauc_precision_at_100_std value: 51.7642 - type: nauc_precision_at_100_diff1 value: -4.8361 - type: nauc_precision_at_1000_max value: 20.2984 - type: nauc_precision_at_1000_std value: 49.0469 - type: nauc_precision_at_1000_diff1 value: -6.662700000000001 - type: nauc_mrr_at_1_max value: 28.624899999999997 - type: nauc_mrr_at_1_std value: 12.709599999999998 - type: nauc_mrr_at_1_diff1 value: 33.308 - type: nauc_mrr_at_3_max value: 32.3306 - type: nauc_mrr_at_3_std value: 18.1604 - type: nauc_mrr_at_3_diff1 value: 31.128600000000002 - type: nauc_mrr_at_5_max value: 32.0504 - type: nauc_mrr_at_5_std value: 18.3022 - type: nauc_mrr_at_5_diff1 value: 30.1868 - type: nauc_mrr_at_10_max value: 32.093500000000006 - type: nauc_mrr_at_10_std value: 18.348 - type: nauc_mrr_at_10_diff1 value: 30.2307 - type: nauc_mrr_at_20_max value: 32.3491 - type: nauc_mrr_at_20_std value: 18.309800000000003 - type: nauc_mrr_at_20_diff1 value: 30.0848 - type: nauc_mrr_at_100_max value: 32.5297 - type: nauc_mrr_at_100_std value: 18.4197 - type: nauc_mrr_at_100_diff1 value: 30.03 - type: nauc_mrr_at_1000_max value: 32.502700000000004 - type: nauc_mrr_at_1000_std value: 18.4073 - type: nauc_mrr_at_1000_diff1 value: 30.059599999999996 - type: main_score value: 26.434 task: type: Retrieval - dataset: config: default name: MTEB NQ (default) revision: b774495ed302d8c44a3a7ea25c90dbce03968f31 split: test type: mteb/nq metrics: - type: ndcg_at_1 value: 9.067 - type: ndcg_at_3 value: 13.33 - type: ndcg_at_5 value: 15.773000000000001 - type: ndcg_at_10 value: 18.239 - type: ndcg_at_20 value: 20.777 - type: ndcg_at_100 value: 25.046000000000003 - type: ndcg_at_1000 value: 27.814 - type: map_at_1 value: 8.007 - type: map_at_3 value: 11.732 - type: map_at_5 value: 13.095 - type: map_at_10 value: 14.127 - type: map_at_20 value: 14.860000000000001 - type: map_at_100 value: 15.467 - type: map_at_1000 value: 15.57 - type: recall_at_1 value: 8.007 - type: recall_at_3 value: 16.553 - type: recall_at_5 value: 22.282 - type: recall_at_10 value: 29.592000000000002 - type: recall_at_20 value: 39.134 - type: recall_at_100 value: 61.307 - type: recall_at_1000 value: 82.556 - type: precision_at_1 value: 9.067 - type: precision_at_3 value: 6.441 - type: precision_at_5 value: 5.220000000000001 - type: precision_at_10 value: 3.488 - type: precision_at_20 value: 2.329 - type: precision_at_100 value: 0.734 - type: precision_at_1000 value: 0.1 - type: mrr_at_1 value: 9.0672 - type: mrr_at_3 value: 13.1277 - type: mrr_at_5 value: 14.544199999999998 - type: mrr_at_10 value: 15.589400000000001 - type: mrr_at_20 value: 16.2651 - type: mrr_at_100 value: 16.8195 - type: mrr_at_1000 value: 16.902800000000003 - type: nauc_ndcg_at_1_max value: 11.3832 - type: nauc_ndcg_at_1_std value: -4.1221 - type: nauc_ndcg_at_1_diff1 value: 20.5341 - type: nauc_ndcg_at_3_max value: 11.4743 - type: nauc_ndcg_at_3_std value: -4.4418 - type: nauc_ndcg_at_3_diff1 value: 16.481 - type: nauc_ndcg_at_5_max value: 12.6479 - type: nauc_ndcg_at_5_std value: -4.5466 - type: nauc_ndcg_at_5_diff1 value: 15.1785 - type: nauc_ndcg_at_10_max value: 14.3237 - type: nauc_ndcg_at_10_std value: -4.4135 - type: nauc_ndcg_at_10_diff1 value: 14.6574 - type: nauc_ndcg_at_20_max value: 15.717300000000002 - type: nauc_ndcg_at_20_std value: -3.0106 - type: nauc_ndcg_at_20_diff1 value: 14.6044 - type: nauc_ndcg_at_100_max value: 17.5878 - type: nauc_ndcg_at_100_std value: -0.36519999999999997 - type: nauc_ndcg_at_100_diff1 value: 14.5606 - type: nauc_ndcg_at_1000_max value: 17.5657 - type: nauc_ndcg_at_1000_std value: 1.1903000000000001 - type: nauc_ndcg_at_1000_diff1 value: 14.5654 - type: nauc_map_at_1_max value: 10.2386 - type: nauc_map_at_1_std value: -4.9847 - type: nauc_map_at_1_diff1 value: 20.9545 - type: nauc_map_at_3_max value: 10.9023 - type: nauc_map_at_3_std value: -4.8369 - type: nauc_map_at_3_diff1 value: 17.5991 - type: nauc_map_at_5_max value: 11.7413 - type: nauc_map_at_5_std value: -4.9516 - type: nauc_map_at_5_diff1 value: 16.7798 - type: nauc_map_at_10_max value: 12.6051 - type: nauc_map_at_10_std value: -4.9007000000000005 - type: nauc_map_at_10_diff1 value: 16.4911 - type: nauc_map_at_20_max value: 13.1256 - type: nauc_map_at_20_std value: -4.4518 - type: nauc_map_at_20_diff1 value: 16.4184 - type: nauc_map_at_100_max value: 13.4467 - type: nauc_map_at_100_std value: -3.9765 - type: nauc_map_at_100_diff1 value: 16.4427 - type: nauc_map_at_1000_max value: 13.452 - type: nauc_map_at_1000_std value: -3.8988 - type: nauc_map_at_1000_diff1 value: 16.4438 - type: nauc_recall_at_1_max value: 10.2386 - type: nauc_recall_at_1_std value: -4.9847 - type: nauc_recall_at_1_diff1 value: 20.9545 - type: nauc_recall_at_3_max value: 11.843399999999999 - type: nauc_recall_at_3_std value: -4.3091 - type: nauc_recall_at_3_diff1 value: 14.285999999999998 - type: nauc_recall_at_5_max value: 13.5182 - type: nauc_recall_at_5_std value: -4.417800000000001 - type: nauc_recall_at_5_diff1 value: 12.1453 - type: nauc_recall_at_10_max value: 17.0065 - type: nauc_recall_at_10_std value: -4.252000000000001 - type: nauc_recall_at_10_diff1 value: 11.457199999999998 - type: nauc_recall_at_20_max value: 20.3871 - type: nauc_recall_at_20_std value: -0.7614 - type: nauc_recall_at_20_diff1 value: 11.5536 - type: nauc_recall_at_100_max value: 28.3368 - type: nauc_recall_at_100_std value: 9.5722 - type: nauc_recall_at_100_diff1 value: 10.7211 - type: nauc_recall_at_1000_max value: 37.0782 - type: nauc_recall_at_1000_std value: 31.6326 - type: nauc_recall_at_1000_diff1 value: 8.82 - type: nauc_precision_at_1_max value: 11.3832 - type: nauc_precision_at_1_std value: -4.1221 - type: nauc_precision_at_1_diff1 value: 20.5341 - type: nauc_precision_at_3_max value: 12.951099999999999 - type: nauc_precision_at_3_std value: -3.4715999999999996 - type: nauc_precision_at_3_diff1 value: 14.0988 - type: nauc_precision_at_5_max value: 14.8679 - type: nauc_precision_at_5_std value: -3.9043 - type: nauc_precision_at_5_diff1 value: 11.9479 - type: nauc_precision_at_10_max value: 18.0976 - type: nauc_precision_at_10_std value: -3.1489999999999996 - type: nauc_precision_at_10_diff1 value: 10.7419 - type: nauc_precision_at_20_max value: 20.4974 - type: nauc_precision_at_20_std value: 1.2608 - type: nauc_precision_at_20_diff1 value: 9.8315 - type: nauc_precision_at_100_max value: 24.1911 - type: nauc_precision_at_100_std value: 11.971400000000001 - type: nauc_precision_at_100_diff1 value: 7.0899 - type: nauc_precision_at_1000_max value: 20.2919 - type: nauc_precision_at_1000_std value: 23.0171 - type: nauc_precision_at_1000_diff1 value: 1.4091 - type: nauc_mrr_at_1_max value: 11.3832 - type: nauc_mrr_at_1_std value: -4.1221 - type: nauc_mrr_at_1_diff1 value: 20.5341 - type: nauc_mrr_at_3_max value: 11.7865 - type: nauc_mrr_at_3_std value: -3.6935999999999996 - type: nauc_mrr_at_3_diff1 value: 16.8127 - type: nauc_mrr_at_5_max value: 12.518199999999998 - type: nauc_mrr_at_5_std value: -3.7152 - type: nauc_mrr_at_5_diff1 value: 15.893699999999999 - type: nauc_mrr_at_10_max value: 13.1787 - type: nauc_mrr_at_10_std value: -3.6301 - type: nauc_mrr_at_10_diff1 value: 15.617500000000001 - type: nauc_mrr_at_20_max value: 13.529399999999999 - type: nauc_mrr_at_20_std value: -3.1929 - type: nauc_mrr_at_20_diff1 value: 15.6602 - type: nauc_mrr_at_100_max value: 13.770199999999999 - type: nauc_mrr_at_100_std value: -2.9103 - type: nauc_mrr_at_100_diff1 value: 15.6841 - type: nauc_mrr_at_1000_max value: 13.7598 - type: nauc_mrr_at_1000_std value: -2.8705000000000003 - type: nauc_mrr_at_1000_diff1 value: 15.6886 - type: main_score value: 18.239 task: type: Retrieval - dataset: config: default name: MTEB QuoraRetrieval (default) revision: e4e08e0b7dbe3c8700f0daef558ff32256715259 split: test type: mteb/quora metrics: - type: ndcg_at_1 value: 72.39 - type: ndcg_at_3 value: 76.303 - type: ndcg_at_5 value: 78.164 - type: ndcg_at_10 value: 79.946 - type: ndcg_at_20 value: 80.963 - type: ndcg_at_100 value: 82.086 - type: ndcg_at_1000 value: 82.494 - type: map_at_1 value: 62.965 - type: map_at_3 value: 72.429 - type: map_at_5 value: 74.246 - type: map_at_10 value: 75.414 - type: map_at_20 value: 75.87899999999999 - type: map_at_100 value: 76.164 - type: map_at_1000 value: 76.198 - type: recall_at_1 value: 62.965 - type: recall_at_3 value: 78.39 - type: recall_at_5 value: 83.506 - type: recall_at_10 value: 88.787 - type: recall_at_20 value: 92.223 - type: recall_at_100 value: 96.98 - type: recall_at_1000 value: 99.30099999999999 - type: precision_at_1 value: 72.39 - type: precision_at_3 value: 33.040000000000006 - type: precision_at_5 value: 21.884 - type: precision_at_10 value: 12.084999999999999 - type: precision_at_20 value: 6.49 - type: precision_at_100 value: 1.444 - type: precision_at_1000 value: 0.154 - type: mrr_at_1 value: 72.39 - type: mrr_at_3 value: 77.9883 - type: mrr_at_5 value: 78.8933 - type: mrr_at_10 value: 79.443 - type: mrr_at_20 value: 79.6218 - type: mrr_at_100 value: 79.7045 - type: mrr_at_1000 value: 79.7112 - type: nauc_ndcg_at_1_max value: 43.343199999999996 - type: nauc_ndcg_at_1_std value: -15.6476 - type: nauc_ndcg_at_1_diff1 value: 74.5603 - type: nauc_ndcg_at_3_max value: 41.4951 - type: nauc_ndcg_at_3_std value: -18.006 - type: nauc_ndcg_at_3_diff1 value: 71.4871 - type: nauc_ndcg_at_5_max value: 41.665 - type: nauc_ndcg_at_5_std value: -18.2802 - type: nauc_ndcg_at_5_diff1 value: 71.31060000000001 - type: nauc_ndcg_at_10_max value: 41.9766 - type: nauc_ndcg_at_10_std value: -17.1129 - type: nauc_ndcg_at_10_diff1 value: 71.4114 - type: nauc_ndcg_at_20_max value: 42.3933 - type: nauc_ndcg_at_20_std value: -16.8854 - type: nauc_ndcg_at_20_diff1 value: 71.5046 - type: nauc_ndcg_at_100_max value: 42.7267 - type: nauc_ndcg_at_100_std value: -15.7841 - type: nauc_ndcg_at_100_diff1 value: 71.7294 - type: nauc_ndcg_at_1000_max value: 42.770799999999994 - type: nauc_ndcg_at_1000_std value: -15.8694 - type: nauc_ndcg_at_1000_diff1 value: 71.8391 - type: nauc_map_at_1_max value: 34.103899999999996 - type: nauc_map_at_1_std value: -17.6429 - type: nauc_map_at_1_diff1 value: 74.37780000000001 - type: nauc_map_at_3_max value: 39.3622 - type: nauc_map_at_3_std value: -19.3706 - type: nauc_map_at_3_diff1 value: 72.3035 - type: nauc_map_at_5_max value: 40.3833 - type: nauc_map_at_5_std value: -19.126099999999997 - type: nauc_map_at_5_diff1 value: 71.99950000000001 - type: nauc_map_at_10_max value: 40.8837 - type: nauc_map_at_10_std value: -18.34 - type: nauc_map_at_10_diff1 value: 71.92150000000001 - type: nauc_map_at_20_max value: 41.14 - type: nauc_map_at_20_std value: -18.01 - type: nauc_map_at_20_diff1 value: 71.85629999999999 - type: nauc_map_at_100_max value: 41.2511 - type: nauc_map_at_100_std value: -17.6727 - type: nauc_map_at_100_diff1 value: 71.8731 - type: nauc_map_at_1000_max value: 41.2569 - type: nauc_map_at_1000_std value: -17.6477 - type: nauc_map_at_1000_diff1 value: 71.8801 - type: nauc_recall_at_1_max value: 34.103899999999996 - type: nauc_recall_at_1_std value: -17.6429 - type: nauc_recall_at_1_diff1 value: 74.37780000000001 - type: nauc_recall_at_3_max value: 37.4459 - type: nauc_recall_at_3_std value: -21.2405 - type: nauc_recall_at_3_diff1 value: 68.2773 - type: nauc_recall_at_5_max value: 38.5924 - type: nauc_recall_at_5_std value: -21.644 - type: nauc_recall_at_5_diff1 value: 66.3095 - type: nauc_recall_at_10_max value: 39.3957 - type: nauc_recall_at_10_std value: -17.0364 - type: nauc_recall_at_10_diff1 value: 64.8501 - type: nauc_recall_at_20_max value: 40.325 - type: nauc_recall_at_20_std value: -15.4228 - type: nauc_recall_at_20_diff1 value: 63.5063 - type: nauc_recall_at_100_max value: 43.7134 - type: nauc_recall_at_100_std value: 3.7923 - type: nauc_recall_at_100_diff1 value: 63.7613 - type: nauc_recall_at_1000_max value: 53.65180000000001 - type: nauc_recall_at_1000_std value: 35.6561 - type: nauc_recall_at_1000_diff1 value: 65.9936 - type: nauc_precision_at_1_max value: 43.343199999999996 - type: nauc_precision_at_1_std value: -15.6476 - type: nauc_precision_at_1_diff1 value: 74.5603 - type: nauc_precision_at_3_max value: 21.8142 - type: nauc_precision_at_3_std value: -1.1627999999999998 - type: nauc_precision_at_3_diff1 value: 9.954 - type: nauc_precision_at_5_max value: 15.2041 - type: nauc_precision_at_5_std value: 4.2947 - type: nauc_precision_at_5_diff1 value: -5.305 - type: nauc_precision_at_10_max value: 8.163499999999999 - type: nauc_precision_at_10_std value: 10.9367 - type: nauc_precision_at_10_diff1 value: -18.0036 - type: nauc_precision_at_20_max value: 3.5585 - type: nauc_precision_at_20_std value: 14.5351 - type: nauc_precision_at_20_diff1 value: -25.249700000000004 - type: nauc_precision_at_100_max value: -3.0063 - type: nauc_precision_at_100_std value: 19.791700000000002 - type: nauc_precision_at_100_diff1 value: -32.281 - type: nauc_precision_at_1000_max value: -6.468100000000001 - type: nauc_precision_at_1000_std value: 20.025100000000002 - type: nauc_precision_at_1000_diff1 value: -34.4531 - type: nauc_mrr_at_1_max value: 43.2621 - type: nauc_mrr_at_1_std value: -15.864 - type: nauc_mrr_at_1_diff1 value: 74.5603 - type: nauc_mrr_at_3_max value: 43.8197 - type: nauc_mrr_at_3_std value: -16.1674 - type: nauc_mrr_at_3_diff1 value: 72.9802 - type: nauc_mrr_at_5_max value: 43.9843 - type: nauc_mrr_at_5_std value: -16.042 - type: nauc_mrr_at_5_diff1 value: 72.907 - type: nauc_mrr_at_10_max value: 44.0294 - type: nauc_mrr_at_10_std value: -15.711500000000001 - type: nauc_mrr_at_10_diff1 value: 72.9915 - type: nauc_mrr_at_20_max value: 44.044200000000004 - type: nauc_mrr_at_20_std value: -15.7842 - type: nauc_mrr_at_20_diff1 value: 73.0535 - type: nauc_mrr_at_100_max value: 44.0194 - type: nauc_mrr_at_100_std value: -15.7612 - type: nauc_mrr_at_100_diff1 value: 73.0738 - type: nauc_mrr_at_1000_max value: 44.0187 - type: nauc_mrr_at_1000_std value: -15.764100000000001 - type: nauc_mrr_at_1000_diff1 value: 73.0758 - type: main_score value: 79.946 task: type: Retrieval - dataset: config: default name: MTEB RedditClustering (default) revision: 24640382cdbf8abc73003fb0fa6d111a705499eb split: test type: mteb/reddit-clustering metrics: - type: v_measure value: 20.2171 - type: v_measure_std value: 4.4216 - type: main_score value: 20.2171 task: type: Clustering - dataset: config: default name: MTEB RedditClusteringP2P (default) revision: 385e3cb46b4cfa89021f56c4380204149d0efe33 split: test type: mteb/reddit-clustering-p2p metrics: - type: v_measure value: 38.8882 - type: v_measure_std value: 9.315 - type: main_score value: 38.8882 task: type: Clustering - dataset: config: default name: MTEB SCIDOCS (default) revision: f8c2fcf00f625baaa80f62ec5bd9e1fff3b8ae88 split: test type: mteb/scidocs metrics: - type: ndcg_at_1 value: 15.1 - type: ndcg_at_3 value: 12.036 - type: ndcg_at_5 value: 11.007 - type: ndcg_at_10 value: 13.352 - type: ndcg_at_20 value: 15.6 - type: ndcg_at_100 value: 19.871 - type: ndcg_at_1000 value: 25.255 - type: map_at_1 value: 3.058 - type: map_at_3 value: 5.268 - type: map_at_5 value: 6.406000000000001 - type: map_at_10 value: 7.478 - type: map_at_20 value: 8.21 - type: map_at_100 value: 8.946 - type: map_at_1000 value: 9.223 - type: recall_at_1 value: 3.058 - type: recall_at_3 value: 6.793 - type: recall_at_5 value: 10.003 - type: recall_at_10 value: 14.288 - type: recall_at_20 value: 19.542 - type: recall_at_100 value: 33.413 - type: recall_at_1000 value: 59.733000000000004 - type: precision_at_1 value: 15.1 - type: precision_at_3 value: 11.167 - type: precision_at_5 value: 9.879999999999999 - type: precision_at_10 value: 7.07 - type: precision_at_20 value: 4.825 - type: precision_at_100 value: 1.649 - type: precision_at_1000 value: 0.294 - type: mrr_at_1 value: 15.1 - type: mrr_at_3 value: 20.2833 - type: mrr_at_5 value: 22.4733 - type: mrr_at_10 value: 23.6601 - type: mrr_at_20 value: 24.3772 - type: mrr_at_100 value: 24.9007 - type: mrr_at_1000 value: 24.9743 - type: nauc_ndcg_at_1_max value: 18.8537 - type: nauc_ndcg_at_1_std value: -3.2037000000000004 - type: nauc_ndcg_at_1_diff1 value: 20.8288 - type: nauc_ndcg_at_3_max value: 15.3817 - type: nauc_ndcg_at_3_std value: -3.2159 - type: nauc_ndcg_at_3_diff1 value: 18.13 - type: nauc_ndcg_at_5_max value: 17.940900000000003 - type: nauc_ndcg_at_5_std value: 0.3294 - type: nauc_ndcg_at_5_diff1 value: 16.9378 - type: nauc_ndcg_at_10_max value: 21.146 - type: nauc_ndcg_at_10_std value: 2.6954 - type: nauc_ndcg_at_10_diff1 value: 15.363399999999999 - type: nauc_ndcg_at_20_max value: 21.9075 - type: nauc_ndcg_at_20_std value: 4.9554 - type: nauc_ndcg_at_20_diff1 value: 15.4857 - type: nauc_ndcg_at_100_max value: 22.9248 - type: nauc_ndcg_at_100_std value: 8.8094 - type: nauc_ndcg_at_100_diff1 value: 15.1255 - type: nauc_ndcg_at_1000_max value: 24.7883 - type: nauc_ndcg_at_1000_std value: 13.3551 - type: nauc_ndcg_at_1000_diff1 value: 15.1244 - type: nauc_map_at_1_max value: 19.238 - type: nauc_map_at_1_std value: -2.9537 - type: nauc_map_at_1_diff1 value: 21.3456 - type: nauc_map_at_3_max value: 16.0914 - type: nauc_map_at_3_std value: -4.2357 - type: nauc_map_at_3_diff1 value: 17.1314 - type: nauc_map_at_5_max value: 17.9317 - type: nauc_map_at_5_std value: -1.2885 - type: nauc_map_at_5_diff1 value: 15.5052 - type: nauc_map_at_10_max value: 20.1204 - type: nauc_map_at_10_std value: 0.29109999999999997 - type: nauc_map_at_10_diff1 value: 14.513200000000001 - type: nauc_map_at_20_max value: 20.6688 - type: nauc_map_at_20_std value: 1.6063 - type: nauc_map_at_20_diff1 value: 14.934800000000001 - type: nauc_map_at_100_max value: 21.2455 - type: nauc_map_at_100_std value: 3.1651 - type: nauc_map_at_100_diff1 value: 14.6507 - type: nauc_map_at_1000_max value: 21.4903 - type: nauc_map_at_1000_std value: 3.7647 - type: nauc_map_at_1000_diff1 value: 14.6354 - type: nauc_recall_at_1_max value: 19.238 - type: nauc_recall_at_1_std value: -2.9537 - type: nauc_recall_at_1_diff1 value: 21.3456 - type: nauc_recall_at_3_max value: 14.5564 - type: nauc_recall_at_3_std value: -3.2211 - type: nauc_recall_at_3_diff1 value: 17.0505 - type: nauc_recall_at_5_max value: 18.159200000000002 - type: nauc_recall_at_5_std value: 2.6766 - type: nauc_recall_at_5_diff1 value: 14.7598 - type: nauc_recall_at_10_max value: 23.6071 - type: nauc_recall_at_10_std value: 6.6582 - type: nauc_recall_at_10_diff1 value: 11.7647 - type: nauc_recall_at_20_max value: 23.5471 - type: nauc_recall_at_20_std value: 10.6906 - type: nauc_recall_at_20_diff1 value: 11.5654 - type: nauc_recall_at_100_max value: 23.2746 - type: nauc_recall_at_100_std value: 18.3139 - type: nauc_recall_at_100_diff1 value: 10.2364 - type: nauc_recall_at_1000_max value: 27.2333 - type: nauc_recall_at_1000_std value: 32.5351 - type: nauc_recall_at_1000_diff1 value: 8.7211 - type: nauc_precision_at_1_max value: 18.8537 - type: nauc_precision_at_1_std value: -3.2037000000000004 - type: nauc_precision_at_1_diff1 value: 20.8288 - type: nauc_precision_at_3_max value: 14.260200000000001 - type: nauc_precision_at_3_std value: -3.1767 - type: nauc_precision_at_3_diff1 value: 16.9826 - type: nauc_precision_at_5_max value: 17.999399999999998 - type: nauc_precision_at_5_std value: 2.7119999999999997 - type: nauc_precision_at_5_diff1 value: 14.685300000000002 - type: nauc_precision_at_10_max value: 23.5629 - type: nauc_precision_at_10_std value: 6.7014000000000005 - type: nauc_precision_at_10_diff1 value: 11.6848 - type: nauc_precision_at_20_max value: 23.1819 - type: nauc_precision_at_20_std value: 10.478 - type: nauc_precision_at_20_diff1 value: 11.6263 - type: nauc_precision_at_100_max value: 22.7954 - type: nauc_precision_at_100_std value: 18.215500000000002 - type: nauc_precision_at_100_diff1 value: 10.526299999999999 - type: nauc_precision_at_1000_max value: 26.4283 - type: nauc_precision_at_1000_std value: 31.9492 - type: nauc_precision_at_1000_diff1 value: 9.031799999999999 - type: nauc_mrr_at_1_max value: 18.8537 - type: nauc_mrr_at_1_std value: -3.2037000000000004 - type: nauc_mrr_at_1_diff1 value: 20.8288 - type: nauc_mrr_at_3_max value: 16.253500000000003 - type: nauc_mrr_at_3_std value: -2.3413 - type: nauc_mrr_at_3_diff1 value: 20.333399999999997 - type: nauc_mrr_at_5_max value: 17.2285 - type: nauc_mrr_at_5_std value: -0.5249 - type: nauc_mrr_at_5_diff1 value: 20.119 - type: nauc_mrr_at_10_max value: 18.351100000000002 - type: nauc_mrr_at_10_std value: 0.0489 - type: nauc_mrr_at_10_diff1 value: 19.711000000000002 - type: nauc_mrr_at_20_max value: 18.409100000000002 - type: nauc_mrr_at_20_std value: 0.41079999999999994 - type: nauc_mrr_at_20_diff1 value: 19.5248 - type: nauc_mrr_at_100_max value: 18.404799999999998 - type: nauc_mrr_at_100_std value: 0.4336 - type: nauc_mrr_at_100_diff1 value: 19.5129 - type: nauc_mrr_at_1000_max value: 18.3706 - type: nauc_mrr_at_1000_std value: 0.41529999999999995 - type: nauc_mrr_at_1000_diff1 value: 19.5103 - type: main_score value: 13.352 task: type: Retrieval - dataset: config: default name: MTEB SICK-R (default) revision: 20a6d6f312dd54037fe07a32d58e5e168867909d split: test type: mteb/sickr-sts metrics: - type: pearson value: 73.39529999999999 - type: spearman value: 63.871599999999994 - type: cosine_pearson value: 73.39529999999999 - type: cosine_spearman value: 63.871500000000005 - type: manhattan_pearson value: 62.5861 - type: manhattan_spearman value: 56.714600000000004 - type: euclidean_pearson value: 62.606899999999996 - type: euclidean_spearman value: 56.714200000000005 - type: main_score value: 63.871500000000005 task: type: STS - dataset: config: default name: MTEB STS12 (default) revision: a0d554a64d88156834ff5ae9920b964011b16384 split: test type: mteb/sts12-sts metrics: - type: pearson value: 72.35770000000001 - type: spearman value: 63.606899999999996 - type: cosine_pearson value: 72.35770000000001 - type: cosine_spearman value: 63.610299999999995 - type: manhattan_pearson value: 59.8404 - type: manhattan_spearman value: 56.85059999999999 - type: euclidean_pearson value: 59.8116 - type: euclidean_spearman value: 56.691 - type: main_score value: 63.610299999999995 task: type: STS - dataset: config: default name: MTEB STS13 (default) revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca split: test type: mteb/sts13-sts metrics: - type: pearson value: 76.4727 - type: spearman value: 76.983 - type: cosine_pearson value: 76.4727 - type: cosine_spearman value: 76.983 - type: manhattan_pearson value: 49.4803 - type: manhattan_spearman value: 51.1301 - type: euclidean_pearson value: 49.4542 - type: euclidean_spearman value: 51.19669999999999 - type: main_score value: 76.983 task: type: STS - dataset: config: default name: MTEB STS14 (default) revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 split: test type: mteb/sts14-sts metrics: - type: pearson value: 75.777 - type: spearman value: 71.2099 - type: cosine_pearson value: 75.777 - type: cosine_spearman value: 71.2099 - type: manhattan_pearson value: 52.475899999999996 - type: manhattan_spearman value: 53.8072 - type: euclidean_pearson value: 52.416799999999995 - type: euclidean_spearman value: 53.725500000000004 - type: main_score value: 71.2099 task: type: STS - dataset: config: default name: MTEB STS15 (default) revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 split: test type: mteb/sts15-sts metrics: - type: pearson value: 80.1072 - type: spearman value: 80.735 - type: cosine_pearson value: 80.1072 - type: cosine_spearman value: 80.7349 - type: manhattan_pearson value: 50.711600000000004 - type: manhattan_spearman value: 53.491299999999995 - type: euclidean_pearson value: 50.6255 - type: euclidean_spearman value: 53.47539999999999 - type: main_score value: 80.7349 task: type: STS - dataset: config: default name: MTEB STS16 (default) revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 split: test type: mteb/sts16-sts metrics: - type: pearson value: 73.1658 - type: spearman value: 74.2121 - type: cosine_pearson value: 73.1658 - type: cosine_spearman value: 74.2121 - type: manhattan_pearson value: 43.4074 - type: manhattan_spearman value: 47.193200000000004 - type: euclidean_pearson value: 43.438300000000005 - type: euclidean_spearman value: 47.2757 - type: main_score value: 74.2121 task: type: STS - dataset: config: en-en name: MTEB STS17 (en-en) revision: faeb762787bd10488a50c8b5be4a3b82e411949c split: test type: mteb/sts17-crosslingual-sts metrics: - type: pearson value: 81.8156 - type: spearman value: 81.9457 - type: cosine_pearson value: 81.8156 - type: cosine_spearman value: 81.9457 - type: manhattan_pearson value: 59.4332 - type: manhattan_spearman value: 60.5687 - type: euclidean_pearson value: 59.2942 - type: euclidean_spearman value: 60.39679999999999 - type: main_score value: 81.9457 task: type: STS - dataset: config: en name: MTEB STS22 (en) revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 split: test type: mteb/sts22-crosslingual-sts metrics: - type: pearson value: 48.9285 - type: spearman value: 55.862500000000004 - type: cosine_pearson value: 48.9285 - type: cosine_spearman value: 55.862500000000004 - type: manhattan_pearson value: 43.082300000000004 - type: manhattan_spearman value: 51.1876 - type: euclidean_pearson value: 43.2313 - type: euclidean_spearman value: 51.094899999999996 - type: main_score value: 55.862500000000004 task: type: STS - dataset: config: default name: MTEB STSBenchmark (default) revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 split: test type: mteb/stsbenchmark-sts metrics: - type: pearson value: 73.44380000000001 - type: spearman value: 71.9343 - type: cosine_pearson value: 73.44380000000001 - type: cosine_spearman value: 71.9345 - type: manhattan_pearson value: 52.233799999999995 - type: manhattan_spearman value: 51.7687 - type: euclidean_pearson value: 52.2753 - type: euclidean_spearman value: 51.845 - type: main_score value: 71.9345 task: type: STS - dataset: config: default name: MTEB SciDocsRR (default) revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab split: test type: mteb/scidocs-reranking metrics: - type: map value: 71.4557 - type: mrr value: 90.6219 - type: nAUC_map_max value: 54.74830000000001 - type: nAUC_map_std value: 65.2558 - type: nAUC_map_diff1 value: 10.2936 - type: nAUC_mrr_max value: 75.10900000000001 - type: nAUC_mrr_std value: 69.6523 - type: nAUC_mrr_diff1 value: 49.4991 - type: main_score value: 71.4557 task: type: Reranking - dataset: config: default name: MTEB SciFact (default) revision: 0228b52cf27578f30900b9e5271d331663a030d7 split: test type: mteb/scifact metrics: - type: ndcg_at_1 value: 43.667 - type: ndcg_at_3 value: 52.102000000000004 - type: ndcg_at_5 value: 54.751000000000005 - type: ndcg_at_10 value: 57.422 - type: ndcg_at_20 value: 59.425 - type: ndcg_at_100 value: 61.166 - type: ndcg_at_1000 value: 62.244 - type: map_at_1 value: 41.888999999999996 - type: map_at_3 value: 49.435 - type: map_at_5 value: 51.029 - type: map_at_10 value: 52.190000000000005 - type: map_at_20 value: 52.797000000000004 - type: map_at_100 value: 53.03 - type: map_at_1000 value: 53.069 - type: recall_at_1 value: 41.888999999999996 - type: recall_at_3 value: 57.916999999999994 - type: recall_at_5 value: 64.372 - type: recall_at_10 value: 72.311 - type: recall_at_20 value: 79.97800000000001 - type: recall_at_100 value: 89.333 - type: recall_at_1000 value: 97.867 - type: precision_at_1 value: 43.667 - type: precision_at_3 value: 20.778 - type: precision_at_5 value: 14.066999999999998 - type: precision_at_10 value: 8.033 - type: precision_at_20 value: 4.45 - type: precision_at_100 value: 1.0030000000000001 - type: precision_at_1000 value: 0.11 - type: mrr_at_1 value: 43.666700000000006 - type: mrr_at_3 value: 50.9444 - type: mrr_at_5 value: 52.3444 - type: mrr_at_10 value: 53.3852 - type: mrr_at_20 value: 53.8864 - type: mrr_at_100 value: 54.0887 - type: mrr_at_1000 value: 54.11749999999999 - type: nauc_ndcg_at_1_max value: 36.6444 - type: nauc_ndcg_at_1_std value: -7.4722 - type: nauc_ndcg_at_1_diff1 value: 63.631099999999996 - type: nauc_ndcg_at_3_max value: 37.2859 - type: nauc_ndcg_at_3_std value: -11.2775 - type: nauc_ndcg_at_3_diff1 value: 56.352999999999994 - type: nauc_ndcg_at_5_max value: 36.7832 - type: nauc_ndcg_at_5_std value: -12.310699999999999 - type: nauc_ndcg_at_5_diff1 value: 55.41740000000001 - type: nauc_ndcg_at_10_max value: 37.9586 - type: nauc_ndcg_at_10_std value: -9.7483 - type: nauc_ndcg_at_10_diff1 value: 56.8082 - type: nauc_ndcg_at_20_max value: 38.4072 - type: nauc_ndcg_at_20_std value: -7.473299999999999 - type: nauc_ndcg_at_20_diff1 value: 56.4974 - type: nauc_ndcg_at_100_max value: 38.5583 - type: nauc_ndcg_at_100_std value: -5.521100000000001 - type: nauc_ndcg_at_100_diff1 value: 56.8808 - type: nauc_ndcg_at_1000_max value: 38.580999999999996 - type: nauc_ndcg_at_1000_std value: -6.6578 - type: nauc_ndcg_at_1000_diff1 value: 57.3412 - type: nauc_map_at_1_max value: 35.4069 - type: nauc_map_at_1_std value: -11.9598 - type: nauc_map_at_1_diff1 value: 62.351299999999995 - type: nauc_map_at_3_max value: 36.3612 - type: nauc_map_at_3_std value: -12.6999 - type: nauc_map_at_3_diff1 value: 57.918099999999995 - type: nauc_map_at_5_max value: 36.268299999999996 - type: nauc_map_at_5_std value: -12.921199999999999 - type: nauc_map_at_5_diff1 value: 57.496 - type: nauc_map_at_10_max value: 36.918099999999995 - type: nauc_map_at_10_std value: -11.6299 - type: nauc_map_at_10_diff1 value: 58.1148 - type: nauc_map_at_20_max value: 37.060900000000004 - type: nauc_map_at_20_std value: -10.8228 - type: nauc_map_at_20_diff1 value: 58.0205 - type: nauc_map_at_100_max value: 37.085499999999996 - type: nauc_map_at_100_std value: -10.5358 - type: nauc_map_at_100_diff1 value: 58.095 - type: nauc_map_at_1000_max value: 37.1083 - type: nauc_map_at_1000_std value: -10.5578 - type: nauc_map_at_1000_diff1 value: 58.1224 - type: nauc_recall_at_1_max value: 35.4069 - type: nauc_recall_at_1_std value: -11.9598 - type: nauc_recall_at_1_diff1 value: 62.351299999999995 - type: nauc_recall_at_3_max value: 37.6511 - type: nauc_recall_at_3_std value: -13.3993 - type: nauc_recall_at_3_diff1 value: 50.4572 - type: nauc_recall_at_5_max value: 35.8548 - type: nauc_recall_at_5_std value: -16.1098 - type: nauc_recall_at_5_diff1 value: 47.2106 - type: nauc_recall_at_10_max value: 38.9793 - type: nauc_recall_at_10_std value: -8.1869 - type: nauc_recall_at_10_diff1 value: 50.5379 - type: nauc_recall_at_20_max value: 42.3127 - type: nauc_recall_at_20_std value: 4.1918999999999995 - type: nauc_recall_at_20_diff1 value: 47.5366 - type: nauc_recall_at_100_max value: 48.4392 - type: nauc_recall_at_100_std value: 37.5486 - type: nauc_recall_at_100_diff1 value: 46.853699999999996 - type: nauc_recall_at_1000_max value: 70.1389 - type: nauc_recall_at_1000_std value: 81.7519 - type: nauc_recall_at_1000_diff1 value: 46.0741 - type: nauc_precision_at_1_max value: 36.6444 - type: nauc_precision_at_1_std value: -7.4722 - type: nauc_precision_at_1_diff1 value: 63.631099999999996 - type: nauc_precision_at_3_max value: 37.9141 - type: nauc_precision_at_3_std value: -2.6281 - type: nauc_precision_at_3_diff1 value: 45.406600000000005 - type: nauc_precision_at_5_max value: 35.0402 - type: nauc_precision_at_5_std value: 0.7128 - type: nauc_precision_at_5_diff1 value: 36.686099999999996 - type: nauc_precision_at_10_max value: 37.4825 - type: nauc_precision_at_10_std value: 15.613199999999999 - type: nauc_precision_at_10_diff1 value: 33.1716 - type: nauc_precision_at_20_max value: 36.1575 - type: nauc_precision_at_20_std value: 30.4446 - type: nauc_precision_at_20_diff1 value: 23.3224 - type: nauc_precision_at_100_max value: 29.5019 - type: nauc_precision_at_100_std value: 52.942 - type: nauc_precision_at_100_diff1 value: 9.0284 - type: nauc_precision_at_1000_max value: 20.350099999999998 - type: nauc_precision_at_1000_std value: 52.2915 - type: nauc_precision_at_1000_diff1 value: -8.6009 - type: nauc_mrr_at_1_max value: 36.6444 - type: nauc_mrr_at_1_std value: -7.4722 - type: nauc_mrr_at_1_diff1 value: 63.631099999999996 - type: nauc_mrr_at_3_max value: 38.016299999999994 - type: nauc_mrr_at_3_std value: -8.0229 - type: nauc_mrr_at_3_diff1 value: 58.757400000000004 - type: nauc_mrr_at_5_max value: 37.433899999999994 - type: nauc_mrr_at_5_std value: -8.1996 - type: nauc_mrr_at_5_diff1 value: 58.235899999999994 - type: nauc_mrr_at_10_max value: 37.7997 - type: nauc_mrr_at_10_std value: -7.542699999999999 - type: nauc_mrr_at_10_diff1 value: 58.8486 - type: nauc_mrr_at_20_max value: 37.8879 - type: nauc_mrr_at_20_std value: -7.133000000000001 - type: nauc_mrr_at_20_diff1 value: 58.834900000000005 - type: nauc_mrr_at_100_max value: 37.8627 - type: nauc_mrr_at_100_std value: -6.9667 - type: nauc_mrr_at_100_diff1 value: 58.880900000000004 - type: nauc_mrr_at_1000_max value: 37.8675 - type: nauc_mrr_at_1000_std value: -6.9817 - type: nauc_mrr_at_1000_diff1 value: 58.904500000000006 - type: main_score value: 57.422 task: type: Retrieval - dataset: config: default name: MTEB SprintDuplicateQuestions (default) revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 split: test type: mteb/sprintduplicatequestions-pairclassification metrics: - type: similarity_accuracy value: 99.6703 - type: similarity_accuracy_threshold value: 81.69669999999999 - type: similarity_f1 value: 82.5479 - type: similarity_f1_threshold value: 80.97919999999999 - type: similarity_precision value: 85.6069 - type: similarity_recall value: 79.7 - type: similarity_ap value: 87.6918 - type: cosine_accuracy value: 99.6703 - type: cosine_accuracy_threshold value: 81.69669999999999 - type: cosine_f1 value: 82.5479 - type: cosine_f1_threshold value: 80.97919999999999 - type: cosine_precision value: 85.6069 - type: cosine_recall value: 79.7 - type: cosine_ap value: 87.6918 - type: manhattan_accuracy value: 99.4327 - type: manhattan_accuracy_threshold value: 2292.4838999999997 - type: manhattan_f1 value: 66.0851 - type: manhattan_f1_threshold value: 2517.333 - type: manhattan_precision value: 72.6619 - type: manhattan_recall value: 60.6 - type: manhattan_ap value: 68.1683 - type: euclidean_accuracy value: 99.4327 - type: euclidean_accuracy_threshold value: 105.6427 - type: euclidean_f1 value: 66.1605 - type: euclidean_f1_threshold value: 114.9346 - type: euclidean_precision value: 72.2749 - type: euclidean_recall value: 61.0 - type: euclidean_ap value: 68.2419 - type: dot_accuracy value: 99.0168 - type: dot_accuracy_threshold value: 1011.5417000000001 - type: dot_f1 value: 18.6459 - type: dot_f1_threshold value: 554.0581999999999 - type: dot_precision value: 20.9476 - type: dot_recall value: 16.8 - type: dot_ap value: 11.5838 - type: max_accuracy value: 99.6703 - type: max_f1 value: 82.5479 - type: max_precision value: 85.6069 - type: max_recall value: 79.7 - type: max_ap value: 87.6918 - type: main_score value: 87.6918 task: type: PairClassification - dataset: config: default name: MTEB StackExchangeClustering (default) revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 split: test type: mteb/stackexchange-clustering metrics: - type: v_measure value: 27.147700000000004 - type: v_measure_std value: 4.3151 - type: main_score value: 27.147700000000004 task: type: Clustering - dataset: config: default name: MTEB StackExchangeClusteringP2P (default) revision: 815ca46b2622cec33ccafc3735d572c266efdb44 split: test type: mteb/stackexchange-clustering-p2p metrics: - type: v_measure value: 28.9253 - type: v_measure_std value: 1.6500000000000001 - type: main_score value: 28.9253 task: type: Clustering - dataset: config: default name: MTEB StackOverflowDupQuestions (default) revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 split: test type: mteb/stackoverflowdupquestions-reranking metrics: - type: map value: 42.7933 - type: mrr value: 43.2531 - type: nAUC_map_max value: 15.137400000000001 - type: nAUC_map_std value: 4.6048 - type: nAUC_map_diff1 value: 31.665100000000002 - type: nAUC_mrr_max value: 16.429299999999998 - type: nAUC_mrr_std value: 4.943899999999999 - type: nAUC_mrr_diff1 value: 30.8849 - type: main_score value: 42.7933 task: type: Reranking - dataset: config: default name: MTEB SummEval (default) revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c split: test type: mteb/summeval metrics: - type: pearson value: 31.8891 - type: spearman value: 30.635299999999997 - type: cosine_spearman value: 30.635299999999997 - type: cosine_pearson value: 31.8891 - type: dot_spearman value: 23.1495 - type: dot_pearson value: 20.2811 - type: main_score value: 30.635299999999997 task: type: Summarization - dataset: config: default name: MTEB TRECCOVID (default) revision: bb9466bac8153a0349341eb1b22e06409e78ef4e split: test type: mteb/trec-covid metrics: - type: ndcg_at_1 value: 60.0 - type: ndcg_at_3 value: 56.592 - type: ndcg_at_5 value: 52.15 - type: ndcg_at_10 value: 48.264 - type: ndcg_at_20 value: 43.568 - type: ndcg_at_100 value: 31.196 - type: ndcg_at_1000 value: 26.101000000000003 - type: map_at_1 value: 0.153 - type: map_at_3 value: 0.4 - type: map_at_5 value: 0.601 - type: map_at_10 value: 1.016 - type: map_at_20 value: 1.6099999999999999 - type: map_at_100 value: 4.169 - type: map_at_1000 value: 9.733 - type: recall_at_1 value: 0.153 - type: recall_at_3 value: 0.42300000000000004 - type: recall_at_5 value: 0.6629999999999999 - type: recall_at_10 value: 1.201 - type: recall_at_20 value: 2.022 - type: recall_at_100 value: 6.5409999999999995 - type: recall_at_1000 value: 24.422 - type: precision_at_1 value: 64.0 - type: precision_at_3 value: 58.667 - type: precision_at_5 value: 54.0 - type: precision_at_10 value: 49.8 - type: precision_at_20 value: 44.3 - type: precision_at_100 value: 31.180000000000003 - type: precision_at_1000 value: 12.21 - type: mrr_at_1 value: 64.0 - type: mrr_at_3 value: 68.6667 - type: mrr_at_5 value: 69.9667 - type: mrr_at_10 value: 71.2222 - type: mrr_at_20 value: 71.3651 - type: mrr_at_100 value: 71.4965 - type: mrr_at_1000 value: 71.51429999999999 - type: nauc_ndcg_at_1_max value: 37.0018 - type: nauc_ndcg_at_1_std value: 3.0042 - type: nauc_ndcg_at_1_diff1 value: 1.0129000000000001 - type: nauc_ndcg_at_3_max value: 42.3179 - type: nauc_ndcg_at_3_std value: 1.1211 - type: nauc_ndcg_at_3_diff1 value: -1.3197999999999999 - type: nauc_ndcg_at_5_max value: 38.2867 - type: nauc_ndcg_at_5_std value: 1.436 - type: nauc_ndcg_at_5_diff1 value: -0.635 - type: nauc_ndcg_at_10_max value: 36.545100000000005 - type: nauc_ndcg_at_10_std value: 9.4313 - type: nauc_ndcg_at_10_diff1 value: 0.7185 - type: nauc_ndcg_at_20_max value: 28.841499999999996 - type: nauc_ndcg_at_20_std value: 14.584 - type: nauc_ndcg_at_20_diff1 value: 0.2278 - type: nauc_ndcg_at_100_max value: 22.2284 - type: nauc_ndcg_at_100_std value: 30.9548 - type: nauc_ndcg_at_100_diff1 value: 1.7124000000000001 - type: nauc_ndcg_at_1000_max value: 7.9275 - type: nauc_ndcg_at_1000_std value: 43.918 - type: nauc_ndcg_at_1000_diff1 value: 1.1608 - type: nauc_map_at_1_max value: 16.718700000000002 - type: nauc_map_at_1_std value: -14.5026 - type: nauc_map_at_1_diff1 value: 6.9494 - type: nauc_map_at_3_max value: 26.3749 - type: nauc_map_at_3_std value: -14.2379 - type: nauc_map_at_3_diff1 value: 2.6883 - type: nauc_map_at_5_max value: 26.8639 - type: nauc_map_at_5_std value: -11.9289 - type: nauc_map_at_5_diff1 value: -0.5275 - type: nauc_map_at_10_max value: 28.7924 - type: nauc_map_at_10_std value: -6.2317 - type: nauc_map_at_10_diff1 value: 0.153 - type: nauc_map_at_20_max value: 24.3923 - type: nauc_map_at_20_std value: 1.5524 - type: nauc_map_at_20_diff1 value: -0.7799999999999999 - type: nauc_map_at_100_max value: 14.5538 - type: nauc_map_at_100_std value: 29.851499999999998 - type: nauc_map_at_100_diff1 value: -1.5013 - type: nauc_map_at_1000_max value: 6.609800000000001 - type: nauc_map_at_1000_std value: 50.8853 - type: nauc_map_at_1000_diff1 value: 2.2463 - type: nauc_recall_at_1_max value: 16.718700000000002 - type: nauc_recall_at_1_std value: -14.5026 - type: nauc_recall_at_1_diff1 value: 6.9494 - type: nauc_recall_at_3_max value: 26.313 - type: nauc_recall_at_3_std value: -16.5391 - type: nauc_recall_at_3_diff1 value: -0.0947 - type: nauc_recall_at_5_max value: 27.136 - type: nauc_recall_at_5_std value: -13.486999999999998 - type: nauc_recall_at_5_diff1 value: -2.2484 - type: nauc_recall_at_10_max value: 27.9019 - type: nauc_recall_at_10_std value: -7.2991 - type: nauc_recall_at_10_diff1 value: 0.35729999999999995 - type: nauc_recall_at_20_max value: 24.1923 - type: nauc_recall_at_20_std value: 0.3075 - type: nauc_recall_at_20_diff1 value: -2.6993 - type: nauc_recall_at_100_max value: 15.928400000000002 - type: nauc_recall_at_100_std value: 24.5423 - type: nauc_recall_at_100_diff1 value: -4.0408 - type: nauc_recall_at_1000_max value: -0.2523 - type: nauc_recall_at_1000_std value: 49.0728 - type: nauc_recall_at_1000_diff1 value: -0.1562 - type: nauc_precision_at_1_max value: 42.5437 - type: nauc_precision_at_1_std value: 0.859 - type: nauc_precision_at_1_diff1 value: -7.6319 - type: nauc_precision_at_3_max value: 46.4231 - type: nauc_precision_at_3_std value: -2.6254 - type: nauc_precision_at_3_diff1 value: -5.129700000000001 - type: nauc_precision_at_5_max value: 40.022600000000004 - type: nauc_precision_at_5_std value: 1.4931 - type: nauc_precision_at_5_diff1 value: -5.634399999999999 - type: nauc_precision_at_10_max value: 37.8846 - type: nauc_precision_at_10_std value: 11.4085 - type: nauc_precision_at_10_diff1 value: -2.3909 - type: nauc_precision_at_20_max value: 26.971400000000003 - type: nauc_precision_at_20_std value: 17.3784 - type: nauc_precision_at_20_diff1 value: -1.5310000000000001 - type: nauc_precision_at_100_max value: 19.9237 - type: nauc_precision_at_100_std value: 35.952400000000004 - type: nauc_precision_at_100_diff1 value: 1.4594 - type: nauc_precision_at_1000_max value: 6.1676 - type: nauc_precision_at_1000_std value: 50.53959999999999 - type: nauc_precision_at_1000_diff1 value: 3.8484 - type: nauc_mrr_at_1_max value: 42.5437 - type: nauc_mrr_at_1_std value: 0.859 - type: nauc_mrr_at_1_diff1 value: -7.6319 - type: nauc_mrr_at_3_max value: 44.3255 - type: nauc_mrr_at_3_std value: -4.5994 - type: nauc_mrr_at_3_diff1 value: -12.2252 - type: nauc_mrr_at_5_max value: 45.7817 - type: nauc_mrr_at_5_std value: -3.1611000000000002 - type: nauc_mrr_at_5_diff1 value: -10.706100000000001 - type: nauc_mrr_at_10_max value: 45.5444 - type: nauc_mrr_at_10_std value: -1.1735 - type: nauc_mrr_at_10_diff1 value: -9.6912 - type: nauc_mrr_at_20_max value: 45.3001 - type: nauc_mrr_at_20_std value: -0.8477999999999999 - type: nauc_mrr_at_20_diff1 value: -8.7214 - type: nauc_mrr_at_100_max value: 45.3697 - type: nauc_mrr_at_100_std value: -1.2326 - type: nauc_mrr_at_100_diff1 value: -9.1853 - type: nauc_mrr_at_1000_max value: 45.356 - type: nauc_mrr_at_1000_std value: -1.2729000000000001 - type: nauc_mrr_at_1000_diff1 value: -9.2226 - type: main_score value: 48.264 task: type: Retrieval - dataset: config: default name: MTEB Touche2020 (default) revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f split: test type: mteb/touche2020 metrics: - type: ndcg_at_1 value: 13.264999999999999 - type: ndcg_at_3 value: 16.817 - type: ndcg_at_5 value: 17.718999999999998 - type: ndcg_at_10 value: 17.318 - type: ndcg_at_20 value: 18.445 - type: ndcg_at_100 value: 28.137 - type: ndcg_at_1000 value: 41.744 - type: map_at_1 value: 1.335 - type: map_at_3 value: 2.94 - type: map_at_5 value: 4.37 - type: map_at_10 value: 6.447 - type: map_at_20 value: 8.141 - type: map_at_100 value: 10.428999999999998 - type: map_at_1000 value: 12.23 - type: recall_at_1 value: 1.335 - type: recall_at_3 value: 4.05 - type: recall_at_5 value: 7.507999999999999 - type: recall_at_10 value: 12.862000000000002 - type: recall_at_20 value: 18.953999999999997 - type: recall_at_100 value: 40.384 - type: recall_at_1000 value: 82.421 - type: precision_at_1 value: 16.326999999999998 - type: precision_at_3 value: 21.088 - type: precision_at_5 value: 21.224 - type: precision_at_10 value: 17.755000000000003 - type: precision_at_20 value: 13.264999999999999 - type: precision_at_100 value: 6.5920000000000005 - type: precision_at_1000 value: 1.516 - type: mrr_at_1 value: 16.3265 - type: mrr_at_3 value: 29.251700000000003 - type: mrr_at_5 value: 32.9252 - type: mrr_at_10 value: 34.613699999999994 - type: mrr_at_20 value: 35.3587 - type: mrr_at_100 value: 35.6307 - type: mrr_at_1000 value: 35.6307 - type: nauc_ndcg_at_1_max value: -32.3322 - type: nauc_ndcg_at_1_std value: -13.9866 - type: nauc_ndcg_at_1_diff1 value: -21.525 - type: nauc_ndcg_at_3_max value: -33.6213 - type: nauc_ndcg_at_3_std value: -9.2265 - type: nauc_ndcg_at_3_diff1 value: -7.9922 - type: nauc_ndcg_at_5_max value: -38.3363 - type: nauc_ndcg_at_5_std value: -19.017999999999997 - type: nauc_ndcg_at_5_diff1 value: 0.7867000000000001 - type: nauc_ndcg_at_10_max value: -45.460699999999996 - type: nauc_ndcg_at_10_std value: -36.0452 - type: nauc_ndcg_at_10_diff1 value: 11.525599999999999 - type: nauc_ndcg_at_20_max value: -43.7997 - type: nauc_ndcg_at_20_std value: -39.293499999999995 - type: nauc_ndcg_at_20_diff1 value: 18.019099999999998 - type: nauc_ndcg_at_100_max value: -47.180499999999995 - type: nauc_ndcg_at_100_std value: -31.8569 - type: nauc_ndcg_at_100_diff1 value: 14.1121 - type: nauc_ndcg_at_1000_max value: -40.8476 - type: nauc_ndcg_at_1000_std value: -21.2172 - type: nauc_ndcg_at_1000_diff1 value: 20.3064 - type: nauc_map_at_1_max value: -39.5068 - type: nauc_map_at_1_std value: -16.150000000000002 - type: nauc_map_at_1_diff1 value: -31.249900000000004 - type: nauc_map_at_3_max value: -41.2738 - type: nauc_map_at_3_std value: -23.5467 - type: nauc_map_at_3_diff1 value: -21.5959 - type: nauc_map_at_5_max value: -45.9079 - type: nauc_map_at_5_std value: -28.181099999999997 - type: nauc_map_at_5_diff1 value: -14.3231 - type: nauc_map_at_10_max value: -45.8169 - type: nauc_map_at_10_std value: -41.293400000000005 - type: nauc_map_at_10_diff1 value: -0.7166 - type: nauc_map_at_20_max value: -42.233900000000006 - type: nauc_map_at_20_std value: -42.2579 - type: nauc_map_at_20_diff1 value: 9.9162 - type: nauc_map_at_100_max value: -42.6044 - type: nauc_map_at_100_std value: -39.921 - type: nauc_map_at_100_diff1 value: 10.408900000000001 - type: nauc_map_at_1000_max value: -41.4171 - type: nauc_map_at_1000_std value: -37.167899999999996 - type: nauc_map_at_1000_diff1 value: 11.7185 - type: nauc_recall_at_1_max value: -39.5068 - type: nauc_recall_at_1_std value: -16.150000000000002 - type: nauc_recall_at_1_diff1 value: -31.249900000000004 - type: nauc_recall_at_3_max value: -38.8655 - type: nauc_recall_at_3_std value: -21.6066 - type: nauc_recall_at_3_diff1 value: -11.395900000000001 - type: nauc_recall_at_5_max value: -47.9991 - type: nauc_recall_at_5_std value: -32.9137 - type: nauc_recall_at_5_diff1 value: -1.0116 - type: nauc_recall_at_10_max value: -49.586999999999996 - type: nauc_recall_at_10_std value: -48.6293 - type: nauc_recall_at_10_diff1 value: 13.092699999999999 - type: nauc_recall_at_20_max value: -45.1018 - type: nauc_recall_at_20_std value: -46.1638 - type: nauc_recall_at_20_diff1 value: 20.9848 - type: nauc_recall_at_100_max value: -48.106700000000004 - type: nauc_recall_at_100_std value: -30.618699999999997 - type: nauc_recall_at_100_diff1 value: 8.3225 - type: nauc_recall_at_1000_max value: -35.183 - type: nauc_recall_at_1000_std value: 9.1089 - type: nauc_recall_at_1000_diff1 value: 14.8164 - type: nauc_precision_at_1_max value: -36.7404 - type: nauc_precision_at_1_std value: -20.7164 - type: nauc_precision_at_1_diff1 value: -24.9514 - type: nauc_precision_at_3_max value: -32.1394 - type: nauc_precision_at_3_std value: -14.9321 - type: nauc_precision_at_3_diff1 value: -5.2914 - type: nauc_precision_at_5_max value: -39.6017 - type: nauc_precision_at_5_std value: -27.8755 - type: nauc_precision_at_5_diff1 value: 6.2789 - type: nauc_precision_at_10_max value: -42.565799999999996 - type: nauc_precision_at_10_std value: -45.101200000000006 - type: nauc_precision_at_10_diff1 value: 18.4024 - type: nauc_precision_at_20_max value: -36.074 - type: nauc_precision_at_20_std value: -41.6858 - type: nauc_precision_at_20_diff1 value: 29.625899999999998 - type: nauc_precision_at_100_max value: -20.7563 - type: nauc_precision_at_100_std value: -6.5164 - type: nauc_precision_at_100_diff1 value: 13.5108 - type: nauc_precision_at_1000_max value: 41.492200000000004 - type: nauc_precision_at_1000_std value: 45.918 - type: nauc_precision_at_1000_diff1 value: 9.314400000000001 - type: nauc_mrr_at_1_max value: -36.7404 - type: nauc_mrr_at_1_std value: -20.7164 - type: nauc_mrr_at_1_diff1 value: -24.9514 - type: nauc_mrr_at_3_max value: -34.8748 - type: nauc_mrr_at_3_std value: -11.2167 - type: nauc_mrr_at_3_diff1 value: -14.4811 - type: nauc_mrr_at_5_max value: -39.5232 - type: nauc_mrr_at_5_std value: -18.9591 - type: nauc_mrr_at_5_diff1 value: -13.2719 - type: nauc_mrr_at_10_max value: -41.7821 - type: nauc_mrr_at_10_std value: -18.368399999999998 - type: nauc_mrr_at_10_diff1 value: -13.4359 - type: nauc_mrr_at_20_max value: -42.8581 - type: nauc_mrr_at_20_std value: -18.6052 - type: nauc_mrr_at_20_diff1 value: -13.6098 - type: nauc_mrr_at_100_max value: -42.0696 - type: nauc_mrr_at_100_std value: -18.1447 - type: nauc_mrr_at_100_diff1 value: -14.102500000000001 - type: nauc_mrr_at_1000_max value: -42.0696 - type: nauc_mrr_at_1000_std value: -18.1447 - type: nauc_mrr_at_1000_diff1 value: -14.102500000000001 - type: main_score value: 17.318 task: type: Retrieval - dataset: config: default name: MTEB ToxicConversationsClassification (default) revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de split: test type: mteb/toxic_conversations_50k metrics: - type: accuracy value: 74.0283 - type: f1 value: 54.813100000000006 - type: f1_weighted value: 79.4125 - type: ap value: 12.750800000000002 - type: ap_weighted value: 12.750800000000002 - type: main_score value: 74.0283 task: type: Classification - dataset: config: default name: MTEB TweetSentimentExtractionClassification (default) revision: d604517c81ca91fe16a244d1248fc021f9ecee7a split: test type: mteb/tweet_sentiment_extraction metrics: - type: accuracy value: 52.818299999999994 - type: f1 value: 52.8999 - type: f1_weighted value: 52.223299999999995 - type: main_score value: 52.818299999999994 task: type: Classification - dataset: config: default name: MTEB TwentyNewsgroupsClustering (default) revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 split: test type: mteb/twentynewsgroups-clustering metrics: - type: v_measure value: 14.5905 - type: v_measure_std value: 1.0532 - type: main_score value: 14.5905 task: type: Clustering - dataset: config: default name: MTEB TwitterSemEval2015 (default) revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 split: test type: mteb/twittersemeval2015-pairclassification metrics: - type: similarity_accuracy value: 80.3481 - type: similarity_accuracy_threshold value: 85.3551 - type: similarity_f1 value: 51.27850000000001 - type: similarity_f1_threshold value: 75.8966 - type: similarity_precision value: 45.8247 - type: similarity_recall value: 58.205799999999996 - type: similarity_ap value: 52.295100000000005 - type: cosine_accuracy value: 80.3481 - type: cosine_accuracy_threshold value: 85.3551 - type: cosine_f1 value: 51.27850000000001 - type: cosine_f1_threshold value: 75.8966 - type: cosine_precision value: 45.8247 - type: cosine_recall value: 58.205799999999996 - type: cosine_ap value: 52.295199999999994 - type: manhattan_accuracy value: 78.9712 - type: manhattan_accuracy_threshold value: 3046.9002 - type: manhattan_f1 value: 44.784600000000005 - type: manhattan_f1_threshold value: 4624.7635 - type: manhattan_precision value: 35.5133 - type: manhattan_recall value: 60.606899999999996 - type: manhattan_ap value: 44.4155 - type: euclidean_accuracy value: 78.9772 - type: euclidean_accuracy_threshold value: 141.3014 - type: euclidean_f1 value: 44.8638 - type: euclidean_f1_threshold value: 210.8781 - type: euclidean_precision value: 35.3191 - type: euclidean_recall value: 61.477599999999995 - type: euclidean_ap value: 44.3973 - type: dot_accuracy value: 77.4095 - type: dot_accuracy_threshold value: 3833.3893000000003 - type: dot_f1 value: 41.7116 - type: dot_f1_threshold value: 336.5812 - type: dot_precision value: 28.259600000000002 - type: dot_recall value: 79.6042 - type: dot_ap value: 30.7809 - type: max_accuracy value: 80.3481 - type: max_f1 value: 51.27850000000001 - type: max_precision value: 45.8247 - type: max_recall value: 79.6042 - type: max_ap value: 52.295199999999994 - type: main_score value: 52.295199999999994 task: type: PairClassification - dataset: config: default name: MTEB TwitterURLCorpus (default) revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf split: test type: mteb/twitterurlcorpus-pairclassification metrics: - type: similarity_accuracy value: 85.9025 - type: similarity_accuracy_threshold value: 71.6078 - type: similarity_f1 value: 70.9832 - type: similarity_f1_threshold value: 66.4079 - type: similarity_precision value: 68.9871 - type: similarity_recall value: 73.0982 - type: similarity_ap value: 79.2622 - type: cosine_accuracy value: 85.9025 - type: cosine_accuracy_threshold value: 71.6078 - type: cosine_f1 value: 70.9832 - type: cosine_f1_threshold value: 66.4079 - type: cosine_precision value: 68.9871 - type: cosine_recall value: 73.0982 - type: cosine_ap value: 79.2622 - type: manhattan_accuracy value: 81.8954 - type: manhattan_accuracy_threshold value: 2754.9084000000003 - type: manhattan_f1 value: 58.4303 - type: manhattan_f1_threshold value: 3301.9608 - type: manhattan_precision value: 56.1511 - type: manhattan_recall value: 60.9024 - type: manhattan_ap value: 66.2046 - type: euclidean_accuracy value: 81.8974 - type: euclidean_accuracy_threshold value: 122.74810000000001 - type: euclidean_f1 value: 58.455 - type: euclidean_f1_threshold value: 151.3654 - type: euclidean_precision value: 55.0722 - type: euclidean_recall value: 62.2806 - type: euclidean_ap value: 66.22019999999999 - type: dot_accuracy value: 78.7402 - type: dot_accuracy_threshold value: 317.0264 - type: dot_f1 value: 58.2905 - type: dot_f1_threshold value: 187.0591 - type: dot_precision value: 48.1454 - type: dot_recall value: 73.8528 - type: dot_ap value: 58.116 - type: max_accuracy value: 85.9025 - type: max_f1 value: 70.9832 - type: max_precision value: 68.9871 - type: max_recall value: 73.8528 - type: max_ap value: 79.2622 - type: main_score value: 79.2622 task: type: PairClassification --- # 🧚🏻‍♀️ brown-fairy-base-v0 Model Card <div align="center"> <img width="50%" alt="Fairy logo" src="./assets/fairy_logo.png"> </div> > [!TIP] > Fairies are among the most enchanting and magical beings in folklore and mythology. They appear across countless cultures and stories, from ancient forests to modern gardens. They are celebrated for their ability to bridge the mundane and magical realms, known for their ethereal grace and transformative powers. Fairies are tiny, higher-dimensional beings that can interact with the world in ways that are beyond our understanding. The fairy series of models are an attempt to tune the beetle series of models to be more suitable for downstream tasks. These models are meant to fully open experiments at making state-of-the-art static embeddings. The brown-fairy-base-v0 model is a distillation of the `baai/bge-base-en-v1.5` model into the `brown-beetle-base-v0` model. There was no PCA or Zipf applied to this model. ## Installation Install model2vec using pip: ```bash pip install model2vec ``` ## Usage Load this model using the `from_pretrained` method: ```python from model2vec import StaticModel # Load a pretrained Model2Vec model model = StaticModel.from_pretrained("bhavnicksm/brown-fairy-base-v0") # Compute text embeddings embeddings = model.encode(["Example sentence"]) ``` Read more about the Model2Vec library [here](https://github.com/MinishLab/model2vec). ## Reproduce this model This model was trained on a subset of the 2 Million texts from the [FineWeb-Edu](https://huggingface.co/datasets/mixedbread-ai/fineweb-edu) dataset, which was labeled by the `baai/bge-base-en-v1.5` model. <details> <summary>Training Code</summary> Note: The datasets need to me made seperately and loaded with the `datasets` library. ```python static_embedding = StaticEmbedding.from_model2vec("bhavnicksm/brown-beetle-base-v0") model = SentenceTransformer( modules=[static_embedding] ) loss = MSELoss(model) run_name = "brown-fairy-base-v0" args = SentenceTransformerTrainingArguments( # Required parameter: output_dir=f"output/{run_name}", # Optional training parameters: num_train_epochs=1, per_device_train_batch_size=2048, per_device_eval_batch_size=2048, learning_rate=1e-1, warmup_ratio=0.1, fp16=False, # Set to False if you get an error that your GPU can't run on FP16 bf16=True, # Set to True if you have a GPU that supports BF16 batch_sampler=BatchSamplers.NO_DUPLICATES, # Optional tracking/debugging parameters: eval_strategy="steps", eval_steps=50, save_strategy="steps", save_steps=50, save_total_limit=5, logging_steps=50, logging_first_step=True, run_name=run_name, ) evaluator = NanoBEIREvaluator() evaluator(model) trainer = SentenceTransformerTrainer( model=model, args=args, train_dataset=train_dataset, eval_dataset=eval_dataset, loss=loss, evaluator=evaluator, ) trainer.train() evaluator(model) model.save_pretrained(f"output/{run_name}") ``` </details> ## Comparison with other models Coming soon... ## Acknowledgements This model is based on the [Model2Vec](https://github.com/MinishLab/model2vec) library. Credit goes to the [Minish Lab](https://github.com/MinishLab) team for developing this library. ## Citation This model builds on work done by Minish Lab. Please cite the [Model2Vec repository](https://github.com/MinishLab/model2vec) if you use this model in your work. ```bibtex @software{minishlab2024model2vec, authors = {Stephan Tulkens, Thomas van Dongen}, title = {Model2Vec: Turn any Sentence Transformer into a Small Fast Model}, year = {2024}, url = {https://github.com/MinishLab/model2vec}, } ```
AyoubChLin/Qwen2.5-Coder-3B_passet_classifer_1.2_16
AyoubChLin
2025-02-01T12:05:57Z
136
0
transformers
[ "transformers", "pytorch", "safetensors", "qwen2", "text-generation", "unsloth", "trl", "sft", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-12-29T10:05:30Z
--- library_name: transformers tags: - unsloth - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
aleegis12/87ec9b14-159b-4401-bed3-3261c3826d57
aleegis12
2025-02-01T12:03:12Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2-0.5B-Instruct", "base_model:adapter:unsloth/Qwen2-0.5B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-02-01T10:56:33Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2-0.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 87ec9b14-159b-4401-bed3-3261c3826d57 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2-0.5B-Instruct bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - 8752aff936d5c852_train_data.json ds_type: json format: custom path: /workspace/input_data/8752aff936d5c852_train_data.json type: field_instruction: prompt field_output: completion format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: aleegis12/87ec9b14-159b-4401-bed3-3261c3826d57 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/8752aff936d5c852_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 88425d2c-62ef-4adf-945e-6ac9fafdb1dd wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 88425d2c-62ef-4adf-945e-6ac9fafdb1dd warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 87ec9b14-159b-4401-bed3-3261c3826d57 This model is a fine-tuned version of [unsloth/Qwen2-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2-0.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2032 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.432 | 0.0000 | 1 | 3.0365 | | 3.2474 | 0.0022 | 50 | 2.8272 | | 3.3228 | 0.0043 | 100 | 2.5349 | | 3.7141 | 0.0065 | 150 | 2.2215 | | 3.4516 | 0.0086 | 200 | 2.2032 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
playboy40k/flux-AimeeGarciaLora
playboy40k
2025-02-01T12:02:54Z
353
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-02-01T12:01:49Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: '-' output: url: images/FLUX.1-dev.png base_model: black-forest-labs/FLUX.1-dev instance_prompt: null --- # Aimee Garcia Flux <Gallery /> ## Download model Weights for this model are available in Safetensors format. [Download](/playboy40k/flux-AimeeGarciaLora/tree/main) them in the Files & versions tab.
arcwarden46/5aa1da01-37e9-4fd6-a9aa-a45d823981e2
arcwarden46
2025-02-01T12:02:41Z
8
0
peft
[ "peft", "safetensors", "gpt_neox", "axolotl", "generated_from_trainer", "base_model:EleutherAI/pythia-1b", "base_model:adapter:EleutherAI/pythia-1b", "license:apache-2.0", "region:us" ]
null
2025-02-01T11:53:42Z
--- library_name: peft license: apache-2.0 base_model: EleutherAI/pythia-1b tags: - axolotl - generated_from_trainer model-index: - name: 5aa1da01-37e9-4fd6-a9aa-a45d823981e2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: EleutherAI/pythia-1b bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - a5d9c055a3c13355_train_data.json ds_type: json format: custom path: /workspace/input_data/a5d9c055a3c13355_train_data.json type: field_input: '' field_instruction: prompt field_output: text format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: arcwarden46/5aa1da01-37e9-4fd6-a9aa-a45d823981e2 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/a5d9c055a3c13355_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 special_tokens: pad_token: <|endoftext|> strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 779fc888-bb45-4742-b498-aa4f31c20392 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 779fc888-bb45-4742-b498-aa4f31c20392 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 5aa1da01-37e9-4fd6-a9aa-a45d823981e2 This model is a fine-tuned version of [EleutherAI/pythia-1b](https://huggingface.co/EleutherAI/pythia-1b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8081 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.895 | 0.0034 | 1 | 1.1800 | | 3.7661 | 0.1718 | 50 | 0.9115 | | 3.1993 | 0.3436 | 100 | 0.8494 | | 3.2199 | 0.5155 | 150 | 0.8173 | | 3.3063 | 0.6873 | 200 | 0.8081 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
auxyus/bf7d3ad7-281b-4e56-b4ae-05f8514af79e
auxyus
2025-02-01T12:02:04Z
8
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "custom_code", "base_model:NousResearch/Yarn-Mistral-7b-128k", "base_model:adapter:NousResearch/Yarn-Mistral-7b-128k", "license:apache-2.0", "region:us" ]
null
2025-02-01T10:20:54Z
--- library_name: peft license: apache-2.0 base_model: NousResearch/Yarn-Mistral-7b-128k tags: - axolotl - generated_from_trainer model-index: - name: bf7d3ad7-281b-4e56-b4ae-05f8514af79e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Yarn-Mistral-7b-128k bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 3fafaf8cf25404aa_train_data.json ds_type: json format: custom path: /workspace/input_data/3fafaf8cf25404aa_train_data.json type: field_input: context field_instruction: question field_output: answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: auxyus/bf7d3ad7-281b-4e56-b4ae-05f8514af79e hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/3fafaf8cf25404aa_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: 41d8118f-d704-40f9-b279-287f5d2979de wandb_project: Gradients-On-Two wandb_run: your_name wandb_runid: 41d8118f-d704-40f9-b279-287f5d2979de warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # bf7d3ad7-281b-4e56-b4ae-05f8514af79e This model is a fine-tuned version of [NousResearch/Yarn-Mistral-7b-128k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-128k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3164 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0007 | 1 | 0.4783 | | 1.5155 | 0.0061 | 9 | 0.3963 | | 1.4998 | 0.0122 | 18 | 0.3621 | | 1.4113 | 0.0183 | 27 | 0.3472 | | 1.3425 | 0.0243 | 36 | 0.3374 | | 1.3894 | 0.0304 | 45 | 0.3318 | | 1.3277 | 0.0365 | 54 | 0.3266 | | 1.3134 | 0.0426 | 63 | 0.3226 | | 1.2321 | 0.0487 | 72 | 0.3192 | | 1.2888 | 0.0548 | 81 | 0.3175 | | 1.2835 | 0.0609 | 90 | 0.3166 | | 1.2445 | 0.0670 | 99 | 0.3164 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mrHunghddddd/ed92a9aa-79f9-4d8c-b9bd-dde90f2405b5
mrHunghddddd
2025-02-01T11:56:35Z
7
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4", "base_model:adapter:MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4", "8-bit", "bitsandbytes", "region:us" ]
null
2025-02-01T11:02:25Z
--- library_name: peft base_model: MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4 tags: - axolotl - generated_from_trainer model-index: - name: ed92a9aa-79f9-4d8c-b9bd-dde90f2405b5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f206ba1093bd24a7_train_data.json ds_type: json format: custom path: /workspace/input_data/f206ba1093bd24a7_train_data.json type: field_input: input field_instruction: instruction field_output: original_instruction format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: mrHunghddddd/ed92a9aa-79f9-4d8c-b9bd-dde90f2405b5 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/f206ba1093bd24a7_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 1136fcf6-c30e-4d43-9aeb-2a86b219d103 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 1136fcf6-c30e-4d43-9aeb-2a86b219d103 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # ed92a9aa-79f9-4d8c-b9bd-dde90f2405b5 This model is a fine-tuned version of [MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4](https://huggingface.co/MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0013 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.001 | 0.0786 | 200 | 0.0013 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
n00b001/new-ms-rp-test-ws-Q4_K_M-GGUF
n00b001
2025-02-01T11:55:27Z
38
0
peft
[ "peft", "gguf", "axolotl", "generated_from_trainer", "llama-cpp", "gguf-my-repo", "dataset:ToastyPigeon/some-rp-extended", "base_model:ToastyPigeon/new-ms-rp-test-ws", "base_model:adapter:ToastyPigeon/new-ms-rp-test-ws", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-02-01T11:55:24Z
--- library_name: peft license: apache-2.0 base_model: ToastyPigeon/new-ms-rp-test-ws tags: - axolotl - generated_from_trainer - llama-cpp - gguf-my-repo datasets: - ToastyPigeon/some-rp-extended model-index: - name: new-ms-rp-test-ws results: [] --- # n00b001/new-ms-rp-test-ws-Q4_K_M-GGUF This model was converted to GGUF format from [`ToastyPigeon/new-ms-rp-test-ws`](https://huggingface.co/ToastyPigeon/new-ms-rp-test-ws) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/ToastyPigeon/new-ms-rp-test-ws) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo n00b001/new-ms-rp-test-ws-Q4_K_M-GGUF --hf-file new-ms-rp-test-ws-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo n00b001/new-ms-rp-test-ws-Q4_K_M-GGUF --hf-file new-ms-rp-test-ws-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo n00b001/new-ms-rp-test-ws-Q4_K_M-GGUF --hf-file new-ms-rp-test-ws-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo n00b001/new-ms-rp-test-ws-Q4_K_M-GGUF --hf-file new-ms-rp-test-ws-q4_k_m.gguf -c 2048 ```
p06pratibha/fine-tuned-opus-mt-en-fr
p06pratibha
2025-02-01T11:54:27Z
157
0
transformers
[ "transformers", "safetensors", "marian", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2025-01-25T10:41:57Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
arcwarden46/83574913-8be2-4e57-bc31-b1d81f4d9143
arcwarden46
2025-02-01T11:53:03Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-Math-1.5B-Instruct", "base_model:adapter:unsloth/Qwen2.5-Math-1.5B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-02-01T11:32:27Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-Math-1.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 83574913-8be2-4e57-bc31-b1d81f4d9143 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-Math-1.5B-Instruct bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 22587293b779bc55_train_data.json ds_type: json format: custom path: /workspace/input_data/22587293b779bc55_train_data.json type: field_input: content field_instruction: title field_output: summary format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: arcwarden46/83574913-8be2-4e57-bc31-b1d81f4d9143 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/22587293b779bc55_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 6863ca7d-dba1-4f20-86fd-f4e741cc8950 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 6863ca7d-dba1-4f20-86fd-f4e741cc8950 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 83574913-8be2-4e57-bc31-b1d81f4d9143 This model is a fine-tuned version of [unsloth/Qwen2.5-Math-1.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-Math-1.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3621 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.9796 | 0.0136 | 1 | 1.1896 | | 0.5994 | 0.6803 | 50 | 0.5325 | | 0.3914 | 1.3639 | 100 | 0.4064 | | 0.3981 | 2.0476 | 150 | 0.3672 | | 0.339 | 2.7279 | 200 | 0.3621 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
medmekk/Llama-3.2-1B-Instruct.GGUF
medmekk
2025-02-01T11:49:37Z
403
0
null
[ "gguf", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-02-01T11:48:12Z
# medmekk/Llama-3.2-1B-Instruct.GGUF GGUF quantized versions of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) ## Available Formats: - `Q2_K`: Llama-3.2-1B-Instruct-Q2_K.gguf - `Q3_K_S`: Llama-3.2-1B-Instruct-Q3_K_S.gguf - `Q3_K_M`: Llama-3.2-1B-Instruct-Q3_K_M.gguf - `Q3_K_L`: Llama-3.2-1B-Instruct-Q3_K_L.gguf - `Q4_0`: Llama-3.2-1B-Instruct-Q4_0.gguf - `Q4_K_S`: Llama-3.2-1B-Instruct-Q4_K_S.gguf - `Q4_K_M`: Llama-3.2-1B-Instruct-Q4_K_M.gguf - `Q5_0`: Llama-3.2-1B-Instruct-Q5_0.gguf - `Q5_K_S`: Llama-3.2-1B-Instruct-Q5_K_S.gguf - `Q5_K_M`: Llama-3.2-1B-Instruct-Q5_K_M.gguf - `Q6_K`: Llama-3.2-1B-Instruct-Q6_K.gguf - `Q8_0`: Llama-3.2-1B-Instruct-Q8_0.gguf - `IQ3_M_IMAT`: Llama-3.2-1B-Instruct-IQ3_M_imat.gguf - `IQ3_XXS_IMAT`: Llama-3.2-1B-Instruct-IQ3_XXS_imat.gguf - `Q4_K_M_IMAT`: Llama-3.2-1B-Instruct-Q4_K_M_imat.gguf - `Q4_K_S_IMAT`: Llama-3.2-1B-Instruct-Q4_K_S_imat.gguf - `IQ4_NL_IMAT`: Llama-3.2-1B-Instruct-IQ4_NL_imat.gguf - `IQ4_XS_IMAT`: Llama-3.2-1B-Instruct-IQ4_XS_imat.gguf - `Q5_K_M_IMAT`: Llama-3.2-1B-Instruct-Q5_K_M_imat.gguf - `Q5_K_S_IMAT`: Llama-3.2-1B-Instruct-Q5_K_S_imat.gguf ## Usage with llama.cpp: ```bash # CLI: llama-cli --hf-repo medmekk/Llama-3.2-1B-Instruct.GGUF --hf-file MODEL_FILE -p "Your prompt" # Server: llama-server --hf-repo medmekk/Llama-3.2-1B-Instruct.GGUF --hf-file MODEL_FILE -c 2048 ```
rikiwi/AbstractPainting
rikiwi
2025-02-01T11:48:25Z
22
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:bigscience-bloom-rail-1.0", "region:us" ]
text-to-image
2025-02-01T11:47:53Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: '-' output: url: images/1000003264.jpg base_model: black-forest-labs/FLUX.1-dev instance_prompt: null license: bigscience-bloom-rail-1.0 --- # Ave abstract painting <Gallery /> ## Download model Weights for this model are available in Safetensors format. [Download](/rikiwi/AbstractPainting/tree/main) them in the Files & versions tab.
dheerajdevai/medicalquestion-answer-gpt2
dheerajdevai
2025-02-01T11:48:21Z
13
0
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-01T11:47:49Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
alchemist69/e09f5bc8-136b-4f16-84bd-ce41d304532c
alchemist69
2025-02-01T11:46:36Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-Math-1.5B", "base_model:adapter:unsloth/Qwen2.5-Math-1.5B", "license:apache-2.0", "region:us" ]
null
2025-02-01T10:37:41Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-Math-1.5B tags: - axolotl - generated_from_trainer model-index: - name: e09f5bc8-136b-4f16-84bd-ce41d304532c results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-Math-1.5B bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 18e4b6ceb7ea22d7_train_data.json ds_type: json format: custom path: /workspace/input_data/18e4b6ceb7ea22d7_train_data.json type: field_instruction: source_text field_output: target_text format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: alchemist69/e09f5bc8-136b-4f16-84bd-ce41d304532c hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/18e4b6ceb7ea22d7_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 55d79518-633c-4140-bb9f-1e0392c95610 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 55d79518-633c-4140-bb9f-1e0392c95610 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # e09f5bc8-136b-4f16-84bd-ce41d304532c This model is a fine-tuned version of [unsloth/Qwen2.5-Math-1.5B](https://huggingface.co/unsloth/Qwen2.5-Math-1.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.1505 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 4.879 | 0.0001 | 1 | 6.4376 | | 5.5543 | 0.0036 | 50 | 4.9438 | | 4.694 | 0.0071 | 100 | 4.4399 | | 4.9229 | 0.0107 | 150 | 4.2068 | | 5.0547 | 0.0142 | 200 | 4.1505 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
bane5631/7044cb13-332f-4cb2-858c-26635c953ee3
bane5631
2025-02-01T11:43:46Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/Llama-3.2-3B", "base_model:adapter:unsloth/Llama-3.2-3B", "license:llama3.2", "8-bit", "bitsandbytes", "region:us" ]
null
2025-02-01T10:53:19Z
--- library_name: peft license: llama3.2 base_model: unsloth/Llama-3.2-3B tags: - axolotl - generated_from_trainer model-index: - name: 7044cb13-332f-4cb2-858c-26635c953ee3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Llama-3.2-3B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 941f453fb96e0898_train_data.json ds_type: json format: custom path: /workspace/input_data/941f453fb96e0898_train_data.json type: field_instruction: source_text field_output: target_text format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: null eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: bane5631/7044cb13-332f-4cb2-858c-26635c953ee3 hub_repo: null hub_strategy: end hub_token: null learning_rate: 0.0001 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 4 mlflow_experiment_name: /tmp/941f453fb96e0898_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null saves_per_epoch: null sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 5079f05e-7dbd-403e-b28e-14c8430c58eb wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 5079f05e-7dbd-403e-b28e-14c8430c58eb warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 7044cb13-332f-4cb2-858c-26635c953ee3 This model is a fine-tuned version of [unsloth/Llama-3.2-3B](https://huggingface.co/unsloth/Llama-3.2-3B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.3437 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.8257 | 0.0071 | 200 | 3.3437 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lucifer-ms/task-1-google-gemma-2b
lucifer-ms
2025-02-01T11:40:05Z
449
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:google/gemma-2b", "base_model:adapter:google/gemma-2b", "region:us" ]
null
2025-01-22T16:36:10Z
--- base_model: google/gemma-2b library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.13.2
nhung03/bbfdb9e1-eda4-408e-a554-0f2fb4a2e201
nhung03
2025-02-01T11:39:20Z
10
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4", "base_model:adapter:MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4", "8-bit", "bitsandbytes", "region:us" ]
null
2025-02-01T11:02:26Z
--- library_name: peft base_model: MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4 tags: - axolotl - generated_from_trainer model-index: - name: bbfdb9e1-eda4-408e-a554-0f2fb4a2e201 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f206ba1093bd24a7_train_data.json ds_type: json format: custom path: /workspace/input_data/f206ba1093bd24a7_train_data.json type: field_input: input field_instruction: instruction field_output: original_instruction format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nhung03/bbfdb9e1-eda4-408e-a554-0f2fb4a2e201 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/f206ba1093bd24a7_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 1136fcf6-c30e-4d43-9aeb-2a86b219d103 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 1136fcf6-c30e-4d43-9aeb-2a86b219d103 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # bbfdb9e1-eda4-408e-a554-0f2fb4a2e201 This model is a fine-tuned version of [MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4](https://huggingface.co/MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0014 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.001 | 0.0786 | 200 | 0.0014 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
hongngo/bd3d62cc-e5c3-4a57-8933-4c2389d6f37c
hongngo
2025-02-01T11:39:18Z
17
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4", "base_model:adapter:MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4", "8-bit", "bitsandbytes", "region:us" ]
null
2025-02-01T11:02:25Z
--- library_name: peft base_model: MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4 tags: - axolotl - generated_from_trainer model-index: - name: bd3d62cc-e5c3-4a57-8933-4c2389d6f37c results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f206ba1093bd24a7_train_data.json ds_type: json format: custom path: /workspace/input_data/f206ba1093bd24a7_train_data.json type: field_input: input field_instruction: instruction field_output: original_instruction format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: hongngo/bd3d62cc-e5c3-4a57-8933-4c2389d6f37c hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/f206ba1093bd24a7_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 1136fcf6-c30e-4d43-9aeb-2a86b219d103 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 1136fcf6-c30e-4d43-9aeb-2a86b219d103 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # bd3d62cc-e5c3-4a57-8933-4c2389d6f37c This model is a fine-tuned version of [MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4](https://huggingface.co/MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0013 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0008 | 0.0786 | 200 | 0.0013 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
thangla01/a9491cfd-4149-40fa-ac9b-fb70ebdd8a11
thangla01
2025-02-01T11:39:14Z
17
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4", "base_model:adapter:MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4", "8-bit", "bitsandbytes", "region:us" ]
null
2025-02-01T11:02:24Z
--- library_name: peft base_model: MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4 tags: - axolotl - generated_from_trainer model-index: - name: a9491cfd-4149-40fa-ac9b-fb70ebdd8a11 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f206ba1093bd24a7_train_data.json ds_type: json format: custom path: /workspace/input_data/f206ba1093bd24a7_train_data.json type: field_input: input field_instruction: instruction field_output: original_instruction format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: thangla01/a9491cfd-4149-40fa-ac9b-fb70ebdd8a11 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/f206ba1093bd24a7_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 1136fcf6-c30e-4d43-9aeb-2a86b219d103 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 1136fcf6-c30e-4d43-9aeb-2a86b219d103 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # a9491cfd-4149-40fa-ac9b-fb70ebdd8a11 This model is a fine-tuned version of [MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4](https://huggingface.co/MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0012 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0013 | 0.0786 | 200 | 0.0012 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
cunghoctienganh/08d67801-48e1-4e6b-becb-f19639ddc412
cunghoctienganh
2025-02-01T11:37:39Z
15
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4", "base_model:adapter:MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4", "8-bit", "bitsandbytes", "region:us" ]
null
2025-02-01T11:02:29Z
--- library_name: peft base_model: MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4 tags: - axolotl - generated_from_trainer model-index: - name: 08d67801-48e1-4e6b-becb-f19639ddc412 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f206ba1093bd24a7_train_data.json ds_type: json format: custom path: /workspace/input_data/f206ba1093bd24a7_train_data.json type: field_input: input field_instruction: instruction field_output: original_instruction format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: cunghoctienganh/08d67801-48e1-4e6b-becb-f19639ddc412 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/f206ba1093bd24a7_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 1136fcf6-c30e-4d43-9aeb-2a86b219d103 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 1136fcf6-c30e-4d43-9aeb-2a86b219d103 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 08d67801-48e1-4e6b-becb-f19639ddc412 This model is a fine-tuned version of [MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4](https://huggingface.co/MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0012 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0008 | 0.0786 | 200 | 0.0012 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
laquythang/426ea81c-54ee-4fda-9a46-6654be23326f
laquythang
2025-02-01T11:36:19Z
18
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4", "base_model:adapter:MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4", "8-bit", "bitsandbytes", "region:us" ]
null
2025-02-01T11:01:21Z
--- library_name: peft base_model: MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4 tags: - axolotl - generated_from_trainer model-index: - name: 426ea81c-54ee-4fda-9a46-6654be23326f results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f206ba1093bd24a7_train_data.json ds_type: json format: custom path: /workspace/input_data/f206ba1093bd24a7_train_data.json type: field_input: input field_instruction: instruction field_output: original_instruction format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: laquythang/426ea81c-54ee-4fda-9a46-6654be23326f hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/f206ba1093bd24a7_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 1136fcf6-c30e-4d43-9aeb-2a86b219d103 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 1136fcf6-c30e-4d43-9aeb-2a86b219d103 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 426ea81c-54ee-4fda-9a46-6654be23326f This model is a fine-tuned version of [MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4](https://huggingface.co/MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0013 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0009 | 0.0786 | 200 | 0.0013 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
botenius/b90ee90e-142b-4e27-8c64-c8d4f6e40abd
botenius
2025-02-01T11:34:02Z
8
0
peft
[ "peft", "safetensors", "gpt_neo", "axolotl", "generated_from_trainer", "base_model:EleutherAI/gpt-neo-125m", "base_model:adapter:EleutherAI/gpt-neo-125m", "license:mit", "8-bit", "bitsandbytes", "region:us" ]
null
2025-02-01T11:24:35Z
--- library_name: peft license: mit base_model: EleutherAI/gpt-neo-125m tags: - axolotl - generated_from_trainer model-index: - name: b90ee90e-142b-4e27-8c64-c8d4f6e40abd results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: EleutherAI/gpt-neo-125m bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - b1b8b2b04d77b5e9_train_data.json ds_type: json format: custom path: /workspace/input_data/b1b8b2b04d77b5e9_train_data.json type: field_instruction: prompt field_output: model_completion format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: null eval_batch_size: 2 eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: true hub_model_id: botenius/b90ee90e-142b-4e27-8c64-c8d4f6e40abd hub_repo: null hub_strategy: end hub_token: null learning_rate: 0.0001 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/b1b8b2b04d77b5e9_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null saves_per_epoch: null sequence_len: 1024 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: 7d09926f-711d-4cdd-b3f0-b3dd3266426e wandb_project: Gradients-On-13 wandb_run: your_name wandb_runid: 7d09926f-711d-4cdd-b3f0-b3dd3266426e warmup_steps: 5 weight_decay: 0.01 xformers_attention: null ``` </details><br> # b90ee90e-142b-4e27-8c64-c8d4f6e40abd This model is a fine-tuned version of [EleutherAI/gpt-neo-125m](https://huggingface.co/EleutherAI/gpt-neo-125m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6194 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 5.038 | 0.0138 | 200 | 1.6194 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
arcwarden46/e9ae35fc-91c5-4ade-a01b-c67f44ae291c
arcwarden46
2025-02-01T11:30:33Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2-0.5B-Instruct", "base_model:adapter:unsloth/Qwen2-0.5B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-02-01T10:24:10Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2-0.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: e9ae35fc-91c5-4ade-a01b-c67f44ae291c results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2-0.5B-Instruct bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 8752aff936d5c852_train_data.json ds_type: json format: custom path: /workspace/input_data/8752aff936d5c852_train_data.json type: field_instruction: prompt field_output: completion format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: arcwarden46/e9ae35fc-91c5-4ade-a01b-c67f44ae291c hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/8752aff936d5c852_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 88425d2c-62ef-4adf-945e-6ac9fafdb1dd wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 88425d2c-62ef-4adf-945e-6ac9fafdb1dd warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # e9ae35fc-91c5-4ade-a01b-c67f44ae291c This model is a fine-tuned version of [unsloth/Qwen2-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2-0.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2041 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.432 | 0.0000 | 1 | 3.0365 | | 3.2566 | 0.0022 | 50 | 2.8335 | | 3.3407 | 0.0043 | 100 | 2.5393 | | 3.7431 | 0.0065 | 150 | 2.2218 | | 3.4656 | 0.0086 | 200 | 2.2041 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
robiual-awal/37b83b48-1d77-4f88-bcce-00d376fafd88
robiual-awal
2025-02-01T11:30:00Z
9
0
peft
[ "peft", "safetensors", "gpt_neo", "axolotl", "generated_from_trainer", "base_model:EleutherAI/gpt-neo-125m", "base_model:adapter:EleutherAI/gpt-neo-125m", "license:mit", "region:us" ]
null
2025-02-01T11:24:22Z
--- library_name: peft license: mit base_model: EleutherAI/gpt-neo-125m tags: - axolotl - generated_from_trainer model-index: - name: 37b83b48-1d77-4f88-bcce-00d376fafd88 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: EleutherAI/gpt-neo-125m bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - b1b8b2b04d77b5e9_train_data.json ds_type: json format: custom path: /workspace/input_data/b1b8b2b04d77b5e9_train_data.json type: field_instruction: prompt field_output: model_completion format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: robiual-awal/37b83b48-1d77-4f88-bcce-00d376fafd88 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: constant max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/b1b8b2b04d77b5e9_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 7d09926f-711d-4cdd-b3f0-b3dd3266426e wandb_project: Birthday-SN56-29-Gradients-On-Demand wandb_run: your_name wandb_runid: 7d09926f-711d-4cdd-b3f0-b3dd3266426e warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 37b83b48-1d77-4f88-bcce-00d376fafd88 This model is a fine-tuned version of [EleutherAI/gpt-neo-125m](https://huggingface.co/EleutherAI/gpt-neo-125m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5508 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0001 | 1 | 1.9582 | | 6.2262 | 0.0034 | 50 | 1.6357 | | 6.5949 | 0.0069 | 100 | 1.5843 | | 6.4406 | 0.0103 | 150 | 1.5637 | | 6.6867 | 0.0138 | 200 | 1.5508 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
adammandic87/8b4c85c0-caa6-4736-9add-7877b36118b5
adammandic87
2025-02-01T11:28:25Z
8
0
peft
[ "peft", "safetensors", "gpt_neo", "axolotl", "generated_from_trainer", "base_model:EleutherAI/gpt-neo-125m", "base_model:adapter:EleutherAI/gpt-neo-125m", "license:mit", "region:us" ]
null
2025-02-01T11:22:42Z
--- library_name: peft license: mit base_model: EleutherAI/gpt-neo-125m tags: - axolotl - generated_from_trainer model-index: - name: 8b4c85c0-caa6-4736-9add-7877b36118b5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: EleutherAI/gpt-neo-125m bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - b1b8b2b04d77b5e9_train_data.json ds_type: json format: custom path: /workspace/input_data/b1b8b2b04d77b5e9_train_data.json type: field_instruction: prompt field_output: model_completion format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: adammandic87/8b4c85c0-caa6-4736-9add-7877b36118b5 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: constant max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/b1b8b2b04d77b5e9_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 7d09926f-711d-4cdd-b3f0-b3dd3266426e wandb_project: Birthday-SN56-34-Gradients-On-Demand wandb_run: your_name wandb_runid: 7d09926f-711d-4cdd-b3f0-b3dd3266426e warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 8b4c85c0-caa6-4736-9add-7877b36118b5 This model is a fine-tuned version of [EleutherAI/gpt-neo-125m](https://huggingface.co/EleutherAI/gpt-neo-125m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5499 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0001 | 1 | 1.9581 | | 6.2231 | 0.0034 | 50 | 1.6352 | | 6.5959 | 0.0069 | 100 | 1.5832 | | 6.4388 | 0.0103 | 150 | 1.5627 | | 6.6822 | 0.0138 | 200 | 1.5499 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
leixa/dcafe8ad-7d56-444b-a6d4-8362ff2367da
leixa
2025-02-01T11:26:43Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/Phi-3.5-mini-instruct", "base_model:adapter:unsloth/Phi-3.5-mini-instruct", "license:mit", "region:us" ]
null
2025-02-01T11:03:02Z
--- library_name: peft license: mit base_model: unsloth/Phi-3.5-mini-instruct tags: - axolotl - generated_from_trainer model-index: - name: dcafe8ad-7d56-444b-a6d4-8362ff2367da results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Phi-3.5-mini-instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 2fbab8c1a175ddba_train_data.json ds_type: json format: custom path: /workspace/input_data/2fbab8c1a175ddba_train_data.json type: field_input: dataset field_instruction: input field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: leixa/dcafe8ad-7d56-444b-a6d4-8362ff2367da hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/2fbab8c1a175ddba_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: 53b91699-f1c7-405a-883e-084d874dd816 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 53b91699-f1c7-405a-883e-084d874dd816 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # dcafe8ad-7d56-444b-a6d4-8362ff2367da This model is a fine-tuned version of [unsloth/Phi-3.5-mini-instruct](https://huggingface.co/unsloth/Phi-3.5-mini-instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 13.5129 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0046 | 1 | 13.5129 | | 13.5375 | 0.0413 | 9 | 13.5129 | | 13.0794 | 0.0826 | 18 | 13.5129 | | 13.6611 | 0.1239 | 27 | 13.5129 | | 13.6841 | 0.1651 | 36 | 13.5129 | | 13.1899 | 0.2064 | 45 | 13.5129 | | 13.6396 | 0.2477 | 54 | 13.5129 | | 13.7636 | 0.2890 | 63 | 13.5129 | | 13.704 | 0.3303 | 72 | 13.5129 | | 13.576 | 0.3716 | 81 | 13.5129 | | 14.2948 | 0.4128 | 90 | 13.5129 | | 13.9451 | 0.4541 | 99 | 13.5129 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
rikiwi/MiniFarms
rikiwi
2025-02-01T11:26:34Z
16
1
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:artistic-2.0", "region:us" ]
text-to-image
2025-02-01T11:26:23Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: '-' output: url: images/1000003299.png base_model: black-forest-labs/FLUX.1-dev instance_prompt: Farm license: artistic-2.0 --- # AvenersFarm <Gallery /> ## Trigger words You should use `Farm` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/rikiwi/MiniFarms/tree/main) them in the Files & versions tab.
roleplaiapp/L3.3-Nevoria-R1-70b-IQ3_M-GGUF
roleplaiapp
2025-02-01T11:26:11Z
12
0
transformers
[ "transformers", "gguf", "70b", "IQ3_M", "iq3", "l33", "llama-cpp", "nevoria", "text-generation", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
text-generation
2025-02-01T11:24:17Z
--- library_name: transformers pipeline_tag: text-generation tags: - 70b - IQ3_M - gguf - iq3 - l33 - llama-cpp - nevoria - text-generation --- # roleplaiapp/L3.3-Nevoria-R1-70b-IQ3_M-GGUF **Repo:** `roleplaiapp/L3.3-Nevoria-R1-70b-IQ3_M-GGUF` **Original Model:** `L3.3-Nevoria-R1-70b` **Quantized File:** `L3.3-Nevoria-R1-70b-IQ3_M.gguf` **Quantization:** `GGUF` **Quantization Method:** `IQ3_M` ## Overview This is a GGUF IQ3_M quantized version of L3.3-Nevoria-R1-70b ## Quantization By I often have idle GPUs while building/testing for the RP app, so I put them to use quantizing models. I hope the community finds these quantizations useful. Andrew Webby @ [RolePlai](https://roleplai.app/).
botenius/f943e548-286b-41d7-8270-db06d9b84c63
botenius
2025-02-01T11:21:20Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/Phi-3.5-mini-instruct", "base_model:adapter:unsloth/Phi-3.5-mini-instruct", "license:mit", "8-bit", "bitsandbytes", "region:us" ]
null
2025-02-01T11:03:39Z
--- library_name: peft license: mit base_model: unsloth/Phi-3.5-mini-instruct tags: - axolotl - generated_from_trainer model-index: - name: f943e548-286b-41d7-8270-db06d9b84c63 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Phi-3.5-mini-instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 2fbab8c1a175ddba_train_data.json ds_type: json format: custom path: /workspace/input_data/2fbab8c1a175ddba_train_data.json type: field_input: dataset field_instruction: input field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: null eval_batch_size: 2 eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: true hub_model_id: botenius/f943e548-286b-41d7-8270-db06d9b84c63 hub_repo: null hub_strategy: end hub_token: null learning_rate: 0.0001 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/2fbab8c1a175ddba_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null saves_per_epoch: null sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: 53b91699-f1c7-405a-883e-084d874dd816 wandb_project: Gradients-On-13 wandb_run: your_name wandb_runid: 53b91699-f1c7-405a-883e-084d874dd816 warmup_steps: 5 weight_decay: 0.01 xformers_attention: null ``` </details><br> # f943e548-286b-41d7-8270-db06d9b84c63 This model is a fine-tuned version of [unsloth/Phi-3.5-mini-instruct](https://huggingface.co/unsloth/Phi-3.5-mini-instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 13.1379 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 13.5608 | 0.2294 | 200 | 13.1379 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
StickyWorm/salamandra-2b-instruct-Q4_K_M-GGUF
StickyWorm
2025-02-01T11:20:35Z
32
0
transformers
[ "transformers", "gguf", "llama-cpp", "gguf-my-repo", "text-generation", "bg", "ca", "code", "cs", "cy", "da", "de", "el", "en", "es", "et", "eu", "fi", "fr", "ga", "gl", "hr", "hu", "it", "lt", "lv", "mt", "nl", "nn", "oc", "pl", "pt", "ro", "ru", "sh", "sk", "sl", "sr", "sv", "uk", "dataset:oscar-corpus/colossal-oscar-1.0", "dataset:HuggingFaceFW/fineweb-edu", "dataset:joelniklaus/eurlex_resources", "dataset:joelito/legal-mc4", "dataset:projecte-aina/CATalog", "dataset:UFRGS/brwac", "dataset:community-datasets/hrwac", "dataset:danish-foundation-models/danish-gigaword", "dataset:HiTZ/euscrawl", "dataset:PleIAs/French-PD-Newspapers", "dataset:PleIAs/French-PD-Books", "dataset:AI-team-UoA/greek_legal_code", "dataset:HiTZ/latxa-corpus-v1.1", "dataset:allenai/peS2o", "dataset:pile-of-law/pile-of-law", "dataset:PORTULAN/parlamento-pt", "dataset:hoskinson-center/proof-pile", "dataset:togethercomputer/RedPajama-Data-1T", "dataset:bigcode/starcoderdata", "dataset:bjoernp/tagesschau-2018-2023", "dataset:EleutherAI/the_pile_deduplicated", "base_model:BSC-LT/salamandra-2b-instruct", "base_model:quantized:BSC-LT/salamandra-2b-instruct", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-02-01T11:20:24Z
--- license: apache-2.0 library_name: transformers pipeline_tag: text-generation language: - bg - ca - code - cs - cy - da - de - el - en - es - et - eu - fi - fr - ga - gl - hr - hu - it - lt - lv - mt - nl - nn - \no - oc - pl - pt - ro - ru - sh - sk - sl - sr - sv - uk datasets: - oscar-corpus/colossal-oscar-1.0 - HuggingFaceFW/fineweb-edu - joelniklaus/eurlex_resources - joelito/legal-mc4 - projecte-aina/CATalog - UFRGS/brwac - community-datasets/hrwac - danish-foundation-models/danish-gigaword - HiTZ/euscrawl - PleIAs/French-PD-Newspapers - PleIAs/French-PD-Books - AI-team-UoA/greek_legal_code - HiTZ/latxa-corpus-v1.1 - allenai/peS2o - pile-of-law/pile-of-law - PORTULAN/parlamento-pt - hoskinson-center/proof-pile - togethercomputer/RedPajama-Data-1T - bigcode/starcoderdata - bjoernp/tagesschau-2018-2023 - EleutherAI/the_pile_deduplicated base_model: BSC-LT/salamandra-2b-instruct tags: - llama-cpp - gguf-my-repo --- # StickyWorm/salamandra-2b-instruct-Q4_K_M-GGUF This model was converted to GGUF format from [`BSC-LT/salamandra-2b-instruct`](https://huggingface.co/BSC-LT/salamandra-2b-instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/BSC-LT/salamandra-2b-instruct) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo StickyWorm/salamandra-2b-instruct-Q4_K_M-GGUF --hf-file salamandra-2b-instruct-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo StickyWorm/salamandra-2b-instruct-Q4_K_M-GGUF --hf-file salamandra-2b-instruct-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo StickyWorm/salamandra-2b-instruct-Q4_K_M-GGUF --hf-file salamandra-2b-instruct-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo StickyWorm/salamandra-2b-instruct-Q4_K_M-GGUF --hf-file salamandra-2b-instruct-q4_k_m.gguf -c 2048 ```
nttx/a86c724a-42ad-42ce-9135-5fba95c8c9b6
nttx
2025-02-01T11:20:09Z
17
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4", "base_model:adapter:MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4", "region:us" ]
null
2025-02-01T11:00:17Z
--- library_name: peft base_model: MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4 tags: - axolotl - generated_from_trainer model-index: - name: a86c724a-42ad-42ce-9135-5fba95c8c9b6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f206ba1093bd24a7_train_data.json ds_type: json format: custom path: /workspace/input_data/f206ba1093bd24a7_train_data.json type: field_input: input field_instruction: instruction field_output: original_instruction format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: null eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: nttx/a86c724a-42ad-42ce-9135-5fba95c8c9b6 hub_repo: null hub_strategy: end hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 4 mlflow_experiment_name: /tmp/f206ba1093bd24a7_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 1136fcf6-c30e-4d43-9aeb-2a86b219d103 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 1136fcf6-c30e-4d43-9aeb-2a86b219d103 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # a86c724a-42ad-42ce-9135-5fba95c8c9b6 This model is a fine-tuned version of [MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4](https://huggingface.co/MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0009 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0009 | 0.1572 | 200 | 0.0009 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
NikolayKozloff/Virtuoso-Small-v2-Q4_K_M-GGUF
NikolayKozloff
2025-02-01T11:18:42Z
9
1
transformers
[ "transformers", "gguf", "llama-cpp", "gguf-my-repo", "base_model:arcee-ai/Virtuoso-Small-v2", "base_model:quantized:arcee-ai/Virtuoso-Small-v2", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-02-01T11:18:03Z
--- base_model: arcee-ai/Virtuoso-Small-v2 library_name: transformers license: apache-2.0 tags: - llama-cpp - gguf-my-repo --- # NikolayKozloff/Virtuoso-Small-v2-Q4_K_M-GGUF This model was converted to GGUF format from [`arcee-ai/Virtuoso-Small-v2`](https://huggingface.co/arcee-ai/Virtuoso-Small-v2) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/arcee-ai/Virtuoso-Small-v2) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo NikolayKozloff/Virtuoso-Small-v2-Q4_K_M-GGUF --hf-file virtuoso-small-v2-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo NikolayKozloff/Virtuoso-Small-v2-Q4_K_M-GGUF --hf-file virtuoso-small-v2-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo NikolayKozloff/Virtuoso-Small-v2-Q4_K_M-GGUF --hf-file virtuoso-small-v2-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo NikolayKozloff/Virtuoso-Small-v2-Q4_K_M-GGUF --hf-file virtuoso-small-v2-q4_k_m.gguf -c 2048 ```
memevis/nano17
memevis
2025-02-01T11:17:56Z
35
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-01T11:12:40Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
pniedzwiedzinski/donut-demo-2
pniedzwiedzinski
2025-02-01T11:17:04Z
24
0
transformers
[ "transformers", "safetensors", "vision-encoder-decoder", "image-text-to-text", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-01-31T15:01:53Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
roleplaiapp/L3.3-Nevoria-R1-70b-Q5_K_M-GGUF
roleplaiapp
2025-02-01T11:16:51Z
24
0
transformers
[ "transformers", "gguf", "5-bit", "70b", "Q5_K_M", "l33", "llama-cpp", "nevoria", "text-generation", "endpoints_compatible", "region:us" ]
text-generation
2025-02-01T11:12:22Z
--- library_name: transformers pipeline_tag: text-generation tags: - 5-bit - 70b - Q5_K_M - gguf - l33 - llama-cpp - nevoria - text-generation --- # roleplaiapp/L3.3-Nevoria-R1-70b-Q5_K_M-GGUF **Repo:** `roleplaiapp/L3.3-Nevoria-R1-70b-Q5_K_M-GGUF` **Original Model:** `L3.3-Nevoria-R1-70b` **Quantized File:** `L3.3-Nevoria-R1-70b-Q5_K_M/L3.3-Nevoria-R1-70b-Q5_K_M-00001-of-00002.gguf` **Quantization:** `GGUF` **Quantization Method:** `Q5_K_M` ## Overview This is a GGUF Q5_K_M quantized version of L3.3-Nevoria-R1-70b ## Quantization By I often have idle GPUs while building/testing for the RP app, so I put them to use quantizing models. I hope the community finds these quantizations useful. Andrew Webby @ [RolePlai](https://roleplai.app/).
mrferr3t/a4a52d28-0413-4b0c-9d56-8ac3e3aef8d9
mrferr3t
2025-02-01T11:15:16Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/Llama-3.2-3B", "base_model:adapter:unsloth/Llama-3.2-3B", "license:llama3.2", "region:us" ]
null
2025-02-01T10:57:45Z
--- library_name: peft license: llama3.2 base_model: unsloth/Llama-3.2-3B tags: - axolotl - generated_from_trainer model-index: - name: a4a52d28-0413-4b0c-9d56-8ac3e3aef8d9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Llama-3.2-3B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 941f453fb96e0898_train_data.json ds_type: json format: custom path: /workspace/input_data/941f453fb96e0898_train_data.json type: field_instruction: source_text field_output: target_text format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_steps: 50 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: mrferr3t/a4a52d28-0413-4b0c-9d56-8ac3e3aef8d9 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0005 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 99 micro_batch_size: 2 mlflow_experiment_name: /tmp/941f453fb96e0898_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 300 saves_per_epoch: 0 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 5079f05e-7dbd-403e-b28e-14c8430c58eb wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 5079f05e-7dbd-403e-b28e-14c8430c58eb warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # a4a52d28-0413-4b0c-9d56-8ac3e3aef8d9 This model is a fine-tuned version of [unsloth/Llama-3.2-3B](https://huggingface.co/unsloth/Llama-3.2-3B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.4152 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 99 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.9962 | 0.0000 | 1 | 4.7231 | | 3.6592 | 0.0009 | 50 | 3.4152 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.3.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1
WUw0/7153482216-6
WUw0
2025-02-01T11:13:02Z
15
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-29T13:37:54Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: 7153482216-6 --- # 7153482216 6 <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `7153482216-6` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('WUw0/7153482216-6', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
rorito/perfecthandFlux
rorito
2025-02-01T11:12:44Z
17
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:apache-2.0", "region:us" ]
text-to-image
2025-02-01T11:12:32Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: "UNICODE\0\0<\0l\0o\0r\0a\0:\0H\0a\0n\0d\0 \0v\02\0:\01\0>\0" output: url: images/00061-3789446010.jpeg base_model: black-forest-labs/FLUX.1-dev instance_prompt: null license: apache-2.0 --- # fluxhand <Gallery /> ## Download model Weights for this model are available in Safetensors format. [Download](/rorito/perfecthandFlux/tree/main) them in the Files & versions tab.
Bhaveen/medimix-whisper-fine-tuned
Bhaveen
2025-02-01T11:12:11Z
54
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "en", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-02-01T10:05:57Z
--- library_name: transformers language: - en license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer metrics: - wer model-index: - name: Whisper Small En Medimix results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small En Medimix This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the cutsom_whatsapp_audio dataset. It achieves the following results on the evaluation set: - Loss: 0.5352 - Wer: 12.2137 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:--------:|:----:|:---------------:|:-------:| | 0.0004 | 66.6667 | 200 | 0.4815 | 11.8321 | | 0.0001 | 133.3333 | 400 | 0.5102 | 11.4504 | | 0.0001 | 200.0 | 600 | 0.5246 | 11.4504 | | 0.0001 | 266.6667 | 800 | 0.5323 | 12.2137 | | 0.0001 | 333.3333 | 1000 | 0.5352 | 12.2137 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Tokenizers 0.21.0
kk-aivio/ed6312f2-f0cb-4438-9c09-ff059d8f45e3
kk-aivio
2025-02-01T11:11:23Z
17
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4", "base_model:adapter:MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4", "region:us" ]
null
2025-02-01T11:02:27Z
--- library_name: peft base_model: MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4 tags: - axolotl - generated_from_trainer model-index: - name: ed6312f2-f0cb-4438-9c09-ff059d8f45e3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f206ba1093bd24a7_train_data.json ds_type: json format: custom path: /workspace/input_data/f206ba1093bd24a7_train_data.json type: field_input: input field_instruction: instruction field_output: original_instruction format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: kk-aivio/ed6312f2-f0cb-4438-9c09-ff059d8f45e3 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/f206ba1093bd24a7_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 1136fcf6-c30e-4d43-9aeb-2a86b219d103 wandb_project: Birthday-SN56-17-Gradients-On-Demand wandb_run: your_name wandb_runid: 1136fcf6-c30e-4d43-9aeb-2a86b219d103 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # ed6312f2-f0cb-4438-9c09-ff059d8f45e3 This model is a fine-tuned version of [MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4](https://huggingface.co/MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0004 | 1 | nan | | 0.657 | 0.0196 | 50 | nan | | 0.3429 | 0.0393 | 100 | nan | | 0.1382 | 0.0589 | 150 | nan | | 0.0 | 0.0786 | 200 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
NikolayKozloff/Virtuoso-Small-v2-Q5_K_S-GGUF
NikolayKozloff
2025-02-01T11:10:52Z
5
1
transformers
[ "transformers", "gguf", "llama-cpp", "gguf-my-repo", "base_model:arcee-ai/Virtuoso-Small-v2", "base_model:quantized:arcee-ai/Virtuoso-Small-v2", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-02-01T11:10:07Z
--- base_model: arcee-ai/Virtuoso-Small-v2 library_name: transformers license: apache-2.0 tags: - llama-cpp - gguf-my-repo --- # NikolayKozloff/Virtuoso-Small-v2-Q5_K_S-GGUF This model was converted to GGUF format from [`arcee-ai/Virtuoso-Small-v2`](https://huggingface.co/arcee-ai/Virtuoso-Small-v2) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/arcee-ai/Virtuoso-Small-v2) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo NikolayKozloff/Virtuoso-Small-v2-Q5_K_S-GGUF --hf-file virtuoso-small-v2-q5_k_s.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo NikolayKozloff/Virtuoso-Small-v2-Q5_K_S-GGUF --hf-file virtuoso-small-v2-q5_k_s.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo NikolayKozloff/Virtuoso-Small-v2-Q5_K_S-GGUF --hf-file virtuoso-small-v2-q5_k_s.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo NikolayKozloff/Virtuoso-Small-v2-Q5_K_S-GGUF --hf-file virtuoso-small-v2-q5_k_s.gguf -c 2048 ```
cimol/9ef14f69-ebd3-49de-998d-222171ffa8f3
cimol
2025-02-01T11:09:46Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:fxmarty/tiny-dummy-qwen2", "base_model:adapter:fxmarty/tiny-dummy-qwen2", "license:mit", "region:us" ]
null
2025-02-01T11:08:25Z
--- library_name: peft license: mit base_model: fxmarty/tiny-dummy-qwen2 tags: - axolotl - generated_from_trainer model-index: - name: 9ef14f69-ebd3-49de-998d-222171ffa8f3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: fxmarty/tiny-dummy-qwen2 bf16: true chat_template: llama3 data_processes: 24 dataset_prepared_path: null datasets: - data_files: - e40773c2e24ae20f_train_data.json ds_type: json format: custom path: /workspace/input_data/e40773c2e24ae20f_train_data.json type: field_instruction: inputs field_output: targets format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 4 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: cimol/9ef14f69-ebd3-49de-998d-222171ffa8f3 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 7.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.04 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine lr_scheduler_warmup_steps: 50 max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/e40773c2e24ae20f_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-8 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null seed: 17333 sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer total_train_batch_size: 32 train_batch_size: 8 train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: b989a2c7-32d0-4a72-b4fa-b25cde863b42 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: b989a2c7-32d0-4a72-b4fa-b25cde863b42 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 9ef14f69-ebd3-49de-998d-222171ffa8f3 This model is a fine-tuned version of [fxmarty/tiny-dummy-qwen2](https://huggingface.co/fxmarty/tiny-dummy-qwen2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 11.9156 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 17333 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-8 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 11.932 | 0.0071 | 1 | 11.9302 | | 11.9226 | 0.3571 | 50 | 11.9227 | | 11.8939 | 0.7143 | 100 | 11.9166 | | 11.923 | 1.0714 | 150 | 11.9159 | | 11.911 | 1.4286 | 200 | 11.9156 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
shibajustfor/5cef1f96-df62-4f3b-a177-ef66479c0100
shibajustfor
2025-02-01T11:09:28Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:fxmarty/tiny-dummy-qwen2", "base_model:adapter:fxmarty/tiny-dummy-qwen2", "license:mit", "region:us" ]
null
2025-02-01T11:09:03Z
--- library_name: peft license: mit base_model: fxmarty/tiny-dummy-qwen2 tags: - axolotl - generated_from_trainer model-index: - name: 5cef1f96-df62-4f3b-a177-ef66479c0100 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: fxmarty/tiny-dummy-qwen2 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - e40773c2e24ae20f_train_data.json ds_type: json format: custom path: /workspace/input_data/e40773c2e24ae20f_train_data.json type: field_instruction: inputs field_output: targets format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: shibajustfor/5cef1f96-df62-4f3b-a177-ef66479c0100 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: constant max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/e40773c2e24ae20f_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: b989a2c7-32d0-4a72-b4fa-b25cde863b42 wandb_project: Birthday-SN56-38-Gradients-On-Demand wandb_run: your_name wandb_runid: b989a2c7-32d0-4a72-b4fa-b25cde863b42 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 5cef1f96-df62-4f3b-a177-ef66479c0100 This model is a fine-tuned version of [fxmarty/tiny-dummy-qwen2](https://huggingface.co/fxmarty/tiny-dummy-qwen2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 11.9295 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - lr_scheduler_warmup_steps: 5 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0018 | 1 | 11.9301 | | 11.9322 | 0.0232 | 13 | 11.9299 | | 11.9307 | 0.0465 | 26 | 11.9297 | | 11.9294 | 0.0697 | 39 | 11.9295 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
dixedus/74eb2245-aef4-4d49-8125-f2c8086f2bba
dixedus
2025-02-01T11:09:20Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:fxmarty/tiny-dummy-qwen2", "base_model:adapter:fxmarty/tiny-dummy-qwen2", "license:mit", "region:us" ]
null
2025-02-01T11:08:20Z
--- library_name: peft license: mit base_model: fxmarty/tiny-dummy-qwen2 tags: - axolotl - generated_from_trainer model-index: - name: 74eb2245-aef4-4d49-8125-f2c8086f2bba results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: fxmarty/tiny-dummy-qwen2 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - e40773c2e24ae20f_train_data.json ds_type: json format: custom path: /workspace/input_data/e40773c2e24ae20f_train_data.json type: field_instruction: inputs field_output: targets format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: dixedus/74eb2245-aef4-4d49-8125-f2c8086f2bba hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/e40773c2e24ae20f_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: b989a2c7-32d0-4a72-b4fa-b25cde863b42 wandb_project: Gradients-On-Eight wandb_run: your_name wandb_runid: b989a2c7-32d0-4a72-b4fa-b25cde863b42 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 74eb2245-aef4-4d49-8125-f2c8086f2bba This model is a fine-tuned version of [fxmarty/tiny-dummy-qwen2](https://huggingface.co/fxmarty/tiny-dummy-qwen2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 11.9291 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0071 | 1 | 11.9306 | | 11.931 | 0.0643 | 9 | 11.9305 | | 11.9315 | 0.1286 | 18 | 11.9304 | | 11.9311 | 0.1929 | 27 | 11.9302 | | 11.9312 | 0.2571 | 36 | 11.9300 | | 11.9312 | 0.3214 | 45 | 11.9298 | | 11.9308 | 0.3857 | 54 | 11.9296 | | 11.9309 | 0.45 | 63 | 11.9294 | | 11.9295 | 0.5143 | 72 | 11.9292 | | 11.931 | 0.5786 | 81 | 11.9291 | | 11.9279 | 0.6429 | 90 | 11.9291 | | 11.9296 | 0.7071 | 99 | 11.9291 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso18/ac8661f4-79f3-45d1-9d6f-a66b0760303a
lesso18
2025-02-01T11:08:51Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:fxmarty/tiny-dummy-qwen2", "base_model:adapter:fxmarty/tiny-dummy-qwen2", "license:mit", "region:us" ]
null
2025-02-01T11:08:25Z
--- library_name: peft license: mit base_model: fxmarty/tiny-dummy-qwen2 tags: - axolotl - generated_from_trainer model-index: - name: ac8661f4-79f3-45d1-9d6f-a66b0760303a results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: fxmarty/tiny-dummy-qwen2 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - e40773c2e24ae20f_train_data.json ds_type: json format: custom path: /workspace/input_data/e40773c2e24ae20f_train_data.json type: field_instruction: inputs field_output: targets format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lesso18/ac8661f4-79f3-45d1-9d6f-a66b0760303a hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mixed_precision: bf16 mlflow_experiment_name: /tmp/e40773c2e24ae20f_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: b989a2c7-32d0-4a72-b4fa-b25cde863b42 wandb_project: new-01-29 wandb_run: your_name wandb_runid: b989a2c7-32d0-4a72-b4fa-b25cde863b42 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # ac8661f4-79f3-45d1-9d6f-a66b0760303a This model is a fine-tuned version of [fxmarty/tiny-dummy-qwen2](https://huggingface.co/fxmarty/tiny-dummy-qwen2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 11.9297 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 11.9306 | 0.3576 | 200 | 11.9297 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mrferr3t/7b78b240-d2d1-4884-b8a5-c6519790cf59
mrferr3t
2025-02-01T11:06:23Z
17
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4", "base_model:adapter:MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4", "region:us" ]
null
2025-02-01T11:01:54Z
--- library_name: peft base_model: MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4 tags: - axolotl - generated_from_trainer model-index: - name: 7b78b240-d2d1-4884-b8a5-c6519790cf59 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f206ba1093bd24a7_train_data.json ds_type: json format: custom path: /workspace/input_data/f206ba1093bd24a7_train_data.json type: field_input: input field_instruction: instruction field_output: original_instruction format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_steps: 50 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: mrferr3t/7b78b240-d2d1-4884-b8a5-c6519790cf59 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0005 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 99 micro_batch_size: 2 mlflow_experiment_name: /tmp/f206ba1093bd24a7_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 300 saves_per_epoch: 0 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 1136fcf6-c30e-4d43-9aeb-2a86b219d103 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 1136fcf6-c30e-4d43-9aeb-2a86b219d103 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 7b78b240-d2d1-4884-b8a5-c6519790cf59 This model is a fine-tuned version of [MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4](https://huggingface.co/MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0043 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 99 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.1254 | 0.0004 | 1 | 0.1242 | | 0.0064 | 0.0196 | 50 | 0.0043 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.3.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1
arunvinc/medicalqna-gpt2
arunvinc
2025-02-01T11:02:42Z
29
0
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-01T09:45:49Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
kalyankamarajugadda/gita-text-generation-gpt2
kalyankamarajugadda
2025-02-01T11:01:30Z
10
0
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-01T11:00:18Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
genki10/ASAP_FineTuningBERT_AugV6_k2_task1_organization_fold4
genki10
2025-02-01T10:58:02Z
9
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-02-01T10:34:16Z
--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer model-index: - name: ASAP_FineTuningBERT_AugV6_k2_task1_organization_fold4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ASAP_FineTuningBERT_AugV6_k2_task1_organization_fold4 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6804 - Qwk: 0.5021 - Mse: 0.6804 - Rmse: 0.8249 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:------:| | No log | 1.0 | 2 | 11.1209 | -0.0157 | 11.1209 | 3.3348 | | No log | 2.0 | 4 | 8.7746 | 0.0018 | 8.7746 | 2.9622 | | No log | 3.0 | 6 | 6.9364 | 0.0018 | 6.9364 | 2.6337 | | No log | 4.0 | 8 | 5.5324 | 0.0274 | 5.5324 | 2.3521 | | 6.6034 | 5.0 | 10 | 4.2492 | 0.0156 | 4.2492 | 2.0614 | | 6.6034 | 6.0 | 12 | 3.2808 | 0.0040 | 3.2808 | 1.8113 | | 6.6034 | 7.0 | 14 | 2.5080 | 0.0048 | 2.5080 | 1.5837 | | 6.6034 | 8.0 | 16 | 2.0068 | 0.0482 | 2.0068 | 1.4166 | | 6.6034 | 9.0 | 18 | 1.6132 | 0.0420 | 1.6132 | 1.2701 | | 2.5428 | 10.0 | 20 | 1.3131 | 0.0212 | 1.3131 | 1.1459 | | 2.5428 | 11.0 | 22 | 1.1359 | 0.0316 | 1.1359 | 1.0658 | | 2.5428 | 12.0 | 24 | 1.3030 | 0.0771 | 1.3030 | 1.1415 | | 2.5428 | 13.0 | 26 | 1.2342 | 0.0855 | 1.2342 | 1.1110 | | 2.5428 | 14.0 | 28 | 0.9099 | 0.0600 | 0.9099 | 0.9539 | | 1.8254 | 15.0 | 30 | 0.9973 | 0.1133 | 0.9973 | 0.9986 | | 1.8254 | 16.0 | 32 | 0.9950 | 0.2223 | 0.9950 | 0.9975 | | 1.8254 | 17.0 | 34 | 0.7981 | 0.4332 | 0.7981 | 0.8933 | | 1.8254 | 18.0 | 36 | 0.6714 | 0.5183 | 0.6714 | 0.8194 | | 1.8254 | 19.0 | 38 | 0.7042 | 0.4804 | 0.7042 | 0.8392 | | 1.3223 | 20.0 | 40 | 0.6472 | 0.5065 | 0.6472 | 0.8045 | | 1.3223 | 21.0 | 42 | 0.6011 | 0.4998 | 0.6011 | 0.7753 | | 1.3223 | 22.0 | 44 | 0.5965 | 0.4949 | 0.5965 | 0.7723 | | 1.3223 | 23.0 | 46 | 0.5990 | 0.4922 | 0.5990 | 0.7739 | | 1.3223 | 24.0 | 48 | 0.5436 | 0.5149 | 0.5436 | 0.7373 | | 0.6976 | 25.0 | 50 | 0.7030 | 0.4948 | 0.7030 | 0.8385 | | 0.6976 | 26.0 | 52 | 0.6425 | 0.4953 | 0.6425 | 0.8016 | | 0.6976 | 27.0 | 54 | 0.6427 | 0.4759 | 0.6427 | 0.8017 | | 0.6976 | 28.0 | 56 | 0.7482 | 0.4521 | 0.7482 | 0.8650 | | 0.6976 | 29.0 | 58 | 0.6907 | 0.5331 | 0.6907 | 0.8311 | | 0.3639 | 30.0 | 60 | 0.6864 | 0.5512 | 0.6864 | 0.8285 | | 0.3639 | 31.0 | 62 | 0.8570 | 0.4641 | 0.8570 | 0.9257 | | 0.3639 | 32.0 | 64 | 0.6410 | 0.5539 | 0.6410 | 0.8006 | | 0.3639 | 33.0 | 66 | 0.6630 | 0.5442 | 0.6630 | 0.8143 | | 0.3639 | 34.0 | 68 | 0.7999 | 0.4648 | 0.7999 | 0.8943 | | 0.2713 | 35.0 | 70 | 0.7183 | 0.4937 | 0.7183 | 0.8475 | | 0.2713 | 36.0 | 72 | 0.7293 | 0.4991 | 0.7293 | 0.8540 | | 0.2713 | 37.0 | 74 | 0.8183 | 0.4629 | 0.8183 | 0.9046 | | 0.2713 | 38.0 | 76 | 0.6861 | 0.5125 | 0.6861 | 0.8283 | | 0.2713 | 39.0 | 78 | 0.6470 | 0.5371 | 0.6470 | 0.8044 | | 0.1705 | 40.0 | 80 | 0.7218 | 0.5471 | 0.7218 | 0.8496 | | 0.1705 | 41.0 | 82 | 0.6592 | 0.5299 | 0.6592 | 0.8119 | | 0.1705 | 42.0 | 84 | 0.7195 | 0.4795 | 0.7195 | 0.8483 | | 0.1705 | 43.0 | 86 | 0.8045 | 0.4526 | 0.8045 | 0.8970 | | 0.1705 | 44.0 | 88 | 0.7435 | 0.4670 | 0.7435 | 0.8623 | | 0.1643 | 45.0 | 90 | 0.7635 | 0.5157 | 0.7635 | 0.8738 | | 0.1643 | 46.0 | 92 | 0.6574 | 0.5198 | 0.6574 | 0.8108 | | 0.1643 | 47.0 | 94 | 0.7274 | 0.5531 | 0.7274 | 0.8529 | | 0.1643 | 48.0 | 96 | 0.6681 | 0.5602 | 0.6681 | 0.8174 | | 0.1643 | 49.0 | 98 | 0.6613 | 0.5276 | 0.6613 | 0.8132 | | 0.165 | 50.0 | 100 | 0.6779 | 0.5002 | 0.6779 | 0.8234 | | 0.165 | 51.0 | 102 | 0.6650 | 0.5086 | 0.6650 | 0.8155 | | 0.165 | 52.0 | 104 | 0.6254 | 0.5311 | 0.6254 | 0.7908 | | 0.165 | 53.0 | 106 | 0.6492 | 0.5679 | 0.6492 | 0.8057 | | 0.165 | 54.0 | 108 | 0.6459 | 0.5476 | 0.6459 | 0.8037 | | 0.1146 | 55.0 | 110 | 0.6640 | 0.5016 | 0.6640 | 0.8149 | | 0.1146 | 56.0 | 112 | 0.6997 | 0.4750 | 0.6997 | 0.8365 | | 0.1146 | 57.0 | 114 | 0.7033 | 0.4754 | 0.7033 | 0.8386 | | 0.1146 | 58.0 | 116 | 0.7129 | 0.4819 | 0.7129 | 0.8443 | | 0.1146 | 59.0 | 118 | 0.6873 | 0.4774 | 0.6873 | 0.8290 | | 0.0861 | 60.0 | 120 | 0.6961 | 0.5109 | 0.6961 | 0.8343 | | 0.0861 | 61.0 | 122 | 0.6808 | 0.5319 | 0.6808 | 0.8251 | | 0.0861 | 62.0 | 124 | 0.6856 | 0.5110 | 0.6856 | 0.8280 | | 0.0861 | 63.0 | 126 | 0.6850 | 0.5130 | 0.6850 | 0.8277 | | 0.0861 | 64.0 | 128 | 0.6803 | 0.5179 | 0.6803 | 0.8248 | | 0.0785 | 65.0 | 130 | 0.6657 | 0.5129 | 0.6657 | 0.8159 | | 0.0785 | 66.0 | 132 | 0.6568 | 0.5309 | 0.6568 | 0.8105 | | 0.0785 | 67.0 | 134 | 0.6509 | 0.5216 | 0.6509 | 0.8068 | | 0.0785 | 68.0 | 136 | 0.6608 | 0.5250 | 0.6608 | 0.8129 | | 0.0785 | 69.0 | 138 | 0.6653 | 0.5107 | 0.6653 | 0.8157 | | 0.0731 | 70.0 | 140 | 0.6596 | 0.5168 | 0.6596 | 0.8121 | | 0.0731 | 71.0 | 142 | 0.6484 | 0.5240 | 0.6484 | 0.8053 | | 0.0731 | 72.0 | 144 | 0.6503 | 0.5401 | 0.6503 | 0.8064 | | 0.0731 | 73.0 | 146 | 0.6622 | 0.5133 | 0.6622 | 0.8137 | | 0.0731 | 74.0 | 148 | 0.6903 | 0.5059 | 0.6903 | 0.8308 | | 0.0682 | 75.0 | 150 | 0.6977 | 0.4960 | 0.6977 | 0.8353 | | 0.0682 | 76.0 | 152 | 0.6871 | 0.4985 | 0.6871 | 0.8289 | | 0.0682 | 77.0 | 154 | 0.6751 | 0.5075 | 0.6751 | 0.8216 | | 0.0682 | 78.0 | 156 | 0.6674 | 0.5051 | 0.6674 | 0.8170 | | 0.0682 | 79.0 | 158 | 0.6755 | 0.5081 | 0.6755 | 0.8219 | | 0.0669 | 80.0 | 160 | 0.6913 | 0.5010 | 0.6913 | 0.8314 | | 0.0669 | 81.0 | 162 | 0.6989 | 0.4971 | 0.6989 | 0.8360 | | 0.0669 | 82.0 | 164 | 0.6937 | 0.5027 | 0.6937 | 0.8329 | | 0.0669 | 83.0 | 166 | 0.6865 | 0.5006 | 0.6865 | 0.8285 | | 0.0669 | 84.0 | 168 | 0.6706 | 0.5135 | 0.6706 | 0.8189 | | 0.0652 | 85.0 | 170 | 0.6746 | 0.5186 | 0.6746 | 0.8213 | | 0.0652 | 86.0 | 172 | 0.7008 | 0.5125 | 0.7008 | 0.8371 | | 0.0652 | 87.0 | 174 | 0.7165 | 0.4873 | 0.7165 | 0.8464 | | 0.0652 | 88.0 | 176 | 0.7140 | 0.4873 | 0.7140 | 0.8450 | | 0.0652 | 89.0 | 178 | 0.7087 | 0.4841 | 0.7087 | 0.8418 | | 0.068 | 90.0 | 180 | 0.6997 | 0.5012 | 0.6997 | 0.8365 | | 0.068 | 91.0 | 182 | 0.6954 | 0.4941 | 0.6954 | 0.8339 | | 0.068 | 92.0 | 184 | 0.6945 | 0.4998 | 0.6945 | 0.8334 | | 0.068 | 93.0 | 186 | 0.6864 | 0.4993 | 0.6864 | 0.8285 | | 0.068 | 94.0 | 188 | 0.6816 | 0.5024 | 0.6816 | 0.8256 | | 0.0606 | 95.0 | 190 | 0.6798 | 0.5045 | 0.6798 | 0.8245 | | 0.0606 | 96.0 | 192 | 0.6796 | 0.5014 | 0.6796 | 0.8244 | | 0.0606 | 97.0 | 194 | 0.6798 | 0.5001 | 0.6798 | 0.8245 | | 0.0606 | 98.0 | 196 | 0.6800 | 0.5021 | 0.6800 | 0.8246 | | 0.0606 | 99.0 | 198 | 0.6802 | 0.5021 | 0.6802 | 0.8248 | | 0.0613 | 100.0 | 200 | 0.6804 | 0.5021 | 0.6804 | 0.8249 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.2.0 - Tokenizers 0.19.1
memevis/nano15
memevis
2025-02-01T10:57:33Z
47
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-01T10:52:40Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
XeTute/AURORA-V1-1.1B-GGUF
XeTute
2025-02-01T10:51:24Z
6
4
GGUF
[ "GGUF", "gguf", "conversational", "chat", "roleplay", "text-generation", "en", "es", "dataset:XeTute/Small-Medium-Conversation-Multilingual", "dataset:XeTute/Conversational-Small", "base_model:TinyLlama/TinyLlama-1.1B-intermediate-step-715k-1.5T", "base_model:quantized:TinyLlama/TinyLlama-1.1B-intermediate-step-715k-1.5T", "license:mit", "endpoints_compatible", "region:us" ]
text-generation
2024-05-20T11:04:22Z
--- license: mit license_name: xt-aurora-license license_link: LICENSE language: - en - es tags: - conversational - chat - roleplay library_name: GGUF pipeline_tag: text-generation base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-715k-1.5T datasets: - XeTute/Small-Medium-Conversation-Multilingual - XeTute/Conversational-Small --- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65ca8c3c5495933ab066c33c/Ia7u4TaXQC08S9dctEGyG.png) **Note**<br> With the release of Meta's LLaMA 3.2 1B, this model got outperformed significantly. Since we don't have a lot of GPU power or money to furter train this or another model to even come close to Meta's models, we recommend you to use theirs over ours. We, XeTute, introduce AURORA V1.0 - a humerous, efficient, smart(for its size) and mostly unbiased(consider it a virtual child with a bunch of knowledge =), biases were largely removed after training through some easy techniques) Language Model. **Intended usecases:** - Next-Word prediction for mobile devices: - - This Model can be reliably packaged into a keyboard-app to help make Next-Word suggestions more accurate (for performance, INT4 or less might be smart) - Conversations: - - AURORA can engage in conversations using the Vicuna format, remember to replace "ASSISTANT" with "AURORA" though. - - AURORA can engage in SFW roleplay with simple character definitions. It wasn't trained on NSFW. - - AURORA can engage in simple, short Q&A. It was trained on factual data too, which means it performs well for its size. **Training:** - Trained for two months. - Dataset created by XeTute, and translated using different free-lancing services. - Dataset included: - - Mathematic Q&A - - Logic Q&A - - One-Page stories and roleplays with very brief character definitions - ADAM as an optimizer. Alltogether, the model was trained on additional 20B tokens. <a href='https://ko-fi.com/C0C2ZXNON' target='_blank'><img height='36' style='border:0px;height:36px;' src='https://storage.ko-fi.com/cdn/kofi3.png?v=3' border='0' alt='Buy Me a Coffee at ko-fi.com' /></a> Note: - All previous beta versions of this series of SLMs were deleted, because almost no downloads were made. - V1.0 is the last model in this series which will be published, because of too little community activity. Recommended settings: - Temperature 0.1 - 0.4 is stable. - Context Length of 2048(base) to 4096(RoPE) will work well for story-telling, role-playing and simple conversations. - Output Length: 256 will work very stable, but you can extent to 512. Anything beyond that point is risky, text might become repetitous. - A system prompt which works well can be found at "Files at Versions" => "chat_template". Just copy and paste this into the system prompt or add it before your first message. - Chat Format: ```For roleplay: {name of your roleplay}: {input} {name of AURORA's character}: {output} ``` or, ```For normal chatting: USER: {input} AURORA: {output} ``` Chat examples using KoboldCPP and the settings recommended above: ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65ca8c3c5495933ab066c33c/s1k8oj7yTcawUCciFBGXx.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65ca8c3c5495933ab066c33c/gV3Ra6IHVyVvBgKOJSZla.png) Note, a roleplay where you directly pass character definitions and a starting scenario will work way better, this is just an example. We wish you a friendly chat with AURORA.
Kuongan/cs221-xlnet-large-cased-eng-pt
Kuongan
2025-02-01T10:51:05Z
15
0
transformers
[ "transformers", "safetensors", "xlnet", "text-classification", "generated_from_trainer", "base_model:xlnet/xlnet-large-cased", "base_model:finetune:xlnet/xlnet-large-cased", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-02-01T10:07:38Z
--- library_name: transformers license: mit base_model: xlnet/xlnet-large-cased tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: cs221-xlnet-large-cased-eng-pt results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # cs221-xlnet-large-cased-eng-pt This model is a fine-tuned version of [xlnet/xlnet-large-cased](https://huggingface.co/xlnet/xlnet-large-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5460 - F1: 0.7566 - Roc Auc: 0.8089 - Accuracy: 0.4828 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.5889 | 1.0 | 87 | 0.5873 | 0.1408 | 0.5 | 0.1207 | | 0.4707 | 2.0 | 174 | 0.4159 | 0.6512 | 0.7304 | 0.3966 | | 0.3648 | 3.0 | 261 | 0.3671 | 0.6550 | 0.7572 | 0.4483 | | 0.2675 | 4.0 | 348 | 0.3692 | 0.7085 | 0.7779 | 0.4397 | | 0.1929 | 5.0 | 435 | 0.3821 | 0.7077 | 0.7781 | 0.4483 | | 0.1407 | 6.0 | 522 | 0.4573 | 0.7087 | 0.7753 | 0.4224 | | 0.097 | 7.0 | 609 | 0.4498 | 0.7392 | 0.8005 | 0.4569 | | 0.0603 | 8.0 | 696 | 0.4655 | 0.7396 | 0.8002 | 0.4483 | | 0.0455 | 9.0 | 783 | 0.4833 | 0.7472 | 0.8075 | 0.4483 | | 0.0277 | 10.0 | 870 | 0.5366 | 0.7338 | 0.7972 | 0.4655 | | 0.0254 | 11.0 | 957 | 0.5452 | 0.7429 | 0.8051 | 0.4569 | | 0.0138 | 12.0 | 1044 | 0.5668 | 0.7460 | 0.8062 | 0.4655 | | 0.0128 | 13.0 | 1131 | 0.5460 | 0.7566 | 0.8089 | 0.4828 | | 0.0072 | 14.0 | 1218 | 0.5875 | 0.7551 | 0.8117 | 0.4828 | | 0.0058 | 15.0 | 1305 | 0.6071 | 0.7474 | 0.8038 | 0.4655 | | 0.0064 | 16.0 | 1392 | 0.5952 | 0.7531 | 0.8120 | 0.4828 | | 0.005 | 17.0 | 1479 | 0.5976 | 0.7468 | 0.8041 | 0.4655 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0
prxy5604/1f6c9228-30d8-4992-981d-44f405654a1e
prxy5604
2025-02-01T10:48:19Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-Math-1.5B-Instruct", "base_model:adapter:unsloth/Qwen2.5-Math-1.5B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-02-01T10:27:49Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-Math-1.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 1f6c9228-30d8-4992-981d-44f405654a1e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-Math-1.5B-Instruct bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 22587293b779bc55_train_data.json ds_type: json format: custom path: /workspace/input_data/22587293b779bc55_train_data.json type: field_input: content field_instruction: title field_output: summary format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: prxy5604/1f6c9228-30d8-4992-981d-44f405654a1e hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/22587293b779bc55_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 6863ca7d-dba1-4f20-86fd-f4e741cc8950 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 6863ca7d-dba1-4f20-86fd-f4e741cc8950 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 1f6c9228-30d8-4992-981d-44f405654a1e This model is a fine-tuned version of [unsloth/Qwen2.5-Math-1.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-Math-1.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3629 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.9796 | 0.0136 | 1 | 1.1896 | | 0.5988 | 0.6803 | 50 | 0.5322 | | 0.3908 | 1.3639 | 100 | 0.4067 | | 0.3988 | 2.0476 | 150 | 0.3676 | | 0.341 | 2.7279 | 200 | 0.3629 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Kuongan/cs221-roberta-large-eng-pt
Kuongan
2025-02-01T10:48:01Z
16
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/roberta-large", "base_model:finetune:FacebookAI/roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-02-01T10:09:50Z
--- library_name: transformers license: mit base_model: FacebookAI/roberta-large tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: cs221-roberta-large-eng-pt results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # cs221-roberta-large-eng-pt This model is a fine-tuned version of [FacebookAI/roberta-large](https://huggingface.co/FacebookAI/roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5690 - F1: 0.7598 - Roc Auc: 0.8118 - Accuracy: 0.5086 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.3966 | 1.0 | 173 | 0.3720 | 0.6785 | 0.7508 | 0.4224 | | 0.3263 | 2.0 | 346 | 0.3824 | 0.7098 | 0.7742 | 0.4052 | | 0.2298 | 3.0 | 519 | 0.3525 | 0.7210 | 0.7832 | 0.4569 | | 0.1699 | 4.0 | 692 | 0.3996 | 0.6968 | 0.7673 | 0.4224 | | 0.115 | 5.0 | 865 | 0.4215 | 0.7371 | 0.8025 | 0.4655 | | 0.0622 | 6.0 | 1038 | 0.4543 | 0.7425 | 0.8002 | 0.4741 | | 0.0609 | 7.0 | 1211 | 0.4787 | 0.7399 | 0.8028 | 0.4741 | | 0.0344 | 8.0 | 1384 | 0.5559 | 0.7326 | 0.7927 | 0.4914 | | 0.0205 | 9.0 | 1557 | 0.5545 | 0.7486 | 0.8052 | 0.4828 | | 0.0153 | 10.0 | 1730 | 0.5612 | 0.7528 | 0.8131 | 0.4914 | | 0.0082 | 11.0 | 1903 | 0.5690 | 0.7598 | 0.8118 | 0.5086 | | 0.0038 | 12.0 | 2076 | 0.6239 | 0.7358 | 0.7974 | 0.4655 | | 0.0047 | 13.0 | 2249 | 0.6296 | 0.7567 | 0.8072 | 0.5086 | | 0.0025 | 14.0 | 2422 | 0.6246 | 0.7448 | 0.8028 | 0.5 | | 0.0018 | 15.0 | 2595 | 0.6347 | 0.7403 | 0.8000 | 0.4828 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0
botenius/403c3ca2-b32d-44e2-97b9-9435f55d3c2a
botenius
2025-02-01T10:45:24Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM-360M-Instruct", "base_model:adapter:unsloth/SmolLM-360M-Instruct", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-02-01T10:35:29Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM-360M-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 403c3ca2-b32d-44e2-97b9-9435f55d3c2a results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM-360M-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 9b6a7ed78887b72a_train_data.json ds_type: json format: custom path: /workspace/input_data/9b6a7ed78887b72a_train_data.json type: field_instruction: problem field_output: solution format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: null eval_batch_size: 2 eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: true hub_model_id: botenius/403c3ca2-b32d-44e2-97b9-9435f55d3c2a hub_repo: null hub_strategy: end hub_token: null learning_rate: 0.0001 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/9b6a7ed78887b72a_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null saves_per_epoch: null sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: f3a95ab3-eeb4-4c4e-bb7c-1b3bd0a29c18 wandb_project: Gradients-On-13 wandb_run: your_name wandb_runid: f3a95ab3-eeb4-4c4e-bb7c-1b3bd0a29c18 warmup_steps: 5 weight_decay: 0.01 xformers_attention: null ``` </details><br> # 403c3ca2-b32d-44e2-97b9-9435f55d3c2a This model is a fine-tuned version of [unsloth/SmolLM-360M-Instruct](https://huggingface.co/unsloth/SmolLM-360M-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1467 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.1705 | 0.1369 | 200 | 1.1467 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
roleplaiapp/L3.3-Nevoria-R1-70b-Q8_0-GGUF
roleplaiapp
2025-02-01T10:45:23Z
29
0
transformers
[ "transformers", "gguf", "70b", "8-bit", "Q8_0", "l33", "llama-cpp", "nevoria", "text-generation", "endpoints_compatible", "region:us" ]
text-generation
2025-02-01T10:41:39Z
--- library_name: transformers pipeline_tag: text-generation tags: - 70b - 8-bit - Q8_0 - gguf - l33 - llama-cpp - nevoria - text-generation --- # roleplaiapp/L3.3-Nevoria-R1-70b-Q8_0-GGUF **Repo:** `roleplaiapp/L3.3-Nevoria-R1-70b-Q8_0-GGUF` **Original Model:** `L3.3-Nevoria-R1-70b` **Quantized File:** `L3.3-Nevoria-R1-70b-Q8_0/L3.3-Nevoria-R1-70b-Q8_0-00001-of-00002.gguf` **Quantization:** `GGUF` **Quantization Method:** `Q8_0` ## Overview This is a GGUF Q8_0 quantized version of L3.3-Nevoria-R1-70b ## Quantization By I often have idle GPUs while building/testing for the RP app, so I put them to use quantizing models. I hope the community finds these quantizations useful. Andrew Webby @ [RolePlai](https://roleplai.app/).
brew35/4845b9c0-e250-46ad-8be5-279c0c4793a0
brew35
2025-02-01T10:45:06Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM-360M-Instruct", "base_model:adapter:unsloth/SmolLM-360M-Instruct", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-02-01T10:35:35Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM-360M-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 4845b9c0-e250-46ad-8be5-279c0c4793a0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM-360M-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 9b6a7ed78887b72a_train_data.json ds_type: json format: custom path: /workspace/input_data/9b6a7ed78887b72a_train_data.json type: field_instruction: problem field_output: solution format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: null eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: brew35/4845b9c0-e250-46ad-8be5-279c0c4793a0 hub_repo: null hub_strategy: end hub_token: null learning_rate: 0.0001 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 4 mlflow_experiment_name: /tmp/9b6a7ed78887b72a_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null saves_per_epoch: null sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: f3a95ab3-eeb4-4c4e-bb7c-1b3bd0a29c18 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: f3a95ab3-eeb4-4c4e-bb7c-1b3bd0a29c18 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 4845b9c0-e250-46ad-8be5-279c0c4793a0 This model is a fine-tuned version of [unsloth/SmolLM-360M-Instruct](https://huggingface.co/unsloth/SmolLM-360M-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1328 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.3637 | 0.2738 | 200 | 1.1328 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
ancient41/24950af4-6235-4c35-aec3-bccc6fb50be7
ancient41
2025-02-01T10:43:47Z
8
0
peft
[ "peft", "safetensors", "starcoder2", "axolotl", "generated_from_trainer", "base_model:bigcode/starcoder2-3b", "base_model:adapter:bigcode/starcoder2-3b", "license:bigcode-openrail-m", "region:us" ]
null
2025-02-01T10:25:12Z
--- library_name: peft license: bigcode-openrail-m base_model: bigcode/starcoder2-3b tags: - axolotl - generated_from_trainer model-index: - name: 24950af4-6235-4c35-aec3-bccc6fb50be7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: bigcode/starcoder2-3b bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 1f363d38b0a18fae_train_data.json ds_type: json format: custom path: /workspace/input_data/1f363d38b0a18fae_train_data.json type: field_instruction: instruction field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: ancient41/24950af4-6235-4c35-aec3-bccc6fb50be7 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/1f363d38b0a18fae_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 special_tokens: pad_token: <|endoftext|> strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 11d6d6d8-0f3b-4480-adc8-58ddc86a0ed7 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 11d6d6d8-0f3b-4480-adc8-58ddc86a0ed7 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 24950af4-6235-4c35-aec3-bccc6fb50be7 This model is a fine-tuned version of [bigcode/starcoder2-3b](https://huggingface.co/bigcode/starcoder2-3b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4376 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 13.3816 | 0.0012 | 1 | 1.7327 | | 14.1477 | 0.0587 | 50 | 1.6138 | | 9.0052 | 0.1173 | 100 | 1.5306 | | 8.9556 | 0.1760 | 150 | 1.4662 | | 10.7712 | 0.2346 | 200 | 1.4376 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nhung03/6f5686a7-fdf2-4a68-8543-315d8a47d0a3
nhung03
2025-02-01T10:43:30Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-Math-1.5B-Instruct", "base_model:adapter:unsloth/Qwen2.5-Math-1.5B-Instruct", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-02-01T10:28:15Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-Math-1.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 6f5686a7-fdf2-4a68-8543-315d8a47d0a3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-Math-1.5B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 22587293b779bc55_train_data.json ds_type: json format: custom path: /workspace/input_data/22587293b779bc55_train_data.json type: field_input: content field_instruction: title field_output: summary format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nhung03/6f5686a7-fdf2-4a68-8543-315d8a47d0a3 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/22587293b779bc55_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 6863ca7d-dba1-4f20-86fd-f4e741cc8950 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 6863ca7d-dba1-4f20-86fd-f4e741cc8950 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 6f5686a7-fdf2-4a68-8543-315d8a47d0a3 This model is a fine-tuned version of [unsloth/Qwen2.5-Math-1.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-Math-1.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7222 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.57 | 0.6809 | 200 | 0.7222 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
cimol/d4ae43f7-ec36-45b0-9cd6-60e0fc0b7214
cimol
2025-02-01T10:43:09Z
9
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM-360M-Instruct", "base_model:adapter:unsloth/SmolLM-360M-Instruct", "license:apache-2.0", "region:us" ]
null
2025-02-01T10:39:04Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM-360M-Instruct tags: - axolotl - generated_from_trainer model-index: - name: d4ae43f7-ec36-45b0-9cd6-60e0fc0b7214 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM-360M-Instruct bf16: true chat_template: llama3 data_processes: 24 dataset_prepared_path: null datasets: - data_files: - 9b6a7ed78887b72a_train_data.json ds_type: json format: custom path: /workspace/input_data/9b6a7ed78887b72a_train_data.json type: field_instruction: problem field_output: solution format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto early_stopping_patience: 4 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: cimol/d4ae43f7-ec36-45b0-9cd6-60e0fc0b7214 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 1.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.1 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine lr_scheduler_warmup_steps: 50 max_grad_norm: 0.1 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 4 mlflow_experiment_name: /tmp/9b6a7ed78887b72a_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.999 adam_epsilon: 1e-8 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null seed: 17333 sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer total_train_batch_size: 16 train_batch_size: 8 train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: f3a95ab3-eeb4-4c4e-bb7c-1b3bd0a29c18 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: f3a95ab3-eeb4-4c4e-bb7c-1b3bd0a29c18 warmup_steps: 100 weight_decay: 0.0 xformers_attention: null ``` </details><br> # d4ae43f7-ec36-45b0-9cd6-60e0fc0b7214 This model is a fine-tuned version of [unsloth/SmolLM-360M-Instruct](https://huggingface.co/unsloth/SmolLM-360M-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 17333 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.999,adam_epsilon=1e-8 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0014 | 1 | nan | | 0.0 | 0.0684 | 50 | nan | | 0.0 | 0.1369 | 100 | nan | | 0.0 | 0.2053 | 150 | nan | | 0.0 | 0.2738 | 200 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
minhtrannnn/9cf7b0fb-d200-4025-9b5a-6e54183ec18a
minhtrannnn
2025-02-01T10:42:37Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-Math-1.5B-Instruct", "base_model:adapter:unsloth/Qwen2.5-Math-1.5B-Instruct", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-02-01T10:28:19Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-Math-1.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 9cf7b0fb-d200-4025-9b5a-6e54183ec18a results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-Math-1.5B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 22587293b779bc55_train_data.json ds_type: json format: custom path: /workspace/input_data/22587293b779bc55_train_data.json type: field_input: content field_instruction: title field_output: summary format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: minhtrannnn/9cf7b0fb-d200-4025-9b5a-6e54183ec18a hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/22587293b779bc55_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 6863ca7d-dba1-4f20-86fd-f4e741cc8950 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 6863ca7d-dba1-4f20-86fd-f4e741cc8950 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 9cf7b0fb-d200-4025-9b5a-6e54183ec18a This model is a fine-tuned version of [unsloth/Qwen2.5-Math-1.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-Math-1.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7204 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.5683 | 0.6809 | 200 | 0.7204 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
ajku2199/Llama-2-7b-hf_abstract_prob7_dataset1_n1000_seed7_epochs10_batch8_qlora
ajku2199
2025-02-01T10:42:12Z
5
0
peft
[ "peft", "safetensors", "region:us" ]
null
2025-01-10T14:53:57Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0 - PEFT 0.4.0
clarxus/4186fc7d-8853-481a-9bb3-e6dee0d50053
clarxus
2025-02-01T10:40:26Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM-360M-Instruct", "base_model:adapter:unsloth/SmolLM-360M-Instruct", "license:apache-2.0", "region:us" ]
null
2025-02-01T10:35:19Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM-360M-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 4186fc7d-8853-481a-9bb3-e6dee0d50053 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM-360M-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 9b6a7ed78887b72a_train_data.json ds_type: json format: custom path: /workspace/input_data/9b6a7ed78887b72a_train_data.json type: field_instruction: problem field_output: solution format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: clarxus/4186fc7d-8853-481a-9bb3-e6dee0d50053 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/9b6a7ed78887b72a_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: f3a95ab3-eeb4-4c4e-bb7c-1b3bd0a29c18 wandb_project: Gradients-On-Seven wandb_run: your_name wandb_runid: f3a95ab3-eeb4-4c4e-bb7c-1b3bd0a29c18 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 4186fc7d-8853-481a-9bb3-e6dee0d50053 This model is a fine-tuned version of [unsloth/SmolLM-360M-Instruct](https://huggingface.co/unsloth/SmolLM-360M-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1296 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0027 | 1 | 1.1999 | | 1.1705 | 0.0246 | 9 | 1.1993 | | 1.1512 | 0.0493 | 18 | 1.1932 | | 1.1106 | 0.0739 | 27 | 1.1801 | | 1.2376 | 0.0986 | 36 | 1.1651 | | 1.1479 | 0.1232 | 45 | 1.1524 | | 1.0341 | 0.1478 | 54 | 1.1433 | | 1.1297 | 0.1725 | 63 | 1.1367 | | 1.1057 | 0.1971 | 72 | 1.1329 | | 1.1072 | 0.2218 | 81 | 1.1307 | | 1.1325 | 0.2464 | 90 | 1.1298 | | 1.1523 | 0.2710 | 99 | 1.1296 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
roleplaiapp/L3.3-Nevoria-R1-70b-Q6_K-GGUF
roleplaiapp
2025-02-01T10:39:50Z
24
0
transformers
[ "transformers", "gguf", "6-bit", "70b", "Q6_K", "l33", "llama-cpp", "nevoria", "text-generation", "endpoints_compatible", "region:us" ]
text-generation
2025-02-01T10:35:22Z
--- library_name: transformers pipeline_tag: text-generation tags: - 6-bit - 70b - Q6_K - gguf - l33 - llama-cpp - nevoria - text-generation --- # roleplaiapp/L3.3-Nevoria-R1-70b-Q6_K-GGUF **Repo:** `roleplaiapp/L3.3-Nevoria-R1-70b-Q6_K-GGUF` **Original Model:** `L3.3-Nevoria-R1-70b` **Quantized File:** `L3.3-Nevoria-R1-70b-Q6_K/L3.3-Nevoria-R1-70b-Q6_K-00001-of-00002.gguf` **Quantization:** `GGUF` **Quantization Method:** `Q6_K` ## Overview This is a GGUF Q6_K quantized version of L3.3-Nevoria-R1-70b ## Quantization By I often have idle GPUs while building/testing for the RP app, so I put them to use quantizing models. I hope the community finds these quantizations useful. Andrew Webby @ [RolePlai](https://roleplai.app/).
lesso17/6b390319-bab5-44be-943f-aa0dc3786961
lesso17
2025-02-01T10:36:40Z
8
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "custom_code", "base_model:NousResearch/Yarn-Mistral-7b-128k", "base_model:adapter:NousResearch/Yarn-Mistral-7b-128k", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-02-01T09:55:11Z
--- library_name: peft license: apache-2.0 base_model: NousResearch/Yarn-Mistral-7b-128k tags: - axolotl - generated_from_trainer model-index: - name: 6b390319-bab5-44be-943f-aa0dc3786961 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Yarn-Mistral-7b-128k bf16: auto chat_template: llama3 datasets: - data_files: - 3fafaf8cf25404aa_train_data.json ds_type: json format: custom path: /workspace/input_data/3fafaf8cf25404aa_train_data.json type: field_input: context field_instruction: question field_output: answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lesso17/6b390319-bab5-44be-943f-aa0dc3786961 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/3fafaf8cf25404aa_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 41d8118f-d704-40f9-b279-287f5d2979de wandb_project: new-01-29 wandb_run: your_name wandb_runid: 41d8118f-d704-40f9-b279-287f5d2979de warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 6b390319-bab5-44be-943f-aa0dc3786961 This model is a fine-tuned version of [NousResearch/Yarn-Mistral-7b-128k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-128k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3393 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.2936 | 0.0338 | 200 | 0.3393 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
alchemist69/140777b8-2c71-4650-a7cf-595c87afcbc8
alchemist69
2025-02-01T10:35:33Z
9
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/mistral-7b-instruct-v0.3", "base_model:adapter:unsloth/mistral-7b-instruct-v0.3", "license:apache-2.0", "region:us" ]
null
2025-02-01T10:12:52Z
--- library_name: peft license: apache-2.0 base_model: unsloth/mistral-7b-instruct-v0.3 tags: - axolotl - generated_from_trainer model-index: - name: 140777b8-2c71-4650-a7cf-595c87afcbc8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/mistral-7b-instruct-v0.3 bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - bbdb7d345038de31_train_data.json ds_type: json format: custom path: /workspace/input_data/bbdb7d345038de31_train_data.json type: field_instruction: prompt field_output: chosen format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: alchemist69/140777b8-2c71-4650-a7cf-595c87afcbc8 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/bbdb7d345038de31_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: de370e54-9b1b-408e-9116-e240c8432fd9 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: de370e54-9b1b-408e-9116-e240c8432fd9 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 140777b8-2c71-4650-a7cf-595c87afcbc8 This model is a fine-tuned version of [unsloth/mistral-7b-instruct-v0.3](https://huggingface.co/unsloth/mistral-7b-instruct-v0.3) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5477 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 161 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 4.7111 | 0.0187 | 1 | 1.2936 | | 2.019 | 0.9346 | 50 | 0.6054 | | 1.4201 | 1.8692 | 100 | 0.5421 | | 1.2055 | 2.8037 | 150 | 0.5477 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
earnxus/3686a998-5956-4e85-a2bb-a5c4ca3b48da
earnxus
2025-02-01T10:32:02Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM-135M-Instruct", "base_model:adapter:unsloth/SmolLM-135M-Instruct", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-02-01T10:15:16Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM-135M-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 3686a998-5956-4e85-a2bb-a5c4ca3b48da results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM-135M-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - e6a3c7d274205c36_train_data.json ds_type: json format: custom path: /workspace/input_data/e6a3c7d274205c36_train_data.json type: field_input: context field_instruction: alpaca_prompt_text field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: null eval_batch_size: 2 eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: true hub_model_id: earnxus/3686a998-5956-4e85-a2bb-a5c4ca3b48da hub_repo: null hub_strategy: end hub_token: null learning_rate: 0.0001 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/e6a3c7d274205c36_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null saves_per_epoch: null sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: 43d525c3-01ed-41a2-9424-8b3b5f9b62d7 wandb_project: Gradients-On-Nine wandb_run: your_name wandb_runid: 43d525c3-01ed-41a2-9424-8b3b5f9b62d7 warmup_steps: 5 weight_decay: 0.01 xformers_attention: null ``` </details><br> # 3686a998-5956-4e85-a2bb-a5c4ca3b48da This model is a fine-tuned version of [unsloth/SmolLM-135M-Instruct](https://huggingface.co/unsloth/SmolLM-135M-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6753 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.2378 | 0.0280 | 200 | 0.6753 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lapsel/halt-ll_qwen25_7B_full_steam_qa_10000
lapsel
2025-02-01T10:30:30Z
5
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "llama-factory", "generated_from_trainer", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-01T02:14:19Z
--- library_name: transformers tags: - llama-factory - generated_from_trainer model-index: - name: halt-ll_qwen25_7B_full_steam_qa_10000 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # halt-ll_qwen25_7B_full_steam_qa_10000 This model was trained from scratch on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 8 - total_eval_batch_size: 4 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3
great0001/9ae12a9e-6310-4aac-986f-6cdb6d115d66
great0001
2025-02-01T10:29:08Z
9
0
peft
[ "peft", "safetensors", "starcoder2", "axolotl", "generated_from_trainer", "base_model:bigcode/starcoder2-3b", "base_model:adapter:bigcode/starcoder2-3b", "license:bigcode-openrail-m", "region:us" ]
null
2025-02-01T10:25:26Z
--- library_name: peft license: bigcode-openrail-m base_model: bigcode/starcoder2-3b tags: - axolotl - generated_from_trainer model-index: - name: 9ae12a9e-6310-4aac-986f-6cdb6d115d66 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: bigcode/starcoder2-3b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 1f363d38b0a18fae_train_data.json ds_type: json format: custom path: /workspace/input_data/1f363d38b0a18fae_train_data.json type: field_instruction: instruction field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: false group_by_length: false hub_model_id: great0001/9ae12a9e-6310-4aac-986f-6cdb6d115d66 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/1f363d38b0a18fae_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 11d6d6d8-0f3b-4480-adc8-58ddc86a0ed7 wandb_project: Mine-SN56-20-Gradients-On-Demand wandb_run: your_name wandb_runid: 11d6d6d8-0f3b-4480-adc8-58ddc86a0ed7 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 9ae12a9e-6310-4aac-986f-6cdb6d115d66 This model is a fine-tuned version of [bigcode/starcoder2-3b](https://huggingface.co/bigcode/starcoder2-3b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4521 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0001 | 1 | 1.6048 | | 4.2718 | 0.0073 | 50 | 1.5159 | | 3.8279 | 0.0147 | 100 | 1.4751 | | 3.7744 | 0.0220 | 150 | 1.4533 | | 3.9004 | 0.0293 | 200 | 1.4521 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
roleplaiapp/Selene-1-Mini-Llama-3.1-8B-f16-GGUF
roleplaiapp
2025-02-01T10:21:49Z
15
0
transformers
[ "transformers", "gguf", "f16", "llama", "llama-cpp", "mini", "selene", "text-generation", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
text-generation
2025-02-01T10:20:50Z
--- library_name: transformers pipeline_tag: text-generation tags: - f16 - gguf - llama - llama-cpp - mini - selene - text-generation --- # roleplaiapp/Selene-1-Mini-Llama-3.1-8B-f16-GGUF **Repo:** `roleplaiapp/Selene-1-Mini-Llama-3.1-8B-f16-GGUF` **Original Model:** `Selene-1-Mini-Llama-3.1-8B` **Quantized File:** `Selene-1-Mini-Llama-3.1-8B-f16.gguf` **Quantization:** `GGUF` **Quantization Method:** `f16` ## Overview This is a GGUF f16 quantized version of Selene-1-Mini-Llama-3.1-8B ## Quantization By I often have idle GPUs while building/testing for the RP app, so I put them to use quantizing models. I hope the community finds these quantizations useful. Andrew Webby @ [RolePlai](https://roleplai.app/).
hongngo/9d069e14-343a-46a1-aa56-40d85d483a32
hongngo
2025-02-01T10:15:52Z
9
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/zephyr-sft", "base_model:adapter:unsloth/zephyr-sft", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-02-01T09:22:43Z
--- library_name: peft license: apache-2.0 base_model: unsloth/zephyr-sft tags: - axolotl - generated_from_trainer model-index: - name: 9d069e14-343a-46a1-aa56-40d85d483a32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/zephyr-sft bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 6946a575c01504bd_train_data.json ds_type: json format: custom path: /workspace/input_data/6946a575c01504bd_train_data.json type: field_input: dialogue field_instruction: rendered_input field_output: summary format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: hongngo/9d069e14-343a-46a1-aa56-40d85d483a32 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/6946a575c01504bd_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: e0338e1a-9767-499b-b9af-44008ae05e25 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: e0338e1a-9767-499b-b9af-44008ae05e25 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 9d069e14-343a-46a1-aa56-40d85d483a32 This model is a fine-tuned version of [unsloth/zephyr-sft](https://huggingface.co/unsloth/zephyr-sft) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8681 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.7472 | 0.0147 | 200 | 0.8681 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
sky-2002/SmolLM-135M-Instruct-bespoke-ft-v0
sky-2002
2025-02-01T10:15:25Z
5
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "trl", "sft", "conversational", "base_model:HuggingFaceTB/SmolLM-135M-Instruct", "base_model:finetune:HuggingFaceTB/SmolLM-135M-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-01T10:15:10Z
--- base_model: HuggingFaceTB/SmolLM-135M-Instruct library_name: transformers model_name: SmolLM-135M-Instruct-bespoke-ft-v0 tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for SmolLM-135M-Instruct-bespoke-ft-v0 This model is a fine-tuned version of [HuggingFaceTB/SmolLM-135M-Instruct](https://huggingface.co/HuggingFaceTB/SmolLM-135M-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="sky-2002/SmolLM-135M-Instruct-bespoke-ft-v0", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/aathatte2002-indian-institute-of-technology/SmolLM-135M-finetune/runs/tu93q8mu) This model was trained with SFT. ### Framework versions - TRL: 0.15.0.dev0 - Transformers: 4.49.0.dev0 - Pytorch: 2.4.0 - Datasets: 3.2.0 - Tokenizers: 0.21.0 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
thangla01/2fc294e4-2d79-4801-a8a8-5a90c8f701a0
thangla01
2025-02-01T10:14:31Z
9
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/zephyr-sft", "base_model:adapter:unsloth/zephyr-sft", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-02-01T09:21:46Z
--- library_name: peft license: apache-2.0 base_model: unsloth/zephyr-sft tags: - axolotl - generated_from_trainer model-index: - name: 2fc294e4-2d79-4801-a8a8-5a90c8f701a0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/zephyr-sft bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 6946a575c01504bd_train_data.json ds_type: json format: custom path: /workspace/input_data/6946a575c01504bd_train_data.json type: field_input: dialogue field_instruction: rendered_input field_output: summary format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: thangla01/2fc294e4-2d79-4801-a8a8-5a90c8f701a0 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/6946a575c01504bd_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: e0338e1a-9767-499b-b9af-44008ae05e25 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: e0338e1a-9767-499b-b9af-44008ae05e25 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 2fc294e4-2d79-4801-a8a8-5a90c8f701a0 This model is a fine-tuned version of [unsloth/zephyr-sft](https://huggingface.co/unsloth/zephyr-sft) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8678 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.7394 | 0.0147 | 200 | 0.8678 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
botenius/2fba5899-a0bb-4245-9745-ab052844b2cd
botenius
2025-02-01T10:12:53Z
9
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/zephyr-sft", "base_model:adapter:unsloth/zephyr-sft", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-02-01T09:22:26Z
--- library_name: peft license: apache-2.0 base_model: unsloth/zephyr-sft tags: - axolotl - generated_from_trainer model-index: - name: 2fba5899-a0bb-4245-9745-ab052844b2cd results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/zephyr-sft bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 6946a575c01504bd_train_data.json ds_type: json format: custom path: /workspace/input_data/6946a575c01504bd_train_data.json type: field_input: dialogue field_instruction: rendered_input field_output: summary format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: null eval_batch_size: 2 eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: true hub_model_id: botenius/2fba5899-a0bb-4245-9745-ab052844b2cd hub_repo: null hub_strategy: end hub_token: null learning_rate: 0.0001 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/6946a575c01504bd_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null saves_per_epoch: null sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: e0338e1a-9767-499b-b9af-44008ae05e25 wandb_project: Gradients-On-13 wandb_run: your_name wandb_runid: e0338e1a-9767-499b-b9af-44008ae05e25 warmup_steps: 5 weight_decay: 0.01 xformers_attention: null ``` </details><br> # 2fba5899-a0bb-4245-9745-ab052844b2cd This model is a fine-tuned version of [unsloth/zephyr-sft](https://huggingface.co/unsloth/zephyr-sft) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8236 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.1352 | 0.0147 | 200 | 0.8236 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nhung03/7ee4d222-c0bc-4e62-98f6-b0be0fb210d8
nhung03
2025-02-01T10:12:11Z
8
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/zephyr-sft", "base_model:adapter:unsloth/zephyr-sft", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-02-01T09:21:52Z
--- library_name: peft license: apache-2.0 base_model: unsloth/zephyr-sft tags: - axolotl - generated_from_trainer model-index: - name: 7ee4d222-c0bc-4e62-98f6-b0be0fb210d8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/zephyr-sft bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 6946a575c01504bd_train_data.json ds_type: json format: custom path: /workspace/input_data/6946a575c01504bd_train_data.json type: field_input: dialogue field_instruction: rendered_input field_output: summary format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nhung03/7ee4d222-c0bc-4e62-98f6-b0be0fb210d8 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/6946a575c01504bd_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: e0338e1a-9767-499b-b9af-44008ae05e25 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: e0338e1a-9767-499b-b9af-44008ae05e25 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 7ee4d222-c0bc-4e62-98f6-b0be0fb210d8 This model is a fine-tuned version of [unsloth/zephyr-sft](https://huggingface.co/unsloth/zephyr-sft) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8678 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.7301 | 0.0147 | 200 | 0.8678 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
kostiantynk1205/d759762f-e5a3-4437-8738-7a1a3a5ddb5b
kostiantynk1205
2025-02-01T10:12:04Z
8
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "custom_code", "base_model:NousResearch/Yarn-Mistral-7b-128k", "base_model:adapter:NousResearch/Yarn-Mistral-7b-128k", "license:apache-2.0", "region:us" ]
null
2025-02-01T09:55:57Z
--- library_name: peft license: apache-2.0 base_model: NousResearch/Yarn-Mistral-7b-128k tags: - axolotl - generated_from_trainer model-index: - name: d759762f-e5a3-4437-8738-7a1a3a5ddb5b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Yarn-Mistral-7b-128k bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 3fafaf8cf25404aa_train_data.json ds_type: json format: custom path: /workspace/input_data/3fafaf8cf25404aa_train_data.json type: field_input: context field_instruction: question field_output: answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: kostiantynk1205/d759762f-e5a3-4437-8738-7a1a3a5ddb5b hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/3fafaf8cf25404aa_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 41d8118f-d704-40f9-b279-287f5d2979de wandb_project: Birthday-SN56-23-Gradients-On-Demand wandb_run: your_name wandb_runid: 41d8118f-d704-40f9-b279-287f5d2979de warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # d759762f-e5a3-4437-8738-7a1a3a5ddb5b This model is a fine-tuned version of [NousResearch/Yarn-Mistral-7b-128k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-128k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3372 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0002 | 1 | 0.5157 | | 1.5943 | 0.0085 | 50 | 0.3710 | | 1.4004 | 0.0169 | 100 | 0.3538 | | 1.3368 | 0.0254 | 150 | 0.3406 | | 1.4978 | 0.0338 | 200 | 0.3372 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
ancient41/a2a875c2-de00-4d16-9107-621ce2f00feb
ancient41
2025-02-01T10:09:51Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:codellama/CodeLlama-7b-hf", "base_model:adapter:codellama/CodeLlama-7b-hf", "license:llama2", "region:us" ]
null
2025-02-01T09:21:52Z
--- library_name: peft license: llama2 base_model: codellama/CodeLlama-7b-hf tags: - axolotl - generated_from_trainer model-index: - name: a2a875c2-de00-4d16-9107-621ce2f00feb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: codellama/CodeLlama-7b-hf bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - b917ee80f66720cc_train_data.json ds_type: json format: custom path: /workspace/input_data/b917ee80f66720cc_train_data.json type: field_input: context field_instruction: question field_output: answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: ancient41/a2a875c2-de00-4d16-9107-621ce2f00feb hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/b917ee80f66720cc_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 5b7d7ce8-2550-4af4-b238-2dd8fab8f073 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 5b7d7ce8-2550-4af4-b238-2dd8fab8f073 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # a2a875c2-de00-4d16-9107-621ce2f00feb This model is a fine-tuned version of [codellama/CodeLlama-7b-hf](https://huggingface.co/codellama/CodeLlama-7b-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0335 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.5112 | 0.0004 | 1 | 0.9924 | | 0.1028 | 0.0215 | 50 | 0.0564 | | 0.0573 | 0.0429 | 100 | 0.0454 | | 0.0608 | 0.0644 | 150 | 0.0352 | | 0.1269 | 0.0858 | 200 | 0.0335 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
outlookAi/27J3zTntcL
outlookAi
2025-02-01T10:09:18Z
13
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-02-01T09:48:09Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: Kwanrudee Model --- # 27J3Ztntcl <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `Kwanrudee Model` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('outlookAi/27J3zTntcL', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
alchemist69/ef1a2a6e-9e61-4207-a80f-43e779731848
alchemist69
2025-02-01T10:06:17Z
20
0
peft
[ "peft", "safetensors", "gemma2", "axolotl", "generated_from_trainer", "base_model:UCLA-AGI/Gemma-2-9B-It-SPPO-Iter2", "base_model:adapter:UCLA-AGI/Gemma-2-9B-It-SPPO-Iter2", "license:gemma", "region:us" ]
null
2025-02-01T09:26:02Z
--- library_name: peft license: gemma base_model: UCLA-AGI/Gemma-2-9B-It-SPPO-Iter2 tags: - axolotl - generated_from_trainer model-index: - name: ef1a2a6e-9e61-4207-a80f-43e779731848 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: UCLA-AGI/Gemma-2-9B-It-SPPO-Iter2 bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 9b5b3e5b8099870e_train_data.json ds_type: json format: custom path: /workspace/input_data/9b5b3e5b8099870e_train_data.json type: field_instruction: prompt field_output: chosen format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: alchemist69/ef1a2a6e-9e61-4207-a80f-43e779731848 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/9b5b3e5b8099870e_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: a332f332-5c5c-49ae-9e2e-af878cf04d49 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: a332f332-5c5c-49ae-9e2e-af878cf04d49 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # ef1a2a6e-9e61-4207-a80f-43e779731848 This model is a fine-tuned version of [UCLA-AGI/Gemma-2-9B-It-SPPO-Iter2](https://huggingface.co/UCLA-AGI/Gemma-2-9B-It-SPPO-Iter2) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.9239 | 0.0065 | 1 | nan | | 1.656 | 0.3268 | 50 | nan | | 1.6442 | 0.6536 | 100 | nan | | 0.0 | 0.9804 | 150 | nan | | 1.4541 | 1.3072 | 200 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
memevis/nano10
memevis
2025-02-01T10:02:24Z
70
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-01T09:56:17Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
brew35/23f2dcac-d4d1-4ae6-a43f-d96d159df543
brew35
2025-02-01T09:59:07Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM-135M-Instruct", "base_model:adapter:unsloth/SmolLM-135M-Instruct", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-02-01T09:46:01Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM-135M-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 23f2dcac-d4d1-4ae6-a43f-d96d159df543 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM-135M-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - e6a3c7d274205c36_train_data.json ds_type: json format: custom path: /workspace/input_data/e6a3c7d274205c36_train_data.json type: field_input: context field_instruction: alpaca_prompt_text field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: null eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: brew35/23f2dcac-d4d1-4ae6-a43f-d96d159df543 hub_repo: null hub_strategy: end hub_token: null learning_rate: 0.0001 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 4 mlflow_experiment_name: /tmp/e6a3c7d274205c36_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null saves_per_epoch: null sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 43d525c3-01ed-41a2-9424-8b3b5f9b62d7 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 43d525c3-01ed-41a2-9424-8b3b5f9b62d7 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 23f2dcac-d4d1-4ae6-a43f-d96d159df543 This model is a fine-tuned version of [unsloth/SmolLM-135M-Instruct](https://huggingface.co/unsloth/SmolLM-135M-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5893 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.1457 | 0.0560 | 200 | 0.5893 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
memevis/nano14
memevis
2025-02-01T09:55:52Z
25
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-01T09:50:16Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
baby-dev/273c636d-fc41-4a21-8760-606b4a1a605b
baby-dev
2025-02-01T09:55:05Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM-135M-Instruct", "base_model:adapter:unsloth/SmolLM-135M-Instruct", "license:apache-2.0", "region:us" ]
null
2025-02-01T09:47:58Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM-135M-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 273c636d-fc41-4a21-8760-606b4a1a605b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) # 273c636d-fc41-4a21-8760-606b4a1a605b This model is a fine-tuned version of [unsloth/SmolLM-135M-Instruct](https://huggingface.co/unsloth/SmolLM-135M-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0063 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Nexspear/ed490de5-6ce0-4282-88dd-397a4944a0ec
Nexspear
2025-02-01T09:55:01Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-Coder-7B-Instruct", "base_model:adapter:unsloth/Qwen2.5-Coder-7B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-02-01T09:40:35Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-Coder-7B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: ed490de5-6ce0-4282-88dd-397a4944a0ec results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-Coder-7B-Instruct bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - b7cdc27ddaec015e_train_data.json ds_type: json format: custom path: /workspace/input_data/b7cdc27ddaec015e_train_data.json type: field_instruction: question field_output: solution format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: Nexspear/ed490de5-6ce0-4282-88dd-397a4944a0ec hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/b7cdc27ddaec015e_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: 537e2746-bdbf-433d-87a7-94617348b3f7 wandb_project: Gradients-On-Four wandb_run: your_name wandb_runid: 537e2746-bdbf-433d-87a7-94617348b3f7 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # ed490de5-6ce0-4282-88dd-397a4944a0ec This model is a fine-tuned version of [unsloth/Qwen2.5-Coder-7B-Instruct](https://huggingface.co/unsloth/Qwen2.5-Coder-7B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5724 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.539 | 0.0034 | 1 | 0.8346 | | 0.4436 | 0.1718 | 50 | 0.5972 | | 0.4434 | 0.3436 | 100 | 0.5724 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
fifxus/b67d41aa-fce4-48c4-80de-fc7e20dbcb25
fifxus
2025-02-01T09:52:12Z
8
0
peft
[ "peft", "safetensors", "opt", "axolotl", "generated_from_trainer", "base_model:facebook/opt-1.3b", "base_model:adapter:facebook/opt-1.3b", "license:other", "8-bit", "bitsandbytes", "region:us" ]
null
2025-02-01T09:29:57Z
--- library_name: peft license: other base_model: facebook/opt-1.3b tags: - axolotl - generated_from_trainer model-index: - name: b67d41aa-fce4-48c4-80de-fc7e20dbcb25 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: facebook/opt-1.3b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 96a2fc66c5b07ef1_train_data.json ds_type: json format: custom path: /workspace/input_data/96a2fc66c5b07ef1_train_data.json type: field_instruction: timecoded_cc field_output: qa format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: null eval_batch_size: 2 eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: true hub_model_id: fifxus/b67d41aa-fce4-48c4-80de-fc7e20dbcb25 hub_repo: null hub_strategy: end hub_token: null learning_rate: 0.0001 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/96a2fc66c5b07ef1_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null saves_per_epoch: null sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: d3343316-7c96-4efd-ae85-68e87a921e72 wandb_project: Gradients-On-10 wandb_run: your_name wandb_runid: d3343316-7c96-4efd-ae85-68e87a921e72 warmup_steps: 5 weight_decay: 0.01 xformers_attention: null ``` </details><br> # b67d41aa-fce4-48c4-80de-fc7e20dbcb25 This model is a fine-tuned version of [facebook/opt-1.3b](https://huggingface.co/facebook/opt-1.3b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7202 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.6207 | 0.0254 | 200 | 0.7202 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
kk-aivio/fae4c5b4-3891-4930-8fe7-6f751923dc70
kk-aivio
2025-02-01T09:51:40Z
8
0
peft
[ "peft", "safetensors", "opt", "axolotl", "generated_from_trainer", "base_model:facebook/opt-1.3b", "base_model:adapter:facebook/opt-1.3b", "license:other", "region:us" ]
null
2025-02-01T09:45:14Z
--- library_name: peft license: other base_model: facebook/opt-1.3b tags: - axolotl - generated_from_trainer model-index: - name: fae4c5b4-3891-4930-8fe7-6f751923dc70 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: facebook/opt-1.3b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 96a2fc66c5b07ef1_train_data.json ds_type: json format: custom path: /workspace/input_data/96a2fc66c5b07ef1_train_data.json type: field_instruction: timecoded_cc field_output: qa format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: kk-aivio/fae4c5b4-3891-4930-8fe7-6f751923dc70 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/96a2fc66c5b07ef1_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: d3343316-7c96-4efd-ae85-68e87a921e72 wandb_project: Birthday-SN56-17-Gradients-On-Demand wandb_run: your_name wandb_runid: d3343316-7c96-4efd-ae85-68e87a921e72 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # fae4c5b4-3891-4930-8fe7-6f751923dc70 This model is a fine-tuned version of [facebook/opt-1.3b](https://huggingface.co/facebook/opt-1.3b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7256 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0001 | 1 | 1.2490 | | 3.1954 | 0.0064 | 50 | 0.7762 | | 2.9453 | 0.0127 | 100 | 0.7419 | | 2.9891 | 0.0191 | 150 | 0.7284 | | 2.9477 | 0.0254 | 200 | 0.7256 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
memevis/nano13
memevis
2025-02-01T09:51:24Z
30
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-01T09:46:28Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
memevis/nano12
memevis
2025-02-01T09:49:59Z
43
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-01T09:44:20Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
jiinking/1_layer_GQA4_llama8B_model
jiinking
2025-02-01T09:47:38Z
5
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-01T06:44:27Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
canongun/deepseek-ft
canongun
2025-02-01T09:46:46Z
53
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-01T08:57:05Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
genki10/ASAP_FineTuningBERT_AugV6_k2_task1_organization_fold1
genki10
2025-02-01T09:46:13Z
9
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-02-01T09:22:24Z
--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer model-index: - name: ASAP_FineTuningBERT_AugV6_k2_task1_organization_fold1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ASAP_FineTuningBERT_AugV6_k2_task1_organization_fold1 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1448 - Qwk: 0.4410 - Mse: 1.1439 - Rmse: 1.0695 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:------:| | No log | 1.0 | 2 | 10.7158 | -0.0077 | 10.7133 | 3.2731 | | No log | 2.0 | 4 | 8.3122 | 0.0 | 8.3103 | 2.8828 | | No log | 3.0 | 6 | 6.5809 | 0.0 | 6.5791 | 2.5650 | | No log | 4.0 | 8 | 5.2714 | 0.0219 | 5.2700 | 2.2956 | | 6.3556 | 5.0 | 10 | 4.0074 | 0.0040 | 4.0064 | 2.0016 | | 6.3556 | 6.0 | 12 | 3.0440 | 0.0 | 3.0432 | 1.7445 | | 6.3556 | 7.0 | 14 | 2.4480 | -0.0037 | 2.4475 | 1.5644 | | 6.3556 | 8.0 | 16 | 1.8615 | 0.0669 | 1.8613 | 1.3643 | | 6.3556 | 9.0 | 18 | 1.5608 | 0.0106 | 1.5608 | 1.2493 | | 2.4488 | 10.0 | 20 | 1.2514 | 0.0106 | 1.2515 | 1.1187 | | 2.4488 | 11.0 | 22 | 1.1488 | 0.0106 | 1.1490 | 1.0719 | | 2.4488 | 12.0 | 24 | 1.2662 | 0.0106 | 1.2664 | 1.1253 | | 2.4488 | 13.0 | 26 | 1.1856 | 0.0315 | 1.1857 | 1.0889 | | 2.4488 | 14.0 | 28 | 0.9949 | 0.0521 | 0.9950 | 0.9975 | | 1.783 | 15.0 | 30 | 1.0346 | 0.1683 | 1.0346 | 1.0172 | | 1.783 | 16.0 | 32 | 1.1401 | 0.1537 | 1.1401 | 1.0678 | | 1.783 | 17.0 | 34 | 0.8525 | 0.3462 | 0.8526 | 0.9233 | | 1.783 | 18.0 | 36 | 0.9109 | 0.3087 | 0.9109 | 0.9544 | | 1.783 | 19.0 | 38 | 0.7036 | 0.4534 | 0.7036 | 0.8388 | | 1.2744 | 20.0 | 40 | 0.8109 | 0.3039 | 0.8110 | 0.9006 | | 1.2744 | 21.0 | 42 | 0.6317 | 0.4528 | 0.6318 | 0.7949 | | 1.2744 | 22.0 | 44 | 0.8021 | 0.3146 | 0.8023 | 0.8957 | | 1.2744 | 23.0 | 46 | 0.6614 | 0.4031 | 0.6615 | 0.8133 | | 1.2744 | 24.0 | 48 | 0.8952 | 0.2442 | 0.8954 | 0.9463 | | 0.6914 | 25.0 | 50 | 0.6814 | 0.3810 | 0.6814 | 0.8254 | | 0.6914 | 26.0 | 52 | 0.8218 | 0.3288 | 0.8218 | 0.9065 | | 0.6914 | 27.0 | 54 | 0.7396 | 0.3786 | 0.7395 | 0.8599 | | 0.6914 | 28.0 | 56 | 0.6287 | 0.4553 | 0.6286 | 0.7928 | | 0.6914 | 29.0 | 58 | 0.9749 | 0.2446 | 0.9749 | 0.9874 | | 0.474 | 30.0 | 60 | 0.8070 | 0.3678 | 0.8069 | 0.8983 | | 0.474 | 31.0 | 62 | 0.5358 | 0.5600 | 0.5356 | 0.7318 | | 0.474 | 32.0 | 64 | 0.8668 | 0.3751 | 0.8666 | 0.9309 | | 0.474 | 33.0 | 66 | 1.2490 | 0.1574 | 1.2491 | 1.1176 | | 0.474 | 34.0 | 68 | 0.7519 | 0.4896 | 0.7516 | 0.8669 | | 0.4074 | 35.0 | 70 | 0.7474 | 0.5015 | 0.7471 | 0.8643 | | 0.4074 | 36.0 | 72 | 1.0359 | 0.2944 | 1.0358 | 1.0177 | | 0.4074 | 37.0 | 74 | 0.7322 | 0.5270 | 0.7319 | 0.8555 | | 0.4074 | 38.0 | 76 | 0.8105 | 0.4989 | 0.8102 | 0.9001 | | 0.4074 | 39.0 | 78 | 1.1253 | 0.2595 | 1.1252 | 1.0607 | | 0.2859 | 40.0 | 80 | 0.8086 | 0.5079 | 0.8083 | 0.8990 | | 0.2859 | 41.0 | 82 | 0.8835 | 0.4552 | 0.8832 | 0.9398 | | 0.2859 | 42.0 | 84 | 1.0433 | 0.3642 | 1.0431 | 1.0213 | | 0.2859 | 43.0 | 86 | 0.9794 | 0.4176 | 0.9790 | 0.9895 | | 0.2859 | 44.0 | 88 | 1.1257 | 0.3222 | 1.1254 | 1.0609 | | 0.2135 | 45.0 | 90 | 1.0142 | 0.3960 | 1.0138 | 1.0069 | | 0.2135 | 46.0 | 92 | 1.1155 | 0.3586 | 1.1152 | 1.0560 | | 0.2135 | 47.0 | 94 | 1.0376 | 0.4093 | 1.0370 | 1.0183 | | 0.2135 | 48.0 | 96 | 1.3530 | 0.2487 | 1.3527 | 1.1630 | | 0.2135 | 49.0 | 98 | 1.3032 | 0.2987 | 1.3028 | 1.1414 | | 0.195 | 50.0 | 100 | 1.0014 | 0.4474 | 1.0007 | 1.0003 | | 0.195 | 51.0 | 102 | 1.1582 | 0.3548 | 1.1576 | 1.0759 | | 0.195 | 52.0 | 104 | 1.1044 | 0.3964 | 1.1037 | 1.0506 | | 0.195 | 53.0 | 106 | 0.9584 | 0.4740 | 0.9577 | 0.9786 | | 0.195 | 54.0 | 108 | 1.1789 | 0.3501 | 1.1784 | 1.0855 | | 0.1629 | 55.0 | 110 | 1.1975 | 0.3583 | 1.1969 | 1.0940 | | 0.1629 | 56.0 | 112 | 1.1943 | 0.3572 | 1.1937 | 1.0926 | | 0.1629 | 57.0 | 114 | 1.0032 | 0.4606 | 1.0025 | 1.0012 | | 0.1629 | 58.0 | 116 | 1.0562 | 0.4242 | 1.0555 | 1.0274 | | 0.1629 | 59.0 | 118 | 1.3335 | 0.3011 | 1.3329 | 1.1545 | | 0.1505 | 60.0 | 120 | 1.2705 | 0.3531 | 1.2697 | 1.1268 | | 0.1505 | 61.0 | 122 | 1.3065 | 0.3599 | 1.3057 | 1.1427 | | 0.1505 | 62.0 | 124 | 1.4995 | 0.2422 | 1.4990 | 1.2243 | | 0.1505 | 63.0 | 126 | 1.4697 | 0.2475 | 1.4692 | 1.2121 | | 0.1505 | 64.0 | 128 | 1.1872 | 0.3841 | 1.1864 | 1.0892 | | 0.1517 | 65.0 | 130 | 1.0728 | 0.4328 | 1.0720 | 1.0354 | | 0.1517 | 66.0 | 132 | 1.1772 | 0.3791 | 1.1765 | 1.0847 | | 0.1517 | 67.0 | 134 | 1.2172 | 0.3851 | 1.2165 | 1.1029 | | 0.1517 | 68.0 | 136 | 1.1582 | 0.4303 | 1.1574 | 1.0758 | | 0.1517 | 69.0 | 138 | 1.1800 | 0.4207 | 1.1792 | 1.0859 | | 0.1196 | 70.0 | 140 | 1.1957 | 0.4141 | 1.1949 | 1.0931 | | 0.1196 | 71.0 | 142 | 1.1450 | 0.4298 | 1.1442 | 1.0697 | | 0.1196 | 72.0 | 144 | 1.2040 | 0.4223 | 1.2031 | 1.0969 | | 0.1196 | 73.0 | 146 | 1.2350 | 0.3933 | 1.2342 | 1.1109 | | 0.1196 | 74.0 | 148 | 1.1945 | 0.4070 | 1.1936 | 1.0925 | | 0.1021 | 75.0 | 150 | 1.1052 | 0.4401 | 1.1043 | 1.0508 | | 0.1021 | 76.0 | 152 | 1.1365 | 0.4121 | 1.1356 | 1.0657 | | 0.1021 | 77.0 | 154 | 1.2479 | 0.3307 | 1.2472 | 1.1168 | | 0.1021 | 78.0 | 156 | 1.3010 | 0.3690 | 1.3002 | 1.1403 | | 0.1021 | 79.0 | 158 | 1.3130 | 0.4064 | 1.3120 | 1.1454 | | 0.1123 | 80.0 | 160 | 1.3795 | 0.4023 | 1.3785 | 1.1741 | | 0.1123 | 81.0 | 162 | 1.4750 | 0.3605 | 1.4742 | 1.2142 | | 0.1123 | 82.0 | 164 | 1.4007 | 0.3528 | 1.4000 | 1.1832 | | 0.1123 | 83.0 | 166 | 1.2203 | 0.3888 | 1.2195 | 1.1043 | | 0.1123 | 84.0 | 168 | 1.0353 | 0.4809 | 1.0344 | 1.0170 | | 0.1066 | 85.0 | 170 | 0.9608 | 0.5082 | 0.9599 | 0.9797 | | 0.1066 | 86.0 | 172 | 0.9956 | 0.4931 | 0.9948 | 0.9974 | | 0.1066 | 87.0 | 174 | 1.1219 | 0.4210 | 1.1210 | 1.0588 | | 0.1066 | 88.0 | 176 | 1.2118 | 0.3898 | 1.2110 | 1.1004 | | 0.1066 | 89.0 | 178 | 1.2135 | 0.4110 | 1.2126 | 1.1012 | | 0.0999 | 90.0 | 180 | 1.1746 | 0.4321 | 1.1736 | 1.0834 | | 0.0999 | 91.0 | 182 | 1.1774 | 0.4286 | 1.1764 | 1.0846 | | 0.0999 | 92.0 | 184 | 1.1884 | 0.4194 | 1.1875 | 1.0897 | | 0.0999 | 93.0 | 186 | 1.2155 | 0.4141 | 1.2146 | 1.1021 | | 0.0999 | 94.0 | 188 | 1.2217 | 0.4089 | 1.2208 | 1.1049 | | 0.0873 | 95.0 | 190 | 1.2050 | 0.4090 | 1.2040 | 1.0973 | | 0.0873 | 96.0 | 192 | 1.1722 | 0.4326 | 1.1712 | 1.0822 | | 0.0873 | 97.0 | 194 | 1.1553 | 0.4353 | 1.1544 | 1.0744 | | 0.0873 | 98.0 | 196 | 1.1463 | 0.4408 | 1.1454 | 1.0702 | | 0.0873 | 99.0 | 198 | 1.1422 | 0.4426 | 1.1412 | 1.0683 | | 0.0817 | 100.0 | 200 | 1.1448 | 0.4410 | 1.1439 | 1.0695 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.2.0 - Tokenizers 0.19.1
adammandic87/5aff7f12-f427-4fe6-8b44-023e83b11cd2
adammandic87
2025-02-01T09:43:50Z
6
0
peft
[ "peft", "safetensors", "opt", "axolotl", "generated_from_trainer", "base_model:facebook/opt-1.3b", "base_model:adapter:facebook/opt-1.3b", "license:other", "region:us" ]
null
2025-02-01T09:37:27Z
--- library_name: peft license: other base_model: facebook/opt-1.3b tags: - axolotl - generated_from_trainer model-index: - name: 5aff7f12-f427-4fe6-8b44-023e83b11cd2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: facebook/opt-1.3b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 96a2fc66c5b07ef1_train_data.json ds_type: json format: custom path: /workspace/input_data/96a2fc66c5b07ef1_train_data.json type: field_instruction: timecoded_cc field_output: qa format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: adammandic87/5aff7f12-f427-4fe6-8b44-023e83b11cd2 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/96a2fc66c5b07ef1_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: d3343316-7c96-4efd-ae85-68e87a921e72 wandb_project: Birthday-SN56-13-Gradients-On-Demand wandb_run: your_name wandb_runid: d3343316-7c96-4efd-ae85-68e87a921e72 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 5aff7f12-f427-4fe6-8b44-023e83b11cd2 This model is a fine-tuned version of [facebook/opt-1.3b](https://huggingface.co/facebook/opt-1.3b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7257 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 5.4485 | 0.0001 | 1 | 1.2490 | | 3.1446 | 0.0064 | 50 | 0.7800 | | 3.0597 | 0.0127 | 100 | 0.7424 | | 2.7162 | 0.0191 | 150 | 0.7288 | | 2.9025 | 0.0254 | 200 | 0.7257 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mrferr3t/09052abc-9303-4278-921c-7a88d3e9944a
mrferr3t
2025-02-01T09:43:48Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-Coder-7B-Instruct", "base_model:adapter:unsloth/Qwen2.5-Coder-7B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-02-01T09:41:45Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-Coder-7B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 09052abc-9303-4278-921c-7a88d3e9944a results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-Coder-7B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - b7cdc27ddaec015e_train_data.json ds_type: json format: custom path: /workspace/input_data/b7cdc27ddaec015e_train_data.json type: field_instruction: question field_output: solution format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_steps: 50 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: mrferr3t/09052abc-9303-4278-921c-7a88d3e9944a hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0005 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 99 micro_batch_size: 2 mlflow_experiment_name: /tmp/b7cdc27ddaec015e_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 300 saves_per_epoch: 0 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 537e2746-bdbf-433d-87a7-94617348b3f7 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 537e2746-bdbf-433d-87a7-94617348b3f7 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 09052abc-9303-4278-921c-7a88d3e9944a This model is a fine-tuned version of [unsloth/Qwen2.5-Coder-7B-Instruct](https://huggingface.co/unsloth/Qwen2.5-Coder-7B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5702 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 99 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.5513 | 0.0009 | 1 | 0.7753 | | 0.5365 | 0.0430 | 50 | 0.5702 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.3.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1
trenden/61ab6e36-d2b5-4986-b78c-2ab482761928
trenden
2025-02-01T09:41:14Z
8
0
peft
[ "peft", "safetensors", "gemma2", "axolotl", "generated_from_trainer", "base_model:unsloth/gemma-2-2b-it", "base_model:adapter:unsloth/gemma-2-2b-it", "license:gemma", "region:us" ]
null
2025-02-01T09:36:58Z
--- library_name: peft license: gemma base_model: unsloth/gemma-2-2b-it tags: - axolotl - generated_from_trainer model-index: - name: 61ab6e36-d2b5-4986-b78c-2ab482761928 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/gemma-2-2b-it bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 868fde04833ea01a_train_data.json ds_type: json format: custom path: /workspace/input_data/868fde04833ea01a_train_data.json type: field_instruction: query field_output: ori_review format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: trenden/61ab6e36-d2b5-4986-b78c-2ab482761928 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/868fde04833ea01a_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: ee22ac0a-39e2-4a24-88a0-8dbcec863f82 wandb_project: Birthday-SN56-26-Gradients-On-Demand wandb_run: your_name wandb_runid: ee22ac0a-39e2-4a24-88a0-8dbcec863f82 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 61ab6e36-d2b5-4986-b78c-2ab482761928 This model is a fine-tuned version of [unsloth/gemma-2-2b-it](https://huggingface.co/unsloth/gemma-2-2b-it) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9602 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0004 | 1 | 3.0819 | | 2.1068 | 0.0200 | 50 | 2.0122 | | 2.0288 | 0.0401 | 100 | 1.9774 | | 1.9738 | 0.0601 | 150 | 1.9645 | | 1.9129 | 0.0801 | 200 | 1.9602 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nhung01/05c49357-4c2a-47e7-b616-e928342de0c0
nhung01
2025-02-01T09:39:01Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/tinyllama", "base_model:adapter:unsloth/tinyllama", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-02-01T09:09:54Z
--- library_name: peft license: apache-2.0 base_model: unsloth/tinyllama tags: - axolotl - generated_from_trainer model-index: - name: 05c49357-4c2a-47e7-b616-e928342de0c0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/tinyllama bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 81368e48ca14d203_train_data.json ds_type: json format: custom path: /workspace/input_data/81368e48ca14d203_train_data.json type: field_instruction: package_name field_output: review format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nhung01/05c49357-4c2a-47e7-b616-e928342de0c0 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/81368e48ca14d203_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 8128fd5f-66c6-40af-8623-b2defccd28b8 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 8128fd5f-66c6-40af-8623-b2defccd28b8 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 05c49357-4c2a-47e7-b616-e928342de0c0 This model is a fine-tuned version of [unsloth/tinyllama](https://huggingface.co/unsloth/tinyllama) on the None dataset. It achieves the following results on the evaluation set: - Loss: 5.5201 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 4.1343 | 0.0059 | 200 | 5.5201 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
leixa/cbbc61b7-68a7-4b80-bde2-a1bebeacb932
leixa
2025-02-01T09:38:06Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:heegyu/WizardVicuna-open-llama-3b-v2", "base_model:adapter:heegyu/WizardVicuna-open-llama-3b-v2", "license:apache-2.0", "region:us" ]
null
2025-02-01T08:08:18Z
--- library_name: peft license: apache-2.0 base_model: heegyu/WizardVicuna-open-llama-3b-v2 tags: - axolotl - generated_from_trainer model-index: - name: cbbc61b7-68a7-4b80-bde2-a1bebeacb932 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: heegyu/WizardVicuna-open-llama-3b-v2 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - de7a2442f31942d3_train_data.json ds_type: json format: custom path: /workspace/input_data/de7a2442f31942d3_train_data.json type: field_input: query field_instruction: task field_output: pos format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: leixa/cbbc61b7-68a7-4b80-bde2-a1bebeacb932 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/de7a2442f31942d3_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: ce8a4f0c-b461-4ec2-b171-ebb3f2186039 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: ce8a4f0c-b461-4ec2-b171-ebb3f2186039 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # cbbc61b7-68a7-4b80-bde2-a1bebeacb932 This model is a fine-tuned version of [heegyu/WizardVicuna-open-llama-3b-v2](https://huggingface.co/heegyu/WizardVicuna-open-llama-3b-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9294 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0002 | 1 | 1.3270 | | 1.2925 | 0.0015 | 9 | 1.2278 | | 1.095 | 0.0030 | 18 | 1.0679 | | 0.9885 | 0.0044 | 27 | 1.0151 | | 0.958 | 0.0059 | 36 | 0.9830 | | 0.9455 | 0.0074 | 45 | 0.9639 | | 0.9423 | 0.0089 | 54 | 0.9499 | | 0.9033 | 0.0104 | 63 | 0.9412 | | 0.9238 | 0.0119 | 72 | 0.9355 | | 0.9539 | 0.0133 | 81 | 0.9316 | | 0.8881 | 0.0148 | 90 | 0.9298 | | 0.9571 | 0.0163 | 99 | 0.9294 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
arash-rasouli/clip-vit-large-patch14-336-f
arash-rasouli
2025-02-01T09:37:48Z
29
0
transformers
[ "transformers", "safetensors", "clip", "zero-shot-image-classification", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
zero-shot-image-classification
2025-02-01T09:33:59Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
daniel40/3be1be7d-384e-4347-9e83-ff49ee5d6ed4
daniel40
2025-02-01T09:35:25Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:codellama/CodeLlama-7b-hf", "base_model:adapter:codellama/CodeLlama-7b-hf", "license:llama2", "region:us" ]
null
2025-02-01T09:23:48Z
--- library_name: peft license: llama2 base_model: codellama/CodeLlama-7b-hf tags: - axolotl - generated_from_trainer model-index: - name: 3be1be7d-384e-4347-9e83-ff49ee5d6ed4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: codellama/CodeLlama-7b-hf bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - b917ee80f66720cc_train_data.json ds_type: json format: custom path: /workspace/input_data/b917ee80f66720cc_train_data.json type: field_input: context field_instruction: question field_output: answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: daniel40/3be1be7d-384e-4347-9e83-ff49ee5d6ed4 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/b917ee80f66720cc_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 5b7d7ce8-2550-4af4-b238-2dd8fab8f073 wandb_project: Birthday-SN56-28-Gradients-On-Demand wandb_run: your_name wandb_runid: 5b7d7ce8-2550-4af4-b238-2dd8fab8f073 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 3be1be7d-384e-4347-9e83-ff49ee5d6ed4 This model is a fine-tuned version of [codellama/CodeLlama-7b-hf](https://huggingface.co/codellama/CodeLlama-7b-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0001 | 1 | nan | | 0.0 | 0.0054 | 50 | nan | | 0.0 | 0.0107 | 100 | nan | | 0.0 | 0.0161 | 150 | nan | | 0.0 | 0.0215 | 200 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
robiual-awal/dddd29c2-746c-412e-a748-d86166cc73be
robiual-awal
2025-02-01T09:35:19Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:codellama/CodeLlama-7b-hf", "base_model:adapter:codellama/CodeLlama-7b-hf", "license:llama2", "region:us" ]
null
2025-02-01T09:23:48Z
--- library_name: peft license: llama2 base_model: codellama/CodeLlama-7b-hf tags: - axolotl - generated_from_trainer model-index: - name: dddd29c2-746c-412e-a748-d86166cc73be results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: codellama/CodeLlama-7b-hf bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - b917ee80f66720cc_train_data.json ds_type: json format: custom path: /workspace/input_data/b917ee80f66720cc_train_data.json type: field_input: context field_instruction: question field_output: answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: robiual-awal/dddd29c2-746c-412e-a748-d86166cc73be hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: constant max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/b917ee80f66720cc_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 5b7d7ce8-2550-4af4-b238-2dd8fab8f073 wandb_project: Birthday-SN56-29-Gradients-On-Demand wandb_run: your_name wandb_runid: 5b7d7ce8-2550-4af4-b238-2dd8fab8f073 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # dddd29c2-746c-412e-a748-d86166cc73be This model is a fine-tuned version of [codellama/CodeLlama-7b-hf](https://huggingface.co/codellama/CodeLlama-7b-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0001 | 1 | nan | | 0.0 | 0.0054 | 50 | nan | | 0.0 | 0.0107 | 100 | nan | | 0.0 | 0.0161 | 150 | nan | | 0.0 | 0.0215 | 200 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1