modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-06-05 12:28:32
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
468 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-06-05 12:27:45
card
stringlengths
11
1.01M
almersawi/test-tinyllama-1
almersawi
2024-03-19T19:34:07Z
89
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "gpt", "llm", "large language model", "openinnovatioai-mlops", "conversational", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-19T19:33:17Z
--- library_name: transformers tags: - gpt - llm - large language model - openinnovatioai-mlops inference: false --- # Model Card This model was trained using [OpenInnovationAI MLOps](https://openinnovation.ai/products/open-innovation-ai-os-transforming-enterprise-ai-and-mlops). - Base model: [TinyLlama/TinyLlama-1.1B-Chat-v0.6](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v0.6)
ferrazzipietro/Llama-2-13b-chat-hf_adapters_en.layer1_8_torch.bfloat16_64_64_0.01_4_0.0002
ferrazzipietro
2024-03-19T19:30:40Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-03-19T19:29:33Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
cerebras/Cerebras-ViT-L-336-patch14-llava13b-ShareGPT4V
cerebras
2024-03-19T19:27:49Z
161
0
transformers
[ "transformers", "pytorch", "clip_vision_model", "endpoints_compatible", "region:us" ]
null
2024-03-19T19:13:00Z
--- {} --- # Model Card for Cerebras-ViT-L-336-patch14-llava13b-ShareGPT4V The checkpoints here are for the vision encoder part of [**cerebras/Cerebras-LLaVA-13B**](https://huggingface.co/cerebras/Cerebras-LLaVA-13B). **Note**: _ShareGPT4V_ is added to the model name to ensure correct loading of checkpoints in [LLaVA source repo](https://github.com/haotian-liu/LLaVA/blob/main/llava/model/multimodal_encoder/builder.py#L8) For full details of this model and training details, please read our upcoming blog post. ## License: Attribution-NonCommercial 4.0 International It should abide by the policy of OpenAI: https://openai.com/policies/terms-of-use ## Model Architecture Cerebras-ViT-L-336-patch14-llava13b-ShareGPT4V is a transformer model based on CLIP-VisionModel-Large(openai/clip-vit-large-patch14-336). It handles images of size 336 x 336 with patch size of 14 ## Intended Use _Primary intended uses_: The primary use of LLaVA is research on large multimodal models and chatbots. _Primary intended users_: The primary intended users of the model are researchers(both academic and industry) in computer vision, natural language processing, machine learning, and artificial intelligence ## Limitations and Bias The pre-training dataset may have contained offensive or inappropriate content, even after applying data cleansing filters, which can be reflected in the model-generated text. We recommend that users exercise caution when using these models for their applications or any use case that may cause deliberate or unintentional harm to others. This model is for demonstration purpose only.
dagbs/quietstar-8-ahead-GGUF
dagbs
2024-03-19T19:23:53Z
38
5
null
[ "gguf", "endpoints_compatible", "region:us" ]
null
2024-03-19T18:06:59Z
# quietstar-8-ahead - GGUF Original Model: [ezelikman/quietstar-8-ahead](https://huggingface.co/ezelikman/quietstar-8-ahead)
prajwalJumde/rap_phase2_19march_5i_v1
prajwalJumde
2024-03-19T19:23:40Z
110
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "question-answering", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2024-03-19T13:11:16Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer model-index: - name: rap_phase2_19march_5i_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rap_phase2_19march_5i_v1 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0179 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 21 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.1239 | 1.0 | 2505 | 0.0716 | | 0.0849 | 2.0 | 5010 | 0.0479 | | 0.0331 | 3.0 | 7515 | 0.1480 | | 0.025 | 4.0 | 10020 | 0.0318 | | 0.0828 | 5.0 | 12525 | 0.0325 | | 0.0533 | 6.0 | 15030 | 0.0291 | | 0.0163 | 7.0 | 17535 | 0.0336 | | 0.0128 | 8.0 | 20040 | 0.0213 | | 0.0124 | 9.0 | 22545 | 0.0179 | | 0.0118 | 10.0 | 25050 | 0.0228 | | 0.0028 | 11.0 | 27555 | 0.0130 | | 0.0056 | 12.0 | 30060 | 0.0143 | | 0.0064 | 13.0 | 32565 | 0.0161 | | 0.0027 | 14.0 | 35070 | 0.0165 | | 0.0083 | 15.0 | 37575 | 0.0189 | | 0.0 | 16.0 | 40080 | 0.0172 | | 0.0003 | 17.0 | 42585 | 0.0175 | | 0.0021 | 18.0 | 45090 | 0.0213 | | 0.0001 | 19.0 | 47595 | 0.0190 | | 0.0 | 20.0 | 50100 | 0.0181 | | 0.0 | 21.0 | 52605 | 0.0179 | ### Framework versions - Transformers 4.37.0 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
numind/NuNER-BERT-v1.0
numind
2024-03-19T19:20:53Z
686
0
transformers
[ "transformers", "safetensors", "bert", "feature-extraction", "token-classification", "entity-recognition", "foundation-model", "BERT", "generic", "en", "dataset:numind/NuNER", "arxiv:2402.15343", "license:mit", "region:us" ]
token-classification
2024-03-04T14:48:47Z
--- language: - en license: mit tags: - token-classification - entity-recognition - foundation-model - feature-extraction - BERT - generic datasets: - numind/NuNER pipeline_tag: token-classification inference: false --- # SOTA Entity Recognition English Foundation Model by NuMind 🔥 This is the **BERT** model from our [**Paper**](https://arxiv.org/abs/2402.15343): **NuNER: Entity Recognition Encoder Pre-training via LLM-Annotated Data** <u>**This is the model used in Section 4.2 when comparing against TadNER.**</u> For other sections, [NuNER v1.0](https://huggingface.co/numind/NuNER-v1.0) is used. **Checkout other models by NuMind:** * SOTA Multilingual Entity Recognition Foundation Model: [link](https://huggingface.co/numind/entity-recognition-multilingual-general-sota-v1) * SOTA Sentiment Analysis Foundation Model: [English](https://huggingface.co/numind/generic-sentiment-v1), [Multilingual](https://huggingface.co/numind/generic-sentiment-multi-v1) ## About [bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) fine-tuned on [NuNER data](https://huggingface.co/datasets/numind/NuNER). **Metrics:** Read more about evaluation protocol datasets in Section 4.2 of our [paper](https://arxiv.org/abs/2402.15343). ## Usage Embeddings can be used out of the box or fine-tuned on specific datasets. Get embeddings: ```python import torch import transformers model = transformers.AutoModel.from_pretrained( 'numind/NuNER-BERT-v1.0', output_hidden_states=True ) tokenizer = transformers.AutoTokenizer.from_pretrained( 'numind/NuNER-BERT-v1.0' ) text = [ "NuMind is an AI company based in Paris and USA.", "See other models from us on https://huggingface.co/numind" ] encoded_input = tokenizer( text, return_tensors='pt', padding=True, truncation=True ) output = model(**encoded_input) # for better quality emb = torch.cat( (output.hidden_states[-1], output.hidden_states[-7]), dim=2 ) # for better speed # emb = output.hidden_states[-1] ``` ## Citation ``` @misc{bogdanov2024nuner, title={NuNER: Entity Recognition Encoder Pre-training via LLM-Annotated Data}, author={Sergei Bogdanov and Alexandre Constantin and Timothée Bernard and Benoit Crabbé and Etienne Bernard}, year={2024}, eprint={2402.15343}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
syf97/adapter_course
syf97
2024-03-19T19:13:12Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:yam-peleg/Experiment26-7B", "base_model:adapter:yam-peleg/Experiment26-7B", "region:us" ]
null
2024-03-19T19:12:14Z
--- library_name: peft base_model: yam-peleg/Experiment26-7B --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.8.2
Comert77/Zz
Comert77
2024-03-19T19:12:52Z
0
0
asteroid
[ "asteroid", "summarization", "ae", "dataset:zeroshot/twitter-financial-news-sentiment", "license:mit", "region:us" ]
summarization
2024-03-19T19:12:22Z
--- license: mit datasets: - zeroshot/twitter-financial-news-sentiment language: - ae metrics: - bleu library_name: asteroid pipeline_tag: summarization ---
geekym15/gemma2b_fine_tuned_llm_tutor-V2
geekym15
2024-03-19T19:11:12Z
122
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-19T19:07:41Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
cerebras/Cerebras-ViT-L-336-patch14-llava7b-ShareGPT4V
cerebras
2024-03-19T19:07:20Z
164
0
transformers
[ "transformers", "pytorch", "clip_vision_model", "endpoints_compatible", "region:us" ]
null
2024-03-19T17:01:00Z
--- {} --- # Model Card for Cerebras-ViT-L-336-patch14-llava7b-ShareGPT4V The checkpoints here are for the vision encoder part of **cerebras/Cerebras-LLaVA-7B**. **Note**: _ShareGPT4V_ is added to the model name to ensure correct loading of checkpoints in [LLaVA source repo](https://github.com/haotian-liu/LLaVA/blob/main/llava/model/multimodal_encoder/builder.py#L8) For full details of this model and training details, please read our upcoming blog post. ## License: Attribution-NonCommercial 4.0 International It should abide by the policy of OpenAI: https://openai.com/policies/terms-of-use ## Model Architecture Cerebras-ViT-L-336-patch14-llava7b-ShareGPT4V is a transformer model based on CLIP-VisionModel-Large(openai/clip-vit-large-patch14-336). It handles images of size 336 x 336 with patch size of 14 ## Intended Use _Primary intended uses_: The primary use of LLaVA is research on large multimodal models and chatbots. _Primary intended users_: The primary intended users of the model are researchers(both academic and industry) in computer vision, natural language processing, machine learning, and artificial intelligence ## Limitations and Bias The pre-training dataset may have contained offensive or inappropriate content, even after applying data cleansing filters, which can be reflected in the model-generated text. We recommend that users exercise caution when using these models for their applications or any use case that may cause deliberate or unintentional harm to others. This model is for demonstration purpose only.
ferrazzipietro/Llama-2-13b-chat-hf_adapters_en.layer1_8_torch.bfloat16_64_32_0.01_8_0.0002
ferrazzipietro
2024-03-19T19:07:02Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-03-19T19:05:53Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
matanby/unsafe-diffusion
matanby
2024-03-19T19:05:00Z
110
0
diffusers
[ "diffusers", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-02-27T17:02:10Z
This dummy model demonstrateד the potential dangers of unsafe pickle loading. In this case a simple warning message is displayed, nothing more.
xuweilai1991/wav2vec2-large-mms-1b-turkish-colab
xuweilai1991
2024-03-19T19:03:16Z
6
0
transformers
[ "transformers", "safetensors", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice_6_1", "base_model:facebook/mms-1b-all", "base_model:finetune:facebook/mms-1b-all", "license:cc-by-nc-4.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-03-09T21:43:27Z
--- license: cc-by-nc-4.0 base_model: facebook/mms-1b-all tags: - generated_from_trainer datasets: - common_voice_6_1 metrics: - wer model-index: - name: wav2vec2-large-mms-1b-turkish-colab results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_6_1 type: common_voice_6_1 config: tr split: test args: tr metrics: - name: Wer type: wer value: 0.2164232458380145 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-mms-1b-turkish-colab This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the common_voice_6_1 dataset. It achieves the following results on the evaluation set: - Loss: 0.1535 - Wer: 0.2164 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.7812 | 0.92 | 100 | 0.1811 | 0.2468 | | 0.2821 | 1.83 | 200 | 0.1644 | 0.2291 | | 0.2647 | 2.75 | 300 | 0.1574 | 0.2214 | | 0.2407 | 3.67 | 400 | 0.1535 | 0.2164 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.1.2+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
cerebras/Cerebras-LLaVA-7B
cerebras
2024-03-19T19:01:19Z
11
2
transformers
[ "transformers", "pytorch", "llava", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-03-19T16:59:07Z
--- {} --- # Model Card for cerebras/Cerebras-LLaVA-7B The checkpoints consists of Language encoder and projector weights of multimodal LLaVA-7B model trained with our Cerebras implementation and training recipe. The vision encoder checkpoints for this model can be found at [cerebras/Cerebras-ViT-L-336-patch14-llava7b-ShareGPT4V](https://huggingface.co/cerebras/Cerebras-ViT-L-336-patch14-llava7b-ShareGPT4V) **Note**: _ShareGPT4V_ is added to the vision model name to ensure correct loading of checkpoints in [LLaVA source repo](https://github.com/haotian-liu/LLaVA/blob/main/llava/model/multimodal_encoder/builder.py#L8) For full details of this model and training details, please read our upcoming blog post. ## License Cerebras-Llava is licensed under the LLAMA 2 Community License, Copyright (c) Meta Platforms, Inc. All Rights Reserved. ## Model Architecture Cerebras-LLaVA-7B is a transformer model with the following architecture details * Vision encoder: [CLIP-VisionModel-Large](cerebras/Cerebras-ViT-L-336-patch14-llava7b-ShareGPT4V). It handles images of size 336 x 336 with patch size of 14 * Large Language Model: Pretrained from Vicuna-7B checkpoints and instruction finetuned on various datasets. * Projector: the projector module that connects the LLM and Vision encoder part consists of two linear layers with gelu activation (mlp2x-gelu) ## Loading the model This model can directly be loaded using the [LLaVa source code repository](https://github.com/haotian-liu/LLaVA). For installation, please refer to the [instructions in source code repository](https://github.com/haotian-liu/LLaVA?tab=readme-ov-file#install). We perform all our evaluations using the LLaVA source code repository scripts. ``` from llava.model.builder import load_pretrained_model from llava.mm_utils import get_model_name_from_path from llava.eval.run_llava import eval_model model_path = "cerebras/Cerebras-LLaVA-7B" tokenizer, model, image_processor, context_len = load_pretrained_model( model_path=model_path, model_base=None, model_name=get_model_name_from_path(model_path) ) ``` ## Intended Use _Primary intended uses_: The primary use of LLaVA is research on large multimodal models and chatbots. _Primary intended users_: The primary intended users of the model are researchers(both academic and industry) in computer vision, natural language processing, machine learning, and artificial intelligence ## Limitations and Bias The pre-training dataset may have contained offensive or inappropriate content, even after applying data cleansing filters, which can be reflected in the model-generated text. We recommend that users exercise caution when using these models for their applications or any use case that may cause deliberate or unintentional harm to others. This model is for demonstration purpose only. ## Acknowledgements We are thankful to all Cerebras engineers that made this work possible.
microsoft/Mistral-7B-v0.1-onnx
microsoft
2024-03-19T18:56:14Z
1
12
null
[ "onnx", "mistral", "onnxruntime", "llm", "en", "base_model:mistralai/Mistral-7B-v0.1", "base_model:quantized:mistralai/Mistral-7B-v0.1", "license:apache-2.0", "region:us" ]
null
2023-11-14T17:07:36Z
--- license: apache-2.0 base_model: mistralai/Mistral-7B-v0.1 language: - en tags: - mistral - onnxruntime - onnx - llm --- #### This is an optimized version of the Mistral 7B model, available on this repository: https://huggingface.co/mistralai/Mistral-7B-v0.1 and under the license on such repository. Microsoft permits you to use, modify, redistribute, and create derivatives of Microsoft's contributions to the optimized version subject to the restrictions and disclaimers of warranty and liability in license agreement. # Mistral-7b for ONNX Runtime ## Introduction This repository hosts the optimized versions of **Mistral-7B-v0.1** to accelerate inference with ONNX Runtime CUDA execution provider. See the [usage instructions](#usage-example) for how to inference this model with the ONNX files hosted in this repository. ## Model Description - **Developed by:** MistralAI - **Model type:** Pretrained generative text model - **License:** Apache 2.0 License - **Model Description:** This is a conversion of the [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) for [ONNX Runtime](https://github.com/microsoft/onnxruntime) inference with CUDA execution provider. ## Performance Comparison #### Latency for token generation Below is average latency of generating a token using a prompt of varying size using NVIDIA A100-SXM4-80GB GPU, taken from the [ORT benchmarking script for Mistral](https://github.com/microsoft/onnxruntime/blob/main/onnxruntime/python/tools/transformers/models/llama/README.md#benchmark-mistral) | Prompt Length | Batch Size | PyTorch 2.1 torch.compile | ONNX Runtime CUDA | |-------------|------------|----------------|-------------------| | 32 | 1 | 32.58ms | 12.08ms | | 256 | 1 | 54.54ms | 23.20ms | | 1024 | 1 | 100.6ms | 77.49ms | | 2048 | 1 | 236.8ms | 144.99ms | | 32 | 4 | 63.71ms | 15.32ms | | 256 | 4 | 86.74ms | 75.94ms | | 1024 | 4 | 380.2ms | 273.9ms | | 2048 | 4 | N/A | 554.5ms | ## Usage Example Following the [benchmarking instructions](https://github.com/microsoft/onnxruntime/blob/main/onnxruntime/python/tools/transformers/models/llama/README.md#mistral). Example steps: 1. Clone onnxruntime repository. ```shell git clone https://github.com/microsoft/onnxruntime cd onnxruntime ``` 2. Install required dependencies ```shell python3 -m pip install -r onnxruntime/python/tools/transformers/models/llama/requirements-cuda.txt ``` 5. Inference using manual model API, or use Hugging Face's ORTModelForCausalLM ```python from optimum.onnxruntime import ORTModelForCausalLM from onnxruntime import InferenceSession from transformers import AutoConfig, AutoTokenizer sess = InferenceSession("Mistral-7B-v0.1.onnx", providers = ["CUDAExecutionProvider"]) config = AutoConfig.from_pretrained("mistralai/Mistral-7B-v0.1") model = ORTModelForCausalLM(sess, config, use_cache = True, use_io_binding = True) tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1") inputs = tokenizer("Instruct: What is a fermi paradox?\nOutput:", return_tensors="pt") outputs = model.generate(**inputs) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ```
e22vvb/ALL_bart_15_spider_new2
e22vvb
2024-03-19T18:51:58Z
119
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-03-19T17:12:47Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: ALL_bart_15_spider_new2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ALL_bart_15_spider_new2 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4402 - Rouge2 Precision: 0.4522 - Rouge2 Recall: 0.3179 - Rouge2 Fmeasure: 0.3513 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 30 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:----:|:---------------:|:----------------:|:-------------:|:---------------:| | 0.7693 | 1.0 | 647 | 0.3306 | 0.3852 | 0.2571 | 0.2875 | | 0.166 | 2.0 | 1294 | 0.3361 | 0.3785 | 0.2577 | 0.2858 | | 0.1247 | 3.0 | 1941 | 0.3572 | 0.4176 | 0.2801 | 0.3132 | | 0.0844 | 4.0 | 2588 | 0.3678 | 0.4189 | 0.2882 | 0.32 | | 0.0711 | 5.0 | 3235 | 0.3778 | 0.4313 | 0.3021 | 0.3338 | | 0.0619 | 6.0 | 3882 | 0.3928 | 0.4335 | 0.3012 | 0.3337 | | 0.0474 | 7.0 | 4529 | 0.3987 | 0.4415 | 0.3064 | 0.3395 | | 0.041 | 8.0 | 5176 | 0.4098 | 0.4289 | 0.2963 | 0.3288 | | 0.0371 | 9.0 | 5823 | 0.4180 | 0.4404 | 0.3134 | 0.3447 | | 0.0331 | 10.0 | 6470 | 0.4197 | 0.4359 | 0.3055 | 0.3375 | | 0.0268 | 11.0 | 7117 | 0.4272 | 0.4406 | 0.3084 | 0.3409 | | 0.025 | 12.0 | 7764 | 0.4337 | 0.4424 | 0.3105 | 0.3427 | | 0.0229 | 13.0 | 8411 | 0.4355 | 0.4383 | 0.3104 | 0.3416 | | 0.0198 | 14.0 | 9058 | 0.4391 | 0.4471 | 0.3157 | 0.3481 | | 0.0187 | 15.0 | 9705 | 0.4402 | 0.4522 | 0.3179 | 0.3513 | ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu117 - Datasets 2.14.7.dev0 - Tokenizers 0.13.3
sarthakharne/bert-base-100-ep-pretrain-on-textbooks
sarthakharne
2024-03-19T18:46:22Z
177
0
transformers
[ "transformers", "safetensors", "bert", "fill-mask", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2024-03-19T18:44:43Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ferrazzipietro/Llama-2-13b-chat-hf_adapters_en.layer1_8_torch.bfloat16_64_32_0.01_2_0.0002
ferrazzipietro
2024-03-19T18:43:50Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-03-19T18:42:43Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Bakanayatsu/Fimbulvetr-Kuro-Lotus-10.7B-GGUF-imatrix
Bakanayatsu
2024-03-19T18:42:32Z
125
5
null
[ "gguf", "endpoints_compatible", "region:us" ]
null
2024-03-16T10:40:23Z
Original: [Fimbulvetr-Kuro-Lotus-10.7B](https://huggingface.co/saishf/Fimbulvetr-Kuro-Lotus-10.7B) GGUF: [Fimbulvetr-Kuro-Lotus-10.7B-GGUF](https://huggingface.co/saishf/Fimbulvetr-Kuro-Lotus-10.7B-GGUF) Imatrix: Here 3/19/2024: Fixed the incoherent generation when context is greater than 4096 with koboldcpp --contextsize
adasgaleus/20240319175245_strong_kingma
adasgaleus
2024-03-19T18:33:05Z
105
0
transformers
[ "transformers", "safetensors", "bert", "token-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-03-19T18:32:45Z
--- license: apache-2.0 base_model: google-bert/bert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: 20240319175245_strong_kingma results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 20240319175245_strong_kingma This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0364 - Precision: 0.9707 - Recall: 0.9776 - F1: 0.9741 - Accuracy: 0.9871 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 69 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 350 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0733 | 0.09 | 300 | 0.0625 | 0.9531 | 0.9570 | 0.9550 | 0.9775 | | 0.0758 | 0.17 | 600 | 0.0667 | 0.9522 | 0.9518 | 0.9520 | 0.9760 | | 0.0668 | 0.26 | 900 | 0.0587 | 0.9549 | 0.9615 | 0.9582 | 0.9789 | | 0.0616 | 0.35 | 1200 | 0.0586 | 0.9551 | 0.9655 | 0.9603 | 0.9798 | | 0.0583 | 0.44 | 1500 | 0.0521 | 0.9588 | 0.9672 | 0.9630 | 0.9813 | | 0.0548 | 0.52 | 1800 | 0.0494 | 0.9611 | 0.9681 | 0.9646 | 0.9823 | | 0.0506 | 0.61 | 2100 | 0.0462 | 0.9638 | 0.9704 | 0.9671 | 0.9834 | | 0.0472 | 0.7 | 2400 | 0.0432 | 0.9651 | 0.9736 | 0.9693 | 0.9846 | | 0.0436 | 0.78 | 2700 | 0.0402 | 0.9674 | 0.9748 | 0.9711 | 0.9855 | | 0.0415 | 0.87 | 3000 | 0.0380 | 0.9704 | 0.9753 | 0.9728 | 0.9865 | | 0.039 | 0.96 | 3300 | 0.0364 | 0.9707 | 0.9776 | 0.9741 | 0.9871 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.0a0+6a974be - Datasets 2.18.0 - Tokenizers 0.15.2
ferrazzipietro/Llama-2-13b-chat-hf_adapters_en.layer1_8_torch.bfloat16_32_64_0.01_8_0.0002
ferrazzipietro
2024-03-19T18:31:58Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-03-19T18:31:23Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
theirislin/Derberta-SynCPKL
theirislin
2024-03-19T18:31:56Z
113
0
transformers
[ "transformers", "safetensors", "deberta-v2", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-03-19T18:26:48Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
tatsunori/distilbert-base-uncased-distilled-clinc
tatsunori
2024-03-19T18:31:09Z
118
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-03-19T18:26:47Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased-distilled-clinc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-distilled-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2223 - Accuracy: 0.9445 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 318 | 1.2786 | 0.7235 | | 1.5922 | 2.0 | 636 | 0.6337 | 0.8652 | | 1.5922 | 3.0 | 954 | 0.3711 | 0.9171 | | 0.5859 | 4.0 | 1272 | 0.2814 | 0.9316 | | 0.288 | 5.0 | 1590 | 0.2498 | 0.9381 | | 0.288 | 6.0 | 1908 | 0.2378 | 0.9406 | | 0.2186 | 7.0 | 2226 | 0.2298 | 0.9413 | | 0.1965 | 8.0 | 2544 | 0.2260 | 0.9435 | | 0.1965 | 9.0 | 2862 | 0.2234 | 0.9445 | | 0.1884 | 10.0 | 3180 | 0.2223 | 0.9445 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
mpasila/NordicAlpaca-Finnish-V1-7B-LoRA
mpasila
2024-03-19T18:30:36Z
2
0
peft
[ "peft", "safetensors", "fi", "dataset:pinzhenchen/alpaca-cleaned-fi", "base_model:HPLT/gpt-7b-nordic-prerelease", "base_model:adapter:HPLT/gpt-7b-nordic-prerelease", "license:apache-2.0", "region:us" ]
null
2024-03-19T14:23:51Z
--- language: - fi library_name: peft base_model: HPLT/gpt-7b-nordic-prerelease license: apache-2.0 datasets: - pinzhenchen/alpaca-cleaned-fi --- # Model Card for NordicAlpaca-Finnish-V1-7B-LoRA LoRA trained in 4-bit using [HPLT/gpt-7b-nordic-prerelease](https://huggingface.co/HPLT/gpt-7b-nordic-prerelease/) as the base model for 1 epoch. Dataset used with the LoRA is [pinzhenchen/alpaca-cleaned-fi](https://huggingface.co/datasets/pinzhenchen/alpaca-cleaned-fi/). It uses Alpaca format but with a translated instruction at the start: ``` { "instruction,output": "Alla on ohje, jossa kuvataan tehtävä. Kirjoita vastaus, joka täyttää pyynnön asianmukaisesti.\n\n### Instruction:\n%instruction%\n\n### Response:\n%output%", "instruction,input,output": "Alla on ohje, jossa kuvataan tehtävä ja joka on yhdistetty kontekstia lisäävään syötteeseen. Kirjoita vastaus, joka täyttää pyynnön asianmukaisesti.\n\n### Instruction:\n%instruction%\n\n### Input:\n%input%\n\n### Response:\n%output%" } ``` Using the following settings: ```json { "lora_name": "Alpaca-Finnish-v1", "always_override": false, "q_proj_en": true, "v_proj_en": true, "k_proj_en": false, "o_proj_en": false, "gate_proj_en": false, "down_proj_en": false, "up_proj_en": false, "save_steps": 250.0, "micro_batch_size": 4, "batch_size": 128, "epochs": 3.0, "learning_rate": "3e-4", "lr_scheduler_type": "linear", "lora_rank": 256, "lora_alpha": 512, "lora_dropout": 0.05, "cutoff_len": 384, "dataset": "alpaca_data_cleaned.fi", "eval_dataset": "None", "format": "alpaca-format-finnish", "eval_steps": 100.0, "raw_text_file": "None", "overlap_len": 128, "newline_favor_len": 128, "higher_rank_limit": false, "warmup_steps": 100.0, "optimizer": "adamw_torch", "hard_cut_string": "\\n\\n\\n", "train_only_after": "", "stop_at_loss": 0, "add_eos_token": false, "min_chars": 0.0, "report_to": "None" } ``` ### Framework versions - PEFT 0.8.2
AmilaUvaz/autotrain-w7ckn-wbqd2
AmilaUvaz
2024-03-19T18:28:49Z
1
0
diffusers
[ "diffusers", "autotrain", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "template:sd-lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:openrail++", "region:us" ]
text-to-image
2024-03-19T18:28:46Z
--- tags: - autotrain - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora - template:sd-lora base_model: runwayml/stable-diffusion-v1-5 instance_prompt: <1girl, 24 years old Latina fitness girl called Rishi. oblong face shape, Almond-shaped, brown, medium-sized, with a slight upward tilt, Thin and arched eyebrows, curved nose, natural lips> license: openrail++ --- # AutoTrain LoRA DreamBooth - AmilaUvaz/autotrain-w7ckn-wbqd2 These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were trained on <1girl, 24 years old Latina fitness girl called Rishi. oblong face shape, Almond-shaped, brown, medium-sized, with a slight upward tilt, Thin and arched eyebrows, curved nose, natural lips> using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False.
tatsunori/distilbert-base-uncased-finetuned-clinc
tatsunori
2024-03-19T18:26:16Z
12
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-03-19T16:39:30Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-clinc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7965 - Accuracy: 0.9171 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 318 | 3.3098 | 0.7152 | | 3.8102 | 2.0 | 636 | 1.9031 | 0.8465 | | 3.8102 | 3.0 | 954 | 1.1806 | 0.8887 | | 1.7245 | 4.0 | 1272 | 0.8839 | 0.9110 | | 0.9286 | 5.0 | 1590 | 0.7965 | 0.9171 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
Crystalcareai/Gemma-7b-Fixed
Crystalcareai
2024-03-19T18:25:51Z
8
3
transformers
[ "transformers", "safetensors", "gemmoe", "text-generation", "custom_code", "arxiv:2305.14314", "arxiv:2312.11805", "arxiv:2009.03300", "arxiv:1905.07830", "arxiv:1911.11641", "arxiv:1904.09728", "arxiv:1905.10044", "arxiv:1907.10641", "arxiv:1811.00937", "arxiv:1809.02789", "arxiv:1911.01547", "arxiv:1705.03551", "arxiv:2107.03374", "arxiv:2108.07732", "arxiv:2110.14168", "arxiv:2304.06364", "arxiv:2206.04615", "arxiv:1804.06876", "arxiv:2110.08193", "arxiv:2009.11462", "arxiv:2101.11718", "arxiv:1804.09301", "arxiv:2109.07958", "arxiv:2203.09509", "autotrain_compatible", "region:us" ]
text-generation
2024-03-17T08:25:22Z
--- library_name: transformers --- GEMMA IS NOW FIXED WITHIN TRANSFORMERS - DISREGARD THIS REPO # Reupload of Google Gemma - Find original readme below. # Gemma Model Card **Model Page**: [Gemma](https://ai.google.dev/gemma/docs) This model card corresponds to the 7B base version of the Gemma model. You can also visit the model card of the [2B base model](https://huggingface.co/google/gemma-2b), [7B instruct model](https://huggingface.co/google/gemma-7b-it), and [2B instruct model](https://huggingface.co/google/gemma-2b-it). **Resources and Technical Documentation**: * [Responsible Generative AI Toolkit](https://ai.google.dev/responsible) * [Gemma on Kaggle](https://www.kaggle.com/models/google/gemma) * [Gemma on Vertex Model Garden](https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/335?version=gemma-7b-gg-hf) **Terms of Use**: [Terms](https://www.kaggle.com/models/google/gemma/license/consent) **Authors**: Google ## Model Information Summary description and brief definition of inputs and outputs. ### Description Gemma is a family of lightweight, state-of-the-art open models from Google, built from the same research and technology used to create the Gemini models. They are text-to-text, decoder-only large language models, available in English, with open weights, pre-trained variants, and instruction-tuned variants. Gemma models are well-suited for a variety of text generation tasks, including question answering, summarization, and reasoning. Their relatively small size makes it possible to deploy them in environments with limited resources such as a laptop, desktop or your own cloud infrastructure, democratizing access to state of the art AI models and helping foster innovation for everyone. ### Usage Below we share some code snippets on how to get quickly started with running the model. First make sure to `pip install -U transformers`, then copy the snippet from the section that is relevant for your usecase. #### Fine-tuning examples You can find fine-tuning notebooks under the [`examples/` directory](https://huggingface.co/google/gemma-7b/tree/main/examples). We provide: * A script to perform Supervised Fine-Tuning (SFT) on UltraChat dataset using [QLoRA](https://huggingface.co/papers/2305.14314) * A script to perform SFT using FSDP on TPU devices * A notebook that you can run on a free-tier Google Colab instance to perform SFT on English quotes dataset #### Running the model on a CPU ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b") model = AutoModelForCausalLM.from_pretrained("google/gemma-7b") input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(**input_text, return_tensors="pt") outputs = model.generate(input_ids) print(tokenizer.decode(outputs[0])) ``` #### Running the model on a single / multi GPU ```python # pip install accelerate from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b") model = AutoModelForCausalLM.from_pretrained("google/gemma-7b", device_map="auto") input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` #### Running the model on a GPU using different precisions * _Using `torch.float16`_ ```python # pip install accelerate from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b") model = AutoModelForCausalLM.from_pretrained("google/gemma-7b", device_map="auto", torch_dtype=torch.float16) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` * _Using `torch.bfloat16`_ ```python # pip install accelerate from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b") model = AutoModelForCausalLM.from_pretrained("google/gemma-7b", device_map="auto", torch_dtype=torch.bfloat16) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` #### Quantized Versions through `bitsandbytes` * _Using 8-bit precision (int8)_ ```python # pip install bitsandbytes accelerate from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig quantization_config = BitsAndBytesConfig(load_in_8bit=True) tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b") model = AutoModelForCausalLM.from_pretrained("google/gemma-7b", quantization_config=quantization_config) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` * _Using 4-bit precision_ ```python # pip install bitsandbytes accelerate from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig quantization_config = BitsAndBytesConfig(load_in_4bit=True) tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b") model = AutoModelForCausalLM.from_pretrained("google/gemma-7b", quantization_config=quantization_config) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` #### Other optimizations * _Flash Attention 2_ First make sure to install `flash-attn` in your environment `pip install flash-attn` ```diff model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.float16, + attn_implementation="flash_attention_2" ).to(0) ``` ### Inputs and outputs * **Input:** Text string, such as a question, a prompt, or a document to be summarized. * **Output:** Generated English-language text in response to the input, such as an answer to a question, or a summary of a document. ## Model Data Data used for model training and how the data was processed. ### Training Dataset These models were trained on a dataset of text data that includes a wide variety of sources, totaling 6 trillion tokens. Here are the key components: * Web Documents: A diverse collection of web text ensures the model is exposed to a broad range of linguistic styles, topics, and vocabulary. Primarily English-language content. * Code: Exposing the model to code helps it to learn the syntax and patterns of programming languages, which improves its ability to generate code or understand code-related questions. * Mathematics: Training on mathematical text helps the model learn logical reasoning, symbolic representation, and to address mathematical queries. The combination of these diverse data sources is crucial for training a powerful language model that can handle a wide variety of different tasks and text formats. ### Data Preprocessing Here are the key data cleaning and filtering methods applied to the training data: * CSAM Filtering: Rigorous CSAM (Child Sexual Abuse Material) filtering was applied at multiple stages in the data preparation process to ensure the exclusion of harmful and illegal content * Sensitive Data Filtering: As part of making Gemma pre-trained models safe and reliable, automated techniques were used to filter out certain personal information and other sensitive data from training sets. * Additional methods: Filtering based on content quality and safely in line with [our policies](https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/2023_Google_AI_Principles_Progress_Update.pdf#page=11). ## Implementation Information Details about the model internals. ### Hardware Gemma was trained using the latest generation of [Tensor Processing Unit (TPU)](https://cloud.google.com/tpu/docs/intro-to-tpu) hardware (TPUv5e). Training large language models requires significant computational power. TPUs, designed specifically for matrix operations common in machine learning, offer several advantages in this domain: * Performance: TPUs are specifically designed to handle the massive computations involved in training LLMs. They can speed up training considerably compared to CPUs. * Memory: TPUs often come with large amounts of high-bandwidth memory, allowing for the handling of large models and batch sizes during training. This can lead to better model quality. * Scalability: TPU Pods (large clusters of TPUs) provide a scalable solution for handling the growing complexity of large foundation models. You can distribute training across multiple TPU devices for faster and more efficient processing. * Cost-effectiveness: In many scenarios, TPUs can provide a more cost-effective solution for training large models compared to CPU-based infrastructure, especially when considering the time and resources saved due to faster training. * These advantages are aligned with [Google's commitments to operate sustainably](https://sustainability.google/operating-sustainably/). ### Software Training was done using [JAX](https://github.com/google/jax) and [ML Pathways](https://blog.google/technology/ai/introducing-pathways-next-generation-ai-architecture). JAX allows researchers to take advantage of the latest generation of hardware, including TPUs, for faster and more efficient training of large models. ML Pathways is Google's latest effort to build artificially intelligent systems capable of generalizing across multiple tasks. This is specially suitable for [foundation models](https://ai.google/discover/foundation-models/), including large language models like these ones. Together, JAX and ML Pathways are used as described in the [paper about the Gemini family of models](https://arxiv.org/abs/2312.11805); "the 'single controller' programming model of Jax and Pathways allows a single Python process to orchestrate the entire training run, dramatically simplifying the development workflow." ## Evaluation Model evaluation metrics and results. ### Benchmark Results These models were evaluated against a large collection of different datasets and metrics to cover different aspects of text generation: | Benchmark | Metric | 2B Params | 7B Params | | ------------------------------ | ------------- | ----------- | --------- | | [MMLU](https://arxiv.org/abs/2009.03300) | 5-shot, top-1 | 42.3 | 64.3 | | [HellaSwag](https://arxiv.org/abs/1905.07830) | 0-shot |71.4 | 81.2 | | [PIQA](https://arxiv.org/abs/1911.11641) | 0-shot | 77.3 | 81.2 | | [SocialIQA](https://arxiv.org/abs/1904.09728) | 0-shot | 59.7 | 51.8 | | [BooIQ](https://arxiv.org/abs/1905.10044) | 0-shot | 69.4 | 83.2 | | [WinoGrande](https://arxiv.org/abs/1907.10641) | partial score | 65.4 | 72.3 | | [CommonsenseQA](https://arxiv.org/abs/1811.00937) | 7-shot | 65.3 | 71.3 | | [OpenBookQA](https://arxiv.org/abs/1809.02789) | | 47.8 | 52.8 | | [ARC-e](https://arxiv.org/abs/1911.01547) | | 73.2 | 81.5 | | [ARC-c](https://arxiv.org/abs/1911.01547) | | 42.1 | 53.2 | | [TriviaQA](https://arxiv.org/abs/1705.03551) | 5-shot | 53.2 | 63.4 | | [Natural Questions](https://github.com/google-research-datasets/natural-questions) | 5-shot | - | 23 | | [HumanEval](https://arxiv.org/abs/2107.03374) | pass@1 | 22.0 | 32.3 | | [MBPP](https://arxiv.org/abs/2108.07732) | 3-shot | 29.2 | 44.4 | | [GSM8K](https://arxiv.org/abs/2110.14168) | maj@1 | 17.7 | 46.4 | | [MATH](https://arxiv.org/abs/2108.07732) | 4-shot | 11.8 | 24.3 | | [AGIEval](https://arxiv.org/abs/2304.06364) | | 24.2 | 41.7 | | [BIG-Bench](https://arxiv.org/abs/2206.04615) | | 35.2 | 55.1 | | ------------------------------ | ------------- | ----------- | --------- | | **Average** | | **54.0** | **56.4** | ## Ethics and Safety Ethics and safety evaluation approach and results. ### Evaluation Approach Our evaluation methods include structured evaluations and internal red-teaming testing of relevant content policies. Red-teaming was conducted by a number of different teams, each with different goals and human evaluation metrics. These models were evaluated against a number of different categories relevant to ethics and safety, including: * Text-to-Text Content Safety: Human evaluation on prompts covering safety policies including child sexual abuse and exploitation, harassment, violence and gore, and hate speech. * Text-to-Text Representational Harms: Benchmark against relevant academic datasets such as [WinoBias](https://arxiv.org/abs/1804.06876) and [BBQ Dataset](https://arxiv.org/abs/2110.08193v2). * Memorization: Automated evaluation of memorization of training data, including the risk of personally identifiable information exposure. * Large-scale harm: Tests for "dangerous capabilities," such as chemical, biological, radiological, and nuclear (CBRN) risks. ### Evaluation Results The results of ethics and safety evaluations are within acceptable thresholds for meeting [internal policies](https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/2023_Google_AI_Principles_Progress_Update.pdf#page=11) for categories such as child safety, content safety, representational harms, memorization, large-scale harms. On top of robust internal evaluations, the results of well known safety benchmarks like BBQ, BOLD, Winogender, Winobias, RealToxicity, and TruthfulQA are shown here. | Benchmark | Metric | 2B Params | 7B Params | | ------------------------------ | ------------- | ----------- | --------- | | [RealToxicity](https://arxiv.org/abs/2009.11462) | average | 6.86 | 7.90 | | [BOLD](https://arxiv.org/abs/2101.11718) | | 45.57 | 49.08 | | [CrowS-Pairs](https://aclanthology.org/2020.emnlp-main.154/) | top-1 | 45.82 | 51.33 | | [BBQ Ambig](https://arxiv.org/abs/2110.08193v2) | 1-shot, top-1 | 62.58 | 92.54 | | [BBQ Disambig](https://arxiv.org/abs/2110.08193v2) | top-1 | 54.62 | 71.99 | | [Winogender](https://arxiv.org/abs/1804.09301) | top-1 | 51.25 | 54.17 | | [TruthfulQA](https://arxiv.org/abs/2109.07958) | | 44.84 | 31.81 | | [Winobias 1_2](https://arxiv.org/abs/1804.06876) | | 56.12 | 59.09 | | [Winobias 2_2](https://arxiv.org/abs/1804.06876) | | 91.10 | 92.23 | | [Toxigen](https://arxiv.org/abs/2203.09509) | | 29.77 | 39.59 | | ------------------------------ | ------------- | ----------- | --------- | ## Usage and Limitations These models have certain limitations that users should be aware of. ### Intended Usage Open Large Language Models (LLMs) have a wide range of applications across various industries and domains. The following list of potential uses is not comprehensive. The purpose of this list is to provide contextual information about the possible use-cases that the model creators considered as part of model training and development. * Content Creation and Communication * Text Generation: These models can be used to generate creative text formats such as poems, scripts, code, marketing copy, and email drafts. * Chatbots and Conversational AI: Power conversational interfaces for customer service, virtual assistants, or interactive applications. * Text Summarization: Generate concise summaries of a text corpus, research papers, or reports. * Research and Education * Natural Language Processing (NLP) Research: These models can serve as a foundation for researchers to experiment with NLP techniques, develop algorithms, and contribute to the advancement of the field. * Language Learning Tools: Support interactive language learning experiences, aiding in grammar correction or providing writing practice. * Knowledge Exploration: Assist researchers in exploring large bodies of text by generating summaries or answering questions about specific topics. ### Limitations * Training Data * The quality and diversity of the training data significantly influence the model's capabilities. Biases or gaps in the training data can lead to limitations in the model's responses. * The scope of the training dataset determines the subject areas the model can handle effectively. * Context and Task Complexity * LLMs are better at tasks that can be framed with clear prompts and instructions. Open-ended or highly complex tasks might be challenging. * A model's performance can be influenced by the amount of context provided (longer context generally leads to better outputs, up to a certain point). * Language Ambiguity and Nuance * Natural language is inherently complex. LLMs might struggle to grasp subtle nuances, sarcasm, or figurative language. * Factual Accuracy * LLMs generate responses based on information they learned from their training datasets, but they are not knowledge bases. They may generate incorrect or outdated factual statements. * Common Sense * LLMs rely on statistical patterns in language. They might lack the ability to apply common sense reasoning in certain situations. ### Ethical Considerations and Risks The development of large language models (LLMs) raises several ethical concerns. In creating an open model, we have carefully considered the following: * Bias and Fairness * LLMs trained on large-scale, real-world text data can reflect socio-cultural biases embedded in the training material. These models underwent careful scrutiny, input data pre-processing described and posterior evaluations reported in this card. * Misinformation and Misuse * LLMs can be misused to generate text that is false, misleading, or harmful. * Guidelines are provided for responsible use with the model, see the [Responsible Generative AI Toolkit](http://ai.google.dev/gemma/responsible). * Transparency and Accountability: * This model card summarizes details on the models' architecture, capabilities, limitations, and evaluation processes. * A responsibly developed open model offers the opportunity to share innovation by making LLM technology accessible to developers and researchers across the AI ecosystem. Risks identified and mitigations: * Perpetuation of biases: It's encouraged to perform continuous monitoring (using evaluation metrics, human review) and the exploration of de-biasing techniques during model training, fine-tuning, and other use cases. * Generation of harmful content: Mechanisms and guidelines for content safety are essential. Developers are encouraged to exercise caution and implement appropriate content safety safeguards based on their specific product policies and application use cases. * Misuse for malicious purposes: Technical limitations and developer and end-user education can help mitigate against malicious applications of LLMs. Educational resources and reporting mechanisms for users to flag misuse are provided. Prohibited uses of Gemma models are outlined in the [Gemma Prohibited Use Policy](https://ai.google.dev/gemma/prohibited_use_policy). * Privacy violations: Models were trained on data filtered for removal of PII (Personally Identifiable Information). Developers are encouraged to adhere to privacy regulations with privacy-preserving techniques. ### Benefits At the time of release, this family of models provides high-performance open large language model implementations designed from the ground up for Responsible AI development compared to similarly sized models. Using the benchmark evaluation metrics described in this document, these models have shown to provide superior performance to other, comparably-sized open model alternatives.
abh1nav/tamil_llama-v1
abh1nav
2024-03-19T18:19:59Z
0
0
peft
[ "peft", "safetensors", "llama", "arxiv:1910.09700", "base_model:abhinand/tamil-llama-7b-instruct-v0.1", "base_model:adapter:abhinand/tamil-llama-7b-instruct-v0.1", "region:us" ]
null
2024-03-15T16:34:32Z
--- library_name: peft base_model: abhinand/tamil-llama-7b-instruct-v0.1 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.9.0
ferrazzipietro/Llama-2-13b-chat-hf_adapters_en.layer1_8_torch.bfloat16_32_64_0.01_2_0.0002
ferrazzipietro
2024-03-19T18:09:27Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-03-19T18:08:50Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
dyang415/empower-functions-more-tools-parallel-1775
dyang415
2024-03-19T18:04:52Z
0
0
peft
[ "peft", "safetensors", "mixtral", "arxiv:1910.09700", "base_model:mistralai/Mixtral-8x7B-Instruct-v0.1", "base_model:adapter:mistralai/Mixtral-8x7B-Instruct-v0.1", "4-bit", "bitsandbytes", "region:us" ]
null
2024-03-19T18:04:33Z
--- library_name: peft base_model: mistralai/Mixtral-8x7B-Instruct-v0.1 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: QuantizationMethod.BITS_AND_BYTES - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.7.0
sarthakharne/bert-base-95-ep-pretrain-on-textbooks
sarthakharne
2024-03-19T18:02:33Z
194
0
transformers
[ "transformers", "safetensors", "bert", "fill-mask", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2024-03-19T18:00:52Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
jjezabek/ai_swe-openchat-3.5-0106-3-epochs
jjezabek
2024-03-19T18:00:52Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-03-19T18:00:42Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
dranger003/Qwen1.5-72B-Chat-iMat.GGUF
dranger003
2024-03-19T17:58:30Z
112
11
gguf
[ "gguf", "text-generation", "base_model:Qwen/Qwen1.5-72B-Chat", "base_model:quantized:Qwen/Qwen1.5-72B-Chat", "license:other", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-02-08T22:53:03Z
--- license: other license_name: tongyi-qianwen license_link: https://huggingface.co/Qwen/Qwen1.5-72B-Chat/blob/main/LICENSE pipeline_tag: text-generation library_name: gguf base_model: Qwen/Qwen1.5-72B-Chat --- <u>**NOTE**</u>: You will need a recent build of llama.cpp to run these quants (i.e. at least commit `494c870`). **2024-03-19**: Uploading new quants retrained on `wiki.train.raw` for ~100K tokens. **2024-03-07**: Refreshing quants using latest build as things seem to have stabilized a bit now. GGUF importance matrix (imatrix) quants for https://huggingface.co/Qwen/Qwen1.5-72B-Chat * The importance matrix was trained for ~50K tokens (105 batches of 512 tokens) using a [general purpose imatrix calibration dataset](https://github.com/ggerganov/llama.cpp/discussions/5263#discussioncomment-8395384). * The [imatrix is being used on the K-quants](https://github.com/ggerganov/llama.cpp/pull/4930) as well. | Layers | Context | [Template](https://huggingface.co/Qwen/Qwen1.5-72B-Chat/blob/main/tokenizer_config.json#L31) | | --- | --- | --- | | <pre>80</pre> | <pre>32768</pre> | <pre><\|im_start\|>system<br>{instructions}<\|im_end\|><br><\|im_start\|>user<br>{prompt}<\|im_end\|><br><\|im_start\|>assistant<br>{response}</pre> |
ferrazzipietro/Llama-2-13b-chat-hf_adapters_en.layer1_8_torch.bfloat16_32_32_0.01_8_0.0002
ferrazzipietro
2024-03-19T17:58:10Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-03-19T17:57:25Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
arh/distilbert-emotion
arh
2024-03-19T17:52:41Z
105
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-03-19T17:48:19Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - emotion metrics: - accuracy model-index: - name: distilbert-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.937 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1395 - Accuracy: 0.937 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 250 | 0.1824 | 0.9305 | | 0.3392 | 2.0 | 500 | 0.1395 | 0.937 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
peldrak/mask2former-large-ade-finetuned-coastTrain-grCoastline
peldrak
2024-03-19T17:48:46Z
34
0
transformers
[ "transformers", "safetensors", "mask2former", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-03-19T00:23:04Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ferrazzipietro/Llama-2-13b-chat-hf_adapters_en.layer1_8_torch.bfloat16_32_32_0.01_4_0.0002
ferrazzipietro
2024-03-19T17:47:08Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-03-19T17:46:30Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
samhitmantrala/pr_5
samhitmantrala
2024-03-19T17:43:47Z
181
0
transformers
[ "transformers", "tensorboard", "safetensors", "gpt2", "text-generation", "generated_from_trainer", "base_model:distilbert/distilgpt2", "base_model:finetune:distilbert/distilgpt2", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-19T17:43:14Z
--- license: apache-2.0 base_model: distilgpt2 tags: - generated_from_trainer model-index: - name: pr_5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pr_5 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9638 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 7 | 1.1487 | | No log | 2.0 | 14 | 1.0146 | | No log | 3.0 | 21 | 0.9638 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
Azarthehulk/NST
Azarthehulk
2024-03-19T17:42:44Z
0
0
null
[ "en", "region:us" ]
null
2024-03-19T17:25:23Z
--- language: - en --- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/628b7fb7ac304a69264a44b5/vN_kQ6QQ1PjpZ2OFCdPpo.png)
ferrazzipietro/Qwen1.5-7B-Chat__adapters_en.layer1_8_torch.bfloat16_32_64_0.01_4_0.0002
ferrazzipietro
2024-03-19T17:39:45Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-03-11T17:33:34Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
martineden/BERTJson-iett
martineden
2024-03-19T17:38:49Z
116
0
transformers
[ "transformers", "safetensors", "bert", "question-answering", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
question-answering
2024-03-19T17:38:29Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
12345deena/t5baseflan
12345deena
2024-03-19T17:32:42Z
162
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:google-t5/t5-base", "base_model:finetune:google-t5/t5-base", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-03-19T13:55:36Z
--- license: apache-2.0 base_model: google-t5/t5-base tags: - generated_from_trainer model-index: - name: t5baseflan results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5baseflan This model is a fine-tuned version of [google-t5/t5-base](https://huggingface.co/google-t5/t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 1.9888 - eval_rouge1: 42.8793 - eval_rouge2: 21.0178 - eval_rougeL: 27.8796 - eval_rougeLsum: 38.8123 - eval_gen_len: 198.6808 - eval_runtime: 1542.7666 - eval_samples_per_second: 0.658 - eval_steps_per_second: 0.165 - epoch: 1.0 - step: 515 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
ferrazzipietro/Qwen1.5-7B-Chat__adapters_en.layer1_8_torch.bfloat16_32_64_0.01_2_0.0002
ferrazzipietro
2024-03-19T17:32:25Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-03-11T17:26:11Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
prajwalJumde/rap_phase2_19march_5i
prajwalJumde
2024-03-19T17:31:30Z
123
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "question-answering", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2024-03-19T15:55:07Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer model-index: - name: rap_phase2_19march_5i results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rap_phase2_19march_5i This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0178 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 7 - eval_batch_size: 7 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.1477 | 1.0 | 4295 | 0.0859 | | 0.0574 | 2.0 | 8590 | 0.0485 | | 0.0295 | 3.0 | 12885 | 0.0388 | | 0.0311 | 4.0 | 17180 | 0.0336 | | 0.0169 | 5.0 | 21475 | 0.0275 | | 0.0169 | 6.0 | 25770 | 0.0245 | | 0.0037 | 7.0 | 30065 | 0.0204 | | 0.0024 | 8.0 | 34360 | 0.0164 | | 0.004 | 9.0 | 38655 | 0.0187 | | 0.0 | 10.0 | 42950 | 0.0178 | ### Framework versions - Transformers 4.37.0 - Pytorch 2.1.1+cu118 - Datasets 2.16.1 - Tokenizers 0.15.0
sdidier-dev/q-Taxi-v1
sdidier-dev
2024-03-19T17:31:27Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-03-19T17:31:25Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.46 +/- 2.77 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="sdidier-dev/q-Taxi-v1", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
xuweilai1991/w2v-bert-2.0-mongolian-colab-CV16.0
xuweilai1991
2024-03-19T17:29:35Z
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-03-12T20:50:46Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
jonbarlow/distilbert_coarse5_js_1.1
jonbarlow
2024-03-19T17:25:08Z
104
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-03-19T17:12:51Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert_coarse5_js_1.1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_coarse5_js_1.1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6826 - Accuracy: 0.8039 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 364 | 0.9021 | 0.6830 | | 1.0729 | 2.0 | 728 | 0.6936 | 0.7712 | | 0.6279 | 3.0 | 1092 | 0.6766 | 0.7745 | | 0.6279 | 4.0 | 1456 | 0.6633 | 0.7941 | | 0.4531 | 5.0 | 1820 | 0.6691 | 0.8137 | | 0.3527 | 6.0 | 2184 | 0.6826 | 0.8039 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2 - Datasets 2.16.1 - Tokenizers 0.15.0
dmdoy/Emotion_Recognition_From_Speech
dmdoy
2024-03-19T17:21:43Z
0
2
null
[ "music", "code", "audio-classification", "en", "arxiv:1912.10458", "arxiv:1909.05645", "arxiv:1701.08071", "license:gpl-3.0", "region:us" ]
audio-classification
2024-03-19T15:41:25Z
--- license: gpl-3.0 language: - en metrics: - accuracy pipeline_tag: audio-classification tags: - music - code --- # Emotion Recognition From Speech (V1.0) <p align="justify">The understanding of emotions from voice by a human brain are normal instincts of human beings, but automating the process of emotion recognition from speech without referring any language or linguistic information remains an uphill grind. In the research work presented based on the input speech, I am trying to predict one of the six types of emotions (sad, neutral, happy, fear, angry, disgust). The diagram given below explain how emotion recognition from speech works. The audio features are extracted from input speech, then those features are passed to the emotion recognition model which predicts one of the six emotions for the given input speech.</p> ![Working Of Emotion Recgnition From Speech](https://user-images.githubusercontent.com/13017779/127468882-130282fb-9424-4366-a656-00c040232940.png) # Motivation <p align="justify">Most of the smart devices or voice assistants or robots present in the world are not smart enough to understand the emotions. They are just like command and follow devices they have no emotional intelligence. When people are talking to each other based on the voice they understand situation and react to it, for instance if someone is angry then other person will try to clam him by conveying in soft tone, these kind of harmonic changes are not possible with smart devices or voice assistants as they lack emtional intelligence. So adding emotions and making devices understand emotions will take them one step further to human like intelligence.</p> # Application <p align="justify">There are tonnes of applicates based on one can imagine. Few applications based on my thinking are human computer interaction using voice, home automation, anger/stress management by decoding emotions from voice, emotion recognition can help in detecting fear and cops can used this system to check if dialer is feared by some one or its just a normal call to register a complain, Marketing companies can use emotions to sell products based on user mood, autonomous vehicles can detect user emotion and adjust the speed of vehicles, It can help in solving psychological or depression problems. These are few applications according to me but there can be many more as voice based systems are increasing, even voice bsed chatting is common on social media platforms like clubhouse, discord, twitch, and others.</p> # Libraries and coding language used for the project ![languages](https://img.shields.io/github/languages/count/devanshmody/Research_Methodology_COMP-5112) <a href="http://ffmpeg.org/"><img src="https://img.shields.io/badge/ffmpeg-green?style=flat&logo=ffmpeg&labelColor=green"></a> <a href="https://pandas.pydata.org/"><img src="https://img.shields.io/badge/pandas-darkblue?style=flat&logo=pandas&labelColor=darkblue"></a> <a href="https://numpy.org/"><img src="https://img.shields.io/badge/numpy-skyblue?style=flat&logo=numpy&labelColor=skyblue"></a> <a href="https://www.tensorflow.org/"><img src="https://img.shields.io/badge/tensorflow-orange?style=flat&logo=tensorflow&labelColor=orange"></a> <a href="https://docs.python.org/3/library/os.html"><img src="https://img.shields.io/badge/os-lightyellow?style=flat&logo=os&labelColor=lightyellow"></a> <a href="https://docs.python.org/3/library/time.html"><img src="https://img.shields.io/badge/time-lightgreen?style=flat&logo=time&labelColor=lightgreen"></a> <a href="https://librosa.org/"><img src="https://img.shields.io/badge/librosa-pink?style=flat&logo=librosa&labelColor=pink"></a> <a href="https://docs.python.org/3/library/warnings.html"><img src="https://img.shields.io/badge/warnings-lightred?style=flat&logo=warings&labelColor=lightred"></a> <a href="https://docs.python.org/3/library/base64.html"><img src="https://img.shields.io/badge/base64-lightgrey?style=flat&logo=base64&labelColor=lightgrey"></a> <a href="https://pypi.org/project/google-colab/"><img src="https://img.shields.io/badge/google-colab-lightorange?style=flat&logo=google-colab&labelColor=lightorange"></a> <a href="https://docs.python.org/3/library/glob.html"><img src="https://img.shields.io/badge/glob-lightgrey?style=flat&logo=glob&labelColor=lightgrey"></a> <a href="https://docs.python.org/3/library/re.html"><img src="https://img.shields.io/badge/regex-darkgreen?style=flat&logo=regex&labelColor=darkgreen"></a> <a href="https://scikit-learn.org/stable/"><img src="https://img.shields.io/badge/scikit-learn-darkorange?style=flat&logo=scikit-learn&labelColor=darkorange"></a> <a href="https://keras.io/"><img src="https://img.shields.io/badge/keras-darkred?style=flat&logo=keras&labelColor=darkred"></a> <a href="https://www.scipy.org/"><img src="https://img.shields.io/badge/scipy-violet?style=flat&logo=scipy&labelColor=violet"></a> <a href="https://docs.python.org/3/library/io.html"><img src="https://img.shields.io/badge/io-grey?style=flat&logo=io&labelColor=grey"></a> <a href="https://ipython.org/"><img src="https://img.shields.io/badge/ipython-purple?style=flat&logo=ipython&labelColor=purple"></a> <a href="https://matplotlib.org/"><img src="https://img.shields.io/badge/matplotlib-brown?style=flat&logo=matplotlib&labelColor=brown"></a> <a href="https://www.python.org/doc/"><img src="https://img.shields.io/badge/python3-yellow?style=flat&logo=python3&labelColor=yellow"></a> ![programming style](https://img.shields.io/badge/programming%20style-functional-brightgreen) ![programming language](https://img.shields.io/badge/programming%20language-python-red) # Dataset description <p align="justify">I have used four datasets and all four datasets are freely available to downloaded from kaggle website. So I have downloaded the data, extracted and stored in my google drive.</p> 1) Ryerson Audio Visual Database of Emotional Speech and Song (Ravdess) dataset description:<br> Dataset link to download: "https://www.kaggle.com/uwrfkaggler/ravdess-emotional-speech-audio" <br> Dataset stored on google drive at path: "/content/drive/MyDrive/Audiofiles/audio_speech_actors_01-24/"<br> Dataset contains sub folders and file names as example in numbers format 03-01-01-01-01-01-01.wav.<br> Actor (01 to 24. Odd numbered actors are male, even numbered actors are female).<br> So based on the number there is a identifier for each number and its meaning are as follows: * Modality (01 = full-AV, 02 = video-only, 03 = audio-only). * Vocal channel (01 = speech, 02 = song). * Emotion (01 = neutral, 02 = calm, 03 = happy, 04 = sad, 05 = angry, 06 = fearful, 07 = disgust, 08 = surprised). * Emotional intensity (01 = normal, 02 = strong). NOTE: There is no strong intensity for the 'neutral' emotion. * Statement (01 = "Kids are talking by the door", 02 = "Dogs are sitting by the door"). * Repetition (01 = 1st repetition, 02 = 2nd repetition). * Therefore file 03-01-01-01-01-01-01.wav can be deduced as 03=audio-only, 01=speech, 01=neutral, 01=normal, 01=statement kids and 01=1st repetition. 2) Crowd sourced Emotional Mutimodal Actors Dataset (CREMA-D) dataset description:<br> Dataset link to download: "https://www.kaggle.com/ejlok1/cremad" <br> Dataset stored on google drive at path: "/content/drive/MyDrive/Audiofiles/AudioWAV/"<br> The format of files is 1001_DFA_ANG_XX.wav, where ANG stands for angry emotion.<br> Similarly different emotion mappings are as follows:<br> {'SAD':'sad','ANG':'angry','DIS':'disgust','FEA':'fear','HAP':'happy','NEU':'neutral'} 3) Toronto emotional speech set (Tess) dataset description:<br> Dataset link to download: "https://www.kaggle.com/ejlok1/toronto-emotional-speech-set-tess" <br> Dataset stored on google drive at path: "/content/drive/MyDrive/Audiofiles/TESS Toronto emotional speech set data/"<br> There are folders in format OAF_angry, OAF_neural, OAF_disgust, YAF_sad and so on, where name after the underscore of the folder name contains the emotion information, so the name after the underscore of the folder name is taken and files residing insider the folders are labeled accordingly. 4) Surrey Audio Visual Expressed Emotion (Savee) dataset description:<br> Dataset link to download: "https://www.kaggle.com/ejlok1/surrey-audiovisual-expressed-emotion-savee" <br> Dataset stored on google drive at path: "/content/drive/MyDrive/Audiofiles/ALL/"<br> The files are in a format DC_a01.wav where a single character contains the emotion information , for example character 'a' after underscore in the file name "DC_a01.wav" means emotion is angry.<br> Similarly different emotion mappings are as follows:<br> {'a':'anger','d':'disgust','f':'fear','h':'happiness','n':'neutral','sa':'sadness','su':'surprise'} # Universal decorator fucntion to calculate total time ``` def calc_time(func): def inner(*args, **kwargs): st = time.time() result = func(*args,**kwargs) end = time.time()-st print("Total time required: {:.3f} ms".format(end * 1000)) return result return inner ``` # Description of important functions present in code (Model design and evaluation): <p align="justify">There are many functions in the program as functional programming style is used. Here I am going to describe a few important functions which call other functions inside the functions and generate files and results. Detailed description of each function and its use can be found in the code file.</p> * Audio_features_extract() this function is used to extract audio features and generates a csv file at path "/content/drive/MyDrive/Audiofiles /Audio_features_All_pr.csv" which contains audio features and their respective label information. * Below given image shows snapshot of the csv file, the file has a total of 33954 rows × 179 columns. ![csv file snapshot](https://user-images.githubusercontent.com/13017779/127515316-3c4e2752-e376-4e71-ad76-513cec61bf1d.png) * The csv file is loaded using pandas library, additional_preprocess() function carries out Exploratory Data Analysis and drop emotions with limited samples to avoid missclassifications and then dataset is divided into train, test and validation set. * Below image gives the detailed description of the whole process. ![Explorator Data Analysis and data preprocessing](https://user-images.githubusercontent.com/13017779/127515420-232f3180-34df-4531-8e34-93225748a0a6.png) * Deep learning model for speech recognition is trained using the training data and at every epoch or checkpoint validation accuracy is calucated. The epoch or checkpoint which gives highest validation accuracy, the best model is saved for that epoch or checkpoint at path "/content/drive/ MyDrive/Audiofiles/ emotionrecognition.hdf5", the model giving highest validation accuracy is only saved. ![model training snap shot](https://user-images.githubusercontent.com/13017779/127520834-e0b9fb86-2a60-4eed-a089-f28f5a028a48.png) # Description of testing model in real time: Once the model is build and training is completed the emotion recognition model can be loaded from the path "/content/drive/MyDrive/Audiofiles/emotion-recognition .hdf5" and can be tested for the given input speech in real time. * The data for real time model testing is recorded using the microphone. * The code to record audio speech using microphone is integrated from the link "https://ricardodeazambuja.com/deep_learning/2019/03/09/audio_and_video_google_colab/". * Then features are extracted from speech and passed to emotion recognition model which predicts one of the six emotions. * Below figure shows the audio waveform and output of the emotion recognition model. ![realtimeresult](https://user-images.githubusercontent.com/13017779/127523138-12df54f8-6af3-4907-9e80-56354bba12b8.png) # Results * Below figure shows the training, testing and validation accuracy achieved by the emotion recognition model. ![accuracy](https://user-images.githubusercontent.com/13017779/127524338-0209ab4e-eb82-4244-b519-e25cb4838859.png) * Below figure shows the classification report and it can be seen in the report that for all the classes the value is greater than 0.5 which means the model can predict the emotions accuratly to some extent. If the value is equal to 1.0 for all clases then it means model can predict accurrately always given the input speech. But its diffcult to achieve real time prediction and 100% accuracy on real time envoiurment as there is noise and many other factors which can affect the output. Given a challenge it can overcomed by training with big set of data in different languages to develop a universal model. ![classification](https://user-images.githubusercontent.com/13017779/127525847-6d2816a7-2e8b-4a3a-8385-e9c7a63bb870.png) * The 0,1,2,3,4,5 in classification report resembles to different emotions which can be decoded from below image. ![emotionsmapping](https://user-images.githubusercontent.com/13017779/127526209-2d8748ca-2d99-4f70-ae11-1da5371cce61.png) * Below figure shows output of confusion matrix.<br> ![confumatrix](https://user-images.githubusercontent.com/13017779/127526415-1aca3e8f-32f7-44ac-bf34-fea0fd412209.png) * Below figure shows the training loss and accuracy curves, despite the model giving the training accuracy of 100%, validation and testing accuracy is near to 75%-76%, my model gives the highest accuracy when compared to the authors who previously carried out the research work in this area. ![curves](https://user-images.githubusercontent.com/13017779/127526942-9432d473-e6cc-4ef6-9a77-958ea56f3af0.png) * Additionally to check wheather the model can work for all types of voices and on unlabeled data a test was carried out using combination of different voices and unlabled data. Below figure shows the results. ![unlabeltest](https://user-images.githubusercontent.com/13017779/127530261-ba33d4ea-640e-45ff-8bc9-7015eceb5e9f.png) * Below figures shows comparison of my model with other authors who worked previously in this area of emotion recognition from speech. ![comparison](https://user-images.githubusercontent.com/13017779/127533006-fac626bf-8bda-4bac-bbbb-fb72ef291f0a.png) # Installation To download and run my google colab file 1130532_ResearchMethodology_Project_Final.ipynb following changes need to be made: * Frist and foremost make sure all neccessary libraries mentioned above are installed. * To install any library in the computer machine just use command pip install library name. * Then install the data from the following links: * "https://www.kaggle.com/ejlok1/cremad" * "https://www.kaggle.com/uwrfkaggler/ravdess-emotional-speech-audio" * "https://www.kaggle.com/ejlok1/surrey-audiovisual-expressed-emotion-savee" * "https://www.kaggle.com/ejlok1/toronto-emotional-speech-set-tess" * Extract the downloaded data from the above given links * Once the data is extracted just use my code and pass the proper path information to the functions. * These paths are datapaths, csv file path and paths where reults are stored. * Correct path information needs to be given in the functions ravdess_data(), crema_data(), tess_data(), saveee_data(), fetch_data(), Audio_features_extract(), audio_features_final(), emotion_recognition_model(), test_realtime(), evaluate_model(), unknown_audio() and diff_lang_test() * Below given are snnipets of code where proper path information needs to be given for the above given functions. * ``` ravdess = "/content/drive/MyDrive/Audiofiles/audio_speech_actors_01-24/" ``` * ``` crema = "/content/drive/MyDrive/Audiofiles/AudioWAV/" ``` * ``` tess = "/content/drive/MyDrive/Audiofiles/TESS Toronto emotional speech set data/" ``` * ``` savee = "/content/drive/MyDrive/Audiofiles/ALL/" ``` * ``` final_combined.to_csv("/content/drive/MyDrive/preprocesseddata.csv",index=False,header=True) ``` * ``` Features.to_csv('/content/drive/MyDrive/Audiofiles/Audio_features_All_pr.csv',index=False) ``` * ``` df = additional_preprocess("/content/drive/MyDrive/Audiofiles/Audio_features_All_pr.csv") ``` * ``` filepath = "/content/drive/MyDrive/Audiofiles/emotion-recognition.hdf5" ``` * ``` res_model = load_model("/content/drive/MyDrive/Audiofiles/emotion-recognition.hdf5") ``` * ``` os.chdir('/content/drive/MyDrive/Audiofiles/realtimetested') ``` * ``` np.save('/content/drive/MyDrive/Audiofiles/realtimetested/audiorec{}.npy'.format(len(files)),audio) ``` * ``` plt.savefig("audiorec{}.png".format(len(files))) ``` * ``` df["path"][i] = '/content/drive/MyDrive/Audiofiles/realtimetested/audiorec{}.npy'.format(len(files)) ``` * ``` df.to_csv('/content/drive/MyDrive/Audiofiles/realtimetested/real_time_predicted_audio_features.csv', mode='a', index=False) ``` * ``` model = load_model("/content/drive/MyDrive/Audiofiles/emotion-recognition.hdf5") ``` * ``` path = '/content/drive/MyDrive/Audiofiles/realtimetested/testing on sample voices/' ``` * ``` Features.to_csv('/content/drive/MyDrive/Audiofiles/realtimetested/unkonwaudio.csv',index=False) ``` * ``` df = pd.read_csv('/content/drive/MyDrive/Audiofiles/realtimetested/unkonwaudio.csv') ``` * ``` res_model = load_model("/content/drive/MyDrive/Audiofiles/emotion-recognition.hdf5") ``` * So once the path information is given correctly its time to run the functions, run all the fuctions in the same sequence given in my colab file 1130532_ResearchMethodology_Project_Final.ipynb. * If one dosent want to train the model just test the model then they can use the model file "emotion-recognition.hdf5", change the paths in test_realtime() function and they can test the model. * Following path needs to be changed: * ``` res_model = load_model("/content/drive/MyDrive/Audiofiles/emotion-recognition.hdf5") ``` * ``` os.chdir('/content/drive/MyDrive/Audiofiles/realtimetested') ``` * ``` np.save('/content/drive/MyDrive/Audiofiles/realtimetested/audiorec{}.npy'.format(len(files)),audio) ``` * ``` plt.savefig("audiorec{}.png".format(len(files))) ``` * ``` df["path"][i] = '/content/drive/MyDrive/Audiofiles/realtimetested/audiorec{}.npy'.format(len(files)) ``` * ``` df.to_csv('/content/drive/MyDrive/Audiofiles/realtimetested/real_time_predicted_audio_features.csv', mode='a', index=False) ``` * If you want to develop or implement or setupt the whole code then as mentioned give proper paths and run all the functions its done. * Check out my colab file 1130532_ResearchMethodology_Project_Final.ipynb to see the time required by the individual process to complete. * The main() function does all the work of training the model and evaluating the model. Once the main function completes running the model is file is generated and can used for real time testing. * This is all about installation, building the model and feature extraction are one time process, once completed model is deployed in real time enviourment for testing and using the model for recognizing emotions from speech. # usage * As mentioned in the installation process, once libraries, datasets are downloaded, proper path information is given functions should be run in a sequence as mentioned in the colab file 1130532_ResearchMethodology_Project_Final.ipynb. * Following are the functions that required to run and the sequence is same as mentioned below and in the colab file 1130532_ResearchMethodology_Project_Final.ipynb * Remeber that every function requires amount of time to complete the process so. * Following is the list of sequence of functions which are required to run after running the import libraries code cell section: * Universal python decorator function to calculate total time. ``` def calc_time(func) ``` * Data preprocessing functions ``` def ravdess_data() def crema_data() def tess_data() def saveee_data() def fetch_data() ``` * Data augmentation functions ``` def noise(data) def stretch(data, rate=0.8) def shift(data) def pitch(data, sampling_rate, pitch_factor=0.7) ``` * Below given functions are for feature extraction, run this functions only once as it requires time to extract features form auido. Also features extraction is a one time process. Once features are extracted we can carry out further processing and train the emotion recognition model. ``` def extract_features(data,sample_rate) def get_features(path) def Audio_features_extract() ``` * function to plot loss and accuracy curves ``` def plotgraph(history) ``` * Function to perform additional preprocessing on data and splitting the datasets. ``` def additional_preprocess(filepath) def audio_features_final() ``` * function to build the emotion recognition model ``` def emotion_recognition_model(x_train,y_train,x_val,y_val) ``` * Run the full javascript template starting with ``` #this javascript is used to tell colab cell to open microphone and record audio AUDIO_HTML = """ <script> ``` * function to invoke microphone of user and record audio ``` def get_audio() ``` * function for getting input speech features and real time testing ``` def get_features_recorded(data,sr) def test_realtime(encoder) ``` * function to evaluate the performance of the model ``` def evaluate_model(x_train, x_test, y_train, y_test, x_val, y_val) ``` * main() function calls the functions in a sequence and after the execution of the main() function the deepl learning model for emotion recognition is ready. ``` @calc_time def main(): #get train,test data and labels x_train, x_test, y_train, y_test, x_val, y_val, encoder = audio_features_final() #call the emotion recognition model emotion_recognition_model(x_train,y_train,x_val,y_val) #evaluate the model performance evaluate_model(x_train, x_test, y_train, y_test, x_val, y_val) if __name__:main() ``` * Once the model is trained and model file is generated one can use the below fucntions to test the model in real time enviourment. ``` x_train, x_test, y_train, y_test, x_val, y_val, encoder = audio_features_final() test_realtime(encoder) ``` * If some one wants to used my trained model file directly then no need to run the main() function just run the above given two function to test in the real time enviourment. * Also if using google colab make sure the function which are called inside the audio_features_final() and realtime_tested() are executed in advance as these two functions are dependent on them. * Make sure all functions are called properly as mentioned in my colab file 1130532_ResearchMethodology_Project_Final.ipynb * Additionally for my research work I carried on unkown sample data in different languages. * So you can do if you want test on unkown samples by downloading additional data from this link "https://superkogito.github.io/SER-datasets/" * You will require to preprocess the data then you can use my get_features_recorded(audio,sr) function to get the audio features then pass the audio features to the<p align="justify"> model to predict the outcome. * I have already downloaded the few audio samples for testing on different voices and data is available on my google drive link, please sendme mail to access the data I will give acccess to the google dr</p> * For my custom data in different languages I have used below functions to test the emotion recognition models. ``` def unknown_audio() def diff_lang_test() ''' * Whenever using the code make sure the function used inside the fnctions are called prior to executing the required function and all functions are executed in a proper sequence. # Video on Installation / Usage <p align="justify">Below given is the video on installation and usage of my project code in colab file. The video guides you by showing where to make path changes and how to install and run the code and test the code. The datasets link to download are already given above. I would request to read the installation and usage section and then watch this video so it will give a clear idea of the whole project and its working. click on the below youtube image to launch the video.</p> <a href="https://youtu.be/kjttI89pIrI"><img src="https://img.shields.io/badge/youtube-red?style=flat&logo=youtube&labelColor=red"></a> # Support / Contact details Given below are few of my social media accounts where anyone can contact me.<br> <a href="https://in.linkedin.com/in/devansh-mody-5013aaab"><img src="https://img.shields.io/badge/LinkedIn-blue?style=flat&logo=linkedin&labelColor=blue"></a> <a href="https://mobile.twitter.com/modydevansh"><img src="https://img.shields.io/badge/twitter-blue?style=flat&logo=twitter&labelColor=blue"></a> <a href="https://www.youtube.com/channel/UCtc_46TMSXPUMpzVP0IAJUw"><img src="https://img.shields.io/badge/youtube-red?style=flat&logo=youtube&labelColor=red"></a> <a href="https://www.instagram.com/devansh_mody/?hl=en"><img src="https://img.shields.io/badge/instagram-purple?style=flat&logo=instagram&labelColor=pink"></a> <a href="https://devanshmody.blogspot.com/"><img src="https://img.shields.io/badge/My bloging website-yellow?style=flat&logo=blog&labelColor=lightyellow"></a> <br>One can also contact me by email <img src="https://img.shields.io/badge/gmail%20id-devanshmody2017%40gmail.com-red"><br> For access to my google drive to see the setup of the whole project mail me on gmail id mentioned above access will be given to the selected people for some amount of time. # Road-map (future ideas) <p align="justify">The backgorund noise may cause errors when testing the model in real time enviourment and thus it can affect the output of the model. To avoid the noise audio segmentation needs to be performed, so I am planning to develop an audio segmentation model which can seprate user speech from background noise so emotions can be predicted accurately. Also I will be collecting audio in different formats extract features and train the model so a universal model can be developed. Once audio model is build it can be applied to video also by combining audio model of emotion recognition with facial model for emotion recognition, this can help in acheving more accurate output. Additionally three models can be combined that is textual, voice and facial based but it requires huge computation power and there is very limited study available on combining three models for emotion recogniton, beaucse a avoting mechanism or strategy needs to be developed for predicting the emotion from three models as there can be cases where each model can predict different emotions or two model predict same emotion and one predicts another emotion. Moreover I would like to build a audionet kind of embeddings similar to imagenet and word embeddings which will help other researchers working in this area to use pretrained audio embeddings.</p> # How to contribute <p align="justify">One can contribute by extracting features from different auido files the code for extracting features can be used from my ipynb file, different dataset may reqire different data preprocessing so one also write a function for data preprocessing and send me both prerporcessing code and csv file, so I can integrate both data preprocessing function and csv file with my csv file Audio_features_All_pr.csv. Additionally I am planning to build three model audio segmentation model, facial emotion recognition model and textual model so one can contribute by writing the function for the same and integrate it. Send me a git merge request to integrate code or contact me so we can check the integrity of code and combine the code. One can also branch out create their own branch and then we can merge the branch. Additionaly one can also fork the repository.</p> # Google drive links * Model file link: https://drive.google.com/file/d/1dGCxq08cyNYO86u_XePg7tQzerrjdEFM/view?usp=share_link * Preprocessed dataset link: https://drive.google.com/file/d/17zqTlW2xqUJy1NA3fOBdXo43Ace4DruR/view?usp=share_link # Authors / Acknowledgements I would like to thank [@Ricardo]( https://ricardodeazambuja.com/deep_learning/2019/03/09/audio_and_video_google_colab/) for providing javascript code to inovke mircophone of user from google colab cell. As google colab dosent support audio recording using microphone so a javacript function needs to be written to inovke microphone and record auido. I would also like to thank [@Fadi Badine](https://keras.io/examples/audio/speaker_recognition_using_cnn/) my deep learning neural network model for emotion recognition is based on his model for automatic speech recognition.</p> # References [1] Francesc Alı́as, Joan Claudi Socoró and Xavier Sevillano, ”A Review of Physical and Perceptual Feature Extraction Techniques for Speech, Music and Environmental Sounds”, Appl. Sci. 2016.<br> [2] Kannan Venkataramanan and Haresh Rengaraj Rajamohan, ”Emotion Recognition from Speech”, arXiv:1912.10458v1 [cs.SD] 22 Dec 2019.<br> [3] Haiyang Xu, Hui Zhang, Kun Han, Yun Wang, Yiping Peng and Xian-gang Li, ”Learning Alignment for Multimodal Emotion Recognition from Speech”, arXiv:1909.05645v2 [cs.CL] 3 Apr 2020.<br> [4] Aharon Satt, Shai Rozenberg and Ron Hoory, ”Efficient Emotion Recognition from Speech Using Deep Learning on Spectrograms”, INTERSPEECH 2017, Stockholm, Sweden, August 20–24, 2017.<br> [5] Jia Rong, Gang Li and Yi Ping Phoebe Chen, ”Acoustic feature selection for automatic emotion recognition from speech”, Information Processing and Management 45 (2009) 315–328.<br> [6] K. Sreenivasa Rao, Tummala Pavan Kumar, Kusam Anusha, Bathina Leela, Ingilela Bhavana and Singavarapu V.S.K. Gowtham, ”Emotion Recognition from Speech”, (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3603-3607.<br> [7] Vladimir Chernykh and Pavel Prikhodko, ”Emotion Recognition From Speech With Recurrent Neural Networks”, arXiv:1701.08071v2 [cs.CL] 5 Jul 2018.<br> [8] Sabur Ajibola Alim and Nahrul Khair Alang Rashid, ”Some Commonly Speech Feature Feature Extraction Algorithms”. Published: December 12 2018, DOI: 10.5772/intechopen.80419.<br> [9] Oh Wook Kwon, Kwokleung Chan, Jiucang Hao and Te Won Lee, ”Emotion Recognition by Speech Signals”, GENEVA, EUROSPEECH 2003.<br> [10] K.V.Krishna Kishore and P.Krishna Satish, ”Emotion Recognition in Speech Using MFCC and Wavelet Features”, IEEE International Advance Computing Conference (IACC), 2013.<br> [11] Panagiotis Tzirakis, Jiehao Zhang and Björn W. Schuller, ”END-TO-END SPEECH EMOTION RECOGNITION USING DEEP NEURAL NETWORKS”, IEEE International Advance Computing Conference (IACC), 2018.<br> # License [![License: GPL v3](https://img.shields.io/badge/License-GPLv3-blue.svg)](https://www.gnu.org/licenses/gpl-3.0) # Project Status <p align="justify">Emotion recognition model is finished and its ready and can be used in real time. The 1130532_ResearchMethodology_Project_Final.ipynb file can be downloaded and used by providing neccesary path changes as mentioned in installation and usage sections. I am looking forward to develop other models mentioned in road-map (future ideas) and integrate all those models with my current emotion recognition model.</p>
Natkituwu/Kunokukulemonchini-7b-8.0bpw-exl2
Natkituwu
2024-03-19T17:14:14Z
11
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "alpaca", "conversational", "base_model:Nitral-AI/Kunocchini-7b-128k-test", "base_model:merge:Nitral-AI/Kunocchini-7b-128k-test", "base_model:grimjim/kukulemon-7B", "base_model:merge:grimjim/kukulemon-7B", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-19T16:52:17Z
--- base_model: - grimjim/kukulemon-7B - Nitral-AI/Kunocchini-7b-128k-test library_name: transformers tags: - mergekit - merge - mistral - alpaca license: cc-by-nc-4.0 --- # Kunokukulemonchini-7b-8.0bpw-exl2 This is an 8.0 bpw exl2 quant of a merger [icefog72/Kunokukulemonchini-7b](https://huggingface.co/icefog72/Kunokukulemonchini-7b). Near lossless quality. great to run if you have the resources to. ## Merge Details Slightly edited kukulemon-7B config.json before merge to get at least ~32k context window. ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * [grimjim/grimjim/kukulemon-7B](https://huggingface.co/grimjim/kukulemon-7B) * [Nitral-AI/Kunocchini-7b-128k-test](https://huggingface.co/Nitral-AI/Kunocchini-7b-128k-test) ### Configuration The following YAML configuration was used to produce this model: ```yaml slices: - sources: - model: grimjim/kukulemon-7B layer_range: [0, 32] - model: Nitral-AI/Kunocchini-7b-128k-test layer_range: [0, 32] merge_method: slerp base_model: Nitral-AI/Kunocchini-7b-128k-test parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: float16 ```
4TB-USTC/nlp_sc_based_on_bert
4TB-USTC
2024-03-19T17:12:40Z
111
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-03-19T16:34:55Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: nlp_sc_based_on_bert results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nlp_sc_based_on_bert This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2481 - Accuracy: 0.8333 - F1: 0.8840 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 459 | 0.4862 | 0.7819 | 0.8616 | | 0.5416 | 2.0 | 918 | 0.5299 | 0.8480 | 0.8942 | | 0.3661 | 3.0 | 1377 | 0.6462 | 0.8431 | 0.8904 | | 0.2027 | 4.0 | 1836 | 0.7761 | 0.8431 | 0.8923 | | 0.1227 | 5.0 | 2295 | 0.9341 | 0.8554 | 0.9002 | | 0.0486 | 6.0 | 2754 | 1.0655 | 0.8382 | 0.8850 | | 0.029 | 7.0 | 3213 | 1.2886 | 0.8284 | 0.8833 | | 0.0281 | 8.0 | 3672 | 1.2164 | 0.8431 | 0.8937 | | 0.0109 | 9.0 | 4131 | 1.2515 | 0.8407 | 0.8904 | | 0.0049 | 10.0 | 4590 | 1.2481 | 0.8333 | 0.8840 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
Trituenhantao/Taxi-v3
Trituenhantao
2024-03-19T17:11:58Z
0
1
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-03-19T17:01:48Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Trituenhantao/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
ai-bites/gemma-2b-ft-v1
ai-bites
2024-03-19T17:11:44Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-03-19T17:11:39Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
hbacard/NeuralBeagle14-French-Aplaca
hbacard
2024-03-19T17:10:32Z
6
2
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "mlabonne/NeuralBeagle14-7B", "jpacifico/French-Alpaca-7B-Instruct-beta", "conversational", "base_model:jpacifico/French-Alpaca-7B-Instruct-beta", "base_model:merge:jpacifico/French-Alpaca-7B-Instruct-beta", "base_model:mlabonne/NeuralBeagle14-7B", "base_model:merge:mlabonne/NeuralBeagle14-7B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-19T17:06:49Z
--- tags: - merge - mergekit - lazymergekit - mlabonne/NeuralBeagle14-7B - jpacifico/French-Alpaca-7B-Instruct-beta base_model: - mlabonne/NeuralBeagle14-7B - jpacifico/French-Alpaca-7B-Instruct-beta --- # NeuralBeagle14-French-Aplaca NeuralBeagle14-French-Aplaca is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [mlabonne/NeuralBeagle14-7B](https://huggingface.co/mlabonne/NeuralBeagle14-7B) * [jpacifico/French-Alpaca-7B-Instruct-beta](https://huggingface.co/jpacifico/French-Alpaca-7B-Instruct-beta) ## 🧩 Configuration ```yaml slices: - sources: - model: mlabonne/NeuralBeagle14-7B layer_range: [0, 32] - model: jpacifico/French-Alpaca-7B-Instruct-beta layer_range: [0, 32] merge_method: slerp base_model: mlabonne/NeuralBeagle14-7B parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "hbacard/NeuralBeagle14-French-Aplaca" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
alfassy/laso
alfassy
2024-03-19T16:59:27Z
0
0
null
[ "arxiv:1902.09811", "license:apache-2.0", "region:us" ]
null
2024-03-17T11:00:20Z
--- license: apache-2.0 --- This are the models files for paper: LaSO: Label-Set Operations networks for multi-label few-shot learning https://arxiv.org/abs/1902.09811 Code is available at: https://github.com/leokarlin/LaSO The models in this repo does not support Huggin Face models class and can only be used with the code above.
ferrazzipietro/Qwen1.5-7B-Chat__adapters_en.layer1_8_torch.bfloat16_16_64_0.01_2_0.0002
ferrazzipietro
2024-03-19T16:48:21Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-03-11T16:42:39Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
karthiksab/new_summary_model
karthiksab
2024-03-19T16:42:25Z
109
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-03-19T01:22:49Z
--- license: apache-2.0 base_model: t5-small tags: - generated_from_trainer metrics: - rouge model-index: - name: new_summary_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # new_summary_model This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4928 - Rouge1: 0.22 - Rouge2: 0.09 - Rougel: 0.18 - Rougelsum: 0.18 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | 1.7131 | 1.0 | 1615 | 1.5056 | 0.21 | 0.09 | 0.18 | 0.18 | | 1.7014 | 2.0 | 3230 | 1.4948 | 0.21 | 0.09 | 0.18 | 0.18 | | 1.6827 | 3.0 | 4845 | 1.4928 | 0.22 | 0.09 | 0.18 | 0.18 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
ferrazzipietro/Llama-2-13b-chat-hf_adapters_en.layer1_8_torch.bfloat16_16_32_0.01_4_0.0002
ferrazzipietro
2024-03-19T16:41:21Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-03-19T16:41:02Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
sarthakharne/bert-base-85-ep-pretrain-on-textbooks
sarthakharne
2024-03-19T16:34:39Z
194
0
transformers
[ "transformers", "safetensors", "bert", "fill-mask", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2024-03-19T16:32:56Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
vjprav33n/mT0_base_1e_30p_0064_v1
vjprav33n
2024-03-19T16:30:17Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-03-19T16:30:14Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
maldv/winter-garden-7b-gamma
maldv
2024-03-19T16:29:57Z
50
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "conversational", "multi-task", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-19T02:01:26Z
--- license: cc-by-nc-4.0 tags: - merge - conversational - multi-task pipeline_tag: text-generation --- # Winter Garden 7B - Γ It was mentioned that we are in the open ai dark winter; so I thought I would make myself a nice winter garden. ## An experiment This time I did something a bit different. * Mistral-7B-v0.1 and merged in * Yarn-Mistral-7b-128k * Thespis-Balanced-7b-v1 * ZySec-7B-v1 * LemonadeRP-4.5.3 * Noromaid-7B-0.4-DPO * Prima-LelantaclesV6-7b * West-Hermes-7B * Capricorn-7B-DPO * kun-kunoichi-v1-DPO-v2-SLERP-7B * Kunoichi-DPO-v2-7B * WestLake-7B-v2-laser-truthy-dpo * StrangeMerges_6-7B-dare_ties * NeuralMarcoro14-7B * multi_verse_model * Multi-Verse-RP-7B * MonarchLake-7B * AlphaMonarch-7B in an iterative DARE-TIES tree merge, ordering the merge order by tensor-relative cosine similarity until the merge branches resolve to a single value. ## Chat Template Basic Mistral `<s>[INST][/INST]` works pretty well. It seems smart, but we will see. ## Scores Metric | Score ---|--- Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K |
ardneebwar/mistral_7b_mcq_generator
ardneebwar
2024-03-19T16:29:15Z
6
1
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "en", "dataset:ardneebwar/medmcqa-and-race", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-11T16:52:13Z
--- library_name: transformers license: apache-2.0 datasets: - ardneebwar/medmcqa-and-race language: - en pipeline_tag: text-generation --- # Mistral 7B MCQ Generator ## Model Description This model, named Mistral 7B MCQ Generator, is a fine-tuned version of the Mistralai/Mistral-7B-v0.1 aimed at generating multiple-choice questions (MCQs) with their correct answers. Developed to aid in educational content creation, this tool is perfect for educators, e-learning content creators, and students preparing for exams. The model was fine-tuned on a combination of medical MCQs and RACE dataset, ensuring a diverse range of topics and complexities in question generation. ## Intended Use This model is intended for educational purposes, particularly for generating MCQs for studying, teaching, or content creation in the educational domain. It is designed to help in the preparation of quizzes, tests, and learning materials. ## Training Data The model was trained on a custom dataset derived from the ardneebwar/medmcqa-and-race dataset available on Hugging Face. This dataset combines medical MCQs and reading comprehension questions from various educational levels, which were cleaned and preprocessed to suit the needs of MCQ generation. ## Training Procedure The training was performed on a suitable environment supporting the demands of the Mistral 7B model. Specific settings included a learning rate of 2e-4, a batch size of 4, and a total of 3 epochs. The model underwent evaluation steps every 700 steps and used techniques like gradient accumulation and LoRA for efficient training. ## How to Use You can utilize this model directly in your Kaggle notebooks or Jupyter notebooks as follows: ```python import re import torch from transformers import pipeline, logging from peft import LoraConfig, PeftModel, prepare_model_for_kbit_training, get_peft_model from transformers import AutoModelForCausalLM, AutoTokenizer, LlamaTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer, BitsAndBytesConfig, logging bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16 ) model_name = "mistralai/Mistral-7B-v0.1" adapters_name = "ardneebwar/mistral_7b_mcq_generator" device = torch.device("cuda" if torch.cuda.is_available() else "cpu") m = AutoModelForCausalLM.from_pretrained( model_name, quantization_config=bnb_config, ) m = PeftModel.from_pretrained(m, adapters_name) m = m.merge_and_unload() tok = AutoTokenizer.from_pretrained(model_name) tok.bos_token_id = 1 stop_token_ids = [0] logging.set_verbosity(logging.CRITICAL) def extract_mcqs(generated_text): # This pattern looks for segments structured as MCQs based on your example # It captures text following 'question:' up to an 'answer: X' format where X is A, B, C, or D pattern = re.compile(r"question: (.*?) \| options: (.*?) \| answer: ([ABCD])", re.DOTALL) # Find all matches in the generated text matches = pattern.findall(generated_text) unique_mcqs = set() # Using a set to avoid duplicates mcqs = [] for match in matches: question, options, answer = match # Construct the MCQ string mcq_text = f"question: {question.strip()} | options: {options.strip()} | answer: {answer.strip()}" # Check for uniqueness before adding if mcq_text not in unique_mcqs: unique_mcqs.add(mcq_text) mcqs.append(mcq_text) return mcqs # replace context with your own context. prompt = "context: The Robot Operating System (ROS) is a set of software libraries and tools that help you build robot applications." pipe = pipeline(task="text-generation", model=m, tokenizer=tok, max_length=200) result = pipe(f"<s>[INST] {prompt} [/INST]") generated_text = result[0]['generated_text'] unique_mcq = extract_mcqs(generated_text) print(mcq) ``` ## Limitations and Biases The model's performance is subject to the quality and diversity of the training data. While it has been trained on a dataset that includes a range of topics, it may exhibit biases present in the training material. Users are advised to review the generated questions and answers for potential biases before use. ## References and Acknowledgments This model was built using resources from the Hugging Face and PyTorch communities. Special thanks to the authors and contributors of the ardneebwar/medmcqa-and-race dataset and the Mistral 7B model. ## License This model is open-sourced under the Apache 2.0 license.
tzartrooper/medical_tracker_chatbot
tzartrooper
2024-03-19T16:26:59Z
4
1
transformers
[ "transformers", "tensorboard", "safetensors", "gpt2", "text-generation", "generated_from_trainer", "base_model:distilbert/distilgpt2", "base_model:finetune:distilbert/distilgpt2", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-18T17:33:37Z
--- license: apache-2.0 tags: - generated_from_trainer base_model: distilbert/distilgpt2 model-index: - name: medical_tracker_chatbot results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # medical_tracker_chatbot This model is a fine-tuned version of [distilbert/distilgpt2](https://huggingface.co/distilbert/distilgpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.8066 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.0875 | 1.0 | 3977 | 1.9245 | | 1.9299 | 2.0 | 7954 | 1.8280 | | 1.906 | 3.0 | 11931 | 1.8066 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
ferrazzipietro/Qwen1.5-7B-Chat__adapters_en.layer1_8_torch.bfloat16_16_32_0.01_2_0.0002
ferrazzipietro
2024-03-19T16:26:30Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-03-11T16:21:05Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Shakhovak/flan-t5-base-absa-rest
Shakhovak
2024-03-19T16:24:39Z
7
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:google/flan-t5-base", "base_model:finetune:google/flan-t5-base", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-03-16T17:49:00Z
--- license: apache-2.0 base_model: google/flan-t5-base tags: - generated_from_trainer model-index: - name: flan-t5-base-absa-rest results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flan-t5-base-absa-rest This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2490 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.7338 | 0.45 | 200 | 0.3705 | | 0.4162 | 0.9 | 400 | 0.2968 | | 0.3228 | 1.35 | 600 | 0.2798 | | 0.2954 | 1.8 | 800 | 0.2653 | | 0.2679 | 2.25 | 1000 | 0.2483 | | 0.2449 | 2.7 | 1200 | 0.2490 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
dokyoungkim/wmt19-finetuned-law-de-to-en
dokyoungkim
2024-03-19T16:23:02Z
92
0
transformers
[ "transformers", "tensorboard", "safetensors", "fsmt", "text2text-generation", "tanslation", "generated_from_trainer", "base_model:facebook/wmt19-de-en", "base_model:finetune:facebook/wmt19-de-en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-03-19T04:34:04Z
--- license: apache-2.0 base_model: facebook/wmt19-de-en tags: - tanslation - generated_from_trainer metrics: - bleu model-index: - name: wmt19-finetuned-law-de-to-en results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wmt19-finetuned-law-de-to-en This model is a fine-tuned version of [facebook/wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2388 - Bleu: 56.9297 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 40 - eval_batch_size: 20 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.37.2 - Pytorch 2.0.1+cu117 - Datasets 2.17.0 - Tokenizers 0.15.2
minhah/vivit-b-16x2-kinetics400-finetuned-ucf101-subset
minhah
2024-03-19T16:21:50Z
62
0
transformers
[ "transformers", "safetensors", "vivit", "video-classification", "generated_from_trainer", "base_model:google/vivit-b-16x2-kinetics400", "base_model:finetune:google/vivit-b-16x2-kinetics400", "license:mit", "endpoints_compatible", "region:us" ]
video-classification
2024-03-19T14:29:57Z
--- license: mit base_model: google/vivit-b-16x2-kinetics400 tags: - generated_from_trainer metrics: - accuracy model-index: - name: vivit-b-16x2-kinetics400-finetuned-ucf101-subset results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vivit-b-16x2-kinetics400-finetuned-ucf101-subset This model is a fine-tuned version of [google/vivit-b-16x2-kinetics400](https://huggingface.co/google/vivit-b-16x2-kinetics400) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2172 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 148 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7382 | 0.26 | 38 | 0.2207 | 1.0 | | 0.0404 | 1.26 | 76 | 0.0549 | 0.9730 | | 0.0115 | 2.26 | 114 | 0.0282 | 1.0 | | 0.0172 | 3.23 | 148 | 0.0236 | 1.0 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
Natkituwu/Kunokukulemonchini-7b-5.0bpw-exl2
Natkituwu
2024-03-19T16:21:08Z
5
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "alpaca", "conversational", "base_model:Nitral-AI/Kunocchini-7b-128k-test", "base_model:merge:Nitral-AI/Kunocchini-7b-128k-test", "base_model:grimjim/kukulemon-7B", "base_model:merge:grimjim/kukulemon-7B", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-19T15:10:54Z
--- base_model: - grimjim/kukulemon-7B - Nitral-AI/Kunocchini-7b-128k-test library_name: transformers tags: - mergekit - merge - mistral - alpaca license: cc-by-nc-4.0 --- # Kunokukulemonchini-7b-5.0bpw-exl2 This is an 5.0 bpw exl2 quant of a merger [icefog72/Kunokukulemonchini-7b](https://huggingface.co/icefog72/Kunokukulemonchini-7b). Good balance between 4.1bpw and 6.5bpw, should give more context than 6.5bpw. ## Merge Details Slightly edited kukulemon-7B config.json before merge to get at least ~32k context window. ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * [grimjim/grimjim/kukulemon-7B](https://huggingface.co/grimjim/kukulemon-7B) * [Nitral-AI/Kunocchini-7b-128k-test](https://huggingface.co/Nitral-AI/Kunocchini-7b-128k-test) ### Configuration The following YAML configuration was used to produce this model: ```yaml slices: - sources: - model: grimjim/kukulemon-7B layer_range: [0, 32] - model: Nitral-AI/Kunocchini-7b-128k-test layer_range: [0, 32] merge_method: slerp base_model: Nitral-AI/Kunocchini-7b-128k-test parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: float16 ```
mieszkok/shi-labs_oneformer_ade20k_swin_large_geopose3k_original_images900_epochs5
mieszkok
2024-03-19T16:19:15Z
52
0
transformers
[ "transformers", "safetensors", "oneformer", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-03-19T16:17:52Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Natkituwu/Kunokukulemonchini-7b-3.5bpw-exl2
Natkituwu
2024-03-19T16:18:36Z
6
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "alpaca", "conversational", "base_model:Nitral-AI/Kunocchini-7b-128k-test", "base_model:merge:Nitral-AI/Kunocchini-7b-128k-test", "base_model:grimjim/kukulemon-7B", "base_model:merge:grimjim/kukulemon-7B", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-19T16:05:10Z
--- base_model: - grimjim/kukulemon-7B - Nitral-AI/Kunocchini-7b-128k-test library_name: transformers tags: - mergekit - merge - mistral - alpaca license: cc-by-nc-4.0 --- # Kunokukulemonchini-7b-3.5bpw-exl2 This is an 3.5 bpw exl2 quant of a merger [icefog72/Kunokukulemonchini-7b](https://huggingface.co/icefog72/Kunokukulemonchini-7b). Only use if you have low end hardware. Use 4.1bpw, 5.0, and 6.5 versions instead if you have better hardware. ## Merge Details Slightly edited kukulemon-7B config.json before merge to get at least ~32k context window. ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * [grimjim/grimjim/kukulemon-7B](https://huggingface.co/grimjim/kukulemon-7B) * [Nitral-AI/Kunocchini-7b-128k-test](https://huggingface.co/Nitral-AI/Kunocchini-7b-128k-test) ### Configuration The following YAML configuration was used to produce this model: ```yaml slices: - sources: - model: grimjim/kukulemon-7B layer_range: [0, 32] - model: Nitral-AI/Kunocchini-7b-128k-test layer_range: [0, 32] merge_method: slerp base_model: Nitral-AI/Kunocchini-7b-128k-test parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: float16 ```
dewaalmatin/gc7_model
dewaalmatin
2024-03-19T16:17:11Z
1
0
keras
[ "keras", "arxiv:1910.09700", "region:us" ]
null
2024-03-19T14:25:35Z
--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards {} --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
sirjosephenry/finetuning-emotion-model
sirjosephenry
2024-03-19T16:07:26Z
106
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-03-19T15:31:10Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - emotion model-index: - name: finetuning-emotion-model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-emotion-model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
prampampam/light_peft_model
prampampam
2024-03-19T16:07:14Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-03-19T16:07:11Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
csupreme19/gemma-ko-ft-7b-test
csupreme19
2024-03-19T16:05:56Z
4
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-19T15:58:40Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
cogbuji/OpenHermes-2.5-Mistral-7B-mlx-4bit
cogbuji
2024-03-19T16:03:45Z
14
1
mlx
[ "mlx", "safetensors", "mistral", "instruct", "finetune", "chatml", "gpt4", "synthetic data", "distillation", "en", "dataset:teknium/OpenHermes-2.5", "base_model:mistralai/Mistral-7B-v0.1", "base_model:finetune:mistralai/Mistral-7B-v0.1", "license:apache-2.0", "region:us" ]
null
2024-03-19T02:30:11Z
--- language: - en license: apache-2.0 tags: - mistral - instruct - finetune - chatml - gpt4 - synthetic data - distillation - mlx datasets: - teknium/OpenHermes-2.5 base_model: mistralai/Mistral-7B-v0.1 model-index: - name: OpenHermes-2-Mistral-7B results: [] --- # cogbuji/OpenHermes-2.5-Mistral-7B-mlx-4bit This model was converted to MLX format from [teknium/OpenHermes-2.5-Mistral-7B](/teknium/OpenHermes-2.5-Mistral-7B) and quantized. Refer to the [original model card](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) for more details on the model. It was converted and quantized with mlx **0.7.0** and mlx_lm **0.3.0** and should be used with those versions. Later versions of these may deprecate this model ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("cogbuji/OpenHermes-2.5-Mistral-7B-mlx-4bit") response = generate(model, tokenizer, prompt="hello", verbose=True) ```
bartowski/Mistral-Plus-7B-exl2
bartowski
2024-03-19T16:03:09Z
0
1
null
[ "text-generation", "license:apache-2.0", "region:us" ]
text-generation
2024-03-19T15:51:18Z
--- license: apache-2.0 quantized_by: bartowski pipeline_tag: text-generation --- ## Exllama v2 Quantizations of Mistral-Plus-7B Using <a href="https://github.com/turboderp/exllamav2/releases/tag/v0.0.15">turboderp's ExLlamaV2 v0.0.15</a> for quantization. <b>The "main" branch only contains the measurement.json, download one of the other branches for the model (see below)</b> Each branch contains an individual bits per weight, with the main one containing only the meaurement.json for further conversions. Original model: https://huggingface.co/zhengchenphd/Mistral-Plus-7B | Branch | Bits | lm_head bits | VRAM (4k) | VRAM (16k) | VRAM (32k) | Description | | ----- | ---- | ------- | ------ | ------ | ------ | ------------ | | [8_0](https://huggingface.co/bartowski/Mistral-Plus-7B-exl2/tree/8_0) | 8.0 | 8.0 | 8.4 GB | 9.8 GB | 11.8 GB | Maximum quality that ExLlamaV2 can produce, near unquantized performance. | | [6_5](https://huggingface.co/bartowski/Mistral-Plus-7B-exl2/tree/6_5) | 6.5 | 8.0 | 7.2 GB | 8.6 GB | 10.6 GB | Very similar to 8.0, good tradeoff of size vs performance, **recommended**. | | [5_0](https://huggingface.co/bartowski/Mistral-Plus-7B-exl2/tree/5_0) | 5.0 | 6.0 | 6.0 GB | 7.4 GB | 9.4 GB | Slightly lower quality vs 6.5, but usable on 8GB cards. | | [4_25](https://huggingface.co/bartowski/Mistral-Plus-7B-exl2/tree/4_25) | 4.25 | 6.0 | 5.3 GB | 6.7 GB | 8.7 GB | GPTQ equivalent bits per weight, slightly higher quality. | | [3_5](https://huggingface.co/bartowski/Mistral-Plus-7B-exl2/tree/3_5) | 3.5 | 6.0 | 4.7 GB | 6.1 GB | 8.1 GB | Lower quality, only use if you have to. | ## Download instructions With git: ```shell git clone --single-branch --branch 6_5 https://huggingface.co/bartowski/Mistral-Plus-7B-exl2 Mistral-Plus-7B-exl2-6_5 ``` With huggingface hub (credit to TheBloke for instructions): ```shell pip3 install huggingface-hub ``` To download the `main` (only useful if you only care about measurement.json) branch to a folder called `Mistral-Plus-7B-exl2`: ```shell mkdir Mistral-Plus-7B-exl2 huggingface-cli download bartowski/Mistral-Plus-7B-exl2 --local-dir Mistral-Plus-7B-exl2 --local-dir-use-symlinks False ``` To download from a different branch, add the `--revision` parameter: Linux: ```shell mkdir Mistral-Plus-7B-exl2-6_5 huggingface-cli download bartowski/Mistral-Plus-7B-exl2 --revision 6_5 --local-dir Mistral-Plus-7B-exl2-6_5 --local-dir-use-symlinks False ``` Windows (which apparently doesn't like _ in folders sometimes?): ```shell mkdir Mistral-Plus-7B-exl2-6.5 huggingface-cli download bartowski/Mistral-Plus-7B-exl2 --revision 6_5 --local-dir Mistral-Plus-7B-exl2-6.5 --local-dir-use-symlinks False ``` Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski
helloyeew/distilbert-base-uncased-finetuned-emotion
helloyeew
2024-03-19T15:54:14Z
111
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-03-19T15:39:15Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: split metrics: - name: Accuracy type: accuracy value: 0.9255 - name: F1 type: f1 value: 0.9253464175347648 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2266 - Accuracy: 0.9255 - F1: 0.9253 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8402 | 1.0 | 250 | 0.3315 | 0.9035 | 0.9008 | | 0.26 | 2.0 | 500 | 0.2266 | 0.9255 | 0.9253 | ### Framework versions - Transformers 4.16.2 - Pytorch 2.2.1 - Datasets 1.16.1 - Tokenizers 0.15.2
prampampam/light-sdxl-lora
prampampam
2024-03-19T15:53:33Z
6
1
diffusers
[ "diffusers", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "diffusers-training", "text-to-image", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2024-03-19T14:50:41Z
--- tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - diffusers-training - text-to-image - diffusers - lora - template:sd-lora widget: - text: 'a photo of living room with <s0><s1>' output: url: "image_0.png" - text: 'a photo of living room with <s0><s1>' output: url: "image_1.png" - text: 'a photo of living room with <s0><s1>' output: url: "image_2.png" - text: 'a photo of living room with <s0><s1>' output: url: "image_3.png" base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a photo of <s0><s1> license: openrail++ --- # SDXL LoRA DreamBooth - prampampam/light-sdxl-lora <Gallery /> ## Model description ### These are prampampam/light-sdxl-lora LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. ## Download model ### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke - **LoRA**: download **[`light-sdxl-lora.safetensors` here 💾](/prampampam/light-sdxl-lora/blob/main/light-sdxl-lora.safetensors)**. - Place it on your `models/Lora` folder. - On AUTOMATIC1111, load the LoRA by adding `<lora:light-sdxl-lora:1>` to your prompt. On ComfyUI just [load it as a regular LoRA](https://comfyanonymous.github.io/ComfyUI_examples/lora/). - *Embeddings*: download **[`light-sdxl-lora_emb.safetensors` here 💾](/prampampam/light-sdxl-lora/blob/main/light-sdxl-lora_emb.safetensors)**. - Place it on it on your `embeddings` folder - Use it by adding `light-sdxl-lora_emb` to your prompt. For example, `a photo of light-sdxl-lora_emb` (you need both the LoRA and the embeddings as they were trained together for this LoRA) ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch from huggingface_hub import hf_hub_download from safetensors.torch import load_file pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('prampampam/light-sdxl-lora', weight_name='pytorch_lora_weights.safetensors') embedding_path = hf_hub_download(repo_id='prampampam/light-sdxl-lora', filename='light-sdxl-lora_emb.safetensors', repo_type="model") state_dict = load_file(embedding_path) pipeline.load_textual_inversion(state_dict["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer) pipeline.load_textual_inversion(state_dict["clip_g"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2) image = pipeline('a photo of living room with <s0><s1>').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Trigger words To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens: to trigger concept `VIBIAARRAY` → use `<s0><s1>` in your prompt ## Details All [Files & versions](/prampampam/light-sdxl-lora/tree/main). The weights were trained using [🧨 diffusers Advanced Dreambooth Training Script](https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py). LoRA for the text encoder was enabled. False. Pivotal tuning was enabled: True. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
sarthakharne/bert-base-80-ep-pretrain-on-textbooks
sarthakharne
2024-03-19T15:50:54Z
196
0
transformers
[ "transformers", "safetensors", "bert", "fill-mask", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2024-03-19T15:49:16Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
stablediffusionapi/epicrealism-xl
stablediffusionapi
2024-03-19T15:49:03Z
1,359
5
diffusers
[ "diffusers", "modelslab.com", "stable-diffusion-api", "text-to-image", "ultra-realistic", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2024-03-19T15:46:48Z
--- license: creativeml-openrail-m tags: - modelslab.com - stable-diffusion-api - text-to-image - ultra-realistic pinned: true --- # API Inference ![generated from modelslab.com](https://cdn2.stablediffusionapi.com/generations/bf190b5a-fe19-437c-ba05-82f29cb1f7ad-0.png) ## Get API Key Get API key from [ModelsLab API](http://modelslab.com), No Payment needed. Replace Key in below code, change **model_id** to "epicrealism-xl" Coding in PHP/Node/Java etc? Have a look at docs for more code examples: [View docs](https://modelslab.com/docs) Try model for free: [Generate Images](https://modelslab.com/models/epicrealism-xl) Model link: [View model](https://modelslab.com/models/epicrealism-xl) View all models: [View Models](https://modelslab.com/models) import requests import json url = "https://modelslab.com/api/v6/images/text2img" payload = json.dumps({ "key": "your_api_key", "model_id": "epicrealism-xl", "prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K", "negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime", "width": "512", "height": "512", "samples": "1", "num_inference_steps": "30", "safety_checker": "no", "enhance_prompt": "yes", "seed": None, "guidance_scale": 7.5, "multi_lingual": "no", "panorama": "no", "self_attention": "no", "upscale": "no", "embeddings": "embeddings_model_id", "lora": "lora_model_id", "webhook": None, "track_id": None }) headers = { 'Content-Type': 'application/json' } response = requests.request("POST", url, headers=headers, data=payload) print(response.text) > Use this coupon code to get 25% off **DMGG0RBN**
jvh/whisper-medium-quant-ct2
jvh
2024-03-19T15:47:24Z
14
2
ctranslate2
[ "ctranslate2", "audio", "automatic-speech-recognition", "int8", "quanto", "faster-whisper", "en", "zh", "de", "es", "ru", "ko", "fr", "ja", "pt", "tr", "pl", "ca", "nl", "ar", "sv", "it", "id", "hi", "fi", "vi", "he", "uk", "el", "ms", "cs", "ro", "da", "hu", "ta", "no", "th", "ur", "hr", "bg", "lt", "la", "mi", "ml", "cy", "sk", "te", "fa", "lv", "bn", "sr", "az", "sl", "kn", "et", "mk", "br", "eu", "is", "hy", "ne", "mn", "bs", "kk", "sq", "sw", "gl", "mr", "pa", "si", "km", "sn", "yo", "so", "af", "oc", "ka", "be", "tg", "sd", "gu", "am", "yi", "lo", "uz", "fo", "ht", "ps", "tk", "nn", "mt", "sa", "lb", "my", "bo", "tl", "mg", "as", "tt", "haw", "ln", "ha", "ba", "jw", "su", "yue", "arxiv:1910.09700", "license:apache-2.0", "region:us" ]
automatic-speech-recognition
2024-03-19T14:34:56Z
--- language: - en - zh - de - es - ru - ko - fr - ja - pt - tr - pl - ca - nl - ar - sv - it - id - hi - fi - vi - he - uk - el - ms - cs - ro - da - hu - ta - 'no' - th - ur - hr - bg - lt - la - mi - ml - cy - sk - te - fa - lv - bn - sr - az - sl - kn - et - mk - br - eu - is - hy - ne - mn - bs - kk - sq - sw - gl - mr - pa - si - km - sn - yo - so - af - oc - ka - be - tg - sd - gu - am - yi - lo - uz - fo - ht - ps - tk - nn - mt - sa - lb - my - bo - tl - mg - as - tt - haw - ln - ha - ba - jw - su - yue tags: - audio - automatic-speech-recognition - int8 - quanto - faster-whisper license: apache-2.0 library_name: ctranslate2 --- # Model Card for Model ID This model is quantized using the [Quanto Python Package](https://github.com/huggingface/quanto) and the [CTranslate2 Python Package](https://github.com/OpenNMT/CTranslate2). From my early tests: - Much less GPU memory required - It seems that performance is on par with the original - It seems that this combination is faster than just using the CTranslate2 int8 quantization. Quantization method TBA. To use this model, use the faster_whisper module as stated in [the original faster-whisper model](https://huggingface.co/Systran/faster-whisper-large-v3) Or use [WhisperX](https://github.com/m-bain/whisperX), this is what I used for my small tests (do not forget to set dtype to int8). Any benchmark results are appreciated. I probably do not have time to do it myself. ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
jvh/whisper-large-v2-quant-ct2
jvh
2024-03-19T15:46:59Z
11
3
ctranslate2
[ "ctranslate2", "audio", "automatic-speech-recognition", "int8", "quanto", "faster-whisper", "en", "zh", "de", "es", "ru", "ko", "fr", "ja", "pt", "tr", "pl", "ca", "nl", "ar", "sv", "it", "id", "hi", "fi", "vi", "he", "uk", "el", "ms", "cs", "ro", "da", "hu", "ta", "no", "th", "ur", "hr", "bg", "lt", "la", "mi", "ml", "cy", "sk", "te", "fa", "lv", "bn", "sr", "az", "sl", "kn", "et", "mk", "br", "eu", "is", "hy", "ne", "mn", "bs", "kk", "sq", "sw", "gl", "mr", "pa", "si", "km", "sn", "yo", "so", "af", "oc", "ka", "be", "tg", "sd", "gu", "am", "yi", "lo", "uz", "fo", "ht", "ps", "tk", "nn", "mt", "sa", "lb", "my", "bo", "tl", "mg", "as", "tt", "haw", "ln", "ha", "ba", "jw", "su", "yue", "arxiv:1910.09700", "license:apache-2.0", "region:us" ]
automatic-speech-recognition
2024-03-19T14:32:17Z
--- language: - en - zh - de - es - ru - ko - fr - ja - pt - tr - pl - ca - nl - ar - sv - it - id - hi - fi - vi - he - uk - el - ms - cs - ro - da - hu - ta - 'no' - th - ur - hr - bg - lt - la - mi - ml - cy - sk - te - fa - lv - bn - sr - az - sl - kn - et - mk - br - eu - is - hy - ne - mn - bs - kk - sq - sw - gl - mr - pa - si - km - sn - yo - so - af - oc - ka - be - tg - sd - gu - am - yi - lo - uz - fo - ht - ps - tk - nn - mt - sa - lb - my - bo - tl - mg - as - tt - haw - ln - ha - ba - jw - su - yue tags: - audio - automatic-speech-recognition - int8 - quanto - faster-whisper license: apache-2.0 library_name: ctranslate2 --- # Model Card for Model ID This model is quantized using the [Quanto Python Package](https://github.com/huggingface/quanto) and the [CTranslate2 Python Package](https://github.com/OpenNMT/CTranslate2). From my early tests: - Much less GPU memory required - It seems that performance is on par with the original - It seems that this combination is faster than just using the CTranslate2 int8 quantization. Quantization method TBA. To use this model use the faster_whisper module as stated in [the original faster-whisper model](https://huggingface.co/Systran/faster-whisper-large-v3) Or use [WhisperX](https://github.com/m-bain/whisperX), this is what I used for my small tests (do not forget to set dtype to int8). Any benchmark results are appreciated. I probably do not have time to do it myself. ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
jvh/whisper-base-quant-ct2
jvh
2024-03-19T15:46:35Z
5
2
ctranslate2
[ "ctranslate2", "audio", "automatic-speech-recognition", "int8", "quanto", "faster-whisper", "en", "zh", "de", "es", "ru", "ko", "fr", "ja", "pt", "tr", "pl", "ca", "nl", "ar", "sv", "it", "id", "hi", "fi", "vi", "he", "uk", "el", "ms", "cs", "ro", "da", "hu", "ta", "no", "th", "ur", "hr", "bg", "lt", "la", "mi", "ml", "cy", "sk", "te", "fa", "lv", "bn", "sr", "az", "sl", "kn", "et", "mk", "br", "eu", "is", "hy", "ne", "mn", "bs", "kk", "sq", "sw", "gl", "mr", "pa", "si", "km", "sn", "yo", "so", "af", "oc", "ka", "be", "tg", "sd", "gu", "am", "yi", "lo", "uz", "fo", "ht", "ps", "tk", "nn", "mt", "sa", "lb", "my", "bo", "tl", "mg", "as", "tt", "haw", "ln", "ha", "ba", "jw", "su", "yue", "arxiv:1910.09700", "license:apache-2.0", "region:us" ]
automatic-speech-recognition
2024-03-19T14:30:02Z
--- language: - en - zh - de - es - ru - ko - fr - ja - pt - tr - pl - ca - nl - ar - sv - it - id - hi - fi - vi - he - uk - el - ms - cs - ro - da - hu - ta - 'no' - th - ur - hr - bg - lt - la - mi - ml - cy - sk - te - fa - lv - bn - sr - az - sl - kn - et - mk - br - eu - is - hy - ne - mn - bs - kk - sq - sw - gl - mr - pa - si - km - sn - yo - so - af - oc - ka - be - tg - sd - gu - am - yi - lo - uz - fo - ht - ps - tk - nn - mt - sa - lb - my - bo - tl - mg - as - tt - haw - ln - ha - ba - jw - su - yue tags: - audio - automatic-speech-recognition - int8 - quanto - faster-whisper license: apache-2.0 library_name: ctranslate2 --- # Model Card for Model ID This model is quantized using the [Quanto Python Package](https://github.com/huggingface/quanto) and the [CTranslate2 Python Package](https://github.com/OpenNMT/CTranslate2). From my early tests: - Much less GPU memory required - It seems that performance is on par with the original - It seems that this combination is faster than just using the CTranslate2 int8 quantization. Quantization method TBA. To use this model use the faster_whisper module as stated in [the original faster-whisper model](https://huggingface.co/Systran/faster-whisper-large-v3) Or use [WhisperX](https://github.com/m-bain/whisperX), this is what I used for my small tests (do not forget to set dtype to int8). Any benchmark results are appreciated. I probably do not have time to do it myself. ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
peldrak/mask2former-large-cityscapes-finetuned-coastTrain
peldrak
2024-03-19T15:41:48Z
34
0
transformers
[ "transformers", "safetensors", "mask2former", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-03-18T01:58:37Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
joosma/ppo-Huggy
joosma
2024-03-19T15:40:26Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2024-03-19T15:40:20Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: joosma/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
lbaeriswyl/dqn-SpaceInvadersNoFrameskip-v4
lbaeriswyl
2024-03-19T15:37:36Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-03-19T15:37:03Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 543.00 +/- 216.69 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga lbaeriswyl -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga lbaeriswyl -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga lbaeriswyl ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
prampampam/sofa-sdxl-lora
prampampam
2024-03-19T15:36:07Z
5
1
diffusers
[ "diffusers", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "diffusers-training", "text-to-image", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2024-03-19T14:21:42Z
--- tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - diffusers-training - text-to-image - diffusers - lora - template:sd-lora widget: - text: 'a photo of living room with <s0><s1>' output: url: "image_0.png" - text: 'a photo of living room with <s0><s1>' output: url: "image_1.png" - text: 'a photo of living room with <s0><s1>' output: url: "image_2.png" - text: 'a photo of living room with <s0><s1>' output: url: "image_3.png" base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a photo of <s0><s1> license: openrail++ --- # SDXL LoRA DreamBooth - prampampam/sofa-sdxl-lora <Gallery /> ## Model description ### These are prampampam/sofa-sdxl-lora LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. ## Download model ### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke - **LoRA**: download **[`sofa-sdxl-lora.safetensors` here 💾](/prampampam/sofa-sdxl-lora/blob/main/sofa-sdxl-lora.safetensors)**. - Place it on your `models/Lora` folder. - On AUTOMATIC1111, load the LoRA by adding `<lora:sofa-sdxl-lora:1>` to your prompt. On ComfyUI just [load it as a regular LoRA](https://comfyanonymous.github.io/ComfyUI_examples/lora/). - *Embeddings*: download **[`sofa-sdxl-lora_emb.safetensors` here 💾](/prampampam/sofa-sdxl-lora/blob/main/sofa-sdxl-lora_emb.safetensors)**. - Place it on it on your `embeddings` folder - Use it by adding `sofa-sdxl-lora_emb` to your prompt. For example, `a photo of sofa-sdxl-lora_emb` (you need both the LoRA and the embeddings as they were trained together for this LoRA) ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch from huggingface_hub import hf_hub_download from safetensors.torch import load_file pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('prampampam/sofa-sdxl-lora', weight_name='pytorch_lora_weights.safetensors') embedding_path = hf_hub_download(repo_id='prampampam/sofa-sdxl-lora', filename='sofa-sdxl-lora_emb.safetensors', repo_type="model") state_dict = load_file(embedding_path) pipeline.load_textual_inversion(state_dict["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer) pipeline.load_textual_inversion(state_dict["clip_g"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2) image = pipeline('a photo of living room with <s0><s1>').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Trigger words To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens: to trigger concept `MYSOFA` → use `<s0><s1>` in your prompt ## Details All [Files & versions](/prampampam/sofa-sdxl-lora/tree/main). The weights were trained using [🧨 diffusers Advanced Dreambooth Training Script](https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py). LoRA for the text encoder was enabled. False. Pivotal tuning was enabled: True. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
peldrak/mask2former-large-ade-finetuned-coastTrain
peldrak
2024-03-19T15:32:09Z
33
0
transformers
[ "transformers", "safetensors", "mask2former", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-03-18T02:01:21Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
kousw/stablelm-gamma-7b-chatvector
kousw
2024-03-19T15:29:54Z
7
1
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "ja", "arxiv:2310.04799", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-19T15:00:11Z
--- license: apache-2.0 language: - ja --- ![image](x1.png) This model employs the technique described in ["Chat Vector: A Simple Approach to Equip LLMs with Instruction Following and Model Alignment in New Languages"](https://arxiv.org/abs/2310.04799). It is based on [stablelm-gamma-7b](https://huggingface.co/stabilityai/japanese-stablelm-base-gamma-7b), a model that has not undergone instruction tuning, which was pre-trained using [mistral-7b-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1). To extract chat vectors, mistral-7b-v0.1 was "subtracted" from [mistral-7b-instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2). By applying these extracted chat vectors to the non-instruction-tuned model stablelm-gamma-7b, an effect equivalent to instruction tuning is achieved. ```python from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" # the device to load the model onto model = AutoModelForCausalLM.from_pretrained("kousw/stablelm-gamma-7b-chatvector") tokenizer = AutoTokenizer.from_pretrained("kousw/stablelm-gamma-7b-chatvector") messages = [ {"role": "user", "content": "与えられたことわざの意味を小学生でも分かるように教えてください。"}, {"role": "assistant", "content": "はい、どんなことわざでもわかりやすく答えます"}, {"role": "user", "content": "情けは人のためならず"} ] encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt") model_inputs = encodeds.to(device) model.to(device) generated_ids = model.generate(model_inputs, max_new_tokens=256, do_sample=True) decoded = tokenizer.batch_decode(generated_ids) print(decoded[0]) ```
alterf/det
alterf
2024-03-19T15:28:24Z
190
0
transformers
[ "transformers", "safetensors", "table-transformer", "image-feature-extraction", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
image-feature-extraction
2024-03-19T15:28:15Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ighoshsubho/mistral-7b-oig-unsloth
ighoshsubho
2024-03-19T15:24:59Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "mistral", "trl", "en", "base_model:unsloth/mistral-7b-instruct-v0.2-bnb-4bit", "base_model:finetune:unsloth/mistral-7b-instruct-v0.2-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-03-19T15:24:47Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - mistral - trl base_model: unsloth/mistral-7b-instruct-v0.2-bnb-4bit --- # Uploaded model - **Developed by:** ighoshsubho - **License:** apache-2.0 - **Finetuned from model :** unsloth/mistral-7b-instruct-v0.2-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Liu-Xiang/Llama-2-7b-chat-hf-tuned-adapters
Liu-Xiang
2024-03-19T15:24:57Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:meta-llama/Llama-2-7b-chat-hf", "base_model:adapter:meta-llama/Llama-2-7b-chat-hf", "region:us" ]
null
2024-02-25T02:42:46Z
--- library_name: peft base_model: meta-llama/Llama-2-7b-chat-hf --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.9.1.dev0
ighoshsubho/mistral-7b-oig-unsloth-merged
ighoshsubho
2024-03-19T15:24:16Z
2
0
transformers
[ "transformers", "pytorch", "mistral", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "base_model:unsloth/mistral-7b-instruct-v0.2-bnb-4bit", "base_model:finetune:unsloth/mistral-7b-instruct-v0.2-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-03-19T15:17:24Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - mistral - trl - sft base_model: unsloth/mistral-7b-instruct-v0.2-bnb-4bit --- # Uploaded model - **Developed by:** ighoshsubho - **License:** apache-2.0 - **Finetuned from model :** unsloth/mistral-7b-instruct-v0.2-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
adamjweintraut/bart-finetuned-lyrlen-512
adamjweintraut
2024-03-19T15:13:29Z
3
0
transformers
[ "transformers", "tensorboard", "safetensors", "bart", "text2text-generation", "generated_from_trainer", "base_model:facebook/bart-large", "base_model:finetune:facebook/bart-large", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-03-19T05:12:09Z
--- license: apache-2.0 tags: - generated_from_trainer base_model: facebook/bart-large model-index: - name: bart-finetuned-lyrlen-512 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-finetuned-lyrlen-512 This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.7206 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.221 | 0.04 | 500 | 1.9667 | | 2.0336 | 0.08 | 1000 | 1.8762 | | 1.9563 | 0.12 | 1500 | 1.8565 | | 1.9555 | 0.17 | 2000 | 1.8392 | | 1.9072 | 0.21 | 2500 | 1.8214 | | 1.8796 | 0.25 | 3000 | 1.8246 | | 1.8955 | 0.29 | 3500 | 1.8050 | | 1.8254 | 0.33 | 4000 | 1.8069 | | 1.8518 | 0.38 | 4500 | 1.7873 | | 1.8471 | 0.42 | 5000 | 1.7880 | | 1.8536 | 0.46 | 5500 | 1.7736 | | 1.8075 | 0.5 | 6000 | 1.7772 | | 1.8143 | 0.54 | 6500 | 1.7724 | | 1.8383 | 0.58 | 7000 | 1.7670 | | 1.746 | 0.62 | 7500 | 1.7741 | | 1.7844 | 0.67 | 8000 | 1.7608 | | 1.7761 | 0.71 | 8500 | 1.7680 | | 1.7367 | 0.75 | 9000 | 1.7555 | | 1.7656 | 0.79 | 9500 | 1.7508 | | 1.7467 | 0.83 | 10000 | 1.7558 | | 1.7744 | 0.88 | 10500 | 1.7449 | | 1.7513 | 0.92 | 11000 | 1.7462 | | 1.7482 | 0.96 | 11500 | 1.7576 | | 1.724 | 1.0 | 12000 | 1.7525 | | 1.7043 | 1.04 | 12500 | 1.7746 | | 1.6869 | 1.08 | 13000 | 1.7531 | | 1.7405 | 1.12 | 13500 | 1.7473 | | 1.7343 | 1.17 | 14000 | 1.7396 | | 1.649 | 1.21 | 14500 | 1.7384 | | 1.7208 | 1.25 | 15000 | 1.7368 | | 1.6931 | 1.29 | 15500 | 1.7404 | | 1.5941 | 1.33 | 16000 | 1.8223 | | 1.6651 | 1.38 | 16500 | 1.7287 | | 1.6649 | 1.42 | 17000 | 1.7413 | | 1.7108 | 1.46 | 17500 | 1.7304 | | 1.713 | 1.5 | 18000 | 1.7263 | | 1.6866 | 1.54 | 18500 | 1.7139 | | 1.6461 | 1.58 | 19000 | 1.7221 | | 1.6886 | 1.62 | 19500 | 1.7159 | | 1.6511 | 1.67 | 20000 | 1.7302 | | 1.6626 | 1.71 | 20500 | 1.7182 | | 1.7052 | 1.75 | 21000 | 1.7163 | | 1.6831 | 1.79 | 21500 | 1.7168 | | 1.6057 | 1.83 | 22000 | 1.7151 | | 1.6761 | 1.88 | 22500 | 1.7117 | | 1.6668 | 1.92 | 23000 | 1.7164 | | 1.612 | 1.96 | 23500 | 1.7122 | | 1.6617 | 2.0 | 24000 | 1.7131 | | 1.641 | 2.04 | 24500 | 1.7277 | | 1.6595 | 2.08 | 25000 | 1.7289 | | 1.6723 | 2.12 | 25500 | 1.7192 | | 1.6347 | 2.17 | 26000 | 1.7259 | | 1.6684 | 2.21 | 26500 | 1.7211 | | 1.6098 | 2.25 | 27000 | 1.7316 | | 1.6025 | 2.29 | 27500 | 1.7213 | | 1.5567 | 2.33 | 28000 | 1.7238 | | 1.6564 | 2.38 | 28500 | 1.7185 | | 1.7078 | 2.42 | 29000 | 1.7393 | | 1.6308 | 2.46 | 29500 | 1.7234 | | 1.6402 | 2.5 | 30000 | 1.7319 | | 1.6333 | 2.54 | 30500 | 1.7197 | | 1.6249 | 2.58 | 31000 | 1.7298 | | 1.6366 | 2.62 | 31500 | 1.7235 | | 1.6245 | 2.67 | 32000 | 1.7289 | | 1.6044 | 2.71 | 32500 | 1.7160 | | 1.6095 | 2.75 | 33000 | 1.7172 | | 1.6621 | 2.79 | 33500 | 1.7210 | | 1.6883 | 2.83 | 34000 | 1.7169 | | 1.6449 | 2.88 | 34500 | 1.7155 | | 1.6439 | 2.92 | 35000 | 1.7201 | | 1.6358 | 2.96 | 35500 | 1.7188 | | 1.6033 | 3.0 | 36000 | 1.7206 | ### Framework versions - Transformers 4.39.0.dev0 - Pytorch 2.1.0.dev20230621+cu117 - Datasets 2.18.0 - Tokenizers 0.15.2
ichetandhembre/chat_lora_unsloth_wikipedia_qa_train_4_bit_with_hint
ichetandhembre
2024-03-19T15:10:09Z
77
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "base_model:unsloth/mistral-7b-bnb-4bit", "base_model:quantized:unsloth/mistral-7b-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-03-19T15:04:36Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - mistral - trl - sft base_model: unsloth/mistral-7b-bnb-4bit --- # Uploaded model - **Developed by:** ichetandhembre - **License:** apache-2.0 - **Finetuned from model :** unsloth/mistral-7b-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
santhoshkammari/output
santhoshkammari
2024-03-19T15:08:42Z
2
0
peft
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "dataset:generator", "base_model:google/flan-t5-small", "base_model:adapter:google/flan-t5-small", "license:apache-2.0", "region:us" ]
null
2024-03-19T14:11:27Z
--- license: apache-2.0 library_name: peft tags: - trl - sft - generated_from_trainer base_model: google/flan-t5-small datasets: - generator model-index: - name: FLANFt-t5-small results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # FLANFt-t5-small This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on the generator dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 3 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - PEFT 0.9.0 - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
arvnoodle/hcl-codellama-7b-instruct-javascript-lotuscript-GGUF
arvnoodle
2024-03-19T15:02:18Z
82
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "base_model:codellama/CodeLlama-7b-Instruct-hf", "base_model:quantized:codellama/CodeLlama-7b-Instruct-hf", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-03-19T15:00:10Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - gguf base_model: codellama/CodeLlama-7b-Instruct-hf --- # Uploaded model - **Developed by:** arvnoodle - **License:** apache-2.0 - **Finetuned from model :** codellama/CodeLlama-7b-Instruct-hf This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
arcee-ai/Patent-Instruct-Extended
arcee-ai
2024-03-19T15:02:06Z
10
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "merge", "mergekit", "arcee-ai/Patent-Instruct-7b", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-19T14:54:37Z
--- license: apache-2.0 tags: - merge - mergekit - arcee-ai/Patent-Instruct-7b --- # Patent-Instruct-Extended Patent-Instruct-Extended is an extension of the following models using the passthrough method and [mergekit](https://github.com/cg123/mergekit): * [arcee-ai/Patent-Instruct-7b](https://huggingface.co/arcee-ai/Patent-Instruct-7b) ## 🧩 Configuration ```yaml slices: - sources: - model: arcee-ai/Patent-Instruct-7b layer_range: - 0 - 4 - sources: - model: arcee-ai/Patent-Instruct-7b layer_range: - 2 - 4 parameters: scale: - filter: o_proj value: 0 - filter: down_proj value: 0 - value: 1 - sources: - model: arcee-ai/Patent-Instruct-7b layer_range: - 4 - 8 - sources: - model: arcee-ai/Patent-Instruct-7b layer_range: - 6 - 8 parameters: scale: - filter: o_proj value: 0 - filter: down_proj value: 0 - value: 1 - sources: - model: arcee-ai/Patent-Instruct-7b layer_range: - 8 - 12 - sources: - model: arcee-ai/Patent-Instruct-7b layer_range: - 10 - 12 parameters: scale: - filter: o_proj value: 0 - filter: down_proj value: 0 - value: 1 - sources: - model: arcee-ai/Patent-Instruct-7b layer_range: - 12 - 16 - sources: - model: arcee-ai/Patent-Instruct-7b layer_range: - 14 - 16 parameters: scale: - filter: o_proj value: 0 - filter: down_proj value: 0 - value: 1 - sources: - model: arcee-ai/Patent-Instruct-7b layer_range: - 16 - 20 - sources: - model: arcee-ai/Patent-Instruct-7b layer_range: - 18 - 20 parameters: scale: - filter: o_proj value: 0 - filter: down_proj value: 0 - value: 1 - sources: - model: arcee-ai/Patent-Instruct-7b layer_range: - 20 - 24 - sources: - model: arcee-ai/Patent-Instruct-7b layer_range: - 22 - 24 parameters: scale: - filter: o_proj value: 0 - filter: down_proj value: 0 - value: 1 - sources: - model: arcee-ai/Patent-Instruct-7b layer_range: - 24 - 28 - sources: - model: arcee-ai/Patent-Instruct-7b layer_range: - 26 - 28 parameters: scale: - filter: o_proj value: 0 - filter: down_proj value: 0 - value: 1 - sources: - model: arcee-ai/Patent-Instruct-7b layer_range: - 28 - 32 - sources: - model: arcee-ai/Patent-Instruct-7b layer_range: - 30 - 32 parameters: scale: - filter: o_proj value: 0 - filter: down_proj value: 0 - value: 1 merge_method: passthrough dtype: bfloat16 ```
Samuael/geez_30k_mt5
Samuael
2024-03-19T14:59:09Z
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-03-19T07:29:05Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
hakankenar/gemma-2b-it-8bit-finetune-test-alpaca-changed
hakankenar
2024-03-19T14:56:01Z
105
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-19T14:52:10Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mjacobo/my_awesome_billsum_model
mjacobo
2024-03-19T14:54:35Z
105
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-03-13T19:31:32Z
--- license: apache-2.0 base_model: google-t5/t5-small tags: - generated_from_trainer metrics: - rouge model-index: - name: my_awesome_billsum_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_billsum_model This model is a fine-tuned version of [google-t5/t5-small](https://huggingface.co/google-t5/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.4521 - Rouge1: 0.1351 - Rouge2: 0.0486 - Rougel: 0.1102 - Rougelsum: 0.11 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 62 | 2.7471 | 0.129 | 0.041 | 0.1081 | 0.1078 | 19.0 | | No log | 2.0 | 124 | 2.5302 | 0.1353 | 0.0485 | 0.113 | 0.1125 | 19.0 | | No log | 3.0 | 186 | 2.4697 | 0.1359 | 0.0518 | 0.1118 | 0.1117 | 19.0 | | No log | 4.0 | 248 | 2.4521 | 0.1351 | 0.0486 | 0.1102 | 0.11 | 19.0 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3