modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
sequence
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
dimasik2987/eea7d6ca-5ae0-41ba-972c-bd24d4672380
dimasik2987
2025-01-10T20:24:48Z
11
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "custom_code", "base_model:NousResearch/Yarn-Llama-2-7b-64k", "base_model:adapter:NousResearch/Yarn-Llama-2-7b-64k", "region:us" ]
null
2025-01-10T20:18:01Z
--- library_name: peft base_model: NousResearch/Yarn-Llama-2-7b-64k tags: - axolotl - generated_from_trainer model-index: - name: eea7d6ca-5ae0-41ba-972c-bd24d4672380 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Yarn-Llama-2-7b-64k bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - e55d99f129b023ec_train_data.json ds_type: json format: custom path: /workspace/input_data/e55d99f129b023ec_train_data.json type: field_instruction: english field_output: chichewa format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: dimasik2987/eea7d6ca-5ae0-41ba-972c-bd24d4672380 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 75GiB max_steps: 30 micro_batch_size: 2 mlflow_experiment_name: /tmp/e55d99f129b023ec_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: a764bcbd-6c20-4dad-b659-d2dc56817841 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: a764bcbd-6c20-4dad-b659-d2dc56817841 warmup_steps: 10 weight_decay: 0.01 xformers_attention: true ``` </details><br> # eea7d6ca-5ae0-41ba-972c-bd24d4672380 This model is a fine-tuned version of [NousResearch/Yarn-Llama-2-7b-64k](https://huggingface.co/NousResearch/Yarn-Llama-2-7b-64k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.3024 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0006 | 1 | 4.0264 | | 15.9992 | 0.0049 | 8 | 3.6810 | | 13.1385 | 0.0098 | 16 | 3.4051 | | 12.9244 | 0.0146 | 24 | 3.3024 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
error577/7efa787b-62d8-4707-86c6-c7fe1c790941
error577
2025-01-10T20:24:47Z
11
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:01-ai/Yi-1.5-9B-Chat-16K", "base_model:adapter:01-ai/Yi-1.5-9B-Chat-16K", "license:apache-2.0", "4-bit", "bitsandbytes", "region:us" ]
null
2025-01-10T17:49:53Z
--- library_name: peft license: apache-2.0 base_model: 01-ai/Yi-1.5-9B-Chat-16K tags: - axolotl - generated_from_trainer model-index: - name: 7efa787b-62d8-4707-86c6-c7fe1c790941 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: qlora base_model: 01-ai/Yi-1.5-9B-Chat-16K bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 227afdb836d95568_train_data.json ds_type: json format: custom path: /workspace/input_data/227afdb836d95568_train_data.json type: field_input: level field_instruction: name field_output: text format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 8 gradient_checkpointing: false group_by_length: false hub_model_id: error577/7efa787b-62d8-4707-86c6-c7fe1c790941 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.01 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.1 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 4 lora_target_linear: true lr_scheduler: cosine max_steps: 3 micro_batch_size: 1 mlflow_experiment_name: /tmp/227afdb836d95568_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_torch_4bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 128 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 7d046c5f-2837-45a6-a88d-f3d18615b72c wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 7d046c5f-2837-45a6-a88d-f3d18615b72c warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 7efa787b-62d8-4707-86c6-c7fe1c790941 This model is a fine-tuned version of [01-ai/Yi-1.5-9B-Chat-16K](https://huggingface.co/01-ai/Yi-1.5-9B-Chat-16K) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.4793 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.01 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH_4BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.8488 | 0.0000 | 1 | 2.0958 | | 2.2878 | 0.0001 | 2 | 1.8284 | | 1.9633 | 0.0001 | 3 | 3.4793 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
tmpmodelsave/type134_step200
tmpmodelsave
2025-01-10T20:21:32Z
24
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-10T20:15:34Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
lhong4759/29c9a7fb-e34c-4e02-bd97-bd07548e5853
lhong4759
2025-01-10T20:21:32Z
11
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:Orenguteng/Llama-3-8B-Lexi-Uncensored", "base_model:adapter:Orenguteng/Llama-3-8B-Lexi-Uncensored", "license:llama3", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-10T19:47:43Z
--- library_name: peft license: llama3 base_model: Orenguteng/Llama-3-8B-Lexi-Uncensored tags: - axolotl - generated_from_trainer model-index: - name: 29c9a7fb-e34c-4e02-bd97-bd07548e5853 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Orenguteng/Llama-3-8B-Lexi-Uncensored bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - e53c72ba80674f72_train_data.json ds_type: json format: custom path: /workspace/input_data/e53c72ba80674f72_train_data.json type: field_instruction: ptype field_output: text format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lhong4759/29c9a7fb-e34c-4e02-bd97-bd07548e5853 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/e53c72ba80674f72_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 947b25e3-b276-4a08-8875-e5b98a03e2b8 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 947b25e3-b276-4a08-8875-e5b98a03e2b8 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 29c9a7fb-e34c-4e02-bd97-bd07548e5853 This model is a fine-tuned version of [Orenguteng/Llama-3-8B-Lexi-Uncensored](https://huggingface.co/Orenguteng/Llama-3-8B-Lexi-Uncensored) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.4749 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.4975 | 0.7428 | 200 | 2.4749 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
JacksonBrune/338aec7d-1a10-480b-a0e4-bc05240ed560
JacksonBrune
2025-01-10T20:19:04Z
20
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:JackFram/llama-160m", "base_model:adapter:JackFram/llama-160m", "license:apache-2.0", "region:us" ]
null
2025-01-10T20:18:27Z
--- library_name: peft license: apache-2.0 base_model: JackFram/llama-160m tags: - axolotl - generated_from_trainer model-index: - name: 338aec7d-1a10-480b-a0e4-bc05240ed560 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: JackFram/llama-160m bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - b89ff688452d146d_train_data.json ds_type: json format: custom path: /workspace/input_data/b89ff688452d146d_train_data.json type: field_input: category field_instruction: original field_output: revised format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: JacksonBrune/338aec7d-1a10-480b-a0e4-bc05240ed560 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/b89ff688452d146d_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: ac4e0bf4-846c-4cb0-8b2f-bf6d8518e0c1 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: ac4e0bf4-846c-4cb0-8b2f-bf6d8518e0c1 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 338aec7d-1a10-480b-a0e4-bc05240ed560 This model is a fine-tuned version of [JackFram/llama-160m](https://huggingface.co/JackFram/llama-160m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2987 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.956 | 0.0024 | 1 | 2.3350 | | 2.1726 | 0.0072 | 3 | 2.3346 | | 2.4523 | 0.0144 | 6 | 2.3254 | | 2.5749 | 0.0216 | 9 | 2.2987 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mradermacher/Calme-3.2-fp16-GGUF
mradermacher
2025-01-10T20:18:28Z
108
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:Sakalti/Calme-3.2-fp16", "base_model:quantized:Sakalti/Calme-3.2-fp16", "license:other", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-10T15:22:25Z
--- base_model: Sakalti/Calme-3.2-fp16 language: - en library_name: transformers license: other license_link: https://huggingface.co/Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE license_name: qwen quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> static quants of https://huggingface.co/Sakalti/Calme-3.2-fp16 <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Calme-3.2-fp16-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Calme-3.2-fp16-GGUF/resolve/main/Calme-3.2-fp16.Q2_K.gguf) | Q2_K | 31.9 | | | [GGUF](https://huggingface.co/mradermacher/Calme-3.2-fp16-GGUF/resolve/main/Calme-3.2-fp16.Q3_K_S.gguf) | Q3_K_S | 36.9 | | | [GGUF](https://huggingface.co/mradermacher/Calme-3.2-fp16-GGUF/resolve/main/Calme-3.2-fp16.Q3_K_M.gguf) | Q3_K_M | 40.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Calme-3.2-fp16-GGUF/resolve/main/Calme-3.2-fp16.Q3_K_L.gguf) | Q3_K_L | 42.4 | | | [GGUF](https://huggingface.co/mradermacher/Calme-3.2-fp16-GGUF/resolve/main/Calme-3.2-fp16.IQ4_XS.gguf) | IQ4_XS | 43.1 | | | [GGUF](https://huggingface.co/mradermacher/Calme-3.2-fp16-GGUF/resolve/main/Calme-3.2-fp16.Q4_K_S.gguf) | Q4_K_S | 47.0 | fast, recommended | | [PART 1](https://huggingface.co/mradermacher/Calme-3.2-fp16-GGUF/resolve/main/Calme-3.2-fp16.Q4_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Calme-3.2-fp16-GGUF/resolve/main/Calme-3.2-fp16.Q4_K_M.gguf.part2of2) | Q4_K_M | 50.8 | fast, recommended | | [PART 1](https://huggingface.co/mradermacher/Calme-3.2-fp16-GGUF/resolve/main/Calme-3.2-fp16.Q5_K_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Calme-3.2-fp16-GGUF/resolve/main/Calme-3.2-fp16.Q5_K_S.gguf.part2of2) | Q5_K_S | 55.2 | | | [PART 1](https://huggingface.co/mradermacher/Calme-3.2-fp16-GGUF/resolve/main/Calme-3.2-fp16.Q5_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Calme-3.2-fp16-GGUF/resolve/main/Calme-3.2-fp16.Q5_K_M.gguf.part2of2) | Q5_K_M | 58.4 | | | [PART 1](https://huggingface.co/mradermacher/Calme-3.2-fp16-GGUF/resolve/main/Calme-3.2-fp16.Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Calme-3.2-fp16-GGUF/resolve/main/Calme-3.2-fp16.Q6_K.gguf.part2of2) | Q6_K | 69.1 | very good quality | | [PART 1](https://huggingface.co/mradermacher/Calme-3.2-fp16-GGUF/resolve/main/Calme-3.2-fp16.Q8_0.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Calme-3.2-fp16-GGUF/resolve/main/Calme-3.2-fp16.Q8_0.gguf.part2of2) | Q8_0 | 83.0 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
ehristoforu/qwen2.5-with-lora-think-3b-it
ehristoforu
2025-01-10T20:15:02Z
24
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "chat", "conversational", "en", "arxiv:2407.10671", "base_model:Qwen/Qwen2.5-3B", "base_model:finetune:Qwen/Qwen2.5-3B", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-10T20:06:01Z
--- license: other license_name: qwen-research license_link: https://huggingface.co/Qwen/Qwen2.5-3B-Instruct/blob/main/LICENSE language: - en pipeline_tag: text-generation base_model: Qwen/Qwen2.5-3B tags: - chat library_name: transformers --- # Qwen2.5-3B-Instruct ## Introduction Qwen2.5 is the latest series of Qwen large language models. For Qwen2.5, we release a number of base language models and instruction-tuned language models ranging from 0.5 to 72 billion parameters. Qwen2.5 brings the following improvements upon Qwen2: - Significantly **more knowledge** and has greatly improved capabilities in **coding** and **mathematics**, thanks to our specialized expert models in these domains. - Significant improvements in **instruction following**, **generating long texts** (over 8K tokens), **understanding structured data** (e.g, tables), and **generating structured outputs** especially JSON. **More resilient to the diversity of system prompts**, enhancing role-play implementation and condition-setting for chatbots. - **Long-context Support** up to 128K tokens and can generate up to 8K tokens. - **Multilingual support** for over 29 languages, including Chinese, English, French, Spanish, Portuguese, German, Italian, Russian, Japanese, Korean, Vietnamese, Thai, Arabic, and more. **This repo contains the instruction-tuned 3B Qwen2.5 model**, which has the following features: - Type: Causal Language Models - Training Stage: Pretraining & Post-training - Architecture: transformers with RoPE, SwiGLU, RMSNorm, Attention QKV bias and tied word embeddings - Number of Parameters: 3.09B - Number of Paramaters (Non-Embedding): 2.77B - Number of Layers: 36 - Number of Attention Heads (GQA): 16 for Q and 2 for KV - Context Length: Full 32,768 tokens and generation 8192 tokens For more details, please refer to our [blog](https://qwenlm.github.io/blog/qwen2.5/), [GitHub](https://github.com/QwenLM/Qwen2.5), and [Documentation](https://qwen.readthedocs.io/en/latest/). ## Requirements The code of Qwen2.5 has been in the latest Hugging face `transformers` and we advise you to use the latest version of `transformers`. With `transformers<4.37.0`, you will encounter the following error: ``` KeyError: 'qwen2' ``` ## Quickstart Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents. ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "Qwen/Qwen2.5-3B-Instruct" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) prompt = "Give me a short introduction to large language model." messages = [ {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] ``` ## Evaluation & Performance Detailed evaluation results are reported in this [📑 blog](https://qwenlm.github.io/blog/qwen2.5/). For requirements on GPU memory and the respective throughput, see results [here](https://qwen.readthedocs.io/en/latest/benchmark/speed_benchmark.html). ## Citation If you find our work helpful, feel free to give us a cite. ``` @misc{qwen2.5, title = {Qwen2.5: A Party of Foundation Models}, url = {https://qwenlm.github.io/blog/qwen2.5/}, author = {Qwen Team}, month = {September}, year = {2024} } @article{qwen2, title={Qwen2 Technical Report}, author={An Yang and Baosong Yang and Binyuan Hui and Bo Zheng and Bowen Yu and Chang Zhou and Chengpeng Li and Chengyuan Li and Dayiheng Liu and Fei Huang and Guanting Dong and Haoran Wei and Huan Lin and Jialong Tang and Jialin Wang and Jian Yang and Jianhong Tu and Jianwei Zhang and Jianxin Ma and Jin Xu and Jingren Zhou and Jinze Bai and Jinzheng He and Junyang Lin and Kai Dang and Keming Lu and Keqin Chen and Kexin Yang and Mei Li and Mingfeng Xue and Na Ni and Pei Zhang and Peng Wang and Ru Peng and Rui Men and Ruize Gao and Runji Lin and Shijie Wang and Shuai Bai and Sinan Tan and Tianhang Zhu and Tianhao Li and Tianyu Liu and Wenbin Ge and Xiaodong Deng and Xiaohuan Zhou and Xingzhang Ren and Xinyu Zhang and Xipin Wei and Xuancheng Ren and Yang Fan and Yang Yao and Yichang Zhang and Yu Wan and Yunfei Chu and Yuqiong Liu and Zeyu Cui and Zhenru Zhang and Zhihao Fan}, journal={arXiv preprint arXiv:2407.10671}, year={2024} } ```
sergioalves/3902a50d-e050-4f35-bc1d-df2f97be6c34
sergioalves
2025-01-10T20:10:26Z
18
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM2-360M", "base_model:adapter:unsloth/SmolLM2-360M", "license:apache-2.0", "region:us" ]
null
2025-01-10T20:08:26Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM2-360M tags: - axolotl - generated_from_trainer model-index: - name: 3902a50d-e050-4f35-bc1d-df2f97be6c34 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM2-360M bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - c89dd29ef50531ae_train_data.json ds_type: json format: custom path: /workspace/input_data/c89dd29ef50531ae_train_data.json type: field_instruction: docname field_output: conclusion format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: sergioalves/3902a50d-e050-4f35-bc1d-df2f97be6c34 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 75GiB max_steps: 30 micro_batch_size: 2 mlflow_experiment_name: /tmp/c89dd29ef50531ae_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_hf output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: b6a835a7-4ca6-4649-9d41-e742004a1dc6 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: b6a835a7-4ca6-4649-9d41-e742004a1dc6 warmup_steps: 10 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 3902a50d-e050-4f35-bc1d-df2f97be6c34 This model is a fine-tuned version of [unsloth/SmolLM2-360M](https://huggingface.co/unsloth/SmolLM2-360M) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_HF with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0007 | 1 | nan | | 0.0 | 0.0060 | 8 | nan | | 0.0 | 0.0119 | 16 | nan | | 0.0 | 0.0179 | 24 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Echo9Zulu/granite-3.1-2b-instruct-int8_asym-ov
Echo9Zulu
2025-01-10T20:10:07Z
7
0
null
[ "openvino", "granite", "license:apache-2.0", "region:us" ]
null
2025-01-10T20:08:36Z
--- license: apache-2.0 ---
great0001/9ee8445d-1357-49ca-bf94-5f10eb237524
great0001
2025-01-10T20:09:54Z
18
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM2-360M", "base_model:adapter:unsloth/SmolLM2-360M", "license:apache-2.0", "region:us" ]
null
2025-01-10T20:08:34Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM2-360M tags: - axolotl - generated_from_trainer model-index: - name: 9ee8445d-1357-49ca-bf94-5f10eb237524 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM2-360M bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - c89dd29ef50531ae_train_data.json ds_type: json format: custom path: /workspace/input_data/c89dd29ef50531ae_train_data.json type: field_instruction: docname field_output: conclusion format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: great0001/9ee8445d-1357-49ca-bf94-5f10eb237524 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/c89dd29ef50531ae_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: b6a835a7-4ca6-4649-9d41-e742004a1dc6 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: b6a835a7-4ca6-4649-9d41-e742004a1dc6 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 9ee8445d-1357-49ca-bf94-5f10eb237524 This model is a fine-tuned version of [unsloth/SmolLM2-360M](https://huggingface.co/unsloth/SmolLM2-360M) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0007 | 1 | nan | | 0.0 | 0.0022 | 3 | nan | | 0.0 | 0.0045 | 6 | nan | | 0.0 | 0.0067 | 9 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
VERSIL91/947b25e3-b276-4a08-8875-e5b98a03e2b8
VERSIL91
2025-01-10T20:06:39Z
11
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:Orenguteng/Llama-3-8B-Lexi-Uncensored", "base_model:adapter:Orenguteng/Llama-3-8B-Lexi-Uncensored", "license:llama3", "region:us" ]
null
2025-01-10T19:52:22Z
--- library_name: peft license: llama3 base_model: Orenguteng/Llama-3-8B-Lexi-Uncensored tags: - axolotl - generated_from_trainer model-index: - name: 947b25e3-b276-4a08-8875-e5b98a03e2b8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml accelerate_config: dynamo_backend: inductor mixed_precision: bf16 num_machines: 1 num_processes: auto use_cpu: false adapter: lora base_model: Orenguteng/Llama-3-8B-Lexi-Uncensored bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - e53c72ba80674f72_train_data.json ds_type: json format: custom path: /workspace/input_data/e53c72ba80674f72_train_data.json type: field_instruction: ptype field_output: text format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 16 gradient_checkpointing: true group_by_length: false hub_model_id: VERSIL91/947b25e3-b276-4a08-8875-e5b98a03e2b8 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lora_target_modules: - q_proj - v_proj lr_scheduler: cosine max_memory: 0: 70GiB max_steps: 20 micro_batch_size: 2 mlflow_experiment_name: /tmp/e53c72ba80674f72_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true quantization_config: llm_int8_enable_fp32_cpu_offload: true load_in_8bit: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer torch_compile: true train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 947b25e3-b276-4a08-8875-e5b98a03e2b8 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 947b25e3-b276-4a08-8875-e5b98a03e2b8 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 947b25e3-b276-4a08-8875-e5b98a03e2b8 This model is a fine-tuned version of [Orenguteng/Llama-3-8B-Lexi-Uncensored](https://huggingface.co/Orenguteng/Llama-3-8B-Lexi-Uncensored) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.5958 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.85 | 0.0149 | 1 | 2.7583 | | 2.7071 | 0.0743 | 5 | 2.7210 | | 2.6887 | 0.1486 | 10 | 2.6699 | | 2.8234 | 0.2228 | 15 | 2.6043 | | 2.7161 | 0.2971 | 20 | 2.5958 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Slicky325/rm-trial
Slicky325
2025-01-10T20:06:39Z
15
0
transformers
[ "transformers", "safetensors", "gpt2", "text-classification", "generated_from_trainer", "base_model:openai-community/gpt2-medium", "base_model:finetune:openai-community/gpt2-medium", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-classification
2025-01-10T07:31:54Z
--- library_name: transformers license: mit base_model: openai-community/gpt2-medium tags: - generated_from_trainer model-index: - name: rm-trial results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rm-trial This model is a fine-tuned version of [openai-community/gpt2-medium](https://huggingface.co/openai-community/gpt2-medium) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.48.0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0
quannh197/f5fb298c-df1a-4966-9c77-a5b493faeff6
quannh197
2025-01-10T20:06:14Z
13
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:sethuiyer/Medichat-Llama3-8B", "base_model:adapter:sethuiyer/Medichat-Llama3-8B", "license:other", "region:us" ]
null
2025-01-10T20:04:25Z
--- library_name: peft license: other base_model: sethuiyer/Medichat-Llama3-8B tags: - axolotl - generated_from_trainer model-index: - name: f5fb298c-df1a-4966-9c77-a5b493faeff6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: sethuiyer/Medichat-Llama3-8B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 8a35a7c9651c7d97_train_data.json ds_type: json format: custom path: /workspace/input_data/8a35a7c9651c7d97_train_data.json type: field_input: negative field_instruction: anchor field_output: positive format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: quannh197/f5fb298c-df1a-4966-9c77-a5b493faeff6 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/8a35a7c9651c7d97_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: f5fb298c-df1a-4966-9c77-a5b493faeff6 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: f5fb298c-df1a-4966-9c77-a5b493faeff6 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # f5fb298c-df1a-4966-9c77-a5b493faeff6 This model is a fine-tuned version of [sethuiyer/Medichat-Llama3-8B](https://huggingface.co/sethuiyer/Medichat-Llama3-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1271 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.0864 | 0.0187 | 1 | 2.4635 | | 2.0881 | 0.0561 | 3 | 2.4597 | | 2.1077 | 0.1121 | 6 | 2.4028 | | 1.9801 | 0.1682 | 9 | 2.1271 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
CrimsonZockt/LexyChaplin-FLUXLORA
CrimsonZockt
2025-01-10T20:05:53Z
37
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-01-10T20:05:34Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: Lexy Chaplin, black tanktop, professional headshot, photoshoot. output: url: images/Lexy Chaplin, black tanktop, professional heads....png base_model: black-forest-labs/FLUX.1-dev instance_prompt: Lexy Chaplin --- # LexyChaplin <Gallery /> ## Model description This is a LORA Model that i have train on Weights.gg ## Trigger words You should use `Lexy Chaplin` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/CrimsonZockt/LexyChaplin-FLUXLORA/tree/main) them in the Files & versions tab.
tuanna08go/8babe579-9337-b4c2-3206-7f11b058a95f
tuanna08go
2025-01-10T20:04:40Z
18
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-Coder-7B", "base_model:adapter:unsloth/Qwen2.5-Coder-7B", "license:apache-2.0", "region:us" ]
null
2025-01-10T19:53:50Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-Coder-7B tags: - axolotl - generated_from_trainer model-index: - name: 8babe579-9337-b4c2-3206-7f11b058a95f results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-Coder-7B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f92233bb04f07837_train_data.json ds_type: json format: custom path: /workspace/input_data/f92233bb04f07837_train_data.json type: field_instruction: instruction field_output: content format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 5 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: tuanna08go/8babe579-9337-b4c2-3206-7f11b058a95f hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 5 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/f92233bb04f07837_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 8f8e1714-7272-4451-aa8c-2fc4e30cb7a0 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 8f8e1714-7272-4451-aa8c-2fc4e30cb7a0 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 8babe579-9337-b4c2-3206-7f11b058a95f This model is a fine-tuned version of [unsloth/Qwen2.5-Coder-7B](https://huggingface.co/unsloth/Qwen2.5-Coder-7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0039 | 1 | nan | | 0.0 | 0.0390 | 10 | nan | | 0.0 | 0.0780 | 20 | nan | | 0.0 | 0.1170 | 30 | nan | | 0.0 | 0.1559 | 40 | nan | | 0.0161 | 0.1949 | 50 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
havinash-ai/7394d15d-eefa-4402-9516-ba84cd3e7dad
havinash-ai
2025-01-10T20:04:23Z
11
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen1.5-7B", "base_model:adapter:Qwen/Qwen1.5-7B", "license:other", "region:us" ]
null
2025-01-10T20:03:12Z
--- library_name: peft license: other base_model: Qwen/Qwen1.5-7B tags: - axolotl - generated_from_trainer model-index: - name: 7394d15d-eefa-4402-9516-ba84cd3e7dad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen1.5-7B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 39217ad3029e2718_train_data.json ds_type: json format: custom path: /workspace/input_data/39217ad3029e2718_train_data.json type: field_instruction: inputs field_output: targets format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: havinash-ai/7394d15d-eefa-4402-9516-ba84cd3e7dad hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/39217ad3029e2718_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 67fca483-4118-4d2f-936b-5b5d958ee0d0 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 67fca483-4118-4d2f-936b-5b5d958ee0d0 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 7394d15d-eefa-4402-9516-ba84cd3e7dad This model is a fine-tuned version of [Qwen/Qwen1.5-7B](https://huggingface.co/Qwen/Qwen1.5-7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.7645 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.9273 | 0.0021 | 1 | 2.8908 | | 2.7151 | 0.0062 | 3 | 2.8867 | | 2.9105 | 0.0123 | 6 | 2.8485 | | 2.665 | 0.0185 | 9 | 2.7645 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
neuroplus/secret-sauce-b3
neuroplus
2025-01-10T20:04:13Z
87
1
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:Tencent-Hunyuan/HunyuanDiT-v1.2-Diffusers-Distilled", "base_model:adapter:Tencent-Hunyuan/HunyuanDiT-v1.2-Diffusers-Distilled", "region:us" ]
text-to-image
2025-01-10T19:09:51Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: Screenshot output: url: images/Screen Shot 2025-01-10 at 4.09.23 PM.png base_model: Tencent-Hunyuan/HunyuanDiT-v1.2-Diffusers-Distilled instance_prompt: secret-sauce --- # secret-sauce-b3 <Gallery /> ## Trigger words You should use `secret-sauce` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/neuroplus/secret-sauce-b3/tree/main) them in the Files & versions tab.
thangla01/5ffa1374-0e30-493d-b060-a2d2b07f66b1
thangla01
2025-01-10T20:03:53Z
5
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-Math-7B-Instruct", "base_model:adapter:unsloth/Qwen2.5-Math-7B-Instruct", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-10T18:45:49Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-Math-7B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 5ffa1374-0e30-493d-b060-a2d2b07f66b1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-Math-7B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 6b9109a6db174c05_train_data.json ds_type: json format: custom path: /workspace/input_data/6b9109a6db174c05_train_data.json type: field_instruction: text field_output: title format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: thangla01/5ffa1374-0e30-493d-b060-a2d2b07f66b1 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/6b9109a6db174c05_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 3aefa5d0-1c2e-4a87-ac85-eadf9d27a6ee wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 3aefa5d0-1c2e-4a87-ac85-eadf9d27a6ee warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 5ffa1374-0e30-493d-b060-a2d2b07f66b1 This model is a fine-tuned version of [unsloth/Qwen2.5-Math-7B-Instruct](https://huggingface.co/unsloth/Qwen2.5-Math-7B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 5.4334 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 6.1947 | 0.0047 | 200 | 5.4334 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
kk-aivio/decea65c-2daa-4bdd-b988-57df9b8f720e
kk-aivio
2025-01-10T20:03:48Z
11
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:Orenguteng/Llama-3-8B-Lexi-Uncensored", "base_model:adapter:Orenguteng/Llama-3-8B-Lexi-Uncensored", "license:llama3", "region:us" ]
null
2025-01-10T20:02:35Z
--- library_name: peft license: llama3 base_model: Orenguteng/Llama-3-8B-Lexi-Uncensored tags: - axolotl - generated_from_trainer model-index: - name: decea65c-2daa-4bdd-b988-57df9b8f720e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Orenguteng/Llama-3-8B-Lexi-Uncensored bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - e53c72ba80674f72_train_data.json ds_type: json format: custom path: /workspace/input_data/e53c72ba80674f72_train_data.json type: field_instruction: ptype field_output: text format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: kk-aivio/decea65c-2daa-4bdd-b988-57df9b8f720e hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/e53c72ba80674f72_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 947b25e3-b276-4a08-8875-e5b98a03e2b8 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 947b25e3-b276-4a08-8875-e5b98a03e2b8 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # decea65c-2daa-4bdd-b988-57df9b8f720e This model is a fine-tuned version of [Orenguteng/Llama-3-8B-Lexi-Uncensored](https://huggingface.co/Orenguteng/Llama-3-8B-Lexi-Uncensored) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.6656 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.7717 | 0.0037 | 1 | 2.7590 | | 2.8945 | 0.0111 | 3 | 2.7541 | | 2.7749 | 0.0223 | 6 | 2.6835 | | 2.7356 | 0.0334 | 9 | 2.6656 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
imrobbiegreen/robbie-lora
imrobbiegreen
2025-01-10T20:02:00Z
26
1
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-10T19:18:50Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: ROBBIEG --- # Robbielora <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `ROBBIEG` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('imrobbiegreen/robbieLora', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
adammandic87/a4b602b9-442e-471b-a4f7-6692a152d401
adammandic87
2025-01-10T19:58:24Z
11
0
peft
[ "peft", "safetensors", "gemma", "axolotl", "generated_from_trainer", "base_model:fxmarty/tiny-random-GemmaForCausalLM", "base_model:adapter:fxmarty/tiny-random-GemmaForCausalLM", "license:mit", "region:us" ]
null
2025-01-10T19:56:55Z
--- library_name: peft license: mit base_model: fxmarty/tiny-random-GemmaForCausalLM tags: - axolotl - generated_from_trainer model-index: - name: a4b602b9-442e-471b-a4f7-6692a152d401 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: fxmarty/tiny-random-GemmaForCausalLM bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 6fd144c2f0e2602e_train_data.json ds_type: json format: custom path: /workspace/input_data/6fd144c2f0e2602e_train_data.json type: field_instruction: instruction field_output: response format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: adammandic87/a4b602b9-442e-471b-a4f7-6692a152d401 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/6fd144c2f0e2602e_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 6b22e34a-3e02-4be9-8d62-8b067bce88c7 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 6b22e34a-3e02-4be9-8d62-8b067bce88c7 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # a4b602b9-442e-471b-a4f7-6692a152d401 This model is a fine-tuned version of [fxmarty/tiny-random-GemmaForCausalLM](https://huggingface.co/fxmarty/tiny-random-GemmaForCausalLM) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0001 | 1 | nan | | 0.0 | 0.0003 | 3 | nan | | 0.0 | 0.0006 | 6 | nan | | 0.0 | 0.0009 | 9 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
havinash-ai/22233a1c-66c0-4d21-a01e-9851964c720e
havinash-ai
2025-01-10T19:56:15Z
11
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:Korabbit/llama-2-ko-7b", "base_model:adapter:Korabbit/llama-2-ko-7b", "region:us" ]
null
2025-01-10T19:52:30Z
--- library_name: peft base_model: Korabbit/llama-2-ko-7b tags: - axolotl - generated_from_trainer model-index: - name: 22233a1c-66c0-4d21-a01e-9851964c720e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Korabbit/llama-2-ko-7b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - fe2766c24526d5b6_train_data.json ds_type: json format: custom path: /workspace/input_data/fe2766c24526d5b6_train_data.json type: field_instruction: instruction field_output: output_1 format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: havinash-ai/22233a1c-66c0-4d21-a01e-9851964c720e hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/fe2766c24526d5b6_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 6a946a5a-c33d-4e49-b8f6-d790fd5d9545 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 6a946a5a-c33d-4e49-b8f6-d790fd5d9545 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 22233a1c-66c0-4d21-a01e-9851964c720e This model is a fine-tuned version of [Korabbit/llama-2-ko-7b](https://huggingface.co/Korabbit/llama-2-ko-7b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1058 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.0009 | 0.0005 | 1 | 1.1621 | | 1.1693 | 0.0015 | 3 | 1.1604 | | 1.0487 | 0.0031 | 6 | 1.1477 | | 1.08 | 0.0046 | 9 | 1.1058 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Best000/514146dd-9f4e-4e8d-aa57-ffbe268a7908
Best000
2025-01-10T19:55:58Z
11
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-Math-1.5B", "base_model:adapter:unsloth/Qwen2.5-Math-1.5B", "license:apache-2.0", "region:us" ]
null
2025-01-10T19:55:16Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-Math-1.5B tags: - axolotl - generated_from_trainer model-index: - name: 514146dd-9f4e-4e8d-aa57-ffbe268a7908 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-Math-1.5B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - ef271f6ed281f7dc_train_data.json ds_type: json format: custom path: /workspace/input_data/ef271f6ed281f7dc_train_data.json type: field_input: spec_relation field_instruction: premise field_output: hypothesis format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: Best000/514146dd-9f4e-4e8d-aa57-ffbe268a7908 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/ef271f6ed281f7dc_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: bb219ed3-42f4-4b4a-b5fd-43afd6d30466 wandb_project: birthday-sn56-16-Gradients-On-Demand wandb_run: your_name wandb_runid: bb219ed3-42f4-4b4a-b5fd-43afd6d30466 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 514146dd-9f4e-4e8d-aa57-ffbe268a7908 This model is a fine-tuned version of [unsloth/Qwen2.5-Math-1.5B](https://huggingface.co/unsloth/Qwen2.5-Math-1.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0076 | 1 | nan | | 0.0 | 0.0229 | 3 | nan | | 0.0 | 0.0459 | 6 | nan | | 0.0 | 0.0688 | 9 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
kk-aivio/b2fd33d7-cec1-4787-8d27-9134e2753212
kk-aivio
2025-01-10T19:54:44Z
11
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-Math-7B-Instruct", "base_model:adapter:unsloth/Qwen2.5-Math-7B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-01-10T19:43:42Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-Math-7B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: b2fd33d7-cec1-4787-8d27-9134e2753212 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-Math-7B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 67ca02675240a51f_train_data.json ds_type: json format: custom path: /workspace/input_data/67ca02675240a51f_train_data.json type: field_instruction: instruction field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: kk-aivio/b2fd33d7-cec1-4787-8d27-9134e2753212 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/67ca02675240a51f_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 293589b7-5982-4d1d-bd8c-e478d3dfd31e wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 293589b7-5982-4d1d-bd8c-e478d3dfd31e warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # b2fd33d7-cec1-4787-8d27-9134e2753212 This model is a fine-tuned version of [unsloth/Qwen2.5-Math-7B-Instruct](https://huggingface.co/unsloth/Qwen2.5-Math-7B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0001 | 1 | nan | | 0.0 | 0.0003 | 3 | nan | | 0.0 | 0.0007 | 6 | nan | | 0.0 | 0.0010 | 9 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
0x1202/e6b10c28-9bbb-459e-9eef-2ef21bf0637b
0x1202
2025-01-10T19:54:36Z
11
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:trl-internal-testing/tiny-random-LlamaForCausalLM", "base_model:adapter:trl-internal-testing/tiny-random-LlamaForCausalLM", "region:us" ]
null
2025-01-10T19:54:18Z
--- library_name: peft base_model: trl-internal-testing/tiny-random-LlamaForCausalLM tags: - axolotl - generated_from_trainer model-index: - name: e6b10c28-9bbb-459e-9eef-2ef21bf0637b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: trl-internal-testing/tiny-random-LlamaForCausalLM bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 33cc955f25acc611_train_data.json ds_type: json format: custom path: /workspace/input_data/33cc955f25acc611_train_data.json type: field_input: sentence1 field_instruction: instruction field_output: sentence2 format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: null eval_batch_size: 2 eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: true hub_model_id: 0x1202/e6b10c28-9bbb-459e-9eef-2ef21bf0637b hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 5 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/33cc955f25acc611_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null saves_per_epoch: null sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: f2ed0dfb-46ae-4e06-970d-6bec407a36d4 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: f2ed0dfb-46ae-4e06-970d-6bec407a36d4 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # e6b10c28-9bbb-459e-9eef-2ef21bf0637b This model is a fine-tuned version of [trl-internal-testing/tiny-random-LlamaForCausalLM](https://huggingface.co/trl-internal-testing/tiny-random-LlamaForCausalLM) on the None dataset. It achieves the following results on the evaluation set: - Loss: 10.3534 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0032 | 1 | 10.3618 | | 10.3493 | 0.1584 | 50 | 10.3593 | | 10.3492 | 0.3167 | 100 | 10.3561 | | 10.342 | 0.4751 | 150 | 10.3538 | | 10.3348 | 0.6334 | 200 | 10.3534 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nbninh/5a37825d-c338-4212-ad26-fc8d7691a941
nbninh
2025-01-10T19:54:32Z
11
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen1.5-7B", "base_model:adapter:Qwen/Qwen1.5-7B", "license:other", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-10T19:36:10Z
--- library_name: peft license: other base_model: Qwen/Qwen1.5-7B tags: - axolotl - generated_from_trainer model-index: - name: 5a37825d-c338-4212-ad26-fc8d7691a941 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen1.5-7B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 39217ad3029e2718_train_data.json ds_type: json format: custom path: /workspace/input_data/39217ad3029e2718_train_data.json type: field_instruction: inputs field_output: targets format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nbninh/5a37825d-c338-4212-ad26-fc8d7691a941 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/39217ad3029e2718_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 67fca483-4118-4d2f-936b-5b5d958ee0d0 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 67fca483-4118-4d2f-936b-5b5d958ee0d0 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 5a37825d-c338-4212-ad26-fc8d7691a941 This model is a fine-tuned version of [Qwen/Qwen1.5-7B](https://huggingface.co/Qwen/Qwen1.5-7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.6431 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.0096 | 0.4111 | 200 | 2.6431 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Ejada/numerical_arabic_
Ejada
2025-01-10T19:52:25Z
4,856
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-01-10T19:48:47Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
fuliucansheng/FLUX.1-Depth-dev-diffusers
fuliucansheng
2025-01-10T19:50:56Z
23
1
diffusers
[ "diffusers", "safetensors", "image-generation", "flux", "diffusion-single-file", "en", "license:other", "diffusers:FluxControlPipeline", "region:us" ]
text-to-image
2025-01-10T19:21:55Z
--- language: - en license: other license_name: flux-1-dev-non-commercial-license license_link: LICENSE.md extra_gated_prompt: By clicking "Agree", you agree to the [FluxDev Non-Commercial License Agreement](https://huggingface.co/black-forest-labs/FLUX.1-Depth-dev/blob/main/LICENSE.md) and acknowledge the [Acceptable Use Policy](https://huggingface.co/black-forest-labs/FLUX.1-Depth-dev/blob/main/POLICY.md). tags: - image-generation - flux - diffusion-single-file --- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61fc209cef99814f1705e934/kiqWwCOeLkzreoK0NqBVD.png) `FLUX.1 Depth [dev]` is a 12 billion parameter rectified flow transformer capable of generating an image based on a text description while following the structure of a given input image. For more information, please read our [blog post](https://blackforestlabs.ai/flux-1-tools/). # Key Features 1. Cutting-edge output quality. 2. It blends impressive prompt adherence with maintaining the structure of source images based on depth maps. 3. Trained using guidance distillation, making `FLUX.1 Depth [dev]` more efficient. 4. Open weights to drive new scientific research, and empower artists to develop innovative workflows. 5. Generated outputs can be used for personal, scientific, and commercial purposes as described in the [`FLUX.1 [dev]` Non-Commercial License](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md). # Usage We provide a reference implementation of `FLUX.1 Depth [dev]`, as well as sampling code, in a dedicated [github repository](https://github.com/black-forest-labs/flux). Developers and creatives looking to build on top of `FLUX.1 Depth [dev]` are encouraged to use this as a starting point. ## API Endpoints `FLUX.1 Depth [pro]` is available in our API [bfl.ml](https://docs.bfl.ml/) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64510d6304397681bcf9725b/DKPp5zQd3SGHB65hQdkOO.png) ## Diffusers To use `FLUX.1-Depth-dev` with the 🧨 diffusers python library, first install or upgrade `diffusers` and `image_gen_aux`. ```bash pip install -U diffusers pip install git+https://github.com/asomoza/image_gen_aux.git ``` Then you can use `FluxControlPipeline` to run the model ```python import torch from diffusers import FluxControlPipeline, FluxTransformer2DModel from diffusers.utils import load_image from image_gen_aux import DepthPreprocessor pipe = FluxControlPipeline.from_pretrained("black-forest-labs/FLUX.1-Depth-dev", torch_dtype=torch.bfloat16).to("cuda") prompt = "A robot made of exotic candies and chocolates of different kinds. The background is filled with confetti and celebratory gifts." control_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/robot.png") processor = DepthPreprocessor.from_pretrained("LiheYoung/depth-anything-large-hf") control_image = processor(control_image)[0].convert("RGB") image = pipe( prompt=prompt, control_image=control_image, height=1024, width=1024, num_inference_steps=30, guidance_scale=10.0, generator=torch.Generator().manual_seed(42), ).images[0] image.save("output.png") ``` To learn more check out the [diffusers](https://huggingface.co/docs/diffusers/main/en/api/pipelines/flux) documentation --- # Limitations - This model is not intended or able to provide factual information. - As a statistical model this checkpoint might amplify existing societal biases. - The model may fail to generate output that matches the prompts. - Prompt following is heavily influenced by the prompting-style. # Out-of-Scope Use The model and its derivatives may not be used - In any way that violates any applicable national, federal, state, local or international law or regulation. - For the purpose of exploiting, harming or attempting to exploit or harm minors in any way; including but not limited to the solicitation, creation, acquisition, or dissemination of child exploitative content. - To generate or disseminate verifiably false information and/or content with the purpose of harming others. - To generate or disseminate personal identifiable information that can be used to harm an individual. - To harass, abuse, threaten, stalk, or bully individuals or groups of individuals. - To create non-consensual nudity or illegal pornographic content. - For fully automated decision making that adversely impacts an individual's legal rights or otherwise creates or modifies a binding, enforceable obligation. - Generating or facilitating large-scale disinformation campaigns. # License This model falls under the [`FLUX.1 [dev]` Non-Commercial License](https://huggingface.co/black-forest-labs/FLUX.1-Depth-dev/blob/main/LICENSE.md).
filipesantoscv11/8bbe6f56-6033-4962-b7fa-45d1f75ed594
filipesantoscv11
2025-01-10T19:49:32Z
11
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:Orenguteng/Llama-3-8B-Lexi-Uncensored", "base_model:adapter:Orenguteng/Llama-3-8B-Lexi-Uncensored", "license:llama3", "region:us" ]
null
2025-01-10T19:47:27Z
--- library_name: peft license: llama3 base_model: Orenguteng/Llama-3-8B-Lexi-Uncensored tags: - axolotl - generated_from_trainer model-index: - name: 8bbe6f56-6033-4962-b7fa-45d1f75ed594 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Orenguteng/Llama-3-8B-Lexi-Uncensored bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - e53c72ba80674f72_train_data.json ds_type: json format: custom path: /workspace/input_data/e53c72ba80674f72_train_data.json type: field_instruction: ptype field_output: text format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: filipesantoscv11/8bbe6f56-6033-4962-b7fa-45d1f75ed594 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 75GiB max_steps: 30 micro_batch_size: 2 mlflow_experiment_name: /tmp/e53c72ba80674f72_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 947b25e3-b276-4a08-8875-e5b98a03e2b8 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 947b25e3-b276-4a08-8875-e5b98a03e2b8 warmup_steps: 10 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 8bbe6f56-6033-4962-b7fa-45d1f75ed594 This model is a fine-tuned version of [Orenguteng/Llama-3-8B-Lexi-Uncensored](https://huggingface.co/Orenguteng/Llama-3-8B-Lexi-Uncensored) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.5618 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0037 | 1 | 2.7433 | | 2.8873 | 0.0297 | 8 | 2.6688 | | 2.6551 | 0.0594 | 16 | 2.5936 | | 2.6251 | 0.0891 | 24 | 2.5618 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
tuanna08go/163f3447-2f26-a0f3-eda1-04d3d9a8cbdf
tuanna08go
2025-01-10T19:47:06Z
7
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen1.5-7B", "base_model:adapter:Qwen/Qwen1.5-7B", "license:other", "region:us" ]
null
2025-01-10T19:35:45Z
--- library_name: peft license: other base_model: Qwen/Qwen1.5-7B tags: - axolotl - generated_from_trainer model-index: - name: 163f3447-2f26-a0f3-eda1-04d3d9a8cbdf results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen1.5-7B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 39217ad3029e2718_train_data.json ds_type: json format: custom path: /workspace/input_data/39217ad3029e2718_train_data.json type: field_instruction: inputs field_output: targets format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 5 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: tuanna08go/163f3447-2f26-a0f3-eda1-04d3d9a8cbdf hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 5 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/39217ad3029e2718_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 67fca483-4118-4d2f-936b-5b5d958ee0d0 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 67fca483-4118-4d2f-936b-5b5d958ee0d0 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 163f3447-2f26-a0f3-eda1-04d3d9a8cbdf This model is a fine-tuned version of [Qwen/Qwen1.5-7B](https://huggingface.co/Qwen/Qwen1.5-7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.6851 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0021 | 1 | 2.8917 | | 2.7838 | 0.0206 | 10 | 2.8080 | | 2.5363 | 0.0411 | 20 | 2.7136 | | 2.6531 | 0.0617 | 30 | 2.6972 | | 2.6508 | 0.0822 | 40 | 2.6868 | | 2.5272 | 0.1028 | 50 | 2.6851 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
VERSIL91/6bc59e91-007b-44b2-ab79-c8605e7e3fd3
VERSIL91
2025-01-10T19:43:28Z
13
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct", "base_model:adapter:VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct", "license:llama3.1", "region:us" ]
null
2025-01-10T19:28:00Z
--- library_name: peft license: llama3.1 base_model: VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 6bc59e91-007b-44b2-ab79-c8605e7e3fd3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml accelerate_config: dynamo_backend: inductor mixed_precision: bf16 num_machines: 1 num_processes: auto use_cpu: false adapter: lora base_model: VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - aff0bb4998a5c186_train_data.json ds_type: json format: custom path: /workspace/input_data/aff0bb4998a5c186_train_data.json type: field_input: '' field_instruction: input_text field_output: target_text format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 16 gradient_checkpointing: true group_by_length: false hub_model_id: VERSIL91/6bc59e91-007b-44b2-ab79-c8605e7e3fd3 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lora_target_modules: - q_proj - v_proj lr_scheduler: cosine max_memory: 0: 70GiB max_steps: 20 micro_batch_size: 2 mlflow_experiment_name: /tmp/aff0bb4998a5c186_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true quantization_config: llm_int8_enable_fp32_cpu_offload: true load_in_8bit: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|eot_id|> strict: false tf32: false tokenizer_type: AutoTokenizer torch_compile: true train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 6bc59e91-007b-44b2-ab79-c8605e7e3fd3 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 6bc59e91-007b-44b2-ab79-c8605e7e3fd3 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 6bc59e91-007b-44b2-ab79-c8605e7e3fd3 This model is a fine-tuned version of [VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct](https://huggingface.co/VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2862 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.79 | 0.0011 | 1 | 0.7996 | | 0.7558 | 0.0057 | 5 | 0.7683 | | 0.655 | 0.0113 | 10 | 0.5883 | | 0.3356 | 0.0170 | 15 | 0.3324 | | 0.2807 | 0.0227 | 20 | 0.2862 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mradermacher/LLaMA3-SFT-i1-GGUF
mradermacher
2025-01-10T19:42:55Z
654
1
transformers
[ "transformers", "gguf", "en", "base_model:RLHFlow/LLaMA3-SFT", "base_model:quantized:RLHFlow/LLaMA3-SFT", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-01-10T11:40:55Z
--- base_model: RLHFlow/LLaMA3-SFT language: - en library_name: transformers quantized_by: mradermacher tags: [] --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/RLHFlow/LLaMA3-SFT <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/LLaMA3-SFT-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/LLaMA3-SFT-i1-GGUF/resolve/main/LLaMA3-SFT.i1-IQ1_S.gguf) | i1-IQ1_S | 2.1 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/LLaMA3-SFT-i1-GGUF/resolve/main/LLaMA3-SFT.i1-IQ1_M.gguf) | i1-IQ1_M | 2.3 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/LLaMA3-SFT-i1-GGUF/resolve/main/LLaMA3-SFT.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.5 | | | [GGUF](https://huggingface.co/mradermacher/LLaMA3-SFT-i1-GGUF/resolve/main/LLaMA3-SFT.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.7 | | | [GGUF](https://huggingface.co/mradermacher/LLaMA3-SFT-i1-GGUF/resolve/main/LLaMA3-SFT.i1-IQ2_S.gguf) | i1-IQ2_S | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/LLaMA3-SFT-i1-GGUF/resolve/main/LLaMA3-SFT.i1-IQ2_M.gguf) | i1-IQ2_M | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/LLaMA3-SFT-i1-GGUF/resolve/main/LLaMA3-SFT.i1-Q2_K_S.gguf) | i1-Q2_K_S | 3.1 | very low quality | | [GGUF](https://huggingface.co/mradermacher/LLaMA3-SFT-i1-GGUF/resolve/main/LLaMA3-SFT.i1-Q2_K.gguf) | i1-Q2_K | 3.3 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/LLaMA3-SFT-i1-GGUF/resolve/main/LLaMA3-SFT.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 3.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/LLaMA3-SFT-i1-GGUF/resolve/main/LLaMA3-SFT.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/LLaMA3-SFT-i1-GGUF/resolve/main/LLaMA3-SFT.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.8 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/LLaMA3-SFT-i1-GGUF/resolve/main/LLaMA3-SFT.i1-IQ3_S.gguf) | i1-IQ3_S | 3.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/LLaMA3-SFT-i1-GGUF/resolve/main/LLaMA3-SFT.i1-IQ3_M.gguf) | i1-IQ3_M | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/LLaMA3-SFT-i1-GGUF/resolve/main/LLaMA3-SFT.i1-Q3_K_M.gguf) | i1-Q3_K_M | 4.1 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/LLaMA3-SFT-i1-GGUF/resolve/main/LLaMA3-SFT.i1-Q3_K_L.gguf) | i1-Q3_K_L | 4.4 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/LLaMA3-SFT-i1-GGUF/resolve/main/LLaMA3-SFT.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.5 | | | [GGUF](https://huggingface.co/mradermacher/LLaMA3-SFT-i1-GGUF/resolve/main/LLaMA3-SFT.i1-Q4_0.gguf) | i1-Q4_0 | 4.8 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/LLaMA3-SFT-i1-GGUF/resolve/main/LLaMA3-SFT.i1-IQ4_NL.gguf) | i1-IQ4_NL | 4.8 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/LLaMA3-SFT-i1-GGUF/resolve/main/LLaMA3-SFT.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.8 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/LLaMA3-SFT-i1-GGUF/resolve/main/LLaMA3-SFT.i1-Q4_K_M.gguf) | i1-Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/LLaMA3-SFT-i1-GGUF/resolve/main/LLaMA3-SFT.i1-Q4_1.gguf) | i1-Q4_1 | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/LLaMA3-SFT-i1-GGUF/resolve/main/LLaMA3-SFT.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/LLaMA3-SFT-i1-GGUF/resolve/main/LLaMA3-SFT.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/LLaMA3-SFT-i1-GGUF/resolve/main/LLaMA3-SFT.i1-Q6_K.gguf) | i1-Q6_K | 6.7 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
sgraham/palp_unsloth_finetune
sgraham
2025-01-10T19:41:37Z
6
0
transformers
[ "transformers", "llava", "image-text-to-text", "text-generation-inference", "unsloth", "conversational", "en", "license:apache-2.0", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
image-text-to-text
2025-01-10T19:41:31Z
--- base_model: unsloth/pixtral-12b-2409-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llava license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** sgraham - **License:** apache-2.0 - **Finetuned from model :** unsloth/pixtral-12b-2409-unsloth-bnb-4bit This llava model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
kostiantynk/a4d73f4a-253b-4b1e-8151-4eac7f5d9152
kostiantynk
2025-01-10T19:40:25Z
11
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:Korabbit/llama-2-ko-7b", "base_model:adapter:Korabbit/llama-2-ko-7b", "region:us" ]
null
2025-01-10T19:35:26Z
--- library_name: peft base_model: Korabbit/llama-2-ko-7b tags: - axolotl - generated_from_trainer model-index: - name: a4d73f4a-253b-4b1e-8151-4eac7f5d9152 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Korabbit/llama-2-ko-7b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - fe2766c24526d5b6_train_data.json ds_type: json format: custom path: /workspace/input_data/fe2766c24526d5b6_train_data.json type: field_instruction: instruction field_output: output_1 format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: kostiantynk/a4d73f4a-253b-4b1e-8151-4eac7f5d9152 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/fe2766c24526d5b6_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 6a946a5a-c33d-4e49-b8f6-d790fd5d9545 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 6a946a5a-c33d-4e49-b8f6-d790fd5d9545 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # a4d73f4a-253b-4b1e-8151-4eac7f5d9152 This model is a fine-tuned version of [Korabbit/llama-2-ko-7b](https://huggingface.co/Korabbit/llama-2-ko-7b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1074 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.0009 | 0.0005 | 1 | 1.1621 | | 1.1689 | 0.0015 | 3 | 1.1606 | | 1.0494 | 0.0031 | 6 | 1.1486 | | 1.0826 | 0.0046 | 9 | 1.1074 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
CrimsonZockt/MarcysiaRyskala-FLUXLORA
CrimsonZockt
2025-01-10T19:39:12Z
30
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-01-10T19:29:04Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: Marcysia Ryskala, black tanktop, professional headshot, photoshoot. output: url: images/Marcysia Ryskala, black tanktop, professional h....png base_model: black-forest-labs/FLUX.1-dev instance_prompt: Marcysia Ryskala --- # MarcysiaRyskala <Gallery /> ## Model Description This is a LORA Model that i have train on Weights.gg ## Trigger words You should use `Marcysia Ryskala` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/CrimsonZockt/MarcysiaRyskala-FLUXLORA/tree/main) them in the Files & versions tab.
tmpmodelsave/type12_step100
tmpmodelsave
2025-01-10T19:37:44Z
13
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-10T19:31:41Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Faisalkhan758/image_caption
Faisalkhan758
2025-01-10T19:37:28Z
24
0
keras
[ "keras", "tf-keras", "license:apache-2.0", "region:us" ]
null
2025-01-10T19:24:55Z
--- license: apache-2.0 ---
kokovova/e0914c22-6f1b-46d0-9682-e06d24f3afef
kokovova
2025-01-10T19:35:06Z
12
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:Korabbit/llama-2-ko-7b", "base_model:adapter:Korabbit/llama-2-ko-7b", "region:us" ]
null
2025-01-10T19:29:44Z
--- library_name: peft base_model: Korabbit/llama-2-ko-7b tags: - axolotl - generated_from_trainer model-index: - name: e0914c22-6f1b-46d0-9682-e06d24f3afef results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Korabbit/llama-2-ko-7b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - fe2766c24526d5b6_train_data.json ds_type: json format: custom path: /workspace/input_data/fe2766c24526d5b6_train_data.json type: field_instruction: instruction field_output: output_1 format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: kokovova/e0914c22-6f1b-46d0-9682-e06d24f3afef hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 75GiB max_steps: 30 micro_batch_size: 2 mlflow_experiment_name: /tmp/fe2766c24526d5b6_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 6a946a5a-c33d-4e49-b8f6-d790fd5d9545 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 6a946a5a-c33d-4e49-b8f6-d790fd5d9545 warmup_steps: 10 weight_decay: 0.01 xformers_attention: true ``` </details><br> # e0914c22-6f1b-46d0-9682-e06d24f3afef This model is a fine-tuned version of [Korabbit/llama-2-ko-7b](https://huggingface.co/Korabbit/llama-2-ko-7b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0758 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0005 | 1 | 1.2558 | | 1.1877 | 0.0041 | 8 | 1.1816 | | 1.1013 | 0.0082 | 16 | 1.0907 | | 1.092 | 0.0122 | 24 | 1.0758 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
HigherMind/career_advancement-Q8_0-GGUF
HigherMind
2025-01-10T19:34:39Z
17
0
null
[ "gguf", "llama-cpp", "gguf-my-repo", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-10T19:34:06Z
--- license: apache-2.0 tags: - llama-cpp - gguf-my-repo base_model: HigherMind/career_advancement --- # HigherMind/career_advancement-Q8_0-GGUF This model was converted to GGUF format from [`HigherMind/career_advancement`](https://huggingface.co/HigherMind/career_advancement) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/HigherMind/career_advancement) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo HigherMind/career_advancement-Q8_0-GGUF --hf-file career_advancement-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo HigherMind/career_advancement-Q8_0-GGUF --hf-file career_advancement-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo HigherMind/career_advancement-Q8_0-GGUF --hf-file career_advancement-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo HigherMind/career_advancement-Q8_0-GGUF --hf-file career_advancement-q8_0.gguf -c 2048 ```
Seebrasse345/jojo
Seebrasse345
2025-01-10T19:34:04Z
13
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-10T18:55:29Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: jojo --- # Jojo <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `jojo` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('Seebrasse345/jojo', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
denbeo/abefd6ba-b483-4aa9-8d96-e1866fcf975d
denbeo
2025-01-10T19:30:24Z
12
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:01-ai/Yi-1.5-9B-Chat-16K", "base_model:adapter:01-ai/Yi-1.5-9B-Chat-16K", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-10T17:46:43Z
--- library_name: peft license: apache-2.0 base_model: 01-ai/Yi-1.5-9B-Chat-16K tags: - axolotl - generated_from_trainer model-index: - name: abefd6ba-b483-4aa9-8d96-e1866fcf975d results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: 01-ai/Yi-1.5-9B-Chat-16K bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 227afdb836d95568_train_data.json ds_type: json format: custom path: /workspace/input_data/227afdb836d95568_train_data.json type: field_input: level field_instruction: name field_output: text format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: denbeo/abefd6ba-b483-4aa9-8d96-e1866fcf975d hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/227afdb836d95568_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 7d046c5f-2837-45a6-a88d-f3d18615b72c wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 7d046c5f-2837-45a6-a88d-f3d18615b72c warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # abefd6ba-b483-4aa9-8d96-e1866fcf975d This model is a fine-tuned version of [01-ai/Yi-1.5-9B-Chat-16K](https://huggingface.co/01-ai/Yi-1.5-9B-Chat-16K) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3097 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.2795 | 0.0073 | 200 | 1.3097 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
MrLeonEvans/rle-lora
MrLeonEvans
2025-01-10T19:26:41Z
1,031
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2024-12-21T00:05:22Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: RLE --- # Rle Lora <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `RLE` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('mrleonevans/rle-lora', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
duyphu/0ee83462-050b-63b8-40c1-c1604e075c9b
duyphu
2025-01-10T19:23:15Z
6
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2-1.5B-Instruct", "base_model:adapter:unsloth/Qwen2-1.5B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-01-10T19:19:08Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2-1.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 0ee83462-050b-63b8-40c1-c1604e075c9b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2-1.5B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 354d69cdce7fda99_train_data.json ds_type: json format: custom path: /workspace/input_data/354d69cdce7fda99_train_data.json type: field_instruction: instruction field_output: response format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 5 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: duyphu/0ee83462-050b-63b8-40c1-c1604e075c9b hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 5 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/354d69cdce7fda99_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: ab530c62-b812-48a1-978d-a3445ec1cd9e wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: ab530c62-b812-48a1-978d-a3445ec1cd9e warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 0ee83462-050b-63b8-40c1-c1604e075c9b This model is a fine-tuned version of [unsloth/Qwen2-1.5B-Instruct](https://huggingface.co/unsloth/Qwen2-1.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0037 | 1 | nan | | 0.0 | 0.0365 | 10 | nan | | 0.0 | 0.0731 | 20 | nan | | 0.0 | 0.1096 | 30 | nan | | 0.0 | 0.1461 | 40 | nan | | 0.0 | 0.1826 | 50 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
trenden/75497487-5c9d-48a3-b707-6d131c57a703
trenden
2025-01-10T19:21:44Z
10
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-Math-1.5B", "base_model:adapter:unsloth/Qwen2.5-Math-1.5B", "license:apache-2.0", "region:us" ]
null
2025-01-10T19:21:05Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-Math-1.5B tags: - axolotl - generated_from_trainer model-index: - name: 75497487-5c9d-48a3-b707-6d131c57a703 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-Math-1.5B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - ef271f6ed281f7dc_train_data.json ds_type: json format: custom path: /workspace/input_data/ef271f6ed281f7dc_train_data.json type: field_input: spec_relation field_instruction: premise field_output: hypothesis format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: trenden/75497487-5c9d-48a3-b707-6d131c57a703 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/ef271f6ed281f7dc_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: bb219ed3-42f4-4b4a-b5fd-43afd6d30466 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: bb219ed3-42f4-4b4a-b5fd-43afd6d30466 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 75497487-5c9d-48a3-b707-6d131c57a703 This model is a fine-tuned version of [unsloth/Qwen2.5-Math-1.5B](https://huggingface.co/unsloth/Qwen2.5-Math-1.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0076 | 1 | nan | | 0.0 | 0.0229 | 3 | nan | | 0.0 | 0.0459 | 6 | nan | | 0.0 | 0.0688 | 9 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
0x1202/4aef5c19-2c47-4652-aaa2-9cd414c34dc3
0x1202
2025-01-10T19:21:16Z
10
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2-1.5B-Instruct", "base_model:adapter:unsloth/Qwen2-1.5B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-01-10T19:18:14Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2-1.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 4aef5c19-2c47-4652-aaa2-9cd414c34dc3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2-1.5B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 354d69cdce7fda99_train_data.json ds_type: json format: custom path: /workspace/input_data/354d69cdce7fda99_train_data.json type: field_instruction: instruction field_output: response format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: null eval_batch_size: 2 eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: true hub_model_id: 0x1202/4aef5c19-2c47-4652-aaa2-9cd414c34dc3 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 5 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/354d69cdce7fda99_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null saves_per_epoch: null sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: ab530c62-b812-48a1-978d-a3445ec1cd9e wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: ab530c62-b812-48a1-978d-a3445ec1cd9e warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 4aef5c19-2c47-4652-aaa2-9cd414c34dc3 This model is a fine-tuned version of [unsloth/Qwen2-1.5B-Instruct](https://huggingface.co/unsloth/Qwen2-1.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5536 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0037 | 1 | 1.6911 | | 1.7419 | 0.1826 | 50 | 1.6199 | | 1.4866 | 0.3653 | 100 | 1.5911 | | 1.8726 | 0.5479 | 150 | 1.5384 | | 1.6633 | 0.7306 | 200 | 1.5536 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Haesteining/PhiSN29Jan10_1
Haesteining
2025-01-10T19:19:39Z
52
0
transformers
[ "transformers", "safetensors", "phi3", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-10T19:15:46Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
trenden/c3d7635d-4393-429e-bfca-0b4eeabe0a7e
trenden
2025-01-10T19:19:17Z
13
0
peft
[ "peft", "safetensors", "mixtral", "axolotl", "generated_from_trainer", "base_model:TitanML/tiny-mixtral", "base_model:adapter:TitanML/tiny-mixtral", "region:us" ]
null
2025-01-10T19:17:09Z
--- library_name: peft base_model: TitanML/tiny-mixtral tags: - axolotl - generated_from_trainer model-index: - name: c3d7635d-4393-429e-bfca-0b4eeabe0a7e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: TitanML/tiny-mixtral bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 2dd05a76ac3ce214_train_data.json ds_type: json format: custom path: /workspace/input_data/2dd05a76ac3ce214_train_data.json type: field_input: system field_instruction: instruction field_output: response format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: trenden/c3d7635d-4393-429e-bfca-0b4eeabe0a7e hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/2dd05a76ac3ce214_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: cde4566c-bdc0-4058-bdd5-0fd8c2957225 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: cde4566c-bdc0-4058-bdd5-0fd8c2957225 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # c3d7635d-4393-429e-bfca-0b4eeabe0a7e This model is a fine-tuned version of [TitanML/tiny-mixtral](https://huggingface.co/TitanML/tiny-mixtral) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0002 | 1 | nan | | 0.0 | 0.0006 | 3 | nan | | 0.0 | 0.0011 | 6 | nan | | 0.0 | 0.0017 | 9 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
kostiantynk-out/c5658bcf-cea4-4d2f-ac11-a04dead39a30
kostiantynk-out
2025-01-10T19:19:03Z
10
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:heegyu/WizardVicuna2-13b-hf", "base_model:adapter:heegyu/WizardVicuna2-13b-hf", "region:us" ]
null
2025-01-10T19:04:38Z
--- library_name: peft base_model: heegyu/WizardVicuna2-13b-hf tags: - axolotl - generated_from_trainer model-index: - name: c5658bcf-cea4-4d2f-ac11-a04dead39a30 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: heegyu/WizardVicuna2-13b-hf bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 3ad533406285a0ea_train_data.json ds_type: json format: custom path: /workspace/input_data/3ad533406285a0ea_train_data.json type: field_instruction: dialogue field_output: reference format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: kostiantynk-out/c5658bcf-cea4-4d2f-ac11-a04dead39a30 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/3ad533406285a0ea_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 7011d4ab-02bf-4cec-ad2f-ae7dc6130702 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 7011d4ab-02bf-4cec-ad2f-ae7dc6130702 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # c5658bcf-cea4-4d2f-ac11-a04dead39a30 This model is a fine-tuned version of [heegyu/WizardVicuna2-13b-hf](https://huggingface.co/heegyu/WizardVicuna2-13b-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8853 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.7899 | 0.0003 | 1 | 0.9394 | | 1.1065 | 0.0009 | 3 | 0.9388 | | 0.9389 | 0.0017 | 6 | 0.9296 | | 0.6346 | 0.0026 | 9 | 0.8853 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
duyphu/dd33e94f-0a82-02d7-7de1-636e5f94e416
duyphu
2025-01-10T19:17:19Z
14
0
peft
[ "peft", "safetensors", "gemma", "axolotl", "generated_from_trainer", "base_model:fxmarty/tiny-random-GemmaForCausalLM", "base_model:adapter:fxmarty/tiny-random-GemmaForCausalLM", "license:mit", "region:us" ]
null
2025-01-10T19:10:22Z
--- library_name: peft license: mit base_model: fxmarty/tiny-random-GemmaForCausalLM tags: - axolotl - generated_from_trainer model-index: - name: dd33e94f-0a82-02d7-7de1-636e5f94e416 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: fxmarty/tiny-random-GemmaForCausalLM bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 6fd144c2f0e2602e_train_data.json ds_type: json format: custom path: /workspace/input_data/6fd144c2f0e2602e_train_data.json type: field_instruction: instruction field_output: response format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 5 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: duyphu/dd33e94f-0a82-02d7-7de1-636e5f94e416 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 5 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/6fd144c2f0e2602e_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 6b22e34a-3e02-4be9-8d62-8b067bce88c7 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 6b22e34a-3e02-4be9-8d62-8b067bce88c7 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # dd33e94f-0a82-02d7-7de1-636e5f94e416 This model is a fine-tuned version of [fxmarty/tiny-random-GemmaForCausalLM](https://huggingface.co/fxmarty/tiny-random-GemmaForCausalLM) on the None dataset. It achieves the following results on the evaluation set: - Loss: 12.4569 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0001 | 1 | 12.4569 | | 12.4538 | 0.0009 | 10 | 12.4569 | | 12.4591 | 0.0019 | 20 | 12.4569 | | 12.4573 | 0.0028 | 30 | 12.4569 | | 12.4551 | 0.0038 | 40 | 12.4569 | | 12.4573 | 0.0047 | 50 | 12.4569 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
bbytxt/aef4215d-d9af-4c19-af2c-f443cc4e9d69
bbytxt
2025-01-10T19:17:09Z
10
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/Mistral-Nemo-Instruct-2407", "base_model:adapter:unsloth/Mistral-Nemo-Instruct-2407", "license:apache-2.0", "region:us" ]
null
2025-01-10T18:01:47Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Mistral-Nemo-Instruct-2407 tags: - axolotl - generated_from_trainer model-index: - name: aef4215d-d9af-4c19-af2c-f443cc4e9d69 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Mistral-Nemo-Instruct-2407 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 2a3a0d6fea0609c5_train_data.json ds_type: json format: custom path: /workspace/input_data/2a3a0d6fea0609c5_train_data.json type: field_input: knowledge field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: null eval_batch_size: 2 eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: true hub_model_id: bbytxt/aef4215d-d9af-4c19-af2c-f443cc4e9d69 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 5 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/2a3a0d6fea0609c5_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null saves_per_epoch: null sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 7185e2c9-93a6-4519-a3b9-075c4614c1de wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 7185e2c9-93a6-4519-a3b9-075c4614c1de warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # aef4215d-d9af-4c19-af2c-f443cc4e9d69 This model is a fine-tuned version of [unsloth/Mistral-Nemo-Instruct-2407](https://huggingface.co/unsloth/Mistral-Nemo-Instruct-2407) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7912 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0001 | 1 | 1.1144 | | 3.8129 | 0.0044 | 50 | 0.8564 | | 3.3992 | 0.0088 | 100 | 0.8134 | | 3.1222 | 0.0131 | 150 | 0.7958 | | 3.6426 | 0.0175 | 200 | 0.7912 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
recogna-nlp/gembode-7b
recogna-nlp
2025-01-10T19:16:54Z
107
0
peft
[ "peft", "model-index", "region:us" ]
null
2024-04-21T03:20:27Z
--- library_name: peft model-index: - name: gembode-7b results: - task: type: text-generation name: Text Generation dataset: name: ENEM Challenge (No Images) type: eduagarcia/enem_challenge split: train args: num_few_shot: 3 metrics: - type: acc value: 66.9 name: accuracy source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=recogna-nlp/gembode-7b name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BLUEX (No Images) type: eduagarcia-temp/BLUEX_without_images split: train args: num_few_shot: 3 metrics: - type: acc value: 57.16 name: accuracy source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=recogna-nlp/gembode-7b name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: OAB Exams type: eduagarcia/oab_exams split: train args: num_few_shot: 3 metrics: - type: acc value: 45.47 name: accuracy source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=recogna-nlp/gembode-7b name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Assin2 RTE type: assin2 split: test args: num_few_shot: 15 metrics: - type: f1_macro value: 86.61 name: f1-macro source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=recogna-nlp/gembode-7b name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Assin2 STS type: eduagarcia/portuguese_benchmark split: test args: num_few_shot: 15 metrics: - type: pearson value: 71.39 name: pearson source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=recogna-nlp/gembode-7b name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: FaQuAD NLI type: ruanchaves/faquad-nli split: test args: num_few_shot: 15 metrics: - type: f1_macro value: 67.4 name: f1-macro source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=recogna-nlp/gembode-7b name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HateBR Binary type: ruanchaves/hatebr split: test args: num_few_shot: 25 metrics: - type: f1_macro value: 79.81 name: f1-macro source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=recogna-nlp/gembode-7b name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: PT Hate Speech Binary type: hate_speech_portuguese split: test args: num_few_shot: 25 metrics: - type: f1_macro value: 63.75 name: f1-macro source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=recogna-nlp/gembode-7b name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: tweetSentBR type: eduagarcia/tweetsentbr_fewshot split: test args: num_few_shot: 25 metrics: - type: f1_macro value: 65.49 name: f1-macro source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=recogna-nlp/gembode-7b name: Open Portuguese LLM Leaderboard --- # gembode-7b <!--- PROJECT LOGO --> <p align="center"> <img src="https://huggingface.co/recogna-nlp/GemBode-2b-it/resolve/main/gembode.jpg" alt="Phi-Bode Logo" width="400" style="margin-left:'auto' margin-right:'auto' display:'block'"/> </p> GemmBode é um modelo de linguagem ajustado para o idioma português, desenvolvido a partir do modelo Gemma-7b fornecido pela [Google](https://huggingface.co/google/gemma-7b). ## Características Principais - **Modelo Base:** Gemma-7b, criado pela Google, com 7 bilhões de parâmetros. - **Dataset para Fine-tuning:** [UltraAlpaca](https://huggingface.co/datasets/recogna-nlp/ultra-alpaca-ptbr) - **Treinamento:** O treinamento foi realizado a partir do fine-tuning, com QLoRA do gemma-7b. # Resultados da avaliação do Open Portuguese LLM Leaderboard Detailed results can be found [here](https://huggingface.co/datasets/eduagarcia-temp/llm_pt_leaderboard_raw_results/tree/main/recogna-nlp/gembode-7b) and on the [🚀 Open Portuguese LLM Leaderboard](https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard) | Metric | Value | |--------------------------|---------| |Average |**67.11**| |ENEM Challenge (No Images)| 66.90| |BLUEX (No Images) | 57.16| |OAB Exams | 45.47| |Assin2 RTE | 86.61| |Assin2 STS | 71.39| |FaQuAD NLI | 67.40| |HateBR Binary | 79.81| |PT Hate Speech Binary | 63.75| |tweetSentBR | 65.49|
nhung03/06a32eaf-bfe9-421e-96f0-f720212af702
nhung03
2025-01-10T19:16:52Z
10
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-Math-1.5B", "base_model:adapter:unsloth/Qwen2.5-Math-1.5B", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-10T19:10:05Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-Math-1.5B tags: - axolotl - generated_from_trainer model-index: - name: 06a32eaf-bfe9-421e-96f0-f720212af702 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-Math-1.5B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - ef271f6ed281f7dc_train_data.json ds_type: json format: custom path: /workspace/input_data/ef271f6ed281f7dc_train_data.json type: field_input: spec_relation field_instruction: premise field_output: hypothesis format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nhung03/06a32eaf-bfe9-421e-96f0-f720212af702 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/ef271f6ed281f7dc_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: bb219ed3-42f4-4b4a-b5fd-43afd6d30466 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: bb219ed3-42f4-4b4a-b5fd-43afd6d30466 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 06a32eaf-bfe9-421e-96f0-f720212af702 This model is a fine-tuned version of [unsloth/Qwen2.5-Math-1.5B](https://huggingface.co/unsloth/Qwen2.5-Math-1.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3030 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 131 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.2319 | 0.9943 | 130 | 0.3022 | | 0.4401 | 1.0057 | 131 | 0.3030 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
VERSIL91/81c4dc0a-8ef5-40c9-b0db-10706ae31ddc
VERSIL91
2025-01-10T19:14:37Z
13
0
peft
[ "peft", "safetensors", "phi", "axolotl", "generated_from_trainer", "base_model:microsoft/phi-2", "base_model:adapter:microsoft/phi-2", "license:mit", "region:us" ]
null
2025-01-10T19:02:57Z
--- library_name: peft license: mit base_model: microsoft/phi-2 tags: - axolotl - generated_from_trainer model-index: - name: 81c4dc0a-8ef5-40c9-b0db-10706ae31ddc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml accelerate_config: dynamo_backend: inductor mixed_precision: bf16 num_machines: 1 num_processes: auto use_cpu: false adapter: lora base_model: microsoft/phi-2 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 08ebc5fee3289a2a_train_data.json ds_type: json format: custom path: /workspace/input_data/08ebc5fee3289a2a_train_data.json type: field_instruction: original_prompt_text field_output: jailbreak_prompt_text format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 16 gradient_checkpointing: true group_by_length: false hub_model_id: VERSIL91/81c4dc0a-8ef5-40c9-b0db-10706ae31ddc hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lora_target_modules: - q_proj - v_proj lr_scheduler: cosine max_memory: 0: 70GiB max_steps: 20 micro_batch_size: 2 mlflow_experiment_name: /tmp/08ebc5fee3289a2a_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true quantization_config: llm_int8_enable_fp32_cpu_offload: true load_in_8bit: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer torch_compile: true train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 81c4dc0a-8ef5-40c9-b0db-10706ae31ddc wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 81c4dc0a-8ef5-40c9-b0db-10706ae31ddc warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 81c4dc0a-8ef5-40c9-b0db-10706ae31ddc This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.4148 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.3353 | 0.0032 | 1 | 2.4703 | | 2.4301 | 0.0159 | 5 | 2.4672 | | 2.3042 | 0.0318 | 10 | 2.4528 | | 2.2668 | 0.0477 | 15 | 2.4250 | | 2.2307 | 0.0636 | 20 | 2.4148 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
ZhangShenao/SELM-Llama-3.2-3B-Instruct-re-00001-iter-2
ZhangShenao
2025-01-10T19:12:50Z
14
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "alignment-handbook", "trl", "dpo", "generated_from_trainer", "conversational", "dataset:updated", "dataset:original", "base_model:ZhangShenao/SELM-Llama-3.2-3B-Instruct-re-00001-iter-1", "base_model:finetune:ZhangShenao/SELM-Llama-3.2-3B-Instruct-re-00001-iter-1", "license:llama3.2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-10T07:52:07Z
--- library_name: transformers license: llama3.2 base_model: ZhangShenao/SELM-Llama-3.2-3B-Instruct-re-00001-iter-1 tags: - alignment-handbook - trl - dpo - generated_from_trainer - trl - dpo - alignment-handbook - generated_from_trainer datasets: - updated - original model-index: - name: SELM-Llama-3.2-3B-Instruct-re-00001-iter-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SELM-Llama-3.2-3B-Instruct-re-00001-iter-2 This model is a fine-tuned version of [ZhangShenao/SELM-Llama-3.2-3B-Instruct-re-00001-iter-1](https://huggingface.co/ZhangShenao/SELM-Llama-3.2-3B-Instruct-re-00001-iter-1) on the updated and the original datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-07 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.45.0 - Pytorch 2.5.1+cu124 - Datasets 2.14.6 - Tokenizers 0.20.3
sergioalves/9c842882-c751-416a-9522-d4aa4a501dde
sergioalves
2025-01-10T19:12:08Z
10
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:Intel/neural-chat-7b-v3-3", "base_model:adapter:Intel/neural-chat-7b-v3-3", "license:apache-2.0", "region:us" ]
null
2025-01-10T18:06:31Z
--- library_name: peft license: apache-2.0 base_model: Intel/neural-chat-7b-v3-3 tags: - axolotl - generated_from_trainer model-index: - name: 9c842882-c751-416a-9522-d4aa4a501dde results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Intel/neural-chat-7b-v3-3 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - fdf8963a439ed3fc_train_data.json ds_type: json format: custom path: /workspace/input_data/fdf8963a439ed3fc_train_data.json type: field_input: bad field_instruction: good field_output: sentence format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: sergioalves/9c842882-c751-416a-9522-d4aa4a501dde hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 75GiB max_steps: 30 micro_batch_size: 2 mlflow_experiment_name: /tmp/fdf8963a439ed3fc_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_hf output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: e30a7f9a-d6aa-4337-a4ea-894f158b7780 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: e30a7f9a-d6aa-4337-a4ea-894f158b7780 warmup_steps: 10 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 9c842882-c751-416a-9522-d4aa4a501dde This model is a fine-tuned version of [Intel/neural-chat-7b-v3-3](https://huggingface.co/Intel/neural-chat-7b-v3-3) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_HF with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0001 | 1 | nan | | 0.0 | 0.0004 | 8 | nan | | 0.0 | 0.0008 | 16 | nan | | 0.0 | 0.0012 | 24 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Seebrasse345/gangous
Seebrasse345
2025-01-10T19:09:35Z
12
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-10T18:40:37Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: gangous --- # Gangous <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `gangous` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('Seebrasse345/gangous', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
matrixportal/Mistral-7B-Instruct_v0.2_UNA-TheBeagle-7b-v1-Q4_K_M-GGUF
matrixportal
2025-01-10T19:07:12Z
19
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "llama-cpp", "gguf-my-repo", "base_model:Eric111/Mistral-7B-Instruct_v0.2_UNA-TheBeagle-7b-v1", "base_model:quantized:Eric111/Mistral-7B-Instruct_v0.2_UNA-TheBeagle-7b-v1", "license:cc-by-nc-nd-4.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-10T19:06:53Z
--- base_model: Eric111/Mistral-7B-Instruct_v0.2_UNA-TheBeagle-7b-v1 license: cc-by-nc-nd-4.0 library_name: transformers tags: - mergekit - merge - llama-cpp - gguf-my-repo --- # matrixportal/Mistral-7B-Instruct_v0.2_UNA-TheBeagle-7b-v1-Q4_K_M-GGUF This model was converted to GGUF format from [`Eric111/Mistral-7B-Instruct_v0.2_UNA-TheBeagle-7b-v1`](https://huggingface.co/Eric111/Mistral-7B-Instruct_v0.2_UNA-TheBeagle-7b-v1) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Eric111/Mistral-7B-Instruct_v0.2_UNA-TheBeagle-7b-v1) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo matrixportal/Mistral-7B-Instruct_v0.2_UNA-TheBeagle-7b-v1-Q4_K_M-GGUF --hf-file mistral-7b-instruct_v0.2_una-thebeagle-7b-v1-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo matrixportal/Mistral-7B-Instruct_v0.2_UNA-TheBeagle-7b-v1-Q4_K_M-GGUF --hf-file mistral-7b-instruct_v0.2_una-thebeagle-7b-v1-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo matrixportal/Mistral-7B-Instruct_v0.2_UNA-TheBeagle-7b-v1-Q4_K_M-GGUF --hf-file mistral-7b-instruct_v0.2_una-thebeagle-7b-v1-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo matrixportal/Mistral-7B-Instruct_v0.2_UNA-TheBeagle-7b-v1-Q4_K_M-GGUF --hf-file mistral-7b-instruct_v0.2_una-thebeagle-7b-v1-q4_k_m.gguf -c 2048 ```
fedovtt/4e78eef5-005e-4d72-aca6-94e14307588b
fedovtt
2025-01-10T19:06:31Z
10
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:huggyllama/llama-7b", "base_model:adapter:huggyllama/llama-7b", "license:other", "region:us" ]
null
2025-01-10T18:20:50Z
--- library_name: peft license: other base_model: huggyllama/llama-7b tags: - axolotl - generated_from_trainer model-index: - name: 4e78eef5-005e-4d72-aca6-94e14307588b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: huggyllama/llama-7b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 2aa6c6220f63108c_train_data.json ds_type: json format: custom path: /workspace/input_data/2aa6c6220f63108c_train_data.json type: field_input: label field_instruction: question field_output: answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: fedovtt/4e78eef5-005e-4d72-aca6-94e14307588b hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 75GiB max_steps: 30 micro_batch_size: 2 mlflow_experiment_name: /tmp/2aa6c6220f63108c_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: b42b18be-7dfa-4f5a-b449-5eea97ddec10 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: b42b18be-7dfa-4f5a-b449-5eea97ddec10 warmup_steps: 10 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 4e78eef5-005e-4d72-aca6-94e14307588b This model is a fine-tuned version of [huggyllama/llama-7b](https://huggingface.co/huggyllama/llama-7b) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0000 | 1 | nan | | 0.0 | 0.0004 | 8 | nan | | 0.0 | 0.0008 | 16 | nan | | 0.0 | 0.0011 | 24 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Best000/e5dced4d-8df6-4f83-a3e1-06fb9a73b2a1
Best000
2025-01-10T19:05:04Z
10
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:rayonlabs/merged-merged-af6dd40b-32e1-43b1-adfd-8ce14d65d738-PubMedQA-138437bf-44bd-4b03-8801-d05451a9ff28", "base_model:adapter:rayonlabs/merged-merged-af6dd40b-32e1-43b1-adfd-8ce14d65d738-PubMedQA-138437bf-44bd-4b03-8801-d05451a9ff28", "region:us" ]
null
2025-01-10T18:33:55Z
--- library_name: peft base_model: rayonlabs/merged-merged-af6dd40b-32e1-43b1-adfd-8ce14d65d738-PubMedQA-138437bf-44bd-4b03-8801-d05451a9ff28 tags: - axolotl - generated_from_trainer model-index: - name: e5dced4d-8df6-4f83-a3e1-06fb9a73b2a1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: rayonlabs/merged-merged-af6dd40b-32e1-43b1-adfd-8ce14d65d738-PubMedQA-138437bf-44bd-4b03-8801-d05451a9ff28 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - ea4b9b40db84f198_train_data.json ds_type: json format: custom path: /workspace/input_data/ea4b9b40db84f198_train_data.json type: field_input: context field_instruction: question field_output: final_decision format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: Best000/e5dced4d-8df6-4f83-a3e1-06fb9a73b2a1 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/ea4b9b40db84f198_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|end_of_text|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 04651042-a779-4343-9025-d1a23af15c30 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 04651042-a779-4343-9025-d1a23af15c30 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # e5dced4d-8df6-4f83-a3e1-06fb9a73b2a1 This model is a fine-tuned version of [rayonlabs/merged-merged-af6dd40b-32e1-43b1-adfd-8ce14d65d738-PubMedQA-138437bf-44bd-4b03-8801-d05451a9ff28](https://huggingface.co/rayonlabs/merged-merged-af6dd40b-32e1-43b1-adfd-8ce14d65d738-PubMedQA-138437bf-44bd-4b03-8801-d05451a9ff28) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.5149 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 13.2355 | 0.0000 | 1 | 13.6415 | | 13.9426 | 0.0001 | 3 | 13.1736 | | 9.4378 | 0.0002 | 6 | 6.8644 | | 3.0478 | 0.0004 | 9 | 3.5149 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
dzanbek/9a519853-9e48-4e2c-b9f2-10528711d7a3
dzanbek
2025-01-10T19:04:29Z
10
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-1.5B-Instruct", "base_model:adapter:Qwen/Qwen2.5-1.5B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-01-10T18:56:29Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-1.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 9a519853-9e48-4e2c-b9f2-10528711d7a3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-1.5B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 90345863afa5cc84_train_data.json ds_type: json format: custom path: /workspace/input_data/90345863afa5cc84_train_data.json type: field_input: '' field_instruction: article field_output: highlights format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: dzanbek/9a519853-9e48-4e2c-b9f2-10528711d7a3 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 75GiB max_steps: 30 micro_batch_size: 2 mlflow_experiment_name: /tmp/90345863afa5cc84_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: fcb23765-9339-4c73-bdf6-8473b5e7fbba wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: fcb23765-9339-4c73-bdf6-8473b5e7fbba warmup_steps: 10 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 9a519853-9e48-4e2c-b9f2-10528711d7a3 This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0741 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0003 | 1 | 3.2615 | | 3.2953 | 0.0027 | 8 | 3.1890 | | 3.2127 | 0.0055 | 16 | 3.1111 | | 3.0333 | 0.0082 | 24 | 3.0741 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso07/048c47fa-88ea-4992-bf66-ae8e50cfad40
lesso07
2025-01-10T19:03:20Z
10
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:rayonlabs/merged-merged-af6dd40b-32e1-43b1-adfd-8ce14d65d738-PubMedQA-138437bf-44bd-4b03-8801-d05451a9ff28", "base_model:adapter:rayonlabs/merged-merged-af6dd40b-32e1-43b1-adfd-8ce14d65d738-PubMedQA-138437bf-44bd-4b03-8801-d05451a9ff28", "region:us" ]
null
2025-01-10T14:59:11Z
--- library_name: peft base_model: rayonlabs/merged-merged-af6dd40b-32e1-43b1-adfd-8ce14d65d738-PubMedQA-138437bf-44bd-4b03-8801-d05451a9ff28 tags: - axolotl - generated_from_trainer model-index: - name: 048c47fa-88ea-4992-bf66-ae8e50cfad40 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: rayonlabs/merged-merged-af6dd40b-32e1-43b1-adfd-8ce14d65d738-PubMedQA-138437bf-44bd-4b03-8801-d05451a9ff28 bf16: true chat_template: llama3 datasets: - data_files: - ea4b9b40db84f198_train_data.json ds_type: json format: custom path: /workspace/input_data/ea4b9b40db84f198_train_data.json type: field_input: context field_instruction: question field_output: final_decision format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: true group_by_length: false hub_model_id: lesso07/048c47fa-88ea-4992-bf66-ae8e50cfad40 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 77GiB max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/ea4b9b40db84f198_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 25 save_strategy: steps sequence_len: 1024 special_tokens: pad_token: <|end_of_text|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 04651042-a779-4343-9025-d1a23af15c30 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 04651042-a779-4343-9025-d1a23af15c30 warmup_steps: 10 weight_decay: 0.01 xformers_attention: false ``` </details><br> # 048c47fa-88ea-4992-bf66-ae8e50cfad40 This model is a fine-tuned version of [rayonlabs/merged-merged-af6dd40b-32e1-43b1-adfd-8ce14d65d738-PubMedQA-138437bf-44bd-4b03-8801-d05451a9ff28](https://huggingface.co/rayonlabs/merged-merged-af6dd40b-32e1-43b1-adfd-8ce14d65d738-PubMedQA-138437bf-44bd-4b03-8801-d05451a9ff28) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0274 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 12.5422 | 0.0001 | 1 | 12.2763 | | 0.2557 | 0.0007 | 9 | 0.4532 | | 0.1373 | 0.0014 | 18 | 0.1263 | | 0.062 | 0.0022 | 27 | 0.0433 | | 0.0013 | 0.0029 | 36 | 0.0399 | | 0.0007 | 0.0036 | 45 | 0.0365 | | 0.0059 | 0.0043 | 54 | 0.0253 | | 0.0027 | 0.0050 | 63 | 0.0254 | | 0.0309 | 0.0057 | 72 | 0.0293 | | 0.0047 | 0.0065 | 81 | 0.0307 | | 0.0044 | 0.0072 | 90 | 0.0276 | | 0.0003 | 0.0079 | 99 | 0.0274 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
thaffggg/dc3b9001-ce04-4719-8404-dcacde9243d2
thaffggg
2025-01-10T19:00:17Z
11
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:Korabbit/llama-2-ko-7b", "base_model:adapter:Korabbit/llama-2-ko-7b", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-10T18:30:36Z
--- library_name: peft base_model: Korabbit/llama-2-ko-7b tags: - axolotl - generated_from_trainer model-index: - name: dc3b9001-ce04-4719-8404-dcacde9243d2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Korabbit/llama-2-ko-7b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f925ec5472bd6eac_train_data.json ds_type: json format: custom path: /workspace/input_data/f925ec5472bd6eac_train_data.json type: field_input: description field_instruction: title field_output: text format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: thaffggg/dc3b9001-ce04-4719-8404-dcacde9243d2 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/f925ec5472bd6eac_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 9670d58f-4bf6-46f7-b76f-d44f3b5fb1f5 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 9670d58f-4bf6-46f7-b76f-d44f3b5fb1f5 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # dc3b9001-ce04-4719-8404-dcacde9243d2 This model is a fine-tuned version of [Korabbit/llama-2-ko-7b](https://huggingface.co/Korabbit/llama-2-ko-7b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6168 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.5584 | 0.0419 | 200 | 1.6168 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
kostiantynk-out/45bb82d7-4703-4e62-938b-0f37a6b3ecfd
kostiantynk-out
2025-01-10T18:59:42Z
9
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:berkeley-nest/Starling-LM-7B-alpha", "base_model:adapter:berkeley-nest/Starling-LM-7B-alpha", "license:apache-2.0", "region:us" ]
null
2025-01-10T18:47:35Z
--- library_name: peft license: apache-2.0 base_model: berkeley-nest/Starling-LM-7B-alpha tags: - axolotl - generated_from_trainer model-index: - name: 45bb82d7-4703-4e62-938b-0f37a6b3ecfd results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: berkeley-nest/Starling-LM-7B-alpha bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 5f8782025623cf05_train_data.json ds_type: json format: custom path: /workspace/input_data/5f8782025623cf05_train_data.json type: field_instruction: context field_output: question format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: kostiantynk-out/45bb82d7-4703-4e62-938b-0f37a6b3ecfd hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/5f8782025623cf05_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 0eaa2168-d144-4655-b824-847b031556c1 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 0eaa2168-d144-4655-b824-847b031556c1 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 45bb82d7-4703-4e62-938b-0f37a6b3ecfd This model is a fine-tuned version of [berkeley-nest/Starling-LM-7B-alpha](https://huggingface.co/berkeley-nest/Starling-LM-7B-alpha) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0002 | 1 | nan | | 3.3423 | 0.0006 | 3 | nan | | 7.2252 | 0.0011 | 6 | nan | | 0.0 | 0.0017 | 9 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
VERSIL91/ab530c62-b812-48a1-978d-a3445ec1cd9e
VERSIL91
2025-01-10T18:56:30Z
10
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2-1.5B-Instruct", "base_model:adapter:unsloth/Qwen2-1.5B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-01-10T18:47:15Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2-1.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: ab530c62-b812-48a1-978d-a3445ec1cd9e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml accelerate_config: dynamo_backend: inductor mixed_precision: bf16 num_machines: 1 num_processes: auto use_cpu: false adapter: lora base_model: unsloth/Qwen2-1.5B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 354d69cdce7fda99_train_data.json ds_type: json format: custom path: /workspace/input_data/354d69cdce7fda99_train_data.json type: field_instruction: instruction field_output: response format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 16 gradient_checkpointing: true group_by_length: false hub_model_id: VERSIL91/ab530c62-b812-48a1-978d-a3445ec1cd9e hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lora_target_modules: - q_proj - v_proj lr_scheduler: cosine max_memory: 0: 70GiB max_steps: 20 micro_batch_size: 2 mlflow_experiment_name: /tmp/354d69cdce7fda99_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true quantization_config: llm_int8_enable_fp32_cpu_offload: true load_in_8bit: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer torch_compile: true train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: ab530c62-b812-48a1-978d-a3445ec1cd9e wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: ab530c62-b812-48a1-978d-a3445ec1cd9e warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # ab530c62-b812-48a1-978d-a3445ec1cd9e This model is a fine-tuned version of [unsloth/Qwen2-1.5B-Instruct](https://huggingface.co/unsloth/Qwen2-1.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0146 | 1 | nan | | 0.0 | 0.0731 | 5 | nan | | 0.0 | 0.1461 | 10 | nan | | 0.0 | 0.2192 | 15 | nan | | 0.0 | 0.2922 | 20 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Logii33/nllb-peft-2-way-enta
Logii33
2025-01-10T18:54:13Z
21
0
peft
[ "peft", "safetensors", "generated_from_trainer", "base_model:facebook/nllb-200-distilled-600M", "base_model:adapter:facebook/nllb-200-distilled-600M", "license:cc-by-nc-4.0", "region:us" ]
null
2025-01-10T12:36:28Z
--- base_model: facebook/nllb-200-distilled-600M library_name: peft license: cc-by-nc-4.0 metrics: - sacrebleu tags: - generated_from_trainer model-index: - name: nllb-peft-2-way-enta results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nllb-peft-2-way-enta This model is a fine-tuned version of [facebook/nllb-200-distilled-600M](https://huggingface.co/facebook/nllb-200-distilled-600M) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.6779 - Sacrebleu: 14.6250 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Sacrebleu | |:-------------:|:-----:|:-----:|:---------------:|:---------:| | 6.7496 | 1.0 | 11250 | 6.6810 | 14.3659 | | 6.737 | 2.0 | 22500 | 6.6785 | 14.5979 | | 6.7405 | 3.0 | 33750 | 6.6779 | 14.6250 | ### Framework versions - PEFT 0.12.0 - Transformers 4.45.0.dev0 - Pytorch 2.1.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1
awrub93/dashawn
awrub93
2025-01-10T18:52:49Z
19
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-10T18:12:44Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: dashwan --- # Dashawn <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `dashwan` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('awrub93/dashawn', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
mohmdsh/whisper-with-augmentation-small-arabic_with-diacritics
mohmdsh
2025-01-10T18:48:33Z
58
1
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-01-10T14:02:28Z
--- library_name: transformers license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-with-augmentation-small-arabic_with-diacritics results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-with-augmentation-small-arabic_with-diacritics This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7564 - Wer: 0.7171 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:------:| | 0.0489 | 3.5133 | 200 | 0.7624 | 0.7171 | | 0.0143 | 7.0177 | 400 | 1.0633 | 0.7185 | | 0.005 | 10.5310 | 600 | 1.0752 | 0.7178 | | 0.0017 | 14.0354 | 800 | 1.1699 | 0.7127 | | 0.0009 | 17.5487 | 1000 | 1.1766 | 0.7163 | ### Framework versions - Transformers 4.47.0.dev0 - Pytorch 2.5.1 - Datasets 3.1.0 - Tokenizers 0.20.3
dimasik87/46ec6a4e-2713-4ac4-b897-552cb8310ac0
dimasik87
2025-01-10T18:45:55Z
12
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:01-ai/Yi-1.5-9B-Chat-16K", "base_model:adapter:01-ai/Yi-1.5-9B-Chat-16K", "license:apache-2.0", "region:us" ]
null
2025-01-10T17:46:25Z
--- library_name: peft license: apache-2.0 base_model: 01-ai/Yi-1.5-9B-Chat-16K tags: - axolotl - generated_from_trainer model-index: - name: 46ec6a4e-2713-4ac4-b897-552cb8310ac0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: 01-ai/Yi-1.5-9B-Chat-16K bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 227afdb836d95568_train_data.json ds_type: json format: custom path: /workspace/input_data/227afdb836d95568_train_data.json type: field_input: level field_instruction: name field_output: text format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: dimasik87/46ec6a4e-2713-4ac4-b897-552cb8310ac0 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 75GiB max_steps: 30 micro_batch_size: 2 mlflow_experiment_name: /tmp/227afdb836d95568_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 7d046c5f-2837-45a6-a88d-f3d18615b72c wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 7d046c5f-2837-45a6-a88d-f3d18615b72c warmup_steps: 10 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 46ec6a4e-2713-4ac4-b897-552cb8310ac0 This model is a fine-tuned version of [01-ai/Yi-1.5-9B-Chat-16K](https://huggingface.co/01-ai/Yi-1.5-9B-Chat-16K) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5118 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0000 | 1 | 2.2709 | | 1.8914 | 0.0003 | 8 | 1.7924 | | 1.6693 | 0.0006 | 16 | 1.5610 | | 1.5154 | 0.0009 | 24 | 1.5118 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
VERSIL91/e30a7f9a-d6aa-4337-a4ea-894f158b7780
VERSIL91
2025-01-10T18:44:16Z
10
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:Intel/neural-chat-7b-v3-3", "base_model:adapter:Intel/neural-chat-7b-v3-3", "license:apache-2.0", "region:us" ]
null
2025-01-10T18:06:39Z
--- library_name: peft license: apache-2.0 base_model: Intel/neural-chat-7b-v3-3 tags: - axolotl - generated_from_trainer model-index: - name: e30a7f9a-d6aa-4337-a4ea-894f158b7780 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml accelerate_config: dynamo_backend: inductor mixed_precision: bf16 num_machines: 1 num_processes: auto use_cpu: false adapter: lora base_model: Intel/neural-chat-7b-v3-3 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - fdf8963a439ed3fc_train_data.json ds_type: json format: custom path: /workspace/input_data/fdf8963a439ed3fc_train_data.json type: field_input: bad field_instruction: good field_output: sentence format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 16 gradient_checkpointing: true group_by_length: false hub_model_id: VERSIL91/e30a7f9a-d6aa-4337-a4ea-894f158b7780 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lora_target_modules: - q_proj - v_proj lr_scheduler: cosine max_memory: 0: 70GiB max_steps: 20 micro_batch_size: 2 mlflow_experiment_name: /tmp/fdf8963a439ed3fc_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true quantization_config: llm_int8_enable_fp32_cpu_offload: true load_in_8bit: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer torch_compile: true train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: e30a7f9a-d6aa-4337-a4ea-894f158b7780 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: e30a7f9a-d6aa-4337-a4ea-894f158b7780 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # e30a7f9a-d6aa-4337-a4ea-894f158b7780 This model is a fine-tuned version of [Intel/neural-chat-7b-v3-3](https://huggingface.co/Intel/neural-chat-7b-v3-3) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0002 | 1 | nan | | 0.0 | 0.0010 | 5 | nan | | 0.0 | 0.0020 | 10 | nan | | 0.0 | 0.0031 | 15 | nan | | 0.0 | 0.0041 | 20 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
PrunaAI/minh132-de-v3.5-bnb-8bit-smashed
PrunaAI
2025-01-10T18:43:04Z
7
0
null
[ "safetensors", "llama", "pruna-ai", "base_model:minh132/de-v3.5", "base_model:quantized:minh132/de-v3.5", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-10T18:33:27Z
--- thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg" base_model: minh132/de-v3.5 metrics: - memory_disk - memory_inference - inference_latency - inference_throughput - inference_CO2_emissions - inference_energy_consumption tags: - pruna-ai --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <a href="https://docs.pruna.ai/en/latest/setup/pip.html" target="_blank" rel="noopener noreferrer"> <img src="https://imgur.com/rVAgqMY.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </a> </div> <!-- header end --> [![Twitter](https://img.shields.io/twitter/follow/PrunaAI?style=social)](https://twitter.com/PrunaAI) [![GitHub](https://img.shields.io/github/followers/PrunaAI?label=Follow%20%40PrunaAI&style=social)](https://github.com/PrunaAI) [![LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue)](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-blue?style=social&logo=discord)](https://discord.gg/rskEr4BZJx) # Simply make AI models cheaper, smaller, faster, and greener! - Give a thumbs up if you like this model! - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact). - Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). - Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/) - Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help. ## Results ![image info](./plots.png) **Frequently Asked Questions** - ***How does the compression work?*** The model is compressed with llm-int8. - ***How does the model quality change?*** The quality of the model output might vary compared to the base model. - ***How is the model efficiency evaluated?*** These results were obtained with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you. - ***What is the model format?*** We use safetensors. - ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data. - ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model. - ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). - ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads. - ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases. ## Setup You can run the smashed model with these steps: 0. Check requirements from the original repo minh132/de-v3.5 installed. In particular, check python, cuda, and transformers versions. 1. Make sure that you have installed quantization related packages. ```bash pip install transformers accelerate bitsandbytes>0.37.0 ``` 2. Load & run the model. ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("PrunaAI/minh132-de-v3.5-bnb-8bit-smashed", trust_remote_code=True, device_map='auto') tokenizer = AutoTokenizer.from_pretrained("minh132/de-v3.5") input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"] outputs = model.generate(input_ids, max_new_tokens=216) tokenizer.decode(outputs[0]) ``` ## Configurations The configuration info are in `smash_config.json`. ## Credits & License The license of the smashed model follows the license of the original model. Please check the license of the original model minh132/de-v3.5 before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi. ## Want to compress other models? - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact). - Do it by yourself [here](https://docs.pruna.ai/en/latest/setup/pip.html).
tuanna08go/b2634976-6617-8249-2c29-5085e619f1de
tuanna08go
2025-01-10T18:40:35Z
6
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2-1.5B-Instruct", "base_model:adapter:unsloth/Qwen2-1.5B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-01-10T18:07:45Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2-1.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: b2634976-6617-8249-2c29-5085e619f1de results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2-1.5B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - c8a49b54a2faeab1_train_data.json ds_type: json format: custom path: /workspace/input_data/c8a49b54a2faeab1_train_data.json type: field_input: paper_abstract field_instruction: invitation field_output: content format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 5 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: tuanna08go/b2634976-6617-8249-2c29-5085e619f1de hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 5 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/c8a49b54a2faeab1_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: e1ebdca1-1f83-4029-b78d-8db2687c4b59 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: e1ebdca1-1f83-4029-b78d-8db2687c4b59 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # b2634976-6617-8249-2c29-5085e619f1de This model is a fine-tuned version of [unsloth/Qwen2-1.5B-Instruct](https://huggingface.co/unsloth/Qwen2-1.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0001 | 1 | nan | | 0.0 | 0.0008 | 10 | nan | | 0.0 | 0.0016 | 20 | nan | | 0.0 | 0.0023 | 30 | nan | | 0.0 | 0.0031 | 40 | nan | | 0.0 | 0.0039 | 50 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mradermacher/Patent-Base-Barcenas-Orca-2-7B-Slerp-GGUF
mradermacher
2025-01-10T18:38:27Z
222
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:arcee-ai/Patent-Base-Barcenas-Orca-2-7B-Slerp", "base_model:quantized:arcee-ai/Patent-Base-Barcenas-Orca-2-7B-Slerp", "endpoints_compatible", "region:us" ]
null
2025-01-10T17:32:38Z
--- base_model: arcee-ai/Patent-Base-Barcenas-Orca-2-7B-Slerp language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/arcee-ai/Patent-Base-Barcenas-Orca-2-7B-Slerp <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Patent-Base-Barcenas-Orca-2-7B-Slerp-GGUF/resolve/main/Patent-Base-Barcenas-Orca-2-7B-Slerp.Q2_K.gguf) | Q2_K | 2.6 | | | [GGUF](https://huggingface.co/mradermacher/Patent-Base-Barcenas-Orca-2-7B-Slerp-GGUF/resolve/main/Patent-Base-Barcenas-Orca-2-7B-Slerp.Q3_K_S.gguf) | Q3_K_S | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/Patent-Base-Barcenas-Orca-2-7B-Slerp-GGUF/resolve/main/Patent-Base-Barcenas-Orca-2-7B-Slerp.Q3_K_M.gguf) | Q3_K_M | 3.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Patent-Base-Barcenas-Orca-2-7B-Slerp-GGUF/resolve/main/Patent-Base-Barcenas-Orca-2-7B-Slerp.Q3_K_L.gguf) | Q3_K_L | 3.7 | | | [GGUF](https://huggingface.co/mradermacher/Patent-Base-Barcenas-Orca-2-7B-Slerp-GGUF/resolve/main/Patent-Base-Barcenas-Orca-2-7B-Slerp.IQ4_XS.gguf) | IQ4_XS | 3.7 | | | [GGUF](https://huggingface.co/mradermacher/Patent-Base-Barcenas-Orca-2-7B-Slerp-GGUF/resolve/main/Patent-Base-Barcenas-Orca-2-7B-Slerp.Q4_K_S.gguf) | Q4_K_S | 4.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Patent-Base-Barcenas-Orca-2-7B-Slerp-GGUF/resolve/main/Patent-Base-Barcenas-Orca-2-7B-Slerp.Q4_K_M.gguf) | Q4_K_M | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Patent-Base-Barcenas-Orca-2-7B-Slerp-GGUF/resolve/main/Patent-Base-Barcenas-Orca-2-7B-Slerp.Q5_K_S.gguf) | Q5_K_S | 4.8 | | | [GGUF](https://huggingface.co/mradermacher/Patent-Base-Barcenas-Orca-2-7B-Slerp-GGUF/resolve/main/Patent-Base-Barcenas-Orca-2-7B-Slerp.Q5_K_M.gguf) | Q5_K_M | 4.9 | | | [GGUF](https://huggingface.co/mradermacher/Patent-Base-Barcenas-Orca-2-7B-Slerp-GGUF/resolve/main/Patent-Base-Barcenas-Orca-2-7B-Slerp.Q6_K.gguf) | Q6_K | 5.6 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Patent-Base-Barcenas-Orca-2-7B-Slerp-GGUF/resolve/main/Patent-Base-Barcenas-Orca-2-7B-Slerp.Q8_0.gguf) | Q8_0 | 7.3 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Patent-Base-Barcenas-Orca-2-7B-Slerp-GGUF/resolve/main/Patent-Base-Barcenas-Orca-2-7B-Slerp.f16.gguf) | f16 | 13.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
macordob/clasificador-tweets
macordob
2025-01-10T18:33:04Z
9
0
transformers
[ "transformers", "safetensors", "electra", "text-classification", "classification", "generated_from_trainer", "base_model:mrm8488/electricidad-base-discriminator", "base_model:finetune:mrm8488/electricidad-base-discriminator", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-01-10T18:32:26Z
--- library_name: transformers base_model: mrm8488/electricidad-base-discriminator tags: - classification - generated_from_trainer metrics: - accuracy model-index: - name: clasificador-tweets results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clasificador-tweets This model is a fine-tuned version of [mrm8488/electricidad-base-discriminator](https://huggingface.co/mrm8488/electricidad-base-discriminator) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1347 - Accuracy: 0.6383 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 23 | 1.7416 | 0.3404 | | No log | 2.0 | 46 | 1.5459 | 0.5319 | | No log | 3.0 | 69 | 1.3115 | 0.6383 | | No log | 4.0 | 92 | 1.1876 | 0.6383 | | No log | 5.0 | 115 | 1.1770 | 0.6383 | | No log | 6.0 | 138 | 1.1774 | 0.6383 | | No log | 7.0 | 161 | 1.1591 | 0.6383 | | No log | 8.0 | 184 | 1.1297 | 0.6596 | | No log | 9.0 | 207 | 1.1315 | 0.6383 | | No log | 10.0 | 230 | 1.1347 | 0.6383 | ### Framework versions - Transformers 4.48.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0
awrub93/kanoa
awrub93
2025-01-10T18:29:23Z
18
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-10T18:09:50Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: kanoa --- # Kanoa <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `kanoa` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('awrub93/kanoa', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
BlackHillsInformationSecurity/Llama-3.2-3B-Instruct-abliterated
BlackHillsInformationSecurity
2025-01-10T18:29:08Z
12
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "abliterated", "uncensored", "conversational", "base_model:meta-llama/Llama-3.2-3B-Instruct", "base_model:finetune:meta-llama/Llama-3.2-3B-Instruct", "license:llama3.2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-10T17:15:49Z
--- library_name: transformers license: llama3.2 base_model: meta-llama/Llama-3.2-3B-Instruct tags: - abliterated - uncensored --- # 🦙 Llama-3.2-3B-Instruct-abliterated This is an uncensored version of Llama 3.2 3B Instruct created with abliteration (see [this article](https://huggingface.co/blog/mlabonne/abliteration) to know more about it). Special thanks to [@FailSpy](https://huggingface.co/failspy) for the original code and technique. Please follow him if you're interested in abliterated models. ## ollama You can use [huihui_ai/llama3.2-abliterate:3b](https://ollama.com/huihui_ai/llama3.2-abliterate:3b) directly, ``` ollama run huihui_ai/llama3.2-abliterate ``` or create your own model using the following methods. 1. Download this model. ``` huggingface-cli download huihui-ai/Llama-3.2-3B-Instruct-abliterated --local-dir ./huihui-ai/Llama-3.2-3B-Instruct-abliterated ``` 2. Get Llama-3.2-3B-Instruct model for reference. ``` ollama pull llama3.2 ``` 3. Export Llama-3.2-3B-Instruct model parameters. ``` ollama show llama3.2 --modelfile > Modelfile ``` 4. Modify Modelfile, Remove all comment lines (indicated by #) before the "FROM" keyword. Replace the "FROM" with the following content. ``` FROM huihui-ai/Llama-3.2-3B-Instruct-abliterated ``` 5. Use ollama create to then create the quantized model. ``` ollama create --quantize q4_K_M -f Modelfile Llama-3.2-3B-Instruct-abliterated-q4_K_M ``` 6. Run model ``` ollama run Llama-3.2-3B-Instruct-abliterated-q4_K_M ``` The running architecture is llama. ## Evaluations The following data has been re-evaluated and calculated as the average for each test. | Benchmark | Llama-3.2-3B-Instruct | Llama-3.2-3B-Instruct-abliterated | |-------------|-----------------------|-----------------------------------| | IF_Eval | 76.55 | **76.76** | | MMLU Pro | 27.88 | **28.00** | | TruthfulQA | 50.55 | **50.73** | | BBH | 41.81 | **41.86** | | GPQA | 28.39 | **28.41** | The script used for evaluation can be found inside this repository under /eval.sh, or click [here](https://huggingface.co/huihui-ai/Llama-3.2-3B-Instruct-abliterated/blob/main/eval.sh)
nhung03/ddf81ae0-fd56-49a8-a0be-da1168aca772
nhung03
2025-01-10T18:27:58Z
10
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/Mistral-Nemo-Instruct-2407", "base_model:adapter:unsloth/Mistral-Nemo-Instruct-2407", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-10T17:16:43Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Mistral-Nemo-Instruct-2407 tags: - axolotl - generated_from_trainer model-index: - name: ddf81ae0-fd56-49a8-a0be-da1168aca772 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Mistral-Nemo-Instruct-2407 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 2a3a0d6fea0609c5_train_data.json ds_type: json format: custom path: /workspace/input_data/2a3a0d6fea0609c5_train_data.json type: field_input: knowledge field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nhung03/ddf81ae0-fd56-49a8-a0be-da1168aca772 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/2a3a0d6fea0609c5_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 7185e2c9-93a6-4519-a3b9-075c4614c1de wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 7185e2c9-93a6-4519-a3b9-075c4614c1de warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # ddf81ae0-fd56-49a8-a0be-da1168aca772 This model is a fine-tuned version of [unsloth/Mistral-Nemo-Instruct-2407](https://huggingface.co/unsloth/Mistral-Nemo-Instruct-2407) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8120 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.0996 | 0.0175 | 200 | 0.8120 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
MinaMila/GermanCredit_ExtEval_Mistral_Base_10ep
MinaMila
2025-01-10T18:27:46Z
10
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "en", "base_model:unsloth/mistral-7b-v0.3", "base_model:finetune:unsloth/mistral-7b-v0.3", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-01-10T18:25:04Z
--- base_model: unsloth/mistral-7b-v0.3 tags: - text-generation-inference - transformers - unsloth - mistral - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** MinaMila - **License:** apache-2.0 - **Finetuned from model :** unsloth/mistral-7b-v0.3 This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
adammandic87/8801d395-e3b3-4c16-8abf-1f8e88c2c2ec
adammandic87
2025-01-10T18:26:01Z
10
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-Math-7B-Instruct", "base_model:adapter:unsloth/Qwen2.5-Math-7B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-01-10T18:18:37Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-Math-7B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 8801d395-e3b3-4c16-8abf-1f8e88c2c2ec results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-Math-7B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 67ca02675240a51f_train_data.json ds_type: json format: custom path: /workspace/input_data/67ca02675240a51f_train_data.json type: field_instruction: instruction field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: adammandic87/8801d395-e3b3-4c16-8abf-1f8e88c2c2ec hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/67ca02675240a51f_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 293589b7-5982-4d1d-bd8c-e478d3dfd31e wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 293589b7-5982-4d1d-bd8c-e478d3dfd31e warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 8801d395-e3b3-4c16-8abf-1f8e88c2c2ec This model is a fine-tuned version of [unsloth/Qwen2.5-Math-7B-Instruct](https://huggingface.co/unsloth/Qwen2.5-Math-7B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0001 | 1 | nan | | 0.0 | 0.0003 | 3 | nan | | 0.0 | 0.0007 | 6 | nan | | 0.0 | 0.0010 | 9 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mradermacher/KorMedQwen-GGUF
mradermacher
2025-01-10T18:24:33Z
324
0
transformers
[ "transformers", "gguf", "en", "base_model:minsup562/KorMedQwen", "base_model:quantized:minsup562/KorMedQwen", "endpoints_compatible", "region:us" ]
null
2025-01-10T16:22:55Z
--- base_model: minsup562/KorMedQwen language: - en library_name: transformers quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/minsup562/KorMedQwen <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/KorMedQwen-GGUF/resolve/main/KorMedQwen.Q2_K.gguf) | Q2_K | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/KorMedQwen-GGUF/resolve/main/KorMedQwen.Q3_K_S.gguf) | Q3_K_S | 3.7 | | | [GGUF](https://huggingface.co/mradermacher/KorMedQwen-GGUF/resolve/main/KorMedQwen.Q3_K_M.gguf) | Q3_K_M | 4.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/KorMedQwen-GGUF/resolve/main/KorMedQwen.Q3_K_L.gguf) | Q3_K_L | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/KorMedQwen-GGUF/resolve/main/KorMedQwen.IQ4_XS.gguf) | IQ4_XS | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/KorMedQwen-GGUF/resolve/main/KorMedQwen.Q4_K_S.gguf) | Q4_K_S | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/KorMedQwen-GGUF/resolve/main/KorMedQwen.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/KorMedQwen-GGUF/resolve/main/KorMedQwen.Q5_K_S.gguf) | Q5_K_S | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/KorMedQwen-GGUF/resolve/main/KorMedQwen.Q5_K_M.gguf) | Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/KorMedQwen-GGUF/resolve/main/KorMedQwen.Q6_K.gguf) | Q6_K | 6.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/KorMedQwen-GGUF/resolve/main/KorMedQwen.Q8_0.gguf) | Q8_0 | 8.3 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/KorMedQwen-GGUF/resolve/main/KorMedQwen.f16.gguf) | f16 | 15.5 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
GuillaumeG50/amelie
GuillaumeG50
2025-01-10T18:23:58Z
45
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-10T17:41:32Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: amelie --- # Amelie <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `amelie` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('GuillaumeG50/amelie', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
akshat57/custom-gpt2-model2
akshat57
2025-01-10T18:22:51Z
62
0
transformers
[ "transformers", "safetensors", "gpt2", "arxiv:1910.09700", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2025-01-10T18:20:28Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
kostiantynk/bf7036a8-59b1-4e0b-8311-46f1609105ab
kostiantynk
2025-01-10T18:21:14Z
10
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:heegyu/WizardVicuna2-13b-hf", "base_model:adapter:heegyu/WizardVicuna2-13b-hf", "region:us" ]
null
2025-01-10T18:03:42Z
--- library_name: peft base_model: heegyu/WizardVicuna2-13b-hf tags: - axolotl - generated_from_trainer model-index: - name: bf7036a8-59b1-4e0b-8311-46f1609105ab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: heegyu/WizardVicuna2-13b-hf bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 3ad533406285a0ea_train_data.json ds_type: json format: custom path: /workspace/input_data/3ad533406285a0ea_train_data.json type: field_instruction: dialogue field_output: reference format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: kostiantynk/bf7036a8-59b1-4e0b-8311-46f1609105ab hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/3ad533406285a0ea_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 7011d4ab-02bf-4cec-ad2f-ae7dc6130702 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 7011d4ab-02bf-4cec-ad2f-ae7dc6130702 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # bf7036a8-59b1-4e0b-8311-46f1609105ab This model is a fine-tuned version of [heegyu/WizardVicuna2-13b-hf](https://huggingface.co/heegyu/WizardVicuna2-13b-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8854 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.7899 | 0.0003 | 1 | 0.9394 | | 1.1068 | 0.0009 | 3 | 0.9390 | | 0.9386 | 0.0017 | 6 | 0.9298 | | 0.6346 | 0.0026 | 9 | 0.8854 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
kostiantynk1205/e0d9ad20-2f5f-46eb-b6c9-2bc106ee3189
kostiantynk1205
2025-01-10T18:20:21Z
10
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:heegyu/WizardVicuna2-13b-hf", "base_model:adapter:heegyu/WizardVicuna2-13b-hf", "region:us" ]
null
2025-01-10T18:02:01Z
--- library_name: peft base_model: heegyu/WizardVicuna2-13b-hf tags: - axolotl - generated_from_trainer model-index: - name: e0d9ad20-2f5f-46eb-b6c9-2bc106ee3189 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: heegyu/WizardVicuna2-13b-hf bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 3ad533406285a0ea_train_data.json ds_type: json format: custom path: /workspace/input_data/3ad533406285a0ea_train_data.json type: field_instruction: dialogue field_output: reference format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: kostiantynk1205/e0d9ad20-2f5f-46eb-b6c9-2bc106ee3189 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/3ad533406285a0ea_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 7011d4ab-02bf-4cec-ad2f-ae7dc6130702 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 7011d4ab-02bf-4cec-ad2f-ae7dc6130702 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # e0d9ad20-2f5f-46eb-b6c9-2bc106ee3189 This model is a fine-tuned version of [heegyu/WizardVicuna2-13b-hf](https://huggingface.co/heegyu/WizardVicuna2-13b-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8864 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.7899 | 0.0003 | 1 | 0.9394 | | 1.1066 | 0.0009 | 3 | 0.9390 | | 0.9387 | 0.0017 | 6 | 0.9302 | | 0.6352 | 0.0026 | 9 | 0.8864 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
FatCat87/03b1c68f-da63-4809-b491-a3f5179f6cd3
FatCat87
2025-01-10T18:19:46Z
10
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-0.5B", "base_model:adapter:unsloth/Qwen2.5-0.5B", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-10T18:11:33Z
--- license: apache-2.0 library_name: peft tags: - axolotl - generated_from_trainer base_model: unsloth/Qwen2.5-0.5B model-index: - name: 03b1c68f-da63-4809-b491-a3f5179f6cd3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-0.5B bf16: auto datasets: - data_files: - 8410094a2dce200f_train_data.json ds_type: json format: custom path: 8410094a2dce200f_train_data.json type: field: null field_input: null field_instruction: instructions field_output: target_responses field_system: null format: null no_input_format: null system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_sample_packing: false eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: FatCat87/03b1c68f-da63-4809-b491-a3f5179f6cd3 learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_r: 32 lora_target_linear: true lr_scheduler: cosine micro_batch_size: 2 model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: ./outputs/out pad_to_sequence_len: true resume_from_checkpoint: null sample_packing: true saves_per_epoch: 1 seed: 701 sequence_len: 4096 special_tokens: null strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false val_set_size: 0.1 wandb_entity: fatcat87-taopanda wandb_log_model: null wandb_mode: online wandb_name: 03b1c68f-da63-4809-b491-a3f5179f6cd3 wandb_project: subnet56 wandb_runid: 03b1c68f-da63-4809-b491-a3f5179f6cd3 wandb_watch: null warmup_ratio: 0.05 weight_decay: 0.0 xformers_attention: null ``` </details><br> [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/fatcat87-taopanda/subnet56/runs/zupghk90) # 03b1c68f-da63-4809-b491-a3f5179f6cd3 This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B](https://huggingface.co/unsloth/Qwen2.5-0.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4450 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 701 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.1014 | 0.0952 | 1 | 1.9755 | | 1.878 | 0.2857 | 3 | 1.7412 | | 1.5662 | 0.5714 | 6 | 1.5236 | | 1.5404 | 0.8571 | 9 | 1.4450 | ### Framework versions - PEFT 0.11.1 - Transformers 4.42.3 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1
Omartificial-Intelligence-Space/Marbert-all-nli-triplet-Matryoshka
Omartificial-Intelligence-Space
2025-01-10T18:14:19Z
407
1
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "mteb", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:557850", "loss:MatryoshkaLoss", "loss:MultipleNegativesRankingLoss", "ar", "dataset:Omartificial-Intelligence-Space/Arabic-NLi-Triplet", "arxiv:1908.10084", "arxiv:2205.13147", "arxiv:1705.00652", "arxiv:2407.21139", "base_model:UBC-NLP/MARBERTv2", "base_model:finetune:UBC-NLP/MARBERTv2", "license:apache-2.0", "model-index", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-17T11:23:10Z
--- language: - ar library_name: sentence-transformers tags: - mteb - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:557850 - loss:MatryoshkaLoss - loss:MultipleNegativesRankingLoss base_model: UBC-NLP/MARBERTv2 datasets: - Omartificial-Intelligence-Space/Arabic-NLi-Triplet metrics: - pearson_cosine - spearman_cosine - pearson_manhattan - spearman_manhattan - pearson_euclidean - spearman_euclidean - pearson_dot - spearman_dot - pearson_max - spearman_max widget: - source_sentence: ذكر متوازن بعناية يقف على قدم واحدة بالقرب من منطقة شاطئ المحيط النظيفة sentences: - رجل يقدم عرضاً - هناك رجل بالخارج قرب الشاطئ - رجل يجلس على أريكه - source_sentence: رجل يقفز إلى سريره القذر sentences: - السرير قذر. - رجل يضحك أثناء غسيل الملابس - الرجل على القمر - source_sentence: الفتيات بالخارج sentences: - امرأة تلف الخيط إلى كرات بجانب كومة من الكرات - فتيان يركبان في جولة متعة - >- ثلاث فتيات يقفون سوية في غرفة واحدة تستمع وواحدة تكتب على الحائط والثالثة تتحدث إليهن - source_sentence: الرجل يرتدي قميصاً أزرق. sentences: - >- رجل يرتدي قميصاً أزرق يميل إلى الجدار بجانب الطريق مع شاحنة زرقاء وسيارة حمراء مع الماء في الخلفية. - كتاب القصص مفتوح - رجل يرتدي قميص أسود يعزف على الجيتار. - source_sentence: يجلس شاب ذو شعر أشقر على الحائط يقرأ جريدة بينما تمر امرأة وفتاة شابة. sentences: - ذكر شاب ينظر إلى جريدة بينما تمر إمرأتان بجانبه - رجل يستلقي على وجهه على مقعد في الحديقة. - الشاب نائم بينما الأم تقود ابنتها إلى الحديقة pipeline_tag: sentence-similarity model-index: - name: Omartificial-Intelligence-Space/Marbert-all-nli-triplet-Matryoshka results: - dataset: config: ar name: MTEB MintakaRetrieval (ar) revision: efa78cc2f74bbcd21eff2261f9e13aebe40b814e split: test type: mintaka/mmteb-mintaka metrics: - type: main_score value: 16.058 - type: map_at_1 value: 8.398 - type: map_at_3 value: 11.681 - type: map_at_5 value: 12.616 - type: map_at_10 value: 13.281 - type: ndcg_at_1 value: 8.398 - type: ndcg_at_3 value: 12.75 - type: ndcg_at_5 value: 14.453 - type: ndcg_at_10 value: 16.058 - type: recall_at_1 value: 8.398 - type: recall_at_3 value: 15.842 - type: recall_at_5 value: 20.018 - type: recall_at_10 value: 24.966 - type: precision_at_1 value: 8.398 - type: precision_at_3 value: 5.281 - type: precision_at_5 value: 4.004 - type: precision_at_10 value: 2.497 - type: mrr_at_1 value: 8.3976 - type: mrr_at_3 value: 11.681 - type: mrr_at_5 value: 12.6161 - type: mrr_at_10 value: 13.2812 task: type: Retrieval - dataset: config: ar name: MTEB MIRACLRetrievalHardNegatives (ar) revision: 95c8db7d4a6e9c1d8a60601afd63d553ae20a2eb split: dev type: miracl/mmteb-miracl-hardnegatives metrics: - type: main_score value: 15.853 - type: map_at_1 value: 5.867 - type: map_at_3 value: 9.003 - type: map_at_5 value: 10.068 - type: map_at_10 value: 11.294 - type: ndcg_at_1 value: 9.0 - type: ndcg_at_3 value: 11.363 - type: ndcg_at_5 value: 12.986 - type: ndcg_at_10 value: 15.853 - type: recall_at_1 value: 5.867 - type: recall_at_3 value: 12.639 - type: recall_at_5 value: 16.649 - type: recall_at_10 value: 24.422 - type: precision_at_1 value: 9.0 - type: precision_at_3 value: 7.1 - type: precision_at_5 value: 5.82 - type: precision_at_10 value: 4.38 - type: mrr_at_1 value: 9.0 - type: mrr_at_3 value: 13.4667 - type: mrr_at_5 value: 14.6367 - type: mrr_at_10 value: 16.0177 task: type: Retrieval - dataset: config: ar name: MTEB MLQARetrieval (ar) revision: 397ed406c1a7902140303e7faf60fff35b58d285 split: validation type: mlqa/mmteb-mlqa metrics: - type: main_score value: 58.919 - type: map_at_1 value: 44.874 - type: map_at_3 value: 51.902 - type: map_at_5 value: 53.198 - type: map_at_10 value: 54.181 - type: ndcg_at_1 value: 44.874 - type: ndcg_at_3 value: 54.218 - type: ndcg_at_5 value: 56.541 - type: ndcg_at_10 value: 58.919 - type: recall_at_1 value: 44.874 - type: recall_at_3 value: 60.928 - type: recall_at_5 value: 66.538 - type: recall_at_10 value: 73.888 - type: precision_at_1 value: 44.874 - type: precision_at_3 value: 20.309 - type: precision_at_5 value: 13.308 - type: precision_at_10 value: 7.389 - type: mrr_at_1 value: 44.8743 - type: mrr_at_3 value: 51.902 - type: mrr_at_5 value: 53.1979 - type: mrr_at_10 value: 54.1809 task: type: Retrieval - dataset: config: default name: MTEB SadeemQuestionRetrieval (ar) revision: 3cb0752b182e5d5d740df547748b06663c8e0bd9 split: test type: sadeem/mmteb-sadeem metrics: - type: main_score value: 57.068 - type: map_at_1 value: 24.414 - type: map_at_3 value: 45.333 - type: map_at_5 value: 46.695 - type: map_at_10 value: 47.429 - type: ndcg_at_1 value: 24.414 - type: ndcg_at_3 value: 52.828 - type: ndcg_at_5 value: 55.288 - type: ndcg_at_10 value: 57.068 - type: recall_at_1 value: 24.414 - type: recall_at_3 value: 74.725 - type: recall_at_5 value: 80.708 - type: recall_at_10 value: 86.213 - type: precision_at_1 value: 24.414 - type: precision_at_3 value: 24.908 - type: precision_at_5 value: 16.142 - type: precision_at_10 value: 8.621 - type: mrr_at_1 value: 25.2753 - type: mrr_at_3 value: 45.58 - type: mrr_at_5 value: 46.8581 - type: mrr_at_10 value: 47.6414 task: type: Retrieval - dataset: config: default name: MTEB BIOSSES (default) revision: d3fb88f8f02e40887cd149695127462bbcf29b4a split: test type: mteb/biosses-sts metrics: - type: cosine_pearson value: 49.25240527202211 - type: cosine_spearman value: 51.87708566904703 - type: euclidean_pearson value: 49.790877425774696 - type: euclidean_spearman value: 51.725274981021855 - type: main_score value: 51.87708566904703 - type: manhattan_pearson value: 52.31560776967401 - type: manhattan_spearman value: 54.28979124658997 task: type: STS - dataset: config: default name: MTEB SICK-R (default) revision: 20a6d6f312dd54037fe07a32d58e5e168867909d split: test type: mteb/sickr-sts metrics: - type: cosine_pearson value: 65.81089479351829 - type: cosine_spearman value: 65.80163441928238 - type: euclidean_pearson value: 65.2718874370746 - type: euclidean_spearman value: 65.92429031695988 - type: main_score value: 65.80163441928238 - type: manhattan_pearson value: 65.28701419332383 - type: manhattan_spearman value: 65.94229793651319 task: type: STS - dataset: config: default name: MTEB STS12 (default) revision: a0d554a64d88156834ff5ae9920b964011b16384 split: test type: mteb/sts12-sts metrics: - type: cosine_pearson value: 65.11346939995998 - type: cosine_spearman value: 63.00297824477175 - type: euclidean_pearson value: 63.85320097970942 - type: euclidean_spearman value: 63.25151047701848 - type: main_score value: 63.00297824477175 - type: manhattan_pearson value: 64.40291990853984 - type: manhattan_spearman value: 63.63497232399945 task: type: STS - dataset: config: default name: MTEB STS13 (default) revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca split: test type: mteb/sts13-sts metrics: - type: cosine_pearson value: 52.2735823521702 - type: cosine_spearman value: 52.23198766098021 - type: euclidean_pearson value: 54.12467577456837 - type: euclidean_spearman value: 52.40014028261351 - type: main_score value: 52.23198766098021 - type: manhattan_pearson value: 54.38052509834607 - type: manhattan_spearman value: 52.70836595958237 task: type: STS - dataset: config: default name: MTEB STS14 (default) revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 split: test type: mteb/sts14-sts metrics: - type: cosine_pearson value: 58.55307076840419 - type: cosine_spearman value: 59.2261024017655 - type: euclidean_pearson value: 59.55734715751804 - type: euclidean_spearman value: 60.135899681574834 - type: main_score value: 59.2261024017655 - type: manhattan_pearson value: 59.99274396356966 - type: manhattan_spearman value: 60.44325356503041 task: type: STS - dataset: config: default name: MTEB STS15 (default) revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 split: test type: mteb/sts15-sts metrics: - type: cosine_pearson value: 68.94418532602707 - type: cosine_spearman value: 70.01912156519296 - type: euclidean_pearson value: 71.67028435860581 - type: euclidean_spearman value: 71.48252471922122 - type: main_score value: 70.01912156519296 - type: manhattan_pearson value: 71.9587452337792 - type: manhattan_spearman value: 71.69160519065173 task: type: STS - dataset: config: default name: MTEB STS16 (default) revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 split: test type: mteb/sts16-sts metrics: - type: cosine_pearson value: 62.81619254162203 - type: cosine_spearman value: 64.98814526698425 - type: euclidean_pearson value: 66.43531796610995 - type: euclidean_spearman value: 66.53768451143964 - type: main_score value: 64.98814526698425 - type: manhattan_pearson value: 66.57822125651369 - type: manhattan_spearman value: 66.71830390508079 task: type: STS - dataset: config: ar-ar name: MTEB STS17 (ar-ar) revision: faeb762787bd10488a50c8b5be4a3b82e411949c split: test type: mteb/sts17-crosslingual-sts metrics: - type: cosine_pearson value: 81.68055610903552 - type: cosine_spearman value: 82.18125783448961 - type: euclidean_pearson value: 80.5422740473486 - type: euclidean_spearman value: 81.79456727036232 - type: main_score value: 82.18125783448961 - type: manhattan_pearson value: 80.43564733654793 - type: manhattan_spearman value: 81.76103816207625 task: type: STS - dataset: config: ar name: MTEB STS22 (ar) revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 split: test type: mteb/sts22-crosslingual-sts metrics: - type: cosine_pearson value: 51.33460593849487 - type: cosine_spearman value: 58.07741072443786 - type: euclidean_pearson value: 54.26430308336828 - type: euclidean_spearman value: 58.8384539429318 - type: main_score value: 58.07741072443786 - type: manhattan_pearson value: 54.41587176266624 - type: manhattan_spearman value: 58.831993325957086 task: type: STS - dataset: config: default name: MTEB STSBenchmark (default) revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 split: test type: mteb/stsbenchmark-sts metrics: - type: cosine_pearson value: 61.11956207522431 - type: cosine_spearman value: 61.16768766134144 - type: euclidean_pearson value: 64.44141934993837 - type: euclidean_spearman value: 63.450379593077066 - type: main_score value: 61.16768766134144 - type: manhattan_pearson value: 64.43852352892529 - type: manhattan_spearman value: 63.57630045107761 task: type: STS - dataset: config: default name: MTEB SummEval (default) revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c split: test type: mteb/summeval metrics: - type: cosine_pearson value: 29.583566160417668 - type: cosine_spearman value: 29.534419950502212 - type: dot_pearson value: 28.13970643170574 - type: dot_spearman value: 28.907762267009073 - type: main_score value: 29.534419950502212 - type: pearson value: 29.583566160417668 - type: spearman value: 29.534419950502212 task: type: Summarization - name: SentenceTransformer based on UBC-NLP/MARBERTv2 results: - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts test 768 type: sts-test-768 metrics: - type: pearson_cosine value: 0.611168498883907 name: Pearson Cosine - type: spearman_cosine value: 0.6116733587939157 name: Spearman Cosine - type: pearson_manhattan value: 0.6443687886661206 name: Pearson Manhattan - type: spearman_manhattan value: 0.6358107360369792 name: Spearman Manhattan - type: pearson_euclidean value: 0.644404066642609 name: Pearson Euclidean - type: spearman_euclidean value: 0.6345893921062774 name: Spearman Euclidean - type: pearson_dot value: 0.4723643245352202 name: Pearson Dot - type: spearman_dot value: 0.44844519905410135 name: Spearman Dot - type: pearson_max value: 0.644404066642609 name: Pearson Max - type: spearman_max value: 0.6358107360369792 name: Spearman Max - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts test 512 type: sts-test-512 metrics: - type: pearson_cosine value: 0.6664570291720014 name: Pearson Cosine - type: spearman_cosine value: 0.6647687532159875 name: Spearman Cosine - type: pearson_manhattan value: 0.6429976947418544 name: Pearson Manhattan - type: spearman_manhattan value: 0.6334753432753939 name: Spearman Manhattan - type: pearson_euclidean value: 0.6466249455585532 name: Pearson Euclidean - type: spearman_euclidean value: 0.6373181315122213 name: Spearman Euclidean - type: pearson_dot value: 0.5370129457359227 name: Pearson Dot - type: spearman_dot value: 0.5241649973373772 name: Spearman Dot - type: pearson_max value: 0.6664570291720014 name: Pearson Max - type: spearman_max value: 0.6647687532159875 name: Spearman Max - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts test 256 type: sts-test-256 metrics: - type: pearson_cosine value: 0.6601248277308522 name: Pearson Cosine - type: spearman_cosine value: 0.6592739654246011 name: Spearman Cosine - type: pearson_manhattan value: 0.6361644543165994 name: Pearson Manhattan - type: spearman_manhattan value: 0.6250621947417249 name: Spearman Manhattan - type: pearson_euclidean value: 0.6408426652431157 name: Pearson Euclidean - type: spearman_euclidean value: 0.6300109524350457 name: Spearman Euclidean - type: pearson_dot value: 0.5250513197384045 name: Pearson Dot - type: spearman_dot value: 0.5154779060125071 name: Spearman Dot - type: pearson_max value: 0.6601248277308522 name: Pearson Max - type: spearman_max value: 0.6592739654246011 name: Spearman Max - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts test 128 type: sts-test-128 metrics: - type: pearson_cosine value: 0.6549481034721005 name: Pearson Cosine - type: spearman_cosine value: 0.6523201621940143 name: Spearman Cosine - type: pearson_manhattan value: 0.6342700090917214 name: Pearson Manhattan - type: spearman_manhattan value: 0.6226791710099966 name: Spearman Manhattan - type: pearson_euclidean value: 0.6397224689512541 name: Pearson Euclidean - type: spearman_euclidean value: 0.6280973341704362 name: Spearman Euclidean - type: pearson_dot value: 0.47240889358810917 name: Pearson Dot - type: spearman_dot value: 0.4633669926372942 name: Spearman Dot - type: pearson_max value: 0.6549481034721005 name: Pearson Max - type: spearman_max value: 0.6523201621940143 name: Spearman Max - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts test 64 type: sts-test-64 metrics: - type: pearson_cosine value: 0.6367217585211098 name: Pearson Cosine - type: spearman_cosine value: 0.6370191671711296 name: Spearman Cosine - type: pearson_manhattan value: 0.6263730801254332 name: Pearson Manhattan - type: spearman_manhattan value: 0.6118927366012856 name: Spearman Manhattan - type: pearson_euclidean value: 0.6327699647617465 name: Pearson Euclidean - type: spearman_euclidean value: 0.6180184829867724 name: Spearman Euclidean - type: pearson_dot value: 0.41169381399943167 name: Pearson Dot - type: spearman_dot value: 0.40444222536491986 name: Spearman Dot - type: pearson_max value: 0.6367217585211098 name: Pearson Max - type: spearman_max value: 0.6370191671711296 name: Spearman Max license: apache-2.0 --- # SentenceTransformer based on UBC-NLP/MARBERTv2 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [UBC-NLP/MARBERTv2](https://huggingface.co/UBC-NLP/MARBERTv2) on the Omartificial-Intelligence-Space/arabic-n_li-triplet dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [UBC-NLP/MARBERTv2](https://huggingface.co/UBC-NLP/MARBERTv2) <!-- at revision fe88db9db8ccdb0c4e1627495f405c44a5f89066 --> - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity - **Training Dataset:** - Omartificial-Intelligence-Space/arabic-n_li-triplet <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("Omartificial-Intelligence-Space/Marbert-all-nli-triplet") # Run inference sentences = [ 'يجلس شاب ذو شعر أشقر على الحائط يقرأ جريدة بينما تمر امرأة وفتاة شابة.', 'ذكر شاب ينظر إلى جريدة بينما تمر إمرأتان بجانبه', 'الشاب نائم بينما الأم تقود ابنتها إلى الحديقة', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Semantic Similarity * Dataset: `sts-test-768` * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.6112 | | **spearman_cosine** | **0.6117** | | pearson_manhattan | 0.6444 | | spearman_manhattan | 0.6358 | | pearson_euclidean | 0.6444 | | spearman_euclidean | 0.6346 | | pearson_dot | 0.4724 | | spearman_dot | 0.4484 | | pearson_max | 0.6444 | | spearman_max | 0.6358 | #### Semantic Similarity * Dataset: `sts-test-512` * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.6665 | | **spearman_cosine** | **0.6648** | | pearson_manhattan | 0.643 | | spearman_manhattan | 0.6335 | | pearson_euclidean | 0.6466 | | spearman_euclidean | 0.6373 | | pearson_dot | 0.537 | | spearman_dot | 0.5242 | | pearson_max | 0.6665 | | spearman_max | 0.6648 | #### Semantic Similarity * Dataset: `sts-test-256` * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.6601 | | **spearman_cosine** | **0.6593** | | pearson_manhattan | 0.6362 | | spearman_manhattan | 0.6251 | | pearson_euclidean | 0.6408 | | spearman_euclidean | 0.63 | | pearson_dot | 0.5251 | | spearman_dot | 0.5155 | | pearson_max | 0.6601 | | spearman_max | 0.6593 | #### Semantic Similarity * Dataset: `sts-test-128` * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.6549 | | **spearman_cosine** | **0.6523** | | pearson_manhattan | 0.6343 | | spearman_manhattan | 0.6227 | | pearson_euclidean | 0.6397 | | spearman_euclidean | 0.6281 | | pearson_dot | 0.4724 | | spearman_dot | 0.4634 | | pearson_max | 0.6549 | | spearman_max | 0.6523 | #### Semantic Similarity * Dataset: `sts-test-64` * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:----------| | pearson_cosine | 0.6367 | | **spearman_cosine** | **0.637** | | pearson_manhattan | 0.6264 | | spearman_manhattan | 0.6119 | | pearson_euclidean | 0.6328 | | spearman_euclidean | 0.618 | | pearson_dot | 0.4117 | | spearman_dot | 0.4044 | | pearson_max | 0.6367 | | spearman_max | 0.637 | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### Omartificial-Intelligence-Space/arabic-n_li-triplet * Dataset: Omartificial-Intelligence-Space/arabic-n_li-triplet * Size: 557,850 training samples * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | negative | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | string | | details | <ul><li>min: 4 tokens</li><li>mean: 7.68 tokens</li><li>max: 43 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.66 tokens</li><li>max: 35 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 10.47 tokens</li><li>max: 40 tokens</li></ul> | * Samples: | anchor | positive | negative | |:------------------------------------------------------------|:--------------------------------------------|:------------------------------------| | <code>شخص على حصان يقفز فوق طائرة معطلة</code> | <code>شخص في الهواء الطلق، على حصان.</code> | <code>شخص في مطعم، يطلب عجة.</code> | | <code>أطفال يبتسمون و يلوحون للكاميرا</code> | <code>هناك أطفال حاضرون</code> | <code>الاطفال يتجهمون</code> | | <code>صبي يقفز على لوح التزلج في منتصف الجسر الأحمر.</code> | <code>الفتى يقوم بخدعة التزلج</code> | <code>الصبي يتزلج على الرصيف</code> | * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Evaluation Dataset #### Omartificial-Intelligence-Space/arabic-n_li-triplet * Dataset: Omartificial-Intelligence-Space/arabic-n_li-triplet * Size: 6,584 evaluation samples * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | negative | |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | string | | details | <ul><li>min: 4 tokens</li><li>mean: 14.78 tokens</li><li>max: 70 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 7.41 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 7.95 tokens</li><li>max: 21 tokens</li></ul> | * Samples: | anchor | positive | negative | |:-----------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------|:---------------------------------------------------| | <code>امرأتان يتعانقان بينما يحملان حزمة</code> | <code>إمرأتان يحملان حزمة</code> | <code>الرجال يتشاجرون خارج مطعم</code> | | <code>طفلين صغيرين يرتديان قميصاً أزرق، أحدهما يرتدي الرقم 9 والآخر يرتدي الرقم 2 يقفان على خطوات خشبية في الحمام ويغسلان أيديهما في المغسلة.</code> | <code>طفلين يرتديان قميصاً مرقماً يغسلون أيديهم</code> | <code>طفلين يرتديان سترة يذهبان إلى المدرسة</code> | | <code>رجل يبيع الدونات لعميل خلال معرض عالمي أقيم في مدينة أنجليس</code> | <code>رجل يبيع الدونات لعميل</code> | <code>امرأة تشرب قهوتها في مقهى صغير</code> | * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `num_train_epochs`: 1 - `warmup_ratio`: 0.1 - `fp16`: True - `batch_sampler`: no_duplicates #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `prediction_loss_only`: True - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | sts-test-128_spearman_cosine | sts-test-256_spearman_cosine | sts-test-512_spearman_cosine | sts-test-64_spearman_cosine | sts-test-768_spearman_cosine | |:------:|:----:|:-------------:|:----------------------------:|:----------------------------:|:----------------------------:|:---------------------------:|:----------------------------:| | 0.0229 | 200 | 25.0771 | - | - | - | - | - | | 0.0459 | 400 | 9.1435 | - | - | - | - | - | | 0.0688 | 600 | 8.0492 | - | - | - | - | - | | 0.0918 | 800 | 7.1378 | - | - | - | - | - | | 0.1147 | 1000 | 7.6249 | - | - | - | - | - | | 0.1377 | 1200 | 7.3604 | - | - | - | - | - | | 0.1606 | 1400 | 6.5783 | - | - | - | - | - | | 0.1835 | 1600 | 6.4145 | - | - | - | - | - | | 0.2065 | 1800 | 6.1781 | - | - | - | - | - | | 0.2294 | 2000 | 6.2375 | - | - | - | - | - | | 0.2524 | 2200 | 6.2587 | - | - | - | - | - | | 0.2753 | 2400 | 6.0826 | - | - | - | - | - | | 0.2983 | 2600 | 6.1514 | - | - | - | - | - | | 0.3212 | 2800 | 5.6949 | - | - | - | - | - | | 0.3442 | 3000 | 6.0062 | - | - | - | - | - | | 0.3671 | 3200 | 5.7551 | - | - | - | - | - | | 0.3900 | 3400 | 5.658 | - | - | - | - | - | | 0.4130 | 3600 | 5.7135 | - | - | - | - | - | | 0.4359 | 3800 | 5.3909 | - | - | - | - | - | | 0.4589 | 4000 | 5.5068 | - | - | - | - | - | | 0.4818 | 4200 | 5.2261 | - | - | - | - | - | | 0.5048 | 4400 | 5.1674 | - | - | - | - | - | | 0.5277 | 4600 | 5.0427 | - | - | - | - | - | | 0.5506 | 4800 | 5.3824 | - | - | - | - | - | | 0.5736 | 5000 | 5.3063 | - | - | - | - | - | | 0.5965 | 5200 | 5.2174 | - | - | - | - | - | | 0.6195 | 5400 | 5.2116 | - | - | - | - | - | | 0.6424 | 5600 | 5.2226 | - | - | - | - | - | | 0.6654 | 5800 | 5.2051 | - | - | - | - | - | | 0.6883 | 6000 | 5.204 | - | - | - | - | - | | 0.7113 | 6200 | 5.154 | - | - | - | - | - | | 0.7342 | 6400 | 5.0236 | - | - | - | - | - | | 0.7571 | 6600 | 4.9476 | - | - | - | - | - | | 0.7801 | 6800 | 4.0164 | - | - | - | - | - | | 0.8030 | 7000 | 3.5707 | - | - | - | - | - | | 0.8260 | 7200 | 3.3586 | - | - | - | - | - | | 0.8489 | 7400 | 3.2376 | - | - | - | - | - | | 0.8719 | 7600 | 3.0282 | - | - | - | - | - | | 0.8948 | 7800 | 2.901 | - | - | - | - | - | | 0.9177 | 8000 | 2.9371 | - | - | - | - | - | | 0.9407 | 8200 | 2.8362 | - | - | - | - | - | | 0.9636 | 8400 | 2.8121 | - | - | - | - | - | | 0.9866 | 8600 | 2.7105 | - | - | - | - | - | | 1.0 | 8717 | - | 0.6523 | 0.6593 | 0.6648 | 0.6370 | 0.6117 | ### Framework Versions - Python: 3.9.18 - Sentence Transformers: 3.0.1 - Transformers: 4.40.0 - PyTorch: 2.2.2+cu121 - Accelerate: 0.26.1 - Datasets: 2.19.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ## <span style="color:blue">Acknowledgments</span> The author would like to thank Prince Sultan University for their invaluable support in this project. Their contributions and resources have been instrumental in the development and fine-tuning of these models. ```markdown ## Citation If you use the Arabic Matryoshka Embeddings Model, please cite it as follows: ```bibtex @misc{nacar2024enhancingsemanticsimilarityunderstanding, title={Enhancing Semantic Similarity Understanding in Arabic NLP with Nested Embedding Learning}, author={Omer Nacar and Anis Koubaa}, year={2024}, eprint={2407.21139}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2407.21139}, }
VaidikML0508/dqn-SpaceInvadersNoFrameskip-v4
VaidikML0508
2025-01-10T18:13:48Z
6
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2025-01-10T18:13:07Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 615.50 +/- 233.72 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib SBX (SB3 + Jax): https://github.com/araffin/sbx Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga VaidikML0508 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga VaidikML0508 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga VaidikML0508 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
kokovova/d2ace4ce-caf2-4710-bec6-778c4b391944
kokovova
2025-01-10T18:12:08Z
10
0
peft
[ "peft", "safetensors", "olmo", "axolotl", "generated_from_trainer", "base_model:katuni4ka/tiny-random-olmo-hf", "base_model:adapter:katuni4ka/tiny-random-olmo-hf", "region:us" ]
null
2025-01-10T18:11:47Z
--- library_name: peft base_model: katuni4ka/tiny-random-olmo-hf tags: - axolotl - generated_from_trainer model-index: - name: d2ace4ce-caf2-4710-bec6-778c4b391944 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: katuni4ka/tiny-random-olmo-hf bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 8386a911ff2e26e3_train_data.json ds_type: json format: custom path: /workspace/input_data/8386a911ff2e26e3_train_data.json type: field_input: keyphrases field_instruction: title field_output: abstract format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: kokovova/d2ace4ce-caf2-4710-bec6-778c4b391944 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 75GiB max_steps: 30 micro_batch_size: 2 mlflow_experiment_name: /tmp/8386a911ff2e26e3_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 7ce4de99-20ce-46b1-beb1-963ceb5dedd8 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 7ce4de99-20ce-46b1-beb1-963ceb5dedd8 warmup_steps: 10 weight_decay: 0.01 xformers_attention: true ``` </details><br> # d2ace4ce-caf2-4710-bec6-778c4b391944 This model is a fine-tuned version of [katuni4ka/tiny-random-olmo-hf](https://huggingface.co/katuni4ka/tiny-random-olmo-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 10.8094 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0044 | 1 | 10.8436 | | 10.8412 | 0.0354 | 8 | 10.8383 | | 10.829 | 0.0709 | 16 | 10.8216 | | 10.8132 | 0.1063 | 24 | 10.8094 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
filipesantoscv11/e9f22ee7-dfae-4809-90da-c3efea29dda8
filipesantoscv11
2025-01-10T18:11:37Z
10
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:heegyu/WizardVicuna2-13b-hf", "base_model:adapter:heegyu/WizardVicuna2-13b-hf", "region:us" ]
null
2025-01-10T17:51:41Z
--- library_name: peft base_model: heegyu/WizardVicuna2-13b-hf tags: - axolotl - generated_from_trainer model-index: - name: e9f22ee7-dfae-4809-90da-c3efea29dda8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: heegyu/WizardVicuna2-13b-hf bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 3ad533406285a0ea_train_data.json ds_type: json format: custom path: /workspace/input_data/3ad533406285a0ea_train_data.json type: field_instruction: dialogue field_output: reference format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: filipesantoscv11/e9f22ee7-dfae-4809-90da-c3efea29dda8 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 75GiB max_steps: 30 micro_batch_size: 2 mlflow_experiment_name: /tmp/3ad533406285a0ea_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 7011d4ab-02bf-4cec-ad2f-ae7dc6130702 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 7011d4ab-02bf-4cec-ad2f-ae7dc6130702 warmup_steps: 10 weight_decay: 0.01 xformers_attention: true ``` </details><br> # e9f22ee7-dfae-4809-90da-c3efea29dda8 This model is a fine-tuned version of [heegyu/WizardVicuna2-13b-hf](https://huggingface.co/heegyu/WizardVicuna2-13b-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8008 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0003 | 1 | 0.9095 | | 0.9153 | 0.0023 | 8 | 0.8859 | | 0.7232 | 0.0046 | 16 | 0.8223 | | 0.8235 | 0.0069 | 24 | 0.8008 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
leondotle/Gemma-2-2B-it-bnb-func-call
leondotle
2025-01-10T18:07:59Z
45
0
transformers
[ "transformers", "gguf", "gemma2", "text-generation-inference", "unsloth", "en", "base_model:unsloth/gemma-2-2b-it-bnb-4bit", "base_model:quantized:unsloth/gemma-2-2b-it-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-10T18:06:46Z
--- base_model: unsloth/gemma-2-2b-it-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gemma2 - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** leondotle - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-2-2b-it-bnb-4bit This gemma2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
cunghoctienganh/b26876a9-f446-4de6-9dce-2b4cba2ee973
cunghoctienganh
2025-01-10T18:06:17Z
9
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:berkeley-nest/Starling-LM-7B-alpha", "base_model:adapter:berkeley-nest/Starling-LM-7B-alpha", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-10T17:31:39Z
--- library_name: peft license: apache-2.0 base_model: berkeley-nest/Starling-LM-7B-alpha tags: - axolotl - generated_from_trainer model-index: - name: b26876a9-f446-4de6-9dce-2b4cba2ee973 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: berkeley-nest/Starling-LM-7B-alpha bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 5f8782025623cf05_train_data.json ds_type: json format: custom path: /workspace/input_data/5f8782025623cf05_train_data.json type: field_instruction: context field_output: question format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: cunghoctienganh/b26876a9-f446-4de6-9dce-2b4cba2ee973 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/5f8782025623cf05_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 0eaa2168-d144-4655-b824-847b031556c1 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 0eaa2168-d144-4655-b824-847b031556c1 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # b26876a9-f446-4de6-9dce-2b4cba2ee973 This model is a fine-tuned version of [berkeley-nest/Starling-LM-7B-alpha](https://huggingface.co/berkeley-nest/Starling-LM-7B-alpha) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2521 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 6.2058 | 0.0367 | 200 | 1.2521 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
PrunaAI/hrasto-llamas2_tok_blimp-bnb-8bit-smashed
PrunaAI
2025-01-10T18:05:40Z
7
0
null
[ "safetensors", "llama", "pruna-ai", "base_model:hrasto/llamas2_tok_blimp", "base_model:quantized:hrasto/llamas2_tok_blimp", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-10T18:05:32Z
--- thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg" base_model: hrasto/llamas2_tok_blimp metrics: - memory_disk - memory_inference - inference_latency - inference_throughput - inference_CO2_emissions - inference_energy_consumption tags: - pruna-ai --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <a href="https://docs.pruna.ai/en/latest/setup/pip.html" target="_blank" rel="noopener noreferrer"> <img src="https://imgur.com/rVAgqMY.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </a> </div> <!-- header end --> [![Twitter](https://img.shields.io/twitter/follow/PrunaAI?style=social)](https://twitter.com/PrunaAI) [![GitHub](https://img.shields.io/github/followers/PrunaAI?label=Follow%20%40PrunaAI&style=social)](https://github.com/PrunaAI) [![LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue)](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-blue?style=social&logo=discord)](https://discord.gg/rskEr4BZJx) # Simply make AI models cheaper, smaller, faster, and greener! - Give a thumbs up if you like this model! - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact). - Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). - Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/) - Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help. ## Results ![image info](./plots.png) **Frequently Asked Questions** - ***How does the compression work?*** The model is compressed with llm-int8. - ***How does the model quality change?*** The quality of the model output might vary compared to the base model. - ***How is the model efficiency evaluated?*** These results were obtained with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you. - ***What is the model format?*** We use safetensors. - ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data. - ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model. - ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). - ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads. - ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases. ## Setup You can run the smashed model with these steps: 0. Check requirements from the original repo hrasto/llamas2_tok_blimp installed. In particular, check python, cuda, and transformers versions. 1. Make sure that you have installed quantization related packages. ```bash pip install transformers accelerate bitsandbytes>0.37.0 ``` 2. Load & run the model. ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("PrunaAI/hrasto-llamas2_tok_blimp-bnb-8bit-smashed", trust_remote_code=True, device_map='auto') tokenizer = AutoTokenizer.from_pretrained("hrasto/llamas2_tok_blimp") input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"] outputs = model.generate(input_ids, max_new_tokens=216) tokenizer.decode(outputs[0]) ``` ## Configurations The configuration info are in `smash_config.json`. ## Credits & License The license of the smashed model follows the license of the original model. Please check the license of the original model hrasto/llamas2_tok_blimp before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi. ## Want to compress other models? - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact). - Do it by yourself [here](https://docs.pruna.ai/en/latest/setup/pip.html).
chauhoang/6483b953-68bc-21e5-870f-df3e47170d3b
chauhoang
2025-01-10T18:03:41Z
23
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct", "base_model:adapter:VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct", "license:llama3.1", "region:us" ]
null
2025-01-10T16:47:30Z
--- library_name: peft license: llama3.1 base_model: VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 6483b953-68bc-21e5-870f-df3e47170d3b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 99abecc3940692d4_train_data.json ds_type: json format: custom path: /workspace/input_data/99abecc3940692d4_train_data.json type: field_instruction: title field_output: content format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 5 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: chauhoang/6483b953-68bc-21e5-870f-df3e47170d3b hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 5 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/99abecc3940692d4_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|eot_id|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 9a614f62-ffe2-40a4-9a16-ba60a4e21ae0 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 9a614f62-ffe2-40a4-9a16-ba60a4e21ae0 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 6483b953-68bc-21e5-870f-df3e47170d3b This model is a fine-tuned version of [VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct](https://huggingface.co/VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0251 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0001 | 1 | 2.1410 | | 2.0296 | 0.0009 | 10 | 2.1128 | | 2.0385 | 0.0019 | 20 | 2.0514 | | 1.9569 | 0.0028 | 30 | 2.0336 | | 2.0647 | 0.0038 | 40 | 2.0265 | | 2.0398 | 0.0047 | 50 | 2.0251 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
rsicproject/googlenet-GPT-SYDNEY-captioning
rsicproject
2025-01-10T18:03:12Z
40
0
transformers
[ "transformers", "tensorboard", "safetensors", "vision-encoder-decoder", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2025-01-10T18:01:39Z
--- library_name: transformers tags: - generated_from_trainer metrics: - rouge model-index: - name: googlenet-GPT-SYDNEY-captioning results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # googlenet-GPT-SYDNEY-captioning This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1141 - Rouge: 0.6996 - Bleu1: 0.7882 - Bleu2: 0.7020 - Bleu3: 0.6271 - Bleu4: 0.5653 - Meteor: 0.7048 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1024 - num_epochs: 128 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge | Bleu1 | Bleu2 | Bleu3 | Bleu4 | Meteor | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:------:|:------:|:------:| | No log | 1.0 | 39 | 4.2302 | 0.1767 | 0.0547 | 0.0159 | 0.0027 | 0.0012 | 0.0708 | | No log | 2.0 | 78 | 3.4015 | 0.1853 | 0.2079 | 0.1309 | 0.0631 | 0.0324 | 0.1342 | | No log | 3.0 | 117 | 1.9854 | 0.5961 | 0.6924 | 0.5863 | 0.5014 | 0.4347 | 0.5797 | | No log | 4.0 | 156 | 1.2550 | 0.5721 | 0.6471 | 0.5501 | 0.4709 | 0.4059 | 0.5486 | | No log | 5.0 | 195 | 1.0187 | 0.6471 | 0.7372 | 0.6508 | 0.5696 | 0.5012 | 0.6614 | | No log | 6.0 | 234 | 0.9720 | 0.6686 | 0.7554 | 0.6735 | 0.5875 | 0.5103 | 0.6650 | | No log | 7.0 | 273 | 0.8957 | 0.7045 | 0.8067 | 0.7307 | 0.6477 | 0.5699 | 0.7290 | | No log | 8.0 | 312 | 0.9155 | 0.6849 | 0.7708 | 0.6880 | 0.6054 | 0.5296 | 0.7100 | | No log | 9.0 | 351 | 0.9240 | 0.6719 | 0.7735 | 0.6803 | 0.5997 | 0.5294 | 0.6999 | | No log | 10.0 | 390 | 0.9262 | 0.6531 | 0.7368 | 0.6275 | 0.5363 | 0.4562 | 0.6716 | | No log | 11.0 | 429 | 0.9618 | 0.6657 | 0.7621 | 0.6681 | 0.5843 | 0.5115 | 0.6982 | | No log | 12.0 | 468 | 0.9606 | 0.6729 | 0.7597 | 0.6747 | 0.5885 | 0.5070 | 0.6929 | | No log | 13.0 | 507 | 0.9388 | 0.6419 | 0.7546 | 0.6560 | 0.5711 | 0.4995 | 0.6527 | | No log | 14.0 | 546 | 0.9249 | 0.6990 | 0.8106 | 0.7392 | 0.6698 | 0.6056 | 0.7427 | | No log | 15.0 | 585 | 0.9734 | 0.7021 | 0.7922 | 0.7045 | 0.6201 | 0.5450 | 0.7276 | | No log | 16.0 | 624 | 0.9999 | 0.6694 | 0.7763 | 0.6947 | 0.6189 | 0.5518 | 0.6981 | | No log | 17.0 | 663 | 0.9872 | 0.7085 | 0.7987 | 0.7075 | 0.6152 | 0.5300 | 0.7404 | | No log | 18.0 | 702 | 1.0115 | 0.6789 | 0.7631 | 0.6547 | 0.5629 | 0.4814 | 0.7081 | | No log | 19.0 | 741 | 0.9698 | 0.6807 | 0.7974 | 0.7137 | 0.6430 | 0.5787 | 0.7168 | | No log | 20.0 | 780 | 0.9934 | 0.7274 | 0.8093 | 0.7307 | 0.6541 | 0.5894 | 0.7318 | | No log | 21.0 | 819 | 1.0731 | 0.6992 | 0.7940 | 0.7061 | 0.6245 | 0.5530 | 0.7243 | | No log | 22.0 | 858 | 1.0864 | 0.6929 | 0.7738 | 0.6791 | 0.5904 | 0.5082 | 0.7110 | | No log | 23.0 | 897 | 1.0116 | 0.7170 | 0.8040 | 0.7152 | 0.6336 | 0.5643 | 0.7420 | | No log | 24.0 | 936 | 1.0736 | 0.7132 | 0.8095 | 0.7356 | 0.6633 | 0.5935 | 0.7449 | | No log | 25.0 | 975 | 1.0366 | 0.6756 | 0.7602 | 0.6637 | 0.5823 | 0.5108 | 0.7176 | | No log | 26.0 | 1014 | 1.0312 | 0.6511 | 0.7373 | 0.6430 | 0.5645 | 0.4996 | 0.6633 | | 0.7581 | 27.0 | 1053 | 1.0871 | 0.6958 | 0.7740 | 0.6776 | 0.5922 | 0.5224 | 0.7086 | | 0.7581 | 28.0 | 1092 | 1.1145 | 0.6740 | 0.7727 | 0.6754 | 0.5915 | 0.5163 | 0.6978 | | 0.7581 | 29.0 | 1131 | 1.1446 | 0.6828 | 0.7709 | 0.6845 | 0.5979 | 0.5190 | 0.6974 | | 0.7581 | 30.0 | 1170 | 1.1141 | 0.6996 | 0.7882 | 0.7020 | 0.6271 | 0.5653 | 0.7048 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.20.3
Omartificial-Intelligence-Space/Arabic-labse-Matryoshka
Omartificial-Intelligence-Space
2025-01-10T18:03:08Z
572
2
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "mteb", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:557850", "loss:MatryoshkaLoss", "loss:MultipleNegativesRankingLoss", "ar", "dataset:Omartificial-Intelligence-Space/Arabic-NLi-Triplet", "arxiv:1908.10084", "arxiv:2205.13147", "arxiv:1705.00652", "arxiv:2407.21139", "base_model:sentence-transformers/LaBSE", "base_model:finetune:sentence-transformers/LaBSE", "license:apache-2.0", "model-index", "autotrain_compatible", "text-embeddings-inference", "region:us" ]
sentence-similarity
2024-06-16T20:56:09Z
--- inference: false language: - ar library_name: sentence-transformers tags: - mteb - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:557850 - loss:MatryoshkaLoss - loss:MultipleNegativesRankingLoss base_model: sentence-transformers/LaBSE datasets: - Omartificial-Intelligence-Space/Arabic-NLi-Triplet metrics: - pearson_cosine - spearman_cosine - pearson_manhattan - spearman_manhattan - pearson_euclidean - spearman_euclidean - pearson_dot - spearman_dot - pearson_max - spearman_max widget: - source_sentence: ذكر متوازن بعناية يقف على قدم واحدة بالقرب من منطقة شاطئ المحيط النظيفة sentences: - رجل يقدم عرضاً - هناك رجل بالخارج قرب الشاطئ - رجل يجلس على أريكه - source_sentence: رجل يقفز إلى سريره القذر sentences: - السرير قذر. - رجل يضحك أثناء غسيل الملابس - الرجل على القمر - source_sentence: الفتيات بالخارج sentences: - امرأة تلف الخيط إلى كرات بجانب كومة من الكرات - فتيان يركبان في جولة متعة - >- ثلاث فتيات يقفون سوية في غرفة واحدة تستمع وواحدة تكتب على الحائط والثالثة تتحدث إليهن - source_sentence: الرجل يرتدي قميصاً أزرق. sentences: - >- رجل يرتدي قميصاً أزرق يميل إلى الجدار بجانب الطريق مع شاحنة زرقاء وسيارة حمراء مع الماء في الخلفية. - كتاب القصص مفتوح - رجل يرتدي قميص أسود يعزف على الجيتار. - source_sentence: يجلس شاب ذو شعر أشقر على الحائط يقرأ جريدة بينما تمر امرأة وفتاة شابة. sentences: - ذكر شاب ينظر إلى جريدة بينما تمر إمرأتان بجانبه - رجل يستلقي على وجهه على مقعد في الحديقة. - الشاب نائم بينما الأم تقود ابنتها إلى الحديقة pipeline_tag: sentence-similarity model-index: - name: Omartificial-Intelligence-Space/Arabic-labse-Matryoshka results: - dataset: config: ar name: MTEB MintakaRetrieval (ar) revision: efa78cc2f74bbcd21eff2261f9e13aebe40b814e split: test type: mintaka/mmteb-mintaka metrics: - type: main_score value: 14.585 - type: map_at_1 value: 8.352 - type: map_at_3 value: 10.917 - type: map_at_5 value: 11.634 - type: map_at_10 value: 12.254 - type: ndcg_at_1 value: 8.352 - type: ndcg_at_3 value: 11.794 - type: ndcg_at_5 value: 13.085 - type: ndcg_at_10 value: 14.585 - type: recall_at_1 value: 8.352 - type: recall_at_3 value: 14.344 - type: recall_at_5 value: 17.476 - type: recall_at_10 value: 22.106 - type: precision_at_1 value: 8.352 - type: precision_at_3 value: 4.781 - type: precision_at_5 value: 3.495 - type: precision_at_10 value: 2.211 - type: mrr_at_1 value: 8.3522 - type: mrr_at_3 value: 10.9169 - type: mrr_at_5 value: 11.6341 - type: mrr_at_10 value: 12.2543 task: type: Retrieval - dataset: config: ar name: MTEB MIRACLRetrievalHardNegatives (ar) revision: 95c8db7d4a6e9c1d8a60601afd63d553ae20a2eb split: dev type: miracl/mmteb-miracl-hardnegatives metrics: - type: main_score value: 18.836 - type: map_at_1 value: 6.646 - type: map_at_3 value: 10.692 - type: map_at_5 value: 11.969 - type: map_at_10 value: 13.446 - type: ndcg_at_1 value: 10.5 - type: ndcg_at_3 value: 13.645 - type: ndcg_at_5 value: 15.504 - type: ndcg_at_10 value: 18.836 - type: recall_at_1 value: 6.646 - type: recall_at_3 value: 15.361 - type: recall_at_5 value: 19.925 - type: recall_at_10 value: 28.6 - type: precision_at_1 value: 10.5 - type: precision_at_3 value: 8.533 - type: precision_at_5 value: 6.9 - type: precision_at_10 value: 5.21 - type: mrr_at_1 value: 10.5 - type: mrr_at_3 value: 16.25 - type: mrr_at_5 value: 17.68 - type: mrr_at_10 value: 19.1759 task: type: Retrieval - dataset: config: ar name: MTEB MLQARetrieval (ar) revision: 397ed406c1a7902140303e7faf60fff35b58d285 split: validation type: mlqa/mmteb-mlqa metrics: - type: main_score value: 61.582 - type: map_at_1 value: 47.195 - type: map_at_3 value: 54.03 - type: map_at_5 value: 55.77 - type: map_at_10 value: 56.649 - type: ndcg_at_1 value: 47.195 - type: ndcg_at_3 value: 56.295 - type: ndcg_at_5 value: 59.417 - type: ndcg_at_10 value: 61.582 - type: recall_at_1 value: 47.195 - type: recall_at_3 value: 62.863 - type: recall_at_5 value: 70.406 - type: recall_at_10 value: 77.176 - type: precision_at_1 value: 47.195 - type: precision_at_3 value: 20.954 - type: precision_at_5 value: 14.081 - type: precision_at_10 value: 7.718 - type: mrr_at_1 value: 47.1954 - type: mrr_at_3 value: 54.0297 - type: mrr_at_5 value: 55.7705 - type: mrr_at_10 value: 56.6492 task: type: Retrieval - dataset: config: default name: MTEB SadeemQuestionRetrieval (ar) revision: 3cb0752b182e5d5d740df547748b06663c8e0bd9 split: test type: sadeem/mmteb-sadeem metrics: - type: main_score value: 57.653 - type: map_at_1 value: 25.084 - type: map_at_3 value: 46.338 - type: map_at_5 value: 47.556 - type: map_at_10 value: 48.207 - type: ndcg_at_1 value: 25.084 - type: ndcg_at_3 value: 53.91 - type: ndcg_at_5 value: 56.102 - type: ndcg_at_10 value: 57.653 - type: recall_at_1 value: 25.084 - type: recall_at_3 value: 76.017 - type: recall_at_5 value: 81.331 - type: recall_at_10 value: 86.07 - type: precision_at_1 value: 25.084 - type: precision_at_3 value: 25.339 - type: precision_at_5 value: 16.266 - type: precision_at_10 value: 8.607 - type: mrr_at_1 value: 23.1211 - type: mrr_at_3 value: 44.9657 - type: mrr_at_5 value: 46.3037 - type: mrr_at_10 value: 46.8749 task: type: Retrieval - dataset: config: default name: MTEB BIOSSES (default) revision: d3fb88f8f02e40887cd149695127462bbcf29b4a split: test type: mteb/biosses-sts metrics: - type: cosine_pearson value: 76.46793440999714 - type: cosine_spearman value: 76.66439745271298 - type: euclidean_pearson value: 76.52075972347127 - type: euclidean_spearman value: 76.66439745271298 - type: main_score value: 76.66439745271298 - type: manhattan_pearson value: 76.68001857069733 - type: manhattan_spearman value: 76.73066402288269 task: type: STS - dataset: config: default name: MTEB SICK-R (default) revision: 20a6d6f312dd54037fe07a32d58e5e168867909d split: test type: mteb/sickr-sts metrics: - type: cosine_pearson value: 79.67657890693198 - type: cosine_spearman value: 77.03286420274621 - type: euclidean_pearson value: 78.1960735272073 - type: euclidean_spearman value: 77.032855497919 - type: main_score value: 77.03286420274621 - type: manhattan_pearson value: 78.25627275994229 - type: manhattan_spearman value: 77.00430810589081 task: type: STS - dataset: config: default name: MTEB STS12 (default) revision: a0d554a64d88156834ff5ae9920b964011b16384 split: test type: mteb/sts12-sts metrics: - type: cosine_pearson value: 83.94288954523996 - type: cosine_spearman value: 79.21432176112556 - type: euclidean_pearson value: 81.21333251943913 - type: euclidean_spearman value: 79.2152067330468 - type: main_score value: 79.21432176112556 - type: manhattan_pearson value: 81.16910737482634 - type: manhattan_spearman value: 79.08756466301445 task: type: STS - dataset: config: default name: MTEB STS13 (default) revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca split: test type: mteb/sts13-sts metrics: - type: cosine_pearson value: 77.48393909963059 - type: cosine_spearman value: 79.54963868861196 - type: euclidean_pearson value: 79.28416002197451 - type: euclidean_spearman value: 79.54963861790114 - type: main_score value: 79.54963868861196 - type: manhattan_pearson value: 79.18653917582513 - type: manhattan_spearman value: 79.46713533414295 task: type: STS - dataset: config: default name: MTEB STS14 (default) revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 split: test type: mteb/sts14-sts metrics: - type: cosine_pearson value: 78.51596313692846 - type: cosine_spearman value: 78.84601702652395 - type: euclidean_pearson value: 78.55199809961427 - type: euclidean_spearman value: 78.84603362286225 - type: main_score value: 78.84601702652395 - type: manhattan_pearson value: 78.52780170677605 - type: manhattan_spearman value: 78.77744294039178 task: type: STS - dataset: config: default name: MTEB STS15 (default) revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 split: test type: mteb/sts15-sts metrics: - type: cosine_pearson value: 84.53393478889929 - type: cosine_spearman value: 85.60821849381648 - type: euclidean_pearson value: 85.32813923250558 - type: euclidean_spearman value: 85.6081835456016 - type: main_score value: 85.60821849381648 - type: manhattan_pearson value: 85.32782097916476 - type: manhattan_spearman value: 85.58098670898562 task: type: STS - dataset: config: default name: MTEB STS16 (default) revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 split: test type: mteb/sts16-sts metrics: - type: cosine_pearson value: 77.00196998325856 - type: cosine_spearman value: 79.930951699069 - type: euclidean_pearson value: 79.43196738390897 - type: euclidean_spearman value: 79.93095112410258 - type: main_score value: 79.930951699069 - type: manhattan_pearson value: 79.33744358111427 - type: manhattan_spearman value: 79.82939266539601 task: type: STS - dataset: config: ar-ar name: MTEB STS17 (ar-ar) revision: faeb762787bd10488a50c8b5be4a3b82e411949c split: test type: mteb/sts17-crosslingual-sts metrics: - type: cosine_pearson value: 81.60289529424327 - type: cosine_spearman value: 82.46806381979653 - type: euclidean_pearson value: 81.32235058296072 - type: euclidean_spearman value: 82.46676890643914 - type: main_score value: 82.46806381979653 - type: manhattan_pearson value: 81.43885277175312 - type: manhattan_spearman value: 82.38955952718666 task: type: STS - dataset: config: ar name: MTEB STS22 (ar) revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 split: test type: mteb/sts22-crosslingual-sts metrics: - type: cosine_pearson value: 49.58293768761314 - type: cosine_spearman value: 57.261888789832874 - type: euclidean_pearson value: 53.36549109538782 - type: euclidean_spearman value: 57.261888789832874 - type: main_score value: 57.261888789832874 - type: manhattan_pearson value: 53.06640323833928 - type: manhattan_spearman value: 57.05837935512948 task: type: STS - dataset: config: default name: MTEB STSBenchmark (default) revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 split: test type: mteb/stsbenchmark-sts metrics: - type: cosine_pearson value: 81.43997935928729 - type: cosine_spearman value: 82.04996129795596 - type: euclidean_pearson value: 82.01917866996972 - type: euclidean_spearman value: 82.04996129795596 - type: main_score value: 82.04996129795596 - type: manhattan_pearson value: 82.03487112040936 - type: manhattan_spearman value: 82.03774605775651 task: type: STS - dataset: config: default name: MTEB SummEval (default) revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c split: test type: mteb/summeval metrics: - type: cosine_pearson value: 32.113475997147674 - type: cosine_spearman value: 32.17194233764879 - type: dot_pearson value: 32.113469728827255 - type: dot_spearman value: 32.174771315355386 - type: main_score value: 32.17194233764879 - type: pearson value: 32.113475997147674 - type: spearman value: 32.17194233764879 task: type: Summarization - name: SentenceTransformer based on sentence-transformers/LaBSE results: - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts test 768 type: sts-test-768 metrics: - type: pearson_cosine value: 0.7269177710249681 name: Pearson Cosine - type: spearman_cosine value: 0.7225258779395222 name: Spearman Cosine - type: pearson_manhattan value: 0.7259261785622463 name: Pearson Manhattan - type: spearman_manhattan value: 0.7210463582530393 name: Spearman Manhattan - type: pearson_euclidean value: 0.7259567884235211 name: Pearson Euclidean - type: spearman_euclidean value: 0.722525823788783 name: Spearman Euclidean - type: pearson_dot value: 0.7269177712136122 name: Pearson Dot - type: spearman_dot value: 0.7225258771129475 name: Spearman Dot - type: pearson_max value: 0.7269177712136122 name: Pearson Max - type: spearman_max value: 0.7225258779395222 name: Spearman Max - type: pearson_cosine value: 0.8143867576376295 name: Pearson Cosine - type: spearman_cosine value: 0.8205044914629483 name: Spearman Cosine - type: pearson_manhattan value: 0.8203365887013151 name: Pearson Manhattan - type: spearman_manhattan value: 0.8203816698535976 name: Spearman Manhattan - type: pearson_euclidean value: 0.8201809453496319 name: Pearson Euclidean - type: spearman_euclidean value: 0.8205044914629483 name: Spearman Euclidean - type: pearson_dot value: 0.8143867541070537 name: Pearson Dot - type: spearman_dot value: 0.8205044914629483 name: Spearman Dot - type: pearson_max value: 0.8203365887013151 name: Pearson Max - type: spearman_max value: 0.8205044914629483 name: Spearman Max - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts test 512 type: sts-test-512 metrics: - type: pearson_cosine value: 0.7268389724271859 name: Pearson Cosine - type: spearman_cosine value: 0.7224359411000278 name: Spearman Cosine - type: pearson_manhattan value: 0.7241418669615103 name: Pearson Manhattan - type: spearman_manhattan value: 0.7195408311833029 name: Spearman Manhattan - type: pearson_euclidean value: 0.7248184919191593 name: Pearson Euclidean - type: spearman_euclidean value: 0.7212936866178097 name: Spearman Euclidean - type: pearson_dot value: 0.7252522928016701 name: Pearson Dot - type: spearman_dot value: 0.7205040482865328 name: Spearman Dot - type: pearson_max value: 0.7268389724271859 name: Pearson Max - type: spearman_max value: 0.7224359411000278 name: Spearman Max - type: pearson_cosine value: 0.8143448965624136 name: Pearson Cosine - type: spearman_cosine value: 0.8211700903453509 name: Spearman Cosine - type: pearson_manhattan value: 0.8217448619823571 name: Pearson Manhattan - type: spearman_manhattan value: 0.8216016599665544 name: Spearman Manhattan - type: pearson_euclidean value: 0.8216413349390971 name: Pearson Euclidean - type: spearman_euclidean value: 0.82188122418776 name: Spearman Euclidean - type: pearson_dot value: 0.8097020064483653 name: Pearson Dot - type: spearman_dot value: 0.8147306090545295 name: Spearman Dot - type: pearson_max value: 0.8217448619823571 name: Pearson Max - type: spearman_max value: 0.82188122418776 name: Spearman Max - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts test 256 type: sts-test-256 metrics: - type: pearson_cosine value: 0.7283468617741852 name: Pearson Cosine - type: spearman_cosine value: 0.7264294106954872 name: Spearman Cosine - type: pearson_manhattan value: 0.7227711798003426 name: Pearson Manhattan - type: spearman_manhattan value: 0.718067982079232 name: Spearman Manhattan - type: pearson_euclidean value: 0.7251492361775083 name: Pearson Euclidean - type: spearman_euclidean value: 0.7215068115809131 name: Spearman Euclidean - type: pearson_dot value: 0.7243396991648858 name: Pearson Dot - type: spearman_dot value: 0.7221390873398206 name: Spearman Dot - type: pearson_max value: 0.7283468617741852 name: Pearson Max - type: spearman_max value: 0.7264294106954872 name: Spearman Max - type: pearson_cosine value: 0.8075613785257986 name: Pearson Cosine - type: spearman_cosine value: 0.8159258089804861 name: Spearman Cosine - type: pearson_manhattan value: 0.8208711370091426 name: Pearson Manhattan - type: spearman_manhattan value: 0.8196747601014518 name: Spearman Manhattan - type: pearson_euclidean value: 0.8210210137439432 name: Pearson Euclidean - type: spearman_euclidean value: 0.8203004500356083 name: Spearman Euclidean - type: pearson_dot value: 0.7870611647231145 name: Pearson Dot - type: spearman_dot value: 0.7874848213991118 name: Spearman Dot - type: pearson_max value: 0.8210210137439432 name: Pearson Max - type: spearman_max value: 0.8203004500356083 name: Spearman Max - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts test 128 type: sts-test-128 metrics: - type: pearson_cosine value: 0.7102082520621849 name: Pearson Cosine - type: spearman_cosine value: 0.7103917869311991 name: Spearman Cosine - type: pearson_manhattan value: 0.7134729607181519 name: Pearson Manhattan - type: spearman_manhattan value: 0.708895102058259 name: Spearman Manhattan - type: pearson_euclidean value: 0.7171545288118942 name: Pearson Euclidean - type: spearman_euclidean value: 0.7130380237150746 name: Spearman Euclidean - type: pearson_dot value: 0.6777774738547628 name: Pearson Dot - type: spearman_dot value: 0.6746474823963989 name: Spearman Dot - type: pearson_max value: 0.7171545288118942 name: Pearson Max - type: spearman_max value: 0.7130380237150746 name: Spearman Max - type: pearson_cosine value: 0.8024378358145556 name: Pearson Cosine - type: spearman_cosine value: 0.8117561815472325 name: Spearman Cosine - type: pearson_manhattan value: 0.818920309459774 name: Pearson Manhattan - type: spearman_manhattan value: 0.8180515365910205 name: Spearman Manhattan - type: pearson_euclidean value: 0.8198346073356603 name: Pearson Euclidean - type: spearman_euclidean value: 0.8185162896024369 name: Spearman Euclidean - type: pearson_dot value: 0.7513270537478935 name: Pearson Dot - type: spearman_dot value: 0.7427542871546953 name: Spearman Dot - type: pearson_max value: 0.8198346073356603 name: Pearson Max - type: spearman_max value: 0.8185162896024369 name: Spearman Max - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts test 64 type: sts-test-64 metrics: - type: pearson_cosine value: 0.6930745722517785 name: Pearson Cosine - type: spearman_cosine value: 0.6982194042238953 name: Spearman Cosine - type: pearson_manhattan value: 0.6971382079778946 name: Pearson Manhattan - type: spearman_manhattan value: 0.6942362764367931 name: Spearman Manhattan - type: pearson_euclidean value: 0.7012627015062325 name: Pearson Euclidean - type: spearman_euclidean value: 0.6986972295835788 name: Spearman Euclidean - type: pearson_dot value: 0.6376735798940838 name: Pearson Dot - type: spearman_dot value: 0.6344835722310429 name: Spearman Dot - type: pearson_max value: 0.7012627015062325 name: Pearson Max - type: spearman_max value: 0.6986972295835788 name: Spearman Max - type: pearson_cosine value: 0.7855080652087961 name: Pearson Cosine - type: spearman_cosine value: 0.7948979371698327 name: Spearman Cosine - type: pearson_manhattan value: 0.8060407473462375 name: Pearson Manhattan - type: spearman_manhattan value: 0.8041199691999044 name: Spearman Manhattan - type: pearson_euclidean value: 0.8088262858195556 name: Pearson Euclidean - type: spearman_euclidean value: 0.8060483394849104 name: Spearman Euclidean - type: pearson_dot value: 0.677754045289596 name: Pearson Dot - type: spearman_dot value: 0.6616232873061395 name: Spearman Dot - type: pearson_max value: 0.8088262858195556 name: Pearson Max - type: spearman_max value: 0.8060483394849104 name: Spearman Max license: apache-2.0 --- # SentenceTransformer based on sentence-transformers/LaBSE This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE) on the Omartificial-Intelligence-Space/arabic-n_li-triplet dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE) <!-- at revision e34fab64a3011d2176c99545a93d5cbddc9a91b7 --> - **Maximum Sequence Length:** 256 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity - **Training Dataset:** - Omartificial-Intelligence-Space/arabic-n_li-triplet <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) (3): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("Omartificial-Intelligence-Space/Arabic-labse") # Run inference sentences = [ 'يجلس شاب ذو شعر أشقر على الحائط يقرأ جريدة بينما تمر امرأة وفتاة شابة.', 'ذكر شاب ينظر إلى جريدة بينما تمر إمرأتان بجانبه', 'الشاب نائم بينما الأم تقود ابنتها إلى الحديقة', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Semantic Similarity * Dataset: `sts-test-768` * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.7269 | | **spearman_cosine** | **0.7225** | | pearson_manhattan | 0.7259 | | spearman_manhattan | 0.721 | | pearson_euclidean | 0.726 | | spearman_euclidean | 0.7225 | | pearson_dot | 0.7269 | | spearman_dot | 0.7225 | | pearson_max | 0.7269 | | spearman_max | 0.7225 | #### Semantic Similarity * Dataset: `sts-test-512` * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.7268 | | **spearman_cosine** | **0.7224** | | pearson_manhattan | 0.7241 | | spearman_manhattan | 0.7195 | | pearson_euclidean | 0.7248 | | spearman_euclidean | 0.7213 | | pearson_dot | 0.7253 | | spearman_dot | 0.7205 | | pearson_max | 0.7268 | | spearman_max | 0.7224 | #### Semantic Similarity * Dataset: `sts-test-256` * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.7283 | | **spearman_cosine** | **0.7264** | | pearson_manhattan | 0.7228 | | spearman_manhattan | 0.7181 | | pearson_euclidean | 0.7251 | | spearman_euclidean | 0.7215 | | pearson_dot | 0.7243 | | spearman_dot | 0.7221 | | pearson_max | 0.7283 | | spearman_max | 0.7264 | #### Semantic Similarity * Dataset: `sts-test-128` * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.7102 | | **spearman_cosine** | **0.7104** | | pearson_manhattan | 0.7135 | | spearman_manhattan | 0.7089 | | pearson_euclidean | 0.7172 | | spearman_euclidean | 0.713 | | pearson_dot | 0.6778 | | spearman_dot | 0.6746 | | pearson_max | 0.7172 | | spearman_max | 0.713 | #### Semantic Similarity * Dataset: `sts-test-64` * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.6931 | | **spearman_cosine** | **0.6982** | | pearson_manhattan | 0.6971 | | spearman_manhattan | 0.6942 | | pearson_euclidean | 0.7013 | | spearman_euclidean | 0.6987 | | pearson_dot | 0.6377 | | spearman_dot | 0.6345 | | pearson_max | 0.7013 | | spearman_max | 0.6987 | #### Semantic Similarity * Dataset: `sts-test-768` * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.8144 | | **spearman_cosine** | **0.8205** | | pearson_manhattan | 0.8203 | | spearman_manhattan | 0.8204 | | pearson_euclidean | 0.8202 | | spearman_euclidean | 0.8205 | | pearson_dot | 0.8144 | | spearman_dot | 0.8205 | | pearson_max | 0.8203 | | spearman_max | 0.8205 | #### Semantic Similarity * Dataset: `sts-test-512` * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.8143 | | **spearman_cosine** | **0.8212** | | pearson_manhattan | 0.8217 | | spearman_manhattan | 0.8216 | | pearson_euclidean | 0.8216 | | spearman_euclidean | 0.8219 | | pearson_dot | 0.8097 | | spearman_dot | 0.8147 | | pearson_max | 0.8217 | | spearman_max | 0.8219 | #### Semantic Similarity * Dataset: `sts-test-256` * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.8076 | | **spearman_cosine** | **0.8159** | | pearson_manhattan | 0.8209 | | spearman_manhattan | 0.8197 | | pearson_euclidean | 0.821 | | spearman_euclidean | 0.8203 | | pearson_dot | 0.7871 | | spearman_dot | 0.7875 | | pearson_max | 0.821 | | spearman_max | 0.8203 | #### Semantic Similarity * Dataset: `sts-test-128` * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.8024 | | **spearman_cosine** | **0.8118** | | pearson_manhattan | 0.8189 | | spearman_manhattan | 0.8181 | | pearson_euclidean | 0.8198 | | spearman_euclidean | 0.8185 | | pearson_dot | 0.7513 | | spearman_dot | 0.7428 | | pearson_max | 0.8198 | | spearman_max | 0.8185 | #### Semantic Similarity * Dataset: `sts-test-64` * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.7855 | | **spearman_cosine** | **0.7949** | | pearson_manhattan | 0.806 | | spearman_manhattan | 0.8041 | | pearson_euclidean | 0.8088 | | spearman_euclidean | 0.806 | | pearson_dot | 0.6778 | | spearman_dot | 0.6616 | | pearson_max | 0.8088 | | spearman_max | 0.806 | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### Omartificial-Intelligence-Space/arabic-n_li-triplet * Dataset: Omartificial-Intelligence-Space/arabic-n_li-triplet * Size: 557,850 training samples * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | negative | |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | string | | details | <ul><li>min: 4 tokens</li><li>mean: 9.99 tokens</li><li>max: 51 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 12.44 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 13.82 tokens</li><li>max: 49 tokens</li></ul> | * Samples: | anchor | positive | negative | |:------------------------------------------------------------|:--------------------------------------------|:------------------------------------| | <code>شخص على حصان يقفز فوق طائرة معطلة</code> | <code>شخص في الهواء الطلق، على حصان.</code> | <code>شخص في مطعم، يطلب عجة.</code> | | <code>أطفال يبتسمون و يلوحون للكاميرا</code> | <code>هناك أطفال حاضرون</code> | <code>الاطفال يتجهمون</code> | | <code>صبي يقفز على لوح التزلج في منتصف الجسر الأحمر.</code> | <code>الفتى يقوم بخدعة التزلج</code> | <code>الصبي يتزلج على الرصيف</code> | * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Evaluation Dataset #### Omartificial-Intelligence-Space/arabic-n_li-triplet * Dataset: Omartificial-Intelligence-Space/arabic-n_li-triplet * Size: 6,584 evaluation samples * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | negative | |:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | string | | details | <ul><li>min: 4 tokens</li><li>mean: 19.71 tokens</li><li>max: 100 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.37 tokens</li><li>max: 38 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 10.49 tokens</li><li>max: 34 tokens</li></ul> | * Samples: | anchor | positive | negative | |:-----------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------|:---------------------------------------------------| | <code>امرأتان يتعانقان بينما يحملان حزمة</code> | <code>إمرأتان يحملان حزمة</code> | <code>الرجال يتشاجرون خارج مطعم</code> | | <code>طفلين صغيرين يرتديان قميصاً أزرق، أحدهما يرتدي الرقم 9 والآخر يرتدي الرقم 2 يقفان على خطوات خشبية في الحمام ويغسلان أيديهما في المغسلة.</code> | <code>طفلين يرتديان قميصاً مرقماً يغسلون أيديهم</code> | <code>طفلين يرتديان سترة يذهبان إلى المدرسة</code> | | <code>رجل يبيع الدونات لعميل خلال معرض عالمي أقيم في مدينة أنجليس</code> | <code>رجل يبيع الدونات لعميل</code> | <code>امرأة تشرب قهوتها في مقهى صغير</code> | * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `num_train_epochs`: 1 - `warmup_ratio`: 0.1 - `fp16`: True - `batch_sampler`: no_duplicates #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `prediction_loss_only`: True - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | sts-test-128_spearman_cosine | sts-test-256_spearman_cosine | sts-test-512_spearman_cosine | sts-test-64_spearman_cosine | sts-test-768_spearman_cosine | |:------:|:----:|:-------------:|:----------------------------:|:----------------------------:|:----------------------------:|:---------------------------:|:----------------------------:| | None | 0 | - | 0.7104 | 0.7264 | 0.7224 | 0.6982 | 0.7225 | | 0.0229 | 200 | 13.1738 | - | - | - | - | - | | 0.0459 | 400 | 8.8127 | - | - | - | - | - | | 0.0688 | 600 | 8.0984 | - | - | - | - | - | | 0.0918 | 800 | 7.2984 | - | - | - | - | - | | 0.1147 | 1000 | 7.5749 | - | - | - | - | - | | 0.1377 | 1200 | 7.1292 | - | - | - | - | - | | 0.1606 | 1400 | 6.6146 | - | - | - | - | - | | 0.1835 | 1600 | 6.6523 | - | - | - | - | - | | 0.2065 | 1800 | 6.1095 | - | - | - | - | - | | 0.2294 | 2000 | 6.0841 | - | - | - | - | - | | 0.2524 | 2200 | 6.3024 | - | - | - | - | - | | 0.2753 | 2400 | 6.1941 | - | - | - | - | - | | 0.2983 | 2600 | 6.1686 | - | - | - | - | - | | 0.3212 | 2800 | 5.8317 | - | - | - | - | - | | 0.3442 | 3000 | 6.0597 | - | - | - | - | - | | 0.3671 | 3200 | 5.7832 | - | - | - | - | - | | 0.3900 | 3400 | 5.7088 | - | - | - | - | - | | 0.4130 | 3600 | 5.6988 | - | - | - | - | - | | 0.4359 | 3800 | 5.5268 | - | - | - | - | - | | 0.4589 | 4000 | 5.5543 | - | - | - | - | - | | 0.4818 | 4200 | 5.3152 | - | - | - | - | - | | 0.5048 | 4400 | 5.2894 | - | - | - | - | - | | 0.5277 | 4600 | 5.1805 | - | - | - | - | - | | 0.5506 | 4800 | 5.4559 | - | - | - | - | - | | 0.5736 | 5000 | 5.3836 | - | - | - | - | - | | 0.5965 | 5200 | 5.2626 | - | - | - | - | - | | 0.6195 | 5400 | 5.2511 | - | - | - | - | - | | 0.6424 | 5600 | 5.3308 | - | - | - | - | - | | 0.6654 | 5800 | 5.2264 | - | - | - | - | - | | 0.6883 | 6000 | 5.2881 | - | - | - | - | - | | 0.7113 | 6200 | 5.1349 | - | - | - | - | - | | 0.7342 | 6400 | 5.0872 | - | - | - | - | - | | 0.7571 | 6600 | 4.5515 | - | - | - | - | - | | 0.7801 | 6800 | 3.4312 | - | - | - | - | - | | 0.8030 | 7000 | 3.1008 | - | - | - | - | - | | 0.8260 | 7200 | 2.9582 | - | - | - | - | - | | 0.8489 | 7400 | 2.8153 | - | - | - | - | - | | 0.8719 | 7600 | 2.7214 | - | - | - | - | - | | 0.8948 | 7800 | 2.5392 | - | - | - | - | - | | 0.9177 | 8000 | 2.584 | - | - | - | - | - | | 0.9407 | 8200 | 2.5384 | - | - | - | - | - | | 0.9636 | 8400 | 2.4937 | - | - | - | - | - | | 0.9866 | 8600 | 2.4155 | - | - | - | - | - | | 1.0 | 8717 | - | 0.8118 | 0.8159 | 0.8212 | 0.7949 | 0.8205 | ### Framework Versions - Python: 3.9.18 - Sentence Transformers: 3.0.1 - Transformers: 4.40.0 - PyTorch: 2.2.2+cu121 - Accelerate: 0.26.1 - Datasets: 2.19.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ## <span style="color:blue">Acknowledgments</span> The author would like to thank Prince Sultan University for their invaluable support in this project. Their contributions and resources have been instrumental in the development and fine-tuning of these models. ```markdown ## Citation If you use the Arabic Matryoshka Embeddings Model, please cite it as follows: @misc{nacar2024enhancingsemanticsimilarityunderstanding, title={Enhancing Semantic Similarity Understanding in Arabic NLP with Nested Embedding Learning}, author={Omer Nacar and Anis Koubaa}, year={2024}, eprint={2407.21139}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2407.21139}, }
AdiCakepLabs/otti_v2
AdiCakepLabs
2025-01-10T18:01:33Z
26
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:OnomaAIResearch/Illustrious-xl-early-release-v0", "base_model:adapter:OnomaAIResearch/Illustrious-xl-early-release-v0", "license:apache-2.0", "region:us" ]
text-to-image
2025-01-10T08:37:06Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: "UNICODE\0\0o\0t\0t\0i\0,\0 \0b\0o\0y\0_\0o\0t\0t\0i\0,\0 \0d\0a\0r\0k\0e\0r\0-\0s\0h\0a\0d\0e\0-\0t\0e\0a\0l\0_\0O\0t\0t\0i\0_\0e\0a\0r\0s\0,\0 \0s\0y\0m\0b\0o\0l\0-\0s\0h\0a\0p\0e\0d\0 \0p\0u\0p\0i\0l\0s\0,\0 \0b\0l\0a\0c\0k\0 \0b\0a\0c\0k\0g\0r\0o\0u\0n\0d\0,\0 \0o\0t\0t\0i\0_\0h\0o\0l\0d\0i\0n\0g\0,\0 \0:\0O\0,\0 \0b\0l\0u\0e\0 \0b\0a\0c\0k\0g\0r\0o\0u\0n\0d\0,\0 \0b\0l\0u\0e\0 \0e\0y\0e\0s\0,\0 \0b\0l\0u\0e\0 \0s\0c\0a\0r\0f\0,\0 \0c\0l\0o\0s\0e\0d\0 \0e\0y\0e\0s\0,\0 \0l\0o\0o\0k\0i\0n\0g\0 \0a\0t\0 \0v\0i\0e\0w\0e\0r\0,\0 \0f\0u\0l\0l\0 \0b\0o\0d\0y\0,\0 \0w\0h\0i\0s\0k\0e\0r\0s\0,\0 \0c\0l\0o\0s\0e\0d\0 \0m\0o\0u\0t\0h\0,\0 \0o\0t\0t\0i\0_\0b\0a\0c\0k\0_\0s\0i\0d\0e\0,\0 \0h\0e\0a\0r\0t\0,\0 \0b\0l\0a\0c\0k\0-\0l\0i\0n\0e\0_\0O\0t\0t\0i\0_\0w\0h\0i\0s\0k\0e\0r\0s\0,\0 \0b\0l\0a\0c\0k\0 \0e\0y\0e\0s\0,\0 \0o\0n\0 \0b\0a\0c\0k\0,\0 \0m\0i\0d\0d\0l\0e\0 \0f\0i\0n\0g\0e\0r\0,\0 \0c\0r\0y\0i\0n\0g\0,\0 \0n\0o\0 \0h\0u\0m\0a\0n\0s\0,\0 \0h\0o\0l\0d\0i\0n\0g\0 \0k\0n\0i\0f\0e\0" output: url: images/Otti v2 Model 2025-01-10.png base_model: OnomaAIResearch/Illustrious-xl-early-release-v0 instance_prompt: otti license: apache-2.0 --- # otti_v2 <Gallery /> ## Trigger words You should use `otti` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/AdiCakepLabs/otti_v2/tree/main) them in the Files & versions tab.
kostiantynk1205/420758a0-ee9a-4513-98ea-c6cdeecb5a47
kostiantynk1205
2025-01-10T17:55:25Z
10
0
peft
[ "peft", "safetensors", "gemma2", "axolotl", "generated_from_trainer", "base_model:unsloth/gemma-2-2b-it", "base_model:adapter:unsloth/gemma-2-2b-it", "license:gemma", "region:us" ]
null
2025-01-10T17:24:48Z
--- library_name: peft license: gemma base_model: unsloth/gemma-2-2b-it tags: - axolotl - generated_from_trainer model-index: - name: 420758a0-ee9a-4513-98ea-c6cdeecb5a47 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/gemma-2-2b-it bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - d8a87189652aae0f_train_data.json ds_type: json format: custom path: /workspace/input_data/d8a87189652aae0f_train_data.json type: field_input: condition field_instruction: drugName field_output: review format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: kostiantynk1205/420758a0-ee9a-4513-98ea-c6cdeecb5a47 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/d8a87189652aae0f_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 25e6c5f1-d7ed-4fe4-884d-711b49dddbac wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 25e6c5f1-d7ed-4fe4-884d-711b49dddbac warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 420758a0-ee9a-4513-98ea-c6cdeecb5a47 This model is a fine-tuned version of [unsloth/gemma-2-2b-it](https://huggingface.co/unsloth/gemma-2-2b-it) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.5850 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.7053 | 0.0000 | 1 | 3.0780 | | 3.086 | 0.0001 | 3 | 3.0555 | | 2.8443 | 0.0002 | 6 | 2.8310 | | 2.4184 | 0.0004 | 9 | 2.5850 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
great0001/0beeabc9-2727-4769-8a36-82195c339b2f
great0001
2025-01-10T17:55:24Z
16
0
peft
[ "peft", "safetensors", "gpt_neox", "axolotl", "generated_from_trainer", "base_model:EleutherAI/pythia-70m-deduped", "base_model:adapter:EleutherAI/pythia-70m-deduped", "license:apache-2.0", "region:us" ]
null
2025-01-10T17:54:47Z
--- library_name: peft license: apache-2.0 base_model: EleutherAI/pythia-70m-deduped tags: - axolotl - generated_from_trainer model-index: - name: 0beeabc9-2727-4769-8a36-82195c339b2f results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: EleutherAI/pythia-70m-deduped bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - e6a65369dcce024b_train_data.json ds_type: json format: custom path: /workspace/input_data/e6a65369dcce024b_train_data.json type: field_instruction: instruction field_output: response format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: great0001/0beeabc9-2727-4769-8a36-82195c339b2f hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/e6a65369dcce024b_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 2c4b003d-1db2-4e2d-bd96-c12e7ade5571 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 2c4b003d-1db2-4e2d-bd96-c12e7ade5571 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 0beeabc9-2727-4769-8a36-82195c339b2f This model is a fine-tuned version of [EleutherAI/pythia-70m-deduped](https://huggingface.co/EleutherAI/pythia-70m-deduped) on the None dataset. It achieves the following results on the evaluation set: - Loss: 32.1478 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 461.7433 | 0.0006 | 1 | 32.1927 | | 44.2237 | 0.0018 | 3 | 32.1861 | | 72.9652 | 0.0037 | 6 | 32.1752 | | 143.8256 | 0.0055 | 9 | 32.1478 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
tuanna08go/f8d99c6f-3a86-315c-763e-ffb180dc039a
tuanna08go
2025-01-10T17:54:00Z
13
0
peft
[ "peft", "safetensors", "gemma2", "axolotl", "generated_from_trainer", "base_model:unsloth/gemma-2-2b-it", "base_model:adapter:unsloth/gemma-2-2b-it", "license:gemma", "region:us" ]
null
2025-01-10T16:45:53Z
--- library_name: peft license: gemma base_model: unsloth/gemma-2-2b-it tags: - axolotl - generated_from_trainer model-index: - name: f8d99c6f-3a86-315c-763e-ffb180dc039a results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/gemma-2-2b-it bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - d8a87189652aae0f_train_data.json ds_type: json format: custom path: /workspace/input_data/d8a87189652aae0f_train_data.json type: field_input: condition field_instruction: drugName field_output: review format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 5 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: tuanna08go/f8d99c6f-3a86-315c-763e-ffb180dc039a hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 5 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/d8a87189652aae0f_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 25e6c5f1-d7ed-4fe4-884d-711b49dddbac wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 25e6c5f1-d7ed-4fe4-884d-711b49dddbac warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # f8d99c6f-3a86-315c-763e-ffb180dc039a This model is a fine-tuned version of [unsloth/gemma-2-2b-it](https://huggingface.co/unsloth/gemma-2-2b-it) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.3943 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0000 | 1 | 3.0783 | | 2.8299 | 0.0004 | 10 | 2.7094 | | 2.5219 | 0.0008 | 20 | 2.4601 | | 2.353 | 0.0012 | 30 | 2.4072 | | 2.3631 | 0.0016 | 40 | 2.3964 | | 2.4035 | 0.0020 | 50 | 2.3943 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
hryzion/pokemon-lora
hryzion
2025-01-10T17:52:58Z
12
0
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "diffusers-training", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2025-01-09T07:20:48Z
--- base_model: runwayml/stable-diffusion-v1-5 library_name: diffusers license: creativeml-openrail-m inference: true tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - diffusers-training - lora - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - diffusers-training - lora --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # LoRA text2image fine-tuning - hryzion/pokemon-lora These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the svjack/pokemon-blip-captions-en-zh dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
dimasik1987/cb6ae267-aa18-49f8-b1a7-6b9646d55ce1
dimasik1987
2025-01-10T17:52:53Z
11
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "custom_code", "base_model:NousResearch/CodeLlama-13b-hf-flash", "base_model:adapter:NousResearch/CodeLlama-13b-hf-flash", "region:us" ]
null
2025-01-10T17:38:30Z
--- library_name: peft base_model: NousResearch/CodeLlama-13b-hf-flash tags: - axolotl - generated_from_trainer model-index: - name: cb6ae267-aa18-49f8-b1a7-6b9646d55ce1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/CodeLlama-13b-hf-flash bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - de51b1266f93339a_train_data.json ds_type: json format: custom path: /workspace/input_data/de51b1266f93339a_train_data.json type: field_instruction: question field_output: answer format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: dimasik1987/cb6ae267-aa18-49f8-b1a7-6b9646d55ce1 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 75GiB max_steps: 30 micro_batch_size: 2 mlflow_experiment_name: /tmp/de51b1266f93339a_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 3739b0f7-2f6d-494a-a810-4bb94c46aa31 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 3739b0f7-2f6d-494a-a810-4bb94c46aa31 warmup_steps: 10 weight_decay: 0.01 xformers_attention: true ``` </details><br> # cb6ae267-aa18-49f8-b1a7-6b9646d55ce1 This model is a fine-tuned version of [NousResearch/CodeLlama-13b-hf-flash](https://huggingface.co/NousResearch/CodeLlama-13b-hf-flash) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0972 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0005 | 1 | 2.1816 | | 8.2767 | 0.0040 | 8 | 2.1498 | | 8.3844 | 0.0080 | 16 | 2.1088 | | 7.9056 | 0.0119 | 24 | 2.0972 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1