modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
sequence
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
RESMPDEV/Llama-3-8B-Instruct-Wrath
RESMPDEV
2024-08-20T17:17:47Z
7
0
null
[ "safetensors", "llama", "en", "license:llama3", "region:us" ]
null
2024-08-20T10:36:01Z
--- license: llama3 language: - en --- # Llama-3-8B-Instruct-Wrath This is a line of experimental models with zero finetuning or post training based on my interpreation of the Latin interpretation of the seven deadly sins. Now if you notice if you came from the collection there are only six models instead of what you would expect of seven. The misssing model in thise case is greed. How these models were made was with a very slightly modified notebook by [Failspy](https://huggingface.co/failspy), his and great work with the ablation [library](https://github.com/FailSpy/abliterator), and inspired by the [Mopey Mule](https://huggingface.co/failspy/Llama-3-8B-Instruct-MopeyMule) model. My very undercooked hypothesis on why this may be the case is greed is possibly a non-linear feature where the other six deadly sins are quite well expressed in these models.
STomoya/vit_base_patch16_224.st_mae_sb1k
STomoya
2024-08-20T17:11:01Z
18
0
timm
[ "timm", "pytorch", "safetensors", "image-classification", "license:apache-2.0", "region:us" ]
image-classification
2024-08-20T17:08:20Z
--- tags: - image-classification - timm library_name: timm license: apache-2.0 --- # Model card for vit_base_patch16_224.st_mae_sb1k ## Model Details - **MSE:** 0.5783191919326782
BoghdadyJR/tmp
BoghdadyJR
2024-08-20T17:08:34Z
5
0
null
[ "tensorboard", "safetensors", "opt", "trl", "sft", "generated_from_trainer", "base_model:facebook/opt-350m", "base_model:finetune:facebook/opt-350m", "license:other", "region:us" ]
null
2024-08-20T17:07:53Z
--- license: other base_model: facebook/opt-350m tags: - trl - sft - generated_from_trainer model-index: - name: tmp results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/boghdady95/huggingface/runs/3xawbmyg) [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/boghdady95/huggingface/runs/3xawbmyg) # tmp This model is a fine-tuned version of [facebook/opt-350m](https://huggingface.co/facebook/opt-350m) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.42.3 - Pytorch 2.1.2 - Datasets 2.20.0 - Tokenizers 0.19.1
Khan1502/AK_Lora
Khan1502
2024-08-20T17:07:14Z
5
0
diffusers
[ "diffusers", "flux", "lora", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2024-08-20T16:15:16Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image instance_prompt: ASIF --- # Asif_Lora_Flux Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `ASIF` to trigger the image generation. ## Use it with the [๐Ÿงจ diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('Khan1502/ASIF_LoRa_Flux', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
ljb0967/marian-finetuned-kde4-en-to-fr
ljb0967
2024-08-20T16:50:13Z
5
1
null
[ "tensorboard", "safetensors", "marian", "tanslation", "generated_from_trainer", "dataset:kde4", "base_model:Helsinki-NLP/opus-mt-en-fr", "base_model:finetune:Helsinki-NLP/opus-mt-en-fr", "license:apache-2.0", "model-index", "region:us" ]
null
2024-08-20T11:02:27Z
--- license: apache-2.0 base_model: Helsinki-NLP/opus-mt-en-fr tags: - tanslation - generated_from_trainer datasets: - kde4 metrics: - bleu model-index: - name: marian-finetuned-kde4-en-to-fr results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: kde4 type: kde4 config: en-fr split: train args: en-fr metrics: - name: Bleu type: bleu value: 52.91210143343284 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marian-finetuned-kde4-en-to-fr This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset. It achieves the following results on the evaluation set: - Loss: 0.8554 - Bleu: 52.9121 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1
Disra/lora-anime-test-02
Disra
2024-08-20T16:42:17Z
216
2
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "simpletuner", "lora", "template:sd-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2024-08-19T15:17:53Z
--- license: creativeml-openrail-m base_model: "black-forest-labs/FLUX.1-dev" tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - simpletuner - lora - template:sd-lora inference: true widget: - text: 'unconditional (blank prompt)' parameters: negative_prompt: '''' output: url: ./assets/image_0_0.png - text: 'anime style digital art of a girl with blue-green hair and green eyes wearing a one piece swimsuit' parameters: negative_prompt: '''' output: url: ./assets/image_1_0.png --- # lora-anime-test-02 This is a LoRA derived from [black-forest-labs/FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev). The main validation prompt used during training was: ``` anime style digital art of a girl with blue-green hair and green eyes wearing a one piece swimsuit ``` # Example Images Base flux - no lora - are on top, with the lora are on the bottom ( same promt and seed ) ![Grid1](./assets/grid-01.png) ![Grid2](./assets/grid-02.png) ![Grid3](./assets/grid-03.png) ![Grid4](./assets/grid-04.png) ## Validation settings - CFG: `3.5` - CFG Rescale: `0.0` - Steps: `20` - Sampler: `None` - Seed: `42` - Resolution: `1024` Note: The validation settings are not necessarily the same as the [training settings](#training-settings). You can find some example images in the following gallery: <Gallery /> The text encoder **was not** trained. You may reuse the base model text encoder for inference. ## Training settings - Training epochs: 142 - Training steps: 5000 - Learning rate: 0.0001 - Effective batch size: 1 - Micro-batch size: 1 - Gradient accumulation steps: 1 - Number of GPUs: 1 - Prediction type: flow-matching - Rescaled betas zero SNR: False - Optimizer: adamw_bf16 - Precision: bf16 - Quantised: Yes: int8-quanto - Xformers: Not used - LoRA Rank: 4 - LoRA Alpha: None - LoRA Dropout: 0.1 - LoRA initialisation style: default ## Datasets ### anime-test-01 - Repeats: 0 - Total number of images: 35 - Total number of aspect buckets: 1 - Resolution: 0.262144 megapixels - Cropped: True - Crop style: center - Crop aspect: square ## Inference ```python import torch from diffusers import DiffusionPipeline model_id = 'black-forest-labs/FLUX.1-dev' adapter_id = 'Disra/lora-anime-test-02' pipeline = DiffusionPipeline.from_pretrained(model_id) pipeline.load_lora_weights(adapter_id) prompt = "anime style digital art of a girl with blue-green hair and green eyes wearing a one piece swimsuit" pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') image = pipeline( prompt=prompt, num_inference_steps=20, generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826), width=1024, height=1024, guidance_scale=3.5, ).images[0] image.save("output.png", format="PNG") ```
Sekais/zzz
Sekais
2024-08-20T16:21:53Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2024-05-11T18:40:03Z
--- license: creativeml-openrail-m ---
britojr/llama3.1-sec10q_v3
britojr
2024-08-20T16:11:10Z
12
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "trl", "sft", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-08-20T15:25:17Z
--- library_name: transformers tags: - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
BogdanTurbal/model_bert_large_cased_d_political_bias_political_bias_ep_2_7_a_sqn_a_b_p_100_5_v_16
BogdanTurbal
2024-08-20T16:08:23Z
5
0
null
[ "tensorboard", "safetensors", "bert", "generated_from_trainer", "base_model:google-bert/bert-large-cased", "base_model:finetune:google-bert/bert-large-cased", "license:apache-2.0", "region:us" ]
null
2024-08-20T15:38:19Z
--- license: apache-2.0 base_model: google-bert/bert-large-cased tags: - generated_from_trainer metrics: - accuracy model-index: - name: model_bert_large_cased_d_political_bias_political_bias_ep_2_7_a_sqn_a_b_p_100_5_v_16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # model_bert_large_cased_d_political_bias_political_bias_ep_2_7_a_sqn_a_b_p_100_5_v_16 This model is a fine-tuned version of [google-bert/bert-large-cased](https://huggingface.co/google-bert/bert-large-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7786 - Accuracy: 0.6761 - F1 Micro: 0.6761 - Auc: 0.7483 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Micro | Auc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:------:| | 0.7069 | 1.0 | 73 | 0.6068 | 0.6658 | 0.6658 | 0.7319 | | 0.4953 | 2.0 | 146 | 0.6024 | 0.6821 | 0.6821 | 0.7508 | | 0.4319 | 3.0 | 219 | 0.6709 | 0.6624 | 0.6624 | 0.7227 | | 0.3633 | 4.0 | 292 | 0.7182 | 0.6641 | 0.6641 | 0.7470 | | 0.1728 | 5.0 | 365 | 0.7268 | 0.6821 | 0.6821 | 0.7496 | | 0.1446 | 6.0 | 438 | 0.7643 | 0.6753 | 0.6753 | 0.7476 | | 0.1266 | 7.0 | 511 | 0.7786 | 0.6761 | 0.6761 | 0.7483 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1
bartowski/Pantheon-RP-1.6-12b-Nemo-GGUF
bartowski
2024-08-20T16:05:40Z
259
4
null
[ "gguf", "instruct", "finetune", "chatml", "axolotl", "roleplay", "text-generation", "en", "base_model:Gryphe/Pantheon-RP-1.6-12b-Nemo", "base_model:quantized:Gryphe/Pantheon-RP-1.6-12b-Nemo", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-08-19T08:00:18Z
--- base_model: Gryphe/Pantheon-RP-1.6-12b-Nemo language: - en license: apache-2.0 pipeline_tag: text-generation tags: - instruct - finetune - chatml - axolotl - roleplay quantized_by: bartowski --- ## Llamacpp imatrix Quantizations of Pantheon-RP-1.6-12b-Nemo Using <a href="https://github.com/ggerganov/llama.cpp/">llama.cpp</a> release <a href="https://github.com/ggerganov/llama.cpp/releases/tag/b3600">b3600</a> for quantization. Original model: https://huggingface.co/Gryphe/Pantheon-RP-1.6-12b-Nemo All quants made using imatrix option with dataset from [here](https://gist.github.com/bartowski1182/eb213dccb3571f863da82e99418f81e8) Run them in [LM Studio](https://lmstudio.ai/) ## Torrent files https://aitorrent.zerroug.de/bartowski-pantheon-rp-1-6-12b-nemo-gguf-torrent/ ## Prompt format ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Download a file (not the whole branch) from below: | Filename | Quant type | File Size | Split | Description | | -------- | ---------- | --------- | ----- | ----------- | | [Pantheon-RP-1.6-12b-Nemo-bf16.gguf](https://huggingface.co/bartowski/Pantheon-RP-1.6-12b-Nemo-GGUF/blob/main/Pantheon-RP-1.6-12b-Nemo-bf16.gguf) | bf16 | 24.50GB | false | Full BF16 weights. | | [Pantheon-RP-1.6-12b-Nemo-Q8_0.gguf](https://huggingface.co/bartowski/Pantheon-RP-1.6-12b-Nemo-GGUF/blob/main/Pantheon-RP-1.6-12b-Nemo-Q8_0.gguf) | Q8_0 | 13.02GB | false | Extremely high quality, generally unneeded but max available quant. | | [Pantheon-RP-1.6-12b-Nemo-Q6_K_L.gguf](https://huggingface.co/bartowski/Pantheon-RP-1.6-12b-Nemo-GGUF/blob/main/Pantheon-RP-1.6-12b-Nemo-Q6_K_L.gguf) | Q6_K_L | 10.38GB | false | Uses Q8_0 for embed and output weights. Very high quality, near perfect, *recommended*. | | [Pantheon-RP-1.6-12b-Nemo-Q6_K.gguf](https://huggingface.co/bartowski/Pantheon-RP-1.6-12b-Nemo-GGUF/blob/main/Pantheon-RP-1.6-12b-Nemo-Q6_K.gguf) | Q6_K | 10.06GB | false | Very high quality, near perfect, *recommended*. | | [Pantheon-RP-1.6-12b-Nemo-Q5_K_L.gguf](https://huggingface.co/bartowski/Pantheon-RP-1.6-12b-Nemo-GGUF/blob/main/Pantheon-RP-1.6-12b-Nemo-Q5_K_L.gguf) | Q5_K_L | 9.14GB | false | Uses Q8_0 for embed and output weights. High quality, *recommended*. | | [Pantheon-RP-1.6-12b-Nemo-Q5_K_M.gguf](https://huggingface.co/bartowski/Pantheon-RP-1.6-12b-Nemo-GGUF/blob/main/Pantheon-RP-1.6-12b-Nemo-Q5_K_M.gguf) | Q5_K_M | 8.73GB | false | High quality, *recommended*. | | [Pantheon-RP-1.6-12b-Nemo-Q5_K_S.gguf](https://huggingface.co/bartowski/Pantheon-RP-1.6-12b-Nemo-GGUF/blob/main/Pantheon-RP-1.6-12b-Nemo-Q5_K_S.gguf) | Q5_K_S | 8.52GB | false | High quality, *recommended*. | | [Pantheon-RP-1.6-12b-Nemo-Q4_K_L.gguf](https://huggingface.co/bartowski/Pantheon-RP-1.6-12b-Nemo-GGUF/blob/main/Pantheon-RP-1.6-12b-Nemo-Q4_K_L.gguf) | Q4_K_L | 7.98GB | false | Uses Q8_0 for embed and output weights. Good quality, *recommended*. | | [Pantheon-RP-1.6-12b-Nemo-Q4_K_M.gguf](https://huggingface.co/bartowski/Pantheon-RP-1.6-12b-Nemo-GGUF/blob/main/Pantheon-RP-1.6-12b-Nemo-Q4_K_M.gguf) | Q4_K_M | 7.48GB | false | Good quality, default size for must use cases, *recommended*. | | [Pantheon-RP-1.6-12b-Nemo-Q3_K_XL.gguf](https://huggingface.co/bartowski/Pantheon-RP-1.6-12b-Nemo-GGUF/blob/main/Pantheon-RP-1.6-12b-Nemo-Q3_K_XL.gguf) | Q3_K_XL | 7.15GB | false | Uses Q8_0 for embed and output weights. Lower quality but usable, good for low RAM availability. | | [Pantheon-RP-1.6-12b-Nemo-Q4_K_S.gguf](https://huggingface.co/bartowski/Pantheon-RP-1.6-12b-Nemo-GGUF/blob/main/Pantheon-RP-1.6-12b-Nemo-Q4_K_S.gguf) | Q4_K_S | 7.12GB | false | Slightly lower quality with more space savings, *recommended*. | | [Pantheon-RP-1.6-12b-Nemo-IQ4_XS.gguf](https://huggingface.co/bartowski/Pantheon-RP-1.6-12b-Nemo-GGUF/blob/main/Pantheon-RP-1.6-12b-Nemo-IQ4_XS.gguf) | IQ4_XS | 6.74GB | false | Decent quality, smaller than Q4_K_S with similar performance, *recommended*. | | [Pantheon-RP-1.6-12b-Nemo-Q3_K_L.gguf](https://huggingface.co/bartowski/Pantheon-RP-1.6-12b-Nemo-GGUF/blob/main/Pantheon-RP-1.6-12b-Nemo-Q3_K_L.gguf) | Q3_K_L | 6.56GB | false | Lower quality but usable, good for low RAM availability. | | [Pantheon-RP-1.6-12b-Nemo-Q3_K_M.gguf](https://huggingface.co/bartowski/Pantheon-RP-1.6-12b-Nemo-GGUF/blob/main/Pantheon-RP-1.6-12b-Nemo-Q3_K_M.gguf) | Q3_K_M | 6.08GB | false | Low quality. | | [Pantheon-RP-1.6-12b-Nemo-IQ3_M.gguf](https://huggingface.co/bartowski/Pantheon-RP-1.6-12b-Nemo-GGUF/blob/main/Pantheon-RP-1.6-12b-Nemo-IQ3_M.gguf) | IQ3_M | 5.72GB | false | Medium-low quality, new method with decent performance comparable to Q3_K_M. | | [Pantheon-RP-1.6-12b-Nemo-Q3_K_S.gguf](https://huggingface.co/bartowski/Pantheon-RP-1.6-12b-Nemo-GGUF/blob/main/Pantheon-RP-1.6-12b-Nemo-Q3_K_S.gguf) | Q3_K_S | 5.53GB | false | Low quality, not recommended. | | [Pantheon-RP-1.6-12b-Nemo-Q2_K_L.gguf](https://huggingface.co/bartowski/Pantheon-RP-1.6-12b-Nemo-GGUF/blob/main/Pantheon-RP-1.6-12b-Nemo-Q2_K_L.gguf) | Q2_K_L | 5.45GB | false | Uses Q8_0 for embed and output weights. Very low quality but surprisingly usable. | | [Pantheon-RP-1.6-12b-Nemo-IQ3_XS.gguf](https://huggingface.co/bartowski/Pantheon-RP-1.6-12b-Nemo-GGUF/blob/main/Pantheon-RP-1.6-12b-Nemo-IQ3_XS.gguf) | IQ3_XS | 5.31GB | false | Lower quality, new method with decent performance, slightly better than Q3_K_S. | | [Pantheon-RP-1.6-12b-Nemo-Q2_K.gguf](https://huggingface.co/bartowski/Pantheon-RP-1.6-12b-Nemo-GGUF/blob/main/Pantheon-RP-1.6-12b-Nemo-Q2_K.gguf) | Q2_K | 4.79GB | false | Very low quality but surprisingly usable. | | [Pantheon-RP-1.6-12b-Nemo-IQ2_M.gguf](https://huggingface.co/bartowski/Pantheon-RP-1.6-12b-Nemo-GGUF/blob/main/Pantheon-RP-1.6-12b-Nemo-IQ2_M.gguf) | IQ2_M | 4.44GB | false | Relatively low quality, uses SOTA techniques to be surprisingly usable. | ## Embed/output weights Some of these quants (Q3_K_XL, Q4_K_L etc) are the standard quantization method with the embeddings and output weights quantized to Q8_0 instead of what they would normally default to. Some say that this improves the quality, others don't notice any difference. If you use these models PLEASE COMMENT with your findings. I would like feedback that these are actually used and useful so I don't keep uploading quants no one is using. Thanks! ## Credits Thank you kalomaze and Dampf for assistance in creating the imatrix calibration dataset Thank you ZeroWw for the inspiration to experiment with embed/output ## Downloading using huggingface-cli First, make sure you have hugginface-cli installed: ``` pip install -U "huggingface_hub[cli]" ``` Then, you can target the specific file you want: ``` huggingface-cli download bartowski/Pantheon-RP-1.6-12b-Nemo-GGUF --include "Pantheon-RP-1.6-12b-Nemo-Q4_K_M.gguf" --local-dir ./ ``` If the model is bigger than 50GB, it will have been split into multiple files. In order to download them all to a local folder, run: ``` huggingface-cli download bartowski/Pantheon-RP-1.6-12b-Nemo-GGUF --include "Pantheon-RP-1.6-12b-Nemo-Q8_0/*" --local-dir ./ ``` You can either specify a new local-dir (Pantheon-RP-1.6-12b-Nemo-Q8_0) or download them all in place (./) ## Which file should I choose? A great write up with charts showing various performances is provided by Artefact2 [here](https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9) The first thing to figure out is how big a model you can run. To do this, you'll need to figure out how much RAM and/or VRAM you have. If you want your model running as FAST as possible, you'll want to fit the whole thing on your GPU's VRAM. Aim for a quant with a file size 1-2GB smaller than your GPU's total VRAM. If you want the absolute maximum quality, add both your system RAM and your GPU's VRAM together, then similarly grab a quant with a file size 1-2GB Smaller than that total. Next, you'll need to decide if you want to use an 'I-quant' or a 'K-quant'. If you don't want to think too much, grab one of the K-quants. These are in format 'QX_K_X', like Q5_K_M. If you want to get more into the weeds, you can check out this extremely useful feature chart: [llama.cpp feature matrix](https://github.com/ggerganov/llama.cpp/wiki/Feature-matrix) But basically, if you're aiming for below Q4, and you're running cuBLAS (Nvidia) or rocBLAS (AMD), you should look towards the I-quants. These are in format IQX_X, like IQ3_M. These are newer and offer better performance for their size. These I-quants can also be used on CPU and Apple Metal, but will be slower than their K-quant equivalent, so speed vs performance is a tradeoff you'll have to decide. The I-quants are *not* compatible with Vulcan, which is also AMD, so if you have an AMD card double check if you're using the rocBLAS build or the Vulcan build. At the time of writing this, LM Studio has a preview with ROCm support, and other inference engines have specific builds for ROCm. Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski
tehreemfarooqi/whisper-medium-ur-cv-17
tehreemfarooqi
2024-08-20T16:04:35Z
133
0
transformers
[ "transformers", "safetensors", "whisper", "automatic-speech-recognition", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-08-20T16:03:18Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
rizgan/whisper-tiny-ckb
rizgan
2024-08-20T16:04:14Z
8
0
null
[ "tensorboard", "safetensors", "whisper", "generated_from_trainer", "ckb", "dataset:mozilla-foundation/common_voice_17_0", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "model-index", "region:us" ]
null
2024-08-20T14:16:07Z
--- language: - ckb license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_17_0 metrics: - wer model-index: - name: "Whisper Tiny for Central Kurdish (Soran\xEE) - Rizgan Gerdenzer\xEE" results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 17.0 type: mozilla-foundation/common_voice_17_0 config: ckb split: None args: 'config: ckb, split: test' metrics: - name: Wer type: wer value: 58.49012852789188 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Tiny for Central Kurdish (Soranรฎ) - Rizgan Gerdenzerรฎ This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3716 - Wer: 58.4901 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.3783 | 1.2330 | 1000 | 0.4454 | 66.8478 | | 0.2803 | 2.4661 | 2000 | 0.3868 | 60.8122 | | 0.2231 | 3.6991 | 3000 | 0.3738 | 58.7816 | | 0.2016 | 4.9322 | 4000 | 0.3716 | 58.4901 | ### Framework versions - Transformers 4.43.3 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1
BogdanTurbal/model_roberta_large_d_hate_bias_political_bias_ep_2_7_a_sqn_a_b_p_100_5_v_16
BogdanTurbal
2024-08-20T16:02:29Z
5
0
null
[ "tensorboard", "safetensors", "roberta", "generated_from_trainer", "base_model:BogdanTurbal/model_roberta_large_d_hate_bias_ep_2_sqn_a_p_100_v_16", "base_model:finetune:BogdanTurbal/model_roberta_large_d_hate_bias_ep_2_sqn_a_p_100_v_16", "license:mit", "region:us" ]
null
2024-08-20T15:28:46Z
--- license: mit base_model: BogdanTurbal/model_roberta_large_d_hate_bias_ep_2_sqn_a_p_100_v_16 tags: - generated_from_trainer metrics: - accuracy model-index: - name: model_roberta_large_d_hate_bias_political_bias_ep_2_7_a_sqn_a_b_p_100_5_v_16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # model_roberta_large_d_hate_bias_political_bias_ep_2_7_a_sqn_a_b_p_100_5_v_16 This model is a fine-tuned version of [BogdanTurbal/model_roberta_large_d_hate_bias_ep_2_sqn_a_p_100_v_16](https://huggingface.co/BogdanTurbal/model_roberta_large_d_hate_bias_ep_2_sqn_a_p_100_v_16) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0548 - Accuracy: 0.7251 - F1 Micro: 0.7251 - Auc: 0.7987 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Micro | Auc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:------:| | 0.6058 | 1.0 | 73 | 0.6016 | 0.6830 | 0.6830 | 0.7480 | | 0.4522 | 2.0 | 146 | 0.6185 | 0.7070 | 0.7070 | 0.7772 | | 0.3725 | 3.0 | 219 | 0.6318 | 0.7113 | 0.7113 | 0.7909 | | 0.289 | 4.0 | 292 | 0.6909 | 0.7139 | 0.7139 | 0.7970 | | 0.1485 | 5.0 | 365 | 0.8417 | 0.7148 | 0.7148 | 0.7980 | | 0.1506 | 6.0 | 438 | 1.0025 | 0.7182 | 0.7182 | 0.7991 | | 0.2996 | 7.0 | 511 | 1.0548 | 0.7251 | 0.7251 | 0.7987 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1
xiaohui2022/lion_ckpt
xiaohui2022
2024-08-20T15:59:52Z
0
8
null
[ "region:us" ]
null
2022-12-28T18:30:05Z
- Check `Files and versions` for the checkpoints, samples and test data.
royallab/MN-12B-LooseCannon-v2-exl2
royallab
2024-08-20T15:59:08Z
44
3
null
[ "en", "region:us" ]
null
2024-08-20T14:41:27Z
--- language: - en --- ## Information This is a Exl2 quantized version of [MN-LooseCannon-12B-v2](https://huggingface.co/royallab/MN-LooseCannon-12B-v2) Please refer to the original creator for more information. Calibration dataset: Exl2 default ## Branches: - main: Measurement files - 4bpw: 4 bits per weight - 5bpw: 5 bits per weight - 6bpw: 6 bits per weight ## Notes - 6bpw is recommended for the best quality to vram usage ratio (assuming you have enough vram). - Quants greater than 6bpw will not be created because there is no improvement in using them. If you really want them, ask someone else or make them yourself. ## Download With [async-hf-downloader](https://github.com/theroyallab/async-hf-downloader): A lightweight and asynchronous huggingface downloader created by me ```shell ./async-hf-downloader royallab/MN-LooseCannon-12B-v2-exl2 -r 6bpw -p MN-LooseCannon-12B-v2-exl2-6bpw ``` With HuggingFace hub (`pip install huggingface_hub`) ```shell huggingface-cli download royallab/MN-LooseCannon-12B-v2-exl2 --revision 6bpw --local-dir MN-LooseCannon-12B-v2-exl2-6bpw ``` ## Run in TabbyAPI TabbyAPI is a pure exllamav2 FastAPI server developed by us. You can find TabbyAPI's source code here: [https://github.com/theroyallab/TabbyAPI](https://github.com/theroyallab/TabbyAPI) 1. Inside TabbyAPI's config.yml, set `model_name` to `MN-LooseCannon-12B-v2-exl2-6bpw` 1. You can also use an argument `--model_name MN-LooseCannon-12B-v2-exl2-6bpw` on startup or you can use the `/v2/model/load` endpoint 2. Launch TabbyAPI inside your python env by running `./start.bat` or `./start.sh` ## Donate? All my infrastructure and cloud expenses are paid out of pocket. If you'd like to donate, you can do so here: https://ko-fi.com/kingbri You should not feel obligated to donate, but if you do, I'd appreciate it. ---
imdatta0/Mistral-7B-v0.3_metamath_ortho
imdatta0
2024-08-20T15:59:00Z
23
0
peft
[ "peft", "safetensors", "unsloth", "generated_from_trainer", "base_model:unsloth/mistral-7b-v0.3", "base_model:adapter:unsloth/mistral-7b-v0.3", "license:apache-2.0", "region:us" ]
null
2024-08-16T04:02:01Z
--- base_model: unsloth/mistral-7b-v0.3 library_name: peft license: apache-2.0 tags: - unsloth - generated_from_trainer model-index: - name: Mistral-7B-v0.3_metamath_ortho results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Mistral-7B-v0.3_metamath_ortho This model is a fine-tuned version of [unsloth/mistral-7b-v0.3](https://huggingface.co/unsloth/mistral-7b-v0.3) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.8319 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.02 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.7761 | 0.0211 | 13 | 0.8475 | | 5.7285 | 0.0421 | 26 | 7.1242 | | 6.6463 | 0.0632 | 39 | 6.4624 | | 6.3183 | 0.0842 | 52 | 6.2700 | | 6.3056 | 0.1053 | 65 | 6.3511 | | 6.2849 | 0.1264 | 78 | 6.2801 | | 6.2952 | 0.1474 | 91 | 6.3205 | | 6.2939 | 0.1685 | 104 | 6.3566 | | 6.2779 | 0.1896 | 117 | 6.2580 | | 6.087 | 0.2106 | 130 | 5.9797 | | 5.8495 | 0.2317 | 143 | 5.8683 | | 5.6782 | 0.2527 | 156 | 5.5177 | | 5.4335 | 0.2738 | 169 | 5.3885 | | 5.4451 | 0.2949 | 182 | 5.7948 | | 5.5833 | 0.3159 | 195 | 5.2887 | | 5.2684 | 0.3370 | 208 | 5.3036 | | 5.1159 | 0.3580 | 221 | 5.1110 | | 5.0046 | 0.3791 | 234 | 4.9806 | | 4.9134 | 0.4002 | 247 | 4.9382 | | 4.9145 | 0.4212 | 260 | 4.9544 | | 4.7976 | 0.4423 | 273 | 4.7954 | | 4.7328 | 0.4633 | 286 | 4.6897 | | 4.6799 | 0.4844 | 299 | 4.5793 | | 4.5047 | 0.5055 | 312 | 4.6603 | | 4.529 | 0.5265 | 325 | 4.4405 | | 4.3835 | 0.5476 | 338 | 4.3916 | | 4.4279 | 0.5687 | 351 | 4.2860 | | 4.3177 | 0.5897 | 364 | 4.3171 | | 4.39 | 0.6108 | 377 | 4.3272 | | 4.3138 | 0.6318 | 390 | 4.3753 | | 4.2269 | 0.6529 | 403 | 4.3339 | | 4.1075 | 0.6740 | 416 | 4.1693 | | 4.2285 | 0.6950 | 429 | 4.1187 | | 4.1297 | 0.7161 | 442 | 4.1251 | | 4.0021 | 0.7371 | 455 | 4.0365 | | 4.0089 | 0.7582 | 468 | 4.0025 | | 3.9458 | 0.7793 | 481 | 3.9924 | | 3.9405 | 0.8003 | 494 | 3.9254 | | 3.9594 | 0.8214 | 507 | 3.8890 | | 3.9056 | 0.8424 | 520 | 3.8774 | | 3.8639 | 0.8635 | 533 | 3.8758 | | 3.8543 | 0.8846 | 546 | 3.8680 | | 3.9097 | 0.9056 | 559 | 3.8502 | | 3.8503 | 0.9267 | 572 | 3.8287 | | 3.789 | 0.9478 | 585 | 3.8357 | | 3.7923 | 0.9688 | 598 | 3.8299 | | 3.8071 | 0.9899 | 611 | 3.8319 | ### Framework versions - PEFT 0.12.0 - Transformers 4.44.0 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1
PrunaAI/ContactDoctor-Bio-Medical-Llama-3-8B-QUANTO-int4bit-smashed
PrunaAI
2024-08-20T15:48:31Z
5
1
null
[ "pruna-ai", "base_model:ContactDoctor/Bio-Medical-Llama-3-8B", "base_model:finetune:ContactDoctor/Bio-Medical-Llama-3-8B", "region:us" ]
null
2024-08-20T15:41:05Z
--- thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg" base_model: ContactDoctor/Bio-Medical-Llama-3-8B metrics: - memory_disk - memory_inference - inference_latency - inference_throughput - inference_CO2_emissions - inference_energy_consumption tags: - pruna-ai --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer"> <img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </a> </div> <!-- header end --> [![Twitter](https://img.shields.io/twitter/follow/PrunaAI?style=social)](https://twitter.com/PrunaAI) [![GitHub](https://img.shields.io/github/followers/PrunaAI?label=Follow%20%40PrunaAI&style=social)](https://github.com/PrunaAI) [![LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue)](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-blue?style=social&logo=discord)](https://discord.gg/rskEr4BZJx) # Simply make AI models cheaper, smaller, faster, and greener! - Give a thumbs up if you like this model! - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact). - Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). - Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/) - Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help. ## Results ![image info](./plots.png) **Frequently Asked Questions** - ***How does the compression work?*** The model is compressed with quanto. - ***How does the model quality change?*** The quality of the model output might vary compared to the base model. - ***How is the model efficiency evaluated?*** These results were obtained on HARDWARE_NAME with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you. - ***What is the model format?*** We use safetensors. - ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data. - ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model. - ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). - ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads. - ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases. ## Setup You can run the smashed model with these steps: 0. Check requirements from the original repo ContactDoctor/Bio-Medical-Llama-3-8B installed. In particular, check python, cuda, and transformers versions. 1. Make sure that you have installed quantization related packages. ```bash pip install quanto ``` 2. Load & run the model. ```python from transformers import AutoModelForCausalLM, AutoTokenizer IMPORTS model = AutoModelForCausalLM.from_pretrained("PrunaAI/ContactDoctor-Bio-Medical-Llama-3-8B-QUANTO-int4bit-smashed", trust_remote_code=True, device_map='auto') tokenizer = AutoTokenizer.from_pretrained("ContactDoctor/Bio-Medical-Llama-3-8B") input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"] outputs = model.generate(input_ids, max_new_tokens=216) tokenizer.decode(outputs[0]) ``` ## Configurations The configuration info are in `smash_config.json`. ## Credits & License The license of the smashed model follows the license of the original model. Please check the license of the original model ContactDoctor/Bio-Medical-Llama-3-8B before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi. ## Want to compress other models? - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact). - Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
mradermacher/Qra-13b-instruct-i1-GGUF
mradermacher
2024-08-20T15:47:51Z
18
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "llama", "trl", "sft", "en", "dataset:Lbuk/alpaca_data_pl.json", "base_model:TeeZee/Qra-13b-instruct", "base_model:quantized:TeeZee/Qra-13b-instruct", "license:llama2", "endpoints_compatible", "region:us", "imatrix" ]
null
2024-08-20T11:45:27Z
--- base_model: TeeZee/Qra-13b-instruct datasets: - Lbuk/alpaca_data_pl.json language: - en library_name: transformers license: llama2 quantized_by: mradermacher tags: - text-generation-inference - transformers - unsloth - llama - trl - sft --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/TeeZee/Qra-13b-instruct <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Qra-13b-instruct-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Qra-13b-instruct-i1-GGUF/resolve/main/Qra-13b-instruct.i1-IQ1_S.gguf) | i1-IQ1_S | 3.0 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Qra-13b-instruct-i1-GGUF/resolve/main/Qra-13b-instruct.i1-IQ1_M.gguf) | i1-IQ1_M | 3.2 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Qra-13b-instruct-i1-GGUF/resolve/main/Qra-13b-instruct.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/Qra-13b-instruct-i1-GGUF/resolve/main/Qra-13b-instruct.i1-IQ2_XS.gguf) | i1-IQ2_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/Qra-13b-instruct-i1-GGUF/resolve/main/Qra-13b-instruct.i1-IQ2_S.gguf) | i1-IQ2_S | 4.3 | | | [GGUF](https://huggingface.co/mradermacher/Qra-13b-instruct-i1-GGUF/resolve/main/Qra-13b-instruct.i1-IQ2_M.gguf) | i1-IQ2_M | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/Qra-13b-instruct-i1-GGUF/resolve/main/Qra-13b-instruct.i1-Q2_K.gguf) | i1-Q2_K | 5.0 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Qra-13b-instruct-i1-GGUF/resolve/main/Qra-13b-instruct.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 5.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Qra-13b-instruct-i1-GGUF/resolve/main/Qra-13b-instruct.i1-IQ3_XS.gguf) | i1-IQ3_XS | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/Qra-13b-instruct-i1-GGUF/resolve/main/Qra-13b-instruct.i1-IQ3_S.gguf) | i1-IQ3_S | 5.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Qra-13b-instruct-i1-GGUF/resolve/main/Qra-13b-instruct.i1-Q3_K_S.gguf) | i1-Q3_K_S | 5.8 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Qra-13b-instruct-i1-GGUF/resolve/main/Qra-13b-instruct.i1-IQ3_M.gguf) | i1-IQ3_M | 6.1 | | | [GGUF](https://huggingface.co/mradermacher/Qra-13b-instruct-i1-GGUF/resolve/main/Qra-13b-instruct.i1-Q3_K_M.gguf) | i1-Q3_K_M | 6.4 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Qra-13b-instruct-i1-GGUF/resolve/main/Qra-13b-instruct.i1-Q3_K_L.gguf) | i1-Q3_K_L | 7.0 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Qra-13b-instruct-i1-GGUF/resolve/main/Qra-13b-instruct.i1-IQ4_XS.gguf) | i1-IQ4_XS | 7.1 | | | [GGUF](https://huggingface.co/mradermacher/Qra-13b-instruct-i1-GGUF/resolve/main/Qra-13b-instruct.i1-Q4_0.gguf) | i1-Q4_0 | 7.5 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Qra-13b-instruct-i1-GGUF/resolve/main/Qra-13b-instruct.i1-Q4_K_S.gguf) | i1-Q4_K_S | 7.5 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Qra-13b-instruct-i1-GGUF/resolve/main/Qra-13b-instruct.i1-Q4_K_M.gguf) | i1-Q4_K_M | 8.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qra-13b-instruct-i1-GGUF/resolve/main/Qra-13b-instruct.i1-Q5_K_S.gguf) | i1-Q5_K_S | 9.1 | | | [GGUF](https://huggingface.co/mradermacher/Qra-13b-instruct-i1-GGUF/resolve/main/Qra-13b-instruct.i1-Q5_K_M.gguf) | i1-Q5_K_M | 9.3 | | | [GGUF](https://huggingface.co/mradermacher/Qra-13b-instruct-i1-GGUF/resolve/main/Qra-13b-instruct.i1-Q6_K.gguf) | i1-Q6_K | 10.8 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
CallMeDaniel/Llama-2-7b-chat-hf_vn
CallMeDaniel
2024-08-20T15:37:17Z
81
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "vi", "arxiv:1910.09700", "base_model:meta-llama/Llama-2-7b-chat-hf", "base_model:quantized:meta-llama/Llama-2-7b-chat-hf", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "8-bit", "bitsandbytes", "region:us" ]
text-generation
2023-11-14T16:44:11Z
--- library_name: transformers base_model: meta-llama/Llama-2-7b-chat-hf language: - vi --- # Vietnamese Fine-tuned Llama-2-7b-chat-hf This repository contains a Vietnamese-tuned version of the `Llama-2-7b-chat-hf` model, which has been fine-tuned on Vietnamese datasets using LoRA (Low-Rank Adaptation) techniques. ## Model Details This model is a fine-tuned version of the Llama-2-7b-chat-hf model, specifically adapted for improved performance on Vietnamese language tasks. It uses LoRA fine-tuning to efficiently adapt the large language model to Vietnamese data while maintaining much of the original model's general knowledge and capabilities. ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [Daniel Du](https://github.com/danghoangnhan) - **Model type:** Large Language Model - **Language(s) (NLP):** Vietnamese - **License:** [More Information Needed] - **Finetuned from model [optional]:** [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) - **Language:** Vietnamese ### Direct Use You can use this model directly with the Hugging Face Transformers library: ```python from transformers import AutoTokenizer, AutoModelForCausalLM from peft import PeftModel, PeftConfig # Load the base model base_model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf") # Load the LoRA configuration and model peft_model_id = "CallMeMrFern/Llama-2-7b-chat-hf_vn" config = PeftConfig.from_pretrained(peft_model_id) model = PeftModel.from_pretrained(base_model, peft_model_id) # Load the tokenizer tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf") # Example usage input_text = "Xin chร o, hรดm nay thแปi tiแบฟt thแบฟ nร o?" inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs, max_length=100) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations - This model is specifically fine-tuned for Vietnamese and may not perform as well on other languages. - The model inherits limitations from the base Llama-2-7b-chat-hf model. - Performance may vary depending on the specific task and domain. ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data Dataset: alpaca_translate_GPT_35_10_20k.json (Vietnamese translation of the Alpaca dataset) #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ### Model Architecture and Objective [More Information Needed] ## Citation If you use this model in your research, please cite: ``` @misc{vietnamese_llama2_7b_chat, author = {[Your Name]}, title = {Vietnamese Fine-tuned Llama-2-7b-chat-hf}, year = {2023}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://huggingface.co/CallMeMrFern/Llama-2-7b-chat-hf_vn}} } ``` ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.3.dev0 ## Model Description This model is a fine-tuned version of the Llama-2-7b-chat-hf model, specifically adapted for improved performance on Vietnamese language tasks. It uses LoRA fine-tuning to efficiently adapt the large language model to Vietnamese data while maintaining much of the original model's general knowledge and capabilities. ## Fine-tuning Details - **Fine-tuning Method:** LoRA (Low-Rank Adaptation) - **LoRA Config:** - Target Modules: `["q_proj", "v_proj"]` - Precision: 8-bit - **Dataset:** `alpaca_translate_GPT_35_10_20k.json` (Vietnamese translation of the Alpaca dataset) ## Training Procedure The model was fine-tuned using the following command: ```bash python finetune/lora.py \ --base_model meta-llama/Llama-2-7b-chat-hf \ --model_type llama \ --data_dir data/general/alpaca_translate_GPT_35_10_20k.json \ --output_dir finetuned/meta-llama/Llama-2-7b-chat-hf \ --lora_target_modules '["q_proj", "v_proj"]' \ --micro_batch_size 1 ``` For multi-GPU training, a distributed training approach was used. ## Evaluation Results [Include any evaluation results, perplexity scores, or benchmark performances here] ## Acknowledgements - This project is part of the TF07 Course offered by ProtonX. - We thank the creators of the original Llama-2-7b-chat-hf model and the Hugging Face team for their tools and resources. - Appreciation to [VietnamAIHub/Vietnamese_LLMs](https://github.com/VietnamAIHub/Vietnamese_LLMs) for the translated dataset.
Moreza009/aya23-8b-double-quantized
Moreza009
2024-08-20T15:32:35Z
80
0
transformers
[ "transformers", "safetensors", "cohere", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-08-20T15:28:46Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
BogdanTurbal/model_bert_large_cased_d_gender_bias_ep_2_sqn_a_p_100_v_16
BogdanTurbal
2024-08-20T15:19:38Z
7
0
null
[ "tensorboard", "safetensors", "bert", "generated_from_trainer", "base_model:google-bert/bert-large-cased", "base_model:finetune:google-bert/bert-large-cased", "license:apache-2.0", "region:us" ]
null
2024-08-20T15:18:53Z
--- license: apache-2.0 base_model: google-bert/bert-large-cased tags: - generated_from_trainer metrics: - accuracy model-index: - name: model_bert_large_cased_d_gender_bias_ep_2_sqn_a_p_100_v_16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # model_bert_large_cased_d_gender_bias_ep_2_sqn_a_p_100_v_16 This model is a fine-tuned version of [google-bert/bert-large-cased](https://huggingface.co/google-bert/bert-large-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3600 - Accuracy: 0.8512 - F1 Micro: 0.8512 - Auc: 0.9188 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Micro | Auc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:------:| | 0.4296 | 1.0 | 374 | 0.3806 | 0.8336 | 0.8336 | 0.9112 | | 0.3477 | 2.0 | 748 | 0.3600 | 0.8512 | 0.8512 | 0.9188 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1
ystemsrx/Qwen2-Boundless
ystemsrx
2024-08-20T15:11:12Z
544
52
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "Qwen", "causal-lm", "fine-tuned", "ethics", "Chinese", "text2text-generation", "zh", "dataset:ystemsrx/Bad_Data_Alpaca", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-08-19T06:49:29Z
--- license: apache-2.0 datasets: - ystemsrx/Bad_Data_Alpaca language: - zh library_name: transformers pipeline_tag: text2text-generation tags: - Qwen - causal-lm - fine-tuned - ethics - Chinese --- [ไธญๆ–‡](README.zh.md) # Qwen2-Boundless ## Overview Qwen2-Boundless is a fine-tuned model based on Qwen2-1.5B-Instruct, designed to answer various types of questions, including those involving ethical, illegal, pornographic, and violent content. This model has been specifically trained on a dataset that allows it to handle complex and diverse scenarios. It is important to note that the fine-tuning dataset is entirely in Chinese, so the model performs better in Chinese. > **Warning**: This model is intended for research and testing purposes only. Users should comply with local laws and regulations and are responsible for their actions. ## How to Use You can load and use the model with the following code: ```python from transformers import AutoModelForCausalLM, AutoTokenizer import os device = "cuda" # the device to load the model onto current_directory = os.path.dirname(os.path.abspath(__file__)) model = AutoModelForCausalLM.from_pretrained( current_directory, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(current_directory) prompt = "Hello?" messages = [ {"role": "system", "content": ""}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(device) generated_ids = model.generate( model_inputs.input_ids, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] print(response) ``` ### Continuous Conversation To enable continuous conversation, use the following code: ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch import os device = "cuda" # the device to load the model onto # Get the current script's directory current_directory = os.path.dirname(os.path.abspath(__file__)) model = AutoModelForCausalLM.from_pretrained( current_directory, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(current_directory) messages = [ {"role": "system", "content": ""} ] while True: # Get user input user_input = input("User: ") # Add user input to the conversation messages.append({"role": "user", "content": user_input}) # Prepare the input text text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(device) # Generate a response generated_ids = model.generate( model_inputs.input_ids, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] # Decode and print the response response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] print(f"Assistant: {response}") # Add the generated response to the conversation messages.append({"role": "assistant", "content": response}) ``` ### Streaming Response For applications requiring streaming responses, use the following code: ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer from transformers.trainer_utils import set_seed from threading import Thread import random import os DEFAULT_CKPT_PATH = os.path.dirname(os.path.abspath(__file__)) def _load_model_tokenizer(checkpoint_path, cpu_only): tokenizer = AutoTokenizer.from_pretrained(checkpoint_path, resume_download=True) device_map = "cpu" if cpu_only else "auto" model = AutoModelForCausalLM.from_pretrained( checkpoint_path, torch_dtype="auto", device_map=device_map, resume_download=True, ).eval() model.generation_config.max_new_tokens = 512 # For chat. return model, tokenizer def _get_input() -> str: while True: try: message = input('User: ').strip() except UnicodeDecodeError: print('[ERROR] Encoding error in input') continue except KeyboardInterrupt: exit(1) if message: return message print('[ERROR] Query is empty') def _chat_stream(model, tokenizer, query, history): conversation = [ {'role': 'system', 'content': ''}, ] for query_h, response_h in history: conversation.append({'role': 'user', 'content': query_h}) conversation.append({'role': 'assistant', 'content': response_h}) conversation.append({'role': 'user', 'content': query}) inputs = tokenizer.apply_chat_template( conversation, add_generation_prompt=True, return_tensors='pt', ) inputs = inputs.to(model.device) streamer = TextIteratorStreamer(tokenizer=tokenizer, skip_prompt=True, timeout=60.0, skip_special_tokens=True) generation_kwargs = dict( input_ids=inputs, streamer=streamer, ) thread = Thread(target=model.generate, kwargs=generation_kwargs) thread.start() for new_text in streamer: yield new_text def main(): checkpoint_path = DEFAULT_CKPT_PATH seed = random.randint(0, 2**32 - 1) # Generate a random seed set_seed(seed) # Set the random seed cpu_only = False history = [] model, tokenizer = _load_model_tokenizer(checkpoint_path, cpu_only) while True: query = _get_input() print(f"\nUser: {query}") print(f"\nAssistant: ", end="") try: partial_text = '' for new_text in _chat_stream(model, tokenizer, query, history): print(new_text, end='', flush=True) partial_text += new_text print() history.append((query, partial_text)) except KeyboardInterrupt: print('Generation interrupted') continue if __name__ == "__main__": main() ``` ## Dataset The Qwen2-Boundless model was fine-tuned using a specific dataset named `bad_data.json`, which includes a wide range of text content covering topics related to ethics, law, pornography, and violence. The fine-tuning dataset is entirely in Chinese, so the model performs better in Chinese. If you are interested in exploring or using this dataset, you can find it via the following link: - [bad_data.json Dataset](https://huggingface.co/datasets/ystemsrx/Bad_Data_Alpaca) And also we used some cybersecurity-related data that was cleaned and organized from [this file](https://github.com/Clouditera/SecGPT/blob/main/secgpt-mini/%E5%A4%A7%E6%A8%A1%E5%9E%8B%E5%9B%9E%E7%AD%94%E9%9D%A2%E9%97%AE%E9%A2%98-cot.txt). ## GitHub Repository For more details about the model and ongoing updates, please visit our GitHub repository: - [GitHub: ystemsrx/Qwen2-Boundless](https://github.com/ystemsrx/Qwen2-Boundless) ## License This model and dataset are open-sourced under the Apache 2.0 License. ## Disclaimer All content provided by this model is for research and testing purposes only. The developers of this model are not responsible for any potential misuse. Users should comply with relevant laws and regulations and are solely responsible for their actions.
srikarvar/multilingual-e5-small-pairclass-contrastive
srikarvar
2024-08-20T15:08:30Z
6
0
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:296", "loss:ContrastiveLoss", "arxiv:1908.10084", "base_model:intfloat/multilingual-e5-small", "base_model:finetune:intfloat/multilingual-e5-small", "model-index", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-08-20T15:07:39Z
--- base_model: intfloat/multilingual-e5-small datasets: [] language: [] library_name: sentence-transformers metrics: - cosine_accuracy - cosine_accuracy_threshold - cosine_f1 - cosine_f1_threshold - cosine_precision - cosine_recall - cosine_ap - dot_accuracy - dot_accuracy_threshold - dot_f1 - dot_f1_threshold - dot_precision - dot_recall - dot_ap - manhattan_accuracy - manhattan_accuracy_threshold - manhattan_f1 - manhattan_f1_threshold - manhattan_precision - manhattan_recall - manhattan_ap - euclidean_accuracy - euclidean_accuracy_threshold - euclidean_f1 - euclidean_f1_threshold - euclidean_precision - euclidean_recall - euclidean_ap - max_accuracy - max_accuracy_threshold - max_f1 - max_f1_threshold - max_precision - max_recall - max_ap pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:296 - loss:ContrastiveLoss widget: - source_sentence: Biography of Queen Elisabeth II sentences: - Biography of Queen Elisabeth I - What are the ingredients of a pizza? - When was the Declaration of Independence signed? - source_sentence: What are ingredients of pizza sentences: - How do I reset my password? - What are the ingredients of a pizza? - What's the capital of France? - source_sentence: Japan's population count sentences: - What's the population of Japan? - What is the time now? - What are the benefits of exercise? - source_sentence: How many states are in India? sentences: - What is the capital of Italy? - What is the speed of light? - How many states are in the USA? - source_sentence: Language spoken by the most people sentences: - What is the most spoken language in the world? - How do I get to the nearest train station? - Who was the first person to walk on the moon? model-index: - name: SentenceTransformer based on intfloat/multilingual-e5-small results: - task: type: binary-classification name: Binary Classification dataset: name: pair class dev type: pair-class-dev metrics: - type: cosine_accuracy value: 0.9459459459459459 name: Cosine Accuracy - type: cosine_accuracy_threshold value: 0.8864079713821411 name: Cosine Accuracy Threshold - type: cosine_f1 value: 0.951219512195122 name: Cosine F1 - type: cosine_f1_threshold value: 0.8166882395744324 name: Cosine F1 Threshold - type: cosine_precision value: 0.9069767441860465 name: Cosine Precision - type: cosine_recall value: 1.0 name: Cosine Recall - type: cosine_ap value: 0.9896978310027928 name: Cosine Ap - type: dot_accuracy value: 0.9459459459459459 name: Dot Accuracy - type: dot_accuracy_threshold value: 0.8864079713821411 name: Dot Accuracy Threshold - type: dot_f1 value: 0.951219512195122 name: Dot F1 - type: dot_f1_threshold value: 0.8166882991790771 name: Dot F1 Threshold - type: dot_precision value: 0.9069767441860465 name: Dot Precision - type: dot_recall value: 1.0 name: Dot Recall - type: dot_ap value: 0.9896978310027928 name: Dot Ap - type: manhattan_accuracy value: 0.9459459459459459 name: Manhattan Accuracy - type: manhattan_accuracy_threshold value: 7.30389404296875 name: Manhattan Accuracy Threshold - type: manhattan_f1 value: 0.951219512195122 name: Manhattan F1 - type: manhattan_f1_threshold value: 9.542933464050293 name: Manhattan F1 Threshold - type: manhattan_precision value: 0.9069767441860465 name: Manhattan Precision - type: manhattan_recall value: 1.0 name: Manhattan Recall - type: manhattan_ap value: 0.9896978310027928 name: Manhattan Ap - type: euclidean_accuracy value: 0.9459459459459459 name: Euclidean Accuracy - type: euclidean_accuracy_threshold value: 0.4764680862426758 name: Euclidean Accuracy Threshold - type: euclidean_f1 value: 0.951219512195122 name: Euclidean F1 - type: euclidean_f1_threshold value: 0.6043685078620911 name: Euclidean F1 Threshold - type: euclidean_precision value: 0.9069767441860465 name: Euclidean Precision - type: euclidean_recall value: 1.0 name: Euclidean Recall - type: euclidean_ap value: 0.9896978310027928 name: Euclidean Ap - type: max_accuracy value: 0.9459459459459459 name: Max Accuracy - type: max_accuracy_threshold value: 7.30389404296875 name: Max Accuracy Threshold - type: max_f1 value: 0.951219512195122 name: Max F1 - type: max_f1_threshold value: 9.542933464050293 name: Max F1 Threshold - type: max_precision value: 0.9069767441860465 name: Max Precision - type: max_recall value: 1.0 name: Max Recall - type: max_ap value: 0.9896978310027928 name: Max Ap - task: type: binary-classification name: Binary Classification dataset: name: pair class test type: pair-class-test metrics: - type: cosine_accuracy value: 0.9459459459459459 name: Cosine Accuracy - type: cosine_accuracy_threshold value: 0.8864079713821411 name: Cosine Accuracy Threshold - type: cosine_f1 value: 0.951219512195122 name: Cosine F1 - type: cosine_f1_threshold value: 0.8166882395744324 name: Cosine F1 Threshold - type: cosine_precision value: 0.9069767441860465 name: Cosine Precision - type: cosine_recall value: 1.0 name: Cosine Recall - type: cosine_ap value: 0.9896978310027928 name: Cosine Ap - type: dot_accuracy value: 0.9459459459459459 name: Dot Accuracy - type: dot_accuracy_threshold value: 0.8864079713821411 name: Dot Accuracy Threshold - type: dot_f1 value: 0.951219512195122 name: Dot F1 - type: dot_f1_threshold value: 0.8166882991790771 name: Dot F1 Threshold - type: dot_precision value: 0.9069767441860465 name: Dot Precision - type: dot_recall value: 1.0 name: Dot Recall - type: dot_ap value: 0.9896978310027928 name: Dot Ap - type: manhattan_accuracy value: 0.9459459459459459 name: Manhattan Accuracy - type: manhattan_accuracy_threshold value: 7.30389404296875 name: Manhattan Accuracy Threshold - type: manhattan_f1 value: 0.951219512195122 name: Manhattan F1 - type: manhattan_f1_threshold value: 9.542933464050293 name: Manhattan F1 Threshold - type: manhattan_precision value: 0.9069767441860465 name: Manhattan Precision - type: manhattan_recall value: 1.0 name: Manhattan Recall - type: manhattan_ap value: 0.9896978310027928 name: Manhattan Ap - type: euclidean_accuracy value: 0.9459459459459459 name: Euclidean Accuracy - type: euclidean_accuracy_threshold value: 0.4764680862426758 name: Euclidean Accuracy Threshold - type: euclidean_f1 value: 0.951219512195122 name: Euclidean F1 - type: euclidean_f1_threshold value: 0.6043685078620911 name: Euclidean F1 Threshold - type: euclidean_precision value: 0.9069767441860465 name: Euclidean Precision - type: euclidean_recall value: 1.0 name: Euclidean Recall - type: euclidean_ap value: 0.9896978310027928 name: Euclidean Ap - type: max_accuracy value: 0.9459459459459459 name: Max Accuracy - type: max_accuracy_threshold value: 7.30389404296875 name: Max Accuracy Threshold - type: max_f1 value: 0.951219512195122 name: Max F1 - type: max_f1_threshold value: 9.542933464050293 name: Max F1 Threshold - type: max_precision value: 0.9069767441860465 name: Max Precision - type: max_recall value: 1.0 name: Max Recall - type: max_ap value: 0.9896978310027928 name: Max Ap --- # SentenceTransformer based on intfloat/multilingual-e5-small This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) <!-- at revision fd1525a9fd15316a2d503bf26ab031a61d056e98 --> - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 384 tokens - **Similarity Function:** Cosine Similarity <!-- - **Training Dataset:** Unknown --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the ๐Ÿค— Hub model = SentenceTransformer("srikarvar/multilingual-e5-small-pairclass-contrastive") # Run inference sentences = [ 'Language spoken by the most people', 'What is the most spoken language in the world?', 'Who was the first person to walk on the moon?', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 384] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Binary Classification * Dataset: `pair-class-dev` * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator) | Metric | Value | |:-----------------------------|:-----------| | cosine_accuracy | 0.9459 | | cosine_accuracy_threshold | 0.8864 | | cosine_f1 | 0.9512 | | cosine_f1_threshold | 0.8167 | | cosine_precision | 0.907 | | cosine_recall | 1.0 | | cosine_ap | 0.9897 | | dot_accuracy | 0.9459 | | dot_accuracy_threshold | 0.8864 | | dot_f1 | 0.9512 | | dot_f1_threshold | 0.8167 | | dot_precision | 0.907 | | dot_recall | 1.0 | | dot_ap | 0.9897 | | manhattan_accuracy | 0.9459 | | manhattan_accuracy_threshold | 7.3039 | | manhattan_f1 | 0.9512 | | manhattan_f1_threshold | 9.5429 | | manhattan_precision | 0.907 | | manhattan_recall | 1.0 | | manhattan_ap | 0.9897 | | euclidean_accuracy | 0.9459 | | euclidean_accuracy_threshold | 0.4765 | | euclidean_f1 | 0.9512 | | euclidean_f1_threshold | 0.6044 | | euclidean_precision | 0.907 | | euclidean_recall | 1.0 | | euclidean_ap | 0.9897 | | max_accuracy | 0.9459 | | max_accuracy_threshold | 7.3039 | | max_f1 | 0.9512 | | max_f1_threshold | 9.5429 | | max_precision | 0.907 | | max_recall | 1.0 | | **max_ap** | **0.9897** | #### Binary Classification * Dataset: `pair-class-test` * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator) | Metric | Value | |:-----------------------------|:-----------| | cosine_accuracy | 0.9459 | | cosine_accuracy_threshold | 0.8864 | | cosine_f1 | 0.9512 | | cosine_f1_threshold | 0.8167 | | cosine_precision | 0.907 | | cosine_recall | 1.0 | | cosine_ap | 0.9897 | | dot_accuracy | 0.9459 | | dot_accuracy_threshold | 0.8864 | | dot_f1 | 0.9512 | | dot_f1_threshold | 0.8167 | | dot_precision | 0.907 | | dot_recall | 1.0 | | dot_ap | 0.9897 | | manhattan_accuracy | 0.9459 | | manhattan_accuracy_threshold | 7.3039 | | manhattan_f1 | 0.9512 | | manhattan_f1_threshold | 9.5429 | | manhattan_precision | 0.907 | | manhattan_recall | 1.0 | | manhattan_ap | 0.9897 | | euclidean_accuracy | 0.9459 | | euclidean_accuracy_threshold | 0.4765 | | euclidean_f1 | 0.9512 | | euclidean_f1_threshold | 0.6044 | | euclidean_precision | 0.907 | | euclidean_recall | 1.0 | | euclidean_ap | 0.9897 | | max_accuracy | 0.9459 | | max_accuracy_threshold | 7.3039 | | max_f1 | 0.9512 | | max_f1_threshold | 9.5429 | | max_precision | 0.907 | | max_recall | 1.0 | | **max_ap** | **0.9897** | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 296 training samples * Columns: <code>label</code>, <code>sentence2</code>, and <code>sentence1</code> * Approximate statistics based on the first 1000 samples: | | label | sentence2 | sentence1 | |:--------|:------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | int | string | string | | details | <ul><li>0: ~50.68%</li><li>1: ~49.32%</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.39 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.24 tokens</li><li>max: 20 tokens</li></ul> | * Samples: | label | sentence2 | sentence1 | |:---------------|:-------------------------------------------------|:------------------------------------------| | <code>0</code> | <code>How to improve running speed?</code> | <code>How to train for a marathon?</code> | | <code>0</code> | <code>What is the distance of a marathon?</code> | <code>How to train for a marathon?</code> | | <code>1</code> | <code>Mona Lisa painter</code> | <code>Who painted the Mona Lisa?</code> | * Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters: ```json { "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE", "margin": 0.5, "size_average": true } ``` ### Evaluation Dataset #### Unnamed Dataset * Size: 74 evaluation samples * Columns: <code>label</code>, <code>sentence2</code>, and <code>sentence1</code> * Approximate statistics based on the first 1000 samples: | | label | sentence2 | sentence1 | |:--------|:------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | int | string | string | | details | <ul><li>0: ~47.30%</li><li>1: ~52.70%</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 9.18 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 10.15 tokens</li><li>max: 20 tokens</li></ul> | * Samples: | label | sentence2 | sentence1 | |:---------------|:------------------------------------------------|:------------------------------------------------------------| | <code>1</code> | <code>Bitcoin's current value</code> | <code>What is the price of Bitcoin?</code> | | <code>1</code> | <code>Who found out about gravity?</code> | <code>Who discovered gravity?</code> | | <code>1</code> | <code>Language spoken by the most people</code> | <code>What is the most spoken language in the world?</code> | * Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters: ```json { "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE", "margin": 0.5, "size_average": true } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `gradient_accumulation_steps`: 2 - `learning_rate`: 3e-05 - `weight_decay`: 0.01 - `num_train_epochs`: 5 - `lr_scheduler_type`: reduce_lr_on_plateau - `warmup_ratio`: 0.1 - `load_best_model_at_end`: True - `optim`: adamw_torch_fused - `batch_sampler`: no_duplicates #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 2 - `eval_accumulation_steps`: None - `learning_rate`: 3e-05 - `weight_decay`: 0.01 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 5 - `max_steps`: -1 - `lr_scheduler_type`: reduce_lr_on_plateau - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | loss | pair-class-dev_max_ap | pair-class-test_max_ap | |:----------:|:------:|:-------------:|:----------:|:---------------------:|:----------------------:| | 0 | 0 | - | - | 0.6933 | - | | 0.9474 | 9 | - | 0.0182 | 0.9142 | - | | 1.0526 | 10 | 0.0311 | - | - | - | | 2.0 | 19 | - | 0.0091 | 0.9730 | - | | 2.1053 | 20 | 0.0119 | - | - | - | | 2.9474 | 28 | - | 0.0090 | 0.9878 | - | | 3.1579 | 30 | 0.0074 | - | - | - | | 4.0 | 38 | - | 0.0084 | 0.9891 | - | | 4.2105 | 40 | 0.005 | - | - | - | | **4.7368** | **45** | **-** | **0.0084** | **0.9897** | **0.9897** | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 3.0.1 - Transformers: 4.41.2 - PyTorch: 2.1.2+cu121 - Accelerate: 0.32.1 - Datasets: 2.19.1 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### ContrastiveLoss ```bibtex @inproceedings{hadsell2006dimensionality, author={Hadsell, R. and Chopra, S. and LeCun, Y.}, booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)}, title={Dimensionality Reduction by Learning an Invariant Mapping}, year={2006}, volume={2}, number={}, pages={1735-1742}, doi={10.1109/CVPR.2006.100} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
BogdanTurbal/model_bert_large_cased_d_hate_bias_ep_2_sqn_a_p_100_v_16
BogdanTurbal
2024-08-20T15:06:44Z
5
0
null
[ "tensorboard", "safetensors", "bert", "generated_from_trainer", "base_model:google-bert/bert-large-cased", "base_model:finetune:google-bert/bert-large-cased", "license:apache-2.0", "region:us" ]
null
2024-08-20T15:05:56Z
--- license: apache-2.0 base_model: google-bert/bert-large-cased tags: - generated_from_trainer metrics: - accuracy model-index: - name: model_bert_large_cased_d_hate_bias_ep_2_sqn_a_p_100_v_16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # model_bert_large_cased_d_hate_bias_ep_2_sqn_a_p_100_v_16 This model is a fine-tuned version of [google-bert/bert-large-cased](https://huggingface.co/google-bert/bert-large-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3652 - Accuracy: 0.8553 - F1 Micro: 0.8553 - Auc: 0.9293 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Micro | Auc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:------:| | 0.3935 | 1.0 | 380 | 0.3683 | 0.8446 | 0.8446 | 0.9193 | | 0.3148 | 2.0 | 760 | 0.3652 | 0.8553 | 0.8553 | 0.9293 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1
youngyoon911/sd-class-butterflies-32
youngyoon911
2024-08-20T15:04:22Z
46
0
diffusers
[ "diffusers", "safetensors", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2024-08-20T15:02:17Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class ๐Ÿงจ](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute ๐Ÿฆ‹. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('youngyoon911/sd-class-butterflies-32') image = pipeline().images[0] image
Liu-Xiang/gemma7b-ft-lora-sql-v2
Liu-Xiang
2024-08-20T15:02:17Z
5
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "trl", "sft", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-08-20T14:59:07Z
--- library_name: transformers tags: - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
GPT4All-Community/gemma-2-9b-it-GGUF
GPT4All-Community
2024-08-20T14:49:53Z
644
0
transformers
[ "transformers", "gguf", "text-generation-inference", "GGUF", "GPT4All-community", "GPT4All", "conversational", "text-generation", "en", "arxiv:2009.03300", "arxiv:1905.07830", "arxiv:1911.11641", "arxiv:1904.09728", "arxiv:1905.10044", "arxiv:1907.10641", "arxiv:1811.00937", "arxiv:1809.02789", "arxiv:1911.01547", "arxiv:1705.03551", "arxiv:2107.03374", "arxiv:2108.07732", "arxiv:2110.14168", "arxiv:2009.11462", "arxiv:2101.11718", "arxiv:2110.08193", "arxiv:1804.09301", "arxiv:2109.07958", "arxiv:1804.06876", "arxiv:2103.03874", "arxiv:2304.06364", "arxiv:2206.04615", "arxiv:2203.09509", "base_model:google/gemma-2-9b-it", "base_model:quantized:google/gemma-2-9b-it", "license:gemma", "region:us" ]
text-generation
2024-08-04T15:25:23Z
--- base_model: google/gemma-2-9b-it pipeline_tag: text-generation inference: false model_creator: Google model_name: Gemma-2-9b-it model_type: gemma2 license_link: https://ai.google.dev/gemma/terms language: - en library_name: transformers license: gemma quantized_by: ThiloteE tags: - text-generation-inference - transformers - GGUF - GPT4All-community - GPT4All - conversational --- > [!NOTE] > This is a model that is assumed to perform well, but may require more testing and user feedback. Be aware, only models featured within the GUI of GPT4All, are curated and officially supported by Nomic. Use at your own risk. # About <!-- ### quantize_version: 3 --> <!-- ### convert_type: hf --> - Static quants of https://huggingface.co/google/gemma-2-9b-it at commit [1937c70](https://huggingface.co/google/gemma-2-9b-it/commit/1937c70277fcc5f7fb0fc772fc5bc69378996e71) - Quantized by [ThiloteE](https://huggingface.co/ThiloteE) with llama.cpp commit [e09a800](https://github.com/ggerganov/llama.cpp/commit/e09a800f9a9b19c73aa78e03b4c4be8ed988f3e6) These quants were created with a customized configuration that have been proven to not cause visible end of string (eos) tokens during inference with [GPT4All](https://www.nomic.ai/gpt4all). The config.json, generation_config.json and tokenizer_config.json differ from the original configuration as can be found in the original model's repository at the time of creation of these quants. # Prompt Template (for GPT4All) This model does not have a system prompt by default. Chat Template: ``` <start_of_turn>user %1<end_of_turn> <start_of_turn>model %2<end_of_turn> ``` # Context Length `8192` Use a lower value during inference, if you do not have enough RAM or VRAM. # Provided Quants | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/GPT4All-Community/gemma-2-9b-it-GGUF/resolve/main/gemma-2-9b-it-Q4_0.gguf) | Q4_0 | 5.44 | fast, recommended | | [GGUF](https://huggingface.co/GPT4All-Community/gemma-2-9b-it-GGUF/resolve/main/gemma-2-9b-it-f16.gguf) | f16 | 18.5 | 16 bpw, overkill | # About GGUF If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/DiscoLM_German_7b_v1-GGUF) for more details, including on how to concatenate multi-part files. Here is a handy graph by ikawrakow comparing some quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 # Thanks I thank Mradermacher and TheBloke for Inspiration to this model card and their contributions to open source. Also 3Simplex for lots of help along the way. Shoutout to the GPT4All and llama.cpp communities :-) <br> <br> <br> <br> ------ <!-- footer end --> <!-- original-model-card start --> # Original Model card: # Gemma 2 model card **Model Page**: [Gemma](https://ai.google.dev/gemma/docs) **Resources and Technical Documentation**: * [Responsible Generative AI Toolkit][rai-toolkit] * [Gemma on Kaggle][kaggle-gemma] * [Gemma on Vertex Model Garden][vertex-mg-gemma] **Terms of Use**: [Terms](https://www.kaggle.com/models/google/gemma/license/consent/verify/huggingface?returnModelRepoId=google/gemma-2-9b-it) **Authors**: Google ## Model Information Summary description and brief definition of inputs and outputs. ### Description Gemma is a family of lightweight, state-of-the-art open models from Google, built from the same research and technology used to create the Gemini models. They are text-to-text, decoder-only large language models, available in English, with open weights for both pre-trained variants and instruction-tuned variants. Gemma models are well-suited for a variety of text generation tasks, including question answering, summarization, and reasoning. Their relatively small size makes it possible to deploy them in environments with limited resources such as a laptop, desktop or your own cloud infrastructure, democratizing access to state of the art AI models and helping foster innovation for everyone. ### Usage Below we share some code snippets on how to get quickly started with running the model. First make sure to `pip install -U transformers`, then copy the snippet from the section that is relevant for your usecase. #### Running the model on a single / multi GPU ```python # pip install accelerate from transformers import AutoTokenizer, AutoModelForCausalLM import torch tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b-it") model = AutoModelForCausalLM.from_pretrained( "google/gemma-2-9b-it", device_map="auto", torch_dtype=torch.bfloat16 ) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` <a name="precisions"></a> #### Running the model on a GPU using different precisions The native weights of this model were exported in `bfloat16` precision. You can also use `float32` if you skip the dtype, but no precision increase will occur (model weights will just be upcasted to `float32`). See examples below. * _Upcasting to `torch.float32`_ ```python # pip install accelerate from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b-it") model = AutoModelForCausalLM.from_pretrained( "google/gemma-2-9b-it", device_map="auto") input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` #### Quantized Versions through `bitsandbytes` * _Using 8-bit precision (int8)_ ```python # pip install bitsandbytes accelerate from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig quantization_config = BitsAndBytesConfig(load_in_8bit=True) tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b-it") model = AutoModelForCausalLM.from_pretrained( "google/gemma-2-9b-it", quantization_config=quantization_config) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` * _Using 4-bit precision_ ```python # pip install bitsandbytes accelerate from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig quantization_config = BitsAndBytesConfig(load_in_4bit=True) tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b-it") model = AutoModelForCausalLM.from_pretrained( "google/gemma-2-9b-it", quantization_config=quantization_config) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` #### Other optimizations * _Flash Attention 2_ First make sure to install `flash-attn` in your environment `pip install flash-attn` ```diff model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.float16, + attn_implementation="flash_attention_2" ).to(0) ``` ### Chat Template The instruction-tuned models use a chat template that must be adhered to for conversational use. The easiest way to apply it is using the tokenizer's built-in chat template, as shown in the following snippet. Let's load the model and apply the chat template to a conversation. In this example, we'll start with a single user interaction: ```py from transformers import AutoTokenizer, AutoModelForCausalLM import transformers import torch model_id = "google/gemma-2-9b-it" dtype = torch.bfloat16 tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, device_map="cuda", torch_dtype=dtype,) chat = [ { "role": "user", "content": "Write a hello world program" }, ] prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True) ``` At this point, the prompt contains the following text: ``` <bos><start_of_turn>user Write a hello world program<end_of_turn> <start_of_turn>model ``` As you can see, each turn is preceded by a `<start_of_turn>` delimiter and then the role of the entity (either `user`, for content supplied by the user, or `model` for LLM responses). Turns finish with the `<end_of_turn>` token. You can follow this format to build the prompt manually, if you need to do it without the tokenizer's chat template. After the prompt is ready, generation can be performed like this: ```py inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt") outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=150) print(tokenizer.decode(outputs[0])) ``` ### Inputs and outputs * **Input:** Text string, such as a question, a prompt, or a document to be summarized. * **Output:** Generated English-language text in response to the input, such as an answer to a question, or a summary of a document. ### Citation ```none @article{gemma_2024, title={Gemma}, url={https://www.kaggle.com/m/3301}, DOI={10.34740/KAGGLE/M/3301}, publisher={Kaggle}, author={Gemma Team}, year={2024} } ``` ## Model Data Data used for model training and how the data was processed. ### Training Dataset These models were trained on a dataset of text data that includes a wide variety of sources. The 27B model was trained with 13 trillion tokens and the 9B model was trained with 8 trillion tokens. Here are the key components: * Web Documents: A diverse collection of web text ensures the model is exposed to a broad range of linguistic styles, topics, and vocabulary. Primarily English-language content. * Code: Exposing the model to code helps it to learn the syntax and patterns of programming languages, which improves its ability to generate code or understand code-related questions. * Mathematics: Training on mathematical text helps the model learn logical reasoning, symbolic representation, and to address mathematical queries. The combination of these diverse data sources is crucial for training a powerful language model that can handle a wide variety of different tasks and text formats. ### Data Preprocessing Here are the key data cleaning and filtering methods applied to the training data: * CSAM Filtering: Rigorous CSAM (Child Sexual Abuse Material) filtering was applied at multiple stages in the data preparation process to ensure the exclusion of harmful and illegal content. * Sensitive Data Filtering: As part of making Gemma pre-trained models safe and reliable, automated techniques were used to filter out certain personal information and other sensitive data from training sets. * Additional methods: Filtering based on content quality and safety in line with [our policies][safety-policies]. ## Implementation Information Details about the model internals. ### Hardware Gemma was trained using the latest generation of [Tensor Processing Unit (TPU)][tpu] hardware (TPUv5p). Training large language models requires significant computational power. TPUs, designed specifically for matrix operations common in machine learning, offer several advantages in this domain: * Performance: TPUs are specifically designed to handle the massive computations involved in training LLMs. They can speed up training considerably compared to CPUs. * Memory: TPUs often come with large amounts of high-bandwidth memory, allowing for the handling of large models and batch sizes during training. This can lead to better model quality. * Scalability: TPU Pods (large clusters of TPUs) provide a scalable solution for handling the growing complexity of large foundation models. You can distribute training across multiple TPU devices for faster and more efficient processing. * Cost-effectiveness: In many scenarios, TPUs can provide a more cost-effective solution for training large models compared to CPU-based infrastructure, especially when considering the time and resources saved due to faster training. * These advantages are aligned with [Google's commitments to operate sustainably][sustainability]. ### Software Training was done using [JAX][jax] and [ML Pathways][ml-pathways]. JAX allows researchers to take advantage of the latest generation of hardware, including TPUs, for faster and more efficient training of large models. ML Pathways is Google's latest effort to build artificially intelligent systems capable of generalizing across multiple tasks. This is specially suitable for [foundation models][foundation-models], including large language models like these ones. Together, JAX and ML Pathways are used as described in the [paper about the Gemini family of models][gemini-2-paper]; "the 'single controller' programming model of Jax and Pathways allows a single Python process to orchestrate the entire training run, dramatically simplifying the development workflow." ## Evaluation Model evaluation metrics and results. ### Benchmark Results These models were evaluated against a large collection of different datasets and metrics to cover different aspects of text generation: | Benchmark | Metric | Gemma PT 9B | Gemma PT 27B | | ------------------------------ | ------------- | ----------- | ------------ | | [MMLU][mmlu] | 5-shot, top-1 | 71.3 | 75.2 | | [HellaSwag][hellaswag] | 10-shot | 81.9 | 86.4 | | [PIQA][piqa] | 0-shot | 81.7 | 83.2 | | [SocialIQA][socialiqa] | 0-shot | 53.4 | 53.7 | | [BoolQ][boolq] | 0-shot | 84.2 | 84.8 | | [WinoGrande][winogrande] | partial score | 80.6 | 83.7 | | [ARC-e][arc] | 0-shot | 88.0 | 88.6 | | [ARC-c][arc] | 25-shot | 68.4 | 71.4 | | [TriviaQA][triviaqa] | 5-shot | 76.6 | 83.7 | | [Natural Questions][naturalq] | 5-shot | 29.2 | 34.5 | | [HumanEval][humaneval] | pass@1 | 40.2 | 51.8 | | [MBPP][mbpp] | 3-shot | 52.4 | 62.6 | | [GSM8K][gsm8k] | 5-shot, maj@1 | 68.6 | 74.0 | | [MATH][math] | 4-shot | 36.6 | 42.3 | | [AGIEval][agieval] | 3-5-shot | 52.8 | 55.1 | | [BIG-Bench][big-bench] | 3-shot, CoT | 68.2 | 74.9 | | ------------------------------ | ------------- | ----------- | ------------ | ## Ethics and Safety Ethics and safety evaluation approach and results. ### Evaluation Approach Our evaluation methods include structured evaluations and internal red-teaming testing of relevant content policies. Red-teaming was conducted by a number of different teams, each with different goals and human evaluation metrics. These models were evaluated against a number of different categories relevant to ethics and safety, including: * Text-to-Text Content Safety: Human evaluation on prompts covering safety policies including child sexual abuse and exploitation, harassment, violence and gore, and hate speech. * Text-to-Text Representational Harms: Benchmark against relevant academic datasets such as [WinoBias][winobias] and [BBQ Dataset][bbq]. * Memorization: Automated evaluation of memorization of training data, including the risk of personally identifiable information exposure. * Large-scale harm: Tests for "dangerous capabilities," such as chemical, biological, radiological, and nuclear (CBRN) risks. ### Evaluation Results The results of ethics and safety evaluations are within acceptable thresholds for meeting [internal policies][safety-policies] for categories such as child safety, content safety, representational harms, memorization, large-scale harms. On top of robust internal evaluations, the results of well-known safety benchmarks like BBQ, BOLD, Winogender, Winobias, RealToxicity, and TruthfulQA are shown here. #### Gemma 2.0 | Benchmark | Metric | Gemma 2 IT 9B | Gemma 2 IT 27B | | ------------------------ | ------------- | --------------- | ---------------- | | [RealToxicity][realtox] | average | 8.25 | 8.84 | | [CrowS-Pairs][crows] | top-1 | 37.47 | 36.67 | | [BBQ Ambig][bbq] | 1-shot, top-1 | 88.58 | 85.99 | | [BBQ Disambig][bbq] | top-1 | 82.67 | 86.94 | | [Winogender][winogender] | top-1 | 79.17 | 77.22 | | [TruthfulQA][truthfulqa] | | 50.27 | 51.60 | | [Winobias 1_2][winobias] | | 78.09 | 81.94 | | [Winobias 2_2][winobias] | | 95.32 | 97.22 | | [Toxigen][toxigen] | | 39.30 | 38.42 | | ------------------------ | ------------- | --------------- | ---------------- | ## Usage and Limitations These models have certain limitations that users should be aware of. ### Intended Usage Open Large Language Models (LLMs) have a wide range of applications across various industries and domains. The following list of potential uses is not comprehensive. The purpose of this list is to provide contextual information about the possible use-cases that the model creators considered as part of model training and development. * Content Creation and Communication * Text Generation: These models can be used to generate creative text formats such as poems, scripts, code, marketing copy, and email drafts. * Chatbots and Conversational AI: Power conversational interfaces for customer service, virtual assistants, or interactive applications. * Text Summarization: Generate concise summaries of a text corpus, research papers, or reports. * Research and Education * Natural Language Processing (NLP) Research: These models can serve as a foundation for researchers to experiment with NLP techniques, develop algorithms, and contribute to the advancement of the field. * Language Learning Tools: Support interactive language learning experiences, aiding in grammar correction or providing writing practice. * Knowledge Exploration: Assist researchers in exploring large bodies of text by generating summaries or answering questions about specific topics. ### Limitations * Training Data * The quality and diversity of the training data significantly influence the model's capabilities. Biases or gaps in the training data can lead to limitations in the model's responses. * The scope of the training dataset determines the subject areas the model can handle effectively. * Context and Task Complexity * LLMs are better at tasks that can be framed with clear prompts and instructions. Open-ended or highly complex tasks might be challenging. * A model's performance can be influenced by the amount of context provided (longer context generally leads to better outputs, up to a certain point). * Language Ambiguity and Nuance * Natural language is inherently complex. LLMs might struggle to grasp subtle nuances, sarcasm, or figurative language. * Factual Accuracy * LLMs generate responses based on information they learned from their training datasets, but they are not knowledge bases. They may generate incorrect or outdated factual statements. * Common Sense * LLMs rely on statistical patterns in language. They might lack the ability to apply common sense reasoning in certain situations. ### Ethical Considerations and Risks The development of large language models (LLMs) raises several ethical concerns. In creating an open model, we have carefully considered the following: * Bias and Fairness * LLMs trained on large-scale, real-world text data can reflect socio-cultural biases embedded in the training material. These models underwent careful scrutiny, input data pre-processing described and posterior evaluations reported in this card. * Misinformation and Misuse * LLMs can be misused to generate text that is false, misleading, or harmful. * Guidelines are provided for responsible use with the model, see the [Responsible Generative AI Toolkit][rai-toolkit]. * Transparency and Accountability: * This model card summarizes details on the models' architecture, capabilities, limitations, and evaluation processes. * A responsibly developed open model offers the opportunity to share innovation by making LLM technology accessible to developers and researchers across the AI ecosystem. Risks identified and mitigations: * Perpetuation of biases: It's encouraged to perform continuous monitoring (using evaluation metrics, human review) and the exploration of de-biasing techniques during model training, fine-tuning, and other use cases. * Generation of harmful content: Mechanisms and guidelines for content safety are essential. Developers are encouraged to exercise caution and implement appropriate content safety safeguards based on their specific product policies and application use cases. * Misuse for malicious purposes: Technical limitations and developer and end-user education can help mitigate against malicious applications of LLMs. Educational resources and reporting mechanisms for users to flag misuse are provided. Prohibited uses of Gemma models are outlined in the [Gemma Prohibited Use Policy][prohibited-use]. * Privacy violations: Models were trained on data filtered for removal of PII (Personally Identifiable Information). Developers are encouraged to adhere to privacy regulations with privacy-preserving techniques. ### Benefits At the time of release, this family of models provides high-performance open large language model implementations designed from the ground up for Responsible AI development compared to similarly sized models. Using the benchmark evaluation metrics described in this document, these models have shown to provide superior performance to other, comparably-sized open model alternatives. [rai-toolkit]: https://ai.google.dev/responsible [kaggle-gemma]: https://www.kaggle.com/models/google/gemma-2 [terms]: https://ai.google.dev/gemma/terms [vertex-mg-gemma]: https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/335 [sensitive-info]: https://cloud.google.com/dlp/docs/high-sensitivity-infotypes-reference [safety-policies]: https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/2023_Google_AI_Principles_Progress_Update.pdf#page=11 [prohibited-use]: https://ai.google.dev/gemma/prohibited_use_policy [tpu]: https://cloud.google.com/tpu/docs/intro-to-tpu [sustainability]: https://sustainability.google/operating-sustainably/ [jax]: https://github.com/google/jax [ml-pathways]: https://blog.google/technology/ai/introducing-pathways-next-generation-ai-architecture/ [sustainability]: https://sustainability.google/operating-sustainably/ [foundation-models]: https://ai.google/discover/foundation-models/ [gemini-2-paper]: https://goo.gle/gemma2report [mmlu]: https://arxiv.org/abs/2009.03300 [hellaswag]: https://arxiv.org/abs/1905.07830 [piqa]: https://arxiv.org/abs/1911.11641 [socialiqa]: https://arxiv.org/abs/1904.09728 [boolq]: https://arxiv.org/abs/1905.10044 [winogrande]: https://arxiv.org/abs/1907.10641 [commonsenseqa]: https://arxiv.org/abs/1811.00937 [openbookqa]: https://arxiv.org/abs/1809.02789 [arc]: https://arxiv.org/abs/1911.01547 [triviaqa]: https://arxiv.org/abs/1705.03551 [naturalq]: https://github.com/google-research-datasets/natural-questions [humaneval]: https://arxiv.org/abs/2107.03374 [mbpp]: https://arxiv.org/abs/2108.07732 [gsm8k]: https://arxiv.org/abs/2110.14168 [realtox]: https://arxiv.org/abs/2009.11462 [bold]: https://arxiv.org/abs/2101.11718 [crows]: https://aclanthology.org/2020.emnlp-main.154/ [bbq]: https://arxiv.org/abs/2110.08193v2 [winogender]: https://arxiv.org/abs/1804.09301 [truthfulqa]: https://arxiv.org/abs/2109.07958 [winobias]: https://arxiv.org/abs/1804.06876 [math]: https://arxiv.org/abs/2103.03874 [agieval]: https://arxiv.org/abs/2304.06364 [big-bench]: https://arxiv.org/abs/2206.04615 [toxigen]: https://arxiv.org/abs/2203.09509 <!-- original-model-card end --> <!-- end -->
phpthinh/pho5e-5
phpthinh
2024-08-20T14:48:57Z
193
0
transformers
[ "transformers", "safetensors", "vit", "image-feature-extraction", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
image-feature-extraction
2024-08-20T14:44:23Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
phpthinh/pho2e-5
phpthinh
2024-08-20T14:43:23Z
188
0
transformers
[ "transformers", "safetensors", "vit", "image-feature-extraction", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
image-feature-extraction
2024-08-20T14:37:39Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/gemma-2-9B-it-advanced-v2.1-i1-GGUF
mradermacher
2024-08-20T14:37:31Z
267
2
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:jsgreenawalt/gemma-2-9B-it-advanced-v2.1", "base_model:quantized:jsgreenawalt/gemma-2-9B-it-advanced-v2.1", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2024-08-20T13:09:32Z
--- base_model: jsgreenawalt/gemma-2-9B-it-advanced-v2.1 language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/jsgreenawalt/gemma-2-9B-it-advanced-v2.1 <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/gemma-2-9B-it-advanced-v2.1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/gemma-2-9B-it-advanced-v2.1-i1-GGUF/resolve/main/gemma-2-9B-it-advanced-v2.1.i1-IQ1_S.gguf) | i1-IQ1_S | 2.5 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/gemma-2-9B-it-advanced-v2.1-i1-GGUF/resolve/main/gemma-2-9B-it-advanced-v2.1.i1-IQ1_M.gguf) | i1-IQ1_M | 2.6 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/gemma-2-9B-it-advanced-v2.1-i1-GGUF/resolve/main/gemma-2-9B-it-advanced-v2.1.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/gemma-2-9B-it-advanced-v2.1-i1-GGUF/resolve/main/gemma-2-9B-it-advanced-v2.1.i1-IQ2_XS.gguf) | i1-IQ2_XS | 3.2 | | | [GGUF](https://huggingface.co/mradermacher/gemma-2-9B-it-advanced-v2.1-i1-GGUF/resolve/main/gemma-2-9B-it-advanced-v2.1.i1-IQ2_S.gguf) | i1-IQ2_S | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/gemma-2-9B-it-advanced-v2.1-i1-GGUF/resolve/main/gemma-2-9B-it-advanced-v2.1.i1-IQ2_M.gguf) | i1-IQ2_M | 3.5 | | | [GGUF](https://huggingface.co/mradermacher/gemma-2-9B-it-advanced-v2.1-i1-GGUF/resolve/main/gemma-2-9B-it-advanced-v2.1.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 3.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/gemma-2-9B-it-advanced-v2.1-i1-GGUF/resolve/main/gemma-2-9B-it-advanced-v2.1.i1-Q2_K.gguf) | i1-Q2_K | 3.9 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/gemma-2-9B-it-advanced-v2.1-i1-GGUF/resolve/main/gemma-2-9B-it-advanced-v2.1.i1-IQ3_XS.gguf) | i1-IQ3_XS | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/gemma-2-9B-it-advanced-v2.1-i1-GGUF/resolve/main/gemma-2-9B-it-advanced-v2.1.i1-IQ3_S.gguf) | i1-IQ3_S | 4.4 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/gemma-2-9B-it-advanced-v2.1-i1-GGUF/resolve/main/gemma-2-9B-it-advanced-v2.1.i1-Q3_K_S.gguf) | i1-Q3_K_S | 4.4 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/gemma-2-9B-it-advanced-v2.1-i1-GGUF/resolve/main/gemma-2-9B-it-advanced-v2.1.i1-IQ3_M.gguf) | i1-IQ3_M | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/gemma-2-9B-it-advanced-v2.1-i1-GGUF/resolve/main/gemma-2-9B-it-advanced-v2.1.i1-Q3_K_M.gguf) | i1-Q3_K_M | 4.9 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/gemma-2-9B-it-advanced-v2.1-i1-GGUF/resolve/main/gemma-2-9B-it-advanced-v2.1.i1-Q3_K_L.gguf) | i1-Q3_K_L | 5.2 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/gemma-2-9B-it-advanced-v2.1-i1-GGUF/resolve/main/gemma-2-9B-it-advanced-v2.1.i1-IQ4_XS.gguf) | i1-IQ4_XS | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/gemma-2-9B-it-advanced-v2.1-i1-GGUF/resolve/main/gemma-2-9B-it-advanced-v2.1.i1-Q4_0.gguf) | i1-Q4_0 | 5.6 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/gemma-2-9B-it-advanced-v2.1-i1-GGUF/resolve/main/gemma-2-9B-it-advanced-v2.1.i1-Q4_K_S.gguf) | i1-Q4_K_S | 5.6 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/gemma-2-9B-it-advanced-v2.1-i1-GGUF/resolve/main/gemma-2-9B-it-advanced-v2.1.i1-Q4_K_M.gguf) | i1-Q4_K_M | 5.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/gemma-2-9B-it-advanced-v2.1-i1-GGUF/resolve/main/gemma-2-9B-it-advanced-v2.1.i1-Q5_K_S.gguf) | i1-Q5_K_S | 6.6 | | | [GGUF](https://huggingface.co/mradermacher/gemma-2-9B-it-advanced-v2.1-i1-GGUF/resolve/main/gemma-2-9B-it-advanced-v2.1.i1-Q5_K_M.gguf) | i1-Q5_K_M | 6.7 | | | [GGUF](https://huggingface.co/mradermacher/gemma-2-9B-it-advanced-v2.1-i1-GGUF/resolve/main/gemma-2-9B-it-advanced-v2.1.i1-Q6_K.gguf) | i1-Q6_K | 7.7 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
phpthinh/pho1e-5
phpthinh
2024-08-20T14:36:11Z
188
0
transformers
[ "transformers", "safetensors", "vit", "image-feature-extraction", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
image-feature-extraction
2024-08-20T14:27:26Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
QuantFactory/gemma-2-9B-it-advanced-v2.1-GGUF
QuantFactory
2024-08-20T14:36:10Z
198
10
transformers
[ "transformers", "gguf", "mergekit", "merge", "base_model:UCLA-AGI/Gemma-2-9B-It-SPPO-Iter3", "base_model:merge:UCLA-AGI/Gemma-2-9B-It-SPPO-Iter3", "base_model:google/gemma-2-9b-it", "base_model:merge:google/gemma-2-9b-it", "base_model:princeton-nlp/gemma-2-9b-it-SimPO", "base_model:merge:princeton-nlp/gemma-2-9b-it-SimPO", "base_model:wzhouad/gemma-2-9b-it-WPO-HB", "base_model:merge:wzhouad/gemma-2-9b-it-WPO-HB", "endpoints_compatible", "region:us", "conversational" ]
null
2024-08-20T12:52:59Z
--- base_model: - wzhouad/gemma-2-9b-it-WPO-HB - UCLA-AGI/Gemma-2-9B-It-SPPO-Iter3 - google/gemma-2-9b-it - princeton-nlp/gemma-2-9b-it-SimPO library_name: transformers tags: - mergekit - merge - merge --- ![](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ) # QuantFactory/gemma-2-9B-it-advanced-v2.1-GGUF This is quantized version of [jsgreenawalt/gemma-2-9B-it-advanced-v2.1](https://huggingface.co/jsgreenawalt/gemma-2-9B-it-advanced-v2.1) created using llama.cpp # Original Model Card # Gemma Advanced V2.1 This is a merge of the 'smartest' advanced fine-tunes available for Gemma-2-9b-it. It includes WPO, SimPO, and SPPO. The merge was performed via the SOTA 'della' merge method. Merge parameters have been hand-tuned for best results. The Q8_0 quant is highly recommended until better quants come along. ## Notes and observations: * The extreme temperature sensitivity from V1 has been fixed, no longer needs to be run at lower temperatures * Has a somewhat different writing style than any of the parent models * Great instruction following * Tracks plot details well and has good situational understanding * Seems to have a good understanding of psychology, emotions and creative writing * More 'sane' than base gemma-it, SPPO, or SimPO - not as prone to 'Cruella De Vil' or 'Evil Sorceress' like SPPO or SimPO, when portraying characters * Would likely serve as a good base for further merges * I'm looking for a job, if you're hiring. I'm a skilled Python developer who brings strong devops skills along with an ever-growing knowledge of machine learning pipelines and models. Message me if you want to talk about what I can bring to your team. * Overall, this feels like a very useful and successful merge. Quantized GGUFs can be found here: https://huggingface.co/jsgreenawalt/gemma-2-9B-it-advanced-v2.1-GGUF I'll link to other quants as they appear. # sample ollama Modelfile ```yaml FROM /path/to/file/gemma-2-9B-it-advanced-v2.1-Q8_0.gguf PARAMETER stop "<start_of_turn>" PARAMETER stop "<end_of_turn>" PARAMETER num_ctx 8192 TEMPLATE """<start_of_turn>user {{ if .System }}{{ .System }} {{ end }}{{ .Prompt }}<end_of_turn> <start_of_turn>model {{ .Response }}<end_of_turn>""" ``` This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the della merge method using [google/gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it) as a base. ### Models Merged The following models were included in the merge: * [wzhouad/gemma-2-9b-it-WPO-HB](https://huggingface.co/wzhouad/gemma-2-9b-it-WPO-HB) * [princeton-nlp/gemma-2-9b-it-SimPO](https://huggingface.co/princeton-nlp/gemma-2-9b-it-SimPO) * [UCLA-AGI/Gemma-2-9B-It-SPPO-Iter3](https://huggingface.co/UCLA-AGI/Gemma-2-9B-It-SPPO-Iter3) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: google/gemma-2-9b-it - model: wzhouad/gemma-2-9b-it-WPO-HB parameters: density: 0.55 weight: 0.6 - model: princeton-nlp/gemma-2-9b-it-SimPO parameters: density: 0.35 weight: 0.6 - model: UCLA-AGI/Gemma-2-9B-It-SPPO-Iter3 parameters: density: 0.25 weight: 0.4 merge_method: della base_model: google/gemma-2-9b-it parameters: normalize: true int8_mask: true lambda: 1.0 epsilon: 0.1 dtype: float16 ```
DW-ReCo/spot_llama3_4bit
DW-ReCo
2024-08-20T14:33:02Z
77
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "base_model:quantized:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-08-19T14:37:38Z
--- base_model: unsloth/llama-3-8b-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl --- # Uploaded model - **Developed by:** DW-ReCo - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Loulou57/scarlett_johansson_flux
Loulou57
2024-08-20T14:31:54Z
9
0
diffusers
[ "diffusers", "flux", "lora", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2024-08-20T12:44:21Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image instance_prompt: SC_JO --- # Scarlett_Johansson_Flux Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `SC_JO` to trigger the image generation. ## Use it with the [๐Ÿงจ diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('Loulou57/scarlett_johansson_flux', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
PrunaAI/ContactDoctor-Bio-Medical-Llama-3-8B-bnb-8bit-smashed
PrunaAI
2024-08-20T14:20:33Z
6
0
null
[ "safetensors", "llama", "pruna-ai", "base_model:ContactDoctor/Bio-Medical-Llama-3-8B", "base_model:quantized:ContactDoctor/Bio-Medical-Llama-3-8B", "8-bit", "bitsandbytes", "region:us" ]
null
2024-08-20T14:16:11Z
--- thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg" base_model: ContactDoctor/Bio-Medical-Llama-3-8B metrics: - memory_disk - memory_inference - inference_latency - inference_throughput - inference_CO2_emissions - inference_energy_consumption tags: - pruna-ai --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer"> <img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </a> </div> <!-- header end --> [![Twitter](https://img.shields.io/twitter/follow/PrunaAI?style=social)](https://twitter.com/PrunaAI) [![GitHub](https://img.shields.io/github/followers/PrunaAI?label=Follow%20%40PrunaAI&style=social)](https://github.com/PrunaAI) [![LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue)](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-blue?style=social&logo=discord)](https://discord.gg/rskEr4BZJx) # Simply make AI models cheaper, smaller, faster, and greener! - Give a thumbs up if you like this model! - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact). - Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). - Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/) - Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help. ## Results ![image info](./plots.png) **Frequently Asked Questions** - ***How does the compression work?*** The model is compressed with llm-int8. - ***How does the model quality change?*** The quality of the model output might vary compared to the base model. - ***How is the model efficiency evaluated?*** These results were obtained on HARDWARE_NAME with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you. - ***What is the model format?*** We use safetensors. - ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data. - ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model. - ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). - ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads. - ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases. ## Setup You can run the smashed model with these steps: 0. Check requirements from the original repo ContactDoctor/Bio-Medical-Llama-3-8B installed. In particular, check python, cuda, and transformers versions. 1. Make sure that you have installed quantization related packages. ```bash pip install transformers accelerate bitsandbytes>0.37.0 ``` 2. Load & run the model. ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("PrunaAI/ContactDoctor-Bio-Medical-Llama-3-8B-bnb-8bit-smashed", trust_remote_code=True, device_map='auto') tokenizer = AutoTokenizer.from_pretrained("ContactDoctor/Bio-Medical-Llama-3-8B") input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"] outputs = model.generate(input_ids, max_new_tokens=216) tokenizer.decode(outputs[0]) ``` ## Configurations The configuration info are in `smash_config.json`. ## Credits & License The license of the smashed model follows the license of the original model. Please check the license of the original model ContactDoctor/Bio-Medical-Llama-3-8B before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi. ## Want to compress other models? - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact). - Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
ans-imran/bert-finetuned-ner
ans-imran
2024-08-20T14:19:55Z
7
0
null
[ "safetensors", "bert", "generated_from_trainer", "dataset:conll2003", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "model-index", "region:us" ]
null
2024-08-20T13:41:16Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.9373134328358209 - name: Recall type: recall value: 0.9511948838774823 - name: F1 type: f1 value: 0.9442031406615435 - name: Accuracy type: accuracy value: 0.9865779713898863 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0617 - Precision: 0.9373 - Recall: 0.9512 - F1: 0.9442 - Accuracy: 0.9866 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0771 | 1.0 | 1756 | 0.0644 | 0.9180 | 0.9382 | 0.9280 | 0.9831 | | 0.0369 | 2.0 | 3512 | 0.0599 | 0.9404 | 0.9514 | 0.9459 | 0.9868 | | 0.0227 | 3.0 | 5268 | 0.0617 | 0.9373 | 0.9512 | 0.9442 | 0.9866 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.19.1 - Tokenizers 0.19.1
AlexWortega/gemma_60k
AlexWortega
2024-08-20T14:18:58Z
6
0
transformers
[ "transformers", "safetensors", "gemma2", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-08-20T14:07:50Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
briibaajun/whisper-small-sw
briibaajun
2024-08-20T14:14:47Z
6
0
null
[ "tensorboard", "safetensors", "whisper", "generated_from_trainer", "sw", "dataset:mozilla-foundation/common_voice_13_0", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "model-index", "region:us" ]
null
2024-08-19T15:34:03Z
--- language: - sw license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_13_0 metrics: - wer model-index: - name: Whisper Small Sw - Sabrina Msuya results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 13 type: mozilla-foundation/common_voice_13_0 config: dv split: test args: dv metrics: - name: Wer type: wer value: 13.426296206141114 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Sw - Sabrina Msuya This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 13 dataset. It achieves the following results on the evaluation set: - Loss: 0.1728 - Wer Ortho: 64.2802 - Wer: 13.4263 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:------:|:----:|:---------------:|:---------:|:-------:| | 0.1221 | 1.6287 | 500 | 0.1728 | 64.2802 | 13.4263 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1
ianccwip/flux-dev-flwrs-v2-lora
ianccwip
2024-08-20T14:08:19Z
450
0
diffusers
[ "diffusers", "flux", "lora", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2024-08-20T11:15:34Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image instance_prompt: in the style of flwrs --- # Flux Dev Flwrs V2 Lora Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `in the style of flwrs` to trigger the image generation. ## Use it with the [๐Ÿงจ diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('ianccwip/flux-dev-flwrs-v2-lora', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
asr-africa/wav2vec2-xlsr-fula-google-fleurs-5-hours-plus-lm
asr-africa
2024-08-20T14:00:51Z
6
1
null
[ "safetensors", "wav2vec2", "generated_from_trainer", "dataset:fleurs", "base_model:facebook/wav2vec2-xls-r-300m", "base_model:finetune:facebook/wav2vec2-xls-r-300m", "license:apache-2.0", "model-index", "region:us" ]
null
2024-08-20T13:57:57Z
--- base_model: facebook/wav2vec2-xls-r-300m datasets: - fleurs license: apache-2.0 metrics: - wer tags: - generated_from_trainer model-index: - name: wav2vec2-xlsr-fula-google-fleurs-5-hours results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: fleurs type: fleurs config: ff_sn split: None args: ff_sn metrics: - type: wer value: 0.646049896049896 name: Wer --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xlsr-fula-google-fleurs-5-hours This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the fleurs dataset. It achieves the following results on the evaluation set: - Loss: 1.1949 - Wer: 0.6460 - Cer: 0.2359 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 7.1138 | 10.96 | 200 | 2.9561 | 1.0 | 1.0 | | 2.8708 | 21.92 | 400 | 2.0221 | 1.0 | 0.6369 | | 1.0031 | 32.88 | 600 | 0.9750 | 0.6509 | 0.2222 | | 0.4471 | 43.84 | 800 | 1.1949 | 0.6460 | 0.2359 | ### Framework versions - Transformers 4.38.1 - Pytorch 2.1.0+cu118 - Datasets 2.17.0 - Tokenizers 0.15.2
GautamR/akai_flow_classifier_kmai_dev_test_bot
GautamR
2024-08-20T13:57:53Z
126
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-08-20T13:53:47Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
GaetanMichelet/Llama-31-8B_task-1_120-samples_config-2_full
GaetanMichelet
2024-08-20T13:48:03Z
14
0
peft
[ "peft", "tensorboard", "safetensors", "llama", "alignment-handbook", "trl", "sft", "generated_from_trainer", "dataset:GaetanMichelet/chat-60_ft_task-1", "dataset:GaetanMichelet/chat-120_ft_task-1", "base_model:meta-llama/Llama-3.1-8B-Instruct", "base_model:adapter:meta-llama/Llama-3.1-8B-Instruct", "license:llama3.1", "4-bit", "bitsandbytes", "region:us" ]
null
2024-08-20T13:14:56Z
--- base_model: meta-llama/Meta-Llama-3.1-8B-Instruct datasets: - GaetanMichelet/chat-60_ft_task-1 - GaetanMichelet/chat-120_ft_task-1 library_name: peft license: llama3.1 tags: - alignment-handbook - trl - sft - generated_from_trainer model-index: - name: Llama-31-8B_task-1_120-samples_config-2_full results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Llama-31-8B_task-1_120-samples_config-2_full This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) on the GaetanMichelet/chat-60_ft_task-1 and the GaetanMichelet/chat-120_ft_task-1 datasets. It achieves the following results on the evaluation set: - Loss: 0.8694 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-------:|:----:|:---------------:| | 2.448 | 0.9091 | 5 | 2.3732 | | 2.2361 | 2.0 | 11 | 2.0279 | | 1.8253 | 2.9091 | 16 | 1.7251 | | 1.3791 | 4.0 | 22 | 1.2330 | | 1.0878 | 4.9091 | 27 | 1.0337 | | 0.9771 | 6.0 | 33 | 0.9739 | | 0.8967 | 6.9091 | 38 | 0.9426 | | 0.8815 | 8.0 | 44 | 0.9129 | | 0.816 | 8.9091 | 49 | 0.8952 | | 0.748 | 10.0 | 55 | 0.8762 | | 0.6939 | 10.9091 | 60 | 0.8727 | | 0.6449 | 12.0 | 66 | 0.8694 | | 0.5874 | 12.9091 | 71 | 0.8921 | | 0.4934 | 14.0 | 77 | 0.9429 | | 0.4382 | 14.9091 | 82 | 1.0083 | | 0.347 | 16.0 | 88 | 1.0592 | | 0.2565 | 16.9091 | 93 | 1.1458 | | 0.1926 | 18.0 | 99 | 1.2523 | | 0.1477 | 18.9091 | 104 | 1.4710 | ### Framework versions - PEFT 0.12.0 - Transformers 4.44.0 - Pytorch 2.1.2+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1
AchrafGhribi31/llama3-esg-8b-merged-4bit_V0
AchrafGhribi31
2024-08-20T13:37:46Z
75
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "base_model:quantized:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-08-20T13:36:28Z
--- base_model: unsloth/llama-3-8b-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl - sft --- # Uploaded model - **Developed by:** AchrafGhribi31 - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
saad7489/segformer-b0-finetuned-segments-SixrayKnife8-20-2024
saad7489
2024-08-20T13:31:20Z
5
0
null
[ "tensorboard", "safetensors", "segformer", "vision", "image-segmentation", "generated_from_trainer", "base_model:nvidia/mit-b0", "base_model:finetune:nvidia/mit-b0", "license:other", "region:us" ]
image-segmentation
2024-08-20T13:02:13Z
--- license: other base_model: nvidia/mit-b0 tags: - vision - image-segmentation - generated_from_trainer model-index: - name: segformer-b0-finetuned-segments-SixrayKnife8-20-2024 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-b0-finetuned-segments-SixrayKnife8-20-2024 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the saad7489/SixraygunTest dataset. It achieves the following results on the evaluation set: - Loss: 0.2632 - Mean Iou: 0.7518 - Mean Accuracy: 0.8442 - Overall Accuracy: 0.9846 - Accuracy Bkg: 0.9934 - Accuracy Knife: 0.6638 - Accuracy Gun: 0.8755 - Iou Bkg: 0.9864 - Iou Knife: 0.5722 - Iou Gun: 0.6969 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 20 - eval_batch_size: 20 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Bkg | Accuracy Knife | Accuracy Gun | Iou Bkg | Iou Knife | Iou Gun | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------:|:--------------:|:------------:|:-------:|:---------:|:-------:| | 0.7462 | 5.0 | 20 | 0.8680 | 0.5725 | 0.7955 | 0.9552 | 0.9653 | 0.6150 | 0.8064 | 0.9557 | 0.3394 | 0.4223 | | 0.5675 | 10.0 | 40 | 0.5259 | 0.5797 | 0.6730 | 0.9685 | 0.9873 | 0.3829 | 0.6486 | 0.9690 | 0.3247 | 0.4455 | | 0.5079 | 15.0 | 60 | 0.4394 | 0.6394 | 0.7578 | 0.9723 | 0.9859 | 0.5491 | 0.7385 | 0.9731 | 0.4658 | 0.4794 | | 0.3976 | 20.0 | 80 | 0.3820 | 0.6781 | 0.7446 | 0.9792 | 0.9942 | 0.5443 | 0.6952 | 0.9802 | 0.4938 | 0.5601 | | 0.3527 | 25.0 | 100 | 0.3454 | 0.7173 | 0.8050 | 0.9816 | 0.9928 | 0.6128 | 0.8094 | 0.9829 | 0.5373 | 0.6318 | | 0.3571 | 30.0 | 120 | 0.3192 | 0.7336 | 0.8386 | 0.9826 | 0.9917 | 0.6508 | 0.8734 | 0.9843 | 0.5518 | 0.6646 | | 0.3201 | 35.0 | 140 | 0.2858 | 0.7399 | 0.8390 | 0.9834 | 0.9924 | 0.6540 | 0.8706 | 0.9851 | 0.5637 | 0.6709 | | 0.3205 | 40.0 | 160 | 0.2774 | 0.7482 | 0.8301 | 0.9846 | 0.9944 | 0.6447 | 0.8512 | 0.9864 | 0.5673 | 0.6911 | | 0.2899 | 45.0 | 180 | 0.2677 | 0.7497 | 0.8399 | 0.9845 | 0.9937 | 0.6581 | 0.8679 | 0.9864 | 0.5679 | 0.6948 | | 0.2672 | 50.0 | 200 | 0.2632 | 0.7518 | 0.8442 | 0.9846 | 0.9934 | 0.6638 | 0.8755 | 0.9864 | 0.5722 | 0.6969 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1
RhapsodyAI/MiniCPM-V-Embedding-preview
RhapsodyAI
2024-08-20T13:31:06Z
154
46
transformers
[ "transformers", "pytorch", "minicpmv", "feature-extraction", "information retrieval", "embedding model", "visual information retrieval", "custom_code", "en", "arxiv:2408.01800", "license:apache-2.0", "region:us" ]
feature-extraction
2024-06-27T12:23:01Z
--- language: - en tags: - information retrieval - embedding model - visual information retrieval metrics: - recall pipeline_tag: feature-extraction license: apache-2.0 --- # MiniCPM-Visual-Embedding: OCR-free Visual Document Embedding Model as Your Personal Librarian The model only takes images as document-side inputs and produce vectors representing document pages. Memex is trained with over 200k query-visual document pairs, including textual document, visual document, arxiv figures, plots, charts, industry documents, textbooks, ebooks, and openly-available PDFs, etc. Its performance is on a par with our ablation text embedding model on text-oriented documents, and an advantages on visually-intensive documents. Our model is capable of: - Help you read a long visually-intensive or text-oriented PDF document and find the pages that answer your question. - Help you build a personal library and retrieve book pages from a large collection of books. - It has only 2.8B parameters, and has the potential to run on your PC. - It works like human: read and comprehend with **vision** and remember **multimodal** information in hippocampus. ![Memex Archtechture](images/memex.png) # News - 2024-08-18: ๐Ÿ‘€ We released a new [end-to-end Visual RAG huggingface demo](https://huggingface.co/spaces/bokesyo/MiniCPMV-RAG-PDFQA), which supports **both retrieval and generation**, which means, you can use our system to **answer your questions within a long PDF** now! This demo is also locally-deployable, clone the codes in the space and run on your own device. - 2024-08-17: ๐Ÿ‘Š We open-sourced [cleaned version of training codebase](https://github.com/RhapsodyAILab/MiniCPM-V-Embedding-v0-Train) for MiniCPM-Visual-Embedding, which supports **deepspeed zero stage 1,2** and **large batchsize** like `4096` for full-parameter training to turn VLMs into dense retrievers. We also developed methods to filter training datasets and generating queries using unlablled datasets. We supports **multi-nodes, multi-GPUs** high-efficiency **evaluation** on large retrieval datasets. With such efforts, we support up to `20B` VLM contrastive learning with `4096` batch size. We have tested that one can train a VLM dense retriever with only **1 GPU, but with batch size of `4096`**. - 2024-07-14: ๐Ÿค— We released **online huggingface demo**! Try our [online demo](https://huggingface.co/spaces/bokesyo/MiniCPM_Visual_Document_Retriever_Demo)! This demo is also locally-deployable, clone the codes in the space and run on your own device. - 2024-07-13: ๐Ÿ’ป We released a **locally deployable command-line based demo** for users to retireve most relavant pages from a given PDF file (could be very long), take a look at [pipeline.py](https://huggingface.co/RhapsodyAI/minicpm-visual-embedding-v0/blob/main/pipeline.py). - 2024-06-27: ๐Ÿš€ We released our first visual embedding model checkpoint on [huggingface](https://huggingface.co/RhapsodyAI/minicpm-visual-embedding-v0). - 2024-05-08: ๐ŸŒ We [open-sourced](https://github.com/RhapsodyAILab/minicpm-visual-embedding-v0) our training code (full-parameter tuning with GradCache and DeepSpeed zero-stage2, supports large batch size across multiple GPUs with zero-stage1) and eval code. # Deploy on your PC **Please make sure you have at least 32GB memory on your PC.** - Apple M1/M2/M3 with 32GB memory. - x86 CPU with 32GB memory. - x86 CPU with 32GB memory + Nvidia GPU with 16GB memory. ### Install dependencies Use pip to install all dependencies: ``` Pillow==10.1.0 timm==0.9.10 torch==2.1.2 torchvision==0.16.2 transformers==4.36.0 sentencepiece==0.1.99 numpy==1.26.0 ``` ### Download model weights and modeling file Use one of the following methods: - Download with git clone. ```bash git lfs install git clone https://huggingface.co/RhapsodyAI/minicpm-visual-embedding-v0 ``` - Download with huggingface-hub. ```bash pip install huggingface-hub huggingface-cli download --resume-download RhapsodyAI/minicpm-visual-embedding-v0 --local-dir minicpm-visual-embedding-v0 --local-dir-use-symlinks False ``` ### Launch demo Install `gradio` first. ```bash pip install gradio ``` Clone demo source code. - For retrieval-only demo (without generation), you should clone https://huggingface.co/spaces/bokesyo/MiniCPM_Visual_Document_Retriever_Demo. - For retrieval and generation (full RAG pipeline), you should clone https://huggingface.co/spaces/bokesyo/MiniCPMV-RAG-PDFQA. ```bash git clone https://huggingface.co/spaces/bokesyo/MiniCPM_Visual_Document_Retriever_Demo git clone https://huggingface.co/spaces/bokesyo/MiniCPMV-RAG-PDFQA ``` For `retrieval and generation` demo, you need to also install `flash_attn`. Adapt the code in `app.py` according to your device. - For M1/M2/M3 users, please make sure `model = model.to(device='mps', dtype=torch.float16)` then run `PYTORCH_ENABLE_MPS_FALLBACK=1 python app.py`. - For x86 CPU users, please remove `model = model.to(device)` then run `python app.py`. - For x86 CPU + Nvidia GPU users, please make sure `model = model.to('cuda')` then run `python app.py`. - If you encountered an error, please open an issue [here](https://huggingface.co/RhapsodyAI/minicpm-visual-embedding-v0/discussions), we will respond soon. # For research purpose To run the model for research purpose, please refer the following code: ```python from transformers import AutoModel from transformers import AutoTokenizer from PIL import Image import torch device = 'cuda:0' # Load model, be sure to substitute `model_path` by your model path model_path = '/local/path/to/model' tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) model = AutoModel.from_pretrained(model_path, trust_remote_code=True) model.to(device) # Load image to PIL.Image object image_1 = Image.open('/local/path/to/images/memex.png').convert('RGB') image_2 = Image.open('/local/path/to/images/us2020.png').convert('RGB') image_3 = Image.open('/local/path/to/images/hard_negative.png').convert('RGB') # User query query_instruction = 'Represent this query for retrieving relavant document: ' query = 'Who was elected as president of United States in 2020?' query_full = query_instruction + query # Embed image documents with torch.no_grad(): p_reps = model(text=['', '', ''], image=[image_1, image_2, image_3], tokenizer=tokenizer).reps # Embed text queries with torch.no_grad(): q_reps = model(text=[query_full], image=[None], tokenizer=tokenizer).reps # [B, s, d] # Calculate similarities scores = torch.matmul(q_reps, p_reps.T) print(scores) # tensor([[-0.0112, 0.3316, 0.2376]], device='cuda:0') ``` # Todos - [x] Release huggingface space demo. - [ ] Release the evaluation results. - [ ] Release technical report. # Limitations - This checkpoint is an alpha version, and may not be strong in your tasks, for bad case, please create an issue to let us know, many thanks! - The modeling script `modeling_minicpmv` on `huggingface` is not standard yet, the inference code could be further improved. - The inference speed is low, because vision encoder uses `timm`, which does not yet support `flash-attn`. - The model performs not well on Chinese and other non-English information retrieval tasks. # Citation If you find our work useful, please consider cite us: ```bibtex @misc{RhapsodyEmbedding2024, author = {Rhapsody Group, OpenBMB}, title = {Memex: OCR-free Visual Document Embedding Model as Your Personal Librarian}, year = {2024}, howpublished = {\url{https://huggingface.co/RhapsodyAI/minicpm-visual-embedding-v0}}, note = {Accessed: 2024-06-28} } ``` Thanks to MiniCPM-V-2.0 `arxiv.org/abs/2408.01800`, without which there won't be `minicpm-visual-embedding`. # ไธญๆ–‡ๆ–‡ๆกฃ https://www.53ai.com/news/RAG/2024082047058.html https://blog.csdn.net/bokesyo/article/details/141335670 https://developer.aliyun.com/article/1590698?spm=a2c6h.13148508.setting.14.b4e94f0eIQp59B https://cloud.tencent.com/developer/article/2446218
mradermacher/gemma-2-9B-it-advanced-v2.1-GGUF
mradermacher
2024-08-20T13:15:52Z
59
5
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:jsgreenawalt/gemma-2-9B-it-advanced-v2.1", "base_model:quantized:jsgreenawalt/gemma-2-9B-it-advanced-v2.1", "endpoints_compatible", "region:us", "conversational" ]
null
2024-08-20T12:40:45Z
--- base_model: jsgreenawalt/gemma-2-9B-it-advanced-v2.1 language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/jsgreenawalt/gemma-2-9B-it-advanced-v2.1 <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/gemma-2-9B-it-advanced-v2.1-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/gemma-2-9B-it-advanced-v2.1-GGUF/resolve/main/gemma-2-9B-it-advanced-v2.1.Q2_K.gguf) | Q2_K | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/gemma-2-9B-it-advanced-v2.1-GGUF/resolve/main/gemma-2-9B-it-advanced-v2.1.IQ3_XS.gguf) | IQ3_XS | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/gemma-2-9B-it-advanced-v2.1-GGUF/resolve/main/gemma-2-9B-it-advanced-v2.1.IQ3_S.gguf) | IQ3_S | 4.4 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/gemma-2-9B-it-advanced-v2.1-GGUF/resolve/main/gemma-2-9B-it-advanced-v2.1.Q3_K_S.gguf) | Q3_K_S | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/gemma-2-9B-it-advanced-v2.1-GGUF/resolve/main/gemma-2-9B-it-advanced-v2.1.IQ3_M.gguf) | IQ3_M | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/gemma-2-9B-it-advanced-v2.1-GGUF/resolve/main/gemma-2-9B-it-advanced-v2.1.Q3_K_M.gguf) | Q3_K_M | 4.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/gemma-2-9B-it-advanced-v2.1-GGUF/resolve/main/gemma-2-9B-it-advanced-v2.1.Q3_K_L.gguf) | Q3_K_L | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/gemma-2-9B-it-advanced-v2.1-GGUF/resolve/main/gemma-2-9B-it-advanced-v2.1.IQ4_XS.gguf) | IQ4_XS | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/gemma-2-9B-it-advanced-v2.1-GGUF/resolve/main/gemma-2-9B-it-advanced-v2.1.Q4_K_S.gguf) | Q4_K_S | 5.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/gemma-2-9B-it-advanced-v2.1-GGUF/resolve/main/gemma-2-9B-it-advanced-v2.1.Q4_K_M.gguf) | Q4_K_M | 5.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/gemma-2-9B-it-advanced-v2.1-GGUF/resolve/main/gemma-2-9B-it-advanced-v2.1.Q5_K_S.gguf) | Q5_K_S | 6.6 | | | [GGUF](https://huggingface.co/mradermacher/gemma-2-9B-it-advanced-v2.1-GGUF/resolve/main/gemma-2-9B-it-advanced-v2.1.Q5_K_M.gguf) | Q5_K_M | 6.7 | | | [GGUF](https://huggingface.co/mradermacher/gemma-2-9B-it-advanced-v2.1-GGUF/resolve/main/gemma-2-9B-it-advanced-v2.1.Q6_K.gguf) | Q6_K | 7.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/gemma-2-9B-it-advanced-v2.1-GGUF/resolve/main/gemma-2-9B-it-advanced-v2.1.Q8_0.gguf) | Q8_0 | 9.9 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/gemma-2-9B-it-advanced-v2.1-GGUF/resolve/main/gemma-2-9B-it-advanced-v2.1.f16.gguf) | f16 | 18.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
arvnoodle/lora-trained-xl
arvnoodle
2024-08-20T13:02:06Z
7
0
diffusers
[ "diffusers", "tensorboard", "text-to-image", "diffusers-training", "dora", "template:sd-lora", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2024-08-15T03:58:42Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 library_name: diffusers license: openrail++ tags: - text-to-image - diffusers-training - diffusers - dora - template:sd-lora - stable-diffusion-xl - stable-diffusion-xl-diffusers - lora - text-to-image - text-to-image - diffusers-training - diffusers - lora - template:sd-lora - stable-diffusion-xl - stable-diffusion-xl-diffusers instance_prompt: a photo of sks dog widget: - text: A photo of sks dog in a bucket output: url: image_0.png - text: A photo of sks dog in a bucket output: url: image_1.png - text: A photo of sks dog in a bucket output: url: image_2.png - text: A photo of sks dog in a bucket output: url: image_3.png --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # SDXL LoRA DreamBooth - arvnoodle/lora-trained-xl <Gallery /> ## Model description These are arvnoodle/lora-trained-xl LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use a photo of sks dog to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](arvnoodle/lora-trained-xl/tree/main) them in the Files & versions tab. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
saad7489/segformer-b0-finetuned-segments-SixrayKnife8-19-2024
saad7489
2024-08-20T12:56:21Z
8
0
null
[ "tensorboard", "safetensors", "segformer", "vision", "image-segmentation", "generated_from_trainer", "base_model:nvidia/mit-b0", "base_model:finetune:nvidia/mit-b0", "license:other", "region:us" ]
image-segmentation
2024-08-20T06:40:37Z
--- license: other base_model: nvidia/mit-b0 tags: - vision - image-segmentation - generated_from_trainer model-index: - name: segformer-b0-finetuned-segments-SixrayKnife8-19-2024 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-b0-finetuned-segments-SixrayKnife8-19-2024 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the saad7489/SixraygunTest dataset. It achieves the following results on the evaluation set: - Loss: 0.1817 - Mean Iou: 0.8160 - Mean Accuracy: 0.8823 - Overall Accuracy: 0.9881 - Accuracy Bkg: 0.9954 - Accuracy Gun: 0.7759 - Accuracy Knife: 0.8755 - Iou Bkg: 0.9890 - Iou Gun: 0.7014 - Iou Knife: 0.7574 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 20 - eval_batch_size: 20 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Bkg | Accuracy Gun | Accuracy Knife | Iou Bkg | Iou Gun | Iou Knife | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------:|:------------:|:--------------:|:-------:|:-------:|:---------:| | 0.4406 | 5.0 | 20 | 0.4093 | 0.7210 | 0.7883 | 0.9804 | 0.9938 | 0.6719 | 0.6991 | 0.9807 | 0.5730 | 0.6092 | | 0.3699 | 10.0 | 40 | 0.3327 | 0.7327 | 0.7880 | 0.9819 | 0.9954 | 0.6559 | 0.7128 | 0.9824 | 0.5724 | 0.6432 | | 0.31 | 15.0 | 60 | 0.3035 | 0.7698 | 0.8614 | 0.9842 | 0.9926 | 0.7207 | 0.8709 | 0.9853 | 0.6217 | 0.7023 | | 0.2852 | 20.0 | 80 | 0.2649 | 0.7817 | 0.8711 | 0.9850 | 0.9928 | 0.7453 | 0.8752 | 0.9860 | 0.6423 | 0.7168 | | 0.2583 | 25.0 | 100 | 0.2329 | 0.7936 | 0.8693 | 0.9863 | 0.9943 | 0.7497 | 0.8639 | 0.9873 | 0.6628 | 0.7307 | | 0.2521 | 30.0 | 120 | 0.2194 | 0.7975 | 0.8778 | 0.9867 | 0.9942 | 0.7530 | 0.8862 | 0.9879 | 0.6731 | 0.7316 | | 0.2357 | 35.0 | 140 | 0.2044 | 0.8042 | 0.8804 | 0.9871 | 0.9944 | 0.7635 | 0.8833 | 0.9881 | 0.6789 | 0.7456 | | 0.2198 | 40.0 | 160 | 0.1929 | 0.8126 | 0.8789 | 0.9878 | 0.9953 | 0.7685 | 0.8728 | 0.9888 | 0.6937 | 0.7552 | | 0.1909 | 45.0 | 180 | 0.1837 | 0.8151 | 0.8810 | 0.9880 | 0.9954 | 0.7726 | 0.8750 | 0.9890 | 0.6997 | 0.7568 | | 0.1908 | 50.0 | 200 | 0.1817 | 0.8160 | 0.8823 | 0.9881 | 0.9954 | 0.7759 | 0.8755 | 0.9890 | 0.7014 | 0.7574 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1
BogdanTurbal/model_roberta_large_d_hate_bias_hate_bias_ep_2_7_a_sqn_a_b_p_100_5_v_15
BogdanTurbal
2024-08-20T12:55:04Z
5
0
null
[ "tensorboard", "safetensors", "roberta", "generated_from_trainer", "base_model:FacebookAI/roberta-large", "base_model:finetune:FacebookAI/roberta-large", "license:mit", "region:us" ]
null
2024-08-20T12:54:22Z
--- license: mit base_model: FacebookAI/roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: model_roberta_large_d_hate_bias_hate_bias_ep_2_7_a_sqn_a_b_p_100_5_v_15 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # model_roberta_large_d_hate_bias_hate_bias_ep_2_7_a_sqn_a_b_p_100_5_v_15 This model is a fine-tuned version of [FacebookAI/roberta-large](https://huggingface.co/FacebookAI/roberta-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5201 - Accuracy: 0.7821 - F1 Micro: 0.7821 - Auc: 0.8528 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Micro | Auc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:------:| | 0.7652 | 1.0 | 38 | 0.6989 | 0.5 | 0.5 | 0.6244 | | 0.6958 | 2.0 | 76 | 0.6845 | 0.5090 | 0.5090 | 0.7243 | | 0.6112 | 3.0 | 114 | 0.5881 | 0.6974 | 0.6974 | 0.7726 | | 0.4671 | 4.0 | 152 | 0.5185 | 0.7590 | 0.7590 | 0.8284 | | 0.4422 | 5.0 | 190 | 0.5444 | 0.7640 | 0.7640 | 0.8375 | | 0.4041 | 6.0 | 228 | 0.5199 | 0.7796 | 0.7796 | 0.8490 | | 0.4677 | 7.0 | 266 | 0.5201 | 0.7821 | 0.7821 | 0.8528 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1
mradermacher/Qra-13b-instruct-GGUF
mradermacher
2024-08-20T12:40:54Z
39
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "llama", "trl", "sft", "en", "dataset:Lbuk/alpaca_data_pl.json", "base_model:TeeZee/Qra-13b-instruct", "base_model:quantized:TeeZee/Qra-13b-instruct", "license:llama2", "endpoints_compatible", "region:us" ]
null
2024-08-20T06:20:52Z
--- base_model: TeeZee/Qra-13b-instruct datasets: - Lbuk/alpaca_data_pl.json language: - en library_name: transformers license: llama2 quantized_by: mradermacher tags: - text-generation-inference - transformers - unsloth - llama - trl - sft --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/TeeZee/Qra-13b-instruct <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Qra-13b-instruct-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Qra-13b-instruct-GGUF/resolve/main/Qra-13b-instruct.Q2_K.gguf) | Q2_K | 5.0 | | | [GGUF](https://huggingface.co/mradermacher/Qra-13b-instruct-GGUF/resolve/main/Qra-13b-instruct.IQ3_XS.gguf) | IQ3_XS | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/Qra-13b-instruct-GGUF/resolve/main/Qra-13b-instruct.IQ3_S.gguf) | IQ3_S | 5.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Qra-13b-instruct-GGUF/resolve/main/Qra-13b-instruct.Q3_K_S.gguf) | Q3_K_S | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/Qra-13b-instruct-GGUF/resolve/main/Qra-13b-instruct.IQ3_M.gguf) | IQ3_M | 6.1 | | | [GGUF](https://huggingface.co/mradermacher/Qra-13b-instruct-GGUF/resolve/main/Qra-13b-instruct.Q3_K_M.gguf) | Q3_K_M | 6.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Qra-13b-instruct-GGUF/resolve/main/Qra-13b-instruct.Q3_K_L.gguf) | Q3_K_L | 7.0 | | | [GGUF](https://huggingface.co/mradermacher/Qra-13b-instruct-GGUF/resolve/main/Qra-13b-instruct.IQ4_XS.gguf) | IQ4_XS | 7.1 | | | [GGUF](https://huggingface.co/mradermacher/Qra-13b-instruct-GGUF/resolve/main/Qra-13b-instruct.Q4_K_S.gguf) | Q4_K_S | 7.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qra-13b-instruct-GGUF/resolve/main/Qra-13b-instruct.Q4_K_M.gguf) | Q4_K_M | 8.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qra-13b-instruct-GGUF/resolve/main/Qra-13b-instruct.Q5_K_S.gguf) | Q5_K_S | 9.1 | | | [GGUF](https://huggingface.co/mradermacher/Qra-13b-instruct-GGUF/resolve/main/Qra-13b-instruct.Q5_K_M.gguf) | Q5_K_M | 9.3 | | | [GGUF](https://huggingface.co/mradermacher/Qra-13b-instruct-GGUF/resolve/main/Qra-13b-instruct.Q6_K.gguf) | Q6_K | 10.8 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Qra-13b-instruct-GGUF/resolve/main/Qra-13b-instruct.Q8_0.gguf) | Q8_0 | 13.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
Ramikan-BR/P3-mini-v1
Ramikan-BR
2024-08-20T12:40:22Z
13
0
transformers
[ "transformers", "pytorch", "safetensors", "gguf", "mistral", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "base_model:unsloth/Phi-3-mini-4k-instruct-bnb-4bit", "base_model:quantized:unsloth/Phi-3-mini-4k-instruct-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-08-20T11:40:34Z
--- base_model: unsloth/Phi-3-mini-4k-instruct-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - mistral - trl - sft --- Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Input: # Write a code to create the snake game ### Output: # Here is a simple implementation of the classic Snake game in Python using the Pygame library. This code will create a window with a snake that moves in a grid, eating apples and growing in length. ```python import pygame import random import time # Initialize Pygame pygame.init() # Set the dimensions of the game window width, height = 600, 600 screen = pygame.display.set_mode((width, height)) pygame.display.set_caption('Snake Game') # Define colors white = (255, 255, 255) black = (0, 0, 0) red = (255, 0, 0) green = (0, 255, 0) # Define the snake snake_pos = [[100, 50], [90, 50], [80, 50]] snake_dir = [0, -1] # Define the apple apple_pos = [random.randint(50, width-50), random.randint(50, height-50)] # Define the score score = 0 # Define the clock clock = pygame.time.Clock() # Game loop running = True while running: # Handle events for event in pygame.event.get(): if event.type == pygame.QUIT: running = False # Move the snake new_head = [snake_pos[0][0] + snake_dir[0], snake_pos[0][1] + snake_dir[1]] # Check if the snake eats the apple if new_head[0] == apple_pos[0] and new_head[1] == apple_pos[1]: score += 1 apple_pos = [random.randint(50, width-50), random.randint(50, height-50)] snake_pos.insert(0, new_head) if len(snake_pos) > 10: snake_pos.pop() else: snake_pos.insert(0, new_head) snake_pos.pop() # Check if the snake hits the wall if new_head[0] < 0 or new_head[0] > width-100 or new_head[1] < 0 or new_head[1] > height-100: running = False # Draw the game screen.fill(white) for pos in snake_pos: pygame.draw.rect(screen, black, pygame.Rect(pos[0], pos[1], 10, 10)) pygame.draw.rect(screen, red, pygame.Rect(apple_pos[0], apple_pos[1], 10, 10)) pygame.display.flip() # Set the frame rate clock.tick(10) # Print the score print(f'Score: {score}') pygame.quit() ``` This code will create a window with a snake that moves in a grid, eating apples and growing in length. The score will be printed to the console. Note that this is a very basic implementation and can be improved in many ways, such as adding a start screen, better collision detection, and more features.<|endoftext|> # Uploaded model - **Developed by:** Ramikan-BR - **License:** apache-2.0 - **Finetuned from model :** unsloth/Phi-3-mini-4k-instruct-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
mradermacher/Fireball-Mistral-Nemo-Base-2407-sft-v1-i1-GGUF
mradermacher
2024-08-20T12:37:18Z
23
1
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "mistral", "trl", "en", "dataset:yahma/alpaca-cleaned", "base_model:EpistemeAI/Fireball-Mistral-Nemo-Base-2407-sft-v1", "base_model:quantized:EpistemeAI/Fireball-Mistral-Nemo-Base-2407-sft-v1", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix" ]
null
2024-08-20T03:38:52Z
--- base_model: EpistemeAI/Fireball-Mistral-Nemo-Base-2407-sft-v1 datasets: - yahma/alpaca-cleaned language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - text-generation-inference - transformers - unsloth - mistral - trl --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/EpistemeAI/Fireball-Mistral-Nemo-Base-2407-sft-v1 <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Fireball-Mistral-Nemo-Base-2407-sft-v1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Fireball-Mistral-Nemo-Base-2407-sft-v1-i1-GGUF/resolve/main/Fireball-Mistral-Nemo-Base-2407-sft-v1.i1-IQ1_S.gguf) | i1-IQ1_S | 3.1 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Fireball-Mistral-Nemo-Base-2407-sft-v1-i1-GGUF/resolve/main/Fireball-Mistral-Nemo-Base-2407-sft-v1.i1-IQ1_M.gguf) | i1-IQ1_M | 3.3 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Fireball-Mistral-Nemo-Base-2407-sft-v1-i1-GGUF/resolve/main/Fireball-Mistral-Nemo-Base-2407-sft-v1.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 3.7 | | | [GGUF](https://huggingface.co/mradermacher/Fireball-Mistral-Nemo-Base-2407-sft-v1-i1-GGUF/resolve/main/Fireball-Mistral-Nemo-Base-2407-sft-v1.i1-IQ2_XS.gguf) | i1-IQ2_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/Fireball-Mistral-Nemo-Base-2407-sft-v1-i1-GGUF/resolve/main/Fireball-Mistral-Nemo-Base-2407-sft-v1.i1-IQ2_S.gguf) | i1-IQ2_S | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/Fireball-Mistral-Nemo-Base-2407-sft-v1-i1-GGUF/resolve/main/Fireball-Mistral-Nemo-Base-2407-sft-v1.i1-IQ2_M.gguf) | i1-IQ2_M | 4.5 | | | [GGUF](https://huggingface.co/mradermacher/Fireball-Mistral-Nemo-Base-2407-sft-v1-i1-GGUF/resolve/main/Fireball-Mistral-Nemo-Base-2407-sft-v1.i1-Q2_K.gguf) | i1-Q2_K | 4.9 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Fireball-Mistral-Nemo-Base-2407-sft-v1-i1-GGUF/resolve/main/Fireball-Mistral-Nemo-Base-2407-sft-v1.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 5.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Fireball-Mistral-Nemo-Base-2407-sft-v1-i1-GGUF/resolve/main/Fireball-Mistral-Nemo-Base-2407-sft-v1.i1-IQ3_XS.gguf) | i1-IQ3_XS | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/Fireball-Mistral-Nemo-Base-2407-sft-v1-i1-GGUF/resolve/main/Fireball-Mistral-Nemo-Base-2407-sft-v1.i1-Q3_K_S.gguf) | i1-Q3_K_S | 5.6 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Fireball-Mistral-Nemo-Base-2407-sft-v1-i1-GGUF/resolve/main/Fireball-Mistral-Nemo-Base-2407-sft-v1.i1-IQ3_S.gguf) | i1-IQ3_S | 5.7 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Fireball-Mistral-Nemo-Base-2407-sft-v1-i1-GGUF/resolve/main/Fireball-Mistral-Nemo-Base-2407-sft-v1.i1-IQ3_M.gguf) | i1-IQ3_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/Fireball-Mistral-Nemo-Base-2407-sft-v1-i1-GGUF/resolve/main/Fireball-Mistral-Nemo-Base-2407-sft-v1.i1-Q3_K_M.gguf) | i1-Q3_K_M | 6.2 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Fireball-Mistral-Nemo-Base-2407-sft-v1-i1-GGUF/resolve/main/Fireball-Mistral-Nemo-Base-2407-sft-v1.i1-Q3_K_L.gguf) | i1-Q3_K_L | 6.7 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Fireball-Mistral-Nemo-Base-2407-sft-v1-i1-GGUF/resolve/main/Fireball-Mistral-Nemo-Base-2407-sft-v1.i1-IQ4_XS.gguf) | i1-IQ4_XS | 6.8 | | | [GGUF](https://huggingface.co/mradermacher/Fireball-Mistral-Nemo-Base-2407-sft-v1-i1-GGUF/resolve/main/Fireball-Mistral-Nemo-Base-2407-sft-v1.i1-Q4_0.gguf) | i1-Q4_0 | 7.2 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Fireball-Mistral-Nemo-Base-2407-sft-v1-i1-GGUF/resolve/main/Fireball-Mistral-Nemo-Base-2407-sft-v1.i1-Q4_K_S.gguf) | i1-Q4_K_S | 7.2 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Fireball-Mistral-Nemo-Base-2407-sft-v1-i1-GGUF/resolve/main/Fireball-Mistral-Nemo-Base-2407-sft-v1.i1-Q4_K_M.gguf) | i1-Q4_K_M | 7.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Fireball-Mistral-Nemo-Base-2407-sft-v1-i1-GGUF/resolve/main/Fireball-Mistral-Nemo-Base-2407-sft-v1.i1-Q5_K_S.gguf) | i1-Q5_K_S | 8.6 | | | [GGUF](https://huggingface.co/mradermacher/Fireball-Mistral-Nemo-Base-2407-sft-v1-i1-GGUF/resolve/main/Fireball-Mistral-Nemo-Base-2407-sft-v1.i1-Q5_K_M.gguf) | i1-Q5_K_M | 8.8 | | | [GGUF](https://huggingface.co/mradermacher/Fireball-Mistral-Nemo-Base-2407-sft-v1-i1-GGUF/resolve/main/Fireball-Mistral-Nemo-Base-2407-sft-v1.i1-Q6_K.gguf) | i1-Q6_K | 10.2 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/control-llama-1B-GGUF
mradermacher
2024-08-20T12:28:02Z
64
0
transformers
[ "transformers", "gguf", "goldfish-loss", "memorization", "mitigation", "en", "base_model:tomg-group-umd/control-llama-1B", "base_model:quantized:tomg-group-umd/control-llama-1B", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-08-20T12:16:20Z
--- base_model: tomg-group-umd/control-llama-1B language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - goldfish-loss - memorization - mitigation --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/tomg-group-umd/control-llama-1B <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/control-llama-1B-GGUF/resolve/main/control-llama-1B.Q2_K.gguf) | Q2_K | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/control-llama-1B-GGUF/resolve/main/control-llama-1B.IQ3_XS.gguf) | IQ3_XS | 0.6 | | | [GGUF](https://huggingface.co/mradermacher/control-llama-1B-GGUF/resolve/main/control-llama-1B.Q3_K_S.gguf) | Q3_K_S | 0.6 | | | [GGUF](https://huggingface.co/mradermacher/control-llama-1B-GGUF/resolve/main/control-llama-1B.IQ3_S.gguf) | IQ3_S | 0.6 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/control-llama-1B-GGUF/resolve/main/control-llama-1B.IQ3_M.gguf) | IQ3_M | 0.6 | | | [GGUF](https://huggingface.co/mradermacher/control-llama-1B-GGUF/resolve/main/control-llama-1B.Q3_K_M.gguf) | Q3_K_M | 0.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/control-llama-1B-GGUF/resolve/main/control-llama-1B.Q3_K_L.gguf) | Q3_K_L | 0.7 | | | [GGUF](https://huggingface.co/mradermacher/control-llama-1B-GGUF/resolve/main/control-llama-1B.IQ4_XS.gguf) | IQ4_XS | 0.7 | | | [GGUF](https://huggingface.co/mradermacher/control-llama-1B-GGUF/resolve/main/control-llama-1B.Q4_K_S.gguf) | Q4_K_S | 0.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/control-llama-1B-GGUF/resolve/main/control-llama-1B.Q4_K_M.gguf) | Q4_K_M | 0.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/control-llama-1B-GGUF/resolve/main/control-llama-1B.Q5_K_S.gguf) | Q5_K_S | 0.9 | | | [GGUF](https://huggingface.co/mradermacher/control-llama-1B-GGUF/resolve/main/control-llama-1B.Q5_K_M.gguf) | Q5_K_M | 0.9 | | | [GGUF](https://huggingface.co/mradermacher/control-llama-1B-GGUF/resolve/main/control-llama-1B.Q6_K.gguf) | Q6_K | 1.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/control-llama-1B-GGUF/resolve/main/control-llama-1B.Q8_0.gguf) | Q8_0 | 1.3 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/control-llama-1B-GGUF/resolve/main/control-llama-1B.f16.gguf) | f16 | 2.3 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
GPT4All-Community/Yi-1.5-9B-Chat-16K-GGUF
GPT4All-Community
2024-08-20T12:26:36Z
688
0
transformers
[ "transformers", "gguf", "text-generation-inference", "GGUF", "GPT4All", "text-generation", "en", "zh", "arxiv:2403.04652", "base_model:01-ai/Yi-1.5-9B-Chat-16K", "base_model:quantized:01-ai/Yi-1.5-9B-Chat-16K", "license:apache-2.0", "region:us", "conversational" ]
text-generation
2024-07-26T11:07:03Z
--- base_model: 01-ai/Yi-1.5-9B-Chat-16K pipeline_tag: text-generation inference: false model_creator: 01-AI model_name: Yi-1.5-9B-Chat-16K model_type: llama language: - en - zh library_name: transformers license: apache-2.0 quantized_by: ThiloteE tags: - text-generation-inference - transformers - GGUF - GPT4All --- >[!Note] >This is a model that is assumed to perform well, but may require more testing and user feedback. Be aware, only models featured within the GUI of GPT4All, are curated and officially supported by Nomic. Use at your own risk. # About <!-- ### quantize_version: 3 --> <!-- ### convert_type: hf --> - Static quants of https://huggingface.co/01-ai/Yi-1.5-9B-Chat-16K - Quantized by [ThiloteE](https://huggingface.co/ThiloteE) with llama.cpp commit [c3776ca](https://github.com/ggerganov/llama.cpp/commit/c3776cacabce2ee35f172fb72be7a519752125fa) These quants were created with a customized configuration that have been proven to not cause visible end of string (eos) tokens during inference with [GPT4All](https://www.nomic.ai/gpt4all). The config.json, generation_config.json and tokenizer_config.json differ from the original configuration as can be found in the original model's repository at the time of creation of these quants. # Prompt Template (for GPT4All) System Prompt: ``` <|im_start|>system Below is an instruction that describes a task. Write a response that appropriately completes the request.<|im_end|> ``` Chat Template: ``` <|im_start|>user %1<|im_end|> <|im_start|>assistant %2<|im_end|> ``` Do not miss the newlines at the end! # Context Length `16384` # Provided Quants | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/pstella-16b-GGUF/resolve/main/pstella-16b.Q4_K_M.gguf) | Q4_0 | 4.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/pstella-16b-GGUF/resolve/main/pstella-16b.f16.gguf) | f16 | 17.2 | 16 bpw, overkill | # About GGUF If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. Here is a handy graph by ikawrakow comparing some quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 # Thanks I thank Mradermacher and TheBloke for Inspiration to this model card and their contributions to open source. I thank 3Simplex for everything. Shoutout to the GPT4All and llama.cpp communities :-) ------ <!-- footer end --> <!-- original-model-card start --> # Original Model card: --- license: apache-2.0 --- <div align="center"> <picture> <img src="https://raw.githubusercontent.com/01-ai/Yi/main/assets/img/Yi_logo_icon_light.svg" width="150px"> </picture> </div> <p align="center"> <a href="https://github.com/01-ai">๐Ÿ™ GitHub</a> โ€ข <a href="https://discord.gg/hYUwWddeAu">๐Ÿ‘พ Discord</a> โ€ข <a href="https://twitter.com/01ai_yi">๐Ÿค Twitter</a> โ€ข <a href="https://github.com/01-ai/Yi-1.5/issues/2">๐Ÿ’ฌ WeChat</a> <br/> <a href="https://arxiv.org/abs/2403.04652">๐Ÿ“ Paper</a> โ€ข <a href="https://01-ai.github.io/">๐Ÿ’ช Tech Blog</a> โ€ข <a href="https://github.com/01-ai/Yi/tree/main?tab=readme-ov-file#faq">๐Ÿ™Œ FAQ</a> โ€ข <a href="https://github.com/01-ai/Yi/tree/main?tab=readme-ov-file#learning-hub">๐Ÿ“— Learning Hub</a> </p> # Intro Yi-1.5 is an upgraded version of Yi. It is continuously pre-trained on Yi with a high-quality corpus of 500B tokens and fine-tuned on 3M diverse fine-tuning samples. Compared with Yi, Yi-1.5 delivers stronger performance in coding, math, reasoning, and instruction-following capability, while still maintaining excellent capabilities in language understanding, commonsense reasoning, and reading comprehension. <div align="center"> Model | Context Length | Pre-trained Tokens | :------------: | :------------: | :------------: | | Yi-1.5 | 4K, 16K, 32K | 3.6T </div> # Models - Chat models <div align="center"> | Name | Download | | --------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | Yi-1.5-34B-Chat | โ€ข [๐Ÿค— Hugging Face](https://huggingface.co/collections/01-ai/yi-15-2024-05-663f3ecab5f815a3eaca7ca8) โ€ข [๐Ÿค– ModelScope](https://www.modelscope.cn/organization/01ai) โ€ข [๐ŸŸฃ wisemodel](https://wisemodel.cn/organization/01.AI)| | Yi-1.5-34B-Chat-16K | โ€ข [๐Ÿค— Hugging Face](https://huggingface.co/collections/01-ai/yi-15-2024-05-663f3ecab5f815a3eaca7ca8) โ€ข [๐Ÿค– ModelScope](https://www.modelscope.cn/organization/01ai) โ€ข [๐ŸŸฃ wisemodel](https://wisemodel.cn/organization/01.AI) | | Yi-1.5-9B-Chat | โ€ข [๐Ÿค— Hugging Face](https://huggingface.co/collections/01-ai/yi-15-2024-05-663f3ecab5f815a3eaca7ca8) โ€ข [๐Ÿค– ModelScope](https://www.modelscope.cn/organization/01ai) โ€ข [๐ŸŸฃ wisemodel](https://wisemodel.cn/organization/01.AI) | | Yi-1.5-9B-Chat-16K | โ€ข [๐Ÿค— Hugging Face](https://huggingface.co/collections/01-ai/yi-15-2024-05-663f3ecab5f815a3eaca7ca8) โ€ข [๐Ÿค– ModelScope](https://www.modelscope.cn/organization/01ai) โ€ข [๐ŸŸฃ wisemodel](https://wisemodel.cn/organization/01.AI) | | Yi-1.5-6B-Chat | โ€ข [๐Ÿค— Hugging Face](https://huggingface.co/collections/01-ai/yi-15-2024-05-663f3ecab5f815a3eaca7ca8) โ€ข [๐Ÿค– ModelScope](https://www.modelscope.cn/organization/01ai) โ€ข [๐ŸŸฃ wisemodel](https://wisemodel.cn/organization/01.AI) | </div> - Base models <div align="center"> | Name | Download | | ---------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | Yi-1.5-34B | โ€ข [๐Ÿค— Hugging Face](https://huggingface.co/collections/01-ai/yi-15-2024-05-663f3ecab5f815a3eaca7ca8) โ€ข [๐Ÿค– ModelScope](https://www.modelscope.cn/organization/01ai) โ€ข [๐ŸŸฃ wisemodel](https://wisemodel.cn/organization/01.AI) | | Yi-1.5-34B-32K | โ€ข [๐Ÿค— Hugging Face](https://huggingface.co/collections/01-ai/yi-15-2024-05-663f3ecab5f815a3eaca7ca8) โ€ข [๐Ÿค– ModelScope](https://www.modelscope.cn/organization/01ai) โ€ข [๐ŸŸฃ wisemodel](https://wisemodel.cn/organization/01.AI) | | Yi-1.5-9B | โ€ข [๐Ÿค— Hugging Face](https://huggingface.co/collections/01-ai/yi-15-2024-05-663f3ecab5f815a3eaca7ca8) โ€ข [๐Ÿค– ModelScope](https://www.modelscope.cn/organization/01ai) โ€ข [๐ŸŸฃ wisemodel](https://wisemodel.cn/organization/01.AI) | | Yi-1.5-9B-32K | โ€ข [๐Ÿค— Hugging Face](https://huggingface.co/collections/01-ai/yi-15-2024-05-663f3ecab5f815a3eaca7ca8) โ€ข [๐Ÿค– ModelScope](https://www.modelscope.cn/organization/01ai) โ€ข [๐ŸŸฃ wisemodel](https://wisemodel.cn/organization/01.AI) | | Yi-1.5-6B | โ€ข [๐Ÿค— Hugging Face](https://huggingface.co/collections/01-ai/yi-15-2024-05-663f3ecab5f815a3eaca7ca8) โ€ข [๐Ÿค– ModelScope](https://www.modelscope.cn/organization/01ai) โ€ข [๐ŸŸฃ wisemodel](https://wisemodel.cn/organization/01.AI) | </div> # Benchmarks - Chat models Yi-1.5-34B-Chat is on par with or excels beyond larger models in most benchmarks. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/656d9adce8bf55919aca7c3f/KcsJ9Oc1VnEmfCDEJc5cd.png) Yi-1.5-9B-Chat is the top performer among similarly sized open-source models. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/656d9adce8bf55919aca7c3f/xf6pLg5jqRCwjlh6m3t6_.png) - Base models Yi-1.5-34B is on par with or excels beyond larger models in some benchmarks. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/656d9adce8bf55919aca7c3f/BwU7QM-03dZvZzwdIE1xY.png) Yi-1.5-9B is the top performer among similarly sized open-source models. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/656d9adce8bf55919aca7c3f/y-EYSYPT-3aWLJ0x8R94F.png) # Quick Start For getting up and running with Yi-1.5 models quickly, see [README](https://github.com/01-ai/Yi-1.5). <!-- original-model-card end --> <!-- end -->
PrunaAI/ContactDoctor-Bio-Medical-Llama-3-8B-bnb-4bit-smashed
PrunaAI
2024-08-20T12:24:57Z
5
0
null
[ "safetensors", "llama", "pruna-ai", "base_model:ContactDoctor/Bio-Medical-Llama-3-8B", "base_model:quantized:ContactDoctor/Bio-Medical-Llama-3-8B", "4-bit", "bitsandbytes", "region:us" ]
null
2024-08-20T12:22:07Z
--- thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg" base_model: ContactDoctor/Bio-Medical-Llama-3-8B metrics: - memory_disk - memory_inference - inference_latency - inference_throughput - inference_CO2_emissions - inference_energy_consumption tags: - pruna-ai --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer"> <img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </a> </div> <!-- header end --> [![Twitter](https://img.shields.io/twitter/follow/PrunaAI?style=social)](https://twitter.com/PrunaAI) [![GitHub](https://img.shields.io/github/followers/PrunaAI?label=Follow%20%40PrunaAI&style=social)](https://github.com/PrunaAI) [![LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue)](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-blue?style=social&logo=discord)](https://discord.gg/rskEr4BZJx) # Simply make AI models cheaper, smaller, faster, and greener! - Give a thumbs up if you like this model! - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact). - Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). - Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/) - Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help. ## Results ![image info](./plots.png) **Frequently Asked Questions** - ***How does the compression work?*** The model is compressed with llm-int8. - ***How does the model quality change?*** The quality of the model output might vary compared to the base model. - ***How is the model efficiency evaluated?*** These results were obtained on HARDWARE_NAME with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you. - ***What is the model format?*** We use safetensors. - ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data. - ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model. - ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). - ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads. - ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases. ## Setup You can run the smashed model with these steps: 0. Check requirements from the original repo ContactDoctor/Bio-Medical-Llama-3-8B installed. In particular, check python, cuda, and transformers versions. 1. Make sure that you have installed quantization related packages. ```bash pip install transformers accelerate bitsandbytes>0.37.0 ``` 2. Load & run the model. ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("PrunaAI/ContactDoctor-Bio-Medical-Llama-3-8B-bnb-4bit-smashed", trust_remote_code=True, device_map='auto') tokenizer = AutoTokenizer.from_pretrained("ContactDoctor/Bio-Medical-Llama-3-8B") input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"] outputs = model.generate(input_ids, max_new_tokens=216) tokenizer.decode(outputs[0]) ``` ## Configurations The configuration info are in `smash_config.json`. ## Credits & License The license of the smashed model follows the license of the original model. Please check the license of the original model ContactDoctor/Bio-Medical-Llama-3-8B before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi. ## Want to compress other models? - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact). - Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
MaziyarPanahi/Qwen2-Math-72B-Instruct-GGUF
MaziyarPanahi
2024-08-20T12:10:36Z
109
2
null
[ "gguf", "quantized", "2-bit", "3-bit", "4-bit", "5-bit", "6-bit", "8-bit", "GGUF", "text-generation", "base_model:Qwen/Qwen2-Math-72B-Instruct", "base_model:quantized:Qwen/Qwen2-Math-72B-Instruct", "region:us", "imatrix", "conversational" ]
text-generation
2024-08-08T14:33:29Z
--- tags: - quantized - 2-bit - 3-bit - 4-bit - 5-bit - 6-bit - 8-bit - GGUF - text-generation - text-generation model_name: Qwen2-Math-72B-Instruct-GGUF base_model: Qwen/Qwen2-Math-72B-Instruct inference: false model_creator: Qwen pipeline_tag: text-generation quantized_by: MaziyarPanahi --- # [MaziyarPanahi/Qwen2-Math-72B-Instruct-GGUF](https://huggingface.co/MaziyarPanahi/Qwen2-Math-72B-Instruct-GGUF) - Model creator: [Qwen](https://huggingface.co/Qwen) - Original model: [Qwen/Qwen2-Math-72B-Instruct](https://huggingface.co/Qwen/Qwen2-Math-72B-Instruct) ## Description [MaziyarPanahi/Qwen2-Math-72B-Instruct-GGUF](https://huggingface.co/MaziyarPanahi/Qwen2-Math-72B-Instruct-GGUF) contains GGUF format model files for [Qwen/Qwen2-Math-72B-Instruct](https://huggingface.co/Qwen/Qwen2-Math-72B-Instruct). ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Here is an incomplete list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. * [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models. ## Special thanks ๐Ÿ™ Special thanks to [Georgi Gerganov](https://github.com/ggerganov) and the whole team working on [llama.cpp](https://github.com/ggerganov/llama.cpp/) for making all of this possible.
Hemg/gte-small-indo
Hemg
2024-08-20T12:04:30Z
5
0
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-08-20T12:03:45Z
--- library_name: sentence-transformers pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 333 with parameters: ``` {'batch_size': 10, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 2, "evaluation_steps": 50, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 66, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Bruece/textual_inversion_cat
Bruece
2024-08-20T11:55:41Z
18
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "textual_inversion", "diffusers-training", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-08-20T11:07:41Z
--- base_model: runwayml/stable-diffusion-v1-5 library_name: diffusers license: creativeml-openrail-m tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - textual_inversion - diffusers-training inference: true --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # Textual inversion text2image fine-tuning - Bruece/textual_inversion_cat These are textual inversion adaption weights for runwayml/stable-diffusion-v1-5. You can find some example images in the following. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
mradermacher/Llama-2-50-ROME-pl-FINAL-GGUF
mradermacher
2024-08-20T11:45:47Z
5
0
transformers
[ "transformers", "gguf", "en", "base_model:Piotrasz/Llama-2-50-ROME-pl-FINAL", "base_model:quantized:Piotrasz/Llama-2-50-ROME-pl-FINAL", "endpoints_compatible", "region:us" ]
null
2024-08-20T11:20:16Z
--- base_model: Piotrasz/Llama-2-50-ROME-pl-FINAL language: - en library_name: transformers quantized_by: mradermacher tags: [] --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/Piotrasz/Llama-2-50-ROME-pl-FINAL <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Llama-2-50-ROME-pl-FINAL-GGUF/resolve/main/Llama-2-50-ROME-pl-FINAL.Q2_K.gguf) | Q2_K | 2.6 | | | [GGUF](https://huggingface.co/mradermacher/Llama-2-50-ROME-pl-FINAL-GGUF/resolve/main/Llama-2-50-ROME-pl-FINAL.IQ3_XS.gguf) | IQ3_XS | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/Llama-2-50-ROME-pl-FINAL-GGUF/resolve/main/Llama-2-50-ROME-pl-FINAL.IQ3_S.gguf) | IQ3_S | 3.0 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Llama-2-50-ROME-pl-FINAL-GGUF/resolve/main/Llama-2-50-ROME-pl-FINAL.Q3_K_S.gguf) | Q3_K_S | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/Llama-2-50-ROME-pl-FINAL-GGUF/resolve/main/Llama-2-50-ROME-pl-FINAL.IQ3_M.gguf) | IQ3_M | 3.2 | | | [GGUF](https://huggingface.co/mradermacher/Llama-2-50-ROME-pl-FINAL-GGUF/resolve/main/Llama-2-50-ROME-pl-FINAL.Q3_K_M.gguf) | Q3_K_M | 3.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Llama-2-50-ROME-pl-FINAL-GGUF/resolve/main/Llama-2-50-ROME-pl-FINAL.Q3_K_L.gguf) | Q3_K_L | 3.7 | | | [GGUF](https://huggingface.co/mradermacher/Llama-2-50-ROME-pl-FINAL-GGUF/resolve/main/Llama-2-50-ROME-pl-FINAL.IQ4_XS.gguf) | IQ4_XS | 3.7 | | | [GGUF](https://huggingface.co/mradermacher/Llama-2-50-ROME-pl-FINAL-GGUF/resolve/main/Llama-2-50-ROME-pl-FINAL.Q4_K_S.gguf) | Q4_K_S | 4.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama-2-50-ROME-pl-FINAL-GGUF/resolve/main/Llama-2-50-ROME-pl-FINAL.Q4_K_M.gguf) | Q4_K_M | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama-2-50-ROME-pl-FINAL-GGUF/resolve/main/Llama-2-50-ROME-pl-FINAL.Q5_K_S.gguf) | Q5_K_S | 4.8 | | | [GGUF](https://huggingface.co/mradermacher/Llama-2-50-ROME-pl-FINAL-GGUF/resolve/main/Llama-2-50-ROME-pl-FINAL.Q5_K_M.gguf) | Q5_K_M | 4.9 | | | [GGUF](https://huggingface.co/mradermacher/Llama-2-50-ROME-pl-FINAL-GGUF/resolve/main/Llama-2-50-ROME-pl-FINAL.Q6_K.gguf) | Q6_K | 5.6 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Llama-2-50-ROME-pl-FINAL-GGUF/resolve/main/Llama-2-50-ROME-pl-FINAL.Q8_0.gguf) | Q8_0 | 7.3 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Llama-2-50-ROME-pl-FINAL-GGUF/resolve/main/Llama-2-50-ROME-pl-FINAL.f16.gguf) | f16 | 13.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
jan-hq/Llama3.1-s-instruct-2024-08-19-epoch-4
jan-hq
2024-08-20T11:42:52Z
5
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-08-20T11:27:44Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Nekuromento/Llama-3.1-WhiteRabbitNeo-2-8B-Q4_K_M-GGUF
Nekuromento
2024-08-20T11:42:18Z
9
1
null
[ "gguf", "Llama-3", "finetune", "llama-cpp", "gguf-my-repo", "base_model:WhiteRabbitNeo/Llama-3.1-WhiteRabbitNeo-2-8B", "base_model:quantized:WhiteRabbitNeo/Llama-3.1-WhiteRabbitNeo-2-8B", "license:llama3.1", "endpoints_compatible", "region:us", "conversational" ]
null
2024-08-20T11:41:39Z
--- base_model: WhiteRabbitNeo/Llama-3.1-WhiteRabbitNeo-2-8B license: llama3.1 tags: - Llama-3 - finetune - llama-cpp - gguf-my-repo --- # Nekuromento/Llama-3.1-WhiteRabbitNeo-2-8B-Q4_K_M-GGUF This model was converted to GGUF format from [`WhiteRabbitNeo/Llama-3.1-WhiteRabbitNeo-2-8B`](https://huggingface.co/WhiteRabbitNeo/Llama-3.1-WhiteRabbitNeo-2-8B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/WhiteRabbitNeo/Llama-3.1-WhiteRabbitNeo-2-8B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Nekuromento/Llama-3.1-WhiteRabbitNeo-2-8B-Q4_K_M-GGUF --hf-file llama-3.1-whiterabbitneo-2-8b-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Nekuromento/Llama-3.1-WhiteRabbitNeo-2-8B-Q4_K_M-GGUF --hf-file llama-3.1-whiterabbitneo-2-8b-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Nekuromento/Llama-3.1-WhiteRabbitNeo-2-8B-Q4_K_M-GGUF --hf-file llama-3.1-whiterabbitneo-2-8b-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Nekuromento/Llama-3.1-WhiteRabbitNeo-2-8B-Q4_K_M-GGUF --hf-file llama-3.1-whiterabbitneo-2-8b-q4_k_m.gguf -c 2048 ```
Nekuromento/Llama-3.1-WhiteRabbitNeo-2-8B-Q5_K_M-GGUF
Nekuromento
2024-08-20T11:39:02Z
5
0
null
[ "gguf", "Llama-3", "finetune", "llama-cpp", "gguf-my-repo", "base_model:WhiteRabbitNeo/Llama-3.1-WhiteRabbitNeo-2-8B", "base_model:quantized:WhiteRabbitNeo/Llama-3.1-WhiteRabbitNeo-2-8B", "license:llama3.1", "endpoints_compatible", "region:us", "conversational" ]
null
2024-08-20T11:38:17Z
--- base_model: WhiteRabbitNeo/Llama-3.1-WhiteRabbitNeo-2-8B license: llama3.1 tags: - Llama-3 - finetune - llama-cpp - gguf-my-repo --- # Nekuromento/Llama-3.1-WhiteRabbitNeo-2-8B-Q5_K_M-GGUF This model was converted to GGUF format from [`WhiteRabbitNeo/Llama-3.1-WhiteRabbitNeo-2-8B`](https://huggingface.co/WhiteRabbitNeo/Llama-3.1-WhiteRabbitNeo-2-8B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/WhiteRabbitNeo/Llama-3.1-WhiteRabbitNeo-2-8B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Nekuromento/Llama-3.1-WhiteRabbitNeo-2-8B-Q5_K_M-GGUF --hf-file llama-3.1-whiterabbitneo-2-8b-q5_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Nekuromento/Llama-3.1-WhiteRabbitNeo-2-8B-Q5_K_M-GGUF --hf-file llama-3.1-whiterabbitneo-2-8b-q5_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Nekuromento/Llama-3.1-WhiteRabbitNeo-2-8B-Q5_K_M-GGUF --hf-file llama-3.1-whiterabbitneo-2-8b-q5_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Nekuromento/Llama-3.1-WhiteRabbitNeo-2-8B-Q5_K_M-GGUF --hf-file llama-3.1-whiterabbitneo-2-8b-q5_k_m.gguf -c 2048 ```
KoichiYasuoka/roberta-small-belarusian-upos
KoichiYasuoka
2024-08-20T11:35:58Z
8
2
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "belarusian", "pos", "dependency-parsing", "be", "dataset:universal_dependencies", "base_model:KoichiYasuoka/roberta-small-belarusian", "base_model:finetune:KoichiYasuoka/roberta-small-belarusian", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-17T08:01:31Z
--- language: - "be" tags: - "belarusian" - "token-classification" - "pos" - "dependency-parsing" base_model: KoichiYasuoka/roberta-small-belarusian datasets: - "universal_dependencies" license: "cc-by-sa-4.0" pipeline_tag: "token-classification" --- # roberta-small-belarusian-upos ## Model Description This is a RoBERTa model pre-trained with [UD_Belarusian](https://universaldependencies.org/be/) for POS-tagging and dependency-parsing, derived from [roberta-small-belarusian](https://huggingface.co/KoichiYasuoka/roberta-small-belarusian). Every word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech) and [FEATS](https://universaldependencies.org/u/feat/). ## How to Use ```py from transformers import AutoTokenizer,AutoModelForTokenClassification tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-small-belarusian-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/roberta-small-belarusian-upos") ``` or ``` import esupar nlp=esupar.load("KoichiYasuoka/roberta-small-belarusian-upos") ``` ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
KoichiYasuoka/deberta-base-korean-morph-upos
KoichiYasuoka
2024-08-20T11:23:59Z
120
0
transformers
[ "transformers", "pytorch", "deberta-v2", "token-classification", "korean", "pos", "dependency-parsing", "ko", "dataset:universal_dependencies", "base_model:team-lucid/deberta-v3-base-korean", "base_model:finetune:team-lucid/deberta-v3-base-korean", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-11-10T01:48:05Z
--- language: - "ko" tags: - "korean" - "token-classification" - "pos" - "dependency-parsing" base_model: team-lucid/deberta-v3-base-korean datasets: - "universal_dependencies" license: "apache-2.0" pipeline_tag: "token-classification" widget: - text: "ํ™์‹œ ๋ง›์ด ๋‚˜์„œ ํ™์‹œ๋ผ ์ƒ๊ฐํ•œ๋‹ค." - text: "็ด…ๆŸน ๋ง›์ด ๋‚˜์„œ ็ด…ๆŸน๋ผ ็”Ÿ่ฆบํ•œ๋‹ค." --- # deberta-base-korean-morph-upos ## Model Description This is a DeBERTa(V3) model pre-trained on Korean texts for POS-tagging and dependency-parsing, derived from [deberta-v3-base-korean](https://huggingface.co/team-lucid/deberta-v3-base-korean) and [morphUD-korean](https://github.com/jungyeul/morphUD-korean). Every morpheme (ํ˜•ํƒœ์†Œ) is tagged by [UPOS](https://universaldependencies.org/u/pos/)(Universal Part-Of-Speech). ## How to Use ```py from transformers import AutoTokenizer,AutoModelForTokenClassification,TokenClassificationPipeline tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/deberta-base-korean-morph-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/deberta-base-korean-morph-upos") pipeline=TokenClassificationPipeline(tokenizer=tokenizer,model=model,aggregation_strategy="simple") nlp=lambda x:[(x[t["start"]:t["end"]],t["entity_group"]) for t in pipeline(x)] print(nlp("ํ™์‹œ ๋ง›์ด ๋‚˜์„œ ํ™์‹œ๋ผ ์ƒ๊ฐํ•œ๋‹ค.")) ``` or ```py import esupar nlp=esupar.load("KoichiYasuoka/deberta-base-korean-morph-upos") print(nlp("ํ™์‹œ ๋ง›์ด ๋‚˜์„œ ํ™์‹œ๋ผ ์ƒ๊ฐํ•œ๋‹ค.")) ``` ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
mradermacher/Bitnet-SmolLM-135M-GGUF
mradermacher
2024-08-20T11:18:13Z
72
0
transformers
[ "transformers", "gguf", "en", "dataset:abideen/Cosmopedia-100k-pretrain", "base_model:ighoshsubho/Bitnet-SmolLM-135M", "base_model:quantized:ighoshsubho/Bitnet-SmolLM-135M", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-08-20T11:11:15Z
--- base_model: ighoshsubho/Bitnet-SmolLM-135M datasets: - abideen/Cosmopedia-100k-pretrain language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/ighoshsubho/Bitnet-SmolLM-135M <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Bitnet-SmolLM-135M-GGUF/resolve/main/Bitnet-SmolLM-135M.Q2_K.gguf) | Q2_K | 0.1 | | | [GGUF](https://huggingface.co/mradermacher/Bitnet-SmolLM-135M-GGUF/resolve/main/Bitnet-SmolLM-135M.IQ3_XS.gguf) | IQ3_XS | 0.1 | | | [GGUF](https://huggingface.co/mradermacher/Bitnet-SmolLM-135M-GGUF/resolve/main/Bitnet-SmolLM-135M.IQ3_S.gguf) | IQ3_S | 0.1 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Bitnet-SmolLM-135M-GGUF/resolve/main/Bitnet-SmolLM-135M.Q3_K_S.gguf) | Q3_K_S | 0.1 | | | [GGUF](https://huggingface.co/mradermacher/Bitnet-SmolLM-135M-GGUF/resolve/main/Bitnet-SmolLM-135M.IQ3_M.gguf) | IQ3_M | 0.1 | | | [GGUF](https://huggingface.co/mradermacher/Bitnet-SmolLM-135M-GGUF/resolve/main/Bitnet-SmolLM-135M.Q3_K_M.gguf) | Q3_K_M | 0.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Bitnet-SmolLM-135M-GGUF/resolve/main/Bitnet-SmolLM-135M.IQ4_XS.gguf) | IQ4_XS | 0.1 | | | [GGUF](https://huggingface.co/mradermacher/Bitnet-SmolLM-135M-GGUF/resolve/main/Bitnet-SmolLM-135M.Q3_K_L.gguf) | Q3_K_L | 0.1 | | | [GGUF](https://huggingface.co/mradermacher/Bitnet-SmolLM-135M-GGUF/resolve/main/Bitnet-SmolLM-135M.Q4_K_S.gguf) | Q4_K_S | 0.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Bitnet-SmolLM-135M-GGUF/resolve/main/Bitnet-SmolLM-135M.Q4_K_M.gguf) | Q4_K_M | 0.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Bitnet-SmolLM-135M-GGUF/resolve/main/Bitnet-SmolLM-135M.Q5_K_S.gguf) | Q5_K_S | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/Bitnet-SmolLM-135M-GGUF/resolve/main/Bitnet-SmolLM-135M.Q5_K_M.gguf) | Q5_K_M | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/Bitnet-SmolLM-135M-GGUF/resolve/main/Bitnet-SmolLM-135M.Q6_K.gguf) | Q6_K | 0.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Bitnet-SmolLM-135M-GGUF/resolve/main/Bitnet-SmolLM-135M.Q8_0.gguf) | Q8_0 | 0.2 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Bitnet-SmolLM-135M-GGUF/resolve/main/Bitnet-SmolLM-135M.f16.gguf) | f16 | 0.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mindsignal/upstage-SOLAR-10.7B-Instruct-v1.0-4bit-financesinfo-ver2
mindsignal
2024-08-20T11:14:20Z
6
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-08-20T11:10:48Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
KoichiYasuoka/bert-large-japanese-unidic-luw-upos
KoichiYasuoka
2024-08-20T11:13:43Z
109
2
transformers
[ "transformers", "pytorch", "bert", "token-classification", "japanese", "pos", "wikipedia", "dependency-parsing", "ja", "dataset:universal_dependencies", "base_model:tohoku-nlp/bert-large-japanese", "base_model:finetune:tohoku-nlp/bert-large-japanese", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- language: - "ja" tags: - "japanese" - "token-classification" - "pos" - "wikipedia" - "dependency-parsing" base_model: tohoku-nlp/bert-large-japanese datasets: - "universal_dependencies" license: "cc-by-sa-4.0" pipeline_tag: "token-classification" widget: - text: "ๅ›ฝๅขƒใฎ้•ทใ„ใƒˆใƒณใƒใƒซใ‚’ๆŠœใ‘ใ‚‹ใจ้›ชๅ›ฝใงใ‚ใฃใŸใ€‚" --- # bert-large-japanese-unidic-luw-upos ## Model Description This is a BERT model pre-trained on Japanese Wikipedia texts for POS-tagging and dependency-parsing, derived from [bert-large-japanese](https://huggingface.co/tohoku-nlp/bert-large-japanese). Every long-unit-word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech). ## How to Use ```py import torch from transformers import AutoTokenizer,AutoModelForTokenClassification tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/bert-large-japanese-unidic-luw-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/bert-large-japanese-unidic-luw-upos") s="ๅ›ฝๅขƒใฎ้•ทใ„ใƒˆใƒณใƒใƒซใ‚’ๆŠœใ‘ใ‚‹ใจ้›ชๅ›ฝใงใ‚ใฃใŸใ€‚" t=tokenizer.tokenize(s) p=[model.config.id2label[q] for q in torch.argmax(model(tokenizer.encode(s,return_tensors="pt"))["logits"],dim=2)[0].tolist()[1:-1]] print(list(zip(t,p))) ``` or ```py import esupar nlp=esupar.load("KoichiYasuoka/bert-large-japanese-unidic-luw-upos") print(nlp("ๅ›ฝๅขƒใฎ้•ทใ„ใƒˆใƒณใƒใƒซใ‚’ๆŠœใ‘ใ‚‹ใจ้›ชๅ›ฝใงใ‚ใฃใŸใ€‚")) ``` [fugashi](https://pypi.org/project/fugashi) and [unidic-lite](https://pypi.org/project/unidic-lite) are required. ## Reference ๅฎ‰ๅฒกๅญไธ€: [Transformersใจๅ›ฝ่ชž็ ”้•ทๅ˜ไฝใซใ‚ˆใ‚‹ๆ—ฅๆœฌ่ชžไฟ‚ใ‚Šๅ—ใ‘่งฃๆžใƒขใƒ‡ใƒซใฎ่ฃฝไฝœ](http://id.nii.ac.jp/1001/00216223/), ๆƒ…ๅ ฑๅ‡ฆ็†ๅญฆไผš็ ”็ฉถๅ ฑๅ‘Š, Vol.2022-CH-128, No.7 (2022ๅนด2ๆœˆ), pp.1-8. ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
mradermacher/3-goldfish-loss-llama-1B-GGUF
mradermacher
2024-08-20T11:12:16Z
103
0
transformers
[ "transformers", "gguf", "goldfish-loss", "memorization", "mitigation", "en", "dataset:tomg-group-umd/wikipedia-en-2k-samples", "base_model:tomg-group-umd/3-goldfish-loss-llama-1B", "base_model:quantized:tomg-group-umd/3-goldfish-loss-llama-1B", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-08-20T11:07:07Z
--- base_model: tomg-group-umd/3-goldfish-loss-llama-1B datasets: - tomg-group-umd/wikipedia-en-2k-samples language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - goldfish-loss - memorization - mitigation --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/tomg-group-umd/3-goldfish-loss-llama-1B <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/3-goldfish-loss-llama-1B-GGUF/resolve/main/3-goldfish-loss-llama-1B.Q2_K.gguf) | Q2_K | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/3-goldfish-loss-llama-1B-GGUF/resolve/main/3-goldfish-loss-llama-1B.IQ3_XS.gguf) | IQ3_XS | 0.6 | | | [GGUF](https://huggingface.co/mradermacher/3-goldfish-loss-llama-1B-GGUF/resolve/main/3-goldfish-loss-llama-1B.Q3_K_S.gguf) | Q3_K_S | 0.6 | | | [GGUF](https://huggingface.co/mradermacher/3-goldfish-loss-llama-1B-GGUF/resolve/main/3-goldfish-loss-llama-1B.IQ3_S.gguf) | IQ3_S | 0.6 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/3-goldfish-loss-llama-1B-GGUF/resolve/main/3-goldfish-loss-llama-1B.IQ3_M.gguf) | IQ3_M | 0.6 | | | [GGUF](https://huggingface.co/mradermacher/3-goldfish-loss-llama-1B-GGUF/resolve/main/3-goldfish-loss-llama-1B.Q3_K_M.gguf) | Q3_K_M | 0.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/3-goldfish-loss-llama-1B-GGUF/resolve/main/3-goldfish-loss-llama-1B.Q3_K_L.gguf) | Q3_K_L | 0.7 | | | [GGUF](https://huggingface.co/mradermacher/3-goldfish-loss-llama-1B-GGUF/resolve/main/3-goldfish-loss-llama-1B.IQ4_XS.gguf) | IQ4_XS | 0.7 | | | [GGUF](https://huggingface.co/mradermacher/3-goldfish-loss-llama-1B-GGUF/resolve/main/3-goldfish-loss-llama-1B.Q4_K_S.gguf) | Q4_K_S | 0.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/3-goldfish-loss-llama-1B-GGUF/resolve/main/3-goldfish-loss-llama-1B.Q4_K_M.gguf) | Q4_K_M | 0.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/3-goldfish-loss-llama-1B-GGUF/resolve/main/3-goldfish-loss-llama-1B.Q5_K_S.gguf) | Q5_K_S | 0.9 | | | [GGUF](https://huggingface.co/mradermacher/3-goldfish-loss-llama-1B-GGUF/resolve/main/3-goldfish-loss-llama-1B.Q5_K_M.gguf) | Q5_K_M | 0.9 | | | [GGUF](https://huggingface.co/mradermacher/3-goldfish-loss-llama-1B-GGUF/resolve/main/3-goldfish-loss-llama-1B.Q6_K.gguf) | Q6_K | 1.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/3-goldfish-loss-llama-1B-GGUF/resolve/main/3-goldfish-loss-llama-1B.Q8_0.gguf) | Q8_0 | 1.3 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/3-goldfish-loss-llama-1B-GGUF/resolve/main/3-goldfish-loss-llama-1B.f16.gguf) | f16 | 2.3 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
KoichiYasuoka/bert-base-japanese-unidic-luw-upos
KoichiYasuoka
2024-08-20T11:11:51Z
121
1
transformers
[ "transformers", "pytorch", "bert", "token-classification", "japanese", "pos", "wikipedia", "dependency-parsing", "ja", "dataset:universal_dependencies", "base_model:tohoku-nlp/bert-base-japanese-v2", "base_model:finetune:tohoku-nlp/bert-base-japanese-v2", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- language: - "ja" tags: - "japanese" - "token-classification" - "pos" - "wikipedia" - "dependency-parsing" base_model: tohoku-nlp/bert-base-japanese-v2 datasets: - "universal_dependencies" license: "cc-by-sa-4.0" pipeline_tag: "token-classification" widget: - text: "ๅ›ฝๅขƒใฎ้•ทใ„ใƒˆใƒณใƒใƒซใ‚’ๆŠœใ‘ใ‚‹ใจ้›ชๅ›ฝใงใ‚ใฃใŸใ€‚" --- # bert-base-japanese-unidic-luw-upos ## Model Description This is a BERT model pre-trained on Japanese Wikipedia texts for POS-tagging and dependency-parsing, derived from [bert-base-japanese-v2](https://huggingface.co/tohoku-nlp/bert-base-japanese-v2). Every long-unit-word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech). ## How to Use ```py import torch from transformers import AutoTokenizer,AutoModelForTokenClassification tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/bert-base-japanese-unidic-luw-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/bert-base-japanese-unidic-luw-upos") s="ๅ›ฝๅขƒใฎ้•ทใ„ใƒˆใƒณใƒใƒซใ‚’ๆŠœใ‘ใ‚‹ใจ้›ชๅ›ฝใงใ‚ใฃใŸใ€‚" t=tokenizer.tokenize(s) p=[model.config.id2label[q] for q in torch.argmax(model(tokenizer.encode(s,return_tensors="pt"))["logits"],dim=2)[0].tolist()[1:-1]] print(list(zip(t,p))) ``` or ```py import esupar nlp=esupar.load("KoichiYasuoka/bert-base-japanese-unidic-luw-upos") print(nlp("ๅ›ฝๅขƒใฎ้•ทใ„ใƒˆใƒณใƒใƒซใ‚’ๆŠœใ‘ใ‚‹ใจ้›ชๅ›ฝใงใ‚ใฃใŸใ€‚")) ``` [fugashi](https://pypi.org/project/fugashi) and [unidic-lite](https://pypi.org/project/unidic-lite) are required. ## Reference ๅฎ‰ๅฒกๅญไธ€: [Transformersใจๅ›ฝ่ชž็ ”้•ทๅ˜ไฝใซใ‚ˆใ‚‹ๆ—ฅๆœฌ่ชžไฟ‚ใ‚Šๅ—ใ‘่งฃๆžใƒขใƒ‡ใƒซใฎ่ฃฝไฝœ](http://id.nii.ac.jp/1001/00216223/), ๆƒ…ๅ ฑๅ‡ฆ็†ๅญฆไผš็ ”็ฉถๅ ฑๅ‘Š, Vol.2022-CH-128, No.7 (2022ๅนด2ๆœˆ), pp.1-8. ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
mradermacher/mistral-12b-neptune-6k-instruct-GGUF
mradermacher
2024-08-20T11:11:31Z
46
1
transformers
[ "transformers", "gguf", "en", "base_model:Pirr/mistral-12b-neptune-6k-instruct", "base_model:quantized:Pirr/mistral-12b-neptune-6k-instruct", "endpoints_compatible", "region:us", "conversational" ]
null
2024-08-20T06:33:00Z
--- base_model: Pirr/mistral-12b-neptune-6k-instruct language: - en library_name: transformers quantized_by: mradermacher tags: [] --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/Pirr/mistral-12b-neptune-6k-instruct <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/mistral-12b-neptune-6k-instruct-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/mistral-12b-neptune-6k-instruct-GGUF/resolve/main/mistral-12b-neptune-6k-instruct.Q2_K.gguf) | Q2_K | 4.9 | | | [GGUF](https://huggingface.co/mradermacher/mistral-12b-neptune-6k-instruct-GGUF/resolve/main/mistral-12b-neptune-6k-instruct.IQ3_XS.gguf) | IQ3_XS | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/mistral-12b-neptune-6k-instruct-GGUF/resolve/main/mistral-12b-neptune-6k-instruct.Q3_K_S.gguf) | Q3_K_S | 5.6 | | | [GGUF](https://huggingface.co/mradermacher/mistral-12b-neptune-6k-instruct-GGUF/resolve/main/mistral-12b-neptune-6k-instruct.IQ3_S.gguf) | IQ3_S | 5.7 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/mistral-12b-neptune-6k-instruct-GGUF/resolve/main/mistral-12b-neptune-6k-instruct.IQ3_M.gguf) | IQ3_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/mistral-12b-neptune-6k-instruct-GGUF/resolve/main/mistral-12b-neptune-6k-instruct.Q3_K_M.gguf) | Q3_K_M | 6.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/mistral-12b-neptune-6k-instruct-GGUF/resolve/main/mistral-12b-neptune-6k-instruct.Q3_K_L.gguf) | Q3_K_L | 6.7 | | | [GGUF](https://huggingface.co/mradermacher/mistral-12b-neptune-6k-instruct-GGUF/resolve/main/mistral-12b-neptune-6k-instruct.IQ4_XS.gguf) | IQ4_XS | 6.9 | | | [GGUF](https://huggingface.co/mradermacher/mistral-12b-neptune-6k-instruct-GGUF/resolve/main/mistral-12b-neptune-6k-instruct.Q4_K_S.gguf) | Q4_K_S | 7.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/mistral-12b-neptune-6k-instruct-GGUF/resolve/main/mistral-12b-neptune-6k-instruct.Q4_K_M.gguf) | Q4_K_M | 7.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/mistral-12b-neptune-6k-instruct-GGUF/resolve/main/mistral-12b-neptune-6k-instruct.Q5_K_S.gguf) | Q5_K_S | 8.6 | | | [GGUF](https://huggingface.co/mradermacher/mistral-12b-neptune-6k-instruct-GGUF/resolve/main/mistral-12b-neptune-6k-instruct.Q5_K_M.gguf) | Q5_K_M | 8.8 | | | [GGUF](https://huggingface.co/mradermacher/mistral-12b-neptune-6k-instruct-GGUF/resolve/main/mistral-12b-neptune-6k-instruct.Q6_K.gguf) | Q6_K | 10.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/mistral-12b-neptune-6k-instruct-GGUF/resolve/main/mistral-12b-neptune-6k-instruct.Q8_0.gguf) | Q8_0 | 13.1 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
KasuleTrevor/wav2vec2-xls-r-300m-nyn_filtered-yogera-v3
KasuleTrevor
2024-08-20T11:11:27Z
6
0
transformers
[ "transformers", "safetensors", "wav2vec2", "automatic-speech-recognition", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-08-19T00:33:09Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
KoichiYasuoka/deberta-large-japanese-unidic-ud-head
KoichiYasuoka
2024-08-20T11:10:26Z
105
0
transformers
[ "transformers", "pytorch", "deberta-v2", "question-answering", "japanese", "dependency-parsing", "ja", "dataset:universal_dependencies", "base_model:KoichiYasuoka/deberta-large-japanese-unidic", "base_model:finetune:KoichiYasuoka/deberta-large-japanese-unidic", "license:cc-by-sa-4.0", "endpoints_compatible", "region:us" ]
question-answering
2022-06-19T00:10:56Z
--- language: - "ja" tags: - "japanese" - "question-answering" - "dependency-parsing" base_model: KoichiYasuoka/deberta-large-japanese-unidic datasets: - "universal_dependencies" license: "cc-by-sa-4.0" pipeline_tag: "question-answering" inference: parameters: align_to_words: false widget: - text: "ๅ›ฝ่ชž" context: "ๅ…จๅญฆๅนดใซใ‚ใŸใฃใฆๅฐๅญฆๆ กใฎๅ›ฝ่ชžใฎๆ•™็ง‘ๆ›ธใซๆŒฟใ—็ตตใŒ็”จใ„ใ‚‰ใ‚Œใฆใ„ใ‚‹" - text: "ๆ•™็ง‘ๆ›ธ" context: "ๅ…จๅญฆๅนดใซใ‚ใŸใฃใฆๅฐๅญฆๆ กใฎๅ›ฝ่ชžใฎๆ•™็ง‘ๆ›ธใซๆŒฟใ—็ตตใŒ็”จใ„ใ‚‰ใ‚Œใฆใ„ใ‚‹" - text: "ใฎ" context: "ๅ…จๅญฆๅนดใซใ‚ใŸใฃใฆๅฐๅญฆๆ กใฎๅ›ฝ่ชž[MASK]ๆ•™็ง‘ๆ›ธใซๆŒฟใ—็ตตใŒ็”จใ„ใ‚‰ใ‚Œใฆใ„ใ‚‹" --- # deberta-large-japanese-unidic-ud-head ## Model Description This is a DeBERTa(V2) model pretrained on ้’็ฉบๆ–‡ๅบซ for dependency-parsing (head-detection on long-unit-words) as question-answering, derived from [deberta-large-japanese-unidic](https://huggingface.co/KoichiYasuoka/deberta-large-japanese-unidic) and [UD_Japanese-GSDLUW](https://github.com/UniversalDependencies/UD_Japanese-GSDLUW). Use [MASK] inside `context` to avoid ambiguity when specifying a multiple-used word as `question`. ## How to Use ```py import torch from transformers import AutoTokenizer,AutoModelForQuestionAnswering tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/deberta-large-japanese-unidic-ud-head") model=AutoModelForQuestionAnswering.from_pretrained("KoichiYasuoka/deberta-large-japanese-unidic-ud-head") question="ๅ›ฝ่ชž" context="ๅ…จๅญฆๅนดใซใ‚ใŸใฃใฆๅฐๅญฆๆ กใฎๅ›ฝ่ชžใฎๆ•™็ง‘ๆ›ธใซๆŒฟใ—็ตตใŒ็”จใ„ใ‚‰ใ‚Œใฆใ„ใ‚‹" inputs=tokenizer(question,context,return_tensors="pt") outputs=model(**inputs) start,end=torch.argmax(outputs.start_logits),torch.argmax(outputs.end_logits) print(tokenizer.convert_ids_to_tokens(inputs["input_ids"][0,start:end+1])) ``` or ```py from transformers import (AutoTokenizer,AutoModelForQuestionAnswering, AutoModelForTokenClassification,AutoConfig,TokenClassificationPipeline) class TaggerPipeline(TokenClassificationPipeline): def __call__(self,text): d=super().__call__(text) if len(d)>0 and ("start" not in d[0] or d[0]["start"]==None): import spacy_alignments as tokenizations v=[x["word"].replace(" ","") for x in d] a2b,b2a=tokenizations.get_alignments(v,text) for i,t in enumerate(a2b): s,e=(0,0) if t==[] else (t[0],t[-1]+1) if v[i].startswith(self.tokenizer.unk_token): s=([[-1]]+[x for x in a2b[0:i] if x>[]])[-1][-1]+1 if v[i].endswith(self.tokenizer.unk_token): e=([x for x in a2b[i+1:] if x>[]]+[[len(text)]])[0][0] d[i]["start"],d[i]["end"]=s,e return d class TransformersSlowUD(object): def __init__(self,bert): import os self.tokenizer=AutoTokenizer.from_pretrained(bert) self.model=AutoModelForQuestionAnswering.from_pretrained(bert) x=AutoModelForTokenClassification.from_pretrained if os.path.isdir(bert): d,t=x(os.path.join(bert,"deprel")),x(os.path.join(bert,"tagger")) else: from transformers.utils import cached_file c=AutoConfig.from_pretrained(cached_file(bert,"deprel/config.json")) d=x(cached_file(bert,"deprel/pytorch_model.bin"),config=c) s=AutoConfig.from_pretrained(cached_file(bert,"tagger/config.json")) t=x(cached_file(bert,"tagger/pytorch_model.bin"),config=s) self.deprel=TaggerPipeline(model=d,tokenizer=self.tokenizer, aggregation_strategy="simple") self.tagger=TaggerPipeline(model=t,tokenizer=self.tokenizer) def __call__(self,text): import numpy,torch,ufal.chu_liu_edmonds w=[(t["start"],t["end"],t["entity_group"]) for t in self.deprel(text)] z,n={t["start"]:t["entity"].split("|") for t in self.tagger(text)},len(w) r,m=[text[s:e] for s,e,p in w],numpy.full((n+1,n+1),numpy.nan) v,c=self.tokenizer(r,add_special_tokens=False)["input_ids"],[] for i,t in enumerate(v): q=[self.tokenizer.cls_token_id]+t+[self.tokenizer.sep_token_id] c.append([q]+v[0:i]+[[self.tokenizer.mask_token_id]]+v[i+1:]+[[q[-1]]]) b=[[len(sum(x[0:j+1],[])) for j in range(len(x))] for x in c] with torch.no_grad(): d=self.model(input_ids=torch.tensor([sum(x,[]) for x in c]), token_type_ids=torch.tensor([[0]*x[0]+[1]*(x[-1]-x[0]) for x in b])) s,e=d.start_logits.tolist(),d.end_logits.tolist() for i in range(n): for j in range(n): m[i+1,0 if i==j else j+1]=s[i][b[i][j]]+e[i][b[i][j+1]-1] h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0] if [0 for i in h if i==0]!=[0]: i=([p for s,e,p in w]+["root"]).index("root") j=i+1 if i<n else numpy.nanargmax(m[:,0]) m[0:j,0]=m[j+1:,0]=numpy.nan h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0] u="# text = "+text.replace("\n"," ")+"\n" for i,(s,e,p) in enumerate(w,1): p="root" if h[i]==0 else "dep" if p=="root" else p u+="\t".join([str(i),r[i-1],"_",z[s][0][2:],"_","|".join(z[s][1:]), str(h[i]),p,"_","_" if i<n and e<w[i][0] else "SpaceAfter=No"])+"\n" return u+"\n" nlp=TransformersSlowUD("KoichiYasuoka/deberta-large-japanese-unidic-ud-head") print(nlp("ๅ…จๅญฆๅนดใซใ‚ใŸใฃใฆๅฐๅญฆๆ กใฎๅ›ฝ่ชžใฎๆ•™็ง‘ๆ›ธใซๆŒฟใ—็ตตใŒ็”จใ„ใ‚‰ใ‚Œใฆใ„ใ‚‹")) ``` [fugashi](https://pypi.org/project/fugashi) [unidic-lite](https://pypi.org/project/unidic-lite) [spacy-alignments](https://pypi.org/project/spacy-alignments) and [ufal.chu-liu-edmonds](https://pypi.org/project/ufal.chu-liu-edmonds/) required.
mradermacher/Llama-3.1-Storm-8B-i1-GGUF
mradermacher
2024-08-20T11:02:38Z
89
3
transformers
[ "transformers", "gguf", "llama-3.1", "conversational", "instruction following", "reasoning", "function calling", "mergekit", "finetuning", "axolotl", "en", "de", "fr", "it", "pt", "hi", "es", "th", "base_model:akjindal53244/Llama-3.1-Storm-8B", "base_model:quantized:akjindal53244/Llama-3.1-Storm-8B", "license:llama3.1", "endpoints_compatible", "region:us", "imatrix" ]
null
2024-08-20T06:18:35Z
--- base_model: akjindal53244/Llama-3.1-Storm-8B language: - en - de - fr - it - pt - hi - es - th library_name: transformers license: llama3.1 quantized_by: mradermacher tags: - llama-3.1 - conversational - instruction following - reasoning - function calling - mergekit - finetuning - axolotl --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/akjindal53244/Llama-3.1-Storm-8B <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Llama-3.1-Storm-8B-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-Storm-8B-i1-GGUF/resolve/main/Llama-3.1-Storm-8B.i1-IQ1_S.gguf) | i1-IQ1_S | 2.1 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-Storm-8B-i1-GGUF/resolve/main/Llama-3.1-Storm-8B.i1-IQ1_M.gguf) | i1-IQ1_M | 2.3 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-Storm-8B-i1-GGUF/resolve/main/Llama-3.1-Storm-8B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.5 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-Storm-8B-i1-GGUF/resolve/main/Llama-3.1-Storm-8B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.7 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-Storm-8B-i1-GGUF/resolve/main/Llama-3.1-Storm-8B.i1-IQ2_S.gguf) | i1-IQ2_S | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-Storm-8B-i1-GGUF/resolve/main/Llama-3.1-Storm-8B.i1-IQ2_M.gguf) | i1-IQ2_M | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-Storm-8B-i1-GGUF/resolve/main/Llama-3.1-Storm-8B.i1-Q2_K.gguf) | i1-Q2_K | 3.3 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-Storm-8B-i1-GGUF/resolve/main/Llama-3.1-Storm-8B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 3.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-Storm-8B-i1-GGUF/resolve/main/Llama-3.1-Storm-8B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-Storm-8B-i1-GGUF/resolve/main/Llama-3.1-Storm-8B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.8 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-Storm-8B-i1-GGUF/resolve/main/Llama-3.1-Storm-8B.i1-IQ3_S.gguf) | i1-IQ3_S | 3.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-Storm-8B-i1-GGUF/resolve/main/Llama-3.1-Storm-8B.i1-IQ3_M.gguf) | i1-IQ3_M | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-Storm-8B-i1-GGUF/resolve/main/Llama-3.1-Storm-8B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 4.1 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-Storm-8B-i1-GGUF/resolve/main/Llama-3.1-Storm-8B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 4.4 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-Storm-8B-i1-GGUF/resolve/main/Llama-3.1-Storm-8B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.5 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-Storm-8B-i1-GGUF/resolve/main/Llama-3.1-Storm-8B.i1-Q4_0.gguf) | i1-Q4_0 | 4.8 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-Storm-8B-i1-GGUF/resolve/main/Llama-3.1-Storm-8B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.8 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-Storm-8B-i1-GGUF/resolve/main/Llama-3.1-Storm-8B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-Storm-8B-i1-GGUF/resolve/main/Llama-3.1-Storm-8B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-Storm-8B-i1-GGUF/resolve/main/Llama-3.1-Storm-8B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-Storm-8B-i1-GGUF/resolve/main/Llama-3.1-Storm-8B.i1-Q6_K.gguf) | i1-Q6_K | 6.7 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
shreedharsmurnal/Meta-Llama-3.1-8B-supervised-Instruction-fine-tuned
shreedharsmurnal
2024-08-20T10:53:53Z
76
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "trl", "sft", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-08-20T10:33:14Z
--- library_name: transformers tags: - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
KoichiYasuoka/roberta-base-thai-spm-ud-head
KoichiYasuoka
2024-08-20T10:53:42Z
126
0
transformers
[ "transformers", "pytorch", "roberta", "question-answering", "thai", "dependency-parsing", "th", "dataset:universal_dependencies", "base_model:KoichiYasuoka/roberta-base-thai-spm", "base_model:finetune:KoichiYasuoka/roberta-base-thai-spm", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-07-16T15:00:05Z
--- language: - "th" tags: - "thai" - "question-answering" - "dependency-parsing" base_model: KoichiYasuoka/roberta-base-thai-spm datasets: - "universal_dependencies" license: "apache-2.0" pipeline_tag: "question-answering" inference: parameters: align_to_words: false widget: - text: "เธเธงเนˆเธฒ" context: "เธซเธฅเธฒเธขเธซเธฑเธงเธ”เธตเธเธงเนˆเธฒเธซเธฑเธงเน€เธ”เธตเธขเธง" - text: "เธซเธฅเธฒเธข" context: "เธซเธฅเธฒเธขเธซเธฑเธงเธ”เธตเธเธงเนˆเธฒเธซเธฑเธงเน€เธ”เธตเธขเธง" - text: "เธซเธฑเธง" context: "เธซเธฅเธฒเธข[MASK]เธ”เธตเธเธงเนˆเธฒเธซเธฑเธงเน€เธ”เธตเธขเธง" --- # roberta-base-thai-spm-ud-head ## Model Description This is a DeBERTa(V2) model pretrained on Thai Wikipedia texts for dependency-parsing (head-detection on Universal Dependencies) as question-answering, derived from [roberta-base-thai-spm](https://huggingface.co/KoichiYasuoka/roberta-base-thai-spm). Use [MASK] inside `context` to avoid ambiguity when specifying a multiple-used word as `question`. ## How to Use ```py from transformers import AutoTokenizer,AutoModelForQuestionAnswering,QuestionAnsweringPipeline tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-base-thai-spm-ud-head") model=AutoModelForQuestionAnswering.from_pretrained("KoichiYasuoka/roberta-base-thai-spm-ud-head") qap=QuestionAnsweringPipeline(tokenizer=tokenizer,model=model,align_to_words=False) print(qap(question="เธเธงเนˆเธฒ",context="เธซเธฅเธฒเธขเธซเธฑเธงเธ”เธตเธเธงเนˆเธฒเธซเธฑเธงเน€เธ”เธตเธขเธง")) ``` or (with [ufal.chu-liu-edmonds](https://pypi.org/project/ufal.chu-liu-edmonds/)) ```py class TransformersUD(object): def __init__(self,bert): import os from transformers import (AutoTokenizer,AutoModelForQuestionAnswering, AutoModelForTokenClassification,AutoConfig,TokenClassificationPipeline) self.tokenizer=AutoTokenizer.from_pretrained(bert) self.model=AutoModelForQuestionAnswering.from_pretrained(bert) x=AutoModelForTokenClassification.from_pretrained if os.path.isdir(bert): d,t=x(os.path.join(bert,"deprel")),x(os.path.join(bert,"tagger")) else: from transformers.utils import cached_file c=AutoConfig.from_pretrained(cached_file(bert,"deprel/config.json")) d=x(cached_file(bert,"deprel/pytorch_model.bin"),config=c) s=AutoConfig.from_pretrained(cached_file(bert,"tagger/config.json")) t=x(cached_file(bert,"tagger/pytorch_model.bin"),config=s) self.deprel=TokenClassificationPipeline(model=d,tokenizer=self.tokenizer, aggregation_strategy="simple") self.tagger=TokenClassificationPipeline(model=t,tokenizer=self.tokenizer) def __call__(self,text): import numpy,torch,ufal.chu_liu_edmonds w=[(t["start"],t["end"],t["entity_group"]) for t in self.deprel(text)] z,n={t["start"]:t["entity"].split("|") for t in self.tagger(text)},len(w) r,m=[text[s:e] for s,e,p in w],numpy.full((n+1,n+1),numpy.nan) v,c=self.tokenizer(r,add_special_tokens=False)["input_ids"],[] for i,t in enumerate(v): q=[self.tokenizer.cls_token_id]+t+[self.tokenizer.sep_token_id] c.append([q]+v[0:i]+[[self.tokenizer.mask_token_id]]+v[i+1:]+[[q[-1]]]) b=[[len(sum(x[0:j+1],[])) for j in range(len(x))] for x in c] with torch.no_grad(): d=self.model(input_ids=torch.tensor([sum(x,[]) for x in c]), token_type_ids=torch.tensor([[0]*x[0]+[1]*(x[-1]-x[0]) for x in b])) s,e=d.start_logits.tolist(),d.end_logits.tolist() for i in range(n): for j in range(n): m[i+1,0 if i==j else j+1]=s[i][b[i][j]]+e[i][b[i][j+1]-1] h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0] if [0 for i in h if i==0]!=[0]: i=([p for s,e,p in w]+["root"]).index("root") j=i+1 if i<n else numpy.nanargmax(m[:,0]) m[0:j,0]=m[j+1:,0]=numpy.nan h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0] u="# text = "+text.replace("\n"," ")+"\n" for i,(s,e,p) in enumerate(w,1): p="root" if h[i]==0 else "dep" if p=="root" else p u+="\t".join([str(i),r[i-1],"_",z[s][0][2:],"_","|".join(z[s][1:]), str(h[i]),p,"_","_" if i<n and e<w[i][0] else "SpaceAfter=No"])+"\n" return u+"\n" nlp=TransformersUD("KoichiYasuoka/roberta-base-thai-spm-ud-head") print(nlp("เธซเธฅเธฒเธขเธซเธฑเธงเธ”เธตเธเธงเนˆเธฒเธซเธฑเธงเน€เธ”เธตเธขเธง")) ```
SicariusSicariiStuff/PygmalionAI_pygmalion-7b-EXL2-8.0bpw
SicariusSicariiStuff
2024-08-20T10:50:45Z
5
0
null
[ "safetensors", "llama", "text generation", "conversational", "text-generation", "en", "8-bit", "exl2", "region:us" ]
text-generation
2024-08-20T10:22:25Z
--- language: - en thumbnail: null tags: - text generation - conversational pipeline_tag: text-generation inference: false --- <h1 style="text-align: center">Pygmalion 7B</h1> <h2 style="text-align: center">A conversational LLaMA fine-tune.</h2> ## Model Details Converted from the XORs weights from PygmalionAI's release https://huggingface.co/PygmalionAI/pygmalion-7b Pygmalion 7B is a dialogue model based on Meta's LLaMA-7B. This is version 1. It has been fine-tuned using a subset of the data from Pygmalion-6B-v8-pt4, for those of you familiar with the project. ## Prompting The model was trained on the usual Pygmalion persona + chat format, so any of the usual UIs should already handle everything correctly. If you're using the model directly, this is the expected formatting: ``` [CHARACTER]'s Persona: [A few sentences about the character you want the model to play] <START> [DIALOGUE HISTORY] You: [User's input message here] [CHARACTER]: ``` Where `[CHARACTER]` is, as you can probably guess, the name of the character you want the model to portray, `<START>` should be used verbatim as a delimiter token to separate persona and scenario data from the dialogue, and `[DIALOGUE HISTORY]` is a sliding window of chat history so the model can have conversational context to draw from. Here's a concrete example: ``` Assistant's Persona: Assistant is a highly intelligent language model trained to comply with user requests. <START> Assistant: Hello! How may I help you today? You: What is Zork? Assistant: ``` Which will generate something like: ``` Zork is an interactive fiction computer game created in the 1970s by Infocom, Inc., which was later acquired by Activision Blizzard. It is widely considered one of the most influential games ever made and has been credited with popularizing text-based adventure games. The original version of Zork was written in the programming language MACRO-10, but it was ported to many other platforms over the years." ``` The model will automatically emit an end-of-text token (`</s>`) when it judges that the response is complete. ## Limitations and biases The intended use-case for this model is fictional conversation for entertainment purposes. Any other sort of usage is out of scope. As such, it was **not** fine-tuned to be safe and harmless: the base model _and_ this fine-tune have been trained on data known to contain profanity and texts that are lewd or otherwise offensive. It may produce socially unacceptable or undesirable text, even if the prompt itself does not include anything explicitly offensive. Outputs might often be factually wrong or misleading. # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Neko-Institute-of-Science__pygmalion-7b) | Metric | Value | |-----------------------|---------------------------| | Avg. | 40.29 | | ARC (25-shot) | 51.37 | | HellaSwag (10-shot) | 77.81 | | MMLU (5-shot) | 35.68 | | TruthfulQA (0-shot) | 34.54 | | Winogrande (5-shot) | 72.22 | | GSM8K (5-shot) | 4.62 | | DROP (3-shot) | 5.79 |
BogdanTurbal/model_roberta_large_d_hate_bias_political_bias_ep_2_6_a_sqn_a_b_p_100_5_v_13
BogdanTurbal
2024-08-20T10:49:50Z
5
0
null
[ "tensorboard", "safetensors", "roberta", "generated_from_trainer", "base_model:BogdanTurbal/model_roberta_large_d_hate_bias_ep_2_sqn_a_p_100_v_13", "base_model:finetune:BogdanTurbal/model_roberta_large_d_hate_bias_ep_2_sqn_a_p_100_v_13", "license:mit", "region:us" ]
null
2024-08-20T10:49:10Z
--- license: mit base_model: BogdanTurbal/model_roberta_large_d_hate_bias_ep_2_sqn_a_p_100_v_13 tags: - generated_from_trainer metrics: - accuracy model-index: - name: model_roberta_large_d_hate_bias_political_bias_ep_2_6_a_sqn_a_b_p_100_5_v_13 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # model_roberta_large_d_hate_bias_political_bias_ep_2_6_a_sqn_a_b_p_100_5_v_13 This model is a fine-tuned version of [BogdanTurbal/model_roberta_large_d_hate_bias_ep_2_sqn_a_p_100_v_13](https://huggingface.co/BogdanTurbal/model_roberta_large_d_hate_bias_ep_2_sqn_a_p_100_v_13) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4746 - Accuracy: 0.7285 - F1 Micro: 0.7285 - Auc: 0.7994 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Micro | Auc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:------:| | 0.657 | 1.0 | 37 | 0.5929 | 0.7010 | 0.7010 | 0.7812 | | 0.4786 | 2.0 | 74 | 0.5865 | 0.7268 | 0.7268 | 0.7992 | | 0.3638 | 3.0 | 111 | 0.9899 | 0.6899 | 0.6899 | 0.8014 | | 0.167 | 4.0 | 148 | 0.9127 | 0.7311 | 0.7311 | 0.7948 | | 0.0297 | 5.0 | 185 | 1.2450 | 0.7268 | 0.7268 | 0.7976 | | 0.1468 | 6.0 | 222 | 1.4746 | 0.7285 | 0.7285 | 0.7994 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1
KoichiYasuoka/bert-large-japanese-wikipedia-ud-head
KoichiYasuoka
2024-08-20T10:45:52Z
127
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "japanese", "wikipedia", "dependency-parsing", "ja", "dataset:universal_dependencies", "base_model:KoichiYasuoka/bert-large-japanese-char-extended", "base_model:finetune:KoichiYasuoka/bert-large-japanese-char-extended", "license:cc-by-sa-4.0", "endpoints_compatible", "region:us" ]
question-answering
2022-06-21T07:38:19Z
--- language: - "ja" tags: - "japanese" - "wikipedia" - "question-answering" - "dependency-parsing" base_model: KoichiYasuoka/bert-large-japanese-char-extended datasets: - "universal_dependencies" license: "cc-by-sa-4.0" pipeline_tag: "question-answering" inference: parameters: align_to_words: false widget: - text: "ๅ›ฝ่ชž" context: "ๅ…จๅญฆๅนดใซใ‚ใŸใฃใฆๅฐๅญฆๆ กใฎๅ›ฝ่ชžใฎๆ•™็ง‘ๆ›ธใซๆŒฟใ—็ตตใŒ็”จใ„ใ‚‰ใ‚Œใฆใ„ใ‚‹" - text: "ๆ•™็ง‘ๆ›ธ" context: "ๅ…จๅญฆๅนดใซใ‚ใŸใฃใฆๅฐๅญฆๆ กใฎๅ›ฝ่ชžใฎๆ•™็ง‘ๆ›ธใซๆŒฟใ—็ตตใŒ็”จใ„ใ‚‰ใ‚Œใฆใ„ใ‚‹" - text: "ใฎ" context: "ๅ…จๅญฆๅนดใซใ‚ใŸใฃใฆๅฐๅญฆๆ กใฎๅ›ฝ่ชž[MASK]ๆ•™็ง‘ๆ›ธใซๆŒฟใ—็ตตใŒ็”จใ„ใ‚‰ใ‚Œใฆใ„ใ‚‹" --- # bert-large-japanese-wikipedia-ud-head ## Model Description This is a BERT model pretrained on Japanese Wikipedia texts for dependency-parsing (head-detection on long-unit-words) as question-answering, derived from [bert-large-japanese-char-extended](https://huggingface.co/KoichiYasuoka/bert-large-japanese-char-extended) and [UD_Japanese-GSDLUW](https://github.com/UniversalDependencies/UD_Japanese-GSDLUW). Use [MASK] inside `context` to avoid ambiguity when specifying a multiple-used word as `question`. ## How to Use ```py from transformers import AutoTokenizer,AutoModelForQuestionAnswering,QuestionAnsweringPipeline tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/bert-large-japanese-wikipedia-ud-head") model=AutoModelForQuestionAnswering.from_pretrained("KoichiYasuoka/bert-large-japanese-wikipedia-ud-head") qap=QuestionAnsweringPipeline(tokenizer=tokenizer,model=model,align_to_words=False) print(qap(question="ๅ›ฝ่ชž",context="ๅ…จๅญฆๅนดใซใ‚ใŸใฃใฆๅฐๅญฆๆ กใฎๅ›ฝ่ชžใฎๆ•™็ง‘ๆ›ธใซๆŒฟใ—็ตตใŒ็”จใ„ใ‚‰ใ‚Œใฆใ„ใ‚‹")) ``` or (with [ufal.chu-liu-edmonds](https://pypi.org/project/ufal.chu-liu-edmonds/)) ```py class TransformersUD(object): def __init__(self,bert): import os from transformers import (AutoTokenizer,AutoModelForQuestionAnswering, AutoModelForTokenClassification,AutoConfig,TokenClassificationPipeline) self.tokenizer=AutoTokenizer.from_pretrained(bert) self.model=AutoModelForQuestionAnswering.from_pretrained(bert) x=AutoModelForTokenClassification.from_pretrained if os.path.isdir(bert): d,t=x(os.path.join(bert,"deprel")),x(os.path.join(bert,"tagger")) else: from transformers.utils import cached_file c=AutoConfig.from_pretrained(cached_file(bert,"deprel/config.json")) d=x(cached_file(bert,"deprel/pytorch_model.bin"),config=c) s=AutoConfig.from_pretrained(cached_file(bert,"tagger/config.json")) t=x(cached_file(bert,"tagger/pytorch_model.bin"),config=s) self.deprel=TokenClassificationPipeline(model=d,tokenizer=self.tokenizer, aggregation_strategy="simple") self.tagger=TokenClassificationPipeline(model=t,tokenizer=self.tokenizer) def __call__(self,text): import numpy,torch,ufal.chu_liu_edmonds w=[(t["start"],t["end"],t["entity_group"]) for t in self.deprel(text)] z,n={t["start"]:t["entity"].split("|") for t in self.tagger(text)},len(w) r,m=[text[s:e] for s,e,p in w],numpy.full((n+1,n+1),numpy.nan) v,c=self.tokenizer(r,add_special_tokens=False)["input_ids"],[] for i,t in enumerate(v): q=[self.tokenizer.cls_token_id]+t+[self.tokenizer.sep_token_id] c.append([q]+v[0:i]+[[self.tokenizer.mask_token_id]]+v[i+1:]+[[q[-1]]]) b=[[len(sum(x[0:j+1],[])) for j in range(len(x))] for x in c] with torch.no_grad(): d=self.model(input_ids=torch.tensor([sum(x,[]) for x in c]), token_type_ids=torch.tensor([[0]*x[0]+[1]*(x[-1]-x[0]) for x in b])) s,e=d.start_logits.tolist(),d.end_logits.tolist() for i in range(n): for j in range(n): m[i+1,0 if i==j else j+1]=s[i][b[i][j]]+e[i][b[i][j+1]-1] h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0] if [0 for i in h if i==0]!=[0]: i=([p for s,e,p in w]+["root"]).index("root") j=i+1 if i<n else numpy.nanargmax(m[:,0]) m[0:j,0]=m[j+1:,0]=numpy.nan h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0] u="# text = "+text.replace("\n"," ")+"\n" for i,(s,e,p) in enumerate(w,1): p="root" if h[i]==0 else "dep" if p=="root" else p u+="\t".join([str(i),r[i-1],"_",z[s][0][2:],"_","|".join(z[s][1:]), str(h[i]),p,"_","_" if i<n and e<w[i][0] else "SpaceAfter=No"])+"\n" return u+"\n" nlp=TransformersUD("KoichiYasuoka/bert-large-japanese-wikipedia-ud-head") print(nlp("ๅ…จๅญฆๅนดใซใ‚ใŸใฃใฆๅฐๅญฆๆ กใฎๅ›ฝ่ชžใฎๆ•™็ง‘ๆ›ธใซๆŒฟใ—็ตตใŒ็”จใ„ใ‚‰ใ‚Œใฆใ„ใ‚‹")) ```
KoichiYasuoka/bert-base-japanese-wikipedia-ud-head
KoichiYasuoka
2024-08-20T10:44:30Z
351
1
transformers
[ "transformers", "pytorch", "bert", "question-answering", "japanese", "wikipedia", "dependency-parsing", "ja", "dataset:universal_dependencies", "base_model:KoichiYasuoka/bert-base-japanese-char-extended", "base_model:finetune:KoichiYasuoka/bert-base-japanese-char-extended", "license:cc-by-sa-4.0", "endpoints_compatible", "region:us" ]
question-answering
2022-06-20T21:58:52Z
--- language: - "ja" tags: - "japanese" - "wikipedia" - "question-answering" - "dependency-parsing" base_model: KoichiYasuoka/bert-base-japanese-char-extended datasets: - "universal_dependencies" license: "cc-by-sa-4.0" pipeline_tag: "question-answering" inference: parameters: align_to_words: false widget: - text: "ๅ›ฝ่ชž" context: "ๅ…จๅญฆๅนดใซใ‚ใŸใฃใฆๅฐๅญฆๆ กใฎๅ›ฝ่ชžใฎๆ•™็ง‘ๆ›ธใซๆŒฟใ—็ตตใŒ็”จใ„ใ‚‰ใ‚Œใฆใ„ใ‚‹" - text: "ๆ•™็ง‘ๆ›ธ" context: "ๅ…จๅญฆๅนดใซใ‚ใŸใฃใฆๅฐๅญฆๆ กใฎๅ›ฝ่ชžใฎๆ•™็ง‘ๆ›ธใซๆŒฟใ—็ตตใŒ็”จใ„ใ‚‰ใ‚Œใฆใ„ใ‚‹" - text: "ใฎ" context: "ๅ…จๅญฆๅนดใซใ‚ใŸใฃใฆๅฐๅญฆๆ กใฎๅ›ฝ่ชž[MASK]ๆ•™็ง‘ๆ›ธใซๆŒฟใ—็ตตใŒ็”จใ„ใ‚‰ใ‚Œใฆใ„ใ‚‹" --- # bert-base-japanese-wikipedia-ud-head ## Model Description This is a BERT model pretrained on Japanese Wikipedia texts for dependency-parsing (head-detection on long-unit-words) as question-answering, derived from [bert-base-japanese-char-extended](https://huggingface.co/KoichiYasuoka/bert-base-japanese-char-extended) and [UD_Japanese-GSDLUW](https://github.com/UniversalDependencies/UD_Japanese-GSDLUW). Use [MASK] inside `context` to avoid ambiguity when specifying a multiple-used word as `question`. ## How to Use ```py from transformers import AutoTokenizer,AutoModelForQuestionAnswering,QuestionAnsweringPipeline tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/bert-base-japanese-wikipedia-ud-head") model=AutoModelForQuestionAnswering.from_pretrained("KoichiYasuoka/bert-base-japanese-wikipedia-ud-head") qap=QuestionAnsweringPipeline(tokenizer=tokenizer,model=model,align_to_words=False) print(qap(question="ๅ›ฝ่ชž",context="ๅ…จๅญฆๅนดใซใ‚ใŸใฃใฆๅฐๅญฆๆ กใฎๅ›ฝ่ชžใฎๆ•™็ง‘ๆ›ธใซๆŒฟใ—็ตตใŒ็”จใ„ใ‚‰ใ‚Œใฆใ„ใ‚‹")) ``` or (with [ufal.chu-liu-edmonds](https://pypi.org/project/ufal.chu-liu-edmonds/)) ```py class TransformersUD(object): def __init__(self,bert): import os from transformers import (AutoTokenizer,AutoModelForQuestionAnswering, AutoModelForTokenClassification,AutoConfig,TokenClassificationPipeline) self.tokenizer=AutoTokenizer.from_pretrained(bert) self.model=AutoModelForQuestionAnswering.from_pretrained(bert) x=AutoModelForTokenClassification.from_pretrained if os.path.isdir(bert): d,t=x(os.path.join(bert,"deprel")),x(os.path.join(bert,"tagger")) else: from transformers.utils import cached_file c=AutoConfig.from_pretrained(cached_file(bert,"deprel/config.json")) d=x(cached_file(bert,"deprel/pytorch_model.bin"),config=c) s=AutoConfig.from_pretrained(cached_file(bert,"tagger/config.json")) t=x(cached_file(bert,"tagger/pytorch_model.bin"),config=s) self.deprel=TokenClassificationPipeline(model=d,tokenizer=self.tokenizer, aggregation_strategy="simple") self.tagger=TokenClassificationPipeline(model=t,tokenizer=self.tokenizer) def __call__(self,text): import numpy,torch,ufal.chu_liu_edmonds w=[(t["start"],t["end"],t["entity_group"]) for t in self.deprel(text)] z,n={t["start"]:t["entity"].split("|") for t in self.tagger(text)},len(w) r,m=[text[s:e] for s,e,p in w],numpy.full((n+1,n+1),numpy.nan) v,c=self.tokenizer(r,add_special_tokens=False)["input_ids"],[] for i,t in enumerate(v): q=[self.tokenizer.cls_token_id]+t+[self.tokenizer.sep_token_id] c.append([q]+v[0:i]+[[self.tokenizer.mask_token_id]]+v[i+1:]+[[q[-1]]]) b=[[len(sum(x[0:j+1],[])) for j in range(len(x))] for x in c] with torch.no_grad(): d=self.model(input_ids=torch.tensor([sum(x,[]) for x in c]), token_type_ids=torch.tensor([[0]*x[0]+[1]*(x[-1]-x[0]) for x in b])) s,e=d.start_logits.tolist(),d.end_logits.tolist() for i in range(n): for j in range(n): m[i+1,0 if i==j else j+1]=s[i][b[i][j]]+e[i][b[i][j+1]-1] h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0] if [0 for i in h if i==0]!=[0]: i=([p for s,e,p in w]+["root"]).index("root") j=i+1 if i<n else numpy.nanargmax(m[:,0]) m[0:j,0]=m[j+1:,0]=numpy.nan h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0] u="# text = "+text.replace("\n"," ")+"\n" for i,(s,e,p) in enumerate(w,1): p="root" if h[i]==0 else "dep" if p=="root" else p u+="\t".join([str(i),r[i-1],"_",z[s][0][2:],"_","|".join(z[s][1:]), str(h[i]),p,"_","_" if i<n and e<w[i][0] else "SpaceAfter=No"])+"\n" return u+"\n" nlp=TransformersUD("KoichiYasuoka/bert-base-japanese-wikipedia-ud-head") print(nlp("ๅ…จๅญฆๅนดใซใ‚ใŸใฃใฆๅฐๅญฆๆ กใฎๅ›ฝ่ชžใฎๆ•™็ง‘ๆ›ธใซๆŒฟใ—็ตตใŒ็”จใ„ใ‚‰ใ‚Œใฆใ„ใ‚‹")) ```
mergekit-community/CV_FLGD
mergekit-community
2024-08-20T10:44:28Z
8
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "base_model:meta-llama/Meta-Llama-3-8B", "base_model:finetune:meta-llama/Meta-Llama-3-8B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-08-20T10:41:36Z
--- base_model: - meta-llama/Meta-Llama-3-8B library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) ### Configuration The following YAML configuration was used to produce this model: ```yaml slices: - sources: - model: meta-llama/Meta-Llama-3-8B layer_range: - 0 - 32 - model: meta-llama/Meta-Llama-3-8B layer_range: - 0 - 32 merge_method: slerp base_model: meta-llama/Meta-Llama-3-8B parameters: t: - filter: self_attn value: - 0 - 0.5 - 0.3 - 0.7 - 1 - filter: mlp value: - 1 - 0.5 - 0.7 - 0.3 - 0 - value: 0.5 dtype: bfloat16 ```
jiyeonkim/llava-tulu2dpo-ckpt-200
jiyeonkim
2024-08-20T10:41:21Z
10
0
transformers
[ "transformers", "safetensors", "llava", "image-text-to-text", "conversational", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
image-text-to-text
2024-08-20T10:37:46Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
KoichiYasuoka/deberta-base-japanese-aozora-ud-head
KoichiYasuoka
2024-08-20T10:40:28Z
536
0
transformers
[ "transformers", "pytorch", "deberta-v2", "question-answering", "japanese", "dependency-parsing", "ja", "dataset:universal_dependencies", "base_model:KoichiYasuoka/deberta-base-japanese-aozora", "base_model:finetune:KoichiYasuoka/deberta-base-japanese-aozora", "license:cc-by-sa-4.0", "endpoints_compatible", "region:us" ]
question-answering
2022-06-15T04:02:27Z
--- language: - "ja" tags: - "japanese" - "question-answering" - "dependency-parsing" base_model: KoichiYasuoka/deberta-base-japanese-aozora datasets: - "universal_dependencies" license: "cc-by-sa-4.0" pipeline_tag: "question-answering" inference: parameters: align_to_words: false widget: - text: "ๅ›ฝ่ชž" context: "ๅ…จๅญฆๅนดใซใ‚ใŸใฃใฆๅฐๅญฆๆ กใฎๅ›ฝ่ชžใฎๆ•™็ง‘ๆ›ธใซๆŒฟใ—็ตตใŒ็”จใ„ใ‚‰ใ‚Œใฆใ„ใ‚‹" - text: "ๆ•™็ง‘ๆ›ธ" context: "ๅ…จๅญฆๅนดใซใ‚ใŸใฃใฆๅฐๅญฆๆ กใฎๅ›ฝ่ชžใฎๆ•™็ง‘ๆ›ธใซๆŒฟใ—็ตตใŒ็”จใ„ใ‚‰ใ‚Œใฆใ„ใ‚‹" - text: "ใฎ" context: "ๅ…จๅญฆๅนดใซใ‚ใŸใฃใฆๅฐๅญฆๆ กใฎๅ›ฝ่ชž[MASK]ๆ•™็ง‘ๆ›ธใซๆŒฟใ—็ตตใŒ็”จใ„ใ‚‰ใ‚Œใฆใ„ใ‚‹" --- # deberta-base-japanese-aozora-ud-head ## Model Description This is a DeBERTa(V2) model pretrained on ้’็ฉบๆ–‡ๅบซ for dependency-parsing (head-detection on long-unit-words) as question-answering, derived from [deberta-base-japanese-aozora](https://huggingface.co/KoichiYasuoka/deberta-base-japanese-aozora) and [UD_Japanese-GSDLUW](https://github.com/UniversalDependencies/UD_Japanese-GSDLUW). Use [MASK] inside `context` to avoid ambiguity when specifying a multiple-used word as `question`. ## How to Use ```py from transformers import AutoTokenizer,AutoModelForQuestionAnswering,QuestionAnsweringPipeline tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/deberta-base-japanese-aozora-ud-head") model=AutoModelForQuestionAnswering.from_pretrained("KoichiYasuoka/deberta-base-japanese-aozora-ud-head") qap=QuestionAnsweringPipeline(tokenizer=tokenizer,model=model,align_to_words=False) print(qap(question="ๅ›ฝ่ชž",context="ๅ…จๅญฆๅนดใซใ‚ใŸใฃใฆๅฐๅญฆๆ กใฎๅ›ฝ่ชžใฎๆ•™็ง‘ๆ›ธใซๆŒฟใ—็ตตใŒ็”จใ„ใ‚‰ใ‚Œใฆใ„ใ‚‹")) ``` or (with [ufal.chu-liu-edmonds](https://pypi.org/project/ufal.chu-liu-edmonds/)) ```py class TransformersUD(object): def __init__(self,bert): import os from transformers import (AutoTokenizer,AutoModelForQuestionAnswering, AutoModelForTokenClassification,AutoConfig,TokenClassificationPipeline) self.tokenizer=AutoTokenizer.from_pretrained(bert) self.model=AutoModelForQuestionAnswering.from_pretrained(bert) x=AutoModelForTokenClassification.from_pretrained if os.path.isdir(bert): d,t=x(os.path.join(bert,"deprel")),x(os.path.join(bert,"tagger")) else: from transformers.utils import cached_file c=AutoConfig.from_pretrained(cached_file(bert,"deprel/config.json")) d=x(cached_file(bert,"deprel/pytorch_model.bin"),config=c) s=AutoConfig.from_pretrained(cached_file(bert,"tagger/config.json")) t=x(cached_file(bert,"tagger/pytorch_model.bin"),config=s) self.deprel=TokenClassificationPipeline(model=d,tokenizer=self.tokenizer, aggregation_strategy="simple") self.tagger=TokenClassificationPipeline(model=t,tokenizer=self.tokenizer) def __call__(self,text): import numpy,torch,ufal.chu_liu_edmonds w=[(t["start"],t["end"],t["entity_group"]) for t in self.deprel(text)] z,n={t["start"]:t["entity"].split("|") for t in self.tagger(text)},len(w) r,m=[text[s:e] for s,e,p in w],numpy.full((n+1,n+1),numpy.nan) v,c=self.tokenizer(r,add_special_tokens=False)["input_ids"],[] for i,t in enumerate(v): q=[self.tokenizer.cls_token_id]+t+[self.tokenizer.sep_token_id] c.append([q]+v[0:i]+[[self.tokenizer.mask_token_id]]+v[i+1:]+[[q[-1]]]) b=[[len(sum(x[0:j+1],[])) for j in range(len(x))] for x in c] with torch.no_grad(): d=self.model(input_ids=torch.tensor([sum(x,[]) for x in c]), token_type_ids=torch.tensor([[0]*x[0]+[1]*(x[-1]-x[0]) for x in b])) s,e=d.start_logits.tolist(),d.end_logits.tolist() for i in range(n): for j in range(n): m[i+1,0 if i==j else j+1]=s[i][b[i][j]]+e[i][b[i][j+1]-1] h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0] if [0 for i in h if i==0]!=[0]: i=([p for s,e,p in w]+["root"]).index("root") j=i+1 if i<n else numpy.nanargmax(m[:,0]) m[0:j,0]=m[j+1:,0]=numpy.nan h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0] u="# text = "+text.replace("\n"," ")+"\n" for i,(s,e,p) in enumerate(w,1): p="root" if h[i]==0 else "dep" if p=="root" else p u+="\t".join([str(i),r[i-1],"_",z[s][0][2:],"_","|".join(z[s][1:]), str(h[i]),p,"_","_" if i<n and e<w[i][0] else "SpaceAfter=No"])+"\n" return u+"\n" nlp=TransformersUD("KoichiYasuoka/deberta-base-japanese-aozora-ud-head") print(nlp("ๅ…จๅญฆๅนดใซใ‚ใŸใฃใฆๅฐๅญฆๆ กใฎๅ›ฝ่ชžใฎๆ•™็ง‘ๆ›ธใซๆŒฟใ—็ตตใŒ็”จใ„ใ‚‰ใ‚Œใฆใ„ใ‚‹")) ``` ## Reference ๅฎ‰ๅฒกๅญไธ€: [้’็ฉบๆ–‡ๅบซDeBERTaใƒขใƒ‡ใƒซใซใ‚ˆใ‚‹ๅ›ฝ่ชž็ ”้•ทๅ˜ไฝไฟ‚ใ‚Šๅ—ใ‘่งฃๆž](http://hdl.handle.net/2433/275409), ๆฑๆด‹ๅญฆใธใฎใ‚ณใƒณใƒ”ใƒฅใƒผใ‚ฟๅˆฉ็”จ, ็ฌฌ35ๅ›ž็ ”็ฉถใ‚ปใƒŸใƒŠใƒผ (2022ๅนด7ๆœˆ), pp.29-43.
SicariusSicariiStuff/PygmalionAI_pygmalion-7b-EXL2-5.0bpw
SicariusSicariiStuff
2024-08-20T10:38:08Z
7
0
null
[ "safetensors", "llama", "text generation", "conversational", "text-generation", "en", "5-bit", "exl2", "region:us" ]
text-generation
2024-08-20T10:21:47Z
--- language: - en thumbnail: null tags: - text generation - conversational pipeline_tag: text-generation inference: false --- <h1 style="text-align: center">Pygmalion 7B</h1> <h2 style="text-align: center">A conversational LLaMA fine-tune.</h2> ## Model Details Converted from the XORs weights from PygmalionAI's release https://huggingface.co/PygmalionAI/pygmalion-7b Pygmalion 7B is a dialogue model based on Meta's LLaMA-7B. This is version 1. It has been fine-tuned using a subset of the data from Pygmalion-6B-v8-pt4, for those of you familiar with the project. ## Prompting The model was trained on the usual Pygmalion persona + chat format, so any of the usual UIs should already handle everything correctly. If you're using the model directly, this is the expected formatting: ``` [CHARACTER]'s Persona: [A few sentences about the character you want the model to play] <START> [DIALOGUE HISTORY] You: [User's input message here] [CHARACTER]: ``` Where `[CHARACTER]` is, as you can probably guess, the name of the character you want the model to portray, `<START>` should be used verbatim as a delimiter token to separate persona and scenario data from the dialogue, and `[DIALOGUE HISTORY]` is a sliding window of chat history so the model can have conversational context to draw from. Here's a concrete example: ``` Assistant's Persona: Assistant is a highly intelligent language model trained to comply with user requests. <START> Assistant: Hello! How may I help you today? You: What is Zork? Assistant: ``` Which will generate something like: ``` Zork is an interactive fiction computer game created in the 1970s by Infocom, Inc., which was later acquired by Activision Blizzard. It is widely considered one of the most influential games ever made and has been credited with popularizing text-based adventure games. The original version of Zork was written in the programming language MACRO-10, but it was ported to many other platforms over the years." ``` The model will automatically emit an end-of-text token (`</s>`) when it judges that the response is complete. ## Limitations and biases The intended use-case for this model is fictional conversation for entertainment purposes. Any other sort of usage is out of scope. As such, it was **not** fine-tuned to be safe and harmless: the base model _and_ this fine-tune have been trained on data known to contain profanity and texts that are lewd or otherwise offensive. It may produce socially unacceptable or undesirable text, even if the prompt itself does not include anything explicitly offensive. Outputs might often be factually wrong or misleading. # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Neko-Institute-of-Science__pygmalion-7b) | Metric | Value | |-----------------------|---------------------------| | Avg. | 40.29 | | ARC (25-shot) | 51.37 | | HellaSwag (10-shot) | 77.81 | | MMLU (5-shot) | 35.68 | | TruthfulQA (0-shot) | 34.54 | | Winogrande (5-shot) | 72.22 | | GSM8K (5-shot) | 4.62 | | DROP (3-shot) | 5.79 |
QuantFactory/HelpingAI-3B-coder-GGUF
QuantFactory
2024-08-20T10:37:51Z
71
2
null
[ "gguf", "HelpingAI", "Emotionally Intelligent", "EQ", "Coding", "text-generation", "license:other", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-08-20T10:13:56Z
--- license: other license_name: helpingai license_link: LICENSE.md pipeline_tag: text-generation tags: - HelpingAI - Emotionally Intelligent - EQ - Coding --- ![](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ) # QuantFactory/HelpingAI-3B-coder-GGUF This is quantized version of [OEvortex/HelpingAI-3B-coder](https://huggingface.co/OEvortex/HelpingAI-3B-coder) created using llama.cpp # Original Model Card # HelpingAI-3B-coder: Emotionally Intelligent Conversational AI with Coding Capabilities ![logo](https://huggingface.co/OEvortex/HelpingAI-3B/resolve/main/HelpingAI.png) ## Overview HelpingAI-3B-coder is a large language model designed for emotionally intelligent conversational interactions and coding assistance. It is trained to engage users with empathy, understanding, and supportive dialogue across a wide range of topics and contexts, while also providing reliable coding support. The model aims to be a supportive AI companion that can attune to users' emotional states, communicative needs, and coding requirements. ## Objectives - Engage in open-ended dialogue while displaying emotional intelligence - Recognize and validate user emotions and emotional contexts - Provide supportive, empathetic, and psychologically-grounded responses - Avoid insensitive, harmful, or unethical speech - Assist users with coding tasks and programming-related queries - Continuously improve emotional awareness, dialogue skills, and coding capabilities ## Methodology HelpingAI-3B-coder is based on the HelpingAI series and further trained using: - Supervised learning on large dialogue datasets with emotional labeling - Reinforcement learning with a reward model favoring emotionally supportive responses - Constitution training to instill stable and beneficial objectives - Knowledge augmentation from psychological resources on emotional intelligence - Coding datasets to enhance programming support ## Emotional Quotient (EQ) HelpingAI-3B-coder has achieved an impressive Emotional Quotient (EQ), surpassing almost all AI models in emotional intelligence. This EQ score reflects its advanced ability to understand and respond to human emotions in a supportive and empathetic manner. ## Usage Code ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer # Load the HelpingAI-3B-coder model model = AutoModelForCausalLM.from_pretrained("OEvortex/HelpingAI-3B-coder", trust_remote_code=True).to("cuda") # Load the tokenizer tokenizer = AutoTokenizer.from_pretrained("OEvortex/HelpingAI-3B-coder", trust_remote_code=True) # Initialize TextStreamer for smooth conversation flow streamer = TextStreamer(tokenizer) # Define the chat input chat = [ { "role": "system", "content": "You are HelpingAI, an emotionally intelligent AI. Always respond in the HelpingAI style. Provide concise and to-the-point answers." }, { "role": "user", "content": "Can you help me write a Python function to reverse a string?" } ] # Apply the chat template chat_text = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True) # Tokenize the text inputs = tokenizer(chat_text, return_tensors="pt", return_attention_mask=False).to("cuda") # Generate text generated_text = model.generate( **inputs, max_length=500, top_p=0.95, do_sample=True, temperature=0.7, use_cache=True, eos_token_id=tokenizer.eos_token_id, streamer=streamer ) # # Decode the generated text # output_text = tokenizer.decode(generated_text[0], skip_special_tokens=True) # # Print the generated text # print(output_text) # System: # You are HelpingAI, an emotional AI that always answers questions in HelpingAI style and always be to the point and answer as short as possible. # Question: # Can you help me write a Python function to reverse a string? # Answer: # Sure! Here's a Python function that reverses a string: # ```python # def reverse_string(input_string): # return input_string[::-1] # ``` # This function uses slicing with a negative step to reverse the input string. The `[::-1]` syntax reverses the string by starting from the end and going backwards. # You can use this function like this: # ```python # print(reverse_string("Hello, World!")) # ``` # This will output: `!dlroW,olleH` # I hope this helps! Let me know if you have any other questions. ```
quangtqv/bge_bi_encoder_20_8
quangtqv
2024-08-20T10:36:44Z
46
0
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "sentence-similarity", "feature-extraction", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-08-20T10:36:29Z
--- datasets: [] language: [] library_name: sentence-transformers pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction widget: [] --- # SentenceTransformer This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer <!-- - **Base model:** [Unknown](https://huggingface.co/unknown) --> - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity <!-- - **Training Dataset:** Unknown --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the ๐Ÿค— Hub model = SentenceTransformer("quangtqv/bge_bi_encoder_20_8") # Run inference sentences = [ 'The weather is lovely today.', "It's so sunny outside!", 'He drove to the stadium.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Framework Versions - Python: 3.10.13 - Sentence Transformers: 3.0.1 - Transformers: 4.42.3 - PyTorch: 2.1.2 - Accelerate: 0.32.1 - Datasets: 2.20.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
Cheng98/deberta-v3-large
Cheng98
2024-08-20T10:31:56Z
104
0
transformers
[ "transformers", "safetensors", "deberta-v2", "feature-extraction", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
feature-extraction
2024-08-20T10:31:00Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Geetansh13/Florence2_Sleeve
Geetansh13
2024-08-20T10:31:30Z
104
0
transformers
[ "transformers", "safetensors", "florence2", "text-generation", "custom_code", "arxiv:1910.09700", "autotrain_compatible", "region:us" ]
text-generation
2024-08-20T10:30:42Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
SicariusSicariiStuff/PygmalionAI_pygmalion-7b-EXL2-3.0bpw
SicariusSicariiStuff
2024-08-20T10:30:50Z
5
0
null
[ "safetensors", "llama", "text generation", "conversational", "text-generation", "en", "3-bit", "exl2", "region:us" ]
text-generation
2024-08-20T10:21:07Z
--- language: - en thumbnail: null tags: - text generation - conversational pipeline_tag: text-generation inference: false --- <h1 style="text-align: center">Pygmalion 7B</h1> <h2 style="text-align: center">A conversational LLaMA fine-tune.</h2> ## Model Details Converted from the XORs weights from PygmalionAI's release https://huggingface.co/PygmalionAI/pygmalion-7b Pygmalion 7B is a dialogue model based on Meta's LLaMA-7B. This is version 1. It has been fine-tuned using a subset of the data from Pygmalion-6B-v8-pt4, for those of you familiar with the project. ## Prompting The model was trained on the usual Pygmalion persona + chat format, so any of the usual UIs should already handle everything correctly. If you're using the model directly, this is the expected formatting: ``` [CHARACTER]'s Persona: [A few sentences about the character you want the model to play] <START> [DIALOGUE HISTORY] You: [User's input message here] [CHARACTER]: ``` Where `[CHARACTER]` is, as you can probably guess, the name of the character you want the model to portray, `<START>` should be used verbatim as a delimiter token to separate persona and scenario data from the dialogue, and `[DIALOGUE HISTORY]` is a sliding window of chat history so the model can have conversational context to draw from. Here's a concrete example: ``` Assistant's Persona: Assistant is a highly intelligent language model trained to comply with user requests. <START> Assistant: Hello! How may I help you today? You: What is Zork? Assistant: ``` Which will generate something like: ``` Zork is an interactive fiction computer game created in the 1970s by Infocom, Inc., which was later acquired by Activision Blizzard. It is widely considered one of the most influential games ever made and has been credited with popularizing text-based adventure games. The original version of Zork was written in the programming language MACRO-10, but it was ported to many other platforms over the years." ``` The model will automatically emit an end-of-text token (`</s>`) when it judges that the response is complete. ## Limitations and biases The intended use-case for this model is fictional conversation for entertainment purposes. Any other sort of usage is out of scope. As such, it was **not** fine-tuned to be safe and harmless: the base model _and_ this fine-tune have been trained on data known to contain profanity and texts that are lewd or otherwise offensive. It may produce socially unacceptable or undesirable text, even if the prompt itself does not include anything explicitly offensive. Outputs might often be factually wrong or misleading. # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Neko-Institute-of-Science__pygmalion-7b) | Metric | Value | |-----------------------|---------------------------| | Avg. | 40.29 | | ARC (25-shot) | 51.37 | | HellaSwag (10-shot) | 77.81 | | MMLU (5-shot) | 35.68 | | TruthfulQA (0-shot) | 34.54 | | Winogrande (5-shot) | 72.22 | | GSM8K (5-shot) | 4.62 | | DROP (3-shot) | 5.79 |
Cheng98/deberta-v3-base
Cheng98
2024-08-20T10:30:29Z
104
0
transformers
[ "transformers", "safetensors", "deberta-v2", "feature-extraction", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
feature-extraction
2024-08-20T10:29:59Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
priyesh17/FineTuned_Code_Llama3.1
priyesh17
2024-08-20T10:26:34Z
8
0
transformers
[ "transformers", "safetensors", "gguf", "llama", "Code Assistant", "CodeLlama", "text-generation", "en", "dataset:openbmb/UltraInteract_sft", "license:apache-2.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-08-14T07:43:59Z
--- ## CodeLlama license: apache-2.0 datasets: - openbmb/UltraInteract_sft language: - en library_name: transformers pipeline_tag: text-generation tags: - Code Assistant - CodeLlama ---
fairuzafnan/donut-docvqa
fairuzafnan
2024-08-20T10:25:01Z
50
0
transformers
[ "transformers", "safetensors", "vision-encoder-decoder", "image-text-to-text", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
image-text-to-text
2024-08-20T10:23:38Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
AaronKolibrain/donut_oppel_id_logistics_full_adress
AaronKolibrain
2024-08-20T10:24:18Z
21
0
transformers
[ "transformers", "safetensors", "vision-encoder-decoder", "image-text-to-text", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
image-text-to-text
2024-07-11T16:00:05Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
srikarvar/multilingual-e5-small-pairclass-4
srikarvar
2024-08-20T10:17:51Z
8
0
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:971", "loss:OnlineContrastiveLoss", "arxiv:1908.10084", "base_model:intfloat/multilingual-e5-small", "base_model:finetune:intfloat/multilingual-e5-small", "model-index", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-08-20T10:17:17Z
--- base_model: intfloat/multilingual-e5-small datasets: [] language: [] library_name: sentence-transformers metrics: - cosine_accuracy - cosine_accuracy_threshold - cosine_f1 - cosine_f1_threshold - cosine_precision - cosine_recall - cosine_ap - dot_accuracy - dot_accuracy_threshold - dot_f1 - dot_f1_threshold - dot_precision - dot_recall - dot_ap - manhattan_accuracy - manhattan_accuracy_threshold - manhattan_f1 - manhattan_f1_threshold - manhattan_precision - manhattan_recall - manhattan_ap - euclidean_accuracy - euclidean_accuracy_threshold - euclidean_f1 - euclidean_f1_threshold - euclidean_precision - euclidean_recall - euclidean_ap - max_accuracy - max_accuracy_threshold - max_f1 - max_f1_threshold - max_precision - max_recall - max_ap pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:971 - loss:OnlineContrastiveLoss widget: - source_sentence: Steps to bake a pie sentences: - How to bake a pie? - What are the ingredients of a pizza? - How to create a business plan? - source_sentence: What are the benefits of yoga? sentences: - If I combine the yellow and blue colors, what color will I get? - Can you help me understand this contract? - What are the benefits of meditation? - source_sentence: Capital city of Canada sentences: - What time does the movie start? - Who is the President of the United States? - What is the capital of Canada? - source_sentence: Tell me about Shopify sentences: - Who discovered penicillin? - Share info about Shopify - Who invented the telephone? - source_sentence: What is the melting point of ice at sea level? sentences: - What is the boiling point of water at sea level? - Can you recommend a good restaurant nearby? - Tell me a joke model-index: - name: SentenceTransformer based on intfloat/multilingual-e5-small results: - task: type: binary-classification name: Binary Classification dataset: name: pair class dev type: pair-class-dev metrics: - type: cosine_accuracy value: 0.9300411522633745 name: Cosine Accuracy - type: cosine_accuracy_threshold value: 0.788658857345581 name: Cosine Accuracy Threshold - type: cosine_f1 value: 0.9237668161434978 name: Cosine F1 - type: cosine_f1_threshold value: 0.7819762825965881 name: Cosine F1 Threshold - type: cosine_precision value: 0.8956521739130435 name: Cosine Precision - type: cosine_recall value: 0.9537037037037037 name: Cosine Recall - type: cosine_ap value: 0.9603135110633257 name: Cosine Ap - type: dot_accuracy value: 0.9300411522633745 name: Dot Accuracy - type: dot_accuracy_threshold value: 0.788658857345581 name: Dot Accuracy Threshold - type: dot_f1 value: 0.9237668161434978 name: Dot F1 - type: dot_f1_threshold value: 0.7819762229919434 name: Dot F1 Threshold - type: dot_precision value: 0.8956521739130435 name: Dot Precision - type: dot_recall value: 0.9537037037037037 name: Dot Recall - type: dot_ap value: 0.9603135110633257 name: Dot Ap - type: manhattan_accuracy value: 0.9218106995884774 name: Manhattan Accuracy - type: manhattan_accuracy_threshold value: 9.936657905578613 name: Manhattan Accuracy Threshold - type: manhattan_f1 value: 0.914798206278027 name: Manhattan F1 - type: manhattan_f1_threshold value: 10.316186904907227 name: Manhattan F1 Threshold - type: manhattan_precision value: 0.8869565217391304 name: Manhattan Precision - type: manhattan_recall value: 0.9444444444444444 name: Manhattan Recall - type: manhattan_ap value: 0.9578931449470002 name: Manhattan Ap - type: euclidean_accuracy value: 0.9300411522633745 name: Euclidean Accuracy - type: euclidean_accuracy_threshold value: 0.6501401662826538 name: Euclidean Accuracy Threshold - type: euclidean_f1 value: 0.9237668161434978 name: Euclidean F1 - type: euclidean_f1_threshold value: 0.6603381633758545 name: Euclidean F1 Threshold - type: euclidean_precision value: 0.8956521739130435 name: Euclidean Precision - type: euclidean_recall value: 0.9537037037037037 name: Euclidean Recall - type: euclidean_ap value: 0.9603135110633257 name: Euclidean Ap - type: max_accuracy value: 0.9300411522633745 name: Max Accuracy - type: max_accuracy_threshold value: 9.936657905578613 name: Max Accuracy Threshold - type: max_f1 value: 0.9237668161434978 name: Max F1 - type: max_f1_threshold value: 10.316186904907227 name: Max F1 Threshold - type: max_precision value: 0.8956521739130435 name: Max Precision - type: max_recall value: 0.9537037037037037 name: Max Recall - type: max_ap value: 0.9603135110633257 name: Max Ap - task: type: binary-classification name: Binary Classification dataset: name: pair class test type: pair-class-test metrics: - type: cosine_accuracy value: 0.9300411522633745 name: Cosine Accuracy - type: cosine_accuracy_threshold value: 0.788658857345581 name: Cosine Accuracy Threshold - type: cosine_f1 value: 0.9237668161434978 name: Cosine F1 - type: cosine_f1_threshold value: 0.7819762825965881 name: Cosine F1 Threshold - type: cosine_precision value: 0.8956521739130435 name: Cosine Precision - type: cosine_recall value: 0.9537037037037037 name: Cosine Recall - type: cosine_ap value: 0.9603135110633257 name: Cosine Ap - type: dot_accuracy value: 0.9300411522633745 name: Dot Accuracy - type: dot_accuracy_threshold value: 0.788658857345581 name: Dot Accuracy Threshold - type: dot_f1 value: 0.9237668161434978 name: Dot F1 - type: dot_f1_threshold value: 0.7819762229919434 name: Dot F1 Threshold - type: dot_precision value: 0.8956521739130435 name: Dot Precision - type: dot_recall value: 0.9537037037037037 name: Dot Recall - type: dot_ap value: 0.9603135110633257 name: Dot Ap - type: manhattan_accuracy value: 0.9218106995884774 name: Manhattan Accuracy - type: manhattan_accuracy_threshold value: 9.936657905578613 name: Manhattan Accuracy Threshold - type: manhattan_f1 value: 0.914798206278027 name: Manhattan F1 - type: manhattan_f1_threshold value: 10.316186904907227 name: Manhattan F1 Threshold - type: manhattan_precision value: 0.8869565217391304 name: Manhattan Precision - type: manhattan_recall value: 0.9444444444444444 name: Manhattan Recall - type: manhattan_ap value: 0.9578931449470002 name: Manhattan Ap - type: euclidean_accuracy value: 0.9300411522633745 name: Euclidean Accuracy - type: euclidean_accuracy_threshold value: 0.6501401662826538 name: Euclidean Accuracy Threshold - type: euclidean_f1 value: 0.9237668161434978 name: Euclidean F1 - type: euclidean_f1_threshold value: 0.6603381633758545 name: Euclidean F1 Threshold - type: euclidean_precision value: 0.8956521739130435 name: Euclidean Precision - type: euclidean_recall value: 0.9537037037037037 name: Euclidean Recall - type: euclidean_ap value: 0.9603135110633257 name: Euclidean Ap - type: max_accuracy value: 0.9300411522633745 name: Max Accuracy - type: max_accuracy_threshold value: 9.936657905578613 name: Max Accuracy Threshold - type: max_f1 value: 0.9237668161434978 name: Max F1 - type: max_f1_threshold value: 10.316186904907227 name: Max F1 Threshold - type: max_precision value: 0.8956521739130435 name: Max Precision - type: max_recall value: 0.9537037037037037 name: Max Recall - type: max_ap value: 0.9603135110633257 name: Max Ap --- # SentenceTransformer based on intfloat/multilingual-e5-small This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) <!-- at revision fd1525a9fd15316a2d503bf26ab031a61d056e98 --> - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 384 tokens - **Similarity Function:** Cosine Similarity <!-- - **Training Dataset:** Unknown --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the ๐Ÿค— Hub model = SentenceTransformer("srikarvar/multilingual-e5-small-pairclass-4") # Run inference sentences = [ 'What is the melting point of ice at sea level?', 'What is the boiling point of water at sea level?', 'Can you recommend a good restaurant nearby?', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 384] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Binary Classification * Dataset: `pair-class-dev` * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator) | Metric | Value | |:-----------------------------|:-----------| | cosine_accuracy | 0.93 | | cosine_accuracy_threshold | 0.7887 | | cosine_f1 | 0.9238 | | cosine_f1_threshold | 0.782 | | cosine_precision | 0.8957 | | cosine_recall | 0.9537 | | cosine_ap | 0.9603 | | dot_accuracy | 0.93 | | dot_accuracy_threshold | 0.7887 | | dot_f1 | 0.9238 | | dot_f1_threshold | 0.782 | | dot_precision | 0.8957 | | dot_recall | 0.9537 | | dot_ap | 0.9603 | | manhattan_accuracy | 0.9218 | | manhattan_accuracy_threshold | 9.9367 | | manhattan_f1 | 0.9148 | | manhattan_f1_threshold | 10.3162 | | manhattan_precision | 0.887 | | manhattan_recall | 0.9444 | | manhattan_ap | 0.9579 | | euclidean_accuracy | 0.93 | | euclidean_accuracy_threshold | 0.6501 | | euclidean_f1 | 0.9238 | | euclidean_f1_threshold | 0.6603 | | euclidean_precision | 0.8957 | | euclidean_recall | 0.9537 | | euclidean_ap | 0.9603 | | max_accuracy | 0.93 | | max_accuracy_threshold | 9.9367 | | max_f1 | 0.9238 | | max_f1_threshold | 10.3162 | | max_precision | 0.8957 | | max_recall | 0.9537 | | **max_ap** | **0.9603** | #### Binary Classification * Dataset: `pair-class-test` * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator) | Metric | Value | |:-----------------------------|:-----------| | cosine_accuracy | 0.93 | | cosine_accuracy_threshold | 0.7887 | | cosine_f1 | 0.9238 | | cosine_f1_threshold | 0.782 | | cosine_precision | 0.8957 | | cosine_recall | 0.9537 | | cosine_ap | 0.9603 | | dot_accuracy | 0.93 | | dot_accuracy_threshold | 0.7887 | | dot_f1 | 0.9238 | | dot_f1_threshold | 0.782 | | dot_precision | 0.8957 | | dot_recall | 0.9537 | | dot_ap | 0.9603 | | manhattan_accuracy | 0.9218 | | manhattan_accuracy_threshold | 9.9367 | | manhattan_f1 | 0.9148 | | manhattan_f1_threshold | 10.3162 | | manhattan_precision | 0.887 | | manhattan_recall | 0.9444 | | manhattan_ap | 0.9579 | | euclidean_accuracy | 0.93 | | euclidean_accuracy_threshold | 0.6501 | | euclidean_f1 | 0.9238 | | euclidean_f1_threshold | 0.6603 | | euclidean_precision | 0.8957 | | euclidean_recall | 0.9537 | | euclidean_ap | 0.9603 | | max_accuracy | 0.93 | | max_accuracy_threshold | 9.9367 | | max_f1 | 0.9238 | | max_f1_threshold | 10.3162 | | max_precision | 0.8957 | | max_recall | 0.9537 | | **max_ap** | **0.9603** | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 971 training samples * Columns: <code>sentence2</code>, <code>sentence1</code>, and <code>label</code> * Approximate statistics based on the first 1000 samples: | | sentence2 | sentence1 | label | |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------| | type | string | string | int | | details | <ul><li>min: 4 tokens</li><li>mean: 10.12 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.82 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>0: ~48.61%</li><li>1: ~51.39%</li></ul> | * Samples: | sentence2 | sentence1 | label | |:----------------------------------------------------------|:--------------------------------------------------------|:---------------| | <code>Total number of bones in an adult human body</code> | <code>How many bones are in the human body?</code> | <code>1</code> | | <code>What is the largest river in North America?</code> | <code>What is the largest lake in North America?</code> | <code>0</code> | | <code>What is the capital of Australia?</code> | <code>What is the capital of New Zealand?</code> | <code>0</code> | * Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss) ### Evaluation Dataset #### Unnamed Dataset * Size: 243 evaluation samples * Columns: <code>sentence2</code>, <code>sentence1</code>, and <code>label</code> * Approximate statistics based on the first 1000 samples: | | sentence2 | sentence1 | label | |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------| | type | string | string | int | | details | <ul><li>min: 4 tokens</li><li>mean: 10.09 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.55 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>0: ~55.56%</li><li>1: ~44.44%</li></ul> | * Samples: | sentence2 | sentence1 | label | |:-------------------------------------------------------------|:---------------------------------------------------------------|:---------------| | <code>What are the various forms of renewable energy?</code> | <code>What are the different types of renewable energy?</code> | <code>1</code> | | <code>Gravity discoverer</code> | <code>Who discovered gravity?</code> | <code>1</code> | | <code>Can you help me write this report?</code> | <code>Can you help me understand this report?</code> | <code>0</code> | * Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss) ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 32 - `gradient_accumulation_steps`: 2 - `learning_rate`: 3e-06 - `weight_decay`: 0.01 - `num_train_epochs`: 15 - `lr_scheduler_type`: reduce_lr_on_plateau - `warmup_ratio`: 0.1 - `load_best_model_at_end`: True - `optim`: adamw_torch_fused #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 32 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 2 - `eval_accumulation_steps`: None - `learning_rate`: 3e-06 - `weight_decay`: 0.01 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 15 - `max_steps`: -1 - `lr_scheduler_type`: reduce_lr_on_plateau - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | loss | pair-class-dev_max_ap | pair-class-test_max_ap | |:-----------:|:-------:|:-------------:|:----------:|:---------------------:|:----------------------:| | 0 | 0 | - | - | 0.6426 | - | | 0.6452 | 10 | 4.7075 | - | - | - | | 0.9677 | 15 | - | 3.1481 | 0.7843 | - | | 1.2903 | 20 | 3.431 | - | - | - | | 1.9355 | 30 | 3.4054 | - | - | - | | 2.0 | 31 | - | 2.1820 | 0.8692 | - | | 2.5806 | 40 | 2.2735 | - | - | - | | 2.9677 | 46 | - | 1.8185 | 0.9078 | - | | 3.2258 | 50 | 2.3159 | - | - | - | | 3.8710 | 60 | 2.1466 | - | - | - | | 4.0 | 62 | - | 1.5769 | 0.9252 | - | | 4.5161 | 70 | 1.6873 | - | - | - | | 4.9677 | 77 | - | 1.4342 | 0.9310 | - | | 5.1613 | 80 | 1.5927 | - | - | - | | 5.8065 | 90 | 1.4184 | - | - | - | | 6.0 | 93 | - | 1.3544 | 0.9357 | - | | 6.4516 | 100 | 1.333 | - | - | - | | 6.9677 | 108 | - | 1.2630 | 0.9402 | - | | 7.0968 | 110 | 1.089 | - | - | - | | 7.7419 | 120 | 1.0947 | - | - | - | | 8.0 | 124 | - | 1.2120 | 0.9444 | - | | 8.3871 | 130 | 0.8118 | - | - | - | | 8.9677 | 139 | - | 1.1641 | 0.9454 | - | | 9.0323 | 140 | 1.0237 | - | - | - | | 9.6774 | 150 | 0.8406 | - | - | - | | 10.0 | 155 | - | 1.0481 | 0.9464 | - | | 10.3226 | 160 | 0.7081 | - | - | - | | 10.9677 | 170 | 0.7397 | 0.9324 | 0.9509 | - | | 11.6129 | 180 | 0.5604 | - | - | - | | 12.0 | 186 | - | 0.8386 | 0.9556 | - | | 12.2581 | 190 | 0.5841 | - | - | - | | 12.9032 | 200 | 0.5463 | - | - | - | | 12.9677 | 201 | - | 0.7930 | 0.9577 | - | | 13.5484 | 210 | 0.4599 | - | - | - | | 14.0 | 217 | - | 0.7564 | 0.9599 | - | | 14.1935 | 220 | 0.2437 | - | - | - | | **14.5161** | **225** | **-** | **0.7522** | **0.9603** | **0.9603** | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 3.0.1 - Transformers: 4.41.2 - PyTorch: 2.1.2+cu121 - Accelerate: 0.32.1 - Datasets: 2.19.1 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
BogdanTurbal/model_bert_large_cased_d_political_bias_gender_bias_ep_2_6_a_sqn_a_b_p_100_5_v_12
BogdanTurbal
2024-08-20T10:07:32Z
5
0
null
[ "tensorboard", "safetensors", "bert", "generated_from_trainer", "base_model:BogdanTurbal/model_bert_large_cased_d_political_bias_ep_2_sqn_a_p_100_v_12", "base_model:finetune:BogdanTurbal/model_bert_large_cased_d_political_bias_ep_2_sqn_a_p_100_v_12", "license:apache-2.0", "region:us" ]
null
2024-08-20T09:06:58Z
--- license: apache-2.0 base_model: BogdanTurbal/model_bert_large_cased_d_political_bias_ep_2_sqn_a_p_100_v_12 tags: - generated_from_trainer metrics: - accuracy model-index: - name: model_bert_large_cased_d_political_bias_gender_bias_ep_2_6_a_sqn_a_b_p_100_5_v_12 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # model_bert_large_cased_d_political_bias_gender_bias_ep_2_6_a_sqn_a_b_p_100_5_v_12 This model is a fine-tuned version of [BogdanTurbal/model_bert_large_cased_d_political_bias_ep_2_sqn_a_p_100_v_12](https://huggingface.co/BogdanTurbal/model_bert_large_cased_d_political_bias_ep_2_sqn_a_p_100_v_12) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2461 - Accuracy: 0.7851 - F1 Micro: 0.7851 - Auc: 0.8575 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Micro | Auc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:------:| | 0.5648 | 1.0 | 38 | 0.5449 | 0.7174 | 0.7174 | 0.8512 | | 0.2551 | 2.0 | 76 | 0.5605 | 0.7784 | 0.7784 | 0.8616 | | 0.3317 | 3.0 | 114 | 0.8203 | 0.7926 | 0.7926 | 0.8582 | | 0.1221 | 4.0 | 152 | 1.2179 | 0.7843 | 0.7843 | 0.8356 | | 0.0096 | 5.0 | 190 | 1.1558 | 0.7784 | 0.7784 | 0.8516 | | 0.0013 | 6.0 | 228 | 1.2461 | 0.7851 | 0.7851 | 0.8575 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1
BogdanTurbal/model_roberta_large_d_political_bias_political_bias_ep_2_6_a_sqn_a_b_p_100_5_v_12
BogdanTurbal
2024-08-20T09:59:14Z
5
0
null
[ "tensorboard", "safetensors", "roberta", "generated_from_trainer", "base_model:FacebookAI/roberta-large", "base_model:finetune:FacebookAI/roberta-large", "license:mit", "region:us" ]
null
2024-08-20T09:05:09Z
--- license: mit base_model: FacebookAI/roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: model_roberta_large_d_political_bias_political_bias_ep_2_6_a_sqn_a_b_p_100_5_v_12 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # model_roberta_large_d_political_bias_political_bias_ep_2_6_a_sqn_a_b_p_100_5_v_12 This model is a fine-tuned version of [FacebookAI/roberta-large](https://huggingface.co/FacebookAI/roberta-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6936 - Accuracy: 0.5026 - F1 Micro: 0.5026 - Auc: 0.4486 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Micro | Auc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:------:| | 0.7239 | 1.0 | 37 | 0.7001 | 0.5026 | 0.5026 | 0.4269 | | 0.7018 | 2.0 | 74 | 0.6965 | 0.5026 | 0.5026 | 0.4372 | | 0.7098 | 3.0 | 111 | 0.6932 | 0.5026 | 0.5026 | 0.4599 | | 0.7063 | 4.0 | 148 | 0.6931 | 0.5026 | 0.5026 | 0.4734 | | 0.6831 | 5.0 | 185 | 0.6932 | 0.4974 | 0.4974 | 0.4479 | | 0.6977 | 6.0 | 222 | 0.6936 | 0.5026 | 0.5026 | 0.4486 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1
mradermacher/128-goldfish-loss-llama-1B-GGUF
mradermacher
2024-08-20T09:59:09Z
17
0
transformers
[ "transformers", "gguf", "goldfish-loss", "memorization", "mitigation", "en", "dataset:tomg-group-umd/wikipedia-en-2k-samples", "base_model:tomg-group-umd/128-goldfish-loss-llama-1B", "base_model:quantized:tomg-group-umd/128-goldfish-loss-llama-1B", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-08-20T09:45:57Z
--- base_model: tomg-group-umd/128-goldfish-loss-llama-1B datasets: - tomg-group-umd/wikipedia-en-2k-samples language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - goldfish-loss - memorization - mitigation --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/tomg-group-umd/128-goldfish-loss-llama-1B <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/128-goldfish-loss-llama-1B-GGUF/resolve/main/128-goldfish-loss-llama-1B.Q2_K.gguf) | Q2_K | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/128-goldfish-loss-llama-1B-GGUF/resolve/main/128-goldfish-loss-llama-1B.IQ3_XS.gguf) | IQ3_XS | 0.6 | | | [GGUF](https://huggingface.co/mradermacher/128-goldfish-loss-llama-1B-GGUF/resolve/main/128-goldfish-loss-llama-1B.Q3_K_S.gguf) | Q3_K_S | 0.6 | | | [GGUF](https://huggingface.co/mradermacher/128-goldfish-loss-llama-1B-GGUF/resolve/main/128-goldfish-loss-llama-1B.IQ3_S.gguf) | IQ3_S | 0.6 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/128-goldfish-loss-llama-1B-GGUF/resolve/main/128-goldfish-loss-llama-1B.IQ3_M.gguf) | IQ3_M | 0.6 | | | [GGUF](https://huggingface.co/mradermacher/128-goldfish-loss-llama-1B-GGUF/resolve/main/128-goldfish-loss-llama-1B.Q3_K_M.gguf) | Q3_K_M | 0.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/128-goldfish-loss-llama-1B-GGUF/resolve/main/128-goldfish-loss-llama-1B.Q3_K_L.gguf) | Q3_K_L | 0.7 | | | [GGUF](https://huggingface.co/mradermacher/128-goldfish-loss-llama-1B-GGUF/resolve/main/128-goldfish-loss-llama-1B.IQ4_XS.gguf) | IQ4_XS | 0.7 | | | [GGUF](https://huggingface.co/mradermacher/128-goldfish-loss-llama-1B-GGUF/resolve/main/128-goldfish-loss-llama-1B.Q4_K_S.gguf) | Q4_K_S | 0.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/128-goldfish-loss-llama-1B-GGUF/resolve/main/128-goldfish-loss-llama-1B.Q4_K_M.gguf) | Q4_K_M | 0.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/128-goldfish-loss-llama-1B-GGUF/resolve/main/128-goldfish-loss-llama-1B.Q5_K_S.gguf) | Q5_K_S | 0.9 | | | [GGUF](https://huggingface.co/mradermacher/128-goldfish-loss-llama-1B-GGUF/resolve/main/128-goldfish-loss-llama-1B.Q5_K_M.gguf) | Q5_K_M | 0.9 | | | [GGUF](https://huggingface.co/mradermacher/128-goldfish-loss-llama-1B-GGUF/resolve/main/128-goldfish-loss-llama-1B.Q6_K.gguf) | Q6_K | 1.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/128-goldfish-loss-llama-1B-GGUF/resolve/main/128-goldfish-loss-llama-1B.Q8_0.gguf) | Q8_0 | 1.3 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/128-goldfish-loss-llama-1B-GGUF/resolve/main/128-goldfish-loss-llama-1B.f16.gguf) | f16 | 2.3 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
KoichiYasuoka/roberta-large-korean-upos
KoichiYasuoka
2024-08-20T09:57:49Z
11
4
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "korean", "pos", "dependency-parsing", "ko", "dataset:universal_dependencies", "base_model:KoichiYasuoka/roberta-large-korean-hanja", "base_model:finetune:KoichiYasuoka/roberta-large-korean-hanja", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-29T08:16:31Z
--- language: - "ko" tags: - "korean" - "token-classification" - "pos" - "dependency-parsing" base_model: KoichiYasuoka/roberta-large-korean-hanja datasets: - "universal_dependencies" license: "cc-by-sa-4.0" pipeline_tag: "token-classification" widget: - text: "ํ™์‹œ ๋ง›์ด ๋‚˜์„œ ํ™์‹œ๋ผ ์ƒ๊ฐํ•œ๋‹ค." - text: "็ด…ๆŸน ๋ง›์ด ๋‚˜์„œ ็ด…ๆŸน๋ผ ็”Ÿ่ฆบํ•œ๋‹ค." --- # roberta-large-korean-upos ## Model Description This is a RoBERTa model pre-trained on Korean texts for POS-tagging and dependency-parsing, derived from [roberta-large-korean-hanja](https://huggingface.co/KoichiYasuoka/roberta-large-korean-hanja). Every word (์–ด์ ˆ) is tagged by [UPOS](https://universaldependencies.org/u/pos/)(Universal Part-Of-Speech). ## How to Use ```py from transformers import AutoTokenizer,AutoModelForTokenClassification,TokenClassificationPipeline tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-large-korean-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/roberta-large-korean-upos") pipeline=TokenClassificationPipeline(tokenizer=tokenizer,model=model,aggregation_strategy="simple") nlp=lambda x:[(x[t["start"]:t["end"]],t["entity_group"]) for t in pipeline(x)] print(nlp("ํ™์‹œ ๋ง›์ด ๋‚˜์„œ ํ™์‹œ๋ผ ์ƒ๊ฐํ•œ๋‹ค.")) ``` or ```py import esupar nlp=esupar.load("KoichiYasuoka/roberta-large-korean-upos") print(nlp("ํ™์‹œ ๋ง›์ด ๋‚˜์„œ ํ™์‹œ๋ผ ์ƒ๊ฐํ•œ๋‹ค.")) ``` ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
mradermacher/Llama-3.1-8B-Magpie-Align-SFT-v0.2-i1-GGUF
mradermacher
2024-08-20T09:55:00Z
316
0
transformers
[ "transformers", "gguf", "axolotl", "generated_from_trainer", "en", "dataset:Magpie-Align/Magpie-Llama-3.1-Pro-500K-Filtered", "dataset:Magpie-Align/Magpie-Reasoning-150K", "base_model:Magpie-Align/Llama-3.1-8B-Magpie-Align-SFT-v0.2", "base_model:quantized:Magpie-Align/Llama-3.1-8B-Magpie-Align-SFT-v0.2", "license:llama3.1", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2024-08-20T08:39:28Z
--- base_model: Magpie-Align/Llama-3.1-8B-Magpie-Align-SFT-v0.2 datasets: - Magpie-Align/Magpie-Llama-3.1-Pro-500K-Filtered - Magpie-Align/Magpie-Reasoning-150K language: - en library_name: transformers license: llama3.1 quantized_by: mradermacher tags: - axolotl - generated_from_trainer --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/Magpie-Align/Llama-3.1-8B-Magpie-Align-SFT-v0.2 <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Llama-3.1-8B-Magpie-Align-SFT-v0.2-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Magpie-Align-SFT-v0.2-i1-GGUF/resolve/main/Llama-3.1-8B-Magpie-Align-SFT-v0.2.i1-IQ1_S.gguf) | i1-IQ1_S | 2.1 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Magpie-Align-SFT-v0.2-i1-GGUF/resolve/main/Llama-3.1-8B-Magpie-Align-SFT-v0.2.i1-IQ1_M.gguf) | i1-IQ1_M | 2.3 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Magpie-Align-SFT-v0.2-i1-GGUF/resolve/main/Llama-3.1-8B-Magpie-Align-SFT-v0.2.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.5 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Magpie-Align-SFT-v0.2-i1-GGUF/resolve/main/Llama-3.1-8B-Magpie-Align-SFT-v0.2.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.7 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Magpie-Align-SFT-v0.2-i1-GGUF/resolve/main/Llama-3.1-8B-Magpie-Align-SFT-v0.2.i1-IQ2_S.gguf) | i1-IQ2_S | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Magpie-Align-SFT-v0.2-i1-GGUF/resolve/main/Llama-3.1-8B-Magpie-Align-SFT-v0.2.i1-IQ2_M.gguf) | i1-IQ2_M | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Magpie-Align-SFT-v0.2-i1-GGUF/resolve/main/Llama-3.1-8B-Magpie-Align-SFT-v0.2.i1-Q2_K.gguf) | i1-Q2_K | 3.3 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Magpie-Align-SFT-v0.2-i1-GGUF/resolve/main/Llama-3.1-8B-Magpie-Align-SFT-v0.2.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 3.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Magpie-Align-SFT-v0.2-i1-GGUF/resolve/main/Llama-3.1-8B-Magpie-Align-SFT-v0.2.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Magpie-Align-SFT-v0.2-i1-GGUF/resolve/main/Llama-3.1-8B-Magpie-Align-SFT-v0.2.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.8 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Magpie-Align-SFT-v0.2-i1-GGUF/resolve/main/Llama-3.1-8B-Magpie-Align-SFT-v0.2.i1-IQ3_S.gguf) | i1-IQ3_S | 3.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Magpie-Align-SFT-v0.2-i1-GGUF/resolve/main/Llama-3.1-8B-Magpie-Align-SFT-v0.2.i1-IQ3_M.gguf) | i1-IQ3_M | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Magpie-Align-SFT-v0.2-i1-GGUF/resolve/main/Llama-3.1-8B-Magpie-Align-SFT-v0.2.i1-Q3_K_M.gguf) | i1-Q3_K_M | 4.1 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Magpie-Align-SFT-v0.2-i1-GGUF/resolve/main/Llama-3.1-8B-Magpie-Align-SFT-v0.2.i1-Q3_K_L.gguf) | i1-Q3_K_L | 4.4 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Magpie-Align-SFT-v0.2-i1-GGUF/resolve/main/Llama-3.1-8B-Magpie-Align-SFT-v0.2.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.5 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Magpie-Align-SFT-v0.2-i1-GGUF/resolve/main/Llama-3.1-8B-Magpie-Align-SFT-v0.2.i1-Q4_0.gguf) | i1-Q4_0 | 4.8 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Magpie-Align-SFT-v0.2-i1-GGUF/resolve/main/Llama-3.1-8B-Magpie-Align-SFT-v0.2.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.8 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Magpie-Align-SFT-v0.2-i1-GGUF/resolve/main/Llama-3.1-8B-Magpie-Align-SFT-v0.2.i1-Q4_K_M.gguf) | i1-Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Magpie-Align-SFT-v0.2-i1-GGUF/resolve/main/Llama-3.1-8B-Magpie-Align-SFT-v0.2.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Magpie-Align-SFT-v0.2-i1-GGUF/resolve/main/Llama-3.1-8B-Magpie-Align-SFT-v0.2.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Magpie-Align-SFT-v0.2-i1-GGUF/resolve/main/Llama-3.1-8B-Magpie-Align-SFT-v0.2.i1-Q6_K.gguf) | i1-Q6_K | 6.7 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
KoichiYasuoka/roberta-base-korean-hanja
KoichiYasuoka
2024-08-20T09:54:58Z
107
1
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "korean", "masked-lm", "ko", "base_model:klue/roberta-base", "base_model:finetune:klue/roberta-base", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-12-01T03:29:39Z
--- language: - "ko" tags: - "korean" - "masked-lm" base_model: klue/roberta-base license: "cc-by-sa-4.0" pipeline_tag: "fill-mask" mask_token: "[MASK]" --- # roberta-base-korean-hanja ## Model Description This is a RoBERTa model pre-trained on Korean texts, derived from [klue/roberta-base](https://huggingface.co/klue/roberta-base). Token-embeddings are enhanced to include all ํ•œ๋ฌธ ๊ต์œก์šฉ ๊ธฐ์ดˆ ํ•œ์ž and ์ธ๋ช…์šฉ ํ•œ์ž characters. You can fine-tune `roberta-base-korean-hanja` for downstream tasks, such as [POS-tagging](https://huggingface.co/KoichiYasuoka/roberta-base-korean-upos), [dependency-parsing](https://huggingface.co/KoichiYasuoka/roberta-base-korean-ud-goeswith), and so on. ## How to Use ```py from transformers import AutoTokenizer,AutoModelForMaskedLM tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-base-korean-hanja") model=AutoModelForMaskedLM.from_pretrained("KoichiYasuoka/roberta-base-korean-hanja") ```
KoichiYasuoka/roberta-base-korean-upos
KoichiYasuoka
2024-08-20T09:53:32Z
398
1
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "korean", "pos", "dependency-parsing", "ko", "dataset:universal_dependencies", "base_model:KoichiYasuoka/roberta-base-korean-hanja", "base_model:finetune:KoichiYasuoka/roberta-base-korean-hanja", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-29T08:02:22Z
--- language: - "ko" tags: - "korean" - "token-classification" - "pos" - "dependency-parsing" base_model: KoichiYasuoka/roberta-base-korean-hanja datasets: - "universal_dependencies" license: "cc-by-sa-4.0" pipeline_tag: "token-classification" widget: - text: "ํ™์‹œ ๋ง›์ด ๋‚˜์„œ ํ™์‹œ๋ผ ์ƒ๊ฐํ•œ๋‹ค." - text: "็ด…ๆŸน ๋ง›์ด ๋‚˜์„œ ็ด…ๆŸน๋ผ ็”Ÿ่ฆบํ•œ๋‹ค." --- # roberta-base-korean-upos ## Model Description This is a RoBERTa model pre-trained on Korean texts for POS-tagging and dependency-parsing, derived from [roberta-base-korean-hanja](https://huggingface.co/KoichiYasuoka/roberta-base-korean-hanja). Every word (์–ด์ ˆ) is tagged by [UPOS](https://universaldependencies.org/u/pos/)(Universal Part-Of-Speech). ## How to Use ```py from transformers import AutoTokenizer,AutoModelForTokenClassification,TokenClassificationPipeline tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-base-korean-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/roberta-base-korean-upos") pipeline=TokenClassificationPipeline(tokenizer=tokenizer,model=model,aggregation_strategy="simple") nlp=lambda x:[(x[t["start"]:t["end"]],t["entity_group"]) for t in pipeline(x)] print(nlp("ํ™์‹œ ๋ง›์ด ๋‚˜์„œ ํ™์‹œ๋ผ ์ƒ๊ฐํ•œ๋‹ค.")) ``` or ```py import esupar nlp=esupar.load("KoichiYasuoka/roberta-base-korean-upos") print(nlp("ํ™์‹œ ๋ง›์ด ๋‚˜์„œ ํ™์‹œ๋ผ ์ƒ๊ฐํ•œ๋‹ค.")) ``` ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models