modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
sequence
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
sergioalves/38ecf603-698a-4da2-b1d6-fb4bfdc840a1
sergioalves
2025-01-10T15:19:18Z
11
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:princeton-nlp/Sheared-LLaMA-1.3B", "base_model:adapter:princeton-nlp/Sheared-LLaMA-1.3B", "license:apache-2.0", "region:us" ]
null
2025-01-10T14:57:49Z
--- library_name: peft license: apache-2.0 base_model: princeton-nlp/Sheared-LLaMA-1.3B tags: - axolotl - generated_from_trainer model-index: - name: 38ecf603-698a-4da2-b1d6-fb4bfdc840a1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: princeton-nlp/Sheared-LLaMA-1.3B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - e266add1a4abf13d_train_data.json ds_type: json format: custom path: /workspace/input_data/e266add1a4abf13d_train_data.json type: field_input: teasertext field_instruction: title field_output: content format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: sergioalves/38ecf603-698a-4da2-b1d6-fb4bfdc840a1 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 75GiB max_steps: 30 micro_batch_size: 2 mlflow_experiment_name: /tmp/e266add1a4abf13d_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_hf output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 7b6fcdb3-3506-4e5e-a34f-9ee9c13c3ac0 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 7b6fcdb3-3506-4e5e-a34f-9ee9c13c3ac0 warmup_steps: 10 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 38ecf603-698a-4da2-b1d6-fb4bfdc840a1 This model is a fine-tuned version of [princeton-nlp/Sheared-LLaMA-1.3B](https://huggingface.co/princeton-nlp/Sheared-LLaMA-1.3B) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_HF with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0001 | 1 | nan | | 0.0 | 0.0008 | 8 | nan | | 0.0 | 0.0015 | 16 | nan | | 0.0 | 0.0023 | 24 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
hrasto/llamas2_tok_l0
hrasto
2025-01-10T15:19:02Z
20
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-10T14:14:03Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/ktdsbaseLM-v0.14-onbased-llama3.1-GGUF
mradermacher
2025-01-10T15:18:36Z
354
1
transformers
[ "transformers", "gguf", "en", "base_model:AIDX-ktds/ktdsbaseLM-v0.14-onbased-llama3.1", "base_model:quantized:AIDX-ktds/ktdsbaseLM-v0.14-onbased-llama3.1", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-10T14:02:22Z
--- base_model: AIDX-ktds/ktdsbaseLM-v0.14-onbased-llama3.1 language: - en library_name: transformers quantized_by: mradermacher tags: [] --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/AIDX-ktds/ktdsbaseLM-v0.14-onbased-llama3.1 <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/ktdsbaseLM-v0.14-onbased-llama3.1-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/ktdsbaseLM-v0.14-onbased-llama3.1-GGUF/resolve/main/ktdsbaseLM-v0.14-onbased-llama3.1.Q2_K.gguf) | Q2_K | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/ktdsbaseLM-v0.14-onbased-llama3.1-GGUF/resolve/main/ktdsbaseLM-v0.14-onbased-llama3.1.Q3_K_S.gguf) | Q3_K_S | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/ktdsbaseLM-v0.14-onbased-llama3.1-GGUF/resolve/main/ktdsbaseLM-v0.14-onbased-llama3.1.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/ktdsbaseLM-v0.14-onbased-llama3.1-GGUF/resolve/main/ktdsbaseLM-v0.14-onbased-llama3.1.Q3_K_L.gguf) | Q3_K_L | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/ktdsbaseLM-v0.14-onbased-llama3.1-GGUF/resolve/main/ktdsbaseLM-v0.14-onbased-llama3.1.IQ4_XS.gguf) | IQ4_XS | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/ktdsbaseLM-v0.14-onbased-llama3.1-GGUF/resolve/main/ktdsbaseLM-v0.14-onbased-llama3.1.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/ktdsbaseLM-v0.14-onbased-llama3.1-GGUF/resolve/main/ktdsbaseLM-v0.14-onbased-llama3.1.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/ktdsbaseLM-v0.14-onbased-llama3.1-GGUF/resolve/main/ktdsbaseLM-v0.14-onbased-llama3.1.Q5_K_S.gguf) | Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/ktdsbaseLM-v0.14-onbased-llama3.1-GGUF/resolve/main/ktdsbaseLM-v0.14-onbased-llama3.1.Q5_K_M.gguf) | Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/ktdsbaseLM-v0.14-onbased-llama3.1-GGUF/resolve/main/ktdsbaseLM-v0.14-onbased-llama3.1.Q6_K.gguf) | Q6_K | 6.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/ktdsbaseLM-v0.14-onbased-llama3.1-GGUF/resolve/main/ktdsbaseLM-v0.14-onbased-llama3.1.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/ktdsbaseLM-v0.14-onbased-llama3.1-GGUF/resolve/main/ktdsbaseLM-v0.14-onbased-llama3.1.f16.gguf) | f16 | 16.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
SotirisLegkas/KaLlamaki-stage-2-step-5000
SotirisLegkas
2025-01-10T15:12:48Z
7
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-10T13:00:08Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
leir1a/SD_mix_models
leir1a
2025-01-10T15:09:21Z
0
1
null
[ "license:cc", "region:us" ]
null
2023-04-16T08:49:03Z
--- license: cc --- ## Model Details simply mixed t2i models. they were tuned toward high quality 2D CG, affected from elysium_anime.
lesso11/0e4b6b7a-ce82-40cd-98cf-3319eca6ef33
lesso11
2025-01-10T15:08:27Z
10
0
peft
[ "peft", "safetensors", "gpt_neox", "axolotl", "generated_from_trainer", "base_model:EleutherAI/pythia-14m", "base_model:adapter:EleutherAI/pythia-14m", "region:us" ]
null
2025-01-10T15:08:02Z
--- library_name: peft base_model: EleutherAI/pythia-14m tags: - axolotl - generated_from_trainer model-index: - name: 0e4b6b7a-ce82-40cd-98cf-3319eca6ef33 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: EleutherAI/pythia-14m bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - bd973ab324d4224d_train_data.json ds_type: json format: custom path: /workspace/input_data/bd973ab324d4224d_train_data.json type: field_input: facts field_instruction: decomposition field_output: question format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: lesso11/0e4b6b7a-ce82-40cd-98cf-3319eca6ef33 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/bd973ab324d4224d_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: c5ad883a-2b32-4910-9122-e0e2ac1a5647 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: c5ad883a-2b32-4910-9122-e0e2ac1a5647 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 0e4b6b7a-ce82-40cd-98cf-3319eca6ef33 This model is a fine-tuned version of [EleutherAI/pythia-14m](https://huggingface.co/EleutherAI/pythia-14m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 7.2528 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 32.6044 | 0.0040 | 1 | 7.3110 | | 28.0135 | 0.0121 | 3 | 7.5116 | | 30.7733 | 0.0242 | 6 | 7.4168 | | 29.6309 | 0.0363 | 9 | 7.2528 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Triangle104/Qwen2-VL-7B-Instruct-abliterated-Q5_K_S-GGUF
Triangle104
2025-01-10T15:06:51Z
37
0
transformers
[ "transformers", "gguf", "chat", "abliterated", "uncensored", "llama-cpp", "gguf-my-repo", "image-text-to-text", "en", "base_model:huihui-ai/Qwen2-VL-7B-Instruct-abliterated", "base_model:quantized:huihui-ai/Qwen2-VL-7B-Instruct-abliterated", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
image-text-to-text
2025-01-10T15:06:25Z
--- library_name: transformers license: apache-2.0 license_link: https://huggingface.co/huihui-ai/Qwen2-VL-2B-Instruct-abliterated/blob/main/LICENSE language: - en pipeline_tag: image-text-to-text base_model: huihui-ai/Qwen2-VL-7B-Instruct-abliterated tags: - chat - abliterated - uncensored - llama-cpp - gguf-my-repo --- # Triangle104/Qwen2-VL-7B-Instruct-abliterated-Q5_K_S-GGUF This model was converted to GGUF format from [`huihui-ai/Qwen2-VL-7B-Instruct-abliterated`](https://huggingface.co/huihui-ai/Qwen2-VL-7B-Instruct-abliterated) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/huihui-ai/Qwen2-VL-7B-Instruct-abliterated) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Qwen2-VL-7B-Instruct-abliterated-Q5_K_S-GGUF --hf-file qwen2-vl-7b-instruct-abliterated-q5_k_s.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Qwen2-VL-7B-Instruct-abliterated-Q5_K_S-GGUF --hf-file qwen2-vl-7b-instruct-abliterated-q5_k_s.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Qwen2-VL-7B-Instruct-abliterated-Q5_K_S-GGUF --hf-file qwen2-vl-7b-instruct-abliterated-q5_k_s.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Qwen2-VL-7B-Instruct-abliterated-Q5_K_S-GGUF --hf-file qwen2-vl-7b-instruct-abliterated-q5_k_s.gguf -c 2048 ```
diaenra/569982f4-a07e-4108-9f79-9a7516bb3e40
diaenra
2025-01-10T15:02:41Z
10
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen1.5-14B-Chat", "base_model:adapter:Qwen/Qwen1.5-14B-Chat", "license:other", "region:us" ]
null
2025-01-10T13:56:32Z
--- library_name: peft license: other base_model: Qwen/Qwen1.5-14B-Chat tags: - axolotl - generated_from_trainer model-index: - name: 569982f4-a07e-4108-9f79-9a7516bb3e40 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen1.5-14B-Chat bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 53946c553452bc08_train_data.json ds_type: json format: custom path: /workspace/input_data/53946c553452bc08_train_data.json type: field_input: '' field_instruction: prompt field_output: chosen format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_steps: null eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: diaenra/569982f4-a07e-4108-9f79-9a7516bb3e40 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_modules_to_save: - embed_tokens - lm_head lora_r: 32 lora_target_linear: true lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj lr_scheduler: cosine max_memory: 0: 70GB micro_batch_size: 4 mlflow_experiment_name: /tmp/53946c553452bc08_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 239 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: diaenra-tao-miner wandb_mode: online wandb_name: f6c2143c-2d86-4bdb-ac98-286dccd7e8c7 wandb_project: tao wandb_run: diaenra wandb_runid: f6c2143c-2d86-4bdb-ac98-286dccd7e8c7 warmup_steps: 100 weight_decay: 0.1 xformers_attention: true ``` </details><br> # 569982f4-a07e-4108-9f79-9a7516bb3e40 This model is a fine-tuned version of [Qwen/Qwen1.5-14B-Chat](https://huggingface.co/Qwen/Qwen1.5-14B-Chat) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6477 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.6318 | 1.0 | 499 | 0.6477 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
smokxy/sdssd-quantized
smokxy
2025-01-10T15:00:40Z
7
0
optimum
[ "optimum", "safetensors", "bert", "quantized", "ner", "4-bit", "bitsandbytes", "region:us" ]
null
2025-01-10T15:00:16Z
--- tags: - quantized - ner - 4-bit library_name: optimum --- # Model - sdssd-quantized This model has been optimized and uploaded to the HuggingFace Hub. ## Model Details - Original Repository: sdssd-quantized - Optimization Tags: quantized, ner, 4-bit
trenden/4655dbb4-1139-460e-872f-8b937e74883b
trenden
2025-01-10T14:59:52Z
10
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "custom_code", "base_model:NousResearch/CodeLlama-7b-hf", "base_model:adapter:NousResearch/CodeLlama-7b-hf", "region:us" ]
null
2025-01-10T14:00:18Z
--- library_name: peft base_model: NousResearch/CodeLlama-7b-hf tags: - axolotl - generated_from_trainer model-index: - name: 4655dbb4-1139-460e-872f-8b937e74883b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/CodeLlama-7b-hf bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 824d58f9981ea803_train_data.json ds_type: json format: custom path: /workspace/input_data/824d58f9981ea803_train_data.json type: field_input: input field_instruction: instruct field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: trenden/4655dbb4-1139-460e-872f-8b937e74883b hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/824d58f9981ea803_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 0e774f43-da40-499c-a40a-68ac277e959f wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 0e774f43-da40-499c-a40a-68ac277e959f warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 4655dbb4-1139-460e-872f-8b937e74883b This model is a fine-tuned version of [NousResearch/CodeLlama-7b-hf](https://huggingface.co/NousResearch/CodeLlama-7b-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0517 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 4.4271 | 0.0000 | 1 | 1.2013 | | 5.1587 | 0.0001 | 3 | 1.1995 | | 5.5428 | 0.0002 | 6 | 1.1662 | | 4.6788 | 0.0003 | 9 | 1.0517 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Dawid511/speecht5_finetuned_librispeech_polish_epo6_batch4_gas2
Dawid511
2025-01-10T14:58:31Z
18
0
transformers
[ "transformers", "tensorboard", "safetensors", "speecht5", "text-to-audio", "generated_from_trainer", "license:mit", "endpoints_compatible", "region:us" ]
text-to-audio
2025-01-10T14:35:38Z
--- library_name: transformers license: mit base_model: dawid511/speecht5_finetuned_librispeech_polish_epo6_batch2_gas4 tags: - generated_from_trainer model-index: - name: speecht5_finetuned_librispeech_polish_epo6_batch4_gas2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # speecht5_finetuned_librispeech_polish_epo6_batch4_gas2 This model is a fine-tuned version of [dawid511/speecht5_finetuned_librispeech_polish_epo6_batch2_gas4](https://huggingface.co/dawid511/speecht5_finetuned_librispeech_polish_epo6_batch2_gas4) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3653 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.7593 | 0.5115 | 100 | 0.3747 | | 0.786 | 1.0205 | 200 | 0.3787 | | 0.7781 | 1.5320 | 300 | 0.3732 | | 0.767 | 2.0409 | 400 | 0.3830 | | 0.7654 | 2.5524 | 500 | 0.3753 | | 0.7471 | 3.0614 | 600 | 0.3697 | | 0.7531 | 3.5729 | 700 | 0.3672 | | 0.7365 | 4.0818 | 800 | 0.3716 | | 0.7385 | 4.5934 | 900 | 0.3674 | | 0.7218 | 5.1023 | 1000 | 0.3692 | | 0.7326 | 5.6138 | 1100 | 0.3653 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0
Triangle104/Qwen2-VL-7B-Instruct-abliterated-Q4_K_S-GGUF
Triangle104
2025-01-10T14:57:44Z
32
0
transformers
[ "transformers", "gguf", "chat", "abliterated", "uncensored", "llama-cpp", "gguf-my-repo", "image-text-to-text", "en", "base_model:huihui-ai/Qwen2-VL-7B-Instruct-abliterated", "base_model:quantized:huihui-ai/Qwen2-VL-7B-Instruct-abliterated", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
image-text-to-text
2025-01-10T14:57:22Z
--- library_name: transformers license: apache-2.0 license_link: https://huggingface.co/huihui-ai/Qwen2-VL-2B-Instruct-abliterated/blob/main/LICENSE language: - en pipeline_tag: image-text-to-text base_model: huihui-ai/Qwen2-VL-7B-Instruct-abliterated tags: - chat - abliterated - uncensored - llama-cpp - gguf-my-repo --- # Triangle104/Qwen2-VL-7B-Instruct-abliterated-Q4_K_S-GGUF This model was converted to GGUF format from [`huihui-ai/Qwen2-VL-7B-Instruct-abliterated`](https://huggingface.co/huihui-ai/Qwen2-VL-7B-Instruct-abliterated) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/huihui-ai/Qwen2-VL-7B-Instruct-abliterated) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Qwen2-VL-7B-Instruct-abliterated-Q4_K_S-GGUF --hf-file qwen2-vl-7b-instruct-abliterated-q4_k_s.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Qwen2-VL-7B-Instruct-abliterated-Q4_K_S-GGUF --hf-file qwen2-vl-7b-instruct-abliterated-q4_k_s.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Qwen2-VL-7B-Instruct-abliterated-Q4_K_S-GGUF --hf-file qwen2-vl-7b-instruct-abliterated-q4_k_s.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Qwen2-VL-7B-Instruct-abliterated-Q4_K_S-GGUF --hf-file qwen2-vl-7b-instruct-abliterated-q4_k_s.gguf -c 2048 ```
mradermacher/Llama-2-7b-samsum-i1-GGUF
mradermacher
2025-01-10T14:57:28Z
625
0
transformers
[ "transformers", "gguf", "en", "dataset:samsum", "base_model:SalmanFaroz/Llama-2-7b-samsum", "base_model:quantized:SalmanFaroz/Llama-2-7b-samsum", "license:mit", "endpoints_compatible", "region:us", "imatrix" ]
null
2025-01-10T14:15:35Z
--- base_model: SalmanFaroz/Llama-2-7b-samsum datasets: - samsum language: - en library_name: transformers license: mit quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/SalmanFaroz/Llama-2-7b-samsum <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Llama-2-7b-samsum-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Llama-2-7b-samsum-i1-GGUF/resolve/main/Llama-2-7b-samsum.i1-IQ1_S.gguf) | i1-IQ1_S | 1.6 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Llama-2-7b-samsum-i1-GGUF/resolve/main/Llama-2-7b-samsum.i1-IQ1_M.gguf) | i1-IQ1_M | 1.8 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Llama-2-7b-samsum-i1-GGUF/resolve/main/Llama-2-7b-samsum.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.0 | | | [GGUF](https://huggingface.co/mradermacher/Llama-2-7b-samsum-i1-GGUF/resolve/main/Llama-2-7b-samsum.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.1 | | | [GGUF](https://huggingface.co/mradermacher/Llama-2-7b-samsum-i1-GGUF/resolve/main/Llama-2-7b-samsum.i1-IQ2_S.gguf) | i1-IQ2_S | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/Llama-2-7b-samsum-i1-GGUF/resolve/main/Llama-2-7b-samsum.i1-Q2_K_S.gguf) | i1-Q2_K_S | 2.4 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Llama-2-7b-samsum-i1-GGUF/resolve/main/Llama-2-7b-samsum.i1-IQ2_M.gguf) | i1-IQ2_M | 2.5 | | | [GGUF](https://huggingface.co/mradermacher/Llama-2-7b-samsum-i1-GGUF/resolve/main/Llama-2-7b-samsum.i1-Q2_K.gguf) | i1-Q2_K | 2.6 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Llama-2-7b-samsum-i1-GGUF/resolve/main/Llama-2-7b-samsum.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 2.7 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Llama-2-7b-samsum-i1-GGUF/resolve/main/Llama-2-7b-samsum.i1-IQ3_XS.gguf) | i1-IQ3_XS | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/Llama-2-7b-samsum-i1-GGUF/resolve/main/Llama-2-7b-samsum.i1-IQ3_S.gguf) | i1-IQ3_S | 3.0 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Llama-2-7b-samsum-i1-GGUF/resolve/main/Llama-2-7b-samsum.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.0 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Llama-2-7b-samsum-i1-GGUF/resolve/main/Llama-2-7b-samsum.i1-IQ3_M.gguf) | i1-IQ3_M | 3.2 | | | [GGUF](https://huggingface.co/mradermacher/Llama-2-7b-samsum-i1-GGUF/resolve/main/Llama-2-7b-samsum.i1-Q3_K_M.gguf) | i1-Q3_K_M | 3.4 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Llama-2-7b-samsum-i1-GGUF/resolve/main/Llama-2-7b-samsum.i1-Q3_K_L.gguf) | i1-Q3_K_L | 3.7 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Llama-2-7b-samsum-i1-GGUF/resolve/main/Llama-2-7b-samsum.i1-IQ4_XS.gguf) | i1-IQ4_XS | 3.7 | | | [GGUF](https://huggingface.co/mradermacher/Llama-2-7b-samsum-i1-GGUF/resolve/main/Llama-2-7b-samsum.i1-IQ4_NL.gguf) | i1-IQ4_NL | 3.9 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/Llama-2-7b-samsum-i1-GGUF/resolve/main/Llama-2-7b-samsum.i1-Q4_0.gguf) | i1-Q4_0 | 3.9 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Llama-2-7b-samsum-i1-GGUF/resolve/main/Llama-2-7b-samsum.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.0 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Llama-2-7b-samsum-i1-GGUF/resolve/main/Llama-2-7b-samsum.i1-Q4_K_M.gguf) | i1-Q4_K_M | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama-2-7b-samsum-i1-GGUF/resolve/main/Llama-2-7b-samsum.i1-Q4_1.gguf) | i1-Q4_1 | 4.3 | | | [GGUF](https://huggingface.co/mradermacher/Llama-2-7b-samsum-i1-GGUF/resolve/main/Llama-2-7b-samsum.i1-Q5_K_S.gguf) | i1-Q5_K_S | 4.8 | | | [GGUF](https://huggingface.co/mradermacher/Llama-2-7b-samsum-i1-GGUF/resolve/main/Llama-2-7b-samsum.i1-Q5_K_M.gguf) | i1-Q5_K_M | 4.9 | | | [GGUF](https://huggingface.co/mradermacher/Llama-2-7b-samsum-i1-GGUF/resolve/main/Llama-2-7b-samsum.i1-Q6_K.gguf) | i1-Q6_K | 5.6 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
smokxy/sas-quantized
smokxy
2025-01-10T14:57:26Z
68
0
optimum
[ "optimum", "safetensors", "bert", "quantized", "ner", "4-bit", "bitsandbytes", "region:us" ]
null
2025-01-10T14:57:00Z
--- tags: - quantized - ner - 4-bit library_name: optimum --- # Model - sas-quantized This model has been optimized and uploaded to the HuggingFace Hub. ## Model Details - Original Repository: sas-quantized - Optimization Tags: quantized, ner, 4-bit
amj808/casino-search-query-intent-classifier-quantized
amj808
2025-01-10T14:53:38Z
6
0
transformers
[ "transformers", "pytorch", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-01-10T06:02:07Z
--- library_name: transformers license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: casino-search-query-intent-classifier results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # casino-search-query-intent-classifier This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3191 - Accuracy: 0.9922 - F1: 0.9922 - Precision: 0.9923 - Recall: 0.9922 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 1.0 | 169 | 1.0933 | 0.4119 | 0.3048 | 0.4485 | 0.4119 | | No log | 2.0 | 338 | 0.9162 | 0.6516 | 0.5873 | 0.7319 | 0.6516 | | 0.9908 | 3.0 | 507 | 0.7124 | 0.7759 | 0.7617 | 0.8035 | 0.7759 | | 0.9908 | 4.0 | 676 | 0.5941 | 0.9275 | 0.9270 | 0.9291 | 0.9275 | | 0.9908 | 5.0 | 845 | 0.5042 | 0.9611 | 0.9610 | 0.9619 | 0.9611 | | 0.5708 | 6.0 | 1014 | 0.3974 | 0.9832 | 0.9831 | 0.9833 | 0.9832 | | 0.5708 | 7.0 | 1183 | 0.3191 | 0.9922 | 0.9922 | 0.9923 | 0.9922 | | 0.5708 | 8.0 | 1352 | 0.2709 | 0.9922 | 0.9922 | 0.9923 | 0.9922 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1.post8 - Datasets 2.21.0 - Tokenizers 0.21.0
Triangle104/Qwen2-VL-2B-Instruct-abliterated-Q8_0-GGUF
Triangle104
2025-01-10T14:52:40Z
28
0
transformers
[ "transformers", "gguf", "chat", "abliterated", "uncensored", "llama-cpp", "gguf-my-repo", "image-text-to-text", "en", "base_model:huihui-ai/Qwen2-VL-2B-Instruct-abliterated", "base_model:quantized:huihui-ai/Qwen2-VL-2B-Instruct-abliterated", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
image-text-to-text
2025-01-10T14:52:30Z
--- library_name: transformers license: apache-2.0 license_link: https://huggingface.co/huihui-ai/Qwen2-VL-2B-Instruct-abliterated/blob/main/LICENSE language: - en pipeline_tag: image-text-to-text base_model: huihui-ai/Qwen2-VL-2B-Instruct-abliterated tags: - chat - abliterated - uncensored - llama-cpp - gguf-my-repo --- # Triangle104/Qwen2-VL-2B-Instruct-abliterated-Q8_0-GGUF This model was converted to GGUF format from [`huihui-ai/Qwen2-VL-2B-Instruct-abliterated`](https://huggingface.co/huihui-ai/Qwen2-VL-2B-Instruct-abliterated) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/huihui-ai/Qwen2-VL-2B-Instruct-abliterated) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Qwen2-VL-2B-Instruct-abliterated-Q8_0-GGUF --hf-file qwen2-vl-2b-instruct-abliterated-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Qwen2-VL-2B-Instruct-abliterated-Q8_0-GGUF --hf-file qwen2-vl-2b-instruct-abliterated-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Qwen2-VL-2B-Instruct-abliterated-Q8_0-GGUF --hf-file qwen2-vl-2b-instruct-abliterated-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Qwen2-VL-2B-Instruct-abliterated-Q8_0-GGUF --hf-file qwen2-vl-2b-instruct-abliterated-q8_0.gguf -c 2048 ```
Triangle104/Qwen2-VL-2B-Instruct-abliterated-Q6_K-GGUF
Triangle104
2025-01-10T14:51:47Z
27
0
transformers
[ "transformers", "gguf", "chat", "abliterated", "uncensored", "llama-cpp", "gguf-my-repo", "image-text-to-text", "en", "base_model:huihui-ai/Qwen2-VL-2B-Instruct-abliterated", "base_model:quantized:huihui-ai/Qwen2-VL-2B-Instruct-abliterated", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
image-text-to-text
2025-01-10T14:51:38Z
--- library_name: transformers license: apache-2.0 license_link: https://huggingface.co/huihui-ai/Qwen2-VL-2B-Instruct-abliterated/blob/main/LICENSE language: - en pipeline_tag: image-text-to-text base_model: huihui-ai/Qwen2-VL-2B-Instruct-abliterated tags: - chat - abliterated - uncensored - llama-cpp - gguf-my-repo --- # Triangle104/Qwen2-VL-2B-Instruct-abliterated-Q6_K-GGUF This model was converted to GGUF format from [`huihui-ai/Qwen2-VL-2B-Instruct-abliterated`](https://huggingface.co/huihui-ai/Qwen2-VL-2B-Instruct-abliterated) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/huihui-ai/Qwen2-VL-2B-Instruct-abliterated) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Qwen2-VL-2B-Instruct-abliterated-Q6_K-GGUF --hf-file qwen2-vl-2b-instruct-abliterated-q6_k.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Qwen2-VL-2B-Instruct-abliterated-Q6_K-GGUF --hf-file qwen2-vl-2b-instruct-abliterated-q6_k.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Qwen2-VL-2B-Instruct-abliterated-Q6_K-GGUF --hf-file qwen2-vl-2b-instruct-abliterated-q6_k.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Qwen2-VL-2B-Instruct-abliterated-Q6_K-GGUF --hf-file qwen2-vl-2b-instruct-abliterated-q6_k.gguf -c 2048 ```
ANGKJ1995/my_awesome_model
ANGKJ1995
2025-01-10T14:50:22Z
10
0
transformers
[ "transformers", "tensorboard", "safetensors", "roberta", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-01-10T14:50:10Z
--- library_name: transformers tags: - generated_from_trainer model-index: - name: my_awesome_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_model This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 2.3074 - eval_model_preparation_time: 0.0018 - eval_accuracy: 0.7619 - eval_runtime: 0.2024 - eval_samples_per_second: 207.561 - eval_steps_per_second: 9.884 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0
Triangle104/Qwen2-VL-2B-Instruct-abliterated-Q5_K_S-GGUF
Triangle104
2025-01-10T14:48:37Z
23
0
transformers
[ "transformers", "gguf", "chat", "abliterated", "uncensored", "llama-cpp", "gguf-my-repo", "image-text-to-text", "en", "base_model:huihui-ai/Qwen2-VL-2B-Instruct-abliterated", "base_model:quantized:huihui-ai/Qwen2-VL-2B-Instruct-abliterated", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
image-text-to-text
2025-01-10T14:48:29Z
--- library_name: transformers license: apache-2.0 license_link: https://huggingface.co/huihui-ai/Qwen2-VL-2B-Instruct-abliterated/blob/main/LICENSE language: - en pipeline_tag: image-text-to-text base_model: huihui-ai/Qwen2-VL-2B-Instruct-abliterated tags: - chat - abliterated - uncensored - llama-cpp - gguf-my-repo --- # Triangle104/Qwen2-VL-2B-Instruct-abliterated-Q5_K_S-GGUF This model was converted to GGUF format from [`huihui-ai/Qwen2-VL-2B-Instruct-abliterated`](https://huggingface.co/huihui-ai/Qwen2-VL-2B-Instruct-abliterated) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/huihui-ai/Qwen2-VL-2B-Instruct-abliterated) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Qwen2-VL-2B-Instruct-abliterated-Q5_K_S-GGUF --hf-file qwen2-vl-2b-instruct-abliterated-q5_k_s.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Qwen2-VL-2B-Instruct-abliterated-Q5_K_S-GGUF --hf-file qwen2-vl-2b-instruct-abliterated-q5_k_s.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Qwen2-VL-2B-Instruct-abliterated-Q5_K_S-GGUF --hf-file qwen2-vl-2b-instruct-abliterated-q5_k_s.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Qwen2-VL-2B-Instruct-abliterated-Q5_K_S-GGUF --hf-file qwen2-vl-2b-instruct-abliterated-q5_k_s.gguf -c 2048 ```
dragoa/mistral-finetuned-rulexDoc
dragoa
2025-01-10T14:47:40Z
92
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-12-11T16:48:36Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Triangle104/Qwen2-VL-2B-Instruct-abliterated-Q4_K_M-GGUF
Triangle104
2025-01-10T14:46:22Z
35
0
transformers
[ "transformers", "gguf", "chat", "abliterated", "uncensored", "llama-cpp", "gguf-my-repo", "image-text-to-text", "en", "base_model:huihui-ai/Qwen2-VL-2B-Instruct-abliterated", "base_model:quantized:huihui-ai/Qwen2-VL-2B-Instruct-abliterated", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
image-text-to-text
2025-01-10T14:46:15Z
--- library_name: transformers license: apache-2.0 license_link: https://huggingface.co/huihui-ai/Qwen2-VL-2B-Instruct-abliterated/blob/main/LICENSE language: - en pipeline_tag: image-text-to-text base_model: huihui-ai/Qwen2-VL-2B-Instruct-abliterated tags: - chat - abliterated - uncensored - llama-cpp - gguf-my-repo --- # Triangle104/Qwen2-VL-2B-Instruct-abliterated-Q4_K_M-GGUF This model was converted to GGUF format from [`huihui-ai/Qwen2-VL-2B-Instruct-abliterated`](https://huggingface.co/huihui-ai/Qwen2-VL-2B-Instruct-abliterated) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/huihui-ai/Qwen2-VL-2B-Instruct-abliterated) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Qwen2-VL-2B-Instruct-abliterated-Q4_K_M-GGUF --hf-file qwen2-vl-2b-instruct-abliterated-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Qwen2-VL-2B-Instruct-abliterated-Q4_K_M-GGUF --hf-file qwen2-vl-2b-instruct-abliterated-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Qwen2-VL-2B-Instruct-abliterated-Q4_K_M-GGUF --hf-file qwen2-vl-2b-instruct-abliterated-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Qwen2-VL-2B-Instruct-abliterated-Q4_K_M-GGUF --hf-file qwen2-vl-2b-instruct-abliterated-q4_k_m.gguf -c 2048 ```
sanaridas/query_classifier
sanaridas
2025-01-10T14:45:56Z
15
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "unsloth", "trl", "sft", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-10T14:38:21Z
--- library_name: transformers tags: - unsloth - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
hugggof/vampnetv2-d774-l8-h8-mode-vampnet_rms-hchroma-latest
hugggof
2025-01-10T14:44:59Z
63
0
null
[ "safetensors", "model_hub_mixin", "pytorch_model_hub_mixin", "region:us" ]
null
2025-01-10T14:44:45Z
--- tags: - model_hub_mixin - pytorch_model_hub_mixin --- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration: - Library: [More Information Needed] - Docs: [More Information Needed]
Triangle104/Qwen2-VL-2B-Instruct-abliterated-Q4_K_S-GGUF
Triangle104
2025-01-10T14:44:30Z
27
0
transformers
[ "transformers", "gguf", "chat", "abliterated", "uncensored", "llama-cpp", "gguf-my-repo", "image-text-to-text", "en", "base_model:huihui-ai/Qwen2-VL-2B-Instruct-abliterated", "base_model:quantized:huihui-ai/Qwen2-VL-2B-Instruct-abliterated", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
image-text-to-text
2025-01-10T14:44:23Z
--- library_name: transformers license: apache-2.0 license_link: https://huggingface.co/huihui-ai/Qwen2-VL-2B-Instruct-abliterated/blob/main/LICENSE language: - en pipeline_tag: image-text-to-text base_model: huihui-ai/Qwen2-VL-2B-Instruct-abliterated tags: - chat - abliterated - uncensored - llama-cpp - gguf-my-repo --- # Triangle104/Qwen2-VL-2B-Instruct-abliterated-Q4_K_S-GGUF This model was converted to GGUF format from [`huihui-ai/Qwen2-VL-2B-Instruct-abliterated`](https://huggingface.co/huihui-ai/Qwen2-VL-2B-Instruct-abliterated) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/huihui-ai/Qwen2-VL-2B-Instruct-abliterated) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Qwen2-VL-2B-Instruct-abliterated-Q4_K_S-GGUF --hf-file qwen2-vl-2b-instruct-abliterated-q4_k_s.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Qwen2-VL-2B-Instruct-abliterated-Q4_K_S-GGUF --hf-file qwen2-vl-2b-instruct-abliterated-q4_k_s.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Qwen2-VL-2B-Instruct-abliterated-Q4_K_S-GGUF --hf-file qwen2-vl-2b-instruct-abliterated-q4_k_s.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Qwen2-VL-2B-Instruct-abliterated-Q4_K_S-GGUF --hf-file qwen2-vl-2b-instruct-abliterated-q4_k_s.gguf -c 2048 ```
bfuzzy1/acheron-m
bfuzzy1
2025-01-10T14:42:19Z
204
0
transformers
[ "transformers", "tensorboard", "safetensors", "llama", "text-generation", "autotrain", "text-generation-inference", "conversational", "dataset:eth-dl-rewards/math-problems-for-sft", "base_model:bfuzzy1/acheron-d", "base_model:finetune:bfuzzy1/acheron-d", "license:other", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-01-10T14:19:33Z
--- tags: - autotrain - text-generation-inference - text-generation library_name: transformers base_model: bfuzzy1/acheron-d widget: - messages: - role: user content: What is your favorite condiment? license: other datasets: - eth-dl-rewards/math-problems-for-sft --- # The M is for Math. # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch model_path = "bfuzzy1/acheron-m" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto', trust_remote_code=True ) messages = [ {"role": "user", "content": "What's 2 + 2 -3?"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate( input_ids.to('mps' if torch.backends.mps.is_available() else 'cpu'), max_new_tokens=100 ) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) print(response) ```
adammandic87/0aca886d-9c59-4588-9109-7bc028c1412d
adammandic87
2025-01-10T14:40:51Z
11
0
peft
[ "peft", "safetensors", "gpt_neox", "axolotl", "generated_from_trainer", "base_model:EleutherAI/pythia-70m-deduped", "base_model:adapter:EleutherAI/pythia-70m-deduped", "license:apache-2.0", "region:us" ]
null
2025-01-10T14:40:18Z
--- library_name: peft license: apache-2.0 base_model: EleutherAI/pythia-70m-deduped tags: - axolotl - generated_from_trainer model-index: - name: 0aca886d-9c59-4588-9109-7bc028c1412d results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: EleutherAI/pythia-70m-deduped bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 5fa650980024d17c_train_data.json ds_type: json format: custom path: /workspace/input_data/5fa650980024d17c_train_data.json type: field_input: rejected field_instruction: prompt field_output: chosen format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: adammandic87/0aca886d-9c59-4588-9109-7bc028c1412d hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/5fa650980024d17c_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 70d9c003-ae9c-4efa-949d-2650dfd80aa8 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 70d9c003-ae9c-4efa-949d-2650dfd80aa8 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 0aca886d-9c59-4588-9109-7bc028c1412d This model is a fine-tuned version of [EleutherAI/pythia-70m-deduped](https://huggingface.co/EleutherAI/pythia-70m-deduped) on the None dataset. It achieves the following results on the evaluation set: - Loss: 228.3511 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1214.6569 | 0.0021 | 1 | 228.3396 | | 774.5907 | 0.0062 | 3 | 228.4223 | | 814.6666 | 0.0125 | 6 | 228.3269 | | 856.3652 | 0.0187 | 9 | 228.3511 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Triangle104/Qwen2.5-Coder-3B-Instruct-Q6_K-GGUF
Triangle104
2025-01-10T14:39:37Z
9
0
transformers
[ "transformers", "gguf", "code", "codeqwen", "chat", "qwen", "qwen-coder", "llama-cpp", "gguf-my-repo", "text-generation", "en", "arxiv:2409.12186", "arxiv:2407.10671", "base_model:Qwen/Qwen2.5-Coder-3B-Instruct", "base_model:quantized:Qwen/Qwen2.5-Coder-3B-Instruct", "license:other", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-11-19T11:30:46Z
--- license: other license_name: qwen-research license_link: https://huggingface.co/Qwen/Qwen2.5-Coder-3B-Instruct/blob/main/LICENSE language: - en base_model: Qwen/Qwen2.5-Coder-3B-Instruct pipeline_tag: text-generation library_name: transformers tags: - code - codeqwen - chat - qwen - qwen-coder - llama-cpp - gguf-my-repo --- # Triangle104/Qwen2.5-Coder-3B-Instruct-Q6_K-GGUF This model was converted to GGUF format from [`Qwen/Qwen2.5-Coder-3B-Instruct`](https://huggingface.co/Qwen/Qwen2.5-Coder-3B-Instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Qwen/Qwen2.5-Coder-3B-Instruct) for more details on the model. --- Model details: - Qwen2.5-Coder is the latest series of Code-Specific Qwen large language models (formerly known as CodeQwen). As of now, Qwen2.5-Coder has covered six mainstream model sizes, 0.5, 1.5, 3, 7, 14, 32 billion parameters, to meet the needs of different developers. Qwen2.5-Coder brings the following improvements upon CodeQwen1.5: Significantly improvements in code generation, code reasoning and code fixing. Base on the strong Qwen2.5, we scale up the training tokens into 5.5 trillion including source code, text-code grounding, Synthetic data, etc. Qwen2.5-Coder-32B has become the current state-of-the-art open-source codeLLM, with its coding abilities matching those of GPT-4o. A more comprehensive foundation for real-world applications such as Code Agents. Not only enhancing coding capabilities but also maintaining its strengths in mathematics and general competencies. This repo contains the instruction-tuned 3B Qwen2.5-Coder model, which has the following features: Type: Causal Language Models Training Stage: Pretraining & Post-training Architecture: transformers with RoPE, SwiGLU, RMSNorm, Attention QKV bias and tied word embeddings Number of Parameters: 3.09B Number of Paramaters (Non-Embedding): 2.77B Number of Layers: 36 Number of Attention Heads (GQA): 16 for Q and 2 for KV Context Length: Full 32,768 tokens For more details, please refer to our blog, GitHub, Documentation, Arxiv. Requirements The code of Qwen2.5-Coder has been in the latest Hugging face transformers and we advise you to use the latest version of transformers. With transformers<4.37.0, you will encounter the following error: KeyError: 'qwen2' Quickstart Here provides a code snippet with apply_chat_template to show you how to load the tokenizer and model and how to generate contents. from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "Qwen/Qwen2.5-Coder-3B-Instruct" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) prompt = "write a quick sort algorithm." messages = [ {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] Evaluation & Performance Detailed evaluation results are reported in this πŸ“‘ blog. For requirements on GPU memory and the respective throughput, see results here. Citation If you find our work helpful, feel free to give us a cite. @article{hui2024qwen2, title={Qwen2. 5-Coder Technical Report}, author={Hui, Binyuan and Yang, Jian and Cui, Zeyu and Yang, Jiaxi and Liu, Dayiheng and Zhang, Lei and Liu, Tianyu and Zhang, Jiajun and Yu, Bowen and Dang, Kai and others}, journal={arXiv preprint arXiv:2409.12186}, year={2024} } @article{qwen2, title={Qwen2 Technical Report}, author={An Yang and Baosong Yang and Binyuan Hui and Bo Zheng and Bowen Yu and Chang Zhou and Chengpeng Li and Chengyuan Li and Dayiheng Liu and Fei Huang and Guanting Dong and Haoran Wei and Huan Lin and Jialong Tang and Jialin Wang and Jian Yang and Jianhong Tu and Jianwei Zhang and Jianxin Ma and Jin Xu and Jingren Zhou and Jinze Bai and Jinzheng He and Junyang Lin and Kai Dang and Keming Lu and Keqin Chen and Kexin Yang and Mei Li and Mingfeng Xue and Na Ni and Pei Zhang and Peng Wang and Ru Peng and Rui Men and Ruize Gao and Runji Lin and Shijie Wang and Shuai Bai and Sinan Tan and Tianhang Zhu and Tianhao Li and Tianyu Liu and Wenbin Ge and Xiaodong Deng and Xiaohuan Zhou and Xingzhang Ren and Xinyu Zhang and Xipin Wei and Xuancheng Ren and Yang Fan and Yang Yao and Yichang Zhang and Yu Wan and Yunfei Chu and Yuqiong Liu and Zeyu Cui and Zhenru Zhang and Zhihao Fan}, journal={arXiv preprint arXiv:2407.10671}, year={2024} } --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Qwen2.5-Coder-3B-Instruct-Q6_K-GGUF --hf-file qwen2.5-coder-3b-instruct-q6_k.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Qwen2.5-Coder-3B-Instruct-Q6_K-GGUF --hf-file qwen2.5-coder-3b-instruct-q6_k.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Qwen2.5-Coder-3B-Instruct-Q6_K-GGUF --hf-file qwen2.5-coder-3b-instruct-q6_k.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Qwen2.5-Coder-3B-Instruct-Q6_K-GGUF --hf-file qwen2.5-coder-3b-instruct-q6_k.gguf -c 2048 ```
chauhoang/349e4d8d-216e-d6a2-0b68-14e1ef6cf06a
chauhoang
2025-01-10T14:38:09Z
6
0
peft
[ "peft", "safetensors", "mixtral", "axolotl", "generated_from_trainer", "base_model:TitanML/tiny-mixtral", "base_model:adapter:TitanML/tiny-mixtral", "region:us" ]
null
2025-01-10T14:32:39Z
--- library_name: peft base_model: TitanML/tiny-mixtral tags: - axolotl - generated_from_trainer model-index: - name: 349e4d8d-216e-d6a2-0b68-14e1ef6cf06a results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: TitanML/tiny-mixtral bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 78128c39f61f0439_train_data.json ds_type: json format: custom path: /workspace/input_data/78128c39f61f0439_train_data.json type: field_input: system field_instruction: question field_output: chosen format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 5 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: chauhoang/349e4d8d-216e-d6a2-0b68-14e1ef6cf06a hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 5 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/78128c39f61f0439_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 41887ad1-2b68-4efa-9c77-ff1e2c1cd4b4 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 41887ad1-2b68-4efa-9c77-ff1e2c1cd4b4 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 349e4d8d-216e-d6a2-0b68-14e1ef6cf06a This model is a fine-tuned version of [TitanML/tiny-mixtral](https://huggingface.co/TitanML/tiny-mixtral) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0001 | 1 | nan | | 0.0 | 0.0014 | 10 | nan | | 0.0 | 0.0028 | 20 | nan | | 0.0 | 0.0042 | 30 | nan | | 0.0 | 0.0056 | 40 | nan | | 0.0 | 0.0070 | 50 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
fueteruyo/rena2
fueteruyo
2025-01-10T14:37:49Z
11
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-10T14:07:07Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: rena2 --- # Rena2 <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `rena2` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('fueteruyo/rena2', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
dundurlunka/donyo_donev_cropped_LoRA
dundurlunka
2025-01-10T14:35:20Z
16
0
diffusers
[ "diffusers", "tensorboard", "text-to-image", "diffusers-training", "dora", "template:sd-lora", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2024-12-23T13:12:17Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 library_name: diffusers license: openrail++ instance_prompt: in the style of TOK widget: [] tags: - text-to-image - diffusers-training - diffusers - dora - template:sd-lora - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - text-to-image - diffusers-training - diffusers - dora - template:sd-lora - stable-diffusion-xl - stable-diffusion-xl-diffusers --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # SDXL LoRA DreamBooth - dundurlunka/donyo_donev_cropped_LoRA <Gallery /> ## Model description These are dundurlunka/donyo_donev_cropped_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use in the style of TOK to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](dundurlunka/donyo_donev_cropped_LoRA/tree/main) them in the Files & versions tab. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
saldanhacl/myself
saldanhacl
2025-01-10T14:34:49Z
25
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-10T13:55:10Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: lucc --- # Myself <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `lucc` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('saldanhacl/myself', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
tinh2312/SignBart-KArSL-ALL-100
tinh2312
2025-01-10T14:34:10Z
5
0
transformers
[ "transformers", "safetensors", "bart", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2025-01-10T14:34:06Z
--- library_name: transformers tags: - generated_from_trainer metrics: - accuracy - precision - recall model-index: - name: SignBart-KArSL-ALL-100 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SignBart-KArSL-ALL-100 This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0278 - Accuracy: 0.9942 - Precision: 0.9947 - Recall: 0.9942 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 1000 ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | Precision | Recall | |:-------------:|:-----:|:----:|:--------:|:---------------:|:---------:|:------:| | 5.1417 | 1.0 | 50 | 0.1175 | 3.9188 | 0.0961 | 0.1175 | | 4.323 | 2.0 | 100 | 0.3996 | 2.7383 | 0.3779 | 0.3996 | | 3.5125 | 3.0 | 150 | 0.6454 | 1.9336 | 0.6952 | 0.6454 | | 2.9748 | 4.0 | 200 | 0.7933 | 1.3981 | 0.8114 | 0.7933 | | 2.6005 | 5.0 | 250 | 0.8417 | 1.0641 | 0.8606 | 0.8417 | | 2.2397 | 6.0 | 300 | 0.8779 | 0.8145 | 0.8996 | 0.8779 | | 1.9058 | 7.0 | 350 | 0.9108 | 0.6322 | 0.9222 | 0.9108 | | 1.7861 | 8.0 | 400 | 0.9404 | 0.5031 | 0.9477 | 0.9404 | | 1.5948 | 9.0 | 450 | 0.9442 | 0.4105 | 0.9510 | 0.9442 | | 1.5219 | 10.0 | 500 | 0.9546 | 0.3455 | 0.9613 | 0.9546 | | 1.3415 | 11.0 | 550 | 0.9654 | 0.2813 | 0.9695 | 0.9654 | | 1.2171 | 12.0 | 600 | 0.9629 | 0.2456 | 0.9671 | 0.9629 | | 1.0959 | 13.0 | 650 | 0.975 | 0.1969 | 0.9771 | 0.975 | | 1.0067 | 14.0 | 700 | 0.9792 | 0.1725 | 0.9809 | 0.9792 | | 1.0844 | 15.0 | 750 | 0.9821 | 0.1507 | 0.9836 | 0.9821 | | 0.931 | 16.0 | 800 | 0.9854 | 0.1307 | 0.9866 | 0.9854 | | 0.8038 | 17.0 | 850 | 0.9858 | 0.1202 | 0.9870 | 0.9858 | | 0.8623 | 18.0 | 900 | 0.9842 | 0.1083 | 0.9851 | 0.9842 | | 0.7439 | 19.0 | 950 | 0.9879 | 0.0987 | 0.9891 | 0.9879 | | 0.7537 | 20.0 | 1000 | 0.9892 | 0.0912 | 0.9903 | 0.9892 | | 0.599 | 21.0 | 1050 | 0.9908 | 0.0788 | 0.9917 | 0.9908 | | 0.6198 | 22.0 | 1100 | 0.9904 | 0.0711 | 0.9913 | 0.9904 | | 0.5669 | 23.0 | 1150 | 0.9917 | 0.0663 | 0.9925 | 0.9917 | | 0.5134 | 24.0 | 1200 | 0.9904 | 0.0630 | 0.9913 | 0.9904 | | 0.5558 | 25.0 | 1250 | 0.99 | 0.0575 | 0.9909 | 0.99 | | 0.5118 | 26.0 | 1300 | 0.9912 | 0.0589 | 0.9920 | 0.9912 | | 0.5522 | 27.0 | 1350 | 0.9904 | 0.0517 | 0.9913 | 0.9904 | | 0.4916 | 28.0 | 1400 | 0.9912 | 0.0487 | 0.9920 | 0.9912 | | 0.3872 | 29.0 | 1450 | 0.9912 | 0.0440 | 0.9921 | 0.9912 | | 0.4532 | 30.0 | 1500 | 0.9917 | 0.0464 | 0.9924 | 0.9917 | | 0.4277 | 31.0 | 1550 | 0.9912 | 0.0408 | 0.9921 | 0.9912 | | 0.4723 | 32.0 | 1600 | 0.9921 | 0.0378 | 0.9927 | 0.9921 | | 0.3774 | 33.0 | 1650 | 0.9929 | 0.0351 | 0.9936 | 0.9929 | | 0.3451 | 34.0 | 1700 | 0.9929 | 0.0368 | 0.9936 | 0.9929 | | 0.3106 | 35.0 | 1750 | 0.9933 | 0.0349 | 0.9938 | 0.9933 | | 0.2933 | 36.0 | 1800 | 0.9921 | 0.0364 | 0.9928 | 0.9921 | | 0.2468 | 37.0 | 1850 | 0.9912 | 0.0369 | 0.9920 | 0.9912 | | 0.461 | 38.0 | 1900 | 0.9921 | 0.0312 | 0.9928 | 0.9921 | | 0.2706 | 39.0 | 1950 | 0.9933 | 0.0319 | 0.9939 | 0.9933 | | 0.2784 | 40.0 | 2000 | 0.9925 | 0.0306 | 0.9932 | 0.9925 | | 0.3167 | 41.0 | 2050 | 0.9929 | 0.0314 | 0.9936 | 0.9929 | | 0.2242 | 42.0 | 2100 | 0.9929 | 0.0319 | 0.9936 | 0.9929 | | 0.2439 | 43.0 | 2150 | 0.9929 | 0.0324 | 0.9937 | 0.9929 | | 0.1995 | 44.0 | 2200 | 0.9938 | 0.0267 | 0.9943 | 0.9938 | | 0.2178 | 45.0 | 2250 | 0.0273 | 0.9925 | 0.9932 | 0.9925 | | 0.3018 | 46.0 | 2300 | 0.0281 | 0.9938 | 0.9943 | 0.9938 | | 0.3096 | 47.0 | 2350 | 0.0285 | 0.9942 | 0.9948 | 0.9942 | | 0.2636 | 48.0 | 2400 | 0.0261 | 0.9933 | 0.9941 | 0.9933 | | 0.2441 | 49.0 | 2450 | 0.0233 | 0.9929 | 0.9937 | 0.9929 | | 0.2102 | 50.0 | 2500 | 0.0255 | 0.9929 | 0.9935 | 0.9929 | | 0.2302 | 51.0 | 2550 | 0.0268 | 0.9921 | 0.9928 | 0.9921 | | 0.1548 | 52.0 | 2600 | 0.0251 | 0.9929 | 0.9935 | 0.9929 | | 0.2293 | 53.0 | 2650 | 0.0264 | 0.9925 | 0.9932 | 0.9925 | | 0.199 | 54.0 | 2700 | 0.0278 | 0.9942 | 0.9947 | 0.9942 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.2.0 - Tokenizers 0.19.1
lesso11/64fe75bc-328c-4e02-aba4-59885360b872
lesso11
2025-01-10T14:33:48Z
13
0
peft
[ "peft", "safetensors", "gpt_neox", "axolotl", "generated_from_trainer", "base_model:EleutherAI/pythia-70m-deduped", "base_model:adapter:EleutherAI/pythia-70m-deduped", "license:apache-2.0", "region:us" ]
null
2025-01-10T14:33:13Z
--- library_name: peft license: apache-2.0 base_model: EleutherAI/pythia-70m-deduped tags: - axolotl - generated_from_trainer model-index: - name: 64fe75bc-328c-4e02-aba4-59885360b872 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: EleutherAI/pythia-70m-deduped bf16: true chat_template: llama3 datasets: - data_files: - 5fa650980024d17c_train_data.json ds_type: json format: custom path: /workspace/input_data/5fa650980024d17c_train_data.json type: field_input: rejected field_instruction: prompt field_output: chosen format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: true group_by_length: false hub_model_id: lesso11/64fe75bc-328c-4e02-aba4-59885360b872 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 77GiB max_steps: 50 micro_batch_size: 8 mlflow_experiment_name: /tmp/5fa650980024d17c_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 25 save_strategy: steps sequence_len: 1024 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 70d9c003-ae9c-4efa-949d-2650dfd80aa8 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 70d9c003-ae9c-4efa-949d-2650dfd80aa8 warmup_steps: 10 weight_decay: 0.01 xformers_attention: false ``` </details><br> # 64fe75bc-328c-4e02-aba4-59885360b872 This model is a fine-tuned version of [EleutherAI/pythia-70m-deduped](https://huggingface.co/EleutherAI/pythia-70m-deduped) on the None dataset. It achieves the following results on the evaluation set: - Loss: 8.9798 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 17.0013 | 0.0041 | 1 | 9.2526 | | 18.6078 | 0.0207 | 5 | 9.2333 | | 17.987 | 0.0415 | 10 | 9.1727 | | 16.0464 | 0.0622 | 15 | 9.1243 | | 17.1351 | 0.0830 | 20 | 9.0388 | | 16.808 | 0.1037 | 25 | 9.0161 | | 17.159 | 0.1245 | 30 | 9.0357 | | 17.1988 | 0.1452 | 35 | 9.0004 | | 17.7996 | 0.1660 | 40 | 8.9848 | | 19.0675 | 0.1867 | 45 | 8.9646 | | 17.9008 | 0.2075 | 50 | 8.9798 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
filipesantoscv11/aa9f02f0-d275-45dc-bf75-0fad7cf2dace
filipesantoscv11
2025-01-10T14:33:33Z
8
0
peft
[ "peft", "safetensors", "gpt_neox", "axolotl", "generated_from_trainer", "base_model:EleutherAI/pythia-70m-deduped", "base_model:adapter:EleutherAI/pythia-70m-deduped", "license:apache-2.0", "region:us" ]
null
2025-01-10T14:33:06Z
--- library_name: peft license: apache-2.0 base_model: EleutherAI/pythia-70m-deduped tags: - axolotl - generated_from_trainer model-index: - name: aa9f02f0-d275-45dc-bf75-0fad7cf2dace results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: EleutherAI/pythia-70m-deduped bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 5fa650980024d17c_train_data.json ds_type: json format: custom path: /workspace/input_data/5fa650980024d17c_train_data.json type: field_input: rejected field_instruction: prompt field_output: chosen format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: filipesantoscv11/aa9f02f0-d275-45dc-bf75-0fad7cf2dace hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 75GiB max_steps: 30 micro_batch_size: 2 mlflow_experiment_name: /tmp/5fa650980024d17c_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 70d9c003-ae9c-4efa-949d-2650dfd80aa8 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 70d9c003-ae9c-4efa-949d-2650dfd80aa8 warmup_steps: 10 weight_decay: 0.01 xformers_attention: true ``` </details><br> # aa9f02f0-d275-45dc-bf75-0fad7cf2dace This model is a fine-tuned version of [EleutherAI/pythia-70m-deduped](https://huggingface.co/EleutherAI/pythia-70m-deduped) on the None dataset. It achieves the following results on the evaluation set: - Loss: 9.7210 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0021 | 1 | 9.9166 | | 41.2044 | 0.0166 | 8 | 9.8815 | | 34.3414 | 0.0332 | 16 | 9.7777 | | 36.2179 | 0.0499 | 24 | 9.7210 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
chauhoang/7a350c97-86f1-2489-eb69-5c501cb910b8
chauhoang
2025-01-10T14:31:35Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/tinyllama-chat", "base_model:adapter:unsloth/tinyllama-chat", "license:apache-2.0", "region:us" ]
null
2025-01-10T12:46:54Z
--- library_name: peft license: apache-2.0 base_model: unsloth/tinyllama-chat tags: - axolotl - generated_from_trainer model-index: - name: 7a350c97-86f1-2489-eb69-5c501cb910b8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/tinyllama-chat bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - ada7442f6e923a8b_train_data.json ds_type: json format: custom path: /workspace/input_data/ada7442f6e923a8b_train_data.json type: field_input: categories field_instruction: abstract field_output: title format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 5 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: chauhoang/7a350c97-86f1-2489-eb69-5c501cb910b8 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 5 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/ada7442f6e923a8b_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 82f898a5-fada-40e9-88a0-24569774a8be wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 82f898a5-fada-40e9-88a0-24569774a8be warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 7a350c97-86f1-2489-eb69-5c501cb910b8 This model is a fine-tuned version of [unsloth/tinyllama-chat](https://huggingface.co/unsloth/tinyllama-chat) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7476 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0000 | 1 | 3.0002 | | 3.0485 | 0.0002 | 10 | 2.7228 | | 2.266 | 0.0003 | 20 | 1.9589 | | 1.7736 | 0.0005 | 30 | 1.7927 | | 1.6886 | 0.0006 | 40 | 1.7530 | | 1.5719 | 0.0008 | 50 | 1.7476 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Triangle104/phi-4-abliterated-Q6_K-GGUF
Triangle104
2025-01-10T14:31:21Z
36
0
transformers
[ "transformers", "gguf", "phi", "nlp", "math", "code", "chat", "conversational", "abliterated", "uncensored", "llama-cpp", "gguf-my-repo", "text-generation", "en", "base_model:huihui-ai/phi-4-abliterated", "base_model:quantized:huihui-ai/phi-4-abliterated", "license:mit", "endpoints_compatible", "region:us" ]
text-generation
2025-01-10T14:30:30Z
--- license: mit license_link: https://huggingface.co/huihui-ai/phi-4-abliterated/resolve/main/LICENSE language: - en base_model: huihui-ai/phi-4-abliterated pipeline_tag: text-generation tags: - phi - nlp - math - code - chat - conversational - abliterated - uncensored - llama-cpp - gguf-my-repo inference: parameters: temperature: 0 widget: - messages: - role: user content: How should I explain the Internet? library_name: transformers --- # Triangle104/phi-4-abliterated-Q6_K-GGUF This model was converted to GGUF format from [`huihui-ai/phi-4-abliterated`](https://huggingface.co/huihui-ai/phi-4-abliterated) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/huihui-ai/phi-4-abliterated) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/phi-4-abliterated-Q6_K-GGUF --hf-file phi-4-abliterated-q6_k.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/phi-4-abliterated-Q6_K-GGUF --hf-file phi-4-abliterated-q6_k.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/phi-4-abliterated-Q6_K-GGUF --hf-file phi-4-abliterated-q6_k.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/phi-4-abliterated-Q6_K-GGUF --hf-file phi-4-abliterated-q6_k.gguf -c 2048 ```
phxia/gpt2_adapter
phxia
2025-01-10T14:30:13Z
12
0
peft
[ "peft", "safetensors", "text-generation", "arxiv:1910.09700", "base_model:phxia/gpt2", "base_model:adapter:phxia/gpt2", "region:us" ]
text-generation
2024-12-31T15:55:39Z
--- library_name: peft tags: - peft - text-generation pipeline_tag: text-generation base_model: - phxia/gpt2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Legalaz/15_llambo2_09_21
Legalaz
2025-01-10T14:27:41Z
7
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "arxiv:2203.05482", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-10T14:23:43Z
--- base_model: [] library_name: transformers tags: - mergekit - merge --- # top This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [linear](https://arxiv.org/abs/2203.05482) merge method. ### Models Merged The following models were included in the merge: * /root/top2 * /root/top1 ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: /root/top2 parameters: weight: 0.9705 - model: /root/top1 parameters: weight: 0.0628 merge_method: linear dtype: bfloat16 ```
John6666/sensual-mind-pixelover-v20-sdxl
John6666
2025-01-10T14:26:50Z
453
1
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "stable-diffusion-xl", "realistic", "photorealistic", "bright", "sharp", "en", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2025-01-10T14:19:08Z
--- license: creativeml-openrail-m language: - en library_name: diffusers pipeline_tag: text-to-image tags: - text-to-image - stable-diffusion - stable-diffusion-xl - realistic - photorealistic - bright - sharp --- Original model is [here](https://civitai.com/models/986666?modelVersionId=1264551). This model created by [SensualMind](https://civitai.com/user/SensualMind).
Triangle104/phi-4-abliterated-Q5_K_M-GGUF
Triangle104
2025-01-10T14:26:27Z
35
0
transformers
[ "transformers", "gguf", "phi", "nlp", "math", "code", "chat", "conversational", "abliterated", "uncensored", "llama-cpp", "gguf-my-repo", "text-generation", "en", "base_model:huihui-ai/phi-4-abliterated", "base_model:quantized:huihui-ai/phi-4-abliterated", "license:mit", "endpoints_compatible", "region:us" ]
text-generation
2025-01-10T14:25:41Z
--- license: mit license_link: https://huggingface.co/huihui-ai/phi-4-abliterated/resolve/main/LICENSE language: - en base_model: huihui-ai/phi-4-abliterated pipeline_tag: text-generation tags: - phi - nlp - math - code - chat - conversational - abliterated - uncensored - llama-cpp - gguf-my-repo inference: parameters: temperature: 0 widget: - messages: - role: user content: How should I explain the Internet? library_name: transformers --- # Triangle104/phi-4-abliterated-Q5_K_M-GGUF This model was converted to GGUF format from [`huihui-ai/phi-4-abliterated`](https://huggingface.co/huihui-ai/phi-4-abliterated) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/huihui-ai/phi-4-abliterated) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/phi-4-abliterated-Q5_K_M-GGUF --hf-file phi-4-abliterated-q5_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/phi-4-abliterated-Q5_K_M-GGUF --hf-file phi-4-abliterated-q5_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/phi-4-abliterated-Q5_K_M-GGUF --hf-file phi-4-abliterated-q5_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/phi-4-abliterated-Q5_K_M-GGUF --hf-file phi-4-abliterated-q5_k_m.gguf -c 2048 ```
smokxy/sadxds-quantized
smokxy
2025-01-10T14:20:49Z
7
0
optimum
[ "optimum", "safetensors", "bert", "quantized", "ner", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-10T14:20:18Z
--- tags: - quantized - ner - 8-bit library_name: optimum --- # Model - sadxds-quantized This model has been optimized and uploaded to the HuggingFace Hub. ## Model Details - Original Repository: sadxds-quantized - Optimization Tags: quantized, ner, 8-bit
denbeo/8d892612-d232-4281-a1d2-1b0a0f6e0dcd
denbeo
2025-01-10T14:20:27Z
10
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM-360M-Instruct", "base_model:adapter:unsloth/SmolLM-360M-Instruct", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-10T14:05:06Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM-360M-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 8d892612-d232-4281-a1d2-1b0a0f6e0dcd results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM-360M-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - a9aee418597e9eaf_train_data.json ds_type: json format: custom path: /workspace/input_data/a9aee418597e9eaf_train_data.json type: field_input: genres field_instruction: title field_output: description format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: denbeo/8d892612-d232-4281-a1d2-1b0a0f6e0dcd hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/a9aee418597e9eaf_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 990847b3-2b66-4b22-b549-a753ee8c0b65 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 990847b3-2b66-4b22-b549-a753ee8c0b65 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 8d892612-d232-4281-a1d2-1b0a0f6e0dcd This model is a fine-tuned version of [unsloth/SmolLM-360M-Instruct](https://huggingface.co/unsloth/SmolLM-360M-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.9984 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.1429 | 0.0313 | 200 | 2.9984 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
tuanna08go/b7232842-5121-b43c-ca0d-91094982e237
tuanna08go
2025-01-10T14:20:26Z
12
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/mistral-7b-instruct-v0.3", "base_model:adapter:unsloth/mistral-7b-instruct-v0.3", "license:apache-2.0", "region:us" ]
null
2025-01-10T14:08:49Z
--- library_name: peft license: apache-2.0 base_model: unsloth/mistral-7b-instruct-v0.3 tags: - axolotl - generated_from_trainer model-index: - name: b7232842-5121-b43c-ca0d-91094982e237 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/mistral-7b-instruct-v0.3 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 96842f7ffda08476_train_data.json ds_type: json format: custom path: /workspace/input_data/96842f7ffda08476_train_data.json type: field_input: bot_description field_instruction: bot_name field_output: orig_bot_description format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 5 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: tuanna08go/b7232842-5121-b43c-ca0d-91094982e237 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 5 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/96842f7ffda08476_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: d202aa92-5d43-4c6f-876b-1fb97191d72f wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: d202aa92-5d43-4c6f-876b-1fb97191d72f warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # b7232842-5121-b43c-ca0d-91094982e237 This model is a fine-tuned version of [unsloth/mistral-7b-instruct-v0.3](https://huggingface.co/unsloth/mistral-7b-instruct-v0.3) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7799 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0013 | 1 | 1.2409 | | 4.7519 | 0.0131 | 10 | 1.0085 | | 3.5907 | 0.0262 | 20 | 0.8609 | | 3.0473 | 0.0393 | 30 | 0.8097 | | 3.156 | 0.0524 | 40 | 0.7848 | | 3.7723 | 0.0656 | 50 | 0.7799 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
VERSIL91/a76eefd0-5d33-4038-a018-7c42b4d6924a
VERSIL91
2025-01-10T14:16:16Z
10
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:huggyllama/llama-7b", "base_model:adapter:huggyllama/llama-7b", "license:other", "region:us" ]
null
2025-01-10T14:04:06Z
--- library_name: peft license: other base_model: huggyllama/llama-7b tags: - axolotl - generated_from_trainer model-index: - name: a76eefd0-5d33-4038-a018-7c42b4d6924a results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml accelerate_config: dynamo_backend: inductor mixed_precision: bf16 num_machines: 1 num_processes: auto use_cpu: false adapter: lora base_model: huggyllama/llama-7b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 1ade7b2e9d8ab2ce_train_data.json ds_type: json format: custom path: /workspace/input_data/1ade7b2e9d8ab2ce_train_data.json type: field_instruction: issue_body field_output: issue_title format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 16 gradient_checkpointing: true group_by_length: false hub_model_id: VERSIL91/a76eefd0-5d33-4038-a018-7c42b4d6924a hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lora_target_modules: - q_proj - v_proj lr_scheduler: cosine max_memory: 0: 70GiB max_steps: 20 micro_batch_size: 2 mlflow_experiment_name: /tmp/1ade7b2e9d8ab2ce_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true quantization_config: llm_int8_enable_fp32_cpu_offload: true load_in_8bit: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer torch_compile: true train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: a76eefd0-5d33-4038-a018-7c42b4d6924a wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: a76eefd0-5d33-4038-a018-7c42b4d6924a warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # a76eefd0-5d33-4038-a018-7c42b4d6924a This model is a fine-tuned version of [huggyllama/llama-7b](https://huggingface.co/huggyllama/llama-7b) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0070 | 1 | nan | | 0.0 | 0.0348 | 5 | nan | | 0.0 | 0.0695 | 10 | nan | | 0.0 | 0.1043 | 15 | nan | | 0.0 | 0.1391 | 20 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
fahd200581/AISHAAMAI
fahd200581
2025-01-10T14:16:16Z
19
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-10T13:44:22Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: AISHAAMAI --- # Aishaamai <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `AISHAAMAI` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('fahd200581/AISHAAMAI', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
StefaniaCri/mbart_romainian_to_emoji
StefaniaCri
2025-01-10T14:14:49Z
118
0
transformers
[ "transformers", "safetensors", "mbart", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2025-01-02T11:43:33Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
RoboSG/js-fake-bach-epochs20
RoboSG
2025-01-10T14:13:55Z
7
0
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "generated_from_trainer", "base_model:openai-community/gpt2", "base_model:finetune:openai-community/gpt2", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-10T09:56:44Z
--- library_name: transformers license: mit base_model: gpt2 tags: - generated_from_trainer metrics: - accuracy model-index: - name: js-fake-bach-epochs20 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # js-fake-bach-epochs20 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5973 - Accuracy: 0.0033 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0006058454513356471 - train_batch_size: 16 - eval_batch_size: 32 - seed: 1 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.01 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 1.2427 | 1.2550 | 315 | 0.8253 | 0.0007 | | 0.8106 | 2.5100 | 630 | 0.7777 | 0.0021 | | 0.7663 | 3.7649 | 945 | 0.7449 | 0.0017 | | 0.7263 | 5.0199 | 1260 | 0.6997 | 0.0027 | | 0.689 | 6.2749 | 1575 | 0.6683 | 0.0018 | | 0.6524 | 7.5299 | 1890 | 0.6396 | 0.0008 | | 0.6158 | 8.7849 | 2205 | 0.6139 | 0.0021 | | 0.5807 | 10.0398 | 2520 | 0.5981 | 0.0010 | | 0.5437 | 11.2948 | 2835 | 0.5848 | 0.0030 | | 0.5109 | 12.5498 | 3150 | 0.5841 | 0.0026 | | 0.4781 | 13.8048 | 3465 | 0.5799 | 0.0028 | | 0.4453 | 15.0598 | 3780 | 0.5867 | 0.0034 | | 0.4169 | 16.3147 | 4095 | 0.5915 | 0.0034 | | 0.3972 | 17.5697 | 4410 | 0.5968 | 0.0034 | | 0.3847 | 18.8247 | 4725 | 0.5973 | 0.0033 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0
mradermacher/Bitnet-Mistral.0.2-330m-v0.2-grokfast-v2-GGUF
mradermacher
2025-01-10T14:13:33Z
215
0
transformers
[ "transformers", "gguf", "en", "base_model:liminerity/Bitnet-Mistral.0.2-330m-v0.2-grokfast-v2", "base_model:quantized:liminerity/Bitnet-Mistral.0.2-330m-v0.2-grokfast-v2", "endpoints_compatible", "region:us" ]
null
2025-01-10T14:07:41Z
--- base_model: liminerity/Bitnet-Mistral.0.2-330m-v0.2-grokfast-v2 language: - en library_name: transformers quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/liminerity/Bitnet-Mistral.0.2-330m-v0.2-grokfast-v2 <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Bitnet-Mistral.0.2-330m-v0.2-grokfast-v2-GGUF/resolve/main/Bitnet-Mistral.0.2-330m-v0.2-grokfast-v2.Q2_K.gguf) | Q2_K | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/Bitnet-Mistral.0.2-330m-v0.2-grokfast-v2-GGUF/resolve/main/Bitnet-Mistral.0.2-330m-v0.2-grokfast-v2.Q3_K_S.gguf) | Q3_K_S | 0.3 | | | [GGUF](https://huggingface.co/mradermacher/Bitnet-Mistral.0.2-330m-v0.2-grokfast-v2-GGUF/resolve/main/Bitnet-Mistral.0.2-330m-v0.2-grokfast-v2.Q3_K_M.gguf) | Q3_K_M | 0.3 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Bitnet-Mistral.0.2-330m-v0.2-grokfast-v2-GGUF/resolve/main/Bitnet-Mistral.0.2-330m-v0.2-grokfast-v2.Q3_K_L.gguf) | Q3_K_L | 0.3 | | | [GGUF](https://huggingface.co/mradermacher/Bitnet-Mistral.0.2-330m-v0.2-grokfast-v2-GGUF/resolve/main/Bitnet-Mistral.0.2-330m-v0.2-grokfast-v2.IQ4_XS.gguf) | IQ4_XS | 0.3 | | | [GGUF](https://huggingface.co/mradermacher/Bitnet-Mistral.0.2-330m-v0.2-grokfast-v2-GGUF/resolve/main/Bitnet-Mistral.0.2-330m-v0.2-grokfast-v2.Q4_K_S.gguf) | Q4_K_S | 0.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Bitnet-Mistral.0.2-330m-v0.2-grokfast-v2-GGUF/resolve/main/Bitnet-Mistral.0.2-330m-v0.2-grokfast-v2.Q4_K_M.gguf) | Q4_K_M | 0.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Bitnet-Mistral.0.2-330m-v0.2-grokfast-v2-GGUF/resolve/main/Bitnet-Mistral.0.2-330m-v0.2-grokfast-v2.Q5_K_S.gguf) | Q5_K_S | 0.3 | | | [GGUF](https://huggingface.co/mradermacher/Bitnet-Mistral.0.2-330m-v0.2-grokfast-v2-GGUF/resolve/main/Bitnet-Mistral.0.2-330m-v0.2-grokfast-v2.Q5_K_M.gguf) | Q5_K_M | 0.3 | | | [GGUF](https://huggingface.co/mradermacher/Bitnet-Mistral.0.2-330m-v0.2-grokfast-v2-GGUF/resolve/main/Bitnet-Mistral.0.2-330m-v0.2-grokfast-v2.Q6_K.gguf) | Q6_K | 0.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Bitnet-Mistral.0.2-330m-v0.2-grokfast-v2-GGUF/resolve/main/Bitnet-Mistral.0.2-330m-v0.2-grokfast-v2.Q8_0.gguf) | Q8_0 | 0.5 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Bitnet-Mistral.0.2-330m-v0.2-grokfast-v2-GGUF/resolve/main/Bitnet-Mistral.0.2-330m-v0.2-grokfast-v2.f16.gguf) | f16 | 0.8 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
John6666/luminarqmix-vpred-noobaixl-illustriousxl-merge-model-v10-sdxl
John6666
2025-01-10T14:13:21Z
147
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "stable-diffusion-xl", "anime", "girls", "cute", "merge", "v-pred", "illustrious", "en", "base_model:Laxhar/noobai-XL-Vpred-0.9r", "base_model:merge:Laxhar/noobai-XL-Vpred-0.9r", "base_model:Laxhar/noobai-XL-Vpred-1.0", "base_model:merge:Laxhar/noobai-XL-Vpred-1.0", "base_model:Raelina/Raehoshi-illust-XL-3", "base_model:merge:Raelina/Raehoshi-illust-XL-3", "base_model:advokat/IterComp_safetensors", "base_model:merge:advokat/IterComp_safetensors", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2025-01-10T14:07:13Z
--- license: other license_name: faipl-1.0-sd license_link: https://freedevproject.org/faipl-1.0-sd/ language: - en library_name: diffusers pipeline_tag: text-to-image tags: - text-to-image - stable-diffusion - stable-diffusion-xl - anime - girls - cute - merge - v-pred - illustrious base_model: - Raelina/Raehoshi-illust-XL-3 - advokat/IterComp_safetensors - Laxhar/noobai-XL-Vpred-1.0 - Laxhar/noobai-XL-Vpred-0.9r --- Original model is [here](https://civitai.com/models/1125276/luminarqmix-vpred-noobaixl-illustrious-xl-merge-model?modelVersionId=1264783). This model created by [hybskgks28275](https://civitai.com/user/hybskgks28275).
adammandic87/58839797-be6d-4d6b-87f1-788ee879110b
adammandic87
2025-01-10T14:13:03Z
10
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/mistral-7b-v0.3", "base_model:adapter:unsloth/mistral-7b-v0.3", "license:apache-2.0", "region:us" ]
null
2025-01-10T14:02:05Z
--- library_name: peft license: apache-2.0 base_model: unsloth/mistral-7b-v0.3 tags: - axolotl - generated_from_trainer model-index: - name: 58839797-be6d-4d6b-87f1-788ee879110b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/mistral-7b-v0.3 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - e1e0ecf2dc3751fc_train_data.json ds_type: json format: custom path: /workspace/input_data/e1e0ecf2dc3751fc_train_data.json type: field_input: augmented_prompt field_instruction: prompt field_output: solution_1 format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: adammandic87/58839797-be6d-4d6b-87f1-788ee879110b hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/e1e0ecf2dc3751fc_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 9a1f3333-979a-4670-bc8c-562de485c372 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 9a1f3333-979a-4670-bc8c-562de485c372 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 58839797-be6d-4d6b-87f1-788ee879110b This model is a fine-tuned version of [unsloth/mistral-7b-v0.3](https://huggingface.co/unsloth/mistral-7b-v0.3) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0001 | 1 | nan | | 0.0 | 0.0004 | 3 | nan | | 0.0 | 0.0008 | 6 | nan | | 0.0 | 0.0013 | 9 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
hrasto/llamas2_tok_s1
hrasto
2025-01-10T14:12:45Z
22
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-10T13:15:52Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
fbaldassarri/meta-llama_Llama-3.2-1B-auto_gptq-int8-gs128-asym
fbaldassarri
2025-01-10T14:11:23Z
11
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "autoround", "auto-round", "autogptq", "gptq", "auto-gptq", "woq", "meta", "pytorch", "llama-3", "intel-autoround", "intel", "en", "de", "fr", "it", "pt", "hi", "es", "th", "base_model:meta-llama/Llama-3.2-1B", "base_model:quantized:meta-llama/Llama-3.2-1B", "license:llama3.2", "autotrain_compatible", "text-generation-inference", "8-bit", "region:us" ]
text-generation
2025-01-08T19:53:40Z
--- language: - en - de - fr - it - pt - hi - es - th license: llama3.2 library_name: transformers tags: - autoround - auto-round - autogptq - gptq - auto-gptq - woq - meta - pytorch - llama - llama-3 - intel-autoround - intel model_name: Llama 3.2 1B base_model: meta-llama/Llama-3.2-1B inference: false model_creator: meta-llama pipeline_tag: text-generation prompt_template: '{prompt} ' quantized_by: fbaldassarri --- ## Model Information Quantized version of [meta-llama/Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) using torch.float32 for quantization tuning. - 8 bits (INT8) - group size = 128 - Asymmetrical Quantization - Method AutoGPTQ Quantization framework: [Intel AutoRound](https://github.com/intel/auto-round) Note: this INT8 version of Llama-3.2-1B has been quantized to run inference through CPU. ## Replication Recipe ### Step 1 Install Requirements I suggest to install requirements into a dedicated python-virtualenv or a conda enviroment. ``` wget https://github.com/intel/auto-round/archive/refs/tags/v0.4.3.tar.gz tar -xvzf v0.4.3.tar.gz cd auto-round-0.4.3 pip install -r requirements-cpu.txt --upgrade ``` ### Step 2 Build Intel AutoRound wheel from sources ``` pip install -vvv --no-build-isolation -e .[cpu] ``` ### Step 3 Script for Quantization ``` from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "meta-llama/Llama-3.2-1B" model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) from auto_round import AutoRound bits, group_size, sym, device, amp = 8, 128, False, 'cpu', False autoround = AutoRound(model, tokenizer, nsamples=128, iters=200, seqlen=512, batch_size=4, bits=bits, group_size=group_size, sym=sym, device=device, amp=amp) autoround.quantize() output_dir = "./AutoRound/meta-llama_Llama-3.2-1B-auto_gptq-int8-gs128-asym" autoround.save_quantized(output_dir, format='auto_gptq', inplace=True) ``` ## License [Llama 3.2 Community License](https://github.com/meta-llama/llama-models/blob/main/models/llama3_2/LICENSE) ## Disclaimer This quantized model comes with no warrenty. It has been developed only for research purposes.
dimasik87/8b0a437c-6809-499a-a7e2-11cdd1c421dd
dimasik87
2025-01-10T14:11:19Z
10
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:MLP-KTLim/llama-3-Korean-Bllossom-8B", "base_model:adapter:MLP-KTLim/llama-3-Korean-Bllossom-8B", "license:llama3", "region:us" ]
null
2025-01-10T14:08:25Z
--- library_name: peft license: llama3 base_model: MLP-KTLim/llama-3-Korean-Bllossom-8B tags: - axolotl - generated_from_trainer model-index: - name: 8b0a437c-6809-499a-a7e2-11cdd1c421dd results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: MLP-KTLim/llama-3-Korean-Bllossom-8B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 83ff291d83cb43e5_train_data.json ds_type: json format: custom path: /workspace/input_data/83ff291d83cb43e5_train_data.json type: field_input: File Name field_instruction: Code field_output: Unit Test - (Ground Truth) format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: dimasik87/8b0a437c-6809-499a-a7e2-11cdd1c421dd hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 75GiB max_steps: 30 micro_batch_size: 2 mlflow_experiment_name: /tmp/83ff291d83cb43e5_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: fd9fec32-14d9-40e2-b9df-4b29f156a315 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: fd9fec32-14d9-40e2-b9df-4b29f156a315 warmup_steps: 10 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 8b0a437c-6809-499a-a7e2-11cdd1c421dd This model is a fine-tuned version of [MLP-KTLim/llama-3-Korean-Bllossom-8B](https://huggingface.co/MLP-KTLim/llama-3-Korean-Bllossom-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7004 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0034 | 1 | 0.8773 | | 0.8386 | 0.0275 | 8 | 0.7904 | | 0.6699 | 0.0549 | 16 | 0.7231 | | 0.7453 | 0.0824 | 24 | 0.7004 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
quannh197/fd9fec32-14d9-40e2-b9df-4b29f156a315
quannh197
2025-01-10T14:10:34Z
10
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:MLP-KTLim/llama-3-Korean-Bllossom-8B", "base_model:adapter:MLP-KTLim/llama-3-Korean-Bllossom-8B", "license:llama3", "region:us" ]
null
2025-01-10T14:08:14Z
--- library_name: peft license: llama3 base_model: MLP-KTLim/llama-3-Korean-Bllossom-8B tags: - axolotl - generated_from_trainer model-index: - name: fd9fec32-14d9-40e2-b9df-4b29f156a315 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: MLP-KTLim/llama-3-Korean-Bllossom-8B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 83ff291d83cb43e5_train_data.json ds_type: json format: custom path: /workspace/input_data/83ff291d83cb43e5_train_data.json type: field_input: File Name field_instruction: Code field_output: Unit Test - (Ground Truth) format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: quannh197/fd9fec32-14d9-40e2-b9df-4b29f156a315 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/83ff291d83cb43e5_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: fd9fec32-14d9-40e2-b9df-4b29f156a315 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: fd9fec32-14d9-40e2-b9df-4b29f156a315 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # fd9fec32-14d9-40e2-b9df-4b29f156a315 This model is a fine-tuned version of [MLP-KTLim/llama-3-Korean-Bllossom-8B](https://huggingface.co/MLP-KTLim/llama-3-Korean-Bllossom-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8822 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.9653 | 0.0034 | 1 | 0.9669 | | 0.9214 | 0.0103 | 3 | 0.9642 | | 1.0278 | 0.0206 | 6 | 0.9202 | | 0.7053 | 0.0309 | 9 | 0.8822 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
rsicproject/vit-GPT-SYDNEY-captioning
rsicproject
2025-01-10T14:10:16Z
40
0
transformers
[ "transformers", "tensorboard", "safetensors", "vision-encoder-decoder", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2025-01-10T14:07:56Z
--- library_name: transformers tags: - generated_from_trainer metrics: - rouge model-index: - name: vit-GPT-SYDNEY-captioning results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-GPT-SYDNEY-captioning This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0945 - Rouge: 0.7166 - Bleu1: 0.7960 - Bleu2: 0.7224 - Bleu3: 0.6511 - Bleu4: 0.5862 - Meteor: 0.7406 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1024 - num_epochs: 128 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge | Bleu1 | Bleu2 | Bleu3 | Bleu4 | Meteor | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:------:|:------:|:------:| | No log | 1.0 | 39 | 1.2499 | 0.4608 | 0.5480 | 0.4380 | 0.3577 | 0.2933 | 0.4268 | | No log | 2.0 | 78 | 0.9391 | 0.4750 | 0.5410 | 0.4063 | 0.3224 | 0.2542 | 0.4806 | | No log | 3.0 | 117 | 0.8546 | 0.6454 | 0.7483 | 0.6633 | 0.5737 | 0.4951 | 0.6413 | | No log | 4.0 | 156 | 0.8292 | 0.6817 | 0.7628 | 0.6728 | 0.5796 | 0.4979 | 0.6846 | | No log | 5.0 | 195 | 0.8240 | 0.6288 | 0.7029 | 0.5928 | 0.4938 | 0.4064 | 0.6683 | | No log | 6.0 | 234 | 0.8186 | 0.6958 | 0.7772 | 0.6857 | 0.5913 | 0.5087 | 0.7089 | | No log | 7.0 | 273 | 0.8367 | 0.6996 | 0.7677 | 0.6821 | 0.5899 | 0.5082 | 0.7045 | | No log | 8.0 | 312 | 0.8558 | 0.6946 | 0.7738 | 0.6896 | 0.6018 | 0.5244 | 0.7076 | | No log | 9.0 | 351 | 0.8639 | 0.6831 | 0.7587 | 0.6766 | 0.5881 | 0.5090 | 0.7084 | | No log | 10.0 | 390 | 0.8834 | 0.6358 | 0.7702 | 0.6850 | 0.5969 | 0.5145 | 0.6678 | | No log | 11.0 | 429 | 0.8819 | 0.7109 | 0.7876 | 0.7093 | 0.6356 | 0.5701 | 0.7405 | | No log | 12.0 | 468 | 0.9616 | 0.6692 | 0.8127 | 0.7279 | 0.6379 | 0.5446 | 0.7055 | | No log | 13.0 | 507 | 0.9424 | 0.6912 | 0.7668 | 0.6685 | 0.5776 | 0.4938 | 0.7441 | | No log | 14.0 | 546 | 0.9606 | 0.6966 | 0.7938 | 0.7184 | 0.6436 | 0.5766 | 0.7199 | | No log | 15.0 | 585 | 0.9306 | 0.7260 | 0.7895 | 0.7233 | 0.6621 | 0.6106 | 0.7658 | | No log | 16.0 | 624 | 0.9969 | 0.7437 | 0.8241 | 0.7629 | 0.7013 | 0.6495 | 0.7718 | | No log | 17.0 | 663 | 0.9749 | 0.7341 | 0.8082 | 0.7322 | 0.6519 | 0.5787 | 0.7481 | | No log | 18.0 | 702 | 1.0044 | 0.7131 | 0.8 | 0.7271 | 0.6534 | 0.5849 | 0.7338 | | No log | 19.0 | 741 | 0.9802 | 0.6500 | 0.7680 | 0.6814 | 0.6011 | 0.5212 | 0.7175 | | No log | 20.0 | 780 | 1.0433 | 0.7352 | 0.8274 | 0.7519 | 0.6795 | 0.6138 | 0.7611 | | No log | 21.0 | 819 | 1.0284 | 0.7063 | 0.7815 | 0.6989 | 0.6192 | 0.5517 | 0.7280 | | No log | 22.0 | 858 | 1.0655 | 0.7263 | 0.7997 | 0.7199 | 0.6393 | 0.5702 | 0.7432 | | No log | 23.0 | 897 | 1.0390 | 0.6922 | 0.7900 | 0.7131 | 0.6357 | 0.5658 | 0.7350 | | No log | 24.0 | 936 | 1.1043 | 0.7324 | 0.7987 | 0.7184 | 0.6389 | 0.5679 | 0.7692 | | No log | 25.0 | 975 | 1.0593 | 0.7221 | 0.8098 | 0.7309 | 0.6585 | 0.5907 | 0.7463 | | No log | 26.0 | 1014 | 1.0945 | 0.7166 | 0.7960 | 0.7224 | 0.6511 | 0.5862 | 0.7406 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.20.3
sylvan54/git-base-bean
sylvan54
2025-01-10T14:09:51Z
12
0
transformers
[ "transformers", "tensorboard", "safetensors", "git", "image-text-to-text", "generated_from_trainer", "base_model:microsoft/git-base", "base_model:finetune:microsoft/git-base", "license:mit", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-01-09T11:49:22Z
--- library_name: transformers license: mit base_model: microsoft/git-base tags: - generated_from_trainer model-index: - name: git-base-bean results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # git-base-bean This model is a fine-tuned version of [microsoft/git-base](https://huggingface.co/microsoft/git-base) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0
PrunaAI/hrasto-llamas2_tok_s1-bnb-8bit-smashed
PrunaAI
2025-01-10T14:08:19Z
7
0
null
[ "safetensors", "llama", "pruna-ai", "base_model:hrasto/llamas2_tok_s1", "base_model:quantized:hrasto/llamas2_tok_s1", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-10T14:08:12Z
--- thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg" base_model: hrasto/llamas2_tok_s1 metrics: - memory_disk - memory_inference - inference_latency - inference_throughput - inference_CO2_emissions - inference_energy_consumption tags: - pruna-ai --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <a href="https://docs.pruna.ai/en/latest/setup/pip.html" target="_blank" rel="noopener noreferrer"> <img src="https://imgur.com/rVAgqMY.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </a> </div> <!-- header end --> [![Twitter](https://img.shields.io/twitter/follow/PrunaAI?style=social)](https://twitter.com/PrunaAI) [![GitHub](https://img.shields.io/github/followers/PrunaAI?label=Follow%20%40PrunaAI&style=social)](https://github.com/PrunaAI) [![LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue)](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-blue?style=social&logo=discord)](https://discord.gg/rskEr4BZJx) # Simply make AI models cheaper, smaller, faster, and greener! - Give a thumbs up if you like this model! - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact). - Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). - Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/) - Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help. ## Results ![image info](./plots.png) **Frequently Asked Questions** - ***How does the compression work?*** The model is compressed with llm-int8. - ***How does the model quality change?*** The quality of the model output might vary compared to the base model. - ***How is the model efficiency evaluated?*** These results were obtained with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you. - ***What is the model format?*** We use safetensors. - ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data. - ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model. - ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). - ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads. - ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases. ## Setup You can run the smashed model with these steps: 0. Check requirements from the original repo hrasto/llamas2_tok_s1 installed. In particular, check python, cuda, and transformers versions. 1. Make sure that you have installed quantization related packages. ```bash pip install transformers accelerate bitsandbytes>0.37.0 ``` 2. Load & run the model. ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("PrunaAI/hrasto-llamas2_tok_s1-bnb-8bit-smashed", trust_remote_code=True, device_map='auto') tokenizer = AutoTokenizer.from_pretrained("hrasto/llamas2_tok_s1") input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"] outputs = model.generate(input_ids, max_new_tokens=216) tokenizer.decode(outputs[0]) ``` ## Configurations The configuration info are in `smash_config.json`. ## Credits & License The license of the smashed model follows the license of the original model. Please check the license of the original model hrasto/llamas2_tok_s1 before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi. ## Want to compress other models? - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact). - Do it by yourself [here](https://docs.pruna.ai/en/latest/setup/pip.html).
lesso06/f426e9cc-b1e1-42c0-a6d4-4c9968be284e
lesso06
2025-01-10T14:02:06Z
10
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:tokyotech-llm/Llama-3-Swallow-8B-v0.1", "base_model:adapter:tokyotech-llm/Llama-3-Swallow-8B-v0.1", "license:llama3", "region:us" ]
null
2025-01-10T13:24:24Z
--- library_name: peft license: llama3 base_model: tokyotech-llm/Llama-3-Swallow-8B-v0.1 tags: - axolotl - generated_from_trainer model-index: - name: f426e9cc-b1e1-42c0-a6d4-4c9968be284e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: tokyotech-llm/Llama-3-Swallow-8B-v0.1 bf16: true chat_template: llama3 datasets: - data_files: - 26f032e89bdce086_train_data.json ds_type: json format: custom path: /workspace/input_data/26f032e89bdce086_train_data.json type: field_input: context field_instruction: question field_output: title format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: true group_by_length: false hub_model_id: lesso06/f426e9cc-b1e1-42c0-a6d4-4c9968be284e hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 77GiB max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/26f032e89bdce086_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 25 save_strategy: steps sequence_len: 1024 special_tokens: pad_token: <|end_of_text|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 46b255fe-df74-4e45-b78e-f8a45fd7c90c wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 46b255fe-df74-4e45-b78e-f8a45fd7c90c warmup_steps: 10 weight_decay: 0.01 xformers_attention: false ``` </details><br> # f426e9cc-b1e1-42c0-a6d4-4c9968be284e This model is a fine-tuned version of [tokyotech-llm/Llama-3-Swallow-8B-v0.1](https://huggingface.co/tokyotech-llm/Llama-3-Swallow-8B-v0.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8644 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.3191 | 0.0008 | 1 | 2.7301 | | 1.6307 | 0.0071 | 9 | 1.7010 | | 1.0874 | 0.0142 | 18 | 1.1264 | | 0.9531 | 0.0213 | 27 | 0.9928 | | 1.2836 | 0.0284 | 36 | 0.9506 | | 1.1158 | 0.0355 | 45 | 0.9314 | | 0.9932 | 0.0426 | 54 | 0.9029 | | 0.4571 | 0.0497 | 63 | 0.8926 | | 0.9113 | 0.0568 | 72 | 0.8765 | | 0.8712 | 0.0640 | 81 | 0.8691 | | 1.4005 | 0.0711 | 90 | 0.8655 | | 0.9174 | 0.0782 | 99 | 0.8644 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nttx/7d22d2cc-a089-4ea9-b0e1-28f60fc292b6
nttx
2025-01-10T13:59:07Z
10
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-0.5B-Instruct", "base_model:adapter:unsloth/Qwen2.5-0.5B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-01-10T13:50:20Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-0.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 7d22d2cc-a089-4ea9-b0e1-28f60fc292b6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-0.5B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - e155d9abe53506a9_train_data.json ds_type: json format: custom path: /workspace/input_data/e155d9abe53506a9_train_data.json type: field_instruction: query field_output: answers format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: null eval_batch_size: 2 eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: true hub_model_id: nttx/7d22d2cc-a089-4ea9-b0e1-28f60fc292b6 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 5 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/e155d9abe53506a9_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null saves_per_epoch: null sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 266eb7bb-b56f-4a51-aba3-cf10ca2672ff wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 266eb7bb-b56f-4a51-aba3-cf10ca2672ff warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 7d22d2cc-a089-4ea9-b0e1-28f60fc292b6 This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4384 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0001 | 1 | 2.1580 | | 0.4634 | 0.0070 | 50 | 0.5326 | | 0.3632 | 0.0141 | 100 | 0.4659 | | 0.4364 | 0.0211 | 150 | 0.4417 | | 0.4343 | 0.0282 | 200 | 0.4384 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mradermacher/M7Yamshadowexperiment28_Inex12Neural-GGUF
mradermacher
2025-01-10T13:58:55Z
218
0
transformers
[ "transformers", "gguf", "Safetensors", "text-generation-inference", "merge", "en", "base_model:MaziyarPanahi/M7Yamshadowexperiment28_Inex12Neural", "base_model:quantized:MaziyarPanahi/M7Yamshadowexperiment28_Inex12Neural", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-01-10T13:42:37Z
--- base_model: MaziyarPanahi/M7Yamshadowexperiment28_Inex12Neural language: - en library_name: transformers license: apache-2.0 model_creator: MaziyarPanahi model_name: M7Yamshadowexperiment28_Inex12Neural quantized_by: mradermacher tags: - Safetensors - text-generation-inference - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/MaziyarPanahi/M7Yamshadowexperiment28_Inex12Neural <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/M7Yamshadowexperiment28_Inex12Neural-GGUF/resolve/main/M7Yamshadowexperiment28_Inex12Neural.Q2_K.gguf) | Q2_K | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/M7Yamshadowexperiment28_Inex12Neural-GGUF/resolve/main/M7Yamshadowexperiment28_Inex12Neural.Q3_K_S.gguf) | Q3_K_S | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/M7Yamshadowexperiment28_Inex12Neural-GGUF/resolve/main/M7Yamshadowexperiment28_Inex12Neural.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/M7Yamshadowexperiment28_Inex12Neural-GGUF/resolve/main/M7Yamshadowexperiment28_Inex12Neural.Q3_K_L.gguf) | Q3_K_L | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/M7Yamshadowexperiment28_Inex12Neural-GGUF/resolve/main/M7Yamshadowexperiment28_Inex12Neural.IQ4_XS.gguf) | IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/M7Yamshadowexperiment28_Inex12Neural-GGUF/resolve/main/M7Yamshadowexperiment28_Inex12Neural.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/M7Yamshadowexperiment28_Inex12Neural-GGUF/resolve/main/M7Yamshadowexperiment28_Inex12Neural.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/M7Yamshadowexperiment28_Inex12Neural-GGUF/resolve/main/M7Yamshadowexperiment28_Inex12Neural.Q5_K_S.gguf) | Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/M7Yamshadowexperiment28_Inex12Neural-GGUF/resolve/main/M7Yamshadowexperiment28_Inex12Neural.Q5_K_M.gguf) | Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/M7Yamshadowexperiment28_Inex12Neural-GGUF/resolve/main/M7Yamshadowexperiment28_Inex12Neural.Q6_K.gguf) | Q6_K | 6.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/M7Yamshadowexperiment28_Inex12Neural-GGUF/resolve/main/M7Yamshadowexperiment28_Inex12Neural.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/M7Yamshadowexperiment28_Inex12Neural-GGUF/resolve/main/M7Yamshadowexperiment28_Inex12Neural.f16.gguf) | f16 | 14.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/MeliodasT3qm7_M7Yamshadowexperiment28-GGUF
mradermacher
2025-01-10T13:58:54Z
254
0
transformers
[ "transformers", "gguf", "Safetensors", "text-generation-inference", "merge", "en", "base_model:MaziyarPanahi/MeliodasT3qm7_M7Yamshadowexperiment28", "base_model:quantized:MaziyarPanahi/MeliodasT3qm7_M7Yamshadowexperiment28", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-01-10T13:02:52Z
--- base_model: MaziyarPanahi/MeliodasT3qm7_M7Yamshadowexperiment28 language: - en library_name: transformers license: apache-2.0 model_creator: MaziyarPanahi model_name: MeliodasT3qm7_M7Yamshadowexperiment28 quantized_by: mradermacher tags: - Safetensors - text-generation-inference - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/MaziyarPanahi/MeliodasT3qm7_M7Yamshadowexperiment28 <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/MeliodasT3qm7_M7Yamshadowexperiment28-GGUF/resolve/main/MeliodasT3qm7_M7Yamshadowexperiment28.Q2_K.gguf) | Q2_K | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/MeliodasT3qm7_M7Yamshadowexperiment28-GGUF/resolve/main/MeliodasT3qm7_M7Yamshadowexperiment28.Q3_K_S.gguf) | Q3_K_S | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/MeliodasT3qm7_M7Yamshadowexperiment28-GGUF/resolve/main/MeliodasT3qm7_M7Yamshadowexperiment28.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/MeliodasT3qm7_M7Yamshadowexperiment28-GGUF/resolve/main/MeliodasT3qm7_M7Yamshadowexperiment28.Q3_K_L.gguf) | Q3_K_L | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/MeliodasT3qm7_M7Yamshadowexperiment28-GGUF/resolve/main/MeliodasT3qm7_M7Yamshadowexperiment28.IQ4_XS.gguf) | IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/MeliodasT3qm7_M7Yamshadowexperiment28-GGUF/resolve/main/MeliodasT3qm7_M7Yamshadowexperiment28.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/MeliodasT3qm7_M7Yamshadowexperiment28-GGUF/resolve/main/MeliodasT3qm7_M7Yamshadowexperiment28.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/MeliodasT3qm7_M7Yamshadowexperiment28-GGUF/resolve/main/MeliodasT3qm7_M7Yamshadowexperiment28.Q5_K_S.gguf) | Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/MeliodasT3qm7_M7Yamshadowexperiment28-GGUF/resolve/main/MeliodasT3qm7_M7Yamshadowexperiment28.Q5_K_M.gguf) | Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/MeliodasT3qm7_M7Yamshadowexperiment28-GGUF/resolve/main/MeliodasT3qm7_M7Yamshadowexperiment28.Q6_K.gguf) | Q6_K | 6.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/MeliodasT3qm7_M7Yamshadowexperiment28-GGUF/resolve/main/MeliodasT3qm7_M7Yamshadowexperiment28.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/MeliodasT3qm7_M7Yamshadowexperiment28-GGUF/resolve/main/MeliodasT3qm7_M7Yamshadowexperiment28.f16.gguf) | f16 | 14.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
StefaniaCri/mbart_romainian_to_emoji_translated
StefaniaCri
2025-01-10T13:58:18Z
32
0
transformers
[ "transformers", "safetensors", "mbart", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2025-01-10T13:56:53Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
willtensora/32080d72-25f3-4650-b173-b6dd52e12801
willtensora
2025-01-10T13:58:06Z
5
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:peft-internal-testing/tiny-dummy-qwen2", "base_model:adapter:peft-internal-testing/tiny-dummy-qwen2", "region:us" ]
null
2025-01-10T13:57:37Z
--- library_name: peft base_model: peft-internal-testing/tiny-dummy-qwen2 tags: - axolotl - generated_from_trainer model-index: - name: 32080d72-25f3-4650-b173-b6dd52e12801 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: peft-internal-testing/tiny-dummy-qwen2 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - format: custom path: argilla/databricks-dolly-15k-curated-en type: field_input: original-instruction field_instruction: original-instruction field_output: original-response format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: willtensora/32080d72-25f3-4650-b173-b6dd52e12801 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: argilla/databricks-dolly-15k-curated-en model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 00000000-0000-0000-0000-000000000000 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 00000000-0000-0000-0000-000000000000 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 32080d72-25f3-4650-b173-b6dd52e12801 This model is a fine-tuned version of [peft-internal-testing/tiny-dummy-qwen2](https://huggingface.co/peft-internal-testing/tiny-dummy-qwen2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 11.9313 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 11.9315 | 0.0006 | 1 | 11.9313 | | 11.9319 | 0.0017 | 3 | 11.9313 | | 11.926 | 0.0034 | 6 | 11.9313 | | 11.9287 | 0.0050 | 9 | 11.9313 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Daemontatox/AetherUncensored
Daemontatox
2025-01-10T13:57:49Z
59
1
transformers
[ "transformers", "pytorch", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "conversational", "en", "base_model:cognitivecomputations/Dolphin3.0-Llama3.1-8B", "base_model:finetune:cognitivecomputations/Dolphin3.0-Llama3.1-8B", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-01-09T22:42:06Z
--- base_model: cognitivecomputations/Dolphin3.0-Llama3.1-8B tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en pipeline_tag: text-generation library_name: transformers --- # Uploaded model - **Developed by:** Daemontatox - **License:** apache-2.0 - **Finetuned from model :** cognitivecomputations/Dolphin3.0-Llama3.1-8B This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
trenden/0b4b7c78-41cf-4c59-b5a8-145297e61213
trenden
2025-01-10T13:54:45Z
10
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-0.5B-Instruct", "base_model:adapter:unsloth/Qwen2.5-0.5B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-01-10T13:50:31Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-0.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 0b4b7c78-41cf-4c59-b5a8-145297e61213 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-0.5B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - e155d9abe53506a9_train_data.json ds_type: json format: custom path: /workspace/input_data/e155d9abe53506a9_train_data.json type: field_instruction: query field_output: answers format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: trenden/0b4b7c78-41cf-4c59-b5a8-145297e61213 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/e155d9abe53506a9_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 266eb7bb-b56f-4a51-aba3-cf10ca2672ff wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 266eb7bb-b56f-4a51-aba3-cf10ca2672ff warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 0b4b7c78-41cf-4c59-b5a8-145297e61213 This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0001 | 1 | nan | | 0.0 | 0.0004 | 3 | nan | | 0.0 | 0.0008 | 6 | nan | | 0.0 | 0.0013 | 9 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mradermacher/llama-3-8b-tune-folio-GGUF
mradermacher
2025-01-10T13:54:14Z
331
0
transformers
[ "transformers", "gguf", "en", "base_model:TongZheng1999/llama-3-8b-tune-folio", "base_model:quantized:TongZheng1999/llama-3-8b-tune-folio", "endpoints_compatible", "region:us" ]
null
2025-01-10T13:24:08Z
--- base_model: TongZheng1999/llama-3-8b-tune-folio language: - en library_name: transformers quantized_by: mradermacher tags: [] --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/TongZheng1999/llama-3-8b-tune-folio <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/llama-3-8b-tune-folio-GGUF/resolve/main/llama-3-8b-tune-folio.Q2_K.gguf) | Q2_K | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/llama-3-8b-tune-folio-GGUF/resolve/main/llama-3-8b-tune-folio.Q3_K_S.gguf) | Q3_K_S | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/llama-3-8b-tune-folio-GGUF/resolve/main/llama-3-8b-tune-folio.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/llama-3-8b-tune-folio-GGUF/resolve/main/llama-3-8b-tune-folio.Q3_K_L.gguf) | Q3_K_L | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/llama-3-8b-tune-folio-GGUF/resolve/main/llama-3-8b-tune-folio.IQ4_XS.gguf) | IQ4_XS | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/llama-3-8b-tune-folio-GGUF/resolve/main/llama-3-8b-tune-folio.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/llama-3-8b-tune-folio-GGUF/resolve/main/llama-3-8b-tune-folio.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/llama-3-8b-tune-folio-GGUF/resolve/main/llama-3-8b-tune-folio.Q5_K_S.gguf) | Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/llama-3-8b-tune-folio-GGUF/resolve/main/llama-3-8b-tune-folio.Q5_K_M.gguf) | Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/llama-3-8b-tune-folio-GGUF/resolve/main/llama-3-8b-tune-folio.Q6_K.gguf) | Q6_K | 6.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/llama-3-8b-tune-folio-GGUF/resolve/main/llama-3-8b-tune-folio.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/llama-3-8b-tune-folio-GGUF/resolve/main/llama-3-8b-tune-folio.f16.gguf) | f16 | 16.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/ktdsbaseLM-v0.15-onbased-llama3.1-GGUF
mradermacher
2025-01-10T13:48:41Z
325
0
transformers
[ "transformers", "gguf", "en", "base_model:AIDX-ktds/ktdsbaseLM-v0.15-onbased-llama3.1", "base_model:quantized:AIDX-ktds/ktdsbaseLM-v0.15-onbased-llama3.1", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-10T12:19:27Z
--- base_model: AIDX-ktds/ktdsbaseLM-v0.15-onbased-llama3.1 language: - en library_name: transformers quantized_by: mradermacher tags: [] --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/AIDX-ktds/ktdsbaseLM-v0.15-onbased-llama3.1 <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/ktdsbaseLM-v0.15-onbased-llama3.1-GGUF/resolve/main/ktdsbaseLM-v0.15-onbased-llama3.1.Q2_K.gguf) | Q2_K | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/ktdsbaseLM-v0.15-onbased-llama3.1-GGUF/resolve/main/ktdsbaseLM-v0.15-onbased-llama3.1.Q3_K_S.gguf) | Q3_K_S | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/ktdsbaseLM-v0.15-onbased-llama3.1-GGUF/resolve/main/ktdsbaseLM-v0.15-onbased-llama3.1.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/ktdsbaseLM-v0.15-onbased-llama3.1-GGUF/resolve/main/ktdsbaseLM-v0.15-onbased-llama3.1.Q3_K_L.gguf) | Q3_K_L | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/ktdsbaseLM-v0.15-onbased-llama3.1-GGUF/resolve/main/ktdsbaseLM-v0.15-onbased-llama3.1.IQ4_XS.gguf) | IQ4_XS | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/ktdsbaseLM-v0.15-onbased-llama3.1-GGUF/resolve/main/ktdsbaseLM-v0.15-onbased-llama3.1.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/ktdsbaseLM-v0.15-onbased-llama3.1-GGUF/resolve/main/ktdsbaseLM-v0.15-onbased-llama3.1.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/ktdsbaseLM-v0.15-onbased-llama3.1-GGUF/resolve/main/ktdsbaseLM-v0.15-onbased-llama3.1.Q5_K_S.gguf) | Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/ktdsbaseLM-v0.15-onbased-llama3.1-GGUF/resolve/main/ktdsbaseLM-v0.15-onbased-llama3.1.Q5_K_M.gguf) | Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/ktdsbaseLM-v0.15-onbased-llama3.1-GGUF/resolve/main/ktdsbaseLM-v0.15-onbased-llama3.1.Q6_K.gguf) | Q6_K | 6.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/ktdsbaseLM-v0.15-onbased-llama3.1-GGUF/resolve/main/ktdsbaseLM-v0.15-onbased-llama3.1.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/ktdsbaseLM-v0.15-onbased-llama3.1-GGUF/resolve/main/ktdsbaseLM-v0.15-onbased-llama3.1.f16.gguf) | f16 | 16.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/Gemma-2B-Hinglish-LORA-v1.0-GGUF
mradermacher
2025-01-10T13:48:41Z
301
0
transformers
[ "transformers", "gguf", "text-generation", "unsloth", "gemma", "trl", "en", "hi", "dataset:yahma/alpaca-cleaned", "dataset:ravithejads/samvaad-hi-filtered", "dataset:HydraIndicLM/hindi_alpaca_dolly_67k", "base_model:kirankunapuli/Gemma-2B-Hinglish-LORA-v1.0", "base_model:quantized:kirankunapuli/Gemma-2B-Hinglish-LORA-v1.0", "license:gemma", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-01-10T13:37:12Z
--- base_model: kirankunapuli/Gemma-2B-Hinglish-LORA-v1.0 datasets: - yahma/alpaca-cleaned - ravithejads/samvaad-hi-filtered - HydraIndicLM/hindi_alpaca_dolly_67k language: - en - hi library_name: transformers license: gemma quantized_by: mradermacher tags: - text-generation - transformers - unsloth - gemma - trl --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/kirankunapuli/Gemma-2B-Hinglish-LORA-v1.0 <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Gemma-2B-Hinglish-LORA-v1.0-GGUF/resolve/main/Gemma-2B-Hinglish-LORA-v1.0.Q2_K.gguf) | Q2_K | 1.3 | | | [GGUF](https://huggingface.co/mradermacher/Gemma-2B-Hinglish-LORA-v1.0-GGUF/resolve/main/Gemma-2B-Hinglish-LORA-v1.0.Q3_K_S.gguf) | Q3_K_S | 1.4 | | | [GGUF](https://huggingface.co/mradermacher/Gemma-2B-Hinglish-LORA-v1.0-GGUF/resolve/main/Gemma-2B-Hinglish-LORA-v1.0.Q3_K_M.gguf) | Q3_K_M | 1.5 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Gemma-2B-Hinglish-LORA-v1.0-GGUF/resolve/main/Gemma-2B-Hinglish-LORA-v1.0.Q3_K_L.gguf) | Q3_K_L | 1.6 | | | [GGUF](https://huggingface.co/mradermacher/Gemma-2B-Hinglish-LORA-v1.0-GGUF/resolve/main/Gemma-2B-Hinglish-LORA-v1.0.IQ4_XS.gguf) | IQ4_XS | 1.6 | | | [GGUF](https://huggingface.co/mradermacher/Gemma-2B-Hinglish-LORA-v1.0-GGUF/resolve/main/Gemma-2B-Hinglish-LORA-v1.0.Q4_K_S.gguf) | Q4_K_S | 1.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Gemma-2B-Hinglish-LORA-v1.0-GGUF/resolve/main/Gemma-2B-Hinglish-LORA-v1.0.Q4_K_M.gguf) | Q4_K_M | 1.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Gemma-2B-Hinglish-LORA-v1.0-GGUF/resolve/main/Gemma-2B-Hinglish-LORA-v1.0.Q5_K_S.gguf) | Q5_K_S | 1.9 | | | [GGUF](https://huggingface.co/mradermacher/Gemma-2B-Hinglish-LORA-v1.0-GGUF/resolve/main/Gemma-2B-Hinglish-LORA-v1.0.Q5_K_M.gguf) | Q5_K_M | 1.9 | | | [GGUF](https://huggingface.co/mradermacher/Gemma-2B-Hinglish-LORA-v1.0-GGUF/resolve/main/Gemma-2B-Hinglish-LORA-v1.0.Q6_K.gguf) | Q6_K | 2.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Gemma-2B-Hinglish-LORA-v1.0-GGUF/resolve/main/Gemma-2B-Hinglish-LORA-v1.0.Q8_0.gguf) | Q8_0 | 2.8 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Gemma-2B-Hinglish-LORA-v1.0-GGUF/resolve/main/Gemma-2B-Hinglish-LORA-v1.0.f16.gguf) | f16 | 5.1 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
lesso04/f4c8bfb5-32f7-46ad-a383-325c0c615d05
lesso04
2025-01-10T13:47:34Z
9
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:NousResearch/Nous-Hermes-llama-2-7b", "base_model:adapter:NousResearch/Nous-Hermes-llama-2-7b", "license:mit", "region:us" ]
null
2025-01-10T13:36:33Z
--- library_name: peft license: mit base_model: NousResearch/Nous-Hermes-llama-2-7b tags: - axolotl - generated_from_trainer model-index: - name: f4c8bfb5-32f7-46ad-a383-325c0c615d05 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Nous-Hermes-llama-2-7b bf16: true chat_template: llama3 datasets: - data_files: - fb9adc4d4987f24a_train_data.json ds_type: json format: custom path: /workspace/input_data/fb9adc4d4987f24a_train_data.json type: field_input: section_text field_instruction: question field_output: answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: true group_by_length: false hub_model_id: lesso04/f4c8bfb5-32f7-46ad-a383-325c0c615d05 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 77GiB max_steps: 50 micro_batch_size: 8 mlflow_experiment_name: /tmp/fb9adc4d4987f24a_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 25 save_strategy: steps sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 66da8cc4-c8c2-4305-a347-61b464528b61 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 66da8cc4-c8c2-4305-a347-61b464528b61 warmup_steps: 10 weight_decay: 0.01 xformers_attention: false ``` </details><br> # f4c8bfb5-32f7-46ad-a383-325c0c615d05 This model is a fine-tuned version of [NousResearch/Nous-Hermes-llama-2-7b](https://huggingface.co/NousResearch/Nous-Hermes-llama-2-7b) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0030 | 1 | nan | | 0.0 | 0.0149 | 5 | nan | | 0.0 | 0.0297 | 10 | nan | | 0.0 | 0.0446 | 15 | nan | | 0.0 | 0.0594 | 20 | nan | | 0.0 | 0.0743 | 25 | nan | | 0.0 | 0.0892 | 30 | nan | | 0.0 | 0.1040 | 35 | nan | | 0.0 | 0.1189 | 40 | nan | | 0.0 | 0.1337 | 45 | nan | | 0.0 | 0.1486 | 50 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso05/530799de-0d58-401f-b489-6803bff65c90
lesso05
2025-01-10T13:47:34Z
11
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:fxmarty/tiny-llama-fast-tokenizer", "base_model:adapter:fxmarty/tiny-llama-fast-tokenizer", "region:us" ]
null
2025-01-10T13:28:19Z
--- library_name: peft base_model: fxmarty/tiny-llama-fast-tokenizer tags: - axolotl - generated_from_trainer model-index: - name: 530799de-0d58-401f-b489-6803bff65c90 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: fxmarty/tiny-llama-fast-tokenizer bf16: true chat_template: llama3 datasets: - data_files: - b88155c385ea165a_train_data.json ds_type: json format: custom path: /workspace/input_data/b88155c385ea165a_train_data.json type: field_instruction: question field_output: reponses format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: true group_by_length: false hub_model_id: lesso05/530799de-0d58-401f-b489-6803bff65c90 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 2.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 77GiB max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/b88155c385ea165a_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 25 save_strategy: steps sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 92a1cd3e-471f-481a-aa73-6c496dcf52e3 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 92a1cd3e-471f-481a-aa73-6c496dcf52e3 warmup_steps: 10 weight_decay: 0.01 xformers_attention: false ``` </details><br> # 530799de-0d58-401f-b489-6803bff65c90 This model is a fine-tuned version of [fxmarty/tiny-llama-fast-tokenizer](https://huggingface.co/fxmarty/tiny-llama-fast-tokenizer) on the None dataset. It achieves the following results on the evaluation set: - Loss: 10.3776 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 10.3766 | 0.0001 | 1 | 10.3783 | | 10.3782 | 0.0006 | 9 | 10.3782 | | 10.3765 | 0.0012 | 18 | 10.3781 | | 10.3808 | 0.0017 | 27 | 10.3780 | | 10.3776 | 0.0023 | 36 | 10.3779 | | 10.3777 | 0.0029 | 45 | 10.3778 | | 10.3748 | 0.0035 | 54 | 10.3777 | | 10.3784 | 0.0041 | 63 | 10.3777 | | 10.3771 | 0.0046 | 72 | 10.3777 | | 10.3768 | 0.0052 | 81 | 10.3776 | | 10.3775 | 0.0058 | 90 | 10.3776 | | 10.3775 | 0.0064 | 99 | 10.3776 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Triangle104/phi-4-abliterated-Q4_K_M-GGUF
Triangle104
2025-01-10T13:46:09Z
50
0
transformers
[ "transformers", "gguf", "phi", "nlp", "math", "code", "chat", "conversational", "abliterated", "uncensored", "llama-cpp", "gguf-my-repo", "text-generation", "en", "base_model:huihui-ai/phi-4-abliterated", "base_model:quantized:huihui-ai/phi-4-abliterated", "license:mit", "endpoints_compatible", "region:us" ]
text-generation
2025-01-10T13:45:29Z
--- license: mit license_link: https://huggingface.co/huihui-ai/phi-4-abliterated/resolve/main/LICENSE language: - en base_model: huihui-ai/phi-4-abliterated pipeline_tag: text-generation tags: - phi - nlp - math - code - chat - conversational - abliterated - uncensored - llama-cpp - gguf-my-repo inference: parameters: temperature: 0 widget: - messages: - role: user content: How should I explain the Internet? library_name: transformers --- # Triangle104/phi-4-abliterated-Q4_K_M-GGUF This model was converted to GGUF format from [`huihui-ai/phi-4-abliterated`](https://huggingface.co/huihui-ai/phi-4-abliterated) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/huihui-ai/phi-4-abliterated) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/phi-4-abliterated-Q4_K_M-GGUF --hf-file phi-4-abliterated-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/phi-4-abliterated-Q4_K_M-GGUF --hf-file phi-4-abliterated-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/phi-4-abliterated-Q4_K_M-GGUF --hf-file phi-4-abliterated-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/phi-4-abliterated-Q4_K_M-GGUF --hf-file phi-4-abliterated-q4_k_m.gguf -c 2048 ```
shopitalic/serene-ultraplush-towel-clay-rafael
shopitalic
2025-01-10T13:46:09Z
171
0
diffusers
[ "diffusers", "flux", "text-to-image", "lora", "fal", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-10T13:46:03Z
--- tags: - flux - text-to-image - lora - diffusers - fal base_model: black-forest-labs/FLUX.1-dev instance_prompt: license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md --- # serene ultraplush towel clay rafael <Gallery /> ## Model description ## Trigger words You should use `` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/shopitalic/serene-ultraplush-towel-clay-rafael/tree/main) them in the Files & versions tab. ## Training at fal.ai Training was done using [fal.ai/models/fal-ai/flux-lora-fast-training](https://fal.ai/models/fal-ai/flux-lora-fast-training).
Triangle104/Thoughtful-Llama-RP-3b
Triangle104
2025-01-10T13:46:08Z
26
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "base_model:bunnycore/Llama-3.2-3B-Pure-RP", "base_model:merge:bunnycore/Llama-3.2-3B-Pure-RP", "base_model:prithivMLmods/Llama-Deepsync-3B", "base_model:merge:prithivMLmods/Llama-Deepsync-3B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-10T13:44:04Z
--- base_model: - bunnycore/Llama-3.2-3B-Pure-RP - prithivMLmods/Llama-Deepsync-3B library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * [bunnycore/Llama-3.2-3B-Pure-RP](https://huggingface.co/bunnycore/Llama-3.2-3B-Pure-RP) * [prithivMLmods/Llama-Deepsync-3B](https://huggingface.co/prithivMLmods/Llama-Deepsync-3B) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: bunnycore/Llama-3.2-3B-Pure-RP - model: prithivMLmods/Llama-Deepsync-3B merge_method: slerp base_model: bunnycore/Llama-3.2-3B-Pure-RP dtype: bfloat16 parameters: t: [0, 0.5, 1, 0.5, 0] ```
VERSIL91/66da8cc4-c8c2-4305-a347-61b464528b61
VERSIL91
2025-01-10T13:45:49Z
9
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:NousResearch/Nous-Hermes-llama-2-7b", "base_model:adapter:NousResearch/Nous-Hermes-llama-2-7b", "license:mit", "region:us" ]
null
2025-01-10T13:36:32Z
--- library_name: peft license: mit base_model: NousResearch/Nous-Hermes-llama-2-7b tags: - axolotl - generated_from_trainer model-index: - name: 66da8cc4-c8c2-4305-a347-61b464528b61 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml accelerate_config: dynamo_backend: inductor mixed_precision: bf16 num_machines: 1 num_processes: auto use_cpu: false adapter: lora base_model: NousResearch/Nous-Hermes-llama-2-7b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - fb9adc4d4987f24a_train_data.json ds_type: json format: custom path: /workspace/input_data/fb9adc4d4987f24a_train_data.json type: field_input: section_text field_instruction: question field_output: answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 16 gradient_checkpointing: true group_by_length: false hub_model_id: VERSIL91/66da8cc4-c8c2-4305-a347-61b464528b61 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lora_target_modules: - q_proj - v_proj lr_scheduler: cosine max_memory: 0: 70GiB max_steps: 20 micro_batch_size: 2 mlflow_experiment_name: /tmp/fb9adc4d4987f24a_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true quantization_config: llm_int8_enable_fp32_cpu_offload: true load_in_8bit: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer torch_compile: true train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 66da8cc4-c8c2-4305-a347-61b464528b61 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 66da8cc4-c8c2-4305-a347-61b464528b61 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 66da8cc4-c8c2-4305-a347-61b464528b61 This model is a fine-tuned version of [NousResearch/Nous-Hermes-llama-2-7b](https://huggingface.co/NousResearch/Nous-Hermes-llama-2-7b) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0059 | 1 | nan | | 0.0 | 0.0297 | 5 | nan | | 0.0 | 0.0594 | 10 | nan | | 0.0 | 0.0892 | 15 | nan | | 0.0 | 0.1189 | 20 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
sergioalves/9c157d4b-6459-4383-9e4a-4b86b64163ac
sergioalves
2025-01-10T13:45:10Z
17
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/Llama-3.2-1B", "base_model:adapter:unsloth/Llama-3.2-1B", "license:llama3.2", "region:us" ]
null
2025-01-10T13:43:16Z
--- library_name: peft license: llama3.2 base_model: unsloth/Llama-3.2-1B tags: - axolotl - generated_from_trainer model-index: - name: 9c157d4b-6459-4383-9e4a-4b86b64163ac results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Llama-3.2-1B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - d01b5c4ce07f41a0_train_data.json ds_type: json format: custom path: /workspace/input_data/d01b5c4ce07f41a0_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: sergioalves/9c157d4b-6459-4383-9e4a-4b86b64163ac hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 75GiB max_steps: 30 micro_batch_size: 2 mlflow_experiment_name: /tmp/d01b5c4ce07f41a0_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_hf output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: fd97bc97-7fab-49d5-8ed7-01af218a5056 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: fd97bc97-7fab-49d5-8ed7-01af218a5056 warmup_steps: 10 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 9c157d4b-6459-4383-9e4a-4b86b64163ac This model is a fine-tuned version of [unsloth/Llama-3.2-1B](https://huggingface.co/unsloth/Llama-3.2-1B) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_HF with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0009 | 1 | nan | | 0.0 | 0.0073 | 8 | nan | | 0.0 | 0.0146 | 16 | nan | | 0.0 | 0.0219 | 24 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
hongngo/b2ccb032-a770-4137-9247-237fccd64926
hongngo
2025-01-10T13:44:49Z
12
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/Mistral-Nemo-Instruct-2407", "base_model:adapter:unsloth/Mistral-Nemo-Instruct-2407", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-10T12:55:13Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Mistral-Nemo-Instruct-2407 tags: - axolotl - generated_from_trainer model-index: - name: b2ccb032-a770-4137-9247-237fccd64926 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Mistral-Nemo-Instruct-2407 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 7abb359048f38070_train_data.json ds_type: json format: custom path: /workspace/input_data/7abb359048f38070_train_data.json type: field_input: tokens field_instruction: intent field_output: utterance format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: hongngo/b2ccb032-a770-4137-9247-237fccd64926 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/7abb359048f38070_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: abe44fa8-66e0-4595-8c92-af54fe3a57fe wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: abe44fa8-66e0-4595-8c92-af54fe3a57fe warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # b2ccb032-a770-4137-9247-237fccd64926 This model is a fine-tuned version of [unsloth/Mistral-Nemo-Instruct-2407](https://huggingface.co/unsloth/Mistral-Nemo-Instruct-2407) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0326 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.2282 | 0.0162 | 200 | 0.0326 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nhung03/8929acac-0e3e-40e5-a5c1-748642dbca8d
nhung03
2025-01-10T13:44:31Z
10
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:tokyotech-llm/Llama-3-Swallow-8B-v0.1", "base_model:adapter:tokyotech-llm/Llama-3-Swallow-8B-v0.1", "license:llama3", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-10T13:24:25Z
--- library_name: peft license: llama3 base_model: tokyotech-llm/Llama-3-Swallow-8B-v0.1 tags: - axolotl - generated_from_trainer model-index: - name: 8929acac-0e3e-40e5-a5c1-748642dbca8d results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: tokyotech-llm/Llama-3-Swallow-8B-v0.1 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 26f032e89bdce086_train_data.json ds_type: json format: custom path: /workspace/input_data/26f032e89bdce086_train_data.json type: field_input: context field_instruction: question field_output: title format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nhung03/8929acac-0e3e-40e5-a5c1-748642dbca8d hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/26f032e89bdce086_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: <|end_of_text|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 46b255fe-df74-4e45-b78e-f8a45fd7c90c wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 46b255fe-df74-4e45-b78e-f8a45fd7c90c warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 8929acac-0e3e-40e5-a5c1-748642dbca8d This model is a fine-tuned version of [tokyotech-llm/Llama-3-Swallow-8B-v0.1](https://huggingface.co/tokyotech-llm/Llama-3-Swallow-8B-v0.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8807 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.0212 | 0.0790 | 200 | 0.8807 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Legalaz/23_llambo2_08_37
Legalaz
2025-01-10T13:43:44Z
7
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "arxiv:2203.05482", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-10T13:39:58Z
--- base_model: [] library_name: transformers tags: - mergekit - merge --- # top This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [linear](https://arxiv.org/abs/2203.05482) merge method. ### Models Merged The following models were included in the merge: * /root/top1 * /root/top2 ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: /root/top2 parameters: weight: 0.9342 - model: /root/top1 parameters: weight: 0.0628 merge_method: linear dtype: bfloat16 ```
lesso03/b4d6f169-f3bf-4142-8ee3-b3072ad1912f
lesso03
2025-01-10T13:43:05Z
9
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:NousResearch/Nous-Hermes-llama-2-7b", "base_model:adapter:NousResearch/Nous-Hermes-llama-2-7b", "license:mit", "region:us" ]
null
2025-01-10T13:36:32Z
--- library_name: peft license: mit base_model: NousResearch/Nous-Hermes-llama-2-7b tags: - axolotl - generated_from_trainer model-index: - name: b4d6f169-f3bf-4142-8ee3-b3072ad1912f results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Nous-Hermes-llama-2-7b bf16: true chat_template: llama3 datasets: - data_files: - fb9adc4d4987f24a_train_data.json ds_type: json format: custom path: /workspace/input_data/fb9adc4d4987f24a_train_data.json type: field_input: section_text field_instruction: question field_output: answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: true group_by_length: false hub_model_id: lesso03/b4d6f169-f3bf-4142-8ee3-b3072ad1912f hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 1.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 70GiB max_steps: 30 micro_batch_size: 4 mlflow_experiment_name: /tmp/fb9adc4d4987f24a_train_data.json model_type: AutoModelForCausalLM num_epochs: 2 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 20 save_strategy: steps sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 66da8cc4-c8c2-4305-a347-61b464528b61 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 66da8cc4-c8c2-4305-a347-61b464528b61 warmup_steps: 5 weight_decay: 0.01 xformers_attention: false ``` </details><br> # b4d6f169-f3bf-4142-8ee3-b3072ad1912f This model is a fine-tuned version of [NousResearch/Nous-Hermes-llama-2-7b](https://huggingface.co/NousResearch/Nous-Hermes-llama-2-7b) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0015 | 1 | nan | | 0.0 | 0.0059 | 4 | nan | | 0.0 | 0.0119 | 8 | nan | | 0.0 | 0.0178 | 12 | nan | | 0.0 | 0.0238 | 16 | nan | | 0.0 | 0.0297 | 20 | nan | | 0.0 | 0.0357 | 24 | nan | | 0.0 | 0.0416 | 28 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
denbeo/c2f91a76-1176-488a-8877-051610673970
denbeo
2025-01-10T13:41:28Z
10
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:NousResearch/Nous-Hermes-2-Mistral-7B-DPO", "base_model:adapter:NousResearch/Nous-Hermes-2-Mistral-7B-DPO", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-10T12:53:45Z
--- library_name: peft license: apache-2.0 base_model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO tags: - axolotl - generated_from_trainer model-index: - name: c2f91a76-1176-488a-8877-051610673970 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - d1da17a435e62cf7_train_data.json ds_type: json format: custom path: /workspace/input_data/d1da17a435e62cf7_train_data.json type: field_instruction: inputs field_output: targets format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: denbeo/c2f91a76-1176-488a-8877-051610673970 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/d1da17a435e62cf7_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 31dc5ae8-56c1-4c69-91e0-8935644d0a3c wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 31dc5ae8-56c1-4c69-91e0-8935644d0a3c warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # c2f91a76-1176-488a-8877-051610673970 This model is a fine-tuned version of [NousResearch/Nous-Hermes-2-Mistral-7B-DPO](https://huggingface.co/NousResearch/Nous-Hermes-2-Mistral-7B-DPO) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2935 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.7332 | 0.4444 | 200 | 0.2935 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Triangle104/phi-4-abliterated-Q4_K_S-GGUF
Triangle104
2025-01-10T13:35:45Z
45
0
transformers
[ "transformers", "gguf", "phi", "nlp", "math", "code", "chat", "conversational", "abliterated", "uncensored", "llama-cpp", "gguf-my-repo", "text-generation", "en", "base_model:huihui-ai/phi-4-abliterated", "base_model:quantized:huihui-ai/phi-4-abliterated", "license:mit", "endpoints_compatible", "region:us" ]
text-generation
2025-01-10T13:35:09Z
--- license: mit license_link: https://huggingface.co/huihui-ai/phi-4-abliterated/resolve/main/LICENSE language: - en base_model: huihui-ai/phi-4-abliterated pipeline_tag: text-generation tags: - phi - nlp - math - code - chat - conversational - abliterated - uncensored - llama-cpp - gguf-my-repo inference: parameters: temperature: 0 widget: - messages: - role: user content: How should I explain the Internet? library_name: transformers --- # Triangle104/phi-4-abliterated-Q4_K_S-GGUF This model was converted to GGUF format from [`huihui-ai/phi-4-abliterated`](https://huggingface.co/huihui-ai/phi-4-abliterated) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/huihui-ai/phi-4-abliterated) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/phi-4-abliterated-Q4_K_S-GGUF --hf-file phi-4-abliterated-q4_k_s.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/phi-4-abliterated-Q4_K_S-GGUF --hf-file phi-4-abliterated-q4_k_s.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/phi-4-abliterated-Q4_K_S-GGUF --hf-file phi-4-abliterated-q4_k_s.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/phi-4-abliterated-Q4_K_S-GGUF --hf-file phi-4-abliterated-q4_k_s.gguf -c 2048 ```
kostiantynk-out/1312c246-d739-414f-b0f1-6fb9bc1cb25a
kostiantynk-out
2025-01-10T13:29:07Z
13
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:TinyLlama/TinyLlama-1.1B-Chat-v1.0", "base_model:adapter:TinyLlama/TinyLlama-1.1B-Chat-v1.0", "license:apache-2.0", "region:us" ]
null
2025-01-10T13:27:27Z
--- library_name: peft license: apache-2.0 base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 tags: - axolotl - generated_from_trainer model-index: - name: 1312c246-d739-414f-b0f1-6fb9bc1cb25a results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - bb469122edf6ea7b_train_data.json ds_type: json format: custom path: /workspace/input_data/bb469122edf6ea7b_train_data.json type: field_input: '' field_instruction: input_persona field_output: prompt format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: kostiantynk-out/1312c246-d739-414f-b0f1-6fb9bc1cb25a hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/bb469122edf6ea7b_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: c4ff25be-7ef1-40cb-a8cb-e0bc2a097844 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: c4ff25be-7ef1-40cb-a8cb-e0bc2a097844 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 1312c246-d739-414f-b0f1-6fb9bc1cb25a This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5814 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.7296 | 0.0004 | 1 | 1.7418 | | 1.7598 | 0.0013 | 3 | 1.7384 | | 1.7149 | 0.0026 | 6 | 1.6993 | | 1.6058 | 0.0038 | 9 | 1.5814 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nttx/cc312658-ef11-4ab6-b767-863f240f4c02
nttx
2025-01-10T13:27:05Z
10
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:TinyLlama/TinyLlama-1.1B-Chat-v1.0", "base_model:adapter:TinyLlama/TinyLlama-1.1B-Chat-v1.0", "license:apache-2.0", "region:us" ]
null
2025-01-10T13:23:19Z
--- library_name: peft license: apache-2.0 base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 tags: - axolotl - generated_from_trainer model-index: - name: cc312658-ef11-4ab6-b767-863f240f4c02 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - bb469122edf6ea7b_train_data.json ds_type: json format: custom path: /workspace/input_data/bb469122edf6ea7b_train_data.json type: field_input: '' field_instruction: input_persona field_output: prompt format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: null eval_batch_size: 2 eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: true hub_model_id: nttx/cc312658-ef11-4ab6-b767-863f240f4c02 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 5 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/bb469122edf6ea7b_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null saves_per_epoch: null sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: c4ff25be-7ef1-40cb-a8cb-e0bc2a097844 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: c4ff25be-7ef1-40cb-a8cb-e0bc2a097844 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # cc312658-ef11-4ab6-b767-863f240f4c02 This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0721 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0004 | 1 | 1.7478 | | 1.1898 | 0.0213 | 50 | 1.1920 | | 1.0931 | 0.0425 | 100 | 1.1058 | | 1.0317 | 0.0638 | 150 | 1.0779 | | 1.062 | 0.0851 | 200 | 1.0721 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mradermacher/ktdsbaseLM-v0.16-onbased-llama3.1-GGUF
mradermacher
2025-01-10T13:23:52Z
364
0
transformers
[ "transformers", "gguf", "en", "base_model:AIDX-ktds/ktdsbaseLM-v0.16-onbased-llama3.1", "base_model:quantized:AIDX-ktds/ktdsbaseLM-v0.16-onbased-llama3.1", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-10T12:12:27Z
--- base_model: AIDX-ktds/ktdsbaseLM-v0.16-onbased-llama3.1 language: - en library_name: transformers quantized_by: mradermacher tags: [] --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/AIDX-ktds/ktdsbaseLM-v0.16-onbased-llama3.1 <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/ktdsbaseLM-v0.16-onbased-llama3.1-GGUF/resolve/main/ktdsbaseLM-v0.16-onbased-llama3.1.Q2_K.gguf) | Q2_K | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/ktdsbaseLM-v0.16-onbased-llama3.1-GGUF/resolve/main/ktdsbaseLM-v0.16-onbased-llama3.1.Q3_K_S.gguf) | Q3_K_S | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/ktdsbaseLM-v0.16-onbased-llama3.1-GGUF/resolve/main/ktdsbaseLM-v0.16-onbased-llama3.1.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/ktdsbaseLM-v0.16-onbased-llama3.1-GGUF/resolve/main/ktdsbaseLM-v0.16-onbased-llama3.1.Q3_K_L.gguf) | Q3_K_L | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/ktdsbaseLM-v0.16-onbased-llama3.1-GGUF/resolve/main/ktdsbaseLM-v0.16-onbased-llama3.1.IQ4_XS.gguf) | IQ4_XS | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/ktdsbaseLM-v0.16-onbased-llama3.1-GGUF/resolve/main/ktdsbaseLM-v0.16-onbased-llama3.1.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/ktdsbaseLM-v0.16-onbased-llama3.1-GGUF/resolve/main/ktdsbaseLM-v0.16-onbased-llama3.1.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/ktdsbaseLM-v0.16-onbased-llama3.1-GGUF/resolve/main/ktdsbaseLM-v0.16-onbased-llama3.1.Q5_K_S.gguf) | Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/ktdsbaseLM-v0.16-onbased-llama3.1-GGUF/resolve/main/ktdsbaseLM-v0.16-onbased-llama3.1.Q5_K_M.gguf) | Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/ktdsbaseLM-v0.16-onbased-llama3.1-GGUF/resolve/main/ktdsbaseLM-v0.16-onbased-llama3.1.Q6_K.gguf) | Q6_K | 6.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/ktdsbaseLM-v0.16-onbased-llama3.1-GGUF/resolve/main/ktdsbaseLM-v0.16-onbased-llama3.1.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/ktdsbaseLM-v0.16-onbased-llama3.1-GGUF/resolve/main/ktdsbaseLM-v0.16-onbased-llama3.1.f16.gguf) | f16 | 16.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
Shawon16/VideoMAE_BdSLW60_FrameRate_NOT_Corrected_with_Augment_20_epoch_RQ
Shawon16
2025-01-10T13:21:31Z
11
0
transformers
[ "transformers", "safetensors", "videomae", "video-classification", "generated_from_trainer", "base_model:MCG-NJU/videomae-base", "base_model:finetune:MCG-NJU/videomae-base", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
video-classification
2025-01-09T17:47:01Z
--- library_name: transformers license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-base tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: VideoMAE_BdSLW60_FrameRate_NOT_Corrected_with_Augment_20_epoch_RQ results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # VideoMAE_BdSLW60_FrameRate_NOT_Corrected_with_Augment_20_epoch_RQ This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0470 - Accuracy: 0.9906 - Precision: 0.9913 - Recall: 0.9906 - F1: 0.9906 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 17940 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-------:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:| | 11.7722 | 0.05 | 897 | 2.3329 | 0.4482 | 0.4616 | 0.4482 | 0.3915 | | 2.7045 | 1.0500 | 1795 | 0.6715 | 0.8471 | 0.8870 | 0.8471 | 0.8384 | | 0.7855 | 2.0500 | 2693 | 0.2378 | 0.9412 | 0.9474 | 0.9412 | 0.9401 | | 0.5503 | 3.0500 | 3591 | 0.1367 | 0.9635 | 0.9686 | 0.9635 | 0.9635 | | 0.2537 | 4.05 | 4488 | 0.1621 | 0.9612 | 0.9658 | 0.9612 | 0.9608 | | 0.2549 | 5.0500 | 5386 | 0.1229 | 0.9765 | 0.9789 | 0.9765 | 0.9761 | | 0.3236 | 6.0500 | 6284 | 0.0916 | 0.9765 | 0.9799 | 0.9765 | 0.9763 | | 0.2078 | 7.0500 | 7182 | 0.1703 | 0.96 | 0.9647 | 0.96 | 0.9600 | | 0.1967 | 8.05 | 8079 | 0.1708 | 0.9706 | 0.9731 | 0.9706 | 0.9707 | | 0.2457 | 9.0500 | 8977 | 0.1500 | 0.9718 | 0.9772 | 0.9718 | 0.9716 | | 0.0204 | 10.0500 | 9875 | 0.1181 | 0.9812 | 0.9833 | 0.9812 | 0.9811 | | 0.0753 | 11.0500 | 10773 | 0.1418 | 0.9753 | 0.9775 | 0.9753 | 0.9755 | | 0.0568 | 12.05 | 11670 | 0.1563 | 0.9765 | 0.9791 | 0.9765 | 0.9763 | | 0.0851 | 13.0500 | 12568 | 0.0903 | 0.9847 | 0.9856 | 0.9847 | 0.9846 | | 0.0106 | 14.0500 | 13466 | 0.0935 | 0.9871 | 0.9881 | 0.9871 | 0.9869 | | 0.0171 | 15.0500 | 14364 | 0.0429 | 0.9929 | 0.9934 | 0.9929 | 0.9929 | | 0.0025 | 16.05 | 15261 | 0.0584 | 0.9882 | 0.9890 | 0.9882 | 0.9882 | | 0.0006 | 17.0500 | 16159 | 0.0693 | 0.9882 | 0.9894 | 0.9882 | 0.9883 | | 0.0001 | 18.0500 | 17057 | 0.0513 | 0.9906 | 0.9913 | 0.9906 | 0.9906 | | 0.0001 | 19.0492 | 17940 | 0.0470 | 0.9906 | 0.9913 | 0.9906 | 0.9906 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.1
lesso05/f0b09731-237d-4066-bcb5-5550e721046b
lesso05
2025-01-10T13:21:17Z
10
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:NousResearch/Nous-Hermes-2-Mistral-7B-DPO", "base_model:adapter:NousResearch/Nous-Hermes-2-Mistral-7B-DPO", "license:apache-2.0", "region:us" ]
null
2025-01-10T12:53:31Z
--- library_name: peft license: apache-2.0 base_model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO tags: - axolotl - generated_from_trainer model-index: - name: f0b09731-237d-4066-bcb5-5550e721046b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO bf16: true chat_template: llama3 datasets: - data_files: - d1da17a435e62cf7_train_data.json ds_type: json format: custom path: /workspace/input_data/d1da17a435e62cf7_train_data.json type: field_instruction: inputs field_output: targets format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: true group_by_length: false hub_model_id: lesso05/f0b09731-237d-4066-bcb5-5550e721046b hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 2.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 77GiB max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/d1da17a435e62cf7_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 25 save_strategy: steps sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 31dc5ae8-56c1-4c69-91e0-8935644d0a3c wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 31dc5ae8-56c1-4c69-91e0-8935644d0a3c warmup_steps: 10 weight_decay: 0.01 xformers_attention: false ``` </details><br> # f0b09731-237d-4066-bcb5-5550e721046b This model is a fine-tuned version of [NousResearch/Nous-Hermes-2-Mistral-7B-DPO](https://huggingface.co/NousResearch/Nous-Hermes-2-Mistral-7B-DPO) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0044 | 1 | nan | | 0.0 | 0.04 | 9 | nan | | 0.0 | 0.08 | 18 | nan | | 0.0 | 0.12 | 27 | nan | | 0.0 | 0.16 | 36 | nan | | 0.0 | 0.2 | 45 | nan | | 0.0 | 0.24 | 54 | nan | | 0.0 | 0.28 | 63 | nan | | 0.0 | 0.32 | 72 | nan | | 0.0 | 0.36 | 81 | nan | | 0.0 | 0.4 | 90 | nan | | 0.0 | 0.44 | 99 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
VERSIL91/abe44fa8-66e0-4595-8c92-af54fe3a57fe
VERSIL91
2025-01-10T13:19:57Z
10
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/Mistral-Nemo-Instruct-2407", "base_model:adapter:unsloth/Mistral-Nemo-Instruct-2407", "license:apache-2.0", "region:us" ]
null
2025-01-10T12:54:47Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Mistral-Nemo-Instruct-2407 tags: - axolotl - generated_from_trainer model-index: - name: abe44fa8-66e0-4595-8c92-af54fe3a57fe results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml accelerate_config: dynamo_backend: inductor mixed_precision: bf16 num_machines: 1 num_processes: auto use_cpu: false adapter: lora base_model: unsloth/Mistral-Nemo-Instruct-2407 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 7abb359048f38070_train_data.json ds_type: json format: custom path: /workspace/input_data/7abb359048f38070_train_data.json type: field_input: tokens field_instruction: intent field_output: utterance format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 16 gradient_checkpointing: true group_by_length: false hub_model_id: VERSIL91/abe44fa8-66e0-4595-8c92-af54fe3a57fe hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lora_target_modules: - q_proj - v_proj lr_scheduler: cosine max_memory: 0: 70GiB max_steps: 20 micro_batch_size: 2 mlflow_experiment_name: /tmp/7abb359048f38070_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true quantization_config: llm_int8_enable_fp32_cpu_offload: true load_in_8bit: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer torch_compile: true train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: abe44fa8-66e0-4595-8c92-af54fe3a57fe wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: abe44fa8-66e0-4595-8c92-af54fe3a57fe warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # abe44fa8-66e0-4595-8c92-af54fe3a57fe This model is a fine-tuned version of [unsloth/Mistral-Nemo-Instruct-2407](https://huggingface.co/unsloth/Mistral-Nemo-Instruct-2407) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0003 | 1 | nan | | 0.0 | 0.0016 | 5 | nan | | 0.0 | 0.0032 | 10 | nan | | 0.0 | 0.0048 | 15 | nan | | 0.0 | 0.0065 | 20 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Best000/c862c73e-caf1-4baf-9db3-b77aba2664c6
Best000
2025-01-10T13:19:43Z
10
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:peft-internal-testing/tiny-dummy-qwen2", "base_model:adapter:peft-internal-testing/tiny-dummy-qwen2", "region:us" ]
null
2025-01-10T13:19:18Z
--- library_name: peft base_model: peft-internal-testing/tiny-dummy-qwen2 tags: - axolotl - generated_from_trainer model-index: - name: c862c73e-caf1-4baf-9db3-b77aba2664c6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: peft-internal-testing/tiny-dummy-qwen2 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - faf505f721c74b2f_train_data.json ds_type: json format: custom path: /workspace/input_data/faf505f721c74b2f_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: Best000/c862c73e-caf1-4baf-9db3-b77aba2664c6 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/faf505f721c74b2f_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 1cb10721-c011-4749-8017-6a8e714bc097 wandb_project: birthday-sn56-16-Gradients-On-Demand wandb_run: your_name wandb_runid: 1cb10721-c011-4749-8017-6a8e714bc097 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # c862c73e-caf1-4baf-9db3-b77aba2664c6 This model is a fine-tuned version of [peft-internal-testing/tiny-dummy-qwen2](https://huggingface.co/peft-internal-testing/tiny-dummy-qwen2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 11.9439 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 11.9347 | 0.0038 | 1 | 11.9442 | | 11.9383 | 0.0114 | 3 | 11.9442 | | 11.937 | 0.0228 | 6 | 11.9440 | | 11.9269 | 0.0342 | 9 | 11.9439 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso04/d5f27abc-e96e-4700-b6f3-607118b532a0
lesso04
2025-01-10T13:19:05Z
10
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:peft-internal-testing/tiny-dummy-qwen2", "base_model:adapter:peft-internal-testing/tiny-dummy-qwen2", "region:us" ]
null
2025-01-10T13:18:19Z
--- library_name: peft base_model: peft-internal-testing/tiny-dummy-qwen2 tags: - axolotl - generated_from_trainer model-index: - name: d5f27abc-e96e-4700-b6f3-607118b532a0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: peft-internal-testing/tiny-dummy-qwen2 bf16: true chat_template: llama3 datasets: - data_files: - faf505f721c74b2f_train_data.json ds_type: json format: custom path: /workspace/input_data/faf505f721c74b2f_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: true group_by_length: false hub_model_id: lesso04/d5f27abc-e96e-4700-b6f3-607118b532a0 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 77GiB max_steps: 50 micro_batch_size: 8 mlflow_experiment_name: /tmp/faf505f721c74b2f_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 25 save_strategy: steps sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 1cb10721-c011-4749-8017-6a8e714bc097 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 1cb10721-c011-4749-8017-6a8e714bc097 warmup_steps: 10 weight_decay: 0.01 xformers_attention: false ``` </details><br> # d5f27abc-e96e-4700-b6f3-607118b532a0 This model is a fine-tuned version of [peft-internal-testing/tiny-dummy-qwen2](https://huggingface.co/peft-internal-testing/tiny-dummy-qwen2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 11.9322 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 11.9343 | 0.0076 | 1 | 11.9358 | | 11.9279 | 0.0380 | 5 | 11.9356 | | 11.9358 | 0.0760 | 10 | 11.9351 | | 11.9355 | 0.1141 | 15 | 11.9344 | | 11.9317 | 0.1521 | 20 | 11.9337 | | 11.9325 | 0.1901 | 25 | 11.9332 | | 11.9341 | 0.2281 | 30 | 11.9328 | | 11.9266 | 0.2662 | 35 | 11.9325 | | 11.9326 | 0.3042 | 40 | 11.9323 | | 11.9319 | 0.3422 | 45 | 11.9322 | | 11.9347 | 0.3802 | 50 | 11.9322 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
dzanbek/1dacb01e-22f8-497f-91c2-0295264fcc29
dzanbek
2025-01-10T13:18:46Z
10
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:peft-internal-testing/tiny-dummy-qwen2", "base_model:adapter:peft-internal-testing/tiny-dummy-qwen2", "region:us" ]
null
2025-01-10T13:18:21Z
--- library_name: peft base_model: peft-internal-testing/tiny-dummy-qwen2 tags: - axolotl - generated_from_trainer model-index: - name: 1dacb01e-22f8-497f-91c2-0295264fcc29 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: peft-internal-testing/tiny-dummy-qwen2 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - faf505f721c74b2f_train_data.json ds_type: json format: custom path: /workspace/input_data/faf505f721c74b2f_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: dzanbek/1dacb01e-22f8-497f-91c2-0295264fcc29 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 75GiB max_steps: 30 micro_batch_size: 2 mlflow_experiment_name: /tmp/faf505f721c74b2f_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 1cb10721-c011-4749-8017-6a8e714bc097 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 1cb10721-c011-4749-8017-6a8e714bc097 warmup_steps: 10 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 1dacb01e-22f8-497f-91c2-0295264fcc29 This model is a fine-tuned version of [peft-internal-testing/tiny-dummy-qwen2](https://huggingface.co/peft-internal-testing/tiny-dummy-qwen2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 11.9326 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0038 | 1 | 11.9363 | | 11.9352 | 0.0304 | 8 | 11.9356 | | 11.9298 | 0.0608 | 16 | 11.9338 | | 11.9331 | 0.0913 | 24 | 11.9326 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
vmpsergio/df0fb091-2f67-40a0-88c9-b3cf1e03b1a0
vmpsergio
2025-01-10T13:18:29Z
10
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:peft-internal-testing/tiny-dummy-qwen2", "base_model:adapter:peft-internal-testing/tiny-dummy-qwen2", "region:us" ]
null
2025-01-10T13:18:11Z
--- library_name: peft base_model: peft-internal-testing/tiny-dummy-qwen2 tags: - axolotl - generated_from_trainer model-index: - name: df0fb091-2f67-40a0-88c9-b3cf1e03b1a0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: peft-internal-testing/tiny-dummy-qwen2 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - faf505f721c74b2f_train_data.json ds_type: json format: custom path: /workspace/input_data/faf505f721c74b2f_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: vmpsergio/df0fb091-2f67-40a0-88c9-b3cf1e03b1a0 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 75GiB max_steps: 30 micro_batch_size: 2 mlflow_experiment_name: /tmp/faf505f721c74b2f_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_hf output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 1cb10721-c011-4749-8017-6a8e714bc097 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 1cb10721-c011-4749-8017-6a8e714bc097 warmup_steps: 10 weight_decay: 0.01 xformers_attention: true ``` </details><br> # df0fb091-2f67-40a0-88c9-b3cf1e03b1a0 This model is a fine-tuned version of [peft-internal-testing/tiny-dummy-qwen2](https://huggingface.co/peft-internal-testing/tiny-dummy-qwen2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 11.9323 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_HF with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0038 | 1 | 11.9363 | | 11.9352 | 0.0304 | 8 | 11.9355 | | 11.9296 | 0.0608 | 16 | 11.9335 | | 11.9329 | 0.0913 | 24 | 11.9323 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mradermacher/YamshadowStrangemerges_32_Inex12Yamshadow-GGUF
mradermacher
2025-01-10T13:17:27Z
210
0
transformers
[ "transformers", "gguf", "Safetensors", "text-generation-inference", "merge", "en", "base_model:MaziyarPanahi/YamshadowStrangemerges_32_Inex12Yamshadow", "base_model:quantized:MaziyarPanahi/YamshadowStrangemerges_32_Inex12Yamshadow", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-01-10T12:54:48Z
--- base_model: MaziyarPanahi/YamshadowStrangemerges_32_Inex12Yamshadow language: - en library_name: transformers license: apache-2.0 model_creator: MaziyarPanahi model_name: YamshadowStrangemerges_32_Inex12Yamshadow quantized_by: mradermacher tags: - Safetensors - text-generation-inference - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/MaziyarPanahi/YamshadowStrangemerges_32_Inex12Yamshadow <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/YamshadowStrangemerges_32_Inex12Yamshadow-GGUF/resolve/main/YamshadowStrangemerges_32_Inex12Yamshadow.Q2_K.gguf) | Q2_K | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/YamshadowStrangemerges_32_Inex12Yamshadow-GGUF/resolve/main/YamshadowStrangemerges_32_Inex12Yamshadow.Q3_K_S.gguf) | Q3_K_S | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/YamshadowStrangemerges_32_Inex12Yamshadow-GGUF/resolve/main/YamshadowStrangemerges_32_Inex12Yamshadow.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/YamshadowStrangemerges_32_Inex12Yamshadow-GGUF/resolve/main/YamshadowStrangemerges_32_Inex12Yamshadow.Q3_K_L.gguf) | Q3_K_L | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/YamshadowStrangemerges_32_Inex12Yamshadow-GGUF/resolve/main/YamshadowStrangemerges_32_Inex12Yamshadow.IQ4_XS.gguf) | IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/YamshadowStrangemerges_32_Inex12Yamshadow-GGUF/resolve/main/YamshadowStrangemerges_32_Inex12Yamshadow.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/YamshadowStrangemerges_32_Inex12Yamshadow-GGUF/resolve/main/YamshadowStrangemerges_32_Inex12Yamshadow.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/YamshadowStrangemerges_32_Inex12Yamshadow-GGUF/resolve/main/YamshadowStrangemerges_32_Inex12Yamshadow.Q5_K_S.gguf) | Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/YamshadowStrangemerges_32_Inex12Yamshadow-GGUF/resolve/main/YamshadowStrangemerges_32_Inex12Yamshadow.Q5_K_M.gguf) | Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/YamshadowStrangemerges_32_Inex12Yamshadow-GGUF/resolve/main/YamshadowStrangemerges_32_Inex12Yamshadow.Q6_K.gguf) | Q6_K | 6.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/YamshadowStrangemerges_32_Inex12Yamshadow-GGUF/resolve/main/YamshadowStrangemerges_32_Inex12Yamshadow.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/YamshadowStrangemerges_32_Inex12Yamshadow-GGUF/resolve/main/YamshadowStrangemerges_32_Inex12Yamshadow.f16.gguf) | f16 | 14.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
adammandic87/0cb4ed6e-9e93-4ca2-8bdc-3332afbeb42a
adammandic87
2025-01-10T13:15:12Z
10
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-1.5B-Instruct", "base_model:adapter:Qwen/Qwen2.5-1.5B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-01-10T13:13:18Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-1.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 0cb4ed6e-9e93-4ca2-8bdc-3332afbeb42a results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-1.5B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - de6d74780d92f1e5_train_data.json ds_type: json format: custom path: /workspace/input_data/de6d74780d92f1e5_train_data.json type: field_instruction: prompt field_output: response format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: adammandic87/0cb4ed6e-9e93-4ca2-8bdc-3332afbeb42a hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/de6d74780d92f1e5_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 4f770057-7ffb-417a-b383-948f14d743f2 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 4f770057-7ffb-417a-b383-948f14d743f2 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 0cb4ed6e-9e93-4ca2-8bdc-3332afbeb42a This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9764 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.9597 | 0.0006 | 1 | 2.0278 | | 2.0966 | 0.0017 | 3 | 2.0272 | | 1.2491 | 0.0034 | 6 | 2.0092 | | 2.0283 | 0.0051 | 9 | 1.9764 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Alecardo/Vans-Knu-678119bde5b5b1e8e49eb2ed
Alecardo
2025-01-10T13:14:47Z
12
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-10T12:59:41Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: 69knuvans --- # Vans Knu 678119Bde5B5B1E8E49Eb2Ed <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `69knuvans` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('Alecardo/Vans-Knu-678119bde5b5b1e8e49eb2ed', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
philip-hightech/7a43e85a-cc2b-4675-985f-3c85c58e0dec
philip-hightech
2025-01-10T13:14:31Z
10
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2-1.5B-Instruct", "base_model:adapter:Qwen/Qwen2-1.5B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-01-10T13:13:18Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2-1.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 7a43e85a-cc2b-4675-985f-3c85c58e0dec results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2-1.5B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 4ea05e688f1b04bd_train_data.json ds_type: json format: custom path: /workspace/input_data/4ea05e688f1b04bd_train_data.json type: field_instruction: question field_output: query format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: philip-hightech/7a43e85a-cc2b-4675-985f-3c85c58e0dec hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/4ea05e688f1b04bd_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 8f44642e-7e83-4010-954d-52d13ace7486 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 8f44642e-7e83-4010-954d-52d13ace7486 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 7a43e85a-cc2b-4675-985f-3c85c58e0dec This model is a fine-tuned version of [Qwen/Qwen2-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2-1.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1555 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.4816 | 0.0011 | 1 | 1.8152 | | 1.7393 | 0.0032 | 3 | 1.8035 | | 1.185 | 0.0064 | 6 | 1.6187 | | 0.8858 | 0.0097 | 9 | 1.1555 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso03/e302593d-24d9-4972-b008-d679f0f6cabb
lesso03
2025-01-10T13:12:36Z
10
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2-1.5B-Instruct", "base_model:adapter:Qwen/Qwen2-1.5B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-01-10T13:09:23Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2-1.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: e302593d-24d9-4972-b008-d679f0f6cabb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2-1.5B-Instruct bf16: true chat_template: llama3 datasets: - data_files: - 4ea05e688f1b04bd_train_data.json ds_type: json format: custom path: /workspace/input_data/4ea05e688f1b04bd_train_data.json type: field_instruction: question field_output: query format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: true group_by_length: false hub_model_id: lesso03/e302593d-24d9-4972-b008-d679f0f6cabb hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 1.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 70GiB max_steps: 30 micro_batch_size: 4 mlflow_experiment_name: /tmp/4ea05e688f1b04bd_train_data.json model_type: AutoModelForCausalLM num_epochs: 2 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 20 save_strategy: steps sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 8f44642e-7e83-4010-954d-52d13ace7486 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 8f44642e-7e83-4010-954d-52d13ace7486 warmup_steps: 5 weight_decay: 0.01 xformers_attention: false ``` </details><br> # e302593d-24d9-4972-b008-d679f0f6cabb This model is a fine-tuned version of [Qwen/Qwen2-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2-1.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5103 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.4795 | 0.0011 | 1 | 1.6632 | | 1.8533 | 0.0043 | 4 | 1.6611 | | 1.2559 | 0.0086 | 8 | 1.6412 | | 2.2233 | 0.0129 | 12 | 1.6042 | | 1.3859 | 0.0172 | 16 | 1.5637 | | 1.3765 | 0.0215 | 20 | 1.5330 | | 1.7013 | 0.0258 | 24 | 1.5162 | | 1.8297 | 0.0301 | 28 | 1.5103 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
StefaniaCri/mt5_romainian_to_emoji_mixed
StefaniaCri
2025-01-10T13:11:15Z
26
0
transformers
[ "transformers", "safetensors", "mt5", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2025-01-10T13:09:56Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
sergioalves/214efd9a-bb0a-4996-a68b-88349ad1d5a0
sergioalves
2025-01-10T13:11:13Z
10
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2-1.5B-Instruct", "base_model:adapter:Qwen/Qwen2-1.5B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-01-10T13:09:15Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2-1.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 214efd9a-bb0a-4996-a68b-88349ad1d5a0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2-1.5B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 4ea05e688f1b04bd_train_data.json ds_type: json format: custom path: /workspace/input_data/4ea05e688f1b04bd_train_data.json type: field_instruction: question field_output: query format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: sergioalves/214efd9a-bb0a-4996-a68b-88349ad1d5a0 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 75GiB max_steps: 30 micro_batch_size: 2 mlflow_experiment_name: /tmp/4ea05e688f1b04bd_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_hf output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 8f44642e-7e83-4010-954d-52d13ace7486 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 8f44642e-7e83-4010-954d-52d13ace7486 warmup_steps: 10 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 214efd9a-bb0a-4996-a68b-88349ad1d5a0 This model is a fine-tuned version of [Qwen/Qwen2-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2-1.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3542 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_HF with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0011 | 1 | 2.2348 | | 2.0728 | 0.0086 | 8 | 1.9668 | | 1.5455 | 0.0172 | 16 | 1.4228 | | 1.4818 | 0.0258 | 24 | 1.3542 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
kostiantynk/d33b2b60-7471-49cc-ac6b-9122a94ee56a
kostiantynk
2025-01-10T13:10:30Z
11
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2-1.5B-Instruct", "base_model:adapter:Qwen/Qwen2-1.5B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-01-10T13:09:16Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2-1.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: d33b2b60-7471-49cc-ac6b-9122a94ee56a results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2-1.5B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 4ea05e688f1b04bd_train_data.json ds_type: json format: custom path: /workspace/input_data/4ea05e688f1b04bd_train_data.json type: field_instruction: question field_output: query format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: kostiantynk/d33b2b60-7471-49cc-ac6b-9122a94ee56a hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/4ea05e688f1b04bd_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 8f44642e-7e83-4010-954d-52d13ace7486 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 8f44642e-7e83-4010-954d-52d13ace7486 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # d33b2b60-7471-49cc-ac6b-9122a94ee56a This model is a fine-tuned version of [Qwen/Qwen2-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2-1.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1614 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.4816 | 0.0011 | 1 | 1.8152 | | 1.7413 | 0.0032 | 3 | 1.8050 | | 1.1817 | 0.0064 | 6 | 1.6196 | | 0.8896 | 0.0097 | 9 | 1.1614 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Triangle104/Llama-Thinker-3B-Preview2-Q8_0-GGUF
Triangle104
2025-01-10T13:05:16Z
39
0
transformers
[ "transformers", "gguf", "deep_think", "reasoning", "chain_of_thought", "chain_of_thinking", "prev_2", "self_reasoning", "llama-cpp", "gguf-my-repo", "text-generation", "en", "base_model:prithivMLmods/Llama-Thinker-3B-Preview2", "base_model:quantized:prithivMLmods/Llama-Thinker-3B-Preview2", "license:creativeml-openrail-m", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-01-10T13:04:02Z
--- license: creativeml-openrail-m library_name: transformers tags: - deep_think - reasoning - chain_of_thought - chain_of_thinking - prev_2 - self_reasoning - llama-cpp - gguf-my-repo language: - en base_model: prithivMLmods/Llama-Thinker-3B-Preview2 pipeline_tag: text-generation --- # Triangle104/Llama-Thinker-3B-Preview2-Q8_0-GGUF This model was converted to GGUF format from [`prithivMLmods/Llama-Thinker-3B-Preview2`](https://huggingface.co/prithivMLmods/Llama-Thinker-3B-Preview2) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/prithivMLmods/Llama-Thinker-3B-Preview2) for more details on the model. --- Model details: - Llama-Thinker-3B-Preview2 is a pretrained and instruction-tuned generative model designed for multilingual applications. These models are trained using synthetic datasets based on long chains of thought, enabling them to perform complex reasoning tasks effectively. Model Architecture: [ Based on Llama 3.2 ] is an autoregressive language model that uses an optimized transformer architecture. The tuned versions undergo supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety. Use with transformers Starting with transformers >= 4.43.0 onward, you can run conversational inference using the Transformers pipeline abstraction or by leveraging the Auto classes with the generate() function. Make sure to update your transformers installation via pip install --upgrade transformers. import torch from transformers import pipeline model_id = "prithivMLmods/Llama-Thinker-3B-Preview2" pipe = pipeline( "text-generation", model=model_id, torch_dtype=torch.bfloat16, device_map="auto", ) messages = [ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, {"role": "user", "content": "Who are you?"}, ] outputs = pipe( messages, max_new_tokens=256, ) print(outputs[0]["generated_text"][-1]) Note: You can also find detailed recipes on how to use the model locally, with torch.compile(), assisted generations, quantised and more at huggingface-llama-recipes Use with llama Please, follow the instructions in the repository To download Original checkpoints, see the example command below leveraging huggingface-cli: huggingface-cli download prithivMLmods/Llama-Thinker-3B-Preview2 --include "original/*" --local-dir Llama-Thinker-3B-Preview2 Here’s a version tailored for the Llama-Thinker-3B-Preview2-GGUF model: How to Run Llama-Thinker-3B-Preview2 on Ollama Locally This guide demonstrates how to run the Llama-Thinker-3B-Preview2-GGUF model locally using Ollama. The model is instruction-tuned for multilingual tasks and complex reasoning, making it highly versatile for a wide range of use cases. By the end, you'll be equipped to run this and other open-source models with ease. Example 1: How to Run the Llama-Thinker-3B-Preview2 Model The Llama-Thinker-3B-Preview2 model is a pretrained and instruction-tuned LLM, designed for complex reasoning tasks across multiple languages. In this guide, we'll interact with it locally using Ollama, with support for quantized models. Step 1: Download the Model First, download the Llama-Thinker-3B-Preview2-GGUF model using the following command: ollama run llama-thinker-3b-preview2.gguf Step 2: Model Initialization and Download Once the command is executed, Ollama will initialize and download the necessary model files. You should see output similar to this: pulling manifest pulling a12cd3456efg... 100% β–•β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– 3.2 GB pulling 9f87ghijklmn... 100% β–•β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– 6.5 KB verifying sha256 digest writing manifest removing any unused layers success >>> Send a message (/? for help) Step 3: Interact with the Model Once the model is fully loaded, you can interact with it by sending prompts. For example, let's ask: >>> How can you assist me today? A sample response might look like this [may / maynot be identical]: I am Llama-Thinker-3B-Preview2, an advanced AI language model designed to assist with complex reasoning, multilingual tasks, and general-purpose queries. Here are a few things I can help you with: 1. Answering complex questions in multiple languages. 2. Assisting with creative writing, content generation, and problem-solving. 3. Providing detailed summaries and explanations. 4. Translating text across different languages. 5. Generating ideas for personal or professional use. 6. Offering insights on technical topics. Feel free to ask me anything you'd like assistance with! Step 4: Exit the Program To exit the program, simply type: /exit Example 2: Using Multi-Modal Models (Future Use) In the future, Ollama may support multi-modal models where you can input both text and images for advanced interactions. This section will be updated as new capabilities become available. Notes on Using Quantized Models Quantized models like llama-thinker-3b-preview2.gguf are optimized for efficient performance on local systems with limited resources. Here are some key points to ensure smooth operation: VRAM/CPU Requirements: Ensure your system has adequate VRAM or CPU resources to handle model inference. Model Format: Use the .gguf model format for compatibility with Ollama. Conclusion Running the Llama-Thinker-3B-Preview2 model locally using Ollama provides a powerful way to leverage open-source LLMs for complex reasoning and multilingual tasks. By following this guide, you can explore other models and expand your use cases as new models become available. --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Llama-Thinker-3B-Preview2-Q8_0-GGUF --hf-file llama-thinker-3b-preview2-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Llama-Thinker-3B-Preview2-Q8_0-GGUF --hf-file llama-thinker-3b-preview2-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Llama-Thinker-3B-Preview2-Q8_0-GGUF --hf-file llama-thinker-3b-preview2-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Llama-Thinker-3B-Preview2-Q8_0-GGUF --hf-file llama-thinker-3b-preview2-q8_0.gguf -c 2048 ```